1
|
Hydrogen-Deuterium Exchange Mass Spectrometry Reveals a Novel Binding Region of a Neutralizing Fully Human Monoclonal Antibody to Anthrax Protective Antigen. Toxins (Basel) 2022; 14:toxins14020092. [PMID: 35202120 PMCID: PMC8877668 DOI: 10.3390/toxins14020092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/14/2022] [Accepted: 01/21/2022] [Indexed: 12/04/2022] Open
Abstract
Anthrax vaccine adsorbed (AVA) containing protective antigen (PA) is the only FDA-approved anthrax vaccine in the United States. Characterization of the binding of AVA-induced anti-PA human antibodies against the PA antigen after vaccination is crucial to understanding mechanisms of the AVA-elicited humoral immune response. Hydrogen deuterium exchange mass spectrometry (HDX-MS) is often coupled with a short liquid chromatography gradient (e.g., 5–10 min) for the characterization of protein interactions. We recently developed a long-gradient (e.g., 90 min), sub-zero temperature, ultra-high performance liquid chromatography HDX-MS (UPLC-HDX-MS) platform that has significantly increased separation power and limited back-exchange for the analysis of protein samples with high complexity. In this study, we demonstrated the utility of this platform for mapping antibody–antigen epitopes by examining four fully human monoclonal antibodies to anthrax PA. Antibody p1C03, with limited neutralizing activity in vivo, bound to a region on domain 1A of PA. p6C04 and p1A06, with no neutralizing activities, bound to the same helix on domain 3 to prevent oligomerization of PA. We found p6C01 strongly bound to domain 3 on a different helix region. We also identified a secondary epitope for p6C01, which likely leads to the blocking of furin cleavage of PA after p6C01 binding. This novel binding of p6C01 results in highly neutralizing activity. This is the first report of this distinct binding mechanism for a highly neutralizing fully human antibody to anthrax protective antigen. Studying such epitopes can facilitate the development of novel therapeutics against anthrax.
Collapse
|
2
|
Evans DJ, Wasinger AM, Brey RN, Dunleavey JM, St Croix B, Bann JG. Seneca Valley Virus Exploits TEM8, a Collagen Receptor Implicated in Tumor Growth. Front Oncol 2018; 8:506. [PMID: 30460197 PMCID: PMC6232524 DOI: 10.3389/fonc.2018.00506] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 10/16/2018] [Indexed: 12/25/2022] Open
Abstract
Recent studies reveal that Seneca Valley Virus (SVV) exploits tumor endothelial marker 8 (TEM8) for cellular entry, the same surface receptor pirated by bacterial-derived anthrax toxin. This observation is particularly significant as SVV is a known oncolytic virus which selectively infects and kills tumor cells, particularly those of neuroendocrine origin. TEM8 is a transmembrane glycoprotein that is preferentially upregulated in some tumor cell and tumor-associated stromal cell populations. Both TEM8 and SVV have been evaluated for targeting of tumors of multiple origins, but the connection between the two was previously unknown. Here, we review currently understood interactions between TEM8 and SVV, anthrax protective antigen (PA), and collagen VI, a native binding partner of TEM8, with an emphasis on potential therapeutic directions moving forward.
Collapse
Affiliation(s)
- David J Evans
- Department of Chemistry, Wichita State University, Wichita, KS, United States
| | - Alexa M Wasinger
- Department of Chemistry, Wichita State University, Wichita, KS, United States
| | | | - James M Dunleavey
- Tumor Angiogenesis Unit, National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD, United States
| | - Brad St Croix
- Tumor Angiogenesis Unit, National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD, United States
| | - James G Bann
- Department of Chemistry, Wichita State University, Wichita, KS, United States
| |
Collapse
|
3
|
Scott H, Huang W, Bann JG, Taylor DJ. Advances in structure determination by cryo-EM to unravel membrane-spanning pore formation. Protein Sci 2018; 27:1544-1556. [PMID: 30129169 PMCID: PMC6194281 DOI: 10.1002/pro.3454] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 06/10/2018] [Accepted: 06/11/2018] [Indexed: 01/03/2023]
Abstract
The beta pore-forming proteins (β-PFPs) are a large class of polypeptides that are produced by all Kingdoms of life to contribute to their species' own survival. Pore assembly is a sophisticated multi-step process that includes receptor/membrane recognition and oligomerization events, and is ensued by large-scale structural rearrangements, which facilitate maturation of a prepore into a functional membrane spanning pore. A full understanding of pore formation, assembly, and maturation has traditionally been hindered by a lack of structural data; particularly for assemblies representing differing conformations of functional pores. However, recent advancements in cryo-electron microscopy (cryo-EM) techniques have provided the opportunity to delineate the structures of such flexible complexes, and in different states, to near-atomic resolution. In this review, we place a particular emphasis on the use of cryo-EM to uncover the mechanistic details including architecture, activation, and maturation for some of the prominent members of this family.
Collapse
Affiliation(s)
- Harry Scott
- Department of PharmacologyCase Western Reserve UniversityClevelandOhio44106
| | - Wei Huang
- Department of PharmacologyCase Western Reserve UniversityClevelandOhio44106
| | - James G. Bann
- Department of ChemistryWichita State UniversityWichitaKansas67260
| | - Derek J. Taylor
- Department of PharmacologyCase Western Reserve UniversityClevelandOhio44106
- Department of BiochemistryCase Western Reserve UniversityClevelandOhio44106
| |
Collapse
|
4
|
Lahousse M, Park HC, Lee SC, Ha NR, Jung IP, Schlesinger SR, Shackelford K, Yoon MY, Kim SK. Inhibition of anthrax lethal factor by ssDNA aptamers. Arch Biochem Biophys 2018; 646:16-23. [PMID: 29580944 DOI: 10.1016/j.abb.2018.03.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 03/04/2018] [Accepted: 03/22/2018] [Indexed: 01/12/2023]
Abstract
Anthrax is caused by Bacillus anthracis, a bacterium that is able to secrete the toxins protective antigen, edema factor and lethal factor. Due to the high level of secretion from the bacteria and its severe virulence, lethal factor (LF) has been sought as a biomarker for detecting bacterial infection and as an effective target to neutralize toxicity. In this study, we found three aptamers, and binding affinity was determined by fluorescently labeled aptamers. One of the aptamers exhibited high affinity, with a Kd value of 11.0 ± 2.7 nM, along with low cross reactivity relative to bovine serum albumin and protective antigen. The therapeutic functionality of the aptamer was examined by assessing the inhibition of LF protease activity against a mitogen-activated protein kinase kinase. The aptamer appears to be an effective inhibitor of LF with an IC50 value of 15 ± 1.5 μM and approximately 85% cell viability, suggesting that this aptamer provides a potential clue for not only development of a sensitive diagnostic device of B. anthracis infection but also the design of novel inhibitors of LF.
Collapse
Affiliation(s)
- Mieke Lahousse
- The Institute of Biomedical Studies, and the Department of Chemistry and Biochemistry, Baylor University, Waco, TX, 76798-7348, USA
| | - Hae-Chul Park
- Department of Chemistry, Hanyang University, Seoul, 133-791, Republic of Korea
| | - Sang-Choon Lee
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Na-Reum Ha
- Department of Chemistry, Hanyang University, Seoul, 133-791, Republic of Korea
| | - In-Pil Jung
- Department of Chemistry, Hanyang University, Seoul, 133-791, Republic of Korea
| | - Sara R Schlesinger
- The Institute of Biomedical Studies, and the Department of Chemistry and Biochemistry, Baylor University, Waco, TX, 76798-7348, USA
| | - Kaylin Shackelford
- Department of Natural Sciences, Northeastern State University, Tahlequah, OK 74464, USA
| | - Moon-Young Yoon
- Department of Chemistry, Hanyang University, Seoul, 133-791, Republic of Korea
| | - Sung-Kun Kim
- Department of Natural Sciences, Northeastern State University, Tahlequah, OK 74464, USA.
| |
Collapse
|
5
|
Jia Z, Ackroyd C, Han T, Agrawal V, Liu Y, Christensen K, Dominy B. Effects from metal ion in tumor endothelial marker 8 and anthrax protective antigen: BioLayer Interferometry experiment and molecular dynamics simulation study. J Comput Chem 2017; 38:1183-1190. [PMID: 28437008 DOI: 10.1002/jcc.24768] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 01/08/2017] [Accepted: 01/14/2017] [Indexed: 11/09/2022]
Abstract
One of the anthrax receptors, tumor endothelial marker 8 (TEM8), is reported to be a potential anticancer target due to its over-expression during tumor angiogenesis. To extend our BioLayer Interferometry study in PA-TEM8 binding, we present a computational approach to reveal the role of an integral metal ion on receptor structure and binding thermodynamics. We estimated the interaction energy between PA and TEM8 using computer simulation. Consistent with experimental study, computational results indicate the metal ion in TEM8 contributes significantly to the binding affinity, and PA-TEM8 binding is more favorable in the presence of Mg2+ than Ca2+ . Further, computational analysis suggests that the differences in PA-TEM8 binding affinity are comparable to the closely related integrin proteins. The conformation change, which linked to changes in activity of integrins, was not found in TEM8. In the present of Mg2+ , TEM8 remains in a conformation analogous to an integrin open (high-affinity) conformation. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Zhe Jia
- Clemson University Department of Chemistry, 309 Hunter Lab Clemson University, Clemson, South Carolina, 29634
| | - Christine Ackroyd
- Department of Chemistry and Biochemistry, C205 BNSN, Brigham Young University, Provo, Utah, 84602
| | - Tingting Han
- Clemson University Department of Chemistry, 309 Hunter Lab Clemson University, Clemson, South Carolina, 29634
| | - Vibhor Agrawal
- Clemson University Department of Chemistry, 309 Hunter Lab Clemson University, Clemson, South Carolina, 29634
| | - Yinling Liu
- Clemson University Department of Chemistry, 309 Hunter Lab Clemson University, Clemson, South Carolina, 29634
| | - Kenneth Christensen
- Department of Chemistry and Biochemistry, C205 BNSN, Brigham Young University, Provo, Utah, 84602
| | - Brian Dominy
- Clemson University Department of Chemistry, 309 Hunter Lab Clemson University, Clemson, South Carolina, 29634
| |
Collapse
|
6
|
Mamillapalli S, Miyagi M, Bann JG. Stability of domain 4 of the anthrax toxin protective antigen and the effect of the VWA domain of CMG2 on stability. Protein Sci 2016; 26:355-364. [PMID: 27874231 DOI: 10.1002/pro.3087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 11/14/2016] [Accepted: 11/15/2016] [Indexed: 01/04/2023]
Abstract
The major immunogenic component of the current anthrax vaccine, anthrax vaccine adsorbed (AVA) is protective antigen (PA). We have shown recently that the thermodynamic stability of PA can be significantly improved by binding to the Von-Willebrand factor A (VWA) domain of capillary morphogenesis protein 2 (CMG2), and improvements in thermodynamic stability may improve storage and long-term stability of PA for use as a vaccine. In order to understand the origin of this increase in stability, we have isolated the receptor binding domain of PA, domain 4 (D4), and have studied the effect of the addition of CMG2 on thermodynamic stability. We are able to determine a binding affinity between D4 and CMG2 (∼300 nM), which is significantly weaker than that between full-length PA and CMG2 (170-300 pM). Unlike full-length PA, we observe very little change in stability of D4 on binding to CMG2, using either fluorescence or 19 F-NMR experiments. Because in previous experiments we could observe a stabilization of both domain 4 and domain 2, the mechanism of stabilization of PA by CMG2 is likely to involve a mutual stabilization of these two domains.
