1
|
Tantrawatpan C, Vaisusuk K, Tanga CM, Pilap W, Bunchom N, Andrews RH, Thanchomnang T, Maleewong W, Saijuntha W. Nuclear Intron Sequence Variation of the Bulinus globosus Complex (Mollusca: Planorbidae): Implications for Molecular Systematic Analyses. BIOLOGY 2025; 14:53. [PMID: 39857284 PMCID: PMC11761897 DOI: 10.3390/biology14010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/19/2024] [Accepted: 01/09/2025] [Indexed: 01/27/2025]
Abstract
Urinary schistosomiasis is caused by the blood fluke Schistosoma haematobium, which is predominantly found in Africa. The freshwater snail Bulinus globosus is its main intermediate host. The species that make up the B. globosus group are genetically complex, and their taxonomic status remains controversial. Genetic variation, heterozygosity, and DNA recombination in B. globosus were examined using the mitochondrial cytochrome c oxidase subunit 1 (COI) and the intron 3 region of the arginine kinase gene (AkInt3). A total of 81 B. globosus snails were collected from three different localities in Kwale County, Kenya. Genomic diversity, heterozygosity, DNA recombination, and haplotype network were calculated using AkInt3 sequences. Low polymorphism in the COI sequence divided B. globosus into six haplotypes (C1-C6). However, AkInt3 sequencing studies showed high polymorphisms, classifying 81 B. globosus snails into 44 haplotypes (H1-H44). These haplotypes were separated into three haplogroups (I-III). AkInt3 sequence heterozygosity was also found. DNA recombination haplotypes between haplogroups were commonly found in heterozygous samples. AkInt3 sequence studies showed high levels of genetic polymorphism and heterozygosity, supporting its use as a genetic marker for elucidating the population genetics of B. globosus. Furthermore, our study showed that B. globosus populations in Kenya form a "species complex".
Collapse
Affiliation(s)
- Chairat Tantrawatpan
- Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, and Center of Excellence in Stem Cell Research and Innovation, Thammasat University, Rangsit Campus, Pathum Thani 12120, Thailand;
| | - Kotchaphon Vaisusuk
- Department of Veterinary Technology, Faculty of Agricultural Technology, Rajabhat Maha Sarakham University, Maha Sarakham 44000, Thailand;
| | - Chrysantus M. Tanga
- Plant Health Theme, International Centre of Insect Physiology and Ecology, Nairobi 00100, Kenya;
| | - Warayutt Pilap
- Walai Rukhavej Botanical Research Institute, Mahasarakham University, Maha Sarakham 44150, Thailand;
| | - Naruemon Bunchom
- Department of Tropical Medicine and Malaria, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-Ku, Tokyo 162-8655, Japan;
| | - Ross H. Andrews
- Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, South Kensington Campus, London SW7 2AZ, UK;
| | - Tongjit Thanchomnang
- Biomedical Science Research Unit, Faculty of Medicine, Mahasarakham University, Maha Sarakham 44000, Thailand;
| | - Wanchai Maleewong
- Department of Parasitology, Faculty of Medicine, and Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Weerachai Saijuntha
- Biomedical Science Research Unit, Faculty of Medicine, Mahasarakham University, Maha Sarakham 44000, Thailand;
| |
Collapse
|
2
|
JUTZELER KS, PLATT RN, DIAZ R, MORALES M, LE CLEC’H W, CHEVALIER FD, ANDERSON TJ. Abundant genetic variation is retained in many laboratory schistosome populations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.21.619418. [PMID: 39484487 PMCID: PMC11526883 DOI: 10.1101/2024.10.21.619418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Schistosomes are obligately sexual blood flukes that can be maintained in the laboratory using freshwater snails as intermediate and rodents as definitive hosts. The genetic composition of laboratory schistosome populations is poorly understood: whether genetic variation has been purged due to serial inbreeding or retained is unclear. We sequenced 19 - 24 parasites from each of five laboratory Schistosoma mansoni populations and compared their genomes with published exome data from four S. mansoni field populations. We found abundant genomic variation (0.897 - 1.22 million variants) within laboratory populations: these retained on average 49% (π = 3.27e-04 - 8.94e-04) of the nucleotide diversity observed in the four field parasite populations (π = 1.08e-03 - 2.2e-03). However, the pattern of variation was very different in laboratory and field populations. Tajima's D was positive in all laboratory populations except SmBRE, indicative of recent population bottlenecks, but negative in all field populations. Current effective population size estimates of laboratory populations were lower (2 - 258) compared to field populations (3,174 - infinity). The distance between markers at which linkage disequilibrium (LD) decayed to 0.5 was longer in laboratory populations (59 bp - 180 kb) compared to field populations (9 bp - 9.5 kb). SmBRE was the least variable; this parasite also shows low fitness across the lifecycle, consistent with inbreeding depression. The abundant genetic variation present in most laboratory schistosome populations has several important implications: (i) measurement of parasite phenotypes, such as drug resistance, using laboratory parasite populations will determine average values and underestimate trait variation; (ii) genome-wide association studies (GWAS) can be conducted in laboratory schistosome populations by measuring phenotypes and genotypes of individual worms; (iii) genetic drift may lead to divergence in schistosome populations maintained in different laboratories. We conclude that the abundant genetic variation retained within many laboratory schistosome populations can provide valuable, untapped opportunities for schistosome research.
Collapse
Affiliation(s)
- Kathrin S. JUTZELER
- Host parasite Interaction Program, Texas Biomedical Research Institute, P.O. Box 760549, 78245 San Antonio, Texas, USA
- UT Health, Microbiology, Immunology & Molecular Genetics, San Antonio, TX 78229
| | - Roy N. PLATT
- Disease Intervention and Prevention program, Texas Biomedical Research Institute, P.O. Box 760549, 78245 San Antonio, Texas, USA
| | - Robbie DIAZ
- Texas Biomedical Research Institute, P.O. Box 760549, 78245 San Antonio, Texas, USA
| | - Madison MORALES
- Texas Biomedical Research Institute, P.O. Box 760549, 78245 San Antonio, Texas, USA
| | - Winka LE CLEC’H
- Host parasite Interaction Program, Texas Biomedical Research Institute, P.O. Box 760549, 78245 San Antonio, Texas, USA
| | - Frédéric D. CHEVALIER
- Host parasite Interaction Program, Texas Biomedical Research Institute, P.O. Box 760549, 78245 San Antonio, Texas, USA
| | - Timothy J.C. ANDERSON
- Disease Intervention and Prevention program, Texas Biomedical Research Institute, P.O. Box 760549, 78245 San Antonio, Texas, USA
| |
Collapse
|
3
|
Blouin MS, Bollmann SR, Le Clec’h W, Chevalier FD, Anderson TJC, Tennessen JA. Susceptibility of BS90 Biomphalaria glabrata snails to infection by SmLE Schistosoma mansoni segregates as a dominant allele in a cluster of polymorphic genes for single-pass transmembrane proteins. PLoS Negl Trop Dis 2024; 18:e0012474. [PMID: 39283952 PMCID: PMC11426442 DOI: 10.1371/journal.pntd.0012474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/26/2024] [Accepted: 08/19/2024] [Indexed: 09/27/2024] Open
Abstract
The trematodes that cause schistosomiasis in humans require aquatic snails as intermediate hosts. Identifying the genes in snails at which allelic variation controls resistance to infection by schistosomes could lead to novel ways to break the cycle of transmission. We therefore mapped genetic variation within the BS90 population of Biomphalaria glabrata snails that controls their resistance to infection by the SmLE population of Schistosoma mansoni. A marker in the PTC2 genomic region strongly associates with variation in resistance. The S-haplotype, which confers increased susceptibility, appears to be almost completely dominant to the R-haplotype, which confers increased resistance. This result suggests a model in which the parasite must match a molecule on the host side to successfully infect. The genomic region surrounding our marker shows high structural and sequence variability between haplotypes. It is also highly enriched for genes that code for single-pass transmembrane (TM1) genes. Several of the TM1 genes present on the S-haplotype lack orthologs on the R-haplotype, which makes them intriguing candidate genes in a model of dominant susceptibility. These results add to a growing body of work that suggests TM1 genes, especially those in this exceptionally diverse genomic region, may play an important role in snail-schistosome compatibility polymorphisms.
Collapse
Affiliation(s)
- Michael S. Blouin
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, United States of America
| | - Stephanie R. Bollmann
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, United States of America
| | - Winka Le Clec’h
- Host Parasite Interaction Program, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Frédéric D. Chevalier
- Host Parasite Interaction Program, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Timothy J. C. Anderson
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Jacob A. Tennessen
- Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| |
Collapse
|
4
|
Simphor E, Rognon A, Vignal E, Henry S, Allienne JF, Turtoi A, Chaparro C, Galinier R, Duval D, Gourbal B. Combining a transcriptomic approach and a targeted metabolomics approach for deciphering the molecular bases of compatibility phenotype in the snail Biomphalaria glabrata toward Schistosoma mansoni. Acta Trop 2024; 255:107212. [PMID: 38641222 DOI: 10.1016/j.actatropica.2024.107212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/21/2024]
Abstract
Biomphalaria glabrata is a freshwater snail and the obligatory intermediate host of Schistosoma mansoni parasite, the etiologic agent of intestinal Schistosomiasis, in South America and Caribbean. Interestingly in such host-parasite interactions, compatibility varies between populations, strains or individuals. This observed compatibility polymorphism is based on a complex molecular-matching-phenotype, the molecular bases of which have been investigated in numerous studies, notably by comparing between different strains or geographical isolates or clonal selected snail lines. Herein we propose to decipher the constitutive molecular support of this interaction in selected non-clonal resistant and susceptible snail strain originating from the same natural population from Brazil and thus having the same genetic background. Thanks to a global RNAseq transcriptomic approach on whole snail, we identified a total of 328 differentially expressed genes between resistant and susceptible phenotypes among which 129 were up-regulated and 199 down-regulated. Metabolomic studies were used to corroborate the RNAseq results. The activation of immune genes and specific metabolic pathways in resistant snails might provide them with the capacity to better respond to parasite infection.
Collapse
Affiliation(s)
- Elodie Simphor
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan via Domitia, Perpignan, France
| | - Anne Rognon
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan via Domitia, Perpignan, France
| | - Emmanuel Vignal
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan via Domitia, Perpignan, France
| | - Sylvain Henry
- Platform for Translational Oncometabolomics, Biocampus, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | | | - Andrei Turtoi
- Platform for Translational Oncometabolomics, Biocampus, CNRS, INSERM, Université de Montpellier, Montpellier, France; Tumor Microenvironment and Resistance to Therapy Laboratory, Institut de Recherche en Cancérologie de Montpellier, Université de Montpellier, INSERM, U1194, Montpellier, France
| | - Cristian Chaparro
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan via Domitia, Perpignan, France
| | - Richard Galinier
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan via Domitia, Perpignan, France
| | - David Duval
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan via Domitia, Perpignan, France
| | - Benjamin Gourbal
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan via Domitia, Perpignan, France.
| |
Collapse
|
5
|
Clerissi C, Huot C, Portet A, Gourbal B, Toulza E. Covariation between microeukaryotes and bacteria associated with Planorbidae snails. PeerJ 2023; 11:e16639. [PMID: 38144201 PMCID: PMC10740603 DOI: 10.7717/peerj.16639] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/19/2023] [Indexed: 12/26/2023] Open
Abstract
Background Microbial communities associated with macroorganisms might affect host physiology and homeostasis. Bacteria are well studied in this context, but the diversity of microeukaryotes, as well as covariations with bacterial communities, remains almost unknown. Methods To study microeukaryotic communities associated with Planorbidae snails, we developed a blocking primer to reduce amplification of host DNA during metabarcoding analyses. Analyses of alpha and beta diversities were computed to describe microeukaryotes and bacteria using metabarcoding of 18S and 16S rRNA genes, respectively. Results Only three phyla (Amoebozoa, Opisthokonta and Alveolata) were dominant for microeukaryotes. Bacteria were more diverse with five dominant phyla (Proteobacteria, Bacteroidetes, Tenericutes, Planctomycetes and Actinobacteria). The composition of microeukaryotes and bacteria were correlated for the Biomphalaria glabrata species, but not for Planorbarius metidjensis. Network analysis highlighted clusters of covarying taxa. Among them, several links might reflect top-down control of bacterial populations by microeukaryotes, but also possible competition between microeukaryotes having opposite distributions (Lobosa and Ichthyosporea). The role of these taxa remains unknown, but we believe that the blocking primer developed herein offers new possibilities to study the hidden diversity of microeukaryotes within snail microbiota, and to shed light on their underestimated interactions with bacteria and hosts.
Collapse
Affiliation(s)
- Camille Clerissi
- Current Affiliation: PSL Université Paris: EPHE-UPVD-CNRS, UAR 3278 CRIOBE, Université de Perpignan, Perpignan Cedex, France
| | - Camille Huot
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan via Domitia, Perpignan, France
| | - Anaïs Portet
- Current Affiliation: MIVEGEC, IRD, CNRS, University of Montpellier, Montpellier, France
| | - Benjamin Gourbal
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan via Domitia, Perpignan, France
| | - Eve Toulza
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan via Domitia, Perpignan, France
| |
Collapse
|
6
|
Duval D, Poteaux P, Gourbal B, Rognon A, Augusto RDC. Fluorescent non transgenic schistosoma to decipher host-parasite phenotype compatibility. Front Immunol 2023; 14:1293009. [PMID: 38106408 PMCID: PMC10721968 DOI: 10.3389/fimmu.2023.1293009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/07/2023] [Indexed: 12/19/2023] Open
Abstract
Schistosomiasis is considered as a significant public health problem, imposing a deeper understanding of the intricate interplay between parasites and their hosts. Unfortunately, current invasive methodologies employed to study the compatibility and the parasite development impose limitations on exploring diverse strains under various environmental conditions, thereby impeding progress in the field. In this study, we demonstrate the usefulness for the trematode parasite Schistosma mansoni, leveranging a fluorescence-imaging-based approach that employs fluorescein 5-chloromethylfluorescein diacetate (CMFDA) and 5-chloromethylfluorescein diacetate (CMAC) as organism tracker for intramolluscan studies involving the host snail Biomphalaria glabrata. These probes represent key tools for qualitatively assessing snail infections with unmatched accuracy and precision. By monitoring the fluorescence of parasites within the snail vector, our method exposes an unprecedented glimpse into the host-parasite compatibility landscape. The simplicity and sensitivity of our approach render it an ideal choice for evolutionary studies, as it sheds light on the intricate mechanisms governing host-parasite interactions. Fluorescent probe-based methods play a pivotal role in characterizing factors influencing parasite development and phenotype of compatibility, paving the way for innovative, effective, and sustainable solutions to enhance our understanding host-parasite immunobiological interaction and compatibility.
