1
|
Mohan V, Strepis N, Mitsakakis K, Becker K, Chindelevitch L, Shivaperumal N, Swe-Han KS, Hays JP. Antimicrobial resistance in Campylobacter spp. focussing on C. jejuni and C. coli - A Narrative Review. J Glob Antimicrob Resist 2025:S2213-7165(25)00111-0. [PMID: 40354998 DOI: 10.1016/j.jgar.2025.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 05/05/2025] [Accepted: 05/06/2025] [Indexed: 05/14/2025] Open
Abstract
OBJECTIVES Campylobacter species represent one of the leading causes of human foodborne infections, including gastroenteritis and bloody diarrhoea. Overuse of antibiotics in veterinary, agriculture, and humans has led to an increase in multidrug antimicrobial resistance (AMR). Fluoroquinolones and macrolides resistant Campylobacters are WHO and CDC priority pathogens, with fluoroquinolone resistance doubling in the past 20 years, complicating treatment. METHODS Published studies relating to AMR and associated molecular mechanisms in both Campylobacter jejuni and C. coli from animals, humans and environment (1981 - 2024), were retrieved from PubMed and Google Scholar using relevant keywords. In addition, genomic analyses of publicly available C. jejuni and C. coli genomes along with multi-locus sequence typing results from the PubMLST database were used to analyse these AMR determinants and their phylogenomic relationships. Review articles were excluded from the analyses. RESULTS A total of 429 research papers were reviewed to get insights into multidrug resistance in C. jejuni and C. coli. Fluroquinolone resistance has been predominantly associated with international travel. The gyrA subunits were associated with ecological niches and overall, it is suggestive that C. coli might be the donor. A positive synergism was observed between cmeA gene expression and quinolone resistance. Additionally, the results speculated the possibility of horizontal gene transfers in chromosomal resistance clusters between C. coli and C. jejuni. CONCLUSION This review indicated significant concern of multidrug resistance in C. jejuni and C. coli. This requires continent-wide surveillance and research for standard practices to achieve effective antimicrobial stewardship.
Collapse
Affiliation(s)
- Vathsala Mohan
- School of Biomedical and Health Sciences, University of Western Australia, Australia; Commonwealth Science and Industrial Research Organisation, Australia.
| | - Nikolaos Strepis
- Department of Medical Microbiology & Infectious Diseases, Erasmus University Medical Centre Rotterdam (Erasmus MC), 3015 GD, Rotterdam, The Netherlands
| | - Konstantinos Mitsakakis
- Laboratory for MEMS Applications, IMTEK-Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Karsten Becker
- Friedrich Loeffler-Institute of Medical Microbiology, University Medicine Greifswald, Ferdinand-Sauerbruch-Str. 1, 17475 Greifswald, Germany
| | - Leonid Chindelevitch
- MRC Centre for Global Infectious Disease Analysis, Imperial College London, Praed Street, London, W2 1NY, England, UK
| | | | - Khine Swe Swe-Han
- Department of Medical Microbiology, National Health Laboratory Services, School of Laboratory Medicine and Medical Sciences, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - John P Hays
- Department of Medical Microbiology & Infectious Diseases, Erasmus University Medical Centre Rotterdam (Erasmus MC), 3015 GD, Rotterdam, The Netherlands
| |
Collapse
|
2
|
Nazari Z, Shirzadi H, Taherpour K, Rahmatnejad E, Khatibjoo A. Effect of dietary medicinal plants on physiological responses of broiler chickens challenged with Campylobacter jejuni. Vet Med Sci 2024; 10:e70028. [PMID: 39258513 PMCID: PMC11388060 DOI: 10.1002/vms3.70028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/26/2024] [Accepted: 08/23/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Phytogenic additives would be helpful to alleviate the adverse effect of Campylobacter jejuni on the performance and physiological responses of broiler chickens. OBJECTIVE This experiment was carried out to investigate the effects of Echinacea purpurea (EP) and Thymbra spicata (TS) on the performance, nutrient digestibility, serum biochemistry, intestinal morphology, intestinal microbiota and immune responses of broilers challenged with C. jejuni from 0 to 42 days of age. METHODS A total of 240 male broiler chickens were divided into 6 groups and fed various diets: a control diet; the control diet supplemented with EP at 0.25% (EP25) or 0.50% (EP50); the control diet supplemented with TS at 0.25% (TS25) and 0.50% (TS50); or the control diet containing erythromycin at 55 ppm. Chicks were orally challenged with C. jejuni on Days 21 and 23 of age. RESULTS EP and TS25 diets enhanced European production efficiency factor, feed conversion ratio and digestibility of dry matter and organic matter. TS25 increased duodenal villous height (VH) and surface area on Day 42 of age. EP25 diet increased ileal VH compared to control and erythromycin diets. Diets containing certain EP25 and TS increased the Bifidobacterium population and decreased C. jejuni population on Day 39 of age. EP50 and TS50 diets increased antibody titration against Newcastle disease virus. CONCLUSIONS In conclusion, EP and TS dietary supplementation improved performance, microflora, intestinal morphology and immune responses in C. jejuni-challenged broilers.
Collapse
Affiliation(s)
- Zaynab Nazari
- Department of Animal ScienceFaculty of AgricultureIlam UniversityIlamIran
| | - Hassan Shirzadi
- Department of Animal ScienceFaculty of AgricultureIlam UniversityIlamIran
| | - Kamran Taherpour
- Department of Animal ScienceFaculty of AgricultureIlam UniversityIlamIran
| | - Enayat Rahmatnejad
- Department of Animal ScienceFaculty of Agriculture and Natural ResourcesPersian Gulf UniversityBushehrIran
| | - Ali Khatibjoo
- Department of Animal ScienceFaculty of AgricultureIlam UniversityIlamIran
| |
Collapse
|
3
|
De Greve H, Fioravanti A. Single domain antibodies from camelids in the treatment of microbial infections. Front Immunol 2024; 15:1334829. [PMID: 38827746 PMCID: PMC11140111 DOI: 10.3389/fimmu.2024.1334829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/29/2024] [Indexed: 06/04/2024] Open
Abstract
Infectious diseases continue to pose significant global health challenges. In addition to the enduring burdens of ailments like malaria and HIV, the emergence of nosocomial outbreaks driven by antibiotic-resistant pathogens underscores the ongoing threats. Furthermore, recent infectious disease crises, exemplified by the Ebola and SARS-CoV-2 outbreaks, have intensified the pursuit of more effective and efficient diagnostic and therapeutic solutions. Among the promising options, antibodies have garnered significant attention due to their favorable structural characteristics and versatile applications. Notably, nanobodies (Nbs), the smallest functional single-domain antibodies of heavy-chain only antibodies produced by camelids, exhibit remarkable capabilities in stable antigen binding. They offer unique advantages such as ease of expression and modification and enhanced stability, as well as improved hydrophilicity compared to conventional antibody fragments (antigen-binding fragments (Fab) or single-chain variable fragments (scFv)) that can aggregate due to their low solubility. Nanobodies directly target antigen epitopes or can be engineered into multivalent Nbs and Nb-fusion proteins, expanding their therapeutic potential. This review is dedicated to charting the progress in Nb research, particularly those derived from camelids, and highlighting their diverse applications in treating infectious diseases, spanning both human and animal contexts.