Collapse
Affiliation(s)
| | - Masaru Miyagi
- Case Center for Proteomics and Bioinformatics, Department of Pharmacology and Department of Opthamology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, 44106
| | - James G Bann
- Department of Chemistry, Wichita State University, Wichita, Kansas, 67260
| |
Collapse
|
7
|
Shin K, Cho JH, Yoon MY, Chung H. Use of Multiple Peptide-Based SERS Probes Binding to Different Epitopes on a Protein Biomarker To Improve Detection Sensitivity. Anal Chem 2016; 88:3465-70. [DOI: 10.1021/acs.analchem.5b04873] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Kayeong Shin
- Department of Chemistry and
Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul, 133-791, Korea
| | - Jun-Haeng Cho
- Department of Chemistry and
Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul, 133-791, Korea
| | - Moon-Young Yoon
- Department of Chemistry and
Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul, 133-791, Korea
| | - Hoeil Chung
- Department of Chemistry and
Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul, 133-791, Korea
| |
Collapse
|
8
|
Molecular assembly of lethal factor enzyme and pre-pore heptameric protective antigen in early stage of translocation. J Mol Model 2015; 22:7. [PMID: 26659402 DOI: 10.1007/s00894-015-2878-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 11/25/2015] [Indexed: 10/22/2022]
Abstract
During intoxication, the anthrax toxin lethal (LF) and edema (EF) factors initially assemble with the protective antigen (PA) on the plasma membrane of cells expressing the membrane-bound surface-exposed anthrax toxin receptor (ATR). This takes place at the physiological pH prior to entering the acidic environment of the endosome. We elucidated the molecular dynamics (MD) behaviors of the three-dimensional structure of the (PA63)7LF3 complex in various conformations and analyzed the dynamical properties of the fully loaded pre-pore complex on the plasma membrane at the physiological pH. The analysis points to the interaction networks of amino acids conserved between PA63 octamer and heptamer, which are not affected during the initial stage of the LFs binding. The simulations show an asymmetrical movement of the complex domains that directly affect LFs conformations. The conformational and structural alterations of the 2β2-2β3 loops of PA subunits are associated with pore formation. The early conformational changes of the loops appear as they peel off from the domain 2 toward domain 4 of each PA subunit. The LFs unfold in 1α1 segments of their N-terminal initiating the early stage of the pre-pore formation. The results indicate instable regions within the complex and provide important clues concerning the detail of fluctuating residues of the LF-PA interface regions at the early steps of toxins translocation.
Collapse
|
9
|
Feasibility of asymmetrical flow field-flow fractionation as a method for detecting protective antigen by direct recognition of size-increased target-captured nanoprobes. J Chromatogr A 2015; 1422:239-246. [DOI: 10.1016/j.chroma.2015.09.089] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 09/27/2015] [Accepted: 09/28/2015] [Indexed: 01/05/2023]
|
10
|
Wycoff K, Maclean J, Belle A, Yu L, Tran Y, Roy C, Hayden F. Anti-infective immunoadhesins from plants. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:1078-93. [PMID: 26242703 PMCID: PMC4749143 DOI: 10.1111/pbi.12441] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/24/2015] [Accepted: 06/27/2015] [Indexed: 05/22/2023]
Abstract
Immunoadhesins are recombinant proteins that combine the ligand-binding region of a receptor or adhesion molecule with immunoglobulin constant domains. All FDA-approved immunoadhesins are designed to modulate the interaction of a human receptor with its normal ligand, such as Etanercept (Enbrel(®) ), which interferes with the binding of tumour necrosis factor (TNF) to the TNF-alpha receptor and is used to treat inflammatory diseases such as rheumatoid arthritis. Like antibodies, immunoadhesins have long circulating half-lives, are readily purified by affinity-based methods and have the avidity advantages conferred by bivalency. Immunoadhesins that incorporate normal cellular receptors for viruses or bacterial toxins hold great, but as yet unrealized, potential for treating infectious disease. As decoy receptors, immunoadhesins have potential advantages over pathogen-targeted monoclonal antibodies. Planet Biotechnology has specialized in developing anti-infective immunoadhesins using plant expression systems. An immunoadhesin incorporating the cellular receptor for anthrax toxin, CMG2, potently blocks toxin activity in vitro and protects animals against inhalational anthrax. An immunoadhesin based on the receptor for human rhinovirus, ICAM-1, potently blocks infection of human cells by one of the major causes of the common cold. An immunoadhesin targeting the MERS coronavirus is in an early stage of development. We describe here the unique challenges involved in designing and developing immunoadhesins targeting infectious diseases in the hope of inspiring further research into this promising class of drugs.
Collapse
Affiliation(s)
| | | | | | - Lloyd Yu
- Planet Biotechnology Inc., Hayward, CA, USA
| | - Y Tran
- Planet Biotechnology Inc., Hayward, CA, USA
| | - Chad Roy
- Tulane National Primate Research Center, Covington, LA, USA
| | - Frederick Hayden
- University of Virginia School of Medicine, Charlottesville, VA, USA
| |
Collapse
|
11
|
Ohanjanian L, Remy KE, Li Y, Cui X, Eichacker PQ. An overview of investigational toxin-directed therapies for the adjunctive management of Bacillus anthracis infection and sepsis. Expert Opin Investig Drugs 2015; 24:851-65. [PMID: 25920540 DOI: 10.1517/13543784.2015.1041587] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Sepsis with Bacillus anthracis infection has a very high mortality rate despite appropriate antibiotic and supportive therapies. Over the past 15 years, recent outbreaks in the US and in Europe, coupled with anthrax's bioterrorism weapon potential, have stimulated efforts to develop adjunctive therapies to improve clinical outcomes. Since lethal toxin and edema toxin (LT and ET) make central contributions to the pathogenesis of B. anthracis, these have been major targets in this effort. AREAS COVERED Here, the authors review different investigative biopharmaceuticals that have been recently identified for their therapeutic potential as inhibitors of LT or ET. Among these inhibitors are two antibody preparations that have been included in the Strategic National Stockpile (SNS) and several more that have reached Phase I testing. Presently, however, many of these candidate agents have only been studied in vitro and very few tested in bacteria-challenged models. EXPERT OPINION Although a large number of drugs have been identified as potential therapeutic inhibitors of LT and ET, in most cases their testing has been limited. The use of the two SNS antibody therapies during a large-scale exposure to B. anthracis will be difficult. Further testing and development of agents with oral bioavailability and relatively long shelf lives should be a focus for future research.
Collapse
Affiliation(s)
- Lernik Ohanjanian
- National Institutes of Health, Clinical Center, Critical Care Medicine Department , Building 10, Room 2C145, Bethesda, MD 20892 , USA +1 301 402 2914 ; +1 301 402 1213 ;
| | | | | | | | | |
Collapse
|
12
|
Friebe S, Deuquet J, van der Goot FG. Differential dependence on N-glycosylation of anthrax toxin receptors CMG2 and TEM8. PLoS One 2015; 10:e0119864. [PMID: 25781883 PMCID: PMC4363784 DOI: 10.1371/journal.pone.0119864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 01/16/2015] [Indexed: 11/29/2022] Open
Abstract
ANTXR 1 and 2, also known as TEM8 and CMG2, are two type I membrane proteins, which have been extensively studied for their role as anthrax toxin receptors, but with a still elusive physiological function. Here we have analyzed the importance of N-glycosylation on folding, trafficking and ligand binding of these closely related proteins. We find that TEM8 has a stringent dependence on N-glycosylation. The presence of at least one glycan on each of its two extracellular domains, the vWA and Ig-like domains, is indeed necessary for efficient trafficking to the cell surface. In the absence of any N-linked glycans, TEM8 fails to fold correctly and is recognized by the ER quality control machinery. Expression of N-glycosylation mutants reveals that CMG2 is less vulnerable to sugar loss. The absence of N-linked glycans in one of the extracellular domains indeed has little impact on folding, trafficking or receptor function of the wild type protein expressed in tissue culture cells. N-glycans do, however, seem required in primary fibroblasts from human patients. Here, the presence of N-linked sugars increases the tolerance to mutations in cmg2 causing the rare genetic disease Hyaline Fibromatosis Syndrome. It thus appears that CMG2 glycosylation provides a buffer towards genetic variation by promoting folding of the protein in the ER lumen.
Collapse
Affiliation(s)
- Sarah Friebe
- Faculty of Life Sciences, Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Julie Deuquet
- Faculty of Life Sciences, Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - F. Gisou van der Goot
- Faculty of Life Sciences, Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
13
|
Sharma O, Collier RJ. Polylysine-mediated translocation of the diphtheria toxin catalytic domain through the anthrax protective antigen pore. Biochemistry 2014; 53:6934-40. [PMID: 25317832 PMCID: PMC4230326 DOI: 10.1021/bi500985v] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The protective antigen (PA) moiety of anthrax toxin forms oligomeric pores in the endosomal membrane, which translocate the effector proteins of the toxin to the cytosol. Effector proteins bind to oligomeric PA via their respective N-terminal domains and undergo N- to C-terminal translocation through the pore. Earlier we reported that a tract of basic amino acids fused to the N-terminus of an unrelated effector protein (the catalytic domain diphtheria toxin, DTA) potentiated that protein to undergo weak PA-dependent translocation. In this study, we varied the location of the tract (N-terminal or C-terminal) and the length of a poly-Lys tract fused to DTA and examined the effects of these variations on PA-dependent translocation into cells and across planar bilayers in vitro. Entry into cells was most efficient with ∼12 Lys residues (K12) fused to the N-terminus but also occurred, albeit 10-100-fold less efficiently, with a C-terminal tract of the same length. Similarly, K12 tracts at either terminus occluded PA pores in planar bilayers, and occlusion was more efficient with the N-terminal tag. We used biotin-labeled K12 constructs in conjunction with streptavidin to show that a biotinyl-K12 tag at either terminus is transiently exposed to the trans compartment of planar bilayers at 20 mV; this partial translocation in vitro was more efficient with an N-terminal tag than a C-terminal tag. Significantly, our studies with polycationic tracts fused to the N- and C-termini of DTA suggest that PA-mediated translocation can occur not only in the N to C direction but also in the C to N direction.