Collapse
Affiliation(s)
- David Duval
- IHPE, Université de Perpignan Via Domitia, CNRS, Ifremer, Université de Montpellier, Perpignan, France
| | - Pierre Poteaux
- IHPE, Université de Perpignan Via Domitia, CNRS, Ifremer, Université de Montpellier, Perpignan, France
| | - Benjamin Gourbal
- IHPE, Université de Perpignan Via Domitia, CNRS, Ifremer, Université de Montpellier, Perpignan, France
| | - Anne Rognon
- IHPE, Université de Perpignan Via Domitia, CNRS, Ifremer, Université de Montpellier, Perpignan, France
| | | |
Collapse
|
7
|
Andrus PS, Stothard JR, Wade CM. Seasonal patterns of Schistosoma mansoni infection within Biomphalaria snails at the Ugandan shorelines of Lake Albert and Lake Victoria. PLoS Negl Trop Dis 2023; 17:e0011506. [PMID: 37578945 PMCID: PMC10424865 DOI: 10.1371/journal.pntd.0011506] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/06/2023] [Indexed: 08/16/2023] Open
Abstract
Intestinal schistosomiasis is hyperendemic in many sub-Saharan African countries. In Uganda, it is endemic at both Lake Albert (LA) and Lake Victoria (LV) and caused by S. mansoni that uses Biomphalaria snails as obligatory intermediate snail hosts. To shed light on local patterns of infection, we utilised two PCR-based methods to detect S. mansoni within Biomphalaria spp. as collected at the Ugandan shorelines of Lake Albert and Lake Victoria from 2009-2010. Overall, at our Lake Albert sites, the mean infection prevalence was 12.5% (15 of 120 snails), while at our Lake Victoria sites the prevalence was 5% (3 of 60 snails). At our Lake Albert sites, the highest infection prevalence of 13.3% (8 of 60 snails) was at Walukuba, while at our Lake Victoria sites, the highest infection prevalence of 10% (2 of 20 snails) was at Lwanika. Three species of Biomphalaria, B. pfeifferi, B. stanleyi and B. sudanica, were identified at our Lake Albert collection sites, while only a single species, B. choanomphala, was identified at our Lake Victoria collection sites. Biomphalaria stanleyi (2 of 20 snails; 15%) had the highest infection prevalence, followed by B. sudanica (5 of 60 snails; 13.3%), B. pfeifferi (4 of 40 snails; 10%) and B. choanomphala (3 of 60 snails; 5%). Of the Biomphalaria species identified, B. choanomphala had the highest haplotype (gene) diversity score, followed by B. stanleyi, B. sudanica and B. pfeifferi. Sites with a higher mean prevalence of S. mansoni infection had higher intra-species haplotype diversity scores than sites with a lower mean prevalence. The wet seasons (LA: 13.3%; LV: 8.7%) had a consistently higher mean infection prevalence of S. mansoni than the dry seasons (LA: 9.5%; LV: 5%) for all species and all sites tested at both Lake Albert (n = 480) and Lake Victoria (n = 320), though the difference was not statistically significant.
Collapse
Affiliation(s)
- Peter S. Andrus
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - J. Russell Stothard
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Christopher M. Wade
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
8
|
Spaan JM, Pennance T, Laidemitt MR, Sims N, Roth J, Lam Y, Rawago F, Ogara G, Loker ES, Odiere MR, Steinauer ML. Multi-strain compatibility polymorphism between a parasite and its snail host, a neglected vector of schistosomiasis in Africa. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2023; 3:100120. [PMID: 37128285 PMCID: PMC10147961 DOI: 10.1016/j.crpvbd.2023.100120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/23/2023] [Indexed: 05/03/2023]
Abstract
Interactions between Schistosoma mansoni and its snail host are understood primarily through experimental work with one South American vector species, Biomphalaria glabrata. However, 90% of schistosomiasis transmission occurs in Africa, where a diversity of Biomphalaria species may serve as vectors. With the long-term goal of determining the genetic and ecological determinants of infection in African snail hosts, we developed genetic models of Biomphalaria sudanica, a principal vector in the African Great Lakes. We determined laboratory infection dynamics of two S. mansoni lines in four B. sudanica lines. We measured the effects of the following variables on infection success and the number of cercariae produced (infection intensity): (i) the combination of parasite and snail line; (ii) the dose of parasites; and (iii) the size of snail at time of exposure. We found one snail line to be almost completely incompatible with both parasite lines, while other snail lines showed a polymorphism in compatibility: compatible with one parasite line while incompatible with another. Interestingly, these patterns were opposite in some of the snail lines. The parasite-snail combination had no significant effect on the number of cercariae produced in a successful infection. Miracidia dose had a strong effect on infection status, in that higher doses led to a greater proportion of infected snails, but had no effect on infection intensity. In one of the snail-schistosome combinations, snail size at the time of exposure affected both infection status and cercarial production in that the smallest size class of snails (1.5-2.9 mm) had the highest infection rates, and produced the greatest number of cercariae, suggesting that immunity increases with age and development. The strongest predictor of the infection intensity was the size of snail at the time of shedding: 1 mm of snail growth equated to a 19% increase in cercarial production. These results strongly suggest that infection status is determined in part by the interaction between snail and schistosome genetic lines, consistent with a gene-for-gene or matching allele model. This foundational work provides rationale for determining the genetic interactions between African snails and schistosomes, which may be applied to control strategies.
Collapse
Affiliation(s)
- Johannie M. Spaan
- Department of Basic Medical Sciences, Western University of Health Sciences, Lebanon, OR, USA
| | - Tom Pennance
- Department of Basic Medical Sciences, Western University of Health Sciences, Lebanon, OR, USA
| | - Martina R. Laidemitt
- Department of Biology, University of New Mexico, Albuquerque, USA
- Center for Evolutionary and Theoretical Immunology (CETI), University of New Mexico, Albuquerque, USA
| | - Nicole Sims
- Department of Basic Medical Sciences, Western University of Health Sciences, Lebanon, OR, USA
| | - Jewell Roth
- Department of Basic Medical Sciences, Western University of Health Sciences, Lebanon, OR, USA
| | - Yvonne Lam
- Department of Basic Medical Sciences, Western University of Health Sciences, Lebanon, OR, USA
| | - Fredrick Rawago
- Kenya Medical Research Institute (KEMRI), Centre for Global Health Research, Kisumu, Kenya
| | - George Ogara
- Kenya Medical Research Institute (KEMRI), Centre for Global Health Research, Kisumu, Kenya
| | - Eric S. Loker
- Department of Biology, University of New Mexico, Albuquerque, USA
- Center for Evolutionary and Theoretical Immunology (CETI), University of New Mexico, Albuquerque, USA
| | - Maurice R. Odiere
- Kenya Medical Research Institute (KEMRI), Centre for Global Health Research, Kisumu, Kenya
| | - Michelle L. Steinauer
- Department of Basic Medical Sciences, Western University of Health Sciences, Lebanon, OR, USA
| |
Collapse
|
9
|
Aguoru NA, Kirk RS, Walker AJ. Molecular insights into the heat shock proteins of the human parasitic blood fluke Schistosoma mansoni. Parasit Vectors 2022; 15:365. [PMID: 36229862 PMCID: PMC9559072 DOI: 10.1186/s13071-022-05500-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/16/2022] [Indexed: 11/22/2022] Open
Abstract
Background Heat shock proteins (HSPs) are evolutionarily conserved proteins, produced by cells in response to hostile environmental conditions, that are vital to organism homeostasis. Here, we undertook the first detailed molecular bioinformatic analysis of these important proteins and mapped their tissue expression in the human parasitic blood fluke, Schistosoma mansoni, one of the causative agents of the neglected tropical disease human schistosomiasis. Methods Using bioinformatic tools we classified and phylogenetically analysed HSP family members in schistosomes, and performed transcriptomic, phosphoproteomic, and interactomic analysis of the S. mansoni HSPs. In addition, S. mansoni HSP protein expression was mapped in intact parasites using immunofluorescence. Results Fifty-five HSPs were identified in S. mansoni across five HSP families; high conservation of HSP sequences were apparent across S. mansoni, Schistosoma haematobium and Schistosoma japonicum, with S. haematobium HSPs showing greater similarity to S. mansoni than those of S. japonicum. For S. mansoni, differential HSP gene expression was evident across the various parasite life stages, supporting varying roles for the HSPs in the different stages, and suggesting that they might confer some degree of protection during life stage transitions. Protein expression patterns of HSPs were visualised in intact S. mansoni cercariae, 3 h and 24 h somules, and adult male and female worms, revealing HSPs in the tegument, cephalic ganglia, tubercles, testes, ovaries as well as other important organs. Analysis of putative HSP protein-protein associations highlighted proteins that are involved in transcription, modification, stability, and ubiquitination; functional enrichment analysis revealed functions for HSP networks in S. mansoni including protein export for HSP 40/70, and FOXO/mTOR signalling for HSP90 networks. Finally, a total of 76 phosphorylation sites were discovered within 17 of the 55 HSPs, with 30 phosphorylation sites being conserved with those of human HSPs, highlighting their likely core functional significance. Conclusions This analysis highlights the fascinating biology of S. mansoni HSPs and their likely importance to schistosome function, offering a valuable and novel framework for future physiological investigations into the roles of HSPs in schistosomes, particularly in the context of survival in the host and with the aim of developing novel anti-schistosome therapeutics. Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05500-7.
Collapse
Affiliation(s)
- Nancy A Aguoru
- Molecular Parasitology Laboratory, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, KT1 2EE, Surrey, UK
| | - Ruth S Kirk
- Molecular Parasitology Laboratory, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, KT1 2EE, Surrey, UK
| | - Anthony J Walker
- Molecular Parasitology Laboratory, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, KT1 2EE, Surrey, UK.
| |
Collapse
|
10
|
Platt RN, Le Clec'h W, Chevalier FD, McDew‐White M, LoVerde PT, Ramiro de Assis R, Oliveira G, Kinung'hi S, Djirmay AG, Steinauer ML, Gouvras A, Rabone M, Allan F, Webster BL, Webster JP, Emery AM, Rollinson D, Anderson TJC. Genomic analysis of a parasite invasion: Colonization of the Americas by the blood fluke Schistosoma mansoni. Mol Ecol 2022; 31:2242-2263. [PMID: 35152493 PMCID: PMC9305930 DOI: 10.1111/mec.16395] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/25/2022] [Accepted: 01/31/2022] [Indexed: 11/29/2022]
Abstract
Schistosoma mansoni, a snail-borne, blood fluke that infects humans, was introduced into the Americas from Africa during the Trans-Atlantic slave trade. As this parasite shows strong specificity to the snail intermediate host, we expected that adaptation to South American Biomphalaria spp. snails would result in population bottlenecks and strong signatures of selection. We scored 475,081 single nucleotide variants in 143 S. mansoni from the Americas (Brazil, Guadeloupe and Puerto Rico) and Africa (Cameroon, Niger, Senegal, Tanzania, and Uganda), and used these data to ask: (i) Was there a population bottleneck during colonization? (ii) Can we identify signatures of selection associated with colonization? (iii) What were the source populations for colonizing parasites? We found a 2.4- to 2.9-fold reduction in diversity and much slower decay in linkage disequilibrium (LD) in parasites from East to West Africa. However, we observed similar nuclear diversity and LD in West Africa and Brazil, suggesting no strong bottlenecks and limited barriers to colonization. We identified five genome regions showing selection in the Americas, compared with three in West Africa and none in East Africa, which we speculate may reflect adaptation during colonization. Finally, we infer that unsampled populations from central African regions between Benin and Angola, with contributions from Niger, are probably the major source(s) for Brazilian S. mansoni. The absence of a bottleneck suggests that this is a rare case of a serendipitous invasion, where S. mansoni parasites were pre-adapted to the Americas and able to establish with relative ease.
Collapse
Affiliation(s)
- Roy N. Platt
- Texas Biomedical Research InstituteSan AntonioTexasUSA
| | | | | | | | | | | | - Guilherme Oliveira
- Centro de Pesquisas René Rachou—Fiocruz/MGBelo HorizonteBrazil
- Instituto Tecnológico ValeBelémBrazil
| | | | - Amadou Garba Djirmay
- Réseau International Schistosomiases Environnemental Aménagement et Lutte (RISEAL)NiameyNiger
| | | | | | | | - Fiona Allan
- Department of Pathobiology and Population SciencesRoyal Veterinary College, Centre for Emerging, Endemic and Exotic DiseasesUniversity of LondonHertfordshireUK
- London Centre for Neglected Tropical Disease Research, Imperial College LondonSchool of Public HealthLondonUK
| | - Bonnie L. Webster
- Natural History MuseumLondonUK
- London Centre for Neglected Tropical Disease Research, Imperial College LondonSchool of Public HealthLondonUK
| | - Joanne P. Webster
- Department of Pathobiology and Population SciencesRoyal Veterinary College, Centre for Emerging, Endemic and Exotic DiseasesUniversity of LondonHertfordshireUK
- London Centre for Neglected Tropical Disease Research, Imperial College LondonSchool of Public HealthLondonUK
| | - Aidan M. Emery
- Natural History MuseumLondonUK
- London Centre for Neglected Tropical Disease Research, Imperial College LondonSchool of Public HealthLondonUK
| | - David Rollinson
- Natural History MuseumLondonUK
- London Centre for Neglected Tropical Disease Research, Imperial College LondonSchool of Public HealthLondonUK
| | | |
Collapse
|
11
|
Luviano N, Duval D, Ittiprasert W, Allienne JF, Tavernier G, Chaparro C, Cosseau C, Grunau C. Hit-and-Run Epigenetic Editing for Vectors of Snail-Borne Parasitic Diseases. Front Cell Dev Biol 2022; 10:794650. [PMID: 35295851 PMCID: PMC8920497 DOI: 10.3389/fcell.2022.794650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/03/2022] [Indexed: 11/25/2022] Open
Abstract
Snail-borne parasitic diseases represent an important challenge to human and animal health. Control strategies that target the intermediate snail host has proved very effective. Epigenetic mechanisms are involved in developmental processes and therefore play a fundamental role in developmental variation. DNA methylation is an important epigenetic information carrier in eukaryotes that plays a major role in the control of chromatin structure. Epigenome editing tools have been instrumental to demonstrate functional importance of this mark for gene expression in vertebrates. In invertebrates, such tools are missing, and the role of DNA methylation remains unknown. Here we demonstrate that methylome engineering can be used to modify in vivo the CpG methylation level of a target gene in the freshwater snail Biomphalaria glabrata, intermediate host of the human parasite Schistosoma mansoni. We used a dCas9-SunTag-DNMT3A complex and synthetic sgRNA to transfect B. glabrata embryos and observed an increase of CpG methylation at the target site in 50% of the hatching snails.