Collapse
Affiliation(s)
- Henri De Greve
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Antonella Fioravanti
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
- VIB-VUB Center for Structural Biology, Vrije Universiteit Brussel, Brussels, Belgium
- Fondazione ParSeC – Parco delle Scienze e della Cultura, Prato, Italy
| |
Collapse
|
4
|
Lupia C, Castagna F, Bava R, Naturale MD, Zicarelli L, Marrelli M, Statti G, Tilocca B, Roncada P, Britti D, Palma E. Use of Essential Oils to Counteract the Phenomena of Antimicrobial Resistance in Livestock Species. Antibiotics (Basel) 2024; 13:163. [PMID: 38391549 PMCID: PMC10885947 DOI: 10.3390/antibiotics13020163] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024] Open
Abstract
Antimicrobial resistance is an increasingly widespread phenomenon that is of particular concern because of the possible consequences in the years to come. The dynamics leading to the resistance of microbial strains are diverse, but certainly include the incorrect use of veterinary drugs both in terms of dosage and timing of administration. Moreover, the drug is often administered in the absence of a diagnosis. Many active ingredients in pharmaceutical formulations are, therefore, losing their efficacy. In this situation, it is imperative to seek alternative treatment solutions. Essential oils are mixtures of compounds with different pharmacological properties. They have been shown to possess the antibacterial, anti-parasitic, antiviral, and regulatory properties of numerous metabolic processes. The abundance of molecules they contain makes it difficult for treated microbial species to develop pharmacological resistance. Given their natural origin, they are environmentally friendly and show little or no toxicity to higher animals. There are several published studies on the use of essential oils as antimicrobials, but the present literature has not been adequately summarized in a manuscript. This review aims to shed light on the results achieved by the scientific community regarding the use of essential oils to treat the main agents of bacterial infection of veterinary interest in livestock. The Google Scholar, PubMed, SciELO, and SCOPUS databases were used for the search and selection of studies. The manuscript aims to lay the foundations for a new strategy of veterinary drug use that is more environmentally friendly and less prone to the emergence of drug resistance phenomena.
Collapse
Affiliation(s)
- Carmine Lupia
- Mediterranean Ethnobotanical Conservatory, Sersale (CZ), 88054 Catanzaro, Italy
- National Ethnobotanical Conservatory, Castelluccio Superiore, 85040 Potenza, Italy
| | - Fabio Castagna
- Mediterranean Ethnobotanical Conservatory, Sersale (CZ), 88054 Catanzaro, Italy
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy
| | - Roberto Bava
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy
| | - Maria Diana Naturale
- Ministry of Health, Directorate General for Health Programming, 00144 Rome, Italy
| | - Ludovica Zicarelli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036 Cosenza, Italy
| | - Mariangela Marrelli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036 Cosenza, Italy
| | - Giancarlo Statti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036 Cosenza, Italy
| | - Bruno Tilocca
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy
| | - Paola Roncada
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy
| | - Domenico Britti
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy
| | - Ernesto Palma
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy
- Center for Pharmacological Research, Food Safety, High Tech and Health (IRC-FSH), University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy
| |
Collapse
|
5
|
European Food Safety Authority (EFSA), European Centre for Disease Prevention and Control (ECDC). The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2021-2022. EFSA J 2024; 22:e8583. [PMID: 38419967 PMCID: PMC10900121 DOI: 10.2903/j.efsa.2024.8583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
This report by the European Food Safety Authority and the European Centre for Disease prevention and Control, provides an overview of the main findings of the 2021-2022 harmonised Antimicrobial Resistance (AMR) monitoring in Salmonella spp., Campylobacter jejuni and C. coli from humans and food-producing animals (broilers, laying hens and fattening turkeys, fattening pigs and cattle under one year of age) and relevant meat thereof. For animals and meat thereof, AMR data on indicator commensal Escherichia coli, presumptive extended-spectrum beta-lactamases (ESBL)-/AmpC beta-lactamases (AmpC)-/carbapenemase (CP)-producing E. coli, and the occurrence of methicillin-resistant Staphylococcus aureus (MRSA) are also analysed. Generally, resistance levels differed greatly between reporting countries and antimicrobials. Resistance to commonly used antimicrobials was frequently found in Salmonella and Campylobacter isolates from humans and animals. In humans, increasing trends in resistance to one of two critically antimicrobials (CIA) for treatment was observed in poultry-associated Salmonella serovars and Campylobacter, in at least half of the reporting countries. Combined resistance to CIA was however observed at low levels except in some Salmonella serovars and in C. coli from humans and animals in some countries. While CP-producing Salmonella isolates were not detected in animals in 2021-2022, nor in 2021 for human cases, in 2022 five human cases of CP-producing Salmonella were reported (four harbouring bla OXA-48 or bla OXA-48-like genes). The reporting of a number of CP-producing E. coli isolates (harbouring bla OXA-48, bla OXA-181, bla NDM-5 and bla VIM-1 genes) in fattening pigs, cattle under 1 year of age, poultry and meat thereof by a limited number of MSs (5) in 2021 and 2022, requires a thorough follow-up. The temporal trend analyses in both key outcome indicators (rate of complete susceptibility and prevalence of ESBL-/AmpC-producers in E. coli) showed an encouraging progress in reducing AMR in food-producing animals in several EU MSs over the last 7 years.
Collapse
|
6
|
Gao F, Tu L, Chen M, Chen H, Zhang X, Zhuang Y, Luo J, Chen M. Erythromycin resistance of clinical Campylobacter jejuni and Campylobacter coli in Shanghai, China. Front Microbiol 2023; 14:1145581. [PMID: 37260688 PMCID: PMC10229067 DOI: 10.3389/fmicb.2023.1145581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/20/2023] [Indexed: 06/02/2023] Open
Abstract
Campylobacter species are zoonotic pathogens, as well as the prevalent cause of foodborne bacterial gastroenteritis. The spread of antimicrobial-resistant strains poses a serious threat to global public health and attracts attention worldwide, but information about clinical Campylobacter is relatively limited compared to isolates from food and animals. The current study illustrated the prevalence and antimicrobial resistance profiles of Campylobacter jejuni and Campylobacter coli isolates collected from a consecutive surveillance program between 2012 and 2019 in Shanghai, China, using antimicrobial susceptibility testing and whole-genome sequencing. Among the 891 Campylobacter strains (761 C. jejuni and 130 C. coli) isolates collected, high portions above 90% of resistance to ciprofloxacin, nalidixic acid, and tetracycline were observed for both C. jejuni and C. coli. The most common MDR profiles represented by C. jejuni and C. coli were combination of ciprofloxacin, tetracycline, florfenicol and nalidixic acid (5.39%), and azithromycin, ciprofloxacin, erythromycin, gentamicin, tetracycline, clindamycin, nalidixic acid (28.46%), respectively. The erythromycin resistance of C. coli (59.23%) is higher than C. jejuni (2.50%). A total of 76 erythromycin resistant isolates (16 C. jejuni and 60 C. coli) were sequenced using Illumina platform for determining the genotypes, antimicrobial resistance patterns and phylogeny analysis. Multilocus sequence typing (MLST) analysis showed a high genetic diversity with 47 sequence types (STs), including 4 novel alleles and 12 new STs. The most abundant clonal complexes (CCs) were CC-403 (31.25%) and CC-828 (88.33%) for C. jejuni and C. coli, respectively. Among the 76 erythromycin-resistant isolates, mutation A2075G in 23S rRNA and erm(B) gene were detected in 53.95 and 39.47%, respectively. The erm(B) gene was identified exclusively in 30 C. coli isolates. All these erm(B) positive isolates were multi-drug resistant. Furthermore, comparison of the erm(B)-carrying isolates of multiple sources worldwide demonstrated the possibility of zoonotic transmission of erm(B) in Campylobacter. These findings highlight the importance of continuous surveillance of erythromycin resistance dissemination in Campylobacter which may compromise the effectiveness of antimicrobial therapy.
Collapse
Affiliation(s)
- Fen Gao
- Department of Microbiology, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Lihong Tu
- Department of Public Health Service and Safety Assessment, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Mingliang Chen
- Department of Microbiology, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Hongyou Chen
- Department of Microbiology, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Xi Zhang
- Department of Microbiology, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Yuan Zhuang
- Department of Microbiology, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Jiayuan Luo
- Department of Microbiology, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Min Chen
- Department of Microbiology, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| |
Collapse
|
7
|
Yeh CH, Chang YJ, Lin TJ, Wang CC. Total Synthesis of Campylobacter jejuni NCTC11168 Capsular Polysaccharide via the Intramolecular Anomeric Protection Strategy. J Am Chem Soc 2023; 145:9003-9010. [PMID: 37040604 DOI: 10.1021/jacs.3c00102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
The infection of Campylobacter jejuni results in a significant diarrhea disease, which is highly fatal to young children in unindustrialized countries. Developing a new therapy is required due to increasing antibiotic resistance. Herein, we described a total synthesis of a C. jejuni NCTC11168 capsular polysaccharide repeating unit containing a linker moiety via an intramolecular anomeric protection (iMAP) strategy. This one-step 1,6-protecting method structured the challenging furanosyl galactosamine configuration, facilitated further concise regioselective protection, and smoothed the heptose synthesis. The tetrasaccharide was constructed in a [2 + 1 + 1] manner. The synthesis of this complicated CPS tetrasaccharide was completed in merely 28 steps, including the preparation of all the building blocks, construction of the tetrasaccharide skeleton, and functional group transformations.