Collapse
Affiliation(s)
- Onkar Sharma
- Department of Microbiology and Immunobiology, Harvard Medical School , 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | | |
Collapse
|
14
|
Ingram RJ, Harris A, Ascough S, Metan G, Doganay M, Ballie L, Williamson ED, Dyson H, Robinson JH, Sriskandan S, Altmann DM. Exposure to anthrax toxin alters human leucocyte expression of anthrax toxin receptor 1. Clin Exp Immunol 2013; 173:84-91. [PMID: 23607659 DOI: 10.1111/cei.12090] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2013] [Indexed: 12/12/2022] Open
Abstract
Anthrax is a toxin-mediated disease, the lethal effects of which are initiated by the binding of protective antigen (PA) with one of three reported cell surface toxin receptors (ANTXR). Receptor binding has been shown to influence host susceptibility to the toxins. Despite this crucial role for ANTXR in the outcome of disease, and the reported immunomodulatory consequence of the anthrax toxins during infection, little is known about ANTXR expression on human leucocytes. We characterized the expression levels of ANTXR1 (TEM8) on human leucocytes using flow cytometry. In order to assess the effect of prior toxin exposure on ANTXR1 expression levels, leucocytes from individuals with no known exposure, those exposed to toxin through vaccination and convalescent individuals were analysed. Donors could be defined as either 'low' or 'high' expressers based on the percentage of ANTXR1-positive monocytes detected. Previous exposure to toxins appears to modulate ANTXR1 expression, exposure through active infection being associated with lower receptor expression. A significant correlation between low receptor expression and high anthrax toxin-specific interferon (IFN)-γ responses was observed in previously infected individuals. We propose that there is an attenuation of ANTXR1 expression post-infection which may be a protective mechanism that has evolved to prevent reinfection.
Collapse
Affiliation(s)
- R J Ingram
- Section of Infectious Diseases and Immunity, Department of Medicine Imperial College, Hammersmith Hospital, London
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
A human/murine chimeric fab antibody neutralizes anthrax lethal toxin in vitro. Clin Dev Immunol 2013; 2013:475809. [PMID: 23861692 PMCID: PMC3687597 DOI: 10.1155/2013/475809] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Revised: 05/12/2013] [Accepted: 05/13/2013] [Indexed: 12/21/2022]
Abstract
Human anthrax infection caused by exposure to Bacillus anthracis cannot always be treated by antibiotics. This is mostly because of the effect of the remaining anthrax toxin in the body. Lethal factor (LF) is a component of lethal toxin (LeTx), which is the major virulence of anthrax toxin. A murine IgG monoclonal antibody (mAb) against LF with blocking activity (coded LF8) was produced in a previous study. In this report, a human/murine chimeric Fab mAb (coded LF8-Fab) was developed from LF8 by inserting murine variable regions into human constant regions using antibody engineering to reduce the incompatibility of the murine antibody for human use. The LF8-Fab expressed in Escherichia coli could specifically identify LF with an affinity of 3.46 × 107 L/mol and could neutralize LeTx with an EC50 of 85 μg/mL. Even after LeTx challenge at various time points, the LF8-Fab demonstrated protection of J774A.1 cells in vitro. The results suggest that the LF8-Fab might be further characterized and potentially be used for clinical applications against anthrax infection.
Collapse
|
16
|
Wigelsworth DJ, Ruthel G, Schnell L, Herrlich P, Blonder J, Veenstra TD, Carman RJ, Wilkins TD, Van Nhieu GT, Pauillac S, Gibert M, Sauvonnet N, Stiles BG, Popoff MR, Barth H. CD44 Promotes intoxication by the clostridial iota-family toxins. PLoS One 2012; 7:e51356. [PMID: 23236484 PMCID: PMC3517468 DOI: 10.1371/journal.pone.0051356] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 10/31/2012] [Indexed: 12/16/2022] Open
Abstract
Various pathogenic clostridia produce binary protein toxins associated with enteric diseases of humans and animals. Separate binding/translocation (B) components bind to a protein receptor on the cell surface, assemble with enzymatic (A) component(s), and mediate endocytosis of the toxin complex. Ultimately there is translocation of A component(s) from acidified endosomes into the cytosol, leading to destruction of the actin cytoskeleton. Our results revealed that CD44, a multifunctional surface protein of mammalian cells, facilitates intoxication by the iota family of clostridial binary toxins. Specific antibody against CD44 inhibited cytotoxicity of the prototypical Clostridium perfringens iota toxin. Versus CD44+ melanoma cells, those lacking CD44 bound less toxin and were dose-dependently resistant to C. perfringens iota, as well as Clostridium difficile and Clostridium spiroforme iota-like, toxins. Purified CD44 specifically interacted in vitro with iota and iota-like, but not related Clostridium botulinum C2, toxins. Furthermore, CD44 knockout mice were resistant to iota toxin lethality. Collective data reveal an important role for CD44 during intoxication by a family of clostridial binary toxins.
Collapse
Affiliation(s)
- Darran J. Wigelsworth
- Integrated Toxicology Division, Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Gordon Ruthel
- Core Imaging Facility, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Leonie Schnell
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Ulm, Germany
| | - Peter Herrlich
- Leibniz Institute for Age Research, Fritz Lipmann Institute, Jena, Germany
| | - Josip Blonder
- Laboratory of Proteomics and Analytical Technologies, National Cancer Institute, Frederick, Maryland, United States of America
| | - Timothy D. Veenstra
- Laboratory of Proteomics and Analytical Technologies, National Cancer Institute, Frederick, Maryland, United States of America
| | | | | | - Guy Tran Van Nhieu
- Department of Intracellular Communications and Infectious Microorganisms, College of France, Paris, France
| | - Serge Pauillac
- Institut Pasteur, Unité des Bactéries anaérobies et Toxines, Paris, France
| | - Maryse Gibert
- Institut Pasteur, Unité des Bactéries anaérobies et Toxines, Paris, France
| | - Nathalie Sauvonnet
- Institut Pasteur, Unité de Biologie des Interactions Cellulaires, Paris, France
| | - Bradley G. Stiles
- Biology Department, Wilson College, Chambersburg, Pennsylvania, United States of America
- * E-mail: (BGS); (HB); (MRP)
| | - Michel R. Popoff
- Institut Pasteur, Unité des Bactéries anaérobies et Toxines, Paris, France
- * E-mail: (BGS); (HB); (MRP)
| | - Holger Barth
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Ulm, Germany
- * E-mail: (BGS); (HB); (MRP)
| |
Collapse
|
17
|
Vargas M, Karamsetty R, Leppla SH, Chaudry GJ. Broad expression analysis of human ANTXR1/TEM8 transcripts reveals differential expression and novel splizce variants. PLoS One 2012; 7:e43174. [PMID: 22912819 PMCID: PMC3422265 DOI: 10.1371/journal.pone.0043174] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 07/20/2012] [Indexed: 01/25/2023] Open
Abstract
Tumor endothelial marker 8 (TEM8; ANTXR1) is one of two anthrax toxin receptors; the other is capillary morphogenesis gene 2 protein (CMG2; ANTXR2). TEM8 shows enhanced expression in certain tumor endothelia, and is thought to be a player in tumor vasculature formation. However, a comprehensive expression profile of individual TEM8 variants in normal or cancerous tissues is lacking. In this work we carried out an extensive analysis of all splice variants of human TEM8 in 12 digestive tissues, and 8 each fetal and adult tissues, 6 of them cognate pairs. Using variant-specific primers, we first ascertained the status of full-length transcripts by nested PCR. We then carried out quantitative analysis of each transcript by real-time PCR. Three splice variants of TEM8 were reported before, two single-pass integral membrane forms (V1 and V2) and one secreted (V3). Our analysis has revealed two new variants, one encoding a membrane-bound form of the receptor and the other secreted, which we have designated V4 and V5, respectively. All tissues had V1, V2, V3, and V4, but only prostate had V5. Real-time PCR revealed that all variants are present at different levels in various tissues. V3 appeared the most abundant of all. To ascertain its functionality for anthrax toxin, we expressed the newly identified form V4 in a receptor-negative host cell, and included V1 and V2 for comparison. Cytotoxicity, toxin binding, and internalization assays showed V4 to be as efficient a receptor as V1 and V2.
Collapse
Affiliation(s)
- Micaela Vargas
- Cell and Molecular Biology Program, Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Raghavendra Karamsetty
- Cell and Molecular Biology Program, Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Stephen H. Leppla
- Microbial Pathogenesis Section, The Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - G. Jilani Chaudry
- Cell and Molecular Biology Program, Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, United States of America
- * E-mail:
| |
Collapse
|
18
|
Deuquet J, Lausch E, Superti-Furga A, van der Goot FG. The dark sides of capillary morphogenesis gene 2. EMBO J 2012; 31:3-13. [PMID: 22215446 PMCID: PMC3252584 DOI: 10.1038/emboj.2011.442] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 11/07/2011] [Indexed: 11/08/2022] Open
Abstract
Capillary morphogenesis gene 2 (CMG2) is a type I membrane protein involved in the homeostasis of the extracellular matrix. While it shares interesting similarities with integrins, its exact molecular role is unknown. The interest and knowledge about CMG2 largely stems from the fact that it is involved in two diseases, one infectious and one genetic. CMG2 is the main receptor of the anthrax toxin, and knocking out this gene in mice renders them insensitive to infection with Bacillus anthracis spores. On the other hand, mutations in CMG2 lead to a rare but severe autosomal recessive disorder in humans called Hyaline Fibromatosis Syndrome (HFS). We will here review what is known about the structure of CMG2 and its ability to mediate anthrax toxin entry into cell. We will then describe the limited knowledge available concerning the physiological role of CMG2. Finally, we will describe HFS and the consequences of HFS-associated mutations in CMG2 at the molecular and cellular level.