Collapse
Affiliation(s)
- Nelia Luviano
- IHPE, Univ Perpignan Via Domitia, CNRS, Ifremer, Univ Montpellier, Perpignan, France
| | - David Duval
- IHPE, Univ Perpignan Via Domitia, CNRS, Ifremer, Univ Montpellier, Perpignan, France
| | - Wannaporn Ittiprasert
- Department of Microbiology, Immunology and Tropical Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC, United States
- Research Center for Neglected Diseases of Poverty, School of Medicine and Health Sciences, George Washington University, Washington, DC, United States
| | | | - Geneviève Tavernier
- Transgenesis Core Facility of UMS006/Inserm/Paul Sabatier University/National Medical Veterinary School, Toulouse, France
- Inserm UMR 1048, Paul Sabatier University, Toulouse, France
| | - Cristian Chaparro
- IHPE, Univ Perpignan Via Domitia, CNRS, Ifremer, Univ Montpellier, Perpignan, France
| | - Celine Cosseau
- IHPE, Univ Perpignan Via Domitia, CNRS, Ifremer, Univ Montpellier, Perpignan, France
| | - Christoph Grunau
- IHPE, Univ Perpignan Via Domitia, CNRS, Ifremer, Univ Montpellier, Perpignan, France
| |
Collapse
|
12
|
Lu L, Bu L, Zhang SM, Buddenborg SK, Loker ES. An Overview of Transcriptional Responses of Schistosome-Susceptible (M line) or -Resistant (BS-90) Biomphalaria glabrata Exposed or Not to Schistosoma mansoni Infection. Front Immunol 2022; 12:805882. [PMID: 35095891 PMCID: PMC8791074 DOI: 10.3389/fimmu.2021.805882] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/17/2021] [Indexed: 12/27/2022] Open
Abstract
Background We seek to provide a comprehensive overview of transcriptomics responses of immune-related features of the gastropod Biomphalaria glabrata (Bg) following exposure to Schistosoma mansoni (Sm), a trematode causing human schistosomiasis. Responses of schistosome-susceptible (M line, or SUS) and -resistant (BS-90, or RES) Bg strains were characterized following exposure to Sm for 0.5, 2, 8 or 40 days post-exposure (dpe). Methods RNA-Seq and differential expression analysis were undertaken on 56 snails from 14 groups. We considered 7 response categories: 1) constitutive resistance factors; 2) constitutive susceptibility factors; 3) generalized stress responses; 4) induced resistance factors; 5) resistance factors suppressed in SUS snails; 6) suppressed/manipulated factors in SUS snails; and 7) tolerance responses in SUS snails. We also undertook a gene co-expression network analysis. Results from prior studies identifying schistosome resistance/susceptibility factors were examined relative to our findings. Results A total of 792 million paired-end reads representing 91.2% of the estimated 31,985 genes in the Bg genome were detected and results for the 7 categories compiled and highlighted. For both RES and SUS snails, a single most supported network of genes with highly correlated expression was found. Conclusions 1) Several constitutive differences in gene expression between SUS and RES snails were noted, the majority over-represented in RES; 2) There was little indication of a generalized stress response shared by SUS and RES snails at 0.5 or 2 dpe; 3) RES snails mounted a strong, multi-faceted response by 0.5 dpe that carried over to 2 dpe; 4) The most notable SUS responses were at 40 dpe, in snails shedding cercariae, when numerous features were either strongly down-regulated indicative of physiological distress or parasite manipulation, or up-regulated, suggestive of tolerance or survival-promoting effects; 5) Of 55 genes previously identified in genome wide mapping studies, 29 (52.7%) were responsive to Sm, as were many familiar resistance-associated genes (41.0%) identified by other means; 6) Both network analysis and remarkably specific patterns of expression of lectins and G protein-coupled receptors in categories 4, 6 and 7 were indicative of orchestrated responses of different suites of genes in SUS or RES snails following exposure to Sm.
Collapse
Affiliation(s)
- Lijun Lu
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM, United States
| | - Lijing Bu
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM, United States
| | - Si-Ming Zhang
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM, United States
| | - Sarah K Buddenborg
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Eric S Loker
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM, United States
| |
Collapse
|
13
|
Alba A, Vázquez AA, Sánchez J, Gourbal B. Immunological Resistance of Pseudosuccinea columella Snails From Cuba to Fasciola hepatica (Trematoda) Infection: What We Know and Where We Go on Comparative Molecular and Mechanistic Immunobiology, Ecology and Evolution. Front Immunol 2022; 13:794186. [PMID: 35140717 PMCID: PMC8818719 DOI: 10.3389/fimmu.2022.794186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/03/2022] [Indexed: 11/13/2022] Open
Abstract
One of the most interesting biological models is that of snail-trematode interactions, many of which ultimately result in the transmission of several important diseases, particularly in the tropics. Herein, we review the scientific advances on a trematode-snail system in which certain populations of Pseudosuccinea columella (a common host species for trematodes) have been demonstrated naturally-resistant to Fasciola hepatica, in association with an effective encapsulation of the parasite by innate immune cells of the host, the hemocytes. Emphasis is made on the molecular and immunological features characterizing each P. columella phenotype in relation to their anti-parasitic competence, their distinctive ecological patterns and the existence of a significant cost of resistance. An integrative overview of the resistance to F. hepatica through comparative immunobiology, genetics and ecology is presented to hypothesize on the possible origins and evolution of this phenomenon and to postulate significant roles for parasite mediated-selection and environmental factors in shaping and maintaining the resistant phenotype in the field. Lastly, clues into future experimental perspectives to deeply characterize the interplay between P. columella and F. hepatica and the immunobiology of the resistance are also included. The advances revised in the present paper are only beginning to unravel mechanisms of anti-parasite innate defense responses and their evolutionary bases, and can facilitate the development of prospective approaches towards practical applications of P. columella resistance.
Collapse
Affiliation(s)
- Annia Alba
- Centro de Investigaciones, Diagnóstico y Referencia, Instituto “Pedro Kourí” de Medicina Tropical, La Habana, Cuba
| | - Antonio A. Vázquez
- Centro de Investigaciones, Diagnóstico y Referencia, Instituto “Pedro Kourí” de Medicina Tropical, La Habana, Cuba
| | - Jorge Sánchez
- Centro de Investigaciones, Diagnóstico y Referencia, Instituto “Pedro Kourí” de Medicina Tropical, La Habana, Cuba
| | - Benjamin Gourbal
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Perpignan, France
| |
Collapse
|
14
|
Le Clec’h W, Chevalier FD, McDew-White M, Menon V, Arya GA, Anderson TJ. Genetic architecture of transmission stage production and virulence in schistosome parasites. Virulence 2021; 12:1508-1526. [PMID: 34167443 PMCID: PMC8237990 DOI: 10.1080/21505594.2021.1932183] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 05/06/2021] [Accepted: 05/14/2021] [Indexed: 12/30/2022] Open
Abstract
Both theory and experimental data from pathogens suggest that the production of transmission stages should be strongly associated with virulence, but the genetic bases of parasite transmission/virulence traits are poorly understood. The blood fluke Schistosoma mansoni shows extensive variation in numbers of cercariae larvae shed and in their virulence to infected snail hosts, consistent with expected trade-offs between parasite transmission and virulence. We crossed schistosomes from two populations that differ 8-fold in cercarial shedding and in their virulence to Biomphalaria glabrata snail hosts, and determined four-week cercarial shedding profiles in F0 parents, F1 parents and 376 F2 progeny from two independent crosses in inbred snails. Sequencing and linkage analysis revealed that cercarial production is polygenic and controlled by five QTLs (i.e. Quantitative Trait Loci). These QTLs act additively, explaining 28.56% of the phenotypic variation. These results demonstrate that the genetic architecture of key traits relevant to schistosome ecology can be dissected using classical linkage mapping approaches.
Collapse
Affiliation(s)
- Winka Le Clec’h
- Texas Biomedical Research Institute, San Antonio, Texas, USA
| | | | | | - Vinay Menon
- Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Grace-Ann Arya
- Texas Biomedical Research Institute, San Antonio, Texas, USA
| | | |
Collapse
|
15
|
Luviano N, Lopez M, Gawehns F, Chaparro C, Arimondo PB, Ivanovic S, David P, Verhoeven K, Cosseau C, Grunau C. The methylome of Biomphalaria glabrata and other mollusks: enduring modification of epigenetic landscape and phenotypic traits by a new DNA methylation inhibitor. Epigenetics Chromatin 2021; 14:48. [PMID: 34702322 PMCID: PMC8549274 DOI: 10.1186/s13072-021-00422-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/01/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND 5-Methylcytosine (5mC) is an important epigenetic mark in eukaryotes. Little information about its role exists for invertebrates. To investigate the contribution of 5mC to phenotypic variation in invertebrates, alteration of methylation patterns needs to be produced. Here, we apply new non-nucleoside DNA methyltransferase inhibitors (DNMTi) to introduce aleatory changes into the methylome of mollusk species. RESULTS Flavanone inhibitor Flv1 was efficient in reducing 5mC in the freshwater snails Biomphalaria glabrata and Physa acuta, and to a lesser degree, probably due to lower stability in sea water, in the oyster Crassostrea gigas. Flv1 has no toxic effects and significantly decreased the 5mC level in the treated B. glabrata and in its offspring. Drug treatment triggers significant variation in the shell height in both generations. A reduced representation bisulfite-sequencing method called epiGBS corroborates hypomethylation effect of Flv1 in both B. glabrata generations and identifies seven Differential Methylated Regions (DMR) out of 32 found both in Flv1-exposed snails and its progeny, from which 5 were hypomethylated, demonstrating a multigenerational effect. By targeted bisulfite sequencing, we confirmed hypomethylation in a locus and show that it is associated with reduced gene expression. CONCLUSIONS Flv1 is a new and efficient DNMTi that can be used to induce transient and heritable modifications of the epigenetic landscape and phenotypic traits in mollusks, a phylum of the invertebrates in which epigenetics is understudied.
Collapse
Affiliation(s)
- Nelia Luviano
- IHPE, Univ Perpignan Via Domitia, CNRC, Ifremer, Univ Montpellier, Perpignan, France
| | - Marie Lopez
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Univ Montpellier, ENSCM, Montpellier, France
- Epigenetic Targeting of Cancer (ETaC), CNRS FRE3600, Centre de Recherche et Développement Pierre Fabre, Toulouse, France
| | - Fleur Gawehns
- Bioinformatics Unit, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Cristian Chaparro
- IHPE, Univ Perpignan Via Domitia, CNRC, Ifremer, Univ Montpellier, Perpignan, France
| | - Paola B Arimondo
- Epigenetic Targeting of Cancer (ETaC), CNRS FRE3600, Centre de Recherche et Développement Pierre Fabre, Toulouse, France
- Epigenetic Chemical Biology (EpiChBio), Department Structural Biology and Chemistry, UMR 3523, CNRS, Institute Pasteur, 75015, Paris, France
| | - Slavica Ivanovic
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Patrice David
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), Univ. Montpellier, CNRS - Université Paul Valéry Montpellier - EPHE, 1919 Route de Mende, 34293, Montpellier Cedex 5, France
| | - Koen Verhoeven
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Céline Cosseau
- IHPE, Univ Perpignan Via Domitia, CNRC, Ifremer, Univ Montpellier, Perpignan, France
| | - Christoph Grunau
- IHPE, Univ Perpignan Via Domitia, CNRC, Ifremer, Univ Montpellier, Perpignan, France.
| |
Collapse
|
16
|
Hammoud C, Mulero S, Van Bocxlaer B, Boissier J, Verschuren D, Albrecht C, Huyse T. Simultaneous genotyping of snails and infecting trematode parasites using high-throughput amplicon sequencing. Mol Ecol Resour 2021; 22:567-586. [PMID: 34435445 DOI: 10.1111/1755-0998.13492] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 07/19/2021] [Accepted: 08/18/2021] [Indexed: 01/04/2023]
Abstract
Several methodological issues currently hamper the study of entire trematode communities within populations of their intermediate snail hosts. Here we develop a new workflow using high-throughput amplicon sequencing to simultaneously genotype snail hosts and their infecting trematode parasites. We designed primers to amplify four snail and five trematode markers in a single multiplex PCR. While also applicable to other genera, we focused on medically and economically important snail genera within the superorder Hygrophila and targeted a broad taxonomic range of parasites within the class Trematoda. We tested the workflow using 417 Biomphalaria glabrata specimens experimentally infected with Schistosoma rodhaini, two strains of Schistosoma mansoni and combinations thereof. We evaluated the reliability of infection diagnostics, the robustness of the workflow, its specificity related to host and parasite identification, and the sensitivity to detect co-infections, immature infections and changes of parasite biomass during the infection process. Finally, we investigated its applicability in wild-caught snails of other genera naturally infected with a diverse range of trematodes. After stringent quality control the workflow allows the identification of snails to species level, and of trematodes to taxonomic levels ranging from family to strain. It is sensitive to detect immature infections and changes in parasite biomass described in previous experimental studies. Co-infections were successfully identified, opening the possibility to examine parasite-parasite interactions such as interspecific competition. Together, these results demonstrate that our workflow provides a powerful tool to analyse the processes shaping trematode communities within natural snail populations.
Collapse
Affiliation(s)
- Cyril Hammoud
- Limnology Unit, Department of Biology, Ghent University, Gent, Belgium.,Department of Biology, Royal Museum for Central Africa, Tervuren, Belgium
| | - Stephen Mulero
- IHPE, Univ. Montpellier, CNRS, Univ. Perpignan Via Domitia, IFREMER, Perpignan, France
| | - Bert Van Bocxlaer
- Limnology Unit, Department of Biology, Ghent University, Gent, Belgium.,Univ. Lille, UMR 8198 Evo-Eco-Paleo, CNRS, Lille, France
| | - Jérôme Boissier
- IHPE, Univ. Montpellier, CNRS, Univ. Perpignan Via Domitia, IFREMER, Perpignan, France
| | - Dirk Verschuren
- Limnology Unit, Department of Biology, Ghent University, Gent, Belgium
| | - Christian Albrecht
- Systematics & Biodiversity Lab, Department of Animal Ecology & Systematics, Justus Liebig University, Giessen, Germany
| | - Tine Huyse
- Department of Biology, Royal Museum for Central Africa, Tervuren, Belgium.,Laboratory of Biodiversity and Evolutionary Genomics, University of Leuven, Leuven, Belgium
| |
Collapse
|
17
|
Portet A, Toulza E, Lokmer A, Huot C, Duval D, Galinier R, Gourbal B. Experimental Infection of the Biomphalaria glabrata Vector Snail by Schistosoma mansoni Parasites Drives Snail Microbiota Dysbiosis. Microorganisms 2021; 9:microorganisms9051084. [PMID: 34070104 PMCID: PMC8158356 DOI: 10.3390/microorganisms9051084] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/01/2021] [Accepted: 05/04/2021] [Indexed: 02/07/2023] Open
Abstract
Host-parasite interaction can result in a strong alteration of the host-associated microbiota. This dysbiosis can affect the fitness of the host; can modify pathogen interaction and the outcome of diseases. Biomphalaria glabrata is the snail intermediate host of the trematode Schistosoma mansoni, the agent of human schistosomiasis, causing hundreds of thousands of deaths every year. Here, we present the first study of the snail bacterial microbiota in response to Schistosoma infection. We examined the interplay between B. glabrata, S. mansoni and host microbiota. Snails were infected and the microbiota composition was analysed by 16S rDNA amplicon sequencing approach. We demonstrated that the microbial composition of water did not affect the microbiota composition. Then, we characterised the Biomphalaria bacterial microbiota at the individual scale in both naive and infected snails. Sympatric and allopatric strains of parasites were used for infections and re-infections to analyse the modification or dysbiosis of snail microbiota in different host-parasite co-evolutionary contexts. Concomitantly, using RNAseq, we investigated the link between bacterial microbiota dysbiosis and snail anti-microbial peptide immune response. This work paves the way for a better understanding of snail/schistosome interaction and should have critical consequences in terms of snail control strategies for fighting schistosomiasis disease in the field.
Collapse
Affiliation(s)
- Anaïs Portet
- IHPE, University Montpellier, CNRS, Ifremer, University Perpignan Via Domitia, 66860 Perpignan, France; (A.P.); (E.T.); (C.H.); (D.D.); (R.G.)
| | - Eve Toulza
- IHPE, University Montpellier, CNRS, Ifremer, University Perpignan Via Domitia, 66860 Perpignan, France; (A.P.); (E.T.); (C.H.); (D.D.); (R.G.)
| | - Ana Lokmer
- Laboratory of Eco-Anthropology UMR 7206 CNRS-MNHN-Paris 7, 75005 Paris, France;
| | - Camille Huot
- IHPE, University Montpellier, CNRS, Ifremer, University Perpignan Via Domitia, 66860 Perpignan, France; (A.P.); (E.T.); (C.H.); (D.D.); (R.G.)
| | - David Duval
- IHPE, University Montpellier, CNRS, Ifremer, University Perpignan Via Domitia, 66860 Perpignan, France; (A.P.); (E.T.); (C.H.); (D.D.); (R.G.)
| | - Richard Galinier
- IHPE, University Montpellier, CNRS, Ifremer, University Perpignan Via Domitia, 66860 Perpignan, France; (A.P.); (E.T.); (C.H.); (D.D.); (R.G.)
| | - Benjamin Gourbal
- IHPE, University Montpellier, CNRS, Ifremer, University Perpignan Via Domitia, 66860 Perpignan, France; (A.P.); (E.T.); (C.H.); (D.D.); (R.G.)