Collapse
Affiliation(s)
- Chun-Hong Yeh
- Institute of Chemistry, Academia Sinica, 128 Section 2, Academia Road, Taipei 115, Taiwan
- Chemical Biology and Molecular Biophysics (CBMB), Taiwan International Graduate Program (TIGP), Academia Sinica, 128 Section 2, Academia Road, Taipei 115, Taiwan
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang-Fu Road, Hsinchu 300, Taiwan
| | - Ya-Jou Chang
- Chemical Biology and Molecular Biophysics (CBMB), Taiwan International Graduate Program (TIGP), Academia Sinica, 128 Section 2, Academia Road, Taipei 115, Taiwan
- Genomics Research Center, Academia Sinica, 128 Section 2, Academia Road, Taipei 115, Taiwan
- Graduate Institute of Biochemical Sciences, National Taiwan University, 1 Section 4, Roosevelt Road, Taipei 106, Taiwan
| | - Tsung-Juin Lin
- Institute of Chemistry, Academia Sinica, 128 Section 2, Academia Road, Taipei 115, Taiwan
- Department of Chemistry, National Central University, 300 Zhong-da Road, Zhong Li, Taoyuan 320, Taiwan
| | - Cheng-Chung Wang
- Institute of Chemistry, Academia Sinica, 128 Section 2, Academia Road, Taipei 115, Taiwan
- Chemical Biology and Molecular Biophysics (CBMB), Taiwan International Graduate Program (TIGP), Academia Sinica, 128 Section 2, Academia Road, Taipei 115, Taiwan
| |
Collapse
|
8
|
Portes AB, Panzenhagen P, Pereira dos Santos AM, Junior CAC. Antibiotic Resistance in Campylobacter: A Systematic Review of South American Isolates. Antibiotics (Basel) 2023; 12:antibiotics12030548. [PMID: 36978415 PMCID: PMC10044704 DOI: 10.3390/antibiotics12030548] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/12/2023] Open
Abstract
In recent years, Campylobacter has become increasingly resistant to antibiotics, especially those first-choice drugs used to treat campylobacteriosis. Studies in South America have reported cases of antibiotic-resistant Campylobacter in several countries, mainly in Brazil. To understand the current frequency of antibiotic-resistant Campylobacter in humans, farm animals, and food of animal origin in South America, we systematically searched for different studies that have reported Campylobacter resistance. The most commonly reported species were C. jejuni and C. coli. Resistance to ciprofloxacin was found to be ubiquitous in the isolates. Nalidixic acid and tetracycline showed a significantly expressed resistance. Erythromycin, the antibiotic of first choice for the treatment of campylobacteriosis, showed a low rate of resistance in isolates but was detected in almost all countries. The main sources of antibiotic-resistant Campylobacter isolates were food of animal origin and farm animals. The results demonstrate that resistant Campylobacter isolates are disseminated from multiple sources linked to animal production in South America. The level of resistance that was identified may compromise the treatment of campylobacteriosis in human and animal populations. In this way, we are here showing all South American communities the need for the constant surveillance of Campylobacter resistance and the need for the strategic use of antibiotics in animal production. These actions are likely to decrease future difficulties in the treatment of human campylobacteriosis.
Collapse
Affiliation(s)
- Ana Beatriz Portes
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Graduate Program in Veterinary Hygiene and Technological Processing (PGHIGVET), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói 24220-000, Brazil
| | - Pedro Panzenhagen
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Correspondence:
| | - Anamaria Mota Pereira dos Santos
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Graduate Program in Veterinary Hygiene and Technological Processing (PGHIGVET), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói 24220-000, Brazil
| | - Carlos Adam Conte Junior
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Graduate Program in Veterinary Hygiene and Technological Processing (PGHIGVET), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói 24220-000, Brazil
- Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
- Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
| |
Collapse
|
9
|
European Food Safety Authority (EFSA), European Centre for Disease Prevention and Control (ECDC). The European Union Summary Report on Antimicrobial Resistance in zoonotic and indicator bacteria from humans, animals and food in 2020/2021. EFSA J 2023; 21:e07867. [PMID: 36891283 PMCID: PMC9987209 DOI: 10.2903/j.efsa.2023.7867] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
Antimicrobial resistance (AMR) data on zoonotic and indicator bacteria from humans, animals and food are collected annually by the EU Member States (MSs) and reporting countries, jointly analysed by EFSA and ECDC and presented in a yearly EU Summary Report. This report provides an overview of the main findings of the 2020-2021 harmonised AMR monitoring in Salmonella spp., Campylobacter jejuni and C. coli in humans and food-producing animals (broilers, laying hens and turkeys, fattening pigs and bovines under 1 year of age) and relevant meat thereof. For animals and meat thereof, indicator E. coli data on the occurrence of AMR and presumptive Extended spectrum β-lactamases (ESBL)-/AmpC β-lactamases (AmpC)-/carbapenemases (CP)-producers, as well as the occurrence of methicillin-resistant Staphylococcus aureus are also analysed. In 2021, MSs submitted for the first time AMR data on E. coli isolates from meat sampled at border control posts. Where available, monitoring data from humans, food-producing animals and meat thereof were combined and compared at the EU level, with emphasis on multidrug resistance, complete susceptibility and combined resistance patterns to selected and critically important antimicrobials, as well as Salmonella and E. coli isolates exhibiting ESBL-/AmpC-/carbapenemase phenotypes. Resistance was frequently found to commonly used antimicrobials in Salmonella spp. and Campylobacter isolates from humans and animals. Combined resistance to critically important antimicrobials was mainly observed at low levels except in some Salmonella serotypes and in C. coli in some countries. The reporting of a number of CP-producing E. coli isolates (harbouring bla OXA-48, bla OXA-181, and bla NDM-5 genes) in pigs, bovines and meat thereof by a limited number of MSs (4) in 2021, requests a thorough follow-up. The temporal trend analyses in both key outcome indicators (rate of complete susceptibility and prevalence of ESBL-/AmpC- producers) showed that encouraging progress have been registered in reducing AMR in food-producing animals in several EU MSs over the last years.
Collapse
|
10
|
Silvan JM, Guerrero-Hurtado E, Gutierrez-Docio A, Prodanov M, Martinez-Rodriguez AJ. Olive Leaf as a Source of Antibacterial Compounds Active against Antibiotic-Resistant Strains of Campylobacter jejuni and Campylobacter coli. Antibiotics (Basel) 2022; 12:26. [PMID: 36671227 PMCID: PMC9854969 DOI: 10.3390/antibiotics12010026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Campylobacter spp. are the main cause of bacterial gastroenteritis worldwide, and broiler chicks are the main vector of transmission to humans. The high prevalence of Campylobacter in poultry meat and the increase of antibiotic resistant strains have raised the need to identify new antimicrobial agents. For this reason, the aim of the current study was to evaluate the antibacterial activity of two extracts of olive leaf against antibiotic-resistant Campylobacter strains (C. jejuni and C. coli) isolated from poultry food chain. The extracts of olive leaf (E1 and E2) were markedly different in their chemical compositions. While E1 was composed predominantly of highly hydrophilic compounds such as hydroxytyrosol and hydroxytyrosol glucosides (14,708 mg/100 g), E2 mainly contained moderately hydrophilic compounds, with oleuropein (20,471 mg/100 g) being prevalent. All Campylobacter strains exhibited similar antibiotic profiles, being resistant to ciprofloxacin and tetracycline. E1 showed strong antibacterial activity and reduced bacterial growth from 4.12 to 8.14 log CFU/mL, depending on the strain. Hydroxytyrosol was the main compound responsible, causing the inhibition of growth of Campylobacter strains at low concentrations (0.1-0.25 mg/mL). E2 demonstrated a lower antibacterial effect than E1, reducing growth from 0.52 to 2.49 log CFU/mL. The results of this study suggest that the optimization of the composition of olive-leaf extracts can provide improved treatment results against Campylobacter strains.