Collapse
Affiliation(s)
- Julie Deuquet
- Ecole Polytechnique Fédérale de Lausanne, Institute of Global Health, Lausanne, Switzerland
| | - Ekkehart Lausch
- Department of Pediatrics, University of Freiburg, Freiburg, Germany
| | - Andrea Superti-Furga
- Division of Molecular Pediatrics, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - F Gisou van der Goot
- Ecole Polytechnique Fédérale de Lausanne, Institute of Global Health, Lausanne, Switzerland
| |
Collapse
|
19
|
In situ gastrointestinal protection against anthrax edema toxin by single-chain antibody fragment producing lactobacilli. BMC Biotechnol 2011; 11:126. [PMID: 22185669 PMCID: PMC3295704 DOI: 10.1186/1472-6750-11-126] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 12/20/2011] [Indexed: 11/10/2022] Open
|
20
|
Warfel JM, D’Agnillo F. Anthrax lethal toxin-mediated disruption of endothelial VE-cadherin is attenuated by inhibition of the Rho-associated kinase pathway. Toxins (Basel) 2011; 3:1278-93. [PMID: 22069696 PMCID: PMC3210462 DOI: 10.3390/toxins3101278] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 10/01/2011] [Accepted: 10/09/2011] [Indexed: 01/01/2023] Open
Abstract
Systemic anthrax disease is characterized by vascular leakage pathologies. We previously reported that anthrax lethal toxin (LT) induces human endothelial barrier dysfunction in a cell death-independent manner with actin stress fiber formation and disruption of adherens junctions (AJs). In the present study, we further characterize the molecular changes in the AJ complex and investigate whether AJ structure and barrier function can be preserved by modulating key cytoskeletal signaling pathways. Here, we show that LT reduces total VE-cadherin protein and gene expression but the expression of the key linker protein beta-catenin remained unchanged. The changes in VE-cadherin expression correlated temporally with the appearance of actin stress fibers and a two-fold increase in phosphorylation of the stress fiber-associated protein myosin light chain (p-MLC) and cleavage of Rho-associated kinase-1 (ROCK-1). Co-treatment with ROCK inhibitors (H-1152 and Y27632), but not an inhibitor of MLC kinase (ML-7), blocked LT-induced p-MLC enhancement and stress fiber formation. This was accompanied by the restoration of VE-cadherin expression and membrane localization, and attenuation of the LT-induced increase in monolayer permeability to albumin. Together, these findings suggest the ROCK pathway may be a relevant target for countering LT-mediated endothelial barrier dysfunction.
Collapse
Affiliation(s)
- Jason M. Warfel
- Laboratory of Biochemistry and Vascular Biology, Division of Hematology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland, MD 20892, USA;
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Felice D’Agnillo
- Laboratory of Biochemistry and Vascular Biology, Division of Hematology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland, MD 20892, USA;
| |
Collapse
|
21
|
Quan Q, Yang M, Gao H, Zhu L, Lin X, Guo N, Niu G, Zhang G, Eden HS, Chen X. Imaging tumor endothelial marker 8 using an 18F-labeled peptide. Eur J Nucl Med Mol Imaging 2011; 38:1806-15. [PMID: 21814853 PMCID: PMC3200564 DOI: 10.1007/s00259-011-1871-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 06/15/2011] [Indexed: 12/20/2022]
Abstract
PURPOSE Tumor endothelial marker 8 (TEM8) has been reported to be upregulated in both tumor cells and tumor-associated endothelial cells in several cancer types. TEM8 antagonists and TEM8-targeted delivery of toxins have been developed as effective cancer therapeutics. The ability to image TEM8 expression would be of use in evaluating TEM8-targeted cancer therapy. METHODS A 13-meric peptide, KYNDRLPLYISNP (QQM), identified from the small loop in domain IV of protective antigen of anthrax toxin was evaluated for TEM8 binding and labeled with 18F for small-animal PET imaging in both UM-SCC1 head-and-neck cancer and MDA-MB-435 melanoma models. RESULTS A modified ELISA showed that QQM peptide bound specifically to the extracellular vWA domain of TEM8 with an IC50 value of 304 nM. Coupling 4-nitrophenyl 2-(18)F-fluoropropionate with QQM gave almost quantitative yield and a high specific activity (79.2±7.4 TBq/mmol, n=5) of 18F-FP-QQM at the end of synthesis. 18F-FP-QQM showed predominantly renal clearance and had significantly higher accumulation in TEM8 high-expressing UM-SCC1 tumors (2.96±0.84 %ID/g at 1 h after injection) than TEM8 low-expressing MDA-MB-435 tumors (1.38±0.56 %ID/g at 1 h after injection). CONCLUSION QQM peptide bound specifically to the extracellular domain of TEM8. 18F-FP-QQM peptide tracer would be a promising lead compound for measuring TEM8 expression. Further efforts to improve the affinity and specificity of the tracer and to increase its metabolic stability are warranted.
Collapse
Affiliation(s)
- Qimeng Quan
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, 9 Memorial Drive, 9/1 W111, Bethesda, MD 20892, USA
- Department of Radiology, Shanghai First People’s Hospital, Shanghai Jiaotong University, Shanghai 200080, China
| | - Min Yang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, 9 Memorial Drive, 9/1 W111, Bethesda, MD 20892, USA
| | - Haokao Gao
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, 9 Memorial Drive, 9/1 W111, Bethesda, MD 20892, USA
| | - Lei Zhu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, 9 Memorial Drive, 9/1 W111, Bethesda, MD 20892, USA
| | - Xin Lin
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, 9 Memorial Drive, 9/1 W111, Bethesda, MD 20892, USA
| | - Ning Guo
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, 9 Memorial Drive, 9/1 W111, Bethesda, MD 20892, USA
| | - Gang Niu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, 9 Memorial Drive, 9/1 W111, Bethesda, MD 20892, USA
- Imaging Sciences Training Program, Radiology and Imaging Sciences, Clinical Center and National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA,
| | - Guixiang Zhang
- Department of Radiology, Shanghai First People’s Hospital, Shanghai Jiaotong University, Shanghai 200080, China
| | - Henry S. Eden
- Intramural Research Program, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, 31 Center Dr, 31/1 C22, Bethesda, MD 20892, USA,
| |
Collapse
|
22
|
AMPD3 is involved in anthrax LeTx-induced macrophage cell death. Protein Cell 2011; 2:564-72. [PMID: 21822801 DOI: 10.1007/s13238-011-1078-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 07/10/2011] [Indexed: 10/17/2022] Open
Abstract
The responses of macrophages to Bacillus anthracis infection are important for the survival of the host, since macrophages are required for the germination of B. anthracis spores in lymph nodes, and macrophage death exacerbates anthrax lethal toxin (LeTx)-induced organ collapse. To elucidate the mechanism of macrophage cell death induced by LeTx, we performed a genetic screen to search for genes associated with LeTx-induced macrophage cell death. RAW264.7 cells, a macrophage-like cell line sensitive to LeTx-induced death, were randomly mutated and LeTx-resistant mutant clones were selected. AMP deaminase 3 (AMPD3), an enzyme that converts AMP to IMP, was identified to be mutated in one of the resistant clones. The requirement of AMPD3 in LeTx-induced cell death of RAW 264.7 cells was confirmed by the restoration of LeTx sensitivity with ectopic reconstitution of AMPD3 expression. AMPD3 deficiency does not affect LeTx entering cells and the cleavage of mitogen-activated protein kinase kinase (MKK) by lethal factor inside cells, but does impair an unknown downstream event that is linked to cell death. Our data provides new information regarding LeTx-induced macrophage death and suggests that there is a key regulatory site downstream of or parallel to MKK cleavage that controls the cell death in LeTx-treated macrophages.
Collapse
|
23
|
Gomez-Casado A, Dam HH, Yilmaz MD, Florea D, Jonkheijm P, Huskens J. Probing Multivalent Interactions in a Synthetic Host–Guest Complex by Dynamic Force Spectroscopy. J Am Chem Soc 2011; 133:10849-57. [DOI: 10.1021/ja2016125] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alberto Gomez-Casado
- Molecular Nanofabrication Group, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500AE Enschede, The Netherlands
| | - Henk H. Dam
- Molecular Nanofabrication Group, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500AE Enschede, The Netherlands
| | - M. Deniz Yilmaz
- Molecular Nanofabrication Group, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500AE Enschede, The Netherlands
| | - Daniel Florea
- Molecular Nanofabrication Group, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500AE Enschede, The Netherlands
| | - Pascal Jonkheijm
- Molecular Nanofabrication Group, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500AE Enschede, The Netherlands
| | - Jurriaan Huskens
- Molecular Nanofabrication Group, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500AE Enschede, The Netherlands
| |
Collapse
|
24
|
Yanasarn N, Sloat BR, Cui Z. Negatively charged liposomes show potent adjuvant activity when simply admixed with protein antigens. Mol Pharm 2011; 8:1174-85. [PMID: 21615153 DOI: 10.1021/mp200016d] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Liposomes have been investigated extensively as a vaccine delivery system. Herein the adjuvant activities of liposomes with different net surface charges (neutral, positive, or negative) were evaluated when admixed with protein antigens, ovalbumin (OVA, pI = 4.7), Bacillus anthracis protective antigen protein (PA, pI = 5.6), or cationized OVA (cOVA). Mice immunized subcutaneously with OVA admixed with different liposomes generated different antibody responses. Interestingly, OVA admixed with net negatively charged liposomes prepared with DOPA was as immunogenic as OVA admixed with positively charged liposomes prepared with DOTAP. Immunization of mice with the anthrax PA protein admixed with the net negatively charged DOPA liposomes also induced a strong and functional anti-PA antibody response. When the cationized OVA was used as a model antigen, liposomes with net neutral, negative, or positive charges showed comparable adjuvant activities. Immunization of mice with the OVA admixed with DOPA liposomes also induced OVA-specific CD8(+) cytotoxic T lymphocyte responses and significantly delayed the growth of OVA-expressing B16-OVA tumors in mice. However, not all net negatively charged liposomes showed a strong adjuvant activity. The adjuvant activity of the negatively charged liposomes may be related to the liposome's ability (i) to upregulate the expression of molecules related to the activation and maturation of antigen-presenting cells and (ii) to slightly facilitate the uptake of the antigens by antigen-presenting cells. Simply admixing certain negatively charged liposomes with certain protein antigens of interest may represent a novel platform for vaccine development.