- Correspondence:
| |
Collapse
|
18
|
Portet A, Galinier R, Lassalle D, Faille A, Gourbal B, Duval D. Hemocyte siRNA uptake is increased by 5' cholesterol-TEG addition in Biomphalaria glabrata, snail vector of schistosome. PeerJ 2021; 9:e10895. [PMID: 33665030 PMCID: PMC7908872 DOI: 10.7717/peerj.10895] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 01/13/2021] [Indexed: 12/24/2022] Open
Abstract
Biomphalaria glabrata is one of the snail intermediate hosts of Schistosoma mansoni, the causative agent of intestinal schistosomiasis disease. Numerous molecular studies using comparative approaches between susceptible and resistant snails to S. mansoni infection have helped identify numerous snail key candidates supporting such susceptible/resistant status. The functional approach using RNA interference (RNAi) remains crucial to validate the function of such candidates. CRISPR-Cas systems are still under development in many laboratories, and RNA interference remains the best tool to study B. glabrata snail genetics. Herein, we describe the use of modified small interfering RNA (siRNA) molecules to enhance cell delivery, especially into hemocytes, the snail immune cells. Modification of siRNA with 5′ Cholesteryl TriEthylene Glycol (Chol-TEG) promotes cellular uptake by hemocytes, nearly eightfold over that of unmodified siRNA. FACS analysis reveals that more than 50% of hemocytes have internalized Chol-TEG siRNA conjugated to Cy3 fluorophores, 2 hours only after in vivo injection into snails. Chol-TEG siRNA targeting BgTEP1 (ThioEster-containing Protein), a parasite binding protein, reduced BgTEP1 transcript expression by 70–80% compared to control. The level of BgTEP1 protein secreted in the hemolymph was also decreased. However, despite the BgTEP1 knock-down at both RNA and protein levels, snail compatibility with its sympatric parasite is not affected suggesting functional redundancy among the BgTEP genes family in snail-schistosoma interaction.
Collapse
Affiliation(s)
- Anaïs Portet
- IHPE UMR 5244, CNRS, IFREMER, University of Montpellier, University of Perpignan, Perpignan, France.,Department of Medicine, Molecular Immunity Unit, University of Cambridge, Cambridge, United Kingdom
| | - Richard Galinier
- IHPE UMR 5244, CNRS, IFREMER, University of Montpellier, University of Perpignan, Perpignan, France
| | - Damien Lassalle
- IHPE UMR 5244, CNRS, IFREMER, University of Montpellier, University of Perpignan, Perpignan, France
| | - Alexandre Faille
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom.,Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom.,Cambridge Institute for Medical Research, Cambridge, United Kingdom
| | - Benjamin Gourbal
- IHPE UMR 5244, CNRS, IFREMER, University of Montpellier, University of Perpignan, Perpignan, France
| | - David Duval
- IHPE UMR 5244, CNRS, IFREMER, University of Montpellier, University of Perpignan, Perpignan, France
| |
Collapse
|
19
|
Anderson LC, Loker ES, Wearing HJ. Modeling schistosomiasis transmission: the importance of snail population structure. Parasit Vectors 2021; 14:94. [PMID: 33536054 PMCID: PMC7860629 DOI: 10.1186/s13071-021-04587-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 01/08/2021] [Indexed: 12/14/2022] Open
Abstract
Background Schistosomiasis is a neglected tropical disease endemic in 54 countries. A major Schistosoma species, Schistosoma mansoni, is sustained via a life cycle that includes both human and snail hosts. Mathematical models of S. mansoni transmission, used to elucidate the complexities of the transmission cycle and estimate the impact of intervention efforts, often focus primarily on the human host. However, S. mansoni incurs physiological costs in snails that vary with the age of the snail when first infected. Snail demography and the age of snail infection could thus affect the force of infection experienced by humans, which is frequently used to predict the impact of various control strategies. Methods To address how these snail host and parasite interactions influence model predictions, we developed deterministic models of schistosomiasis transmission that include varying complexity in the snail population age structure. Specifically, we examined how model outputs, such as schistosome prevalence in human and snail populations, respond to the inclusion of snail age structure. Results Our models suggest that snail population age structure modifies the force of infection experienced by humans and the relationship between snail infection prevalence and corresponding human infection prevalence. There are significant differences in estimated snail infection, cercarial density and mean worm burden between models without snail population dynamics and those with snail populations, and between models with a homogeneous snail population and those with age stratification. The variation between finely age-stratified snail populations and those grouped into only juvenile and adult life stages is, however, minimal. Conclusions These results indicate that including snails and snail age structure in a schistosomiasis transmission model alters the relationship between snail and human infection prevalence. This highlights the importance of accounting for a heterogeneous intermediate host population in models of schistosomiasis transmission where the impact of proposed control measures is being considered.![]()
Collapse
Affiliation(s)
- Larissa C Anderson
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA.
| | - Eric S Loker
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Helen J Wearing
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA.,Department of Mathematics and Statistics, University of New Mexico, Albuquerque, NM, 87131, USA
| |
Collapse
|
20
|
Rey O, Webster BL, Huyse T, Rollinson D, Van den Broeck F, Kincaid-Smith J, Onyekwere A, Boissier J. Population genetics of African Schistosoma species. INFECTION GENETICS AND EVOLUTION 2021; 89:104727. [PMID: 33486128 DOI: 10.1016/j.meegid.2021.104727] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/09/2021] [Accepted: 01/13/2021] [Indexed: 02/06/2023]
Abstract
Blood flukes within the genus Schistosoma (schistosomes) are responsible for the major disease, schistosomiasis, in tropical and sub-tropical areas. This disease is predominantly present on the African continent with more than 85% of the human cases. Schistosomes are also parasites of veterinary importance infecting livestock and wildlife. Schistosoma population genetic structure and diversity are important characteristics that may reflect variations in selection pressures such as those induced by host (mammalian and snail) environments, habitat change, migration and also treatment/control interventions, all of which also shape speciation and evolution of the whole Schistosoma genus. Investigations into schistosome population genetic structure, diversity and evolution has been an area of important debate and research. Supported by advances in molecular techniques with capabilities for multi-locus genetic analyses for single larvae schistosome genetic investigations have greatly progressed in the last decade. This paper aims to review the genetic studies of both animal and human infecting schistosome. Population genetic structures are reviewed at different spatial scales: local, regional or continental (i.e. phylogeography). Within species genetic diversities are discussed compared and the compounding factors discussed, including the effect of mass drug administration. Finally, the ability for intra-species hybridisation questions species integrities and poses many questions in relation to the natural epidemiology of co-endemic species. Here we review molecularly confirmed hybridisation events (in relation to human disease) and discuss the possible impact for ongoing and future control and elimination.
Collapse
Affiliation(s)
- O Rey
- Univ. Montpellier, CNRS, IFREMER, UPVD, IHPE, F-66000 Perpignan, France
| | - B L Webster
- Wolfson Wellcome Biomedical Laboratories, Department of Life Sciences, Natural History Museum, London SW7 5BD, United Kingdom; London Centre for Neglected Tropical Disease Research, Imperial College London School of Public Health, London W2 1PG, United Kingdom
| | - T Huyse
- Department of Biology, Royal Museum for Central Africa, Leuvensesteenweg 13, B-3080 Tervuren, Belgium; Laboratory of Biodiversity and Evolutionary Genomics, Department of Biology, KU Leuven, Ch. Deberiotstraat 32, B-3000 Leuven, Belgium
| | - D Rollinson
- Wolfson Wellcome Biomedical Laboratories, Department of Life Sciences, Natural History Museum, London SW7 5BD, United Kingdom; London Centre for Neglected Tropical Disease Research, Imperial College London School of Public Health, London W2 1PG, United Kingdom
| | - F Van den Broeck
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium; Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - J Kincaid-Smith
- Centre for Emerging, Endemic and Exotic Diseases (CEEED), Department of Pathobiology and Population Sciences (PPS), Royal Veterinary College, University of London, Hawkshead Campus, Herts AL9 7TA, United Kingdom
| | - A Onyekwere
- Univ. Montpellier, CNRS, IFREMER, UPVD, IHPE, F-66000 Perpignan, France
| | - J Boissier
- Univ. Montpellier, CNRS, IFREMER, UPVD, IHPE, F-66000 Perpignan, France.
| |
Collapse
|
21
|
Chevalier FD, Diaz R, McDew-White M, Anderson TJC, Clec’h WL. The hemolymph of Biomphalaria snail vectors of schistosomiasis supports a diverse microbiome. Environ Microbiol 2020; 22:5450-5466. [PMID: 33169917 PMCID: PMC8023393 DOI: 10.1111/1462-2920.15303] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 11/02/2020] [Indexed: 12/21/2022]
Abstract
The microbiome - the microorganism community that is found on or within an organism's body - is increasingly recognized to shape many aspects of its host biology and is a key determinant of health and disease. Microbiomes modulate the capacity of insect disease vectors (mosquitoes, tsetse flies, sandflies) to transmit parasites and disease. We investigate the diversity and abundance of microorganisms within the hemolymph (i.e. blood) of Biomphalaria snails, the intermediate host for Schistosoma mansoni, using Illumina MiSeq sequencing of the bacterial 16S V4 rDNA. We sampled hemolymph from five snails from six different laboratory populations of B. glabrata and one population of B. alexandrina. We observed 279.84 ± 0.79 amplicon sequence variants per snail. There were significant differences in microbiome composition at the level of individual snails, snail populations and species. Snail microbiomes were dominated by Proteobacteria and Bacteroidetes while water microbiomes from snail tank were dominated by Actinobacteria. We investigated the absolute bacterial load using qPCR: hemolymph samples contained 2784 ± 339 bacteria/μl. We speculate that the microbiome may represent a critical, but unexplored intermediary in the snail-schistosome interaction as hemolymph is in very close contact with the parasite at each step of its development.
Collapse
Affiliation(s)
| | - Robbie Diaz
- Texas Biomedical Research Institute, PO Box 760549, San Antonio, TX 78258
| | - Marina McDew-White
- Texas Biomedical Research Institute, PO Box 760549, San Antonio, TX 78258
| | | | - Winka Le Clec’h
- Texas Biomedical Research Institute, PO Box 760549, San Antonio, TX 78258
| |
Collapse
|
22
|
Patterns of Sphaeridiotrema pseudoglobulus infection in sympatric and allopatric hosts (Bithynia tentaculata) originating from widely separated sites across the USA. Parasitol Res 2020; 120:187-195. [PMID: 33175265 DOI: 10.1007/s00436-020-06949-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/27/2020] [Indexed: 10/23/2022]
Abstract
In circumstances where populations of invasive species occur across variable landscapes, interactions among invaders, their parasites, and the surrounding environment may establish local coevolutionary trajectories for the participants. This can generate variable infection patterns when parasites interact with sympatric versus allopatric hosts. Identifying the potential for such patterns within an invasive-species framework is important for better predicting local infection outcomes and their subsequent impacts on the surrounding native community. To begin addressing this question, we exposed an invasive snail (Bithynia tentaculata) from two widely separated sites across the USA (Wisconsin and Montana) to the digenean parasite, Sphaeridiotrema pseudoglobulus, collected from Wisconsin. Parasite exposures generated high infection prevalences in both sympatric and allopatric snails. Furthermore, host survival, host growth, the proportion of patent snails, and the timing of patency did not differ between sympatric and allopatric combinations. Moreover, passaging parasites through snails of different origins had no effect on transmission success to subsequent hosts in the life cycle. However, the number of parasites emerging from snails and the pattern of their release varied based on snail origin. These latter observations suggest the potential for local adaptation in this system, but subsequent research is required to further substantiate this as a key factor underlying infection patterns in the association between S. pseudoglobulus and B. tentaculata.
Collapse
|
23
|
Allan ERO, Blouin MS. Heat shock increases hydrogen peroxide release from circulating hemocytes of the snail Biomphalaria glabrata. FISH & SHELLFISH IMMUNOLOGY 2020; 105:203-208. [PMID: 32702479 PMCID: PMC7501213 DOI: 10.1016/j.fsi.2020.07.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/01/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
Planorbid freshwater snails are important intermediate hosts for parasitic diseases caused by parasitic worms, most notably schistosomiasis. There are numerous reports of snails, specifically Biomphalaria glabrata, having compromised defences against schistosomes after being exposed to thermal stress. Environmental modifications to the defenses of schistosome transmitting snails could have negative ramifications for human disease risk in the context of climate change. Here the effects of heat shock on the production of hydrogen peroxide, a primary anti-microbial effector in many molluscs, were examined. The present findings show that heat shock increases NADPH oxidase 2 mRNA levels and hydrogen peroxide produced by snail hemocytes, and that both of these phenotypes could be reversed by an HSP-90 inhibitor. These findings indicate that snail defense systems are altered by heat shock at a molecular level in B. glabrata, and that snail immunity to many pathogens may be altered by the rapid variations in temperature that are associated with global climate change.
Collapse
Affiliation(s)
- Euan R O Allan
- Department of Pathobiology, School of Veterinary Medicine, St. George's University, West Indies, Grenada.
| | - Michael S Blouin
- Department of Integrative Biology, College of Science, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
24
|
Tennessen JA, Bollmann SR, Peremyslova E, Kronmiller BA, Sergi C, Hamali B, Blouin MS. Clusters of polymorphic transmembrane genes control resistance to schistosomes in snail vectors. eLife 2020; 9:59395. [PMID: 32845238 PMCID: PMC7494358 DOI: 10.7554/elife.59395] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/25/2020] [Indexed: 12/14/2022] Open
Abstract
Schistosomiasis is a debilitating parasitic disease infecting hundreds of millions of people. Schistosomes use aquatic snails as intermediate hosts. A promising avenue for disease control involves leveraging innate host mechanisms to reduce snail vectorial capacity. In a genome-wide association study of Biomphalaria glabrata snails, we identify genomic region PTC2 which exhibits the largest known correlation with susceptibility to parasite infection (>15 fold effect). Using new genome assemblies with substantially higher contiguity than the Biomphalaria reference genome, we show that PTC2 haplotypes are exceptionally divergent in structure and sequence. This variation includes multi-kilobase indels containing entire genes, and orthologs for which most amino acid residues are polymorphic. RNA-Seq annotation reveals that most of these genes encode single-pass transmembrane proteins, as seen in another resistance region in the same species. Such groups of hyperdiverse snail proteins may mediate host-parasite interaction at the cell surface, offering promising targets for blocking the transmission of schistosomiasis.