Collapse
Affiliation(s)
- Jose Manuel Silvan
- Microbiology and Food Biocatalysis Group (MICROBIO), Department of Biotechnology and Food Microbiology, Institute of Food Science Research (CIAL, CSIC-UAM), Autonomous University of Madrid, 28049 Madrid, Spain
| | - Esperanza Guerrero-Hurtado
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research (CIAL, CSIC-UAM), Autonomous University of Madrid, 28049 Madrid, Spain
| | - Alba Gutierrez-Docio
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research (CIAL, CSIC-UAM), Autonomous University of Madrid, 28049 Madrid, Spain
| | - Marin Prodanov
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research (CIAL, CSIC-UAM), Autonomous University of Madrid, 28049 Madrid, Spain
| | - Adolfo J. Martinez-Rodriguez
- Microbiology and Food Biocatalysis Group (MICROBIO), Department of Biotechnology and Food Microbiology, Institute of Food Science Research (CIAL, CSIC-UAM), Autonomous University of Madrid, 28049 Madrid, Spain
| |
Collapse
|
11
|
Djeghout B, Bloomfield SJ, Rudder S, Elumogo N, Mather AE, Wain J, Janecko N. Comparative genomics of Campylobacter jejuni from clinical campylobacteriosis stool specimens. Gut Pathog 2022; 14:45. [PMID: 36476389 PMCID: PMC9727990 DOI: 10.1186/s13099-022-00520-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Campylobacter jejuni is a pervasive pathogen of major public health concern with a complex ecology requiring accurate and informative approaches to define pathogen diversity during outbreak investigations. Source attribution analysis may be confounded if the genetic diversity of a C. jejuni population is not adequately captured in a single specimen. The aim of this study was to determine the genomic diversity of C. jejuni within individual stool specimens from four campylobacteriosis patients. Direct plating and pre-culture filtration of one stool specimen per patient was used to culture multiple isolates per stool specimen. Whole genome sequencing and pangenome level analysis were used to investigate genomic diversity of C. jejuni within a patient. RESULTS A total 92 C. jejuni isolates were recovered from four patients presenting with gastroenteritis. The number of isolates ranged from 13 to 30 per patient stool. Three patients yielded a single C. jejuni multilocus sequence type: ST-21 (n = 26, patient 4), ST-61 (n = 30, patient 1) and ST-2066 (n = 23, patient 2). Patient 3 was infected with two different sequence types [ST-51 (n = 12) and ST-354 (n = 1)]. Isolates belonging to the same sequence type from the same patient specimen shared 12-43 core non-recombinant SNPs and 0-20 frameshifts with each other, and the pangenomes of each sequence type consisted of 1406-1491 core genes and 231-264 accessory genes. However, neither the mutation nor the accessory genes were connected to a specific functional gene category. CONCLUSIONS Our findings show that the C. jejuni population recovered from an individual patient's stool are genetically diverse even within the same ST and may have shared common ancestors before specimens were obtained. The population is unlikely to have evolved from a single isolate at the time point of initial patient infection, leading us to conclude that patients were likely infected with a heterogeneous C. jejuni population. The diversity of the C. jejuni population found within individual stool specimens can inform future methodological approaches to attribution and outbreak investigations.
Collapse
Affiliation(s)
- Bilal Djeghout
- grid.40368.390000 0000 9347 0159Quadram Institute Bioscience, Rosalind Franklin Rd, Norwich Research Park, Norwich, NR4 7UQ UK
| | - Samuel J. Bloomfield
- grid.40368.390000 0000 9347 0159Quadram Institute Bioscience, Rosalind Franklin Rd, Norwich Research Park, Norwich, NR4 7UQ UK
| | - Steven Rudder
- grid.40368.390000 0000 9347 0159Quadram Institute Bioscience, Rosalind Franklin Rd, Norwich Research Park, Norwich, NR4 7UQ UK
| | - Ngozi Elumogo
- grid.40368.390000 0000 9347 0159Quadram Institute Bioscience, Rosalind Franklin Rd, Norwich Research Park, Norwich, NR4 7UQ UK ,grid.416391.80000 0004 0400 0120Eastern Pathology Alliance, Norfolk and Norwich University Hospital, Norwich, NR4 7UY UK
| | - Alison E. Mather
- grid.40368.390000 0000 9347 0159Quadram Institute Bioscience, Rosalind Franklin Rd, Norwich Research Park, Norwich, NR4 7UQ UK ,grid.8273.e0000 0001 1092 7967Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, NR4 7TJ UK
| | - John Wain
- grid.40368.390000 0000 9347 0159Quadram Institute Bioscience, Rosalind Franklin Rd, Norwich Research Park, Norwich, NR4 7UQ UK ,grid.8273.e0000 0001 1092 7967Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, NR4 7TJ UK
| | - Nicol Janecko
- grid.40368.390000 0000 9347 0159Quadram Institute Bioscience, Rosalind Franklin Rd, Norwich Research Park, Norwich, NR4 7UQ UK
| |
Collapse
|
12
|
Espunyes J, Illera L, Dias-Alves A, Lobato L, Ribas MP, Manzanares A, Ayats T, Marco I, Cerdà-Cuéllar M. Eurasian griffon vultures carry widespread antimicrobial resistant Salmonella and Campylobacter of public health concern. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:157189. [PMID: 35803423 DOI: 10.1016/j.scitotenv.2022.157189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/30/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
The global emergence of antimicrobial-resistant (AMR) strains of Salmonella and Campylobacter is a serious public health concern. Both bacteria are leading causes of human gastrointestinal foodborne infections and the two most reported zoonoses in the European Union. By feeding on livestock carcasses, especially from intensive farming, as well as on landfill sites, obligate avian scavengers can become infected with zoonotic pathogens and AMR strains, and can be considered large-scale sentinels of the environmental burden. In this study, we assessed the occurrence and AMR of Salmonella spp. and Campylobacter spp. in 218 Eurasian griffon vultures (Gyps fulvus) captured in north-eastern Spain. We isolated Salmonella from 8.1 % of individuals and Campylobacter lari from 4.7 %. Among the 10 different Salmonella serovars found, monophasic S. Typhimurium was the most frequent. Genotyping analysis revealed same strains of monophasic S. Typhimurium shared by gulls, livestock and humans. Isolates from both bacterial species presented AMR to important antimicrobials (tetracyclines, fluoroquinolones and β-lactams). In conclusion, this study shows that Eurasian griffon vultures in north-eastern Spain are carriers of widespread AMR zoonotic Salmonella and Campylobacter. More comprehensive analyses are still needed to understand the potential risk of spill-over from those wild birds to humans.