Collapse
Affiliation(s)
- Nijaporn Yanasarn
- Pharmaceutics Division, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, USA
| | | | | |
Collapse
|
25
|
Kibria G, Hatakeyama H, Harashima H. A new peptide motif present in the protective antigen of anthrax toxin exerts its efficiency on the cellular uptake of liposomes and applications for a dual-ligand system. Int J Pharm 2011; 412:106-14. [DOI: 10.1016/j.ijpharm.2011.03.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 02/03/2011] [Accepted: 03/09/2011] [Indexed: 12/11/2022]
|
26
|
Crowe SR, Garman L, Engler RJ, Farris AD, Ballard JD, Harley JB, James JA. Anthrax vaccination induced anti-lethal factor IgG: fine specificity and neutralizing capacity. Vaccine 2011; 29:3670-8. [PMID: 21420416 PMCID: PMC3233230 DOI: 10.1016/j.vaccine.2011.03.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 02/24/2011] [Accepted: 03/03/2011] [Indexed: 10/18/2022]
Abstract
The efficacy biomarker of the currently licensed anthrax vaccine (AVA) is based on quantity and neutralizing capacity of anti-protective antigen (anti-PA) antibodies. However, animal studies have demonstrated that antibodies to lethal factor (LF) can provide protection against in vivo bacterial spore challenges. Improved understanding of the fine specificities of humoral immune responses that provide optimum neutralization capacity may enhance the efficacy of future passive immune globulin preparations to treat and prevent inhalation anthrax morbidity and mortality. This study (n=1000) was designed to identify AVA vaccinated individuals who generate neutralizing antibodies and to determine what specificities correlate with protection. The number of vaccine doses, years post vaccination, and PA titer were associated with in vitro neutralization, reinforcing previous reports. In addition, African American individuals had lower serologic neutralizing activity than European Americans, suggesting a genetic role in the generation of these neutralizing antibodies. Of the vaccinated individuals, only 69 (6.9%) had moderate levels of anti-LF IgG compared to 244 (24.4%) with low and 687 (68.7%) with extremely low levels of IgG antibodies to LF. Using overlapping decapeptide analysis, we identified six common LF antigenic regions targeted by those individuals with moderate levels of antibodies to LF and high in vitro toxin neutralizing activity. Affinity purified antibodies directed against antigenic epitopes within the PA binding and ADP-ribotransferase-like domains of LF were able to protect mice against lethal toxin challenge. Findings from these studies have important implications for vaccine design and immunotherapeutic development.
Collapse
Affiliation(s)
- Sherry R. Crowe
- Oklahoma Medical Research Foundation, 825 N.E. 13 Street, Oklahoma City, OK, U.S.A. 73104
| | - Lori Garman
- Oklahoma Medical Research Foundation, 825 N.E. 13 Street, Oklahoma City, OK, U.S.A. 73104
- Oklahoma University Health Science Center, 1100 N. Lindsay, Oklahoma City, OK, U.S.A. 73104
| | - Renata J.M. Engler
- Vaccine Healthcare Centers (VHC) Network, Walter Reed Army Medical Center, Red Cross Building 41 Suite 021 PO Box 6900 Georgia Avenue, NW Washington, DC, U.S.A. 20012
| | - A. Darise Farris
- Oklahoma Medical Research Foundation, 825 N.E. 13 Street, Oklahoma City, OK, U.S.A. 73104
- Oklahoma University Health Science Center, 1100 N. Lindsay, Oklahoma City, OK, U.S.A. 73104
| | - Jimmy D. Ballard
- Oklahoma University Health Science Center, 1100 N. Lindsay, Oklahoma City, OK, U.S.A. 73104
| | - John B. Harley
- Oklahoma University Health Science Center, 1100 N. Lindsay, Oklahoma City, OK, U.S.A. 73104
- Cincinnati Children's Hospital Medical Center, 3333 Burnet, ML 4010, Cincinnati, OH, U.S.A. 45229
| | - Judith A. James
- Oklahoma Medical Research Foundation, 825 N.E. 13 Street, Oklahoma City, OK, U.S.A. 73104
- Oklahoma University Health Science Center, 1100 N. Lindsay, Oklahoma City, OK, U.S.A. 73104
| |
Collapse
|
27
|
Deuquet J, Lausch E, Guex N, Abrami L, Salvi S, Lakkaraju A, Ramirez MCM, Martignetti JA, Rokicki D, Bonafe L, Superti-Furga A, van der Goot FG. Hyaline fibromatosis syndrome inducing mutations in the ectodomain of anthrax toxin receptor 2 can be rescued by proteasome inhibitors. EMBO Mol Med 2011; 3:208-21. [PMID: 21328543 PMCID: PMC3377065 DOI: 10.1002/emmm.201100124] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 01/14/2011] [Accepted: 01/18/2011] [Indexed: 11/25/2022] Open
Abstract
Hyaline Fibromatosis Syndrome (HFS) is a human genetic disease caused by mutations in the anthrax toxin receptor 2 (or cmg2) gene, which encodes a membrane protein thought to be involved in the homeostasis of the extracellular matrix. Little is known about the structure and function of the protein or the genotype–phenotype relationship of the disease. Through the analysis of four patients, we identify three novel mutants and determine their effects at the cellular level. Altogether, we show that missense mutations that map to the extracellular von Willebrand domain or the here characterized Ig-like domain of CMG2 lead to folding defects and thereby to retention of the mutated protein in the endoplasmic reticulum (ER). Mutations in the Ig-like domain prevent proper disulphide bond formation and are more efficiently targeted to ER-associated degradation. Finally, we show that mutant CMG2 can be rescued in fibroblasts of some patients by treatment with proteasome inhibitors and that CMG2 is then properly transported to the plasma membrane and signalling competent, identifying the ER folding and degradation pathway components as promising drug targets for HFS.
Collapse
Affiliation(s)
- Julie Deuquet
- Ecole Polytechnique Fédérale de Lausanne, Global Health InstituteLausanne, Switzerland
| | - Ekkehart Lausch
- Department of Pediatrics, University of FreiburgFreiburg, Germany
| | - Nicolas Guex
- Vital-IT Group, Swiss Institute of BioinformaticsLausanne Switzerland
| | - Laurence Abrami
- Ecole Polytechnique Fédérale de Lausanne, Global Health InstituteLausanne, Switzerland
| | - Suzanne Salvi
- Ecole Polytechnique Fédérale de Lausanne, Global Health InstituteLausanne, Switzerland
| | - Asvin Lakkaraju
- Ecole Polytechnique Fédérale de Lausanne, Global Health InstituteLausanne, Switzerland
| | - Maria Celeste M Ramirez
- Department of Genetics and Genomic Sciences, Mount Sinai School of MedicineNew York, NY, USA
| | - John A Martignetti
- Department of Genetics and Genomic Sciences, Mount Sinai School of MedicineNew York, NY, USA
- Department of Pediatrics, Mount Sinai School of MedicineNew York, NY, USA
- Department of Oncological Sciences, Mount Sinai School of MedicineNew York, NY, USA
| | - Dariusz Rokicki
- Division of Inborn Errors of Metabolism, Children's Memorial Health InstituteWarsaw, Poland
| | - Luisa Bonafe
- Division of Molecular Pediatrics, Centre Hospitalier Universitaire Vaudois, University of LausanneSwitzerland
| | - Andrea Superti-Furga
- Department of Pediatrics, University of FreiburgFreiburg, Germany
- Division of Molecular Pediatrics, Centre Hospitalier Universitaire Vaudois, University of LausanneSwitzerland
| | | |
Collapse
|
28
|
Vaccination of rhesus macaques with the anthrax vaccine adsorbed vaccine produces a serum antibody response that effectively neutralizes receptor-bound protective antigen in vitro. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 17:1753-62. [PMID: 20739500 DOI: 10.1128/cvi.00174-10] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Anthrax toxin (ATx) is composed of the binary exotoxins lethal toxin (LTx) and edema toxin (ETx). They have separate effector proteins (edema factor and lethal factor) but have the same binding protein, protective antigen (PA). PA is the primary immunogen in the current licensed vaccine anthrax vaccine adsorbed (AVA [BioThrax]). AVA confers protective immunity by stimulating production of ATx-neutralizing antibodies, which could block the intoxication process at several steps (binding of PA to the target cell surface, furin cleavage, toxin complex formation, and binding/translocation of ATx into the cell). To evaluate ATx neutralization by anti-AVA antibodies, we developed two low-temperature LTx neutralization activity (TNA) assays that distinguish antibody blocking before and after binding of PA to target cells (noncomplexed [NC] and receptor-bound [RB] TNA assays). These assays were used to investigate anti-PA antibody responses in AVA-vaccinated rhesus macaques (Macaca mulatta) that survived an aerosol challenge with Bacillus anthracis Ames spores. Results showed that macaque anti-AVA sera neutralized LTx in vitro, even when PA was prebound to cells. Neutralization titers in surviving versus nonsurviving animals and between prechallenge and postchallenge activities were highly correlated. These data demonstrate that AVA stimulates a myriad of antibodies that recognize multiple neutralizing epitopes and confirm that change, loss, or occlusion of epitopes after PA is processed from PA83 to PA63 at the cell surface does not significantly affect in vitro neutralizing efficacy. Furthermore, these data support the idea that the full-length PA83 monomer is an appropriate immunogen for inclusion in next-generation anthrax vaccines.
Collapse
|
29
|
Lin AEJ, Guttman JA. Hijacking the endocytic machinery by microbial pathogens. PROTOPLASMA 2010; 244:75-90. [PMID: 20574860 DOI: 10.1007/s00709-010-0164-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Accepted: 05/19/2010] [Indexed: 05/24/2023]
Abstract
Understanding the mechanisms that microbes exploit to invade host cells and cause disease is crucial if we are to eliminate their threat. Although pathogens use a variety of microbial factors to trigger entry into non-phagocytic cells, their targeting of the host cell process of endocytosis has emerged as a common theme. To accomplish this, microbes often rewire the normal course of particle internalization, frequently usurping theoretical maximal sizes to permit entry and reconfiguring molecular components that were once thought to be required for vesicle formation. Here, we discuss recent advances in our understanding of how toxins, viruses, bacteria, and fungi manipulate the host cell endocytic machinery to generate diseases. Additionally, we will reveal the advantages of using these organisms to expand our general knowledge of endocytic mechanisms in eukaryotic cells.