Collapse
Affiliation(s)
- Jacob A Tennessen
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, United States.,Department of Integrative Biology, Oregon State University, Corvallis, United States
| | - Stephanie R Bollmann
- Department of Integrative Biology, Oregon State University, Corvallis, United States
| | - Ekaterina Peremyslova
- Department of Integrative Biology, Oregon State University, Corvallis, United States
| | - Brent A Kronmiller
- Department of Integrative Biology, Oregon State University, Corvallis, United States.,Center for Genome Research and Biocomputing, Oregon State University, Corvallis, United States
| | - Clint Sergi
- Department of Integrative Biology, Oregon State University, Corvallis, United States
| | - Bulut Hamali
- Department of Integrative Biology, Oregon State University, Corvallis, United States
| | - Michael Scott Blouin
- Department of Integrative Biology, Oregon State University, Corvallis, United States
| |
Collapse
|
25
|
Allan ER, Bollmann S, Peremyslova E, Blouin M. Neither heat pulse, nor multigenerational exposure to a modest increase in water temperature, alters the susceptibility of Guadeloupean Biomphalaria glabrata to Schistosoma mansoni infection. PeerJ 2020; 8:e9059. [PMID: 32351792 PMCID: PMC7183749 DOI: 10.7717/peerj.9059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/04/2020] [Indexed: 12/22/2022] Open
Abstract
There are increasing concerns regarding the role global climate change will have on many vector-borne diseases. Both mathematical models and laboratory experiments suggest that schistosomiasis risk may change as a result of the effects of increasing temperatures on the planorbid snails that host schistosomes. Heat pulse/heat shock of the BS90 strain of Biomphalaria glabrata was shown to increase the rate of infection by Schistosoma mansoni, but the result was not replicable in a follow up experiment by a different lab. We characterised the susceptibility and cercarial shedding of Guadeloupean B. glabrata after infection with S. mansoni under two temperature regimes: multigenerational exposure to small increases in temperature, and extreme heat pulse events. Neither long-term, multigenerational rearing at elevated temperatures, nor transient heat pulse modified the susceptibility of Guadeloupean B. glabrata to infection (prevalence) or shedding of schistosome cercaria (intensity of infection). These findings suggest that heat pulse-induced susceptibility in snail hosts may be dependent on the strain of the snail and/or schistosome, or on some as-yet unidentified environmental co-factor.
Collapse
Affiliation(s)
- Euan R.O. Allan
- School of Veterinary Medicine, Pathobiology, St. George’s University, St. George’s, Grenada
| | - Stephanie Bollmann
- Integrative Biology, Oregon State University, Corvallis, OR, United States of America
| | - Ekaterina Peremyslova
- Integrative Biology, Oregon State University, Corvallis, OR, United States of America
| | - Michael Blouin
- Integrative Biology, Oregon State University, Corvallis, OR, United States of America
| |
Collapse
|
26
|
Huot C, Clerissi C, Gourbal B, Galinier R, Duval D, Toulza E. Schistosomiasis Vector Snails and Their Microbiota Display a Phylosymbiosis Pattern. Front Microbiol 2020; 10:3092. [PMID: 32082267 PMCID: PMC7006369 DOI: 10.3389/fmicb.2019.03092] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 12/20/2019] [Indexed: 01/05/2023] Open
Abstract
Planorbidae snails are the intermediate host for the trematode parasite of the Schistosoma genus, which is responsible for schistosomiasis, a disease that affects both humans and cattle. The microbiota for Schistosoma has already been described as having an effect on host/parasite interactions, specifically through immunological interactions. Here, we sought to characterize the microbiota composition of seven Planorbidae species and strains. Individual snail microbiota was determined using 16S ribosomal DNA amplicon sequencing. The bacterial composition was highly specific to the host strain with limited interindividual variation. In addition, it displayed complete congruence with host phylogeny, revealing a phylosymbiosis pattern. These results were confirmed in a common garden, suggesting that the host highly constrains microbial composition. This study presents the first comparison of bacterial communities between several intermediate snail hosts of Schistosoma parasites, paving the way for further studies on the understanding of this tripartite interaction.
Collapse
Affiliation(s)
| | | | | | | | | | - Eve Toulza
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan Via Domitia, Perpignan, France
| |
Collapse
|
27
|
Allan ERO, Tennessen JA, Sharpton TJ, Blouin MS. Allelic Variation in a Single Genomic Region Alters the Microbiome of the Snail Biomphalaria glabrata. J Hered 2019; 109:604-609. [PMID: 29566237 DOI: 10.1093/jhered/esy014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 03/15/2018] [Indexed: 12/17/2022] Open
Abstract
Freshwater snails are the intermediate hosts for numerous parasitic worms which can have negative consequences for human health and agriculture. Understanding the transmission of these diseases requires a more complete characterization of the immunobiology of snail hosts. This includes the characterization of its microbiome and genetic factors which may interact with this important commensal community. Allelic variation in the Guadeloupe resistance complex (GRC) genomic region of Guadeloupean Biomphalaria glabrata influences their susceptibility to schistosome infection and may have other roles in the snail immune response. In the present study, we examined whether a snail's GRC genotype has a role in shaping the bacterial diversity and composition present on or in whole snails. We show that the GRC haplotype, including the resistant genotype, has a significant effect on the diversity of bacterial species present in or on whole snails, including the relative abundances of Gemmatimonas aurantiaca and Micavibrio aeruginosavorus. These findings support the hypothesis that the GRC region is likely involved in pathways that can modify the microbial community of these snails and may have more immune roles in B. glabrata than originally believed. This is also one of few examples in which allelic variation at a particular locus has been shown to affect the microbiome in any species.
Collapse
Affiliation(s)
- Euan R O Allan
- Department of Integrative Biology, College of Science, Oregon State University, Corvallis, OR
| | - Jacob A Tennessen
- Department of Integrative Biology, College of Science, Oregon State University, Corvallis, OR
| | - Thomas J Sharpton
- Department of Microbiology, College of Science, Oregon State University, Corvallis, OR.,Department of Statistics, College of Science, Oregon State University, Corvallis, OR
| | - Michael S Blouin
- Department of Integrative Biology, College of Science, Oregon State University, Corvallis, OR
| |
Collapse
|
28
|
Comparative study of excretory-secretory proteins released by Schistosoma mansoni-resistant, susceptible and naïve Biomphalaria glabrata. Parasit Vectors 2019; 12:452. [PMID: 31521183 PMCID: PMC6744689 DOI: 10.1186/s13071-019-3708-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 09/05/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Schistosomiasis is a harmful neglected tropical disease caused by infection with Schistosoma spp., such as Schistosoma mansoni. Schistosoma must transition within a molluscan host to survive. Chemical analyses of schistosome-molluscan interactions indicate that host identification involves chemosensation, including naïve host preference. Proteomic technique advances enable sophisticated comparative analyses between infected and naïve snail host proteins. This study aimed to compare resistant, susceptible and naïve Biomphalaria glabrata snail-conditioned water (SCW) to identify potential attractants and deterrents. METHODS Behavioural bioassays were performed on S. mansoni miracidia to compare the effects of susceptible, F1 resistant and naïve B. glabrata SCW. The F1 resistant and susceptible B. glabrata SCW excretory-secretory proteins (ESPs) were fractionated using SDS-PAGE, identified with LC-MS/MS and compared to naïve snail ESPs. Protein-protein interaction (PPI) analyses based on published studies (including experiments, co-expression, text-mining and gene fusion) identified S. mansoni and B. glabrata protein interaction. Data are available via ProteomeXchange with identifier PXD015129. RESULTS A total of 291, 410 and 597 ESPs were detected in the susceptible, F1 resistant and naïve SCW, respectively. Less overlap in ESPs was identified between susceptible and naïve snails than F1 resistant and naïve snails. F1 resistant B. glabrata ESPs were predominately associated with anti-pathogen activity and detoxification, such as leukocyte elastase and peroxiredoxin. Susceptible B. glabrata several proteins correlated with immunity and anti-inflammation, such as glutathione S-transferase and zinc metalloproteinase, and S. mansoni sporocyst presence. PPI analyses found that uncharacterised S. mansoni protein Smp_142140.1 potentially interacts with numerous B. glabrata proteins. CONCLUSIONS This study identified ESPs released by F1 resistant, susceptible and naïve B. glabrata to explain S. mansoni miracidia interplay. Susceptible B. glabrata ESPs shed light on potential S. mansoni miracidia deterrents. Further targeted research on specific ESPs identified in this study could help inhibit B. glabrata and S. mansoni interactions and stop human schistosomiasis.
Collapse
|
29
|
Allan ERO, Yang L, Tennessen JA, Blouin MS. Allelic variation in a single genomic region alters the hemolymph proteome in the snail Biomphalaria glabrata. FISH & SHELLFISH IMMUNOLOGY 2019; 88:301-307. [PMID: 30849501 PMCID: PMC6687060 DOI: 10.1016/j.fsi.2019.02.065] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 02/26/2019] [Accepted: 02/28/2019] [Indexed: 05/04/2023]
Abstract
Freshwater snails are obligate intermediate hosts for numerous parasitic trematodes, most notably schistosomes. Schistosomiasis is a devastating human and veterinary illness, which is primarily controlled by limiting the transmission of these parasites from their intermediate snail hosts. Understanding how this transmission occurs, as well as the basic immunobiology of these snails may be important for controlling this disease in the future. Allelic variation in the Guadeloupe resistance complex (GRC) of Biomphalaria glabrata partially determines their susceptibility to parasitic infection, and can influence the microbiome diversity and microbial defenses in the hemolymph of these snails. In the present study, we examine the most abundant proteins present in the hemolymph of snails that are resistant or susceptible to schistosomes, as determined by their GRC genotype. Using proteomic analysis, we found that snails with different GRC genotypes have differentially abundant hemolymph proteins that are not explained by differences in transcription. There are 13 revealed hemolymph proteins that differ significantly between resistant and susceptible genotypes, nearly 40% of which are involved in immune responses. These findings build on the mounting evidence that genes in the GRC region have multiple physiological roles, and likely contribute more extensively to the general immune response than previously believed. These data also raise the intriguing possibility that the GRC region controls resistance to schistosomes, not directly, but indirectly via its effects on the snail's proteome and potentially its microbiome.
Collapse
Affiliation(s)
- Euan R O Allan
- Department of Pathobiology, School of Veterinary Medicine, St. George's University, Grenada.
| | - Liping Yang
- Mass Spectrometry Center, Department of Chemistry, Oregon State University, Corvallis, OR, USA
| | - Jacob A Tennessen
- Department of Integrative Biology, College of Science, Oregon State University, Corvallis, OR, USA
| | - Michael S Blouin
- Department of Integrative Biology, College of Science, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
30
|
Lima MG, Montresor LC, Pontes J, Augusto RDC, da Silva JP, Thiengo SC. Compatibility Polymorphism Based on Long-Term Host-Parasite Relationships: Cross Talking Between Biomphalaria glabrata and the Trematode Schistosoma mansoni From Endemic Areas in Brazil. Front Immunol 2019; 10:328. [PMID: 31024517 PMCID: PMC6467164 DOI: 10.3389/fimmu.2019.00328] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 02/08/2019] [Indexed: 11/13/2022] Open
Abstract
Sympatric snail populations have been kept in the laboratory since the isolation of the parasite from the field. To evaluate the influence of the intermediate host in the infectivity of S. mansoni, this allopatric strain was compared to two sympatric strains, from different geographical origins, and with different time of maintenance in the laboratory. Snail–trematode compatibility was accessed for a total of nine possible combinations (three snail populations, three schistosome strains), using different charges of parasite: 1, 5, 10, and 15 miracidia/snail. Each S. mansoni strain was characterized according to its infectivity phenotype that reflects the efficiency of their infection mechanism and all B. glabrata populations were characterized according to its (in)compatible phenotype that reflects the level of (un)susceptibility they display. For all host-parasite combinations tested the dose-response relation indicated a trend for an increase in the infectivity of S. mansoni when higher miracidial doses were used. SmRES-2 presented the highest overall infectivity rate, especially in the SmRES-2/BgRES interaction with 15 miracidia/snail. However, SmRES was more infective to BgBAR than SmRES-2, indicating that SmRES strain was more infective at the first contact with this new host than after 2 years of interaction (SmRES-2). BgBAR presented the highest susceptibility to infection. SmRES and SmRES-2 are the same parasite strains. It seems that during these 2 years of interaction, BgBAR acted like a filter and shifted the compatibility polymorphism of the strain SmRES. SmRES-2 became more infective to BgRES (sympatric) than to BgBAR (allopatric), and conversely, SmRES was more infective to BgBAR (allopatric) than to BgRES (sympatric). This interplay suggests that epigenetic mechanisms are prompting these changes. This study concerns with infection of B. glabrata snails from different Brazilian localities with S. mansoni in allopatric and sympatric associations that will partially help in understanding the natural epidemiology of schistosomiasis within natural snail populations in watercourses. This work demonstrates that there is a shift on the compatibility polymorphism profile resulting from sympatric and allopatric interactions of B. glabrata and S. mansoni that constantly change during the time of interaction.
Collapse
Affiliation(s)
- Mariana G Lima
- Curso de Pós-Graduação em Ciências Veterinárias, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil.,Laboratório de Referência Nacional em Esquistossomose-Malacologia, Instituto Oswaldo Cruz/FIOCRUZ, Rio de Janeiro, Brazil.,Área de Biofísica, Departamento de Ciências Fisiológicas, Instituto de Biologia, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil
| | - Lângia C Montresor
- Laboratório de Referência Nacional em Esquistossomose-Malacologia, Instituto Oswaldo Cruz/FIOCRUZ, Rio de Janeiro, Brazil
| | - Joana Pontes
- Laboratório de Referência Nacional em Esquistossomose-Malacologia, Instituto Oswaldo Cruz/FIOCRUZ, Rio de Janeiro, Brazil
| | - Ronaldo de C Augusto
- UMR 5244 Univ Perpignan via Domitia-CNRS-IFREMER-Univ Montpellier, Interactions Hôtes-Pathògenes-Environnements (IHPE), Université de Perpignan via Domitia, Perpignan, France
| | - Jairo Pinheiro da Silva
- Curso de Pós-Graduação em Ciências Veterinárias, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil.,Área de Biofísica, Departamento de Ciências Fisiológicas, Instituto de Biologia, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil
| | - Silvana C Thiengo
- Laboratório de Referência Nacional em Esquistossomose-Malacologia, Instituto Oswaldo Cruz/FIOCRUZ, Rio de Janeiro, Brazil
| |
Collapse
|
31
|
Portet A, Pinaud S, Chaparro C, Galinier R, Dheilly NM, Portela J, Charriere GM, Allienne JF, Duval D, Gourbal B. Sympatric versus allopatric evolutionary contexts shape differential immune response in Biomphalaria / Schistosoma interaction. PLoS Pathog 2019; 15:e1007647. [PMID: 30893368 PMCID: PMC6443186 DOI: 10.1371/journal.ppat.1007647] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 04/01/2019] [Accepted: 02/19/2019] [Indexed: 12/22/2022] Open
Abstract
Selective pressures between hosts and their parasites can result in reciprocal evolution or adaptation of specific life history traits. Local adaptation of resident hosts and parasites should lead to increase parasite infectivity/virulence (higher compatibility) when infecting hosts from the same location (in sympatry) than from a foreign location (in allopatry). Analysis of geographic variations in compatibility phenotypes is the most common proxy used to infer local adaptation. However, in some cases, allopatric host-parasite systems demonstrate similar or greater compatibility than in sympatry. In such cases, the potential for local adaptation remains unclear. Here, we study the interaction between Schistosoma and its vector snail Biomphalaria in which such discrepancy in local versus foreign compatibility phenotype has been reported. Herein, we aim at bridging this gap of knowledge by comparing life history traits (immune cellular response, host mortality, and parasite growth) and molecular responses in highly compatible sympatric and allopatric Schistosoma/Biomphalaria interactions originating from different geographic localities (Brazil, Venezuela and Burundi). We found that despite displaying similar prevalence phenotypes, sympatric schistosomes triggered a rapid immune suppression (dual-RNAseq analyses) in the snails within 24h post infection, whereas infection by allopatric schistosomes (regardless of the species) was associated with immune cell proliferation and triggered a non-specific generalized immune response after 96h. We observed that, sympatric schistosomes grow more rapidly. Finally, we identify miRNAs differentially expressed by Schistosoma mansoni that target host immune genes and could be responsible for hijacking the host immune response during the sympatric interaction. We show that despite having similar prevalence phenotypes, sympatric and allopatric snail-Schistosoma interactions displayed strong differences in their immunobiological molecular dialogue. Understanding the mechanisms allowing parasites to adapt rapidly and efficiently to new hosts is critical to control disease emergence and risks of Schistosomiasis outbreaks. Schistosomiasis, the second most widespread human parasitic disease after malaria, is caused by helminth parasites of the genus Schistosoma. More than 200 million people in 74 countries suffer from the pathological, and societal consequences of this disease. To complete its life cycle, the parasite requires an intermediate host, a freshwater snail of the genus Biomphalaria for its transmission. Given the limited options for treating Schistosoma mansoni infections in humans, much research has focused on developing methods to control transmission by its intermediate snail host. Biomphalaria glabrata. Comparative studies have shown that infection of the snail triggers complex cellular and humoral immune responses resulting in significant variations in parasite infectivity and snail susceptibility, known as the so-called polymorphism of compatibility. However, studies have mostly focused on characterizing the immunobiological mechanisms in sympatric interactions. Herein we used a combination of molecular and phenotypic approaches to compare the effect of infection in various sympatric and allopatric evolutionary contexts, allowing us to better understand the mechanisms of host-parasite local adaptation. Learning more about the immunobiological interactions between B. glabrata and S. mansoni could have important socioeconomic and public health impacts by changing the way we attempt to eradicate parasitic diseases and prevent or control schistosomiasis in the field.