Collapse
Affiliation(s)
- Johan Espunyes
- Wildlife Conservation Medicine Research Group (WildCoM), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - Lucía Illera
- Wildlife Conservation Medicine Research Group (WildCoM), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Andrea Dias-Alves
- Wildlife Conservation Medicine Research Group (WildCoM), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Lourdes Lobato
- Wildlife Conservation Medicine Research Group (WildCoM), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Maria Puig Ribas
- Wildlife Conservation Medicine Research Group (WildCoM), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Alicia Manzanares
- Unitat mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
| | - Teresa Ayats
- Unitat mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
| | - Ignasi Marco
- Wildlife Conservation Medicine Research Group (WildCoM), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Marta Cerdà-Cuéllar
- Unitat mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain; IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
| |
Collapse
|
13
|
Ning Q, Chen T, Wang G, Xu D, Yu Y, Mao Q, Li T, Li L, Li J, Lu X, Li J, Li Z, Zhang W, Xiao Y, Meng Q, Mi Y, Shang J, Yu Y, Zhao Y, Zhao C, Zhao H, Huang J, Peng J, Tang H, Tang X, Hu J, Hu B, Guo W, Zheng B, Chen B, Zhang Y, Wei J, Sheng J, Chen Z, Wang M, Xie Q, Wang Y, Wang FS, Hou J, Duan Z, Wei L, Jia J, Chinese Society of Infectious Disease of Chinese Medical Association. Expert Consensus on Diagnosis and Treatment of End-Stage Liver Disease Complicated with Infections. INFECTIOUS DISEASES & IMMUNITY 2022; 2:168-178. [DOI: 10.1097/id9.0000000000000055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Indexed: 10/13/2023]
Abstract
Abstract
End-stage liver disease (ESLD) is a life-threatening clinical syndrome that markedly increases mortality in patients with infections. In patients with ESLD, infections can induce or aggravate the occurrence of liver decompensation. Consequently, infections are among the most common complications of disease progression. There is a lack of working procedure for early diagnosis and appropriate management for patients with ESLD complicated by infections as well as local and international guidelines or consensus. This consensus assembled up-to-date knowledge and experience across Chinese colleagues, providing data on principles as well as working procedures for the diagnosis and treatment of patients with ESLD complicated by infections.
Collapse
Affiliation(s)
- Qin Ning
- Department of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tao Chen
- Department of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Guiqiang Wang
- Department of Infectious Disease, Center for Liver Disease, Peking University First Hospital, Beijing 100034, China
| | - Dong Xu
- Department of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yanyan Yu
- Department of Infectious Disease, Center for Liver Disease, Peking University First Hospital, Beijing 100034, China
| | - Qing Mao
- Department of Infectious Diseases, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Taisheng Li
- Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Jun Li
- Department of Infectious Disease, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Xiaoju Lu
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Jiabin Li
- Department of Infectious Diseases, First Affiliated Hospital of Anhui Medical University, Hefei 230031, China
| | - Zhiwei Li
- Department of Infectious Diseases, Shengjing Hospital, Affiliated Hospital of China Medical University, Shenyang 110801, China
| | - Wenhong Zhang
- Department of Infectious Diseases, Institute of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yonghong Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Qinghua Meng
- Department of Severe Liver Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Yuqiang Mi
- Nankai University Second People's Hospital, Tianjin 300071, China
| | - Jia Shang
- Department of Infectious Disease, People's Hospital of Henan Province, Zhengzhou 450003, China
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310020, China
| | - Yingren Zhao
- Department of Infectious Diseases, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Caiyan Zhao
- Department of Infectious Diseases, Third Affiliated Hospital of Hebei Medical University, Shijiazhuang 050051, China
| | - Hong Zhao
- Department of Infectious Disease, Center for Liver Disease, Peking University First Hospital, Beijing 100034, China
| | - Jianrong Huang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Jie Peng
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xiaoping Tang
- Research Institute of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou 510060, China
| | - Jinhua Hu
- Liver Failure Treatment and Research Center, The Fifth Medical Center, China PLA General Hospital, Beijing 100039, China
| | - Bijie Hu
- Department of Infectious Diseases, Zhongshan Hospital of Fudan University, Shanghai 200032, China
| | - Wei Guo
- Department of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Bo Zheng
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing 100034, China
| | - Baiyi Chen
- Department of Infectious Diseases, The First Hospital of China Medical University, Shenyang 110002, China
| | - Yuexin Zhang
- Center of Infectious Diseases, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
| | - Jia Wei
- Department of Infectious Disease, The Second People's Hospital, Kunming 650201, China
| | - Jifang Sheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Zhi Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Minggui Wang
- Department of Infectious Diseases, Institute of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Qing Xie
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Yuming Wang
- Department of Infectious Diseases, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Fu-Sheng Wang
- Liver Failure Treatment and Research Center, The Fifth Medical Center, China PLA General Hospital, Beijing 100039, China
| | - Jinlin Hou
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhongping Duan
- Artificial Liver Center, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Lai Wei
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University Hepatology Institute, Peking University People's Hospital, Beijing 100044, China
| | - Jidong Jia
- Liver Research Center, Beijing Friendship Hospital, Capital Medial University; Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis & National Clinical Research Center for Digestive Diseases, Beijing 100050, China
| | | |
Collapse
|
14
|
Antibiotic Resistance in Campylobacter spp. Isolated from Broiler Chicken Meat and Human Patients in Estonia. Microorganisms 2022; 10:microorganisms10051067. [PMID: 35630509 PMCID: PMC9147927 DOI: 10.3390/microorganisms10051067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 02/01/2023] Open
Abstract
Poultry meat is considered the most important source of Campylobacter spp. Because of rising antimicrobial resistance in Campylobacter spp., this study investigated the antimicrobial resistance of Campylobacter isolates from fresh broiler chicken meat originating from the Baltic countries sold in Estonian retail settings. Additionally, human clinical isolates obtained from patients with Campylobacter enteritis in Estonia were analysed. The aim of this study was to investigate the susceptibility of Campylobacter spp. to nalidixic acid, ciprofloxacin, tetracycline, streptomycin, erythromycin and gentamicin. The broth microdilution method with the EUCAMP2 panel was used for MIC determination and antimicrobial mechanisms were analysed using WGS data. A total of 46 Campylobacter strains were analysed, of which 26 (42.6%) originated from Lithuanian, 16 (26.2%) from Latvian, and 4 (6.6%) from Estonian fresh broiler chicken meat. In addition, 15 (24.6%) Campylobacter strains of patients with campylobacteriosis were tested. The antimicrobial resistance patterns of Campylobacter spp. isolated from fresh broiler chicken meat samples of Estonian, Latvian and Lithuanian origin collected in Estonian retail, and from patients with Campylobacter enteric infections, were determined. A total of 46 (75%) of the isolates tested were C. jejuni and 15 (25%) were C. coli. Campylobacter resistance was highest to nalidixic acid (90.2% of strains) and ciprofloxacin (90.2%), followed by tetracycline (57.4%), streptomycin (42.6%) and erythromycin (6.6%). All strains were sensitive to gentamicin. Additionally, antimicrobial resistance genes and point mutations were detected in 27 C. jejuni and 8 C. coli isolates previously assigned as resistant with the phenotypic method. A high antibiotic resistance of Campylobacter spp. in Lithuanian- and Latvian-origin broiler chicken meat and Estonian clinical isolates was found. Similar antibiotic resistance patterns were found for broiler chicken meat and human Campylobacter isolates.
Collapse
|
15
|
Ramatla T, Mileng K, Ndou R, Tawana M, Mofokeng L, Syakalima M, Lekota KE, Thekisoe O. Campylobacter jejuni from Slaughter Age Broiler Chickens: Genetic Characterization, Virulence, and Antimicrobial Resistance Genes. Int J Microbiol 2022; 2022:1713213. [PMID: 35634271 PMCID: PMC9135541 DOI: 10.1155/2022/1713213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/26/2022] [Accepted: 05/05/2022] [Indexed: 11/17/2022] Open
Abstract
Campylobacter jejuni is a major cause of food-borne human gastroenteritis worldwide and is designated as a high priority antimicrobial-resistant pathogen by the World Health Organization (WHO). In this study, a total of 26 C. jejuni isolates from broiler chickens were screened for the presence of virulence and antimicrobial resistance genes by PCR. As a result, the study detected 11/26 (42.3%), 9/26 (34.6%), 8/26 (30.8%), 7/26 (26.9%), 6/26 (23.1%), and 6/26 (23.1%) of cdtC, pldA, cdtB, cdtA, cadF, and ciaB virulence genes, respectively, with seven of the isolates carrying more than two virulence genes. The majority of the isolates n = 25 (96.1%) were resistant to nalidixic acid, followed by n = 21 (80.7%), n = 22 (84.6%), and n = 5 (19.2%) for tetracycline, erythromycin, and ciprofloxacin, respectively. Most isolates were harboring catI (n = 16; 84.2%), catII (n = 15; 78.9%), catIII (n = 10; 52.6%), catIV (n = 2; 10.5%), floR (n = 10; 52.6%), ermB (n = 14; 73.7%), tetO (n = 13; 68.4%), tetA (n = 9; 47.4%), mcr-4 (n = 8; 42.1%), and ampC (n = 2; 10.5%). Meanwhile, mcr-1, mcr-2, mcr-3, mcr-5, tet(X), tet(P), and tet(W) genes were not detected in all isolates. Class I and Class II integrons were detected in 92.3% (n = 24) and 65.4% (n = 17) isolates, respectively. About 31% (8 of the 26 isolates) isolates were carrying more than two resistance genes. According to our knowledge, this is the first study to detect class II integrons in Campylobacter spp. (C. jejuni). The high prevalence of cdtA, cdtB, cdtC, cadF, pldA, and ciaB genes and antibiotic resistance genes in C. jejuni in this study indicates the pathogenic potential of these isolates. Majority of the isolates demonstrated resistance to nalidixic acid, tetracycline (tet), and erythromycin (ermB), which are the drugs of choice for treating Campylobacter infections. Therefore, these findings highlight the importance of implementing an efficient strategy to control Campylobacter in chickens and to reduce antimicrobial use in the poultry industry, which will help to prevent the spread of infections to humans.