Collapse
Affiliation(s)
- Ann En-Ju Lin
- Department of Biological Sciences, Shrum Science Centre, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | | |
Collapse
|
30
|
Abrami L, Bischofberger M, Kunz B, Groux R, van der Goot FG. Endocytosis of the anthrax toxin is mediated by clathrin, actin and unconventional adaptors. PLoS Pathog 2010; 6:e1000792. [PMID: 20221438 PMCID: PMC2832758 DOI: 10.1371/journal.ppat.1000792] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Accepted: 01/26/2010] [Indexed: 11/21/2022] Open
Abstract
The anthrax toxin is a tripartite toxin, where the two enzymatic subunits require the third subunit, the protective antigen (PA), to interact with cells and be escorted to their cytoplasmic targets. PA binds to cells via one of two receptors, TEM8 and CMG2. Interestingly, the toxin times and triggers its own endocytosis, in particular through the heptamerization of PA. Here we show that PA triggers the ubiquitination of its receptors in a β-arrestin-dependent manner and that this step is required for clathrin-mediated endocytosis. In addition, we find that endocytosis is dependent on the heterotetrameric adaptor AP-1 but not the more conventional AP-2. Finally, we show that endocytosis of PA is strongly dependent on actin. Unexpectedly, actin was also found to be essential for efficient heptamerization of PA, but only when bound to one of its 2 receptors, TEM8, due to the active organization of TEM8 into actin-dependent domains. Endocytic pathways are highly modular systems. Here we identify some of the key players that allow efficient heptamerization of PA and subsequent ubiquitin-dependent, clathrin-mediated endocytosis of the anthrax toxin. Bacillus anthracis is the bacterium responsible for the anthrax disease. Its virulence is mainly due to 2 factors, the anthrax toxin and the anti-phagocytic capsule. This toxin is composed of three independent polypeptide chains. Two of these have enzymatic activity and are responsible for the effects of the toxin. The third has no activity but is absolutely required to bring the 2 enzymatic subunits into the cell where they act. If one blocks entry into the cells, one blocks the effects of these toxins, which is why it is important to understand how the toxin enters into the cell at the molecular level. Here we identified various molecules that are involved in efficiently bringing the toxin into the cell. First, we found that the actin cytoskeleton plays an important role in organizing one of the two anthrax toxin receptors at the cell surface. Second, we found a cytosolic protein, β-arrestin, that is required to modify the intracellular part of the toxin receptor, to allow uptake. Finally, we directly show, for the first time, that anthrax toxin uptake is mediated by the so-called clathrin-dependent pathway, a very modular entry pathway, but that the toxin utilizes this pathway in an unconventional way.
Collapse
Affiliation(s)
- Laurence Abrami
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Faculty of Life Sciences, Lausanne, Switzerland
| | - Mirko Bischofberger
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Faculty of Life Sciences, Lausanne, Switzerland
| | - Béatrice Kunz
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Faculty of Life Sciences, Lausanne, Switzerland
| | - Romain Groux
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Faculty of Life Sciences, Lausanne, Switzerland
| | - F. Gisou van der Goot
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Faculty of Life Sciences, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
31
|
Anthrax toxin triggers the activation of src-like kinases to mediate its own uptake. Proc Natl Acad Sci U S A 2010; 107:1420-4. [PMID: 20080640 DOI: 10.1073/pnas.0910782107] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
AB-type toxins, like other bacterial toxins, are notably opportunistic molecules. They rely on target cell receptors to reach the appropriate location within the target cell where translocation of their enzymatic subunits occurs. The anthrax toxin, however, times its own uptake, suggesting that toxin binding triggers specific signaling events. Here we show that the anthrax toxin triggers tyrosine phosphorylation of its own receptors, capillary morphogenesis gene 2 and tumor endothelial marker 8, which are not endowed with intrinsic kinase activity. This is required for efficient toxin uptake because endocytosis of the mutant receptor lacking the cytoplasmic tyrosine residues is strongly delayed. Phosphorylation of the receptors was dependent on src-like kinases, which where activated upon toxin binding. Importantly, src-dependent phosphorylation of the receptor was required for its subsequent ubiquitination, which in turn was required for clathrin-mediated endocytosis. Consistently, we found that uptake of the anthrax toxin and processing of the lethal factor substrate MEK1 are inhibited by silencing of src and fyn, as well as in src and fyn knockout cells.
Collapse
|
32
|
Ha SD, Ham B, Mogridge J, Saftig P, Lin S, Kim SO. Cathepsin B-mediated autophagy flux facilitates the anthrax toxin receptor 2-mediated delivery of anthrax lethal factor into the cytoplasm. J Biol Chem 2009; 285:2120-9. [PMID: 19858192 DOI: 10.1074/jbc.m109.065813] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Anthrax lethal toxin (LeTx) is a virulence factor secreted by Bacillus anthracis and has direct cytotoxic effects on most cells once released into the cytoplasm. The cytoplasmic delivery of the proteolytically active component of LeTx, lethal factor (LF), is carried out by the transporter component, protective antigen, which interacts with either of two known surface receptors known as anthrax toxin receptor (ANTXR) 1 and 2. We found that the cytoplasmic delivery of LF by ANTXR2 was mediated by cathepsin B (CTSB) and required lysosomal fusion with LeTx-containing endosomes. Also, binding of protective antigen to ANXTR1 or -2 triggered autophagy, which facilitated the cytoplasmic delivery of ANTXR2-associated LF. We found that whereas cells treated with the membrane-permeable CTSB inhibitor CA074-Me- or CTSB-deficient cells had no defect in fusion of LC3-containing autophagic vacuoles with lysosomes, autophagic flux was significantly delayed. These results suggested that the ANTXR2-mediated cytoplasmic delivery of LF was enhanced by CTSB-dependent autophagic flux.
Collapse
Affiliation(s)
- Soon-Duck Ha
- Department of Microbiology and Immunology, Siebens-Drake Research Institute, University of Western Ontario, London, Ontario N6G2V4, Canada
| | | | | | | | | | | |
Collapse
|
33
|
Fasanella A, Galante D, Garofolo G, Jones MH. Anthrax undervalued zoonosis. Vet Microbiol 2009; 140:318-31. [PMID: 19747785 DOI: 10.1016/j.vetmic.2009.08.016] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 08/03/2009] [Accepted: 08/11/2009] [Indexed: 11/19/2022]
Abstract
Anthrax is a non-contagious disease, known since ancient times. However, it became a matter of global public interest after the bioterrorist attacks in the U.S.A. during the autumn of 2001. The concern of politicians and civil authorities everywhere towards this emergency necessitated a significant research effort and the prevention of new bioterrorist acts. Anthrax is primarily a disease that affects livestock and wildlife; its distribution is worldwide; and it can represent a danger to humans but especially more so when it occurs in areas considered to be free and in atypical seasons and climatic conditions. The atypicality of the phenomenon may lead health workers to misdiagnose and, consequently, an inappropriately manage of affected carcasses with a consequent and inevitable increase in the risk of human infection. This article emphasises the importance of paying increasing attention to this zoonosis. The biggest risk is its underestimation.
Collapse
Affiliation(s)
- Antonio Fasanella
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Anthrax Reference Institute of Italy, Foggia, Italy.
| | | | | | | |
Collapse
|
34
|
Warfel JM, D'Agnillo F. Anthrax lethal toxin enhances IkappaB kinase activation and differentially regulates pro-inflammatory genes in human endothelium. J Biol Chem 2009; 284:25761-71. [PMID: 19620708 DOI: 10.1074/jbc.m109.036970] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Anthrax lethal toxin (LT) was previously shown to enhance transcriptional activity of NF-kappaB in tumor necrosis factor-alpha-activated primary human endothelial cells. Here we show that this LT-mediated increase in NF-kappaB activation is associated with the enhanced degradation of the inhibitory proteins IkappaBalpha and IkappaBbeta but not IkappaBepsilon. Moreover, this was accompanied by enhanced activation of the IkappaB kinase complex (IKK), which is responsible for targeting IkappaB proteins for degradation. Importantly, LT enhancement of IkappaBalpha degradation was completely blocked by a selective IKKbeta inhibitor, whereas IkappaBbeta degradation was attenuated, suggesting a mechanistic link. Consistent with the above data, LT-cotreated cells show elevated phosphorylation of two IKK substrates, IkappaBalpha and p65, both of which were blocked by incubation with the IKKbeta inhibitor. Consistent with NF-kappaB activation, LT increased transcription of the NF-kappaB regulated gene CD40. Conversely, LT inhibited transcription of another NF-kappaB-regulated gene, CCL2. This inhibition was linked to the LT-mediated suppression of another CCL2-regulating transcription factor, AP-1 (activator protein-1). These data suggest that LT-mediated enhancement of NF-kappaB is IKK-dependent, but importantly, the net effect of LT on the transcription of proinflammatory genes is driven by the cumulative effect of LT on the particular set of transcription factors that regulate a given promoter. Together, these findings provide new mechanistic insight on how LT may disrupt the host response to anthrax.
Collapse
Affiliation(s)
- Jason M Warfel
- Laboratory of Biochemistry and Vascular Biology, Division of Hematology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
35
|
Deuquet J, Abrami L, Difeo A, Ramirez MCM, Martignetti JA, van der Goot FG. Systemic hyalinosis mutations in the CMG2 ectodomain leading to loss of function through retention in the endoplasmic reticulum. Hum Mutat 2009; 30:583-9. [PMID: 19191226 DOI: 10.1002/humu.20872] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Systemic hyalinosis is an autosomal recessive disease that encompasses two allelic syndromes, infantile systemic hyalinosis (ISH) and juvenile hyaline fibromatosis (JHF), which are caused by mutations in the CMG2 gene. Here we have analyzed the cellular consequences of five patient-derived point mutations in the extracellular von Willebrand domain or the transmembrane domain of the CMG2 protein. We found that four of the mutations led to retention of the protein in the endoplasmic reticulum (ER), albeit through different mechanisms. Analysis of recombinant CMG2 von Willebrand factor A (vWA) domains, to which three of the mutations map, indicated that the mutations did not prevent proper folding and ligand binding, suggesting that, in vivo, slow folding, rather than misfolding, is responsible for ER retention. Our work shows that systemic hyalinosis can be qualified as a conformational disease, at least for the mutations that have been mapped to the extracellular and transmembrane domains. The long ER half-life and the ligand binding ability of the mutated von Willebrand domains suggest that treatments based on chemical chaperones could be beneficial.
Collapse
Affiliation(s)
- Julie Deuquet
- Ecole Polytechnique Fédérale de Lausanne, Global Health Institute, Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
36
|
Bischofberger M, Gonzalez MR, van der Goot FG. Membrane injury by pore-forming proteins. Curr Opin Cell Biol 2009; 21:589-95. [PMID: 19442503 DOI: 10.1016/j.ceb.2009.04.003] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2009] [Revised: 04/06/2009] [Accepted: 04/06/2009] [Indexed: 02/02/2023]
Abstract
The plasma membrane defines the boundary of every living cell, and its integrity is essential for life. The plasma membrane may, however, be challenged by mechanical stress or pore-forming proteins produced by the organism itself or invading pathogens. We will here review recent findings about pore-forming proteins from different organisms, highlighting their structural and functional similarities, and describe the mechanisms that lead to membrane repair, since remarkably, cells can repair breaches in their plasma membrane of up to 10,000 microm(2).