Collapse
Affiliation(s)
- Anaïs Portet
- Univ. Perpignan Via Domitia, Interactions Hôtes Pathogènes Environnements UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - Silvain Pinaud
- Univ. Perpignan Via Domitia, Interactions Hôtes Pathogènes Environnements UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - Cristian Chaparro
- Univ. Perpignan Via Domitia, Interactions Hôtes Pathogènes Environnements UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - Richard Galinier
- Univ. Perpignan Via Domitia, Interactions Hôtes Pathogènes Environnements UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - Nolwenn M. Dheilly
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York, United States of America
| | - Julien Portela
- Univ. Perpignan Via Domitia, Interactions Hôtes Pathogènes Environnements UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - Guillaume M. Charriere
- Interactions Hôtes-Pathogènes-Environnements (IHPE), UMR 5244, CNRS, Ifremer, Université de Perpignan Via Domitia, Université de Montpellier, Montpellier, France
| | - Jean-François Allienne
- Univ. Perpignan Via Domitia, Interactions Hôtes Pathogènes Environnements UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - David Duval
- Univ. Perpignan Via Domitia, Interactions Hôtes Pathogènes Environnements UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - Benjamin Gourbal
- Univ. Perpignan Via Domitia, Interactions Hôtes Pathogènes Environnements UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
- * E-mail:
| |
Collapse
|
32
|
Dinguirard N, Cavalcanti MGS, Wu XJ, Bickham-Wright U, Sabat G, Yoshino TP. Proteomic Analysis of Biomphalaria glabrata Hemocytes During in vitro Encapsulation of Schistosoma mansoni Sporocysts. Front Immunol 2018; 9:2773. [PMID: 30555466 PMCID: PMC6281880 DOI: 10.3389/fimmu.2018.02773] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 11/12/2018] [Indexed: 12/20/2022] Open
Abstract
Circulating hemocytes of the snail Biomphalaria glabrata, a major intermediate host for the blood fluke Schistosoma mansoni, represent the primary immune effector cells comprising the host's internal defense system. Within hours of miracidial entry into resistant B. glabrata strains, hemocytes infiltrate around developing sporocysts forming multi-layered cellular capsules that results in larval death, typically within 24–48 h post-infection. Using an in vitro model of hemocyte-sporocyst encapsulation that recapitulates in vivo events, we conducted a comparative proteomic analysis on the responses of hemocytes from inbred B. glabrata strains during the encapsulation of S. mansoni primary sporocysts. This was accomplished by a combination of Laser-capture microdissection (LCM) to isolate sections of hemocyte capsules both in the presence and absence of sporocysts, in conjunction with mass spectrometric analyses to establish protein expression profiles. Comparison of susceptible NMRI snail hemocytes in the presence and absence of sporocysts revealed a dramatic downregulation of proteins in during larval encapsulation, especially those involved in protein/CHO metabolism, immune-related, redox and signaling pathways. One of 4 upregulated proteins was arginase, competitor of nitric oxide synthetase and inhibitor of larval-killing NO production. By contrast, when compared to control capsules, sporocyst-encapsulating hemocytes of resistant BS-90 B. glabrata exhibited a more balanced profile with enhanced expression of shared proteins involved in protein synthesis/processing, immunity, and redox, and unique expression of anti-microbial/anti-parasite proteins. A final comparison of NMRI and BS-90 host hemocyte responses to co-cultured sporocysts demonstrated a decrease or downregulation of 77% of shared proteins by NMRI cells during encapsulation compared to those of the BS-90 strain, including lipopolysaccharide-binding protein, thioredoxin reductase 1 and hemoglobins 1 and 2. Overall, using this in vitro model, results of our proteomic analyses demonstrate striking differences in proteins expressed by susceptible NMRI and resistant BS-90 snail hemocytes to S. mansoni sporocysts during active encapsulation, with NMRI hemocytes exhibiting extensive downregulation of protein expression and a lower level of constitutively expressed immune-relevant proteins (e.g., FREP2) compared to BS-90. Our data suggest that snail strain differences in hemocyte protein expression during the encapsulation process account for observed differences in their cytotoxic capacity to interact with and kill sporocysts.
Collapse
Affiliation(s)
- Nathalie Dinguirard
- Department of Pathobiological Sciences, University of Wisconsin, Madison, WI, United States
| | - Marília G S Cavalcanti
- Department of Physiology and Pathology, Federal University of Paraíba, João Pessoa, Brazil
| | - Xiao-Jun Wu
- Department of Pathobiological Sciences, University of Wisconsin, Madison, WI, United States
| | - Utibe Bickham-Wright
- Department of Pathobiological Sciences, University of Wisconsin, Madison, WI, United States
| | - Grzegorz Sabat
- Biotechnology Center/Proteomics-Mass Spectrometry Facility, University of Wisconsin, Madison, WI, United States
| | - Timothy P Yoshino
- Department of Pathobiological Sciences, University of Wisconsin, Madison, WI, United States
| |
Collapse
|
33
|
Alba A, Vázquez AA, Sánchez J, Duval D, Hernández HM, Sabourin E, Vittecoq M, Hurtrez-Boussés S, Gourbal B. Fasciola hepatica-Pseudosuccinea columella interaction: effect of increasing parasite doses, successive exposures and geographical origin on the infection outcome of susceptible and naturally-resistant snails from Cuba. Parasit Vectors 2018; 11:559. [PMID: 30359285 PMCID: PMC6203213 DOI: 10.1186/s13071-018-3155-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/17/2018] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Pseudosuccinea columella is one of the most widespread vectors of Fasciola hepatica, a globally distributed trematode that affects humans, livestock and wildlife. The exclusive occurrence in Cuba of susceptible and naturally-resistant populations to F. hepatica within this snail species, offers a fascinating model for evolutionary biology, health sciences and vector control strategies. In particular, resistance in P. columella is characterized by the encapsulation of the parasite by host's immune cells and has been experimentally tested using different Cuban F. hepatica isolates with no records of successful infection. Here, we aimed to explore for the first time, the effect of different parasite doses, successive exposures and different parasite origins on the infection outcomes of the two phenotypes of P. columella occurring in Cuba. METHODS To increase the chances for F. hepatica to establish, we challenged Cuban P. columella with increasing single parasite doses of 5, 15 or 30 miracidia and serial exposures (three-times) of 5 miracidia using a sympatric F. hepatica isolate from Cuba, previously characterized by microsatellite markers. Additionally, we exposed the snails to F. hepatica from different geographical origins (i.e. Dominican Republic and France). Parasite prevalence, redial burden and survival of snails were recorded at 25 days post-exposure. RESULTS No parasite development was noted in snails from the resistant populations independent of the experimental approach. Contrastingly, an overall increase in prevalence and redial burden was observed in susceptible snails when infected with high miracidia doses and after serial exposures. Significant differences in redial burden between single 15 miracidia and serial 3 × 5 miracidia infected snails suggest that immune priming potentially occurs in susceptible P. columella. Compatibility differences of allopatric (Caribbean vs European) F. hepatica with susceptible snails were related to the geographical scale of the combinations. CONCLUSIONS Here, the effectiveness of P. columella resistance to F. hepatica does not decline with increasing parasite doses, successive infection or different geographical origins of parasite isolates, while presenting new evidence for specificity for infection in susceptible P. columella snails. Understanding the peculiarities of the P. columella-F. hepatica interaction and the extent of the resistant phenotype is crucial for an effective parasite control and for developing alternatives to tackle fasciolosis transmission.
Collapse
Affiliation(s)
- Annia Alba
- Centro de Investigaciones, Diagnóstico y Referencia, Instituto de Medicina Tropical "Pedro Kourí", La Habana, Cuba.,University of Perpignan Via Domitia, Interactions Hosts Pathogens Environments UMR 5244, CNRS, IFREMER, Univ. Montpellier, F-66860, Perpignan, France
| | - Antonio A Vázquez
- Centro de Investigaciones, Diagnóstico y Referencia, Instituto de Medicina Tropical "Pedro Kourí", La Habana, Cuba.,MIVEGEC, IRD, CNRS, Univ. Montpellier, Montpellier, France
| | - Jorge Sánchez
- Centro de Investigaciones, Diagnóstico y Referencia, Instituto de Medicina Tropical "Pedro Kourí", La Habana, Cuba
| | - David Duval
- University of Perpignan Via Domitia, Interactions Hosts Pathogens Environments UMR 5244, CNRS, IFREMER, Univ. Montpellier, F-66860, Perpignan, France
| | - Hilda M Hernández
- Centro de Investigaciones, Diagnóstico y Referencia, Instituto de Medicina Tropical "Pedro Kourí", La Habana, Cuba
| | - Emeline Sabourin
- Centre de recherche de la Tour du Valat, Arles, France.,MIVEGEC, IRD, CNRS, Univ. Montpellier, Montpellier, France
| | | | | | - Benjamin Gourbal
- University of Perpignan Via Domitia, Interactions Hosts Pathogens Environments UMR 5244, CNRS, IFREMER, Univ. Montpellier, F-66860, Perpignan, France.
| |
Collapse
|
34
|
Anderson TJC, LoVerde PT, Le Clec'h W, Chevalier FD. Genetic Crosses and Linkage Mapping in Schistosome Parasites. Trends Parasitol 2018; 34:982-996. [PMID: 30150002 DOI: 10.1016/j.pt.2018.08.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 07/27/2018] [Accepted: 08/02/2018] [Indexed: 12/14/2022]
Abstract
Linkage mapping - utilizing experimental genetic crosses to examine cosegregation of phenotypic traits with genetic markers - is now 100 years old. Schistosome parasites are exquisitely well suited to linkage mapping approaches because genetic crosses can be conducted in the laboratory, thousands of progeny are produced, and elegant experimental work over the last 75 years has revealed heritable genetic variation in multiple biomedically important traits such as drug resistance, host specificity, and virulence. Application of this approach is timely because the improved genome assembly for Schistosoma mansoni and developing molecular toolkit for schistosomes increase our ability to link phenotype with genotype. We describe current progress and potential future directions of linkage mapping in schistosomes.
Collapse
Affiliation(s)
| | | | - Winka Le Clec'h
- Texas Biomedical Research Institute, San Antonio, Texas 78227, USA
| | | |
Collapse
|
35
|
Sanogo B, Yuan D, Zeng X, Zhang Y, Wu Z. RETRACTED: Diversity and Compatibility of Human Schistosomes and Their Intermediate Snail Hosts. Trends Parasitol 2018; 34:493-510. [PMID: 29627269 DOI: 10.1016/j.pt.2018.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 02/22/2018] [Accepted: 03/15/2018] [Indexed: 01/13/2023]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal) This article has been retracted at the request of the authors: Benjamin Sanogo, Dongjuan Yuan, Xin Zeng, Yanhua Zhang, and Zhongdao Wu. Our article reviews the evolution, geography, diversity, genetics and host-compatibility of human schistosomes and their hosts. It has come to our attention that readers have found some of the content in the article to be confusing or misleading. As authors, we have tried our best to share our scientific discovery and understanding faithfully, but we also agree that scientific reports should stand up to doubt and discussion. After serious consideration, to avoid confusion in the Schistosoma research community, we are retracting the Review. We apologize to the community for any inconvenience we have caused.
Collapse
Affiliation(s)
- Benjamin Sanogo
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory for Tropical Diseases Control (SYSU), Ministry of Education, Guangzhou 510080, China; Provincial Engineering Technology Research Center for Diseases-vectors Control, Guangdong, Guangzhou 510080, China
| | - Dongjuan Yuan
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory for Tropical Diseases Control (SYSU), Ministry of Education, Guangzhou 510080, China; Provincial Engineering Technology Research Center for Diseases-vectors Control, Guangdong, Guangzhou 510080, China
| | - Xin Zeng
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory for Tropical Diseases Control (SYSU), Ministry of Education, Guangzhou 510080, China; Provincial Engineering Technology Research Center for Diseases-vectors Control, Guangdong, Guangzhou 510080, China
| | - Yanhua Zhang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory for Tropical Diseases Control (SYSU), Ministry of Education, Guangzhou 510080, China; Provincial Engineering Technology Research Center for Diseases-vectors Control, Guangdong, Guangzhou 510080, China
| | - Zhongdao Wu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory for Tropical Diseases Control (SYSU), Ministry of Education, Guangzhou 510080, China; Provincial Engineering Technology Research Center for Diseases-vectors Control, Guangdong, Guangzhou 510080, China
| |
Collapse
|
36
|
Civitello DJ, Fatima H, Johnson LR, Nisbet RM, Rohr JR. Bioenergetic theory predicts infection dynamics of human schistosomes in intermediate host snails across ecological gradients. Ecol Lett 2018; 21:692-701. [PMID: 29527787 DOI: 10.1111/ele.12937] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/04/2017] [Accepted: 02/13/2018] [Indexed: 12/31/2022]
Abstract
Epidemiological dynamics depend on the traits of hosts and parasites, but hosts and parasites are heterogeneous entities that exist in dynamic environments. Resource availability is a particularly dynamic and potent environmental driver of within-host infection dynamics (temporal patterns of growth, reproduction, parasite production and survival). We developed, parameterised and validated a model for resource-explicit infection dynamics by incorporating a parasitism module into dynamic energy budget theory. The model mechanistically explained the dynamic multivariate responses of the human parasite Schistosoma mansoni and its intermediate host snail to variation in resources and host density. At the population level, feedbacks mediated by resource competition could create a unimodal relationship between snail density and human risk of exposure to schistosomes. Consequently, weak snail control could backfire if reductions in snail density release remaining hosts from resource competition. If resource competition is strong and relevant to schistosome production in nature, it could inform control strategies.