Collapse
Affiliation(s)
- Tsepo Ramatla
- Department of Animal Health, School of Agriculture, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
- Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom 2531, South Africa
| | - Kealeboga Mileng
- Department of Animal Health, School of Agriculture, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Rendani Ndou
- Department of Animal Health, School of Agriculture, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Mpho Tawana
- Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom 2531, South Africa
| | - Lehlohonolo Mofokeng
- Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom 2531, South Africa
| | - Michelo Syakalima
- Department of Animal Health, School of Agriculture, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
- University of Zambia, School of Veterinary Medicine, Department of Disease Control, P.O. Box 32379, Lusaka, Zambia
| | - Kgaugelo E. Lekota
- Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom 2531, South Africa
| | - Oriel Thekisoe
- Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom 2531, South Africa
| |
Collapse
|
16
|
Conesa A, Garofolo G, Di Pasquale A, Cammà C. Monitoring AMR in Campylobacter jejuni from Italy in the last 10 years (2011-2021): Microbiological and WGS data risk assessment. EFSA J 2022; 20:e200406. [PMID: 35634560 PMCID: PMC9131813 DOI: 10.2903/j.efsa.2022.e200406] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Campylobacter jejuni is considered as the main pathogen in human food-borne outbreaks worldwide. Over the past years, several studies have reported antimicrobial resistance (AMR) in C. jejuni strains. In Europe, the official monitoring of AMR comprises the testing of Campylobacter spp. from food-producing animals because this microorganism is responsible for human infections and usually predominant in poultry. Food-producing animals are considered to be a major source of campylobacteriosis through contamination of food products. Concerns are growing due to the current classification of C. jejuni by the WHO as a 'high priority pathogen' due to the emergence of resistance to multiple drugs such as those belonging to the fluoroquinolones, macrolides and other classes, which limits the treatment alternatives. Knowledge about the contributions of different food sources to gastrointestinal disease is fundamental to prioritise food safety interventions and to establish proper control strategies. Assessing the genetic diversity among Campylobacter species is essential to the understanding of their epidemiology and population structure. Using a population genetic approach and grouping the isolates into sequence types within different clonal complexes, it is possible to investigate the source of the human cases. The work programme was aimed for the fellow to assess the AMR of C. jejuni isolated from humans, poultry and birds from wild and urban Italian habitats. Given the public health concern represented by resistant pathogens in food-producing animals and the paucity of data about this topic in Italy, the aim was to identify correlations between phenotypic and genotypic AMR and comparing the origin of the isolates. The work programme allowed the fellow to acquire knowledge, skills and competencies on the web-based tools used by IZSAM to process the NGS data and perform bioinformatics analyses for the identification of epidemiological clusters, the study of AMR patterns in C. jejuni isolates, and the assessment of the human exposure to such AMR pathogens. Furthermore, the fellow became able to transfer the acquired knowledge through innovative web-based didactical tools applied to WGS and clustering of specific food-borne pathogens, with particular reference to C. jejuni. To achieve this objective, 2,734 C. jejuni strains isolated from domestic and wild animals and humans, during the period 2011-2021 were analysed. The resistance phenotypes of the isolates were determined using the microdilution method with EUCAST breakpoints, for the following antibiotics: nalidixic acid, ciprofloxacin, chloramphenicol, erythromycin, gentamicin, streptomycin, tetracycline. The data were complemented by WGS data for each strain, uploaded in the Italian information system for the collection and analysis of complete genome sequence of pathogens isolated from animal, food and environment (GENPAT) developed and maintained at IZSAM; information like clonal complex and sequence type to understand the phylogenetical distance between strains according to their origins were also considered. This work underlines that a better knowledge of the resistance levels of C. jejuni is necessary, and mandatory monitoring of Campylobacter species in the different animal productions is strongly suggested.
Collapse
Affiliation(s)
- A Conesa
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise Giuseppe Caporale – IZSAMTeramoItaly
| | - G Garofolo
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise Giuseppe Caporale – IZSAMTeramoItaly
| | - A Di Pasquale
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise Giuseppe Caporale – IZSAMTeramoItaly
| | - C Cammà
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise Giuseppe Caporale – IZSAMTeramoItaly
| |
Collapse
|
17
|
Jiang L, Gao J, Wang P, Liu Y. Relapsing cellulitis associated with Campylobacter coli bacteremia in a Good’s syndrome patient: a case report. BMC Infect Dis 2022; 22:354. [PMID: 35397507 PMCID: PMC8994272 DOI: 10.1186/s12879-022-07324-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 03/29/2022] [Indexed: 11/11/2022] Open
Abstract
Background Good’s syndrome (GS) is characterized by immunodeficiency, and patients diagnosed with GS are susceptible to infection or even bacteremia, which is the most evident complication. Campylobacter coli (C. coli) rarely causes bacteremia or extraintestinal infection. We report herein a case with GS in which right leg cellulitis associated with C. coli bacteremia occurred three times over one and a half years. Case presentation A 41-year-old Chinese male with GS was diagnosed with C. coli infection. He presented with swelling and redness of right lower leg and developed bacteremia due to C. coli repeatedly. Bacteremia was confirmed by bacteriological examination. Adding long-term oral antibiotic treatment with amoxicillin/clavulanate potassium and gentamicin following intravenous meropenem and amikacin was very effective. The blood cultures became negative and the patient has been free from any symptoms encountered for more than one year without relapse of bacteremia. Conclusions Patients with GS and their physicians should carefully consider the antibacterial treatment options against C. coli bacteremia. Combined anti-infective therapy involving aminoglycoside is preferred in the treatment of C. coli bacteremia in GS patients.
Collapse
|
18
|
Mileng K, Ramatla TA, Ndou RV, Thekisoe OMM, Syakalima M. Isolation and antibiotic sensitivity of Campylobacter species from fecal samples of broiler chickens in North West Province, South Africa. Vet World 2022; 14:2929-2935. [PMID: 35017840 PMCID: PMC8743783 DOI: 10.14202/vetworld.2021.2929-2935] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 10/11/2021] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Infections with Campylobacter species have gained recognition as the most frequent cause of foodborne gastroenteritis globally. Their significance in South Africa is still an area of study interest. This study was, therefore, carried out to determine the occurrence of Campylobacter species in chickens from North West Province of South Africa as well as their antibiotic sensitivity status. Materials and Methods: A total of 2400 chicken fecal samples were collected and pooled to a total of 480 samples from five registered active poultry abattoirs in the Ngaka Modiri Molema District of North West Province, South Africa. Polymerase chain reaction (PCR) was used for the detection of Campylobacter spp. targeting the 16SrRNA gene while antibiotic sensitivity was determined using disk diffusion inhibition test. Results: After isolation, a total of 26 samples were confirmed to be harboring Campylobacter jejuni by PCR and sequencing. C. jejuni was found to be the only isolate detected in all the fecal samples tested. The study further demonstrated that C. jejuni infections were highest in the summer season (3%) followed by autumn and winter at 1%, while there were none detected in the spring. The isolated C. jejuni-positive samples on disk diffusion inhibition test displayed resistance to nalidixic acid, tetracycline, erythromycin, and ciprofloxacin at 98%, 80%, 83%, and 21%, respectively. Conclusion: C. jejuni isolated in this study is known to cause disease in humans, and thus its occurrence requires application of “One Health” strategy to reduce the spread of this zoonotic pathogen in South Africa.