Collapse
Affiliation(s)
- Mirko Bischofberger
- Ecole Polytechnique Fédérale de Lausanne, Global Health Institute, Lausanne, Switzerland
| | | | | |
Collapse
|
37
|
Schneemann A, Manchester M. Anti-toxin antibodies in prophylaxis and treatment of inhalation anthrax. Future Microbiol 2009; 4:35-43. [PMID: 19207098 DOI: 10.2217/17460913.4.1.35] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The CDC recommend 60 days of oral antibiotics combined with a three-dose series of the anthrax vaccine for prophylaxis after potential exposure to aerosolized Bacillus anthracis spores. The anthrax vaccine is currently not licensed for anthrax postexposure prophylaxis and has to be made available under an Investigational New Drug protocol. Postexposure prophylaxis based on antibiotics can be problematic in cases where the use of antibiotics is contraindicated. Furthermore, there is a concern that an exposure could involve antibiotic-resistant strains of B. anthracis. Availability of alternate treatment modalities that are effective in prophylaxis of inhalation anthrax is therefore highly desirable. A major research focus toward this end has been on passive immunization using polyclonal and monoclonal antibodies against B. anthracis toxin components. Since 2001, significant progress has been made in isolation and commercial development of monoclonal and polyclonal antibodies that function as potent neutralizers of anthrax lethal toxin in both a prophylactic and therapeutic setting. Several new products have completed Phase I clinical trials and are slated for addition to the National Strategic Stockpile. These rapid advances were possible because of major funding made available by the US government through programs such as Bioshield and the Biomedical Advanced Research and Development Authority. Continued government funding is critical to support the development of a robust biodefense industry.
Collapse
Affiliation(s)
- Anette Schneemann
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | |
Collapse
|
38
|
Vuyisich M, Gnanakaran S, Lovchik JA, Lyons CR, Gupta G. A dual-purpose protein ligand for effective therapy and sensitive diagnosis of anthrax. Protein J 2009; 27:292-302. [PMID: 18649128 DOI: 10.1007/s10930-008-9137-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This article reports the design of a bivalent protein ligand with dual use in therapy and diagnosis of anthrax caused by Bacillus anthracis. The ligand specifically binds to PA and thereby blocks the intracellular delivery of LF and EF toxins that, respectively, cause cell lysis and edema. The ligand is a chimeric scaffold with two PA-binding domains (called VWA) linked to an IgG-Fc frame. Molecular modeling and binding measurements reveal that the VWA-Fc dimer binds to PA with high affinity (K(D)=0.2 nM). An in vitro bio-luminescence assay shows that VWA-Fc (at nanomolar concentration) protects mouse macrophages from lysis by PA/LF. In vivo studies demonstrate that VWA-Fc at low doses (approximately 50 microg/animal) are able to rescue animals from lethal doses of PA/LF and B. anthracis spores. Finally, VWA-Fc is utilized as the capture molecule in the sensitive (down to 30 picomolar) detection of PA using surface plasmon resonance.
Collapse
Affiliation(s)
- Momchilo Vuyisich
- Biosciences Division, Group B-7, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | | | | | | | | |
Collapse
|
39
|
Liu K, Wong EW, Schutzer SE, Connell ND, Upadhyay A, Bryan M, Rameshwar P. Non-canonical effects of anthrax toxins on haematopoiesis: implications for vaccine development. J Cell Mol Med 2008; 13:1907-1919. [PMID: 18752638 DOI: 10.1111/j.1582-4934.2008.00477.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Anthrax receptor (ATR) shares similarities with molecules relevant to haematopoiesis. This suggests that anthrax proteins might bind to these mimicking molecules and exert non-specific haematopoietic effects. The haematopoietic system is the site of immune cell development in the adult. As such, ATR ligand, protective antigen (PA) and the other anthrax proteins, lethal factor, edema factor, could be significant to haematopoietic responses against Bacillus anthracis infection. Because haematopoiesis is the process of immune cell development, effects by anthrax proteins could be relevant to vaccine development. Here, we report on effects of anthrax proteins and toxins on early and late haematopoiesis. Flow cytometry shows binding of PA to haematopoietic cells. This binding might be partly specific because flow cytometry and Western blots demonstrate the presence of ATR1 on haematopoietic cell subsets and the supporting stromal cells. Functional studies with long-term initiating cell and clonogenic assays determined haematopoietic suppression by anthrax toxins and stimulation by monomeric proteins. The suppressive effects were not attributed to cell death, but partly through the induction of haematopoietic suppressors, interleukin (IL)-10 and CCL3 (MIP-1alpha). In summary, anthrax proteins affect immune cell development by effects on haematopoiesis. The type of effect, stimulation or suppression, depend on whether the stimulator is a toxin or monomeric protein. The studies show effects of anthrax proteins beginning at the early stage of haematopoiesis, and also show secondary mediators such as IL-10 and CCL3. The roles of other cytokines and additional ATR are yet to be investigated.
Collapse
Affiliation(s)
- Katherine Liu
- New Jersey Medical School - UMDNJ, Department of Medicine-Hematology/Oncology, Newark, NJ, USA
| | - Elaine W Wong
- New Jersey Medical School - UMDNJ, Department of Medicine-Hematology/Oncology, Newark, NJ, USA
| | - Steven E Schutzer
- New Jersey Medical School - UMDNJ, Department of Medicine-Hematology/Oncology, Newark, NJ, USA
| | - Nancy D Connell
- New Jersey Medical School - UMDNJ, Department of Medicine-Hematology/Oncology, Newark, NJ, USA
| | - Alok Upadhyay
- Graduate School of Biomedical Sciences - UMDNJ, Newark Campus, NJ, USA
| | - Margarette Bryan
- New Jersey Medical School - UMDNJ, Department of Medicine-Hematology/Oncology, Newark, NJ, USA
| | - Pranela Rameshwar
- New Jersey Medical School - UMDNJ, Department of Medicine-Hematology/Oncology, Newark, NJ, USA
| |
Collapse
|
40
|
Inactivation of rho GTPases by statins attenuates anthrax lethal toxin activity. Infect Immun 2008; 77:348-59. [PMID: 18936176 DOI: 10.1128/iai.01005-08] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Anthrax lethal factor (LF), secreted by Bacillus anthracis, interacts with protective antigen to form a bipartite toxin (lethal toxin [LT]) that exerts pleiotropic biological effects resulting in subversion of the innate immune response. Although the mitogen-activated protein kinase kinases (MKKs) are the major intracellular protein targets of LF, the pathology induced by LT is not well understood. The statin family of HMG-coenzyme A reductase inhibitors have potent anti-inflammatory effects independent of their cholesterol-lowering properties, which have been attributed to modulation of Rho family GTPase activity. The Rho GTPases regulate vesicular trafficking, cytoskeletal dynamics, and cell survival and proliferation. We hypothesized that disruption of Rho GTPase function by statins might alter LT action. We show here that statins delay LT-induced death and MKK cleavage in RAW macrophages and that statin-mediated effects on LT action are attributable to disruption of Rho GTPases. The Rho GTPase-inactivating toxin, toxin B, did not significantly affect LT binding or internalization, suggesting that the Rho GTPases regulate trafficking and/or localization of LT once internalized. The use of drugs capable of inhibiting Rho GTPase activity, such as statins, may provide a means to attenuate intoxication during B. anthracis infection.
Collapse
|
41
|
The cytoplasmic domain of anthrax toxin receptor 1 affects binding of the protective antigen. Infect Immun 2008; 77:52-9. [PMID: 18936178 DOI: 10.1128/iai.01073-08] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The protective antigen (PA) component of anthrax toxin binds the I domain of the receptor ANTXR1. Integrin I domains convert between open and closed conformations that bind ligand with high and low affinities, respectively; this process is regulated by signaling from the cytoplasmic domains. To assess whether intracellular signals might influence the interaction between ANTXR1 and PA, we compared two splice variants of ANTXR1 that differ only in their cytoplasmic domains. We found that cells expressing ANTXR1 splice variant 1 (ANTXR1-sv1) bound markedly less PA than did cells expressing a similar level of the shorter splice variant ANTXR1-sv2. ANTXR1-sv1 but not ANTXR1-sv2 associated with the actin cytoskeleton, although disruption of the cytoskeleton did not affect binding of ANTXR-sv1 to PA. Introduction of a cytoplasmic domain missense mutation found in the related receptor ANTXR2 in a patient with juvenile hyaline fibromatosis impaired actin association and increased binding of PA to ANTXR1-sv1. These results suggest that ANTXR1 has two affinity states that may be modulated by cytoplasmic signals.
Collapse
|
42
|
Abrami L, Kunz B, Deuquet J, Bafico A, Davidson G, van der Goot FG. Functional interactions between anthrax toxin receptors and the WNT signalling protein LRP6. Cell Microbiol 2008; 10:2509-19. [PMID: 18717822 DOI: 10.1111/j.1462-5822.2008.01226.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
To exert its activity, anthrax toxin must be endocytosed and its enzymatic toxic subunits delivered to the cytoplasm. It has been proposed that, in addition to the anthrax toxin receptors (ATRs), lipoprotein-receptor-related protein 6 (LRP6), known for its role in Wnt signalling, is also required for toxin endocytosis. These findings have however been challenged. We show that LRP6 can indeed form a complex with ATRs, and that this interaction plays a role both in Wnt signalling and in anthrax toxin endocytosis. We found that ATRs control the levels of LRP6 in cells, and thus the Wnt signalling capacity. RNAi against ATRs indeed led to a drastic decrease in LRP6 levels and a subsequent drop in Wnt signalling. Conversely, LRP6 plays a role in anthrax toxin endocytosis, but is not essential. We indeed found that toxin binding triggered tyrosine phosphorylation of LRP6, induced its redistribution into detergent-resistant domains, and its subsequent endocytosis. RNAis against LRP6 strongly delayed toxin endocytosis. As the physiological role of ATRs is probably to interact with the extracellular matrix, our findings raise the interesting possibility that, through the ATR-LRP6 interaction, adhesion to the extracellular matrix could locally control Wnt signalling.
Collapse
Affiliation(s)
- Laurence Abrami
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Station 15, CH 1015 Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
43
|
Kim JS, Bokoch GM. Anthrax edema toxin inhibits Nox1-mediated formation of reactive oxygen species by colon epithelial cells. J Innate Immun 2008; 1:145-52. [PMID: 20046221 DOI: 10.1159/000151481] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Accepted: 05/20/2008] [Indexed: 11/19/2022] Open
Abstract
One major route of intoxication by Bacillus anthracis (anthrax) spores is via their ingestion and subsequent uptake by the intestinal epithelium. Anthrax edema toxin (ETx) is an adenylate cyclase that causes persistent elevation of cAMP in intoxicated cells. NADPH oxidase enzymes (Nox1-Nox5, Duox1 and 2) generate reactive oxygen species (ROS) as components of the host innate immune response to bacteria, including Nox1 in gastrointestinal epithelial tissues. We show that ETx effectively inhibits ROS formation by Nox1 in HT-29 colon epithelial cells. This inhibition requires the PKA-mediated phosphorylation of the Nox1-regulatory component, NoxA1, and the subsequent binding of 14-3-3zeta. Inhibition of Nox1-mediated ROS formation in the gut epithelium may be a mechanism used by B. anthracis to circumvent the innate immune response.