Collapse
Affiliation(s)
- David J Civitello
- Department of Biology, Emory University, 1510 Clifton Rd NE, 30322, Atlanta, GA, USA
| | - Hiba Fatima
- Global Health Institute, Duke University, Durham, NC, USA
| | - Leah R Johnson
- Department of Statistics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Roger M Nisbet
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, UCSB, 93106, Santa Barbara, CA, USA
| | - Jason R Rohr
- Department of Integrative Biology, University of South Florida, 4202, East Fowler Ave., 33620, Tampa, FL, USA
| |
Collapse
|
37
|
Barcoding hybrids: heterogeneous distribution of Schistosoma haematobium × Schistosoma bovis hybrids across the Senegal River Basin. Parasitology 2018; 145:634-645. [PMID: 29667570 DOI: 10.1017/s0031182018000525] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Hybridization events between Schistosoma species (Digenea, Platyhelminthes) are reported with increasing frequency, largely due to improved access to molecular tools. Nevertheless, little is known about the distribution and frequency of hybrid schistosomes in nature. Screening for hybrids on a large scale is complicated by the need for nuclear and mitochondrial sequence information, precluding a 'simple' barcoding approach. Here we aimed to determine and understand the spatiotemporal distribution of Schistosoma haematobium × Schistosoma bovis hybrids in the Senegal River Basin. From ten villages, distributed over the four main water basins, we genotyped a total of 1236 schistosome larvae collected from human urine samples using a partial mitochondrial cox1 fragment; a subset of 268 parasites was also genotyped using ITS rDNA. Hybrid schistosomes were unevenly distributed, with substantially higher numbers in villages bordering Lac de Guiers than in villages from the Lampsar River and the Middle Valley of the Senegal River. The frequency of hybrids per village was not linked with the prevalence of urinary schistosomiasis in that village. However, we did find a significant positive association between the frequency of hybrids per village and the prevalence of Schistosoma mansoni. We discuss the potential consequences of adopting a barcoding approach when studying hybrids in nature.
Collapse
|
38
|
Could diet composition modulate pathological outcomes in schistosomiasis mansoni? A systematic review of in vivo preclinical evidence. Parasitology 2018; 145:1127-1136. [DOI: 10.1017/s0031182018000057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
AbstractSchistosomiasis and malnutrition are often overlapped in poor communities, resulting in disproportionately high mortality rates. Currently, fragmented data make it difficult to define the relationship between diet and schistosomiasis. Thus, we systematically review the preclinical evidence on the impact of diet in Schistosoma mansoni infection. From a structured search, we recovered 27 original articles. All studies used mice and most of them investigated hypoproteic (70.37%), hyperlipidic (22.22%) or vitamin-deficient (7.41%) diets. Diets based on carbohydrate, zinc or milk supplementation were investigated at a reduced frequency (3.70% each). Hypoproteic diets attenuated parasitic load and granulomatous inflammation, but also reduced host resistance to S. mansoni infection, determining higher mortality rates. By stimulating steatohepatitis, parasitic load and granulomatous inflammation, hyperlipidic diets increase organ damage and mortality in infected animals. Although a high-sugar diet and vitamin restriction potentiate and zinc supplementation attenuates S. mansoni infection, the current evidence for these diets remains inconclusive. Analysis of methodological quality indicated that the current evidence is at high risk of bias due to incomplete characterization of the experimental design, diet composition and treatment protocols. From the bias analysis, we report methodological limitations that should be considered to avoid systematic reproduction of inconsistent and poorly reproducible experimental designs.
Collapse
|
39
|
Allan ERO, Blouin MS. Allelic variation partially regulates galactose-dependent hydrogen peroxide release from circulating hemocytes of the snail Biomphalaria glabrata. FISH & SHELLFISH IMMUNOLOGY 2018; 72:111-116. [PMID: 29107743 PMCID: PMC5732054 DOI: 10.1016/j.fsi.2017.10.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/17/2017] [Accepted: 10/22/2017] [Indexed: 05/02/2023]
Abstract
Freshwater snails are the intermediate hosts for numerous parasitic worms that are detrimental to human and agricultural health. Understanding the immune responses of these snails could be vital for finding ways to block transmission of those parasites. Allelic variation in a recently discovered genomic region in the snail, Biomphalaria glabrata, influences their susceptibility to schistosomes. Here we tested whether genes in that region, termed the Guadeloupe Resistance Complex (GRC), are involved in recognition of common pathogen-associated molecules that have been shown to be stimulants of the hydrogen peroxide defense pathway. We show that hemocytes extracted from individuals with one of the three GRC genotypes released less hydrogen peroxide than the other two genotypes, after stimulation with galactose. This difference was not observed after stimulation with several other microbial-associated carbohydrates, despite those ligands sharing the same putative pathway for hydrogen peroxide release. Therefore, we conclude that allelic variation in the GRC region may influence the recognition of galactose, rather than the conserved downstream steps in the hydrogen peroxide pathway. These results thus are consistent with the hypothesis that proteins produced by this region are involved in pathogen recognition.
Collapse
Affiliation(s)
- Euan R O Allan
- Department of Integrative Biology, College of Science, Oregon State University, Corvallis, OR, USA.
| | - Michael S Blouin
- Department of Integrative Biology, College of Science, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
40
|
Allan ERO, Blouin MS. The behavioral effects of antibiotic treatment on the snail Biomphalaria glabrata. PeerJ 2017; 5:e4171. [PMID: 29302392 PMCID: PMC5742274 DOI: 10.7717/peerj.4171] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 11/28/2017] [Indexed: 01/26/2023] Open
Abstract
Schistosomiasis is a detrimental neglected tropical disease that is transmitted by Planorbid snails. Understanding the transmission and control of this disease requires an extensive understanding of these intermediate hosts, which is only achieved by the effective rearing and study of species such as Biomphalaria glabrata. This species is the intermediate host for Schistosoma mansoni in the New World, and is also the main model for studying schistosomes in mollusks. Antibiotics are used routinely in B. glabrata tissue culture, and occasionally on live snails. Here we show that standard doses of three common antibiotics (penicillin, streptomycin and gentamicin) drastically diminish the activity of healthy B. glabrata, but that treated snails recover rapidly when placed in fresh water. Ampicillin treated snails did not show altered activity. We suggest that researchers keep these apparent toxicities in mind if a need for antibiotic treatment of live Planorbid snails arises.
Collapse
Affiliation(s)
- Euan R O Allan
- Integrative Biology, Oregon State University, Corvallis, OR, United States of America
| | - Michael S Blouin
- Integrative Biology, Oregon State University, Corvallis, OR, United States of America
| |
Collapse
|
41
|
Allan ERO, Gourbal B, Dores CB, Portet A, Bayne CJ, Blouin MS. Clearance of schistosome parasites by resistant genotypes at a single genomic region in Biomphalaria glabrata snails involves cellular components of the hemolymph. Int J Parasitol 2017; 48:387-393. [PMID: 29137971 DOI: 10.1016/j.ijpara.2017.08.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/23/2017] [Accepted: 08/31/2017] [Indexed: 10/24/2022]
Abstract
Schistosomiasis is one of the most detrimental neglected tropical diseases. Controlling the spread of this parasitic illness requires effective sanitation, access to chemotherapeutic drugs, and control over populations of the freshwater snails, such as Biomphalaria glabrata, that are essential intermediate hosts for schistosomes. Effectively controlling this disease, while minimising ecological implications of such control, will require an extensive understanding of the immunological interactions between schistosomes and their molluscan intermediate hosts. Here we histologically characterise the clearance of schistosome larvae by snails that exhibit allelic variation at a single genomic region, the Guadeloupe resistance complex. We show that snails with a resistant Guadeloupe resistance complex genotype clear schistosomes within the first 24-48 h, and that this resistance can be transferred to susceptible snails via whole hemolymph but not cell-free plasma. These findings imply that Guadeloupe resistance complex-coded proteins help to coordinate hemocyte-mediated immune responses to schistosome infections in Guadeloupean snails.
Collapse
Affiliation(s)
- Euan R O Allan
- Department of Integrative Biology, College of Science, Oregon State University, Corvallis, OR, USA.
| | - Benjamin Gourbal
- Université Perpignan Via Domitia, Interactions Hôtes Pathogènes Environnements UMR 5244, CNRS, IFREMER, Univ. Montpellier, F-66860 Perpignan, France
| | - Camila B Dores
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR, USA
| | - Anais Portet
- Université Perpignan Via Domitia, Interactions Hôtes Pathogènes Environnements UMR 5244, CNRS, IFREMER, Univ. Montpellier, F-66860 Perpignan, France
| | - Christopher J Bayne
- Department of Integrative Biology, College of Science, Oregon State University, Corvallis, OR, USA
| | - Michael S Blouin
- Department of Integrative Biology, College of Science, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
42
|
Tetreau G, Pinaud S, Portet A, Galinier R, Gourbal B, Duval D. Specific Pathogen Recognition by Multiple Innate Immune Sensors in an Invertebrate. Front Immunol 2017; 8:1249. [PMID: 29051762 PMCID: PMC5633686 DOI: 10.3389/fimmu.2017.01249] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/20/2017] [Indexed: 11/13/2022] Open
Abstract
Detection of pathogens by all living organisms is the primary step needed to implement a coherent and efficient immune response. This implies a mediation by different soluble and/or membrane-anchored proteins related to innate immune receptors called PRRs (pattern-recognition receptors) to trigger immune signaling pathways. In most invertebrates, their roles have been inferred by analogy to those already characterized in vertebrate homologs. Despite the induction of their gene expression upon challenge and the presence of structural domains associated with the detection of pathogen-associated molecular patterns in their sequence, their exact role in the induction of immune response and their binding capacity still remain to be demonstrated. To this purpose, we developed a fast interactome approach, usable on any host–pathogen couple, to identify soluble proteins capable of directly or indirectly detecting the presence of pathogens. To investigate the molecular basis of immune recognition specificity, different pathogens (Gram-positive bacterium, Micrococcus luteus; Gram-negative, Escherichia coli; yeast, Saccharomyces cerevisiae; and metazoan parasites, Echinostoma caproni or Schistosoma mansoni) were exposed to hemocyte-free hemolymph from the gastropod Biomphalaria glabrata. Twenty-three different proteins bound to pathogens were identified and grouped into three different categories based on their primary function. Each pathogen was recognized by a specific but overlapping set of circulating proteins in mollusk’s hemolymph. While known PRRs such as C-type lectins were identified, other proteins not known to be primarily involved in pathogen recognition were found, including actin, tubulin, collagen, and hemoglobin. Confocal microscopy and specific fluorescent labeling revealed that extracellular actin present in snail hemolymph was able to bind to yeasts and induce their clotting, a preliminary step for their elimination by the snail immune system. Aerolysin-like proteins (named biomphalysins) were the only ones involved in the recognition of all the five pathogens tested, suggesting a sentinel role of these horizontally acquired toxins. These findings highlight the diversity and complexity of a highly specific innate immune sensing system. It paves the way for the use of such approach on a wide range of host–pathogen systems to provide new insights into the specificity and diversity of immune recognition by innate immune systems.
Collapse
Affiliation(s)
- Guillaume Tetreau
- University of Perpignan, IHPE UMR 5244, CNRS, IFREMER, University of Montpellier, Perpignan, France
| | - Silvain Pinaud
- University of Perpignan, IHPE UMR 5244, CNRS, IFREMER, University of Montpellier, Perpignan, France
| | - Anaïs Portet
- University of Perpignan, IHPE UMR 5244, CNRS, IFREMER, University of Montpellier, Perpignan, France
| | - Richard Galinier
- University of Perpignan, IHPE UMR 5244, CNRS, IFREMER, University of Montpellier, Perpignan, France
| | - Benjamin Gourbal
- University of Perpignan, IHPE UMR 5244, CNRS, IFREMER, University of Montpellier, Perpignan, France
| | - David Duval
- University of Perpignan, IHPE UMR 5244, CNRS, IFREMER, University of Montpellier, Perpignan, France
| |
Collapse
|
43
|
Portet A, Pinaud S, Tetreau G, Galinier R, Cosseau C, Duval D, Grunau C, Mitta G, Gourbal B. Integrated multi-omic analyses in Biomphalaria-Schistosoma dialogue reveal the immunobiological significance of FREP-SmPoMuc interaction. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 75:16-27. [PMID: 28257854 DOI: 10.1016/j.dci.2017.02.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 02/23/2017] [Accepted: 02/26/2017] [Indexed: 05/16/2023]
Abstract
The fresh water snail Biomphalaria glabrata is one of the vectors of the trematode pathogen Schistosoma mansoni, which is one of the agents responsible of human schistosomiasis. In this host-parasite interaction, co-evolutionary dynamic results into an infectivity mosaic known as compatibility polymorphism. Integrative approaches including large scale molecular approaches have been conducted in recent years to improve our understanding of the mechanisms underlying compatibility. This review presents the combination of integrated Multi-Omic approaches leading to the discovery of two repertoires of polymorphic and/or diversified interacting molecules: the parasite antigens S. mansoni polymorphic mucins (SmPoMucs) and the B. glabrata immune receptors fibrinogen-related proteins (FREPs). We argue that their interactions may be major components for defining the compatible/incompatible status of a specific snail/schistosome combination.
Collapse
Affiliation(s)
- Anaïs Portet
- Univ. Perpignan Via Domitia, IHPE UMR 5244, IFREMER, Univ. Montpellier, F-66860 Perpignan, France
| | - Silvain Pinaud
- Univ. Perpignan Via Domitia, IHPE UMR 5244, IFREMER, Univ. Montpellier, F-66860 Perpignan, France
| | - Guillaume Tetreau
- Univ. Perpignan Via Domitia, IHPE UMR 5244, IFREMER, Univ. Montpellier, F-66860 Perpignan, France
| | - Richard Galinier
- Univ. Perpignan Via Domitia, IHPE UMR 5244, IFREMER, Univ. Montpellier, F-66860 Perpignan, France
| | - Céline Cosseau
- Univ. Perpignan Via Domitia, IHPE UMR 5244, IFREMER, Univ. Montpellier, F-66860 Perpignan, France
| | - David Duval
- Univ. Perpignan Via Domitia, IHPE UMR 5244, IFREMER, Univ. Montpellier, F-66860 Perpignan, France
| | - Christoph Grunau
- Univ. Perpignan Via Domitia, IHPE UMR 5244, IFREMER, Univ. Montpellier, F-66860 Perpignan, France
| | - Guillaume Mitta
- Univ. Perpignan Via Domitia, IHPE UMR 5244, IFREMER, Univ. Montpellier, F-66860 Perpignan, France
| | - Benjamin Gourbal
- Univ. Perpignan Via Domitia, IHPE UMR 5244, IFREMER, Univ. Montpellier, F-66860 Perpignan, France.
| |
Collapse
|
44
|
Kincaid-Smith J, Rey O, Toulza E, Berry A, Boissier J. Emerging Schistosomiasis in Europe: A Need to Quantify the Risks. Trends Parasitol 2017; 33:600-609. [PMID: 28539255 DOI: 10.1016/j.pt.2017.04.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/19/2017] [Accepted: 04/27/2017] [Indexed: 11/29/2022]
Abstract
The recent recurrent outbreaks of urogenital schistosomiasis in the south of Europe were unanticipated and caught scientists and health authorities unprepared. It is now time to learn lessons from these outbreaks and to implement concrete procedures in order to better quantify the risks and prevent future outbreaks of schistosomiasis in Europe. In this context, we propose a reflection on the factors that currently hamper our ability to quantify these risks and argue that we are incapable of predicting future outbreaks. We base our reflexion on an ecological two-step filter concept that drives host-parasite interactions, namely the encounter and the compatibility filters.