Collapse
Affiliation(s)
- Kealeboga Mileng
- Department of Animal Health, School of Agriculture, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
| | - Tsepo A Ramatla
- Department of Animal Health, School of Agriculture, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa.,Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom 2531, South Africa
| | - Rendani V Ndou
- Department of Animal Health, School of Agriculture, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
| | - Oriel M M Thekisoe
- Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom 2531, South Africa
| | - Michelo Syakalima
- Department of Animal Health, School of Agriculture, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
| |
Collapse
|
19
|
Lanzl MI, van Mastrigt O, Zwietering MH, Abee T, den Besten HMW. Role of substrate availability in the growth of Campylobacter co-cultured with extended spectrum beta-lactamase-producing Escherichia coli in Bolton broth. Int J Food Microbiol 2021; 363:109518. [PMID: 34996645 DOI: 10.1016/j.ijfoodmicro.2021.109518] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/17/2021] [Accepted: 12/24/2021] [Indexed: 01/03/2023]
Abstract
It is well-established that Extended-spectrum beta-lactamase-producing (ESBL-) Escherichia coli challenge reliable detection of campylobacters during enrichment in Bolton broth (BB) following ISO 10272-1:2017. The overgrowth of Campylobacter by ESBL-E. coli in the enrichment medium BB can lead to false-negative detection outcomes, but the cause for the growth suppression is yet unknown. A plausible reason could be the competition-induced lack of certain growth substrates. Therefore, this study aimed to investigate whether campylobacters and ESBL-E. coli compete for the same medium components and whether this is the cause for the observed growth repression. The availability of possible growth substrates in BB was determined and changes in their extracellular concentration were measured over time during mono-culture enrichment of C. jejuni, C. coli or ESBL-E. coli as well as in co-culture enrichments of campylobacters and ESBL-E. coli. Comparative analysis showed lactate and fumarate utilization by C. jejuni and C. coli exclusively, whereas ESBL-E. coli rapidly consumed asparagine, glutamine/arginine, lysine, threonine, tryptophan, pyruvate, glycerol, cellobiose, and glucose. Both campylobacters and ESBL-E. coli utilized aspartate, serine, formate, a-ketoglutarate and malate. Trends in compound utilization were similar for C. jejuni and C. coli and trends in compound utilization were rather comparable during enrichment of reference and freeze-stressed campylobacters. Since final cell densities of C. jejuni and C. coli in co-cultures were not enhanced by the addition of surplus l-serine and final cell densities were similar in fresh and spent medium, growth suppression seems not to be caused by a lack of substrates or production of inhibitory compounds. We hypothesized that oxygen availability was limiting growth in co-cultures. Higher oxygen availability increased the competitive fitness of C. jejuni 81-176 in co-culture with ESBL-E. coli in duplicate experiments, as cell concentrations in stationary phase were similar to those without competition. This could indicate the critical role of oxygen availability during the growth of Campylobacter and offers potential for further improvement of Campylobacter spp. enrichment efficacy.
Collapse
Affiliation(s)
- M I Lanzl
- Food Microbiology, Wageningen University & Research, Netherlands
| | - O van Mastrigt
- Food Microbiology, Wageningen University & Research, Netherlands
| | - M H Zwietering
- Food Microbiology, Wageningen University & Research, Netherlands
| | - T Abee
- Food Microbiology, Wageningen University & Research, Netherlands
| | - H M W den Besten
- Food Microbiology, Wageningen University & Research, Netherlands.
| |
Collapse
|
20
|
Aleksić E, Miljković-Selimović B, Tambur Z, Aleksić N, Biočanin V, Avramov S. Resistance to Antibiotics in Thermophilic Campylobacters. Front Med (Lausanne) 2021; 8:763434. [PMID: 34859016 PMCID: PMC8632019 DOI: 10.3389/fmed.2021.763434] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/21/2021] [Indexed: 12/23/2022] Open
Abstract
Campylobacter jejuni (C. jejuni) is one of the most frequent causes of bacterial enterocolitis globally. The disease in human is usually self-limiting, but when complications arise antibiotic therapy is required at a time when resistance to antibiotics is increasing worldwide. Mechanisms of antibiotic resistance in bacteria are diverse depending on antibiotic type and usage and include: enzymatic destruction or drug inactivation; alteration of the target enzyme; alteration of cell membrane permeability; alteration of ribosome structure and alteration of the metabolic pathway(s). Resistance of Campylobacter spp. to antibiotics, especially fluoroquinolones is now a major public health problem in developed and developing countries. In this review the mechanisms of resistance to fluoroquinolones, macrolides, tetracycline, aminoglycoside and the role of integrons in resistance of Campylobacter (especially at the molecular level) are discussed, as well as the mechanisms of resistance to β-lactam antibiotics, sulphonamides and trimethoprim. Multiple drug resistance is an increasing problem for treatment of campylobacter infections and emergence of resistant strains and resistance are important One Health issues.
Collapse
Affiliation(s)
- Ema Aleksić
- Faculty of Stomatology Pancevo, University Business Academy in Novi Sad, Pančevo, Serbia
| | | | - Zoran Tambur
- Faculty of Stomatology Pancevo, University Business Academy in Novi Sad, Pančevo, Serbia
| | - Nikola Aleksić
- Faculty of Stomatology Pancevo, University Business Academy in Novi Sad, Pančevo, Serbia.,Institute for Cardiovascular Disease "Dedinje, "Belgrade, Serbia
| | - Vladimir Biočanin
- Faculty of Stomatology Pancevo, University Business Academy in Novi Sad, Pančevo, Serbia
| | - Stevan Avramov
- Faculty of Stomatology Pancevo, University Business Academy in Novi Sad, Pančevo, Serbia.,Institute for Biological Research "Siniša Stanković," University of Belgrade, Belgrade, Serbia
| |
Collapse
|
21
|
Vedin T, Bergenfeldt H. Late Campylobacter jejuni mastitis after augmentation mammoplasty. JPRAS Open 2021; 30:13-16. [PMID: 34337129 PMCID: PMC8318823 DOI: 10.1016/j.jpra.2021.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/10/2021] [Indexed: 11/22/2022] Open
Abstract
Breast implant-associated infections (BIAI) occur in approximately 2% of patients after augmentation mammoplasty. In some cases, BIAI can be treated conservatively, whereas others need implant removal. Knowledge of uncommon potential pathogens in BIAI is important to ensure optimal treatment of BIAI. In the present case report, we describe a case of bilateral late Campylobacter jejuni mastitis in a 34-year-old woman without previous symptoms of gastroenteritis. While Staphylococci are common causative pathogens in BIAI, there are numerous potential pathogens. This case highlights the importance of careful consideration of antibiotic treatment and switch to broad-spectrum antibiotic regimen in BIAI not responding to initial treatment.