Collapse
Affiliation(s)
- Jun-Sub Kim
- Department of Immunology, Scripps Research Institute, La Jolla, Calif., USA
| | | |
Collapse
|
44
|
Toxicity of anthrax toxin is influenced by receptor expression. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2008; 15:1330-6. [PMID: 18596206 DOI: 10.1128/cvi.00103-08] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Anthrax toxin protective antigen (PA) binds to its cellular receptor, and seven subunits self-associate to form a heptameric ring that mediates the cytoplasmic entry of lethal factor or edema factor. The influence of receptor type on susceptibility to anthrax toxin components was examined using Chinese hamster ovary (CHO) cells expressing the human form of one of two PA receptors: TEM8 or CMG2. Unexpectedly, PA alone, previously believed to only mediate entry of lethal factor or edema factor, was found to be toxic to CHO-TEM8 cells; cells treated with PA alone displayed reduced cell growth and decreased metabolic activity. PA-treated cells swelled and became permeable to membrane-excluded dye, suggesting that PA formed cell surface pores on CHO-TEM8 cells. While CHO-CMG2 cells were not killed by wild-type PA, they were susceptible to the PA variant, F427A. Receptor expression also conferred differences in susceptibility to edema factor.
Collapse
|
45
|
Hudson MJ, Beyer W, Böhm R, Fasanella A, Garofolo G, Golinski R, Goossens PL, Hahn U, Hallis B, King A, Mock M, Montecucco C, Ozin A, Tonello F, Kaufmann SH. Bacillus anthracis: balancing innocent research with dual-use potential. Int J Med Microbiol 2008; 298:345-64. [PMID: 18375178 PMCID: PMC7106442 DOI: 10.1016/j.ijmm.2007.09.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Revised: 09/21/2007] [Accepted: 09/28/2007] [Indexed: 12/30/2022] Open
Abstract
Anthrax Euronet, a Coordination Action of the EU 6th Framework Programme, was designed to strengthen networking activities between anthrax research groups in Europe and to harmonise protocols for testing anthrax vaccines and therapeutics. Inevitably, the project also addressed aspects of the current political issues of biosecurity and dual-use research, i.e. research into agents of important diseases of man, livestock or agriculture that could be used as agents of bioterrorism. This review provides a comprehensive overview of the biology of Bacillus anthracis, of the pathogenesis, epidemiology and diagnosis of anthrax, as well as vaccine and therapeutic intervention strategies. The proposed requirement for a code of conduct for working with dual-use agents such as the anthrax bacillus is also discussed.
Collapse
Affiliation(s)
| | | | | | - Antonio Fasanella
- Istituto Zooprofilattico Sperimentale of Puglia and Basilicata, Foggia, Italy
| | - Giuliano Garofolo
- Istituto Zooprofilattico Sperimentale of Puglia and Basilicata, Foggia, Italy
| | - Robert Golinski
- Department of Immunology, Max Planck Institute for Infection Biology, Charitéplatz 1, D-10117 Berlin, Germany
| | | | | | - Bassam Hallis
- Health Protection Agency, Porton Down, Salisbury, UK
| | | | | | | | - Amanda Ozin
- Department of Immunology, Max Planck Institute for Infection Biology, Charitéplatz 1, D-10117 Berlin, Germany
| | | | - Stefan H.E. Kaufmann
- Department of Immunology, Max Planck Institute for Infection Biology, Charitéplatz 1, D-10117 Berlin, Germany
| |
Collapse
|
46
|
Warfel JM, D'Agnillo F. Anthrax Lethal Toxin Enhances TNF-Induced Endothelial VCAM-1 Expression via an IFN Regulatory Factor-1-Dependent Mechanism. THE JOURNAL OF IMMUNOLOGY 2008; 180:7516-24. [DOI: 10.4049/jimmunol.180.11.7516] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
47
|
Felicetti P, Mennecozzi M, Barucca A, Montgomery S, Orlandi F, Manova K, Houghton AN, Gregor PD, Concetti A, Venanzi FM. Tumor endothelial marker 8 enhances tumor immunity in conjunction with immunization against differentiation Ag. Cytotherapy 2008; 9:23-34. [PMID: 18236207 DOI: 10.1080/14653240601048369] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND We have previously shown that xenogeneic DNA vaccines encoding rat neu and melanosomal differentiation Ag induce tumor immunity. Others have developed vaccines targeting tumor neovasculature. Tumor endothelial marker 8 (TEM8) is expressed in the neovasculature of human tumors, and in the mouse melanoma B16, but its expression is limited in normal adult tissues. We describe a DNA vaccine combining xenogeneic tumor Ag and TEM8. METHODS In-situ hybridization was used to detect TEM8 RNA in mouse tumors. Mice transgenic for the rat neu proto-oncogene were immunized with DNA vaccines encoding TEM8 and the extracellular domain of rat neu and challenged with the 233-VSGA1 breast cancer cell line. In parallel experiments, C57BL/6 mice were immunized with TEM8 and human tyrosinase-related protein 1 (hTYRP1/hgp75) and challenged with B16F10 melanoma. RESULTS TEM8 was expressed in the stroma of transplantable mouse breast and melanoma tumors. In both model systems, TEM8 DNA had no activity as a single agent but significantly enhanced the anti-tumor immunity of neu and hTYRP1/hgp75 DNA vaccines when given in concert. The observed synergy was dependent upon CD8+ T cells, as depletion of this cell population just prior to tumor challenge obviated the effect of the TEM8 vaccine in both tumor models. DISCUSSION A local immune response to TEM8 may increase inflammation or tumor necrosis within the tumor, resulting in improved Ag presentation of HER2/neu and hTYRP1/hgp75. Alternatively, TEM8 expression in host APC may alter T-cell interactions or homing. In this way, TEM8 may act more as an adjuvant than an immunologic target.
Collapse
Affiliation(s)
- P Felicetti
- Swim Across America Laboratory of Tumor Immunology, Memorial Sloan-Kettering Cancer Center, New York, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Sloat BR, Shaker DS, Le UM, Cui Z. Nasal immunization with the mixture of PA63, LF, and a PGA conjugate induced strong antibody responses against all three antigens. ACTA ACUST UNITED AC 2008; 52:169-79. [PMID: 18194342 DOI: 10.1111/j.1574-695x.2007.00347.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new generation anthrax vaccine is expected to target not only the anthrax protective antigen (PA) protein, but also other virulent factors of Bacillus anthracis. It is also expected to be amenable for rapid mass immunization of a large number of people. This study aimed to address these needs by designing a prototypic triantigen nasal anthrax vaccine candidate that contained a truncated PA (rPA63), the anthrax lethal factor (LF), and the capsular poly-gamma-D-glutamic acid (gammaDPGA) as the antigens and a synthetic double-stranded RNA (dsRNA), polyriboinosinic-polyribocytodylic acid (poly(I:C)) as the adjuvant. This study identified the optimal dose of nasal poly(I:C) in mice, demonstrated that nasal immunization of mice with the LF was capable of inducing functional anti-LF antibodies (Abs), and showed that nasal immunization of mice with the prototypic triantigen vaccine candidate induced strong immune responses against all three antigens. The immune responses protected macrophages against an anthrax lethal toxin challenge in vitro and enabled the immunized mice to survive a lethal dose of anthrax lethal toxin challenge in vivo. The anti-PGA Abs were shown to have complement-mediated bacteriolytic activity. After further optimization, this triantigen nasal vaccine candidate is expected to become one of the newer generation anthrax vaccines.
Collapse
Affiliation(s)
- Brian R Sloat
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
| | | | | | | |
Collapse
|
49
|
Cao S, Liu Z, Guo A, Li Y, Zhang C, Gaobing W, Chunfang F, Tan Y, Chen H. Efficient production and characterization of Bacillus anthracis lethal factor and a novel inactive mutant rLFm-Y236F. Protein Expr Purif 2008; 59:25-30. [PMID: 18276157 DOI: 10.1016/j.pep.2007.12.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2007] [Revised: 12/24/2007] [Accepted: 12/31/2007] [Indexed: 11/17/2022]
Abstract
Lethal factor (LF) is a 90kDa zinc metalloprotease that plays an important role in the virulence of anthrax. Recombinant LF (rLF) is an effective tool to study anthrax pathogenesis and treatment. In this study, the LF gene was cloned into the Escherichia coli expression vector pGEX-6P-1 and expressed as a GST fusion protein (GST-rLF) in E. coli BL21-codonPlus (DE3)-RIL cells with 0.2mM IPTG induction at 28 degrees C. The GST-rLF protein was purified and the GST-tag was then cleaved in a single step by combining both GST-affinity column and treatment with 3C protease. This procedure yielded 5mg of rLF protein per liter of culture. The purified rLF was functional as confirmed by cytotoxicity assay in RAW264.7 cells and Western blot assay. Furthermore, the rLF could induce strong immune response in BALB/c mice and the presence of a specific antiserum could neutralize the cytotoxicity of rLF in vitro. In addition, a novel inactive mutant (rLFm-Y236F) was obtained. Compared to the wild-type rLF, an increase by 3700 folds of the purified rLFm-Y236F was needed to achieve a similar level of cytotoxicity of the wild-type rLF. This mutant might be of significance in the study of anthrax pathogenesis and treatment.
Collapse
Affiliation(s)
- Sha Cao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Passalacqua KD, Bergman NH. Bacillus anthracis: interactions with the host and establishment of inhalational anthrax. Future Microbiol 2007; 1:397-415. [PMID: 17661631 DOI: 10.2217/17460913.1.4.397] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Due to its potential as a bioweapon, Bacillus anthracis has received a great deal of attention in recent years, and a significant effort has been devoted to understanding how this organism causes anthrax. There has been a particular focus on the inhalational form of the disease, and studies over the past several years have painted an increasingly complex picture of how B. anthracis enters the mammalian host, survives the host's defense mechanisms, disseminates throughout the body and causes death. This article reviews recent advances in these areas, with a focus on how the bacterium interacts with its host in establishing infection and causing anthrax.
Collapse
Affiliation(s)
- Karla D Passalacqua
- University of Michigan Medical School, Department of Microbiology & Immunology, Ann Arbor, MI 48109, USA.
| | | |
Collapse
|