Collapse
Affiliation(s)
- Julien Kincaid-Smith
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, F-66860 Perpignan, France
| | - Olivier Rey
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, F-66860 Perpignan, France
| | - Eve Toulza
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, F-66860 Perpignan, France
| | - Antoine Berry
- Service de Parasitologie-Mycologie, CHU Toulouse and Centre de Physiopathologie de Toulouse Purpan, INSERM U1043, CNRS UMR5282, Université de Toulouse, Toulouse, France
| | - Jérôme Boissier
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, F-66860 Perpignan, France.
| |
Collapse
|
45
|
Galinier R, Roger E, Moné Y, Duval D, Portet A, Pinaud S, Chaparro C, Grunau C, Genthon C, Dubois E, Rognon A, Arancibia N, Dejean B, Théron A, Gourbal B, Mitta G. A multistrain approach to studying the mechanisms underlying compatibility in the interaction between Biomphalaria glabrata and Schistosoma mansoni. PLoS Negl Trop Dis 2017; 11:e0005398. [PMID: 28253264 PMCID: PMC5349689 DOI: 10.1371/journal.pntd.0005398] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 03/14/2017] [Accepted: 02/07/2017] [Indexed: 12/03/2022] Open
Abstract
In recent decades, numerous studies have sought to better understand the mechanisms underlying the compatibility between Biomphalaria glabrata and Schistosoma mansoni. The developments of comparative transcriptomics, comparative genomics, interactomics and more targeted approaches have enabled researchers to identify a series of candidate genes. However, no molecular comparative work has yet been performed on multiple populations displaying different levels of compatibility. Here, we seek to fill this gap in the literature. We focused on B. glabrata FREPs and S. mansoni SmPoMucs, which were previously demonstrated to be involved in snail/schistosome compatibility. We studied the expression and polymorphisms of these factors in combinations of snail and schistosome isolates that display different levels of compatibility. We found that the polymorphism and expression levels of FREPs and SmPoMucs could be linked to the compatibility level of S. mansoni. These data and our complementary results obtained by RNA-seq of samples from various snail strains indicate that the mechanism of compatibility is much more complex than previously thought, and that it is likely to be highly variable within and between populations. This complexity must be taken into account if we hope to identify the molecular pathways that are most likely to be good targets for strategies aimed at blocking transmission of the parasite through the snail intermediate host. Schistosomiasis is the second most widespread human tropical parasitic disease after malaria. It is caused by flatworms of the genus Schistosoma, and poses a considerable threat for human health in numerous Asian, African and South American countries. The World Health Organization has set the goal of eradicating schistosomiasis by 2025. However, no vaccine is available, and we currently have only one drug (praziquantel) that can effectively and efficiently treat the disease. As treatment by mass drug administration would enhance the risk of drug resistance in schistosome parasites, complementary strategies to fight this parasitic disease are urgently needed. Freshwater snails of the Biomphalaria genus act as intermediate hosts in the transmission of the schistosome species. Thus, learning more about the mechanisms of the interaction between these snails and the schistosomes could critically facilitate the identification of potential new candidate molecules that may be targeted to prevent schistosome transmission in the field.
Collapse
Affiliation(s)
- Richard Galinier
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - Emmanuel Roger
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - Yves Moné
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - David Duval
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - Anaïs Portet
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - Silvain Pinaud
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - Cristian Chaparro
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - Christoph Grunau
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - Clémence Genthon
- MGX-Montpellier GenomiX, Montpellier Genomics and Bioinformatics Facility, Montpellier, France
| | - Emeric Dubois
- MGX-Montpellier GenomiX, Montpellier Genomics and Bioinformatics Facility, Montpellier, France
| | - Anne Rognon
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - Nathalie Arancibia
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - Bernard Dejean
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - André Théron
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - Benjamin Gourbal
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
- * E-mail: (BG); (GM)
| | - Guillaume Mitta
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
- * E-mail: (BG); (GM)
| |
Collapse
|
46
|
Galinier R, Tetreau G, Portet A, Pinaud S, Duval D, Gourbal B. First characterization of viruses from freshwater snails of the genus Biomphalaria, the intermediate host of the parasite Schistosoma mansoni. Acta Trop 2017; 167:196-203. [PMID: 28012902 DOI: 10.1016/j.actatropica.2016.12.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 11/16/2016] [Accepted: 12/18/2016] [Indexed: 12/11/2022]
Abstract
We report the genome sequence and organization of five viruses infecting snails of both Biomphalaria glabrata and Biomphalaria pfeifferi, which are vectors of the intestinal schistosomiasis. Four viruses presented a polyadenylated positive single strand RNA genome encoding one or two large open reading frames (ORFs) flanked by untranslated region. Conserved protein motifs typical of the picorna-like virus superfamily were identified in these viruses but they all presented different genome organization. Phylogenetic analysis confirmed their assignment to this superfamily. The partially characterized fifth virus presented sequence similarity for Totiviridae, a family of non-polyadenylated double-strand RNA viruses. Virus distribution and relative abundance between the five strains of Biomphalaria originating from different geographical areas was determined. Our results provide valuable information of new viruses from Biomphalaria and pave the way for future studies dedicated to their impact on snail fitness and Biomphalaria/Schistosoma interactions.
Collapse
|
47
|
Allan ERO, Tennessen JA, Bollmann SR, Hanington PC, Bayne CJ, Blouin MS. Schistosome infectivity in the snail, Biomphalaria glabrata, is partially dependent on the expression of Grctm6, a Guadeloupe Resistance Complex protein. PLoS Negl Trop Dis 2017; 11:e0005362. [PMID: 28158185 PMCID: PMC5310918 DOI: 10.1371/journal.pntd.0005362] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 02/15/2017] [Accepted: 01/27/2017] [Indexed: 02/07/2023] Open
Abstract
Schistosomiasis is one of the most important neglected tropical diseases. Despite effective chemotherapeutic treatments, this disease continues to afflict hundreds of millions of people. Understanding the natural intermediate snail hosts of schistosome parasites is vital to the suppression of this disease. A recently identified genomic region in Caribbean Biomphalaria glabrata snails strongly influences their resistance to infection by Schistosoma mansoni. This region contains novel genes having structural similarity to known pathogen recognition proteins. Here we elaborate on the probable structure and role of one of these genes, grctm6. We characterised the expression of Grctm6 in a population of Caribbean snails, and performed a siRNA knockdown of Grctm6. We show that this protein is not only expressed in B. glabrata hemolymph, but that it also has a role in modulating the number of S. mansoni cercariae released by infected snails, making it a possible target for the biological control of schistosomiasis.
Collapse
Affiliation(s)
- Euan R O Allan
- Department of Integrative Biology, College of Science, Oregon State University, Corvallis, Oregon, United States of America
| | - Jacob A Tennessen
- Department of Integrative Biology, College of Science, Oregon State University, Corvallis, Oregon, United States of America
| | - Stephanie R Bollmann
- Department of Integrative Biology, College of Science, Oregon State University, Corvallis, Oregon, United States of America
| | | | - Christopher J Bayne
- Department of Integrative Biology, College of Science, Oregon State University, Corvallis, Oregon, United States of America
| | - Michael S Blouin
- Department of Integrative Biology, College of Science, Oregon State University, Corvallis, Oregon, United States of America
| |
Collapse
|
48
|
Mitta G, Gourbal B, Grunau C, Knight M, Bridger J, Théron A. The Compatibility Between Biomphalaria glabrata Snails and Schistosoma mansoni: An Increasingly Complex Puzzle. ADVANCES IN PARASITOLOGY 2017; 97:111-145. [PMID: 28325369 DOI: 10.1016/bs.apar.2016.08.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
This review reexamines the results obtained in recent decades regarding the compatibility polymorphism between the snail, Biomphalaria glabrata, and the pathogen, Schistosoma mansoni, which is one of the agents responsible for human schistosomiasis. Some results point to the snail's resistance as explaining the incompatibility, while others support a "matching hypothesis" between the snail's immune receptors and the schistosome's antigens. We propose here that the two hypotheses are not exclusive, and that the compatible/incompatible status of a particular host/parasite couple probably reflects the balance of multiple molecular determinants that support one hypothesis or the other. Because these genes are involved in a coevolutionary arms race, we also propose that the underlying mechanisms can vary. Finally, some recent results show that environmental factors could influence compatibility. Together, these results make the compatibility between B. glabrata and S. mansoni an increasingly complex puzzle. We need to develop more integrative approaches in order to find targets that could potentially be manipulated to control the transmission of schistosomiasis.
Collapse
|
49
|
Masamba P, Adenowo AF, Oyinloye BE, Kappo AP. Universal Stress Proteins as New Targets for Environmental and Therapeutic Interventions of Schistosomiasis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:E972. [PMID: 27706050 PMCID: PMC5086711 DOI: 10.3390/ijerph13100972] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/24/2016] [Accepted: 09/27/2016] [Indexed: 12/22/2022]
Abstract
In spite of various control measures and eradication methods that have been in progress, schistosomiasis still prevails as one of the most prevalent debilitating parasitic diseases, typically affecting the poor and the underprivileged that are predominantly concentrated in sub-Saharan Africa. The parasitic schistosome blood fluke responsible for causing the disease completes its complex developmental cycle in two hosts: humans and freshwater snails, where they physically undergo gross modifications to endure the different conditions associated with each host. Just like any other organism, the worm possesses mechanisms that help them respond to environmental insults. It has been hypothesized that a special class of proteins known as Universal Stress Proteins (USPs) are up-regulated during sudden environmental changes, thus assisting the worm to tolerate the unfavourable conditions associated with its developmental cycle. The position of praziquantel as the drug of choice against all schistosome infections has been deemed vulnerable due to mounting concerns over drug pressure and so the need for alternative treatment is now a matter of urgency. Therefore, this review seeks to explore the associations and possible roles of USPs in schistosomiasis as well as the functioning of these proteins in the schistosomulae stage in order to develop new therapeutic interventions against this disease.
Collapse
Affiliation(s)
- Priscilla Masamba
- Biotechnology and Structural Biochemistry (BSB) Group, Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa.
| | - Abiola Fatimah Adenowo
- Biotechnology and Structural Biochemistry (BSB) Group, Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa.
| | - Babatunji Emmanuel Oyinloye
- Biotechnology and Structural Biochemistry (BSB) Group, Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa.
- Department of Biochemistry, Afe Babalola University, PMB 5454, Ado-Ekiti 360001, Nigeria.
| | - Abidemi Paul Kappo
- Biotechnology and Structural Biochemistry (BSB) Group, Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa.
| |
Collapse
|
50
|
Fneich S, Théron A, Cosseau C, Rognon A, Aliaga B, Buard J, Duval D, Arancibia N, Boissier J, Roquis D, Mitta G, Grunau C. Epigenetic origin of adaptive phenotypic variants in the human blood fluke Schistosoma mansoni. Epigenetics Chromatin 2016; 9:27. [PMID: 27379173 PMCID: PMC4931705 DOI: 10.1186/s13072-016-0076-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/24/2016] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Adaptive evolution is not possible without the generation of phenotypic variants. The origin of these variations has been a central topic in evolutionary biology. Up to now, it was commonly accepted that standing genetic variation is the only cause of phenotypic variants. However, epigenetic information is emerging as a complementary source of heritable phenotypic variation that contributes to evolution. The relative importance of genetics and epigenetics in generating heritable phenotypic variation is nevertheless a matter of debate. RESULTS We used a host-parasite system to address this question. The human blood fluke Schistosoma mansoni can adapt rapidly to new intermediate snail hosts. The interaction between parasite and mollusk is characterized by a compatibility polymorphism illustrating the evolutionary dynamics in this system. The principal molecular marker for compatibility (infection success) is the expression pattern of a group of polymorphic mucins (SmPoMuc) in the parasite. We show here that chromatin structure changes as the SmPoMuc promoters are the cause for SmPoMuc transcription polymorphism leading to phenotypic novelty and increase in infection success, i.e., fitness. CONCLUSION We establish that epigenetic changes can be the major if not only cause of adaptive phenotypic variants in Schistosoma mansoni, suggesting that epimutations can provide material for adaptive evolution in the absence of genetic variation in other systems. In addition, our results indicate that epidrugs can be used to control parasite development but also parasite evolution.
Collapse
Affiliation(s)
- Sara Fneich
- />IHPE, Université de Perpignan Via Domitia (UPVD), 52 Avenue Paul Alduy, 66860 Perpignan Cedex, France
- />CNRS, UMR 5244, Interactions Hôtes-Pathogènes-Environnements (IHPE), 66860 Perpignan, France
- />UMR BDR, INRA, ENVA, Université Paris Saclay, 78350 Jouy en Josas, France
| | - André Théron
- />IHPE, Université de Perpignan Via Domitia (UPVD), 52 Avenue Paul Alduy, 66860 Perpignan Cedex, France
- />CNRS, UMR 5244, Interactions Hôtes-Pathogènes-Environnements (IHPE), 66860 Perpignan, France
| | - Céline Cosseau
- />IHPE, Université de Perpignan Via Domitia (UPVD), 52 Avenue Paul Alduy, 66860 Perpignan Cedex, France
- />CNRS, UMR 5244, Interactions Hôtes-Pathogènes-Environnements (IHPE), 66860 Perpignan, France
| | - Anne Rognon
- />IHPE, Université de Perpignan Via Domitia (UPVD), 52 Avenue Paul Alduy, 66860 Perpignan Cedex, France
- />CNRS, UMR 5244, Interactions Hôtes-Pathogènes-Environnements (IHPE), 66860 Perpignan, France
| | - Benoit Aliaga
- />IHPE, Université de Perpignan Via Domitia (UPVD), 52 Avenue Paul Alduy, 66860 Perpignan Cedex, France
- />CNRS, UMR 5244, Interactions Hôtes-Pathogènes-Environnements (IHPE), 66860 Perpignan, France
| | - Jérôme Buard
- />CNRS, UPR1142, Institut de Génétique Humain (IGH), 34396 Montpellier, France
| | - David Duval
- />IHPE, Université de Perpignan Via Domitia (UPVD), 52 Avenue Paul Alduy, 66860 Perpignan Cedex, France
- />CNRS, UMR 5244, Interactions Hôtes-Pathogènes-Environnements (IHPE), 66860 Perpignan, France
| | - Nathalie Arancibia
- />IHPE, Université de Perpignan Via Domitia (UPVD), 52 Avenue Paul Alduy, 66860 Perpignan Cedex, France
- />CNRS, UMR 5244, Interactions Hôtes-Pathogènes-Environnements (IHPE), 66860 Perpignan, France
| | - Jérôme Boissier
- />IHPE, Université de Perpignan Via Domitia (UPVD), 52 Avenue Paul Alduy, 66860 Perpignan Cedex, France
- />CNRS, UMR 5244, Interactions Hôtes-Pathogènes-Environnements (IHPE), 66860 Perpignan, France
| | - David Roquis
- />IHPE, Université de Perpignan Via Domitia (UPVD), 52 Avenue Paul Alduy, 66860 Perpignan Cedex, France
- />CNRS, UMR 5244, Interactions Hôtes-Pathogènes-Environnements (IHPE), 66860 Perpignan, France
- />Technical University of Munich (TUM), Liesel-Beckmann-Str. 2, 85354 Freising, Germany
| | - Guillaume Mitta
- />IHPE, Université de Perpignan Via Domitia (UPVD), 52 Avenue Paul Alduy, 66860 Perpignan Cedex, France
- />CNRS, UMR 5244, Interactions Hôtes-Pathogènes-Environnements (IHPE), 66860 Perpignan, France
| | - Christoph Grunau
- />IHPE, Université de Perpignan Via Domitia (UPVD), 52 Avenue Paul Alduy, 66860 Perpignan Cedex, France
- />CNRS, UMR 5244, Interactions Hôtes-Pathogènes-Environnements (IHPE), 66860 Perpignan, France
| |
Collapse
|