Collapse
Affiliation(s)
- Tomas Vedin
- Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
- Department of Surgery, Helsingborg Hospital, Helsingborg, Sweden
| | - Henrik Bergenfeldt
- Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
- Department of Surgery, Helsingborg Hospital, Helsingborg, Sweden
| |
Collapse
|
22
|
Lazo-Láscarez S, Gutiérrez LZ, Duarte-Martínez F, Romero Zúñiga JJ, Arias Echandi ML, Muñoz-Vargas L. Antimicrobial Resistance and Genetic Diversity of Campylobacter spp. Isolated from Broiler Chicken at Three Levels of the Poultry Production Chain in Costa Rica. J Food Prot 2021; 84:2143-2150. [PMID: 34324670 DOI: 10.4315/jfp-21-111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/29/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT Campylobacter spp. are considered the most common bacterial cause of human gastroenteritis, one of the four main causes of diarrheal disease worldwide, and they are one of the main foodborne pathogens causing hospitalizations and deaths. Here, 148 strains of Campylobacter spp. isolated from poultry at farms, processing plants, and retail stores in Costa Rica were examined for resistance to six antibiotics. An agar dilution test was used to determine the MIC and susceptibility profiles against doxycycline, ciprofloxacin, nalidixic acid, enrofloxacin, chloramphenicol, and erythromycin. In addition, a pulsed-field gel electrophoresis analysis was carried out to determine the genotype relatedness of a representative subset of the isolates. Approximately 136 (92%) of the 148 analyzed isolates showed resistance to the tested drugs. Nalidixic acid, ciprofloxacin, and enrofloxacin were the antibiotics for which resistance occurred most frequently (91.2, 85.8, and 85.8%, respectively), followed by doxycycline (25.0%), chloramphenicol (5.4%), and erythromycin (2.7%). The profile conferring only resistance to quinolones was the most frequently found, and only 2.0% of the isolates showed resistance to quinolones and macrolides simultaneously. Results showed a high frequency of resistant Campylobacter spp. strains and evidenced the distribution, selection, and circulation of resistant strains along the poultry chain from farms to consumers. Cross-contamination and resistance seem to play important roles in the dissemination of these strains at specific points of the poultry chain, even when control measures are being taken. The establishment of effective surveillance and control strategies represents an essential tool for foodborne diseases mitigation. The rational use of antibiotics, especially those still showing efficacy, should be a priority in both human and veterinary medicine to contain the progress of this phenomenon and its consequences. HIGHLIGHTS
Collapse
Affiliation(s)
| | | | - Francisco Duarte-Martínez
- National Reference Centre for Microbiological Food Safety, Costa Rican Institute for Research and Education in Nutrition and Health (INCIENSA), Tres Ríos, Cartago, Costa Rica
| | | | - María Laura Arias Echandi
- Food and Water Microbiology Laboratory, Faculty of Microbiology and Tropical Disease Research Center, University of Costa Rica, San José 2060, Costa Rica
| | - Lohendy Muñoz-Vargas
- Escuela de Medicina Veterinaria, Universidad Nacional, Heredia 86-3000, Costa Rica
| |
Collapse
|
23
|
Guernier-Cambert V, Trachsel J, Maki J, Qi J, Sylte MJ, Hanafy Z, Kathariou S, Looft T. Natural Horizontal Gene Transfer of Antimicrobial Resistance Genes in Campylobacter spp. From Turkeys and Swine. Front Microbiol 2021; 12:732969. [PMID: 34646252 PMCID: PMC8504540 DOI: 10.3389/fmicb.2021.732969] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/13/2021] [Indexed: 12/01/2022] Open
Abstract
Antibiotic-resistant Campylobacter constitutes a serious threat to public health. The clonal expansion of resistant strains and/or the horizontal spread of resistance genes to other strains and species can hinder the clinical effectiveness of antibiotics to treat severe campylobacteriosis. Still, gaps exist in our understanding of the risks of acquisition and spread of antibiotic resistance in Campylobacter. While the in vitro transfer of antimicrobial resistance genes between Campylobacter species via natural transformation has been extensively demonstrated, experimental studies have favored the use of naked DNA to obtain transformants. In this study, we used experimental designs closer to real-world conditions to evaluate the possible transfer of antimicrobial resistance genes between Campylobacter strains of the same or different species (Campylobacter coli or Campylobacter jejuni) and originating from different animal hosts (swine or turkeys). This was evaluated in vitro through co-culture experiments and in vivo with dual-strain inoculation of turkeys, followed by whole genome sequencing of parental and newly emerged strains. In vitro, we observed four independent horizontal gene transfer events leading to the acquisition of resistance to beta-lactams (blaOXA), aminoglycosides [aph(2′′)-If and rpsL] and tetracycline [tet(O)]. Observed events involved the displacement of resistance-associated genes by a mutated version, or the acquisition of genomic islands harboring a resistance determinant by homologous recombination; we did not detect the transfer of resistance-carrying plasmids even though they were present in some strains. In vivo, we recovered a newly emerged strain with dual-resistance pattern and identified the replacement of an existing non-functional tet(O) by a functional tet(O) in the recipient strain. Whole genome comparisons allowed characterization of the events involved in the horizontal spread of resistance genes between Campylobacter following in vitro co-culture and in vivo dual inoculation. Our study also highlights the potential for antimicrobial resistance transfer across Campylobacter species originating from turkeys and swine, which may have implications for farms hosting both species in close proximity.
Collapse
Affiliation(s)
- Vanina Guernier-Cambert
- Food Safety and Enteric Pathogens Research Unit, United States Department of Agriculture, Agricultural Research Services, National Animal Disease Center, Ames, Ames, IA, United States.,Agricultural Research Service Research Participation Program, Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
| | - Julian Trachsel
- Food Safety and Enteric Pathogens Research Unit, United States Department of Agriculture, Agricultural Research Services, National Animal Disease Center, Ames, Ames, IA, United States
| | - Joel Maki
- Food Safety and Enteric Pathogens Research Unit, United States Department of Agriculture, Agricultural Research Services, National Animal Disease Center, Ames, Ames, IA, United States.,Agricultural Research Service Research Participation Program, Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States.,Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States
| | - Jing Qi
- Shandong Academy of Agricultural Sciences, Institute of Animal Science and Veterinary Medicine, Jinan, China
| | - Matthew J Sylte
- Food Safety and Enteric Pathogens Research Unit, United States Department of Agriculture, Agricultural Research Services, National Animal Disease Center, Ames, Ames, IA, United States
| | - Zahra Hanafy
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, United States
| | - Sophia Kathariou
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, United States
| | - Torey Looft
- Food Safety and Enteric Pathogens Research Unit, United States Department of Agriculture, Agricultural Research Services, National Animal Disease Center, Ames, Ames, IA, United States
| |
Collapse
|
24
|
Rahman MA, Paul PR, Hoque N, Islam SS, Haque AKMZ, Sikder MH, Matin A, Yamasaki S, Kabir SML. Prevalence and Antimicrobial Resistance of Campylobacter Species in Diarrheal Patients in Mymensingh, Bangladesh. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9229485. [PMID: 34395627 PMCID: PMC8357465 DOI: 10.1155/2021/9229485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 07/20/2021] [Indexed: 11/17/2022]
Abstract
Campylobacter enteritis is the leading cause of gastroenteritis in humans worldwide including Bangladesh. The objectives of this study were to estimate the prevalence and antimicrobial-resistance status of Campylobacter spp. in human diarrheal samples collected from Surya Kanta Hospital, Mymensingh, Bangladesh. In this study, we evaluated a total of 330 clinical samples for the presence Campylobacter spp. via cultural and biochemical tests and molecular assays. Furthermore, antimicrobial susceptibility testing for Campylobacter species was accomplished by the standard agar disc diffusion technique against eight commercially available antimicrobial agents. A pretested semistructured questionnaire was used to capture the data on socioanthropological factors from the diarrheal patients. Pearson's chi-square test was performed, and a p value of <0.05 was considered for the level of significance. Nearly one in three diarrheal patients admitted in this hospital were infected with Campylobacter spp. Overall prevalence of Campylobacter spp. was estimated to be 31.5% (104/330) that comprised the prevalence of C. jejuni, 21.8% (n = 72), and C. coli, 9.6% (n = 32). Among the positive cases, the prevalence of Campylobacter was higher in the age group 0-5 years (52%) followed by 6-18 years (42.7%), 19-40 years (34.0%), 41-60 years (25.4%), and >60 years (10.5%). Age, family level's personal hygiene, and involvement with animal husbandry were captured as potential determinants to be associated with the Campylobacter positive status. Among the isolates, 27.3% (n = 20) of C. jejuni and 31.2% (n = 10) of C. coli demonstrated as multidrug-resistant (MDR) to three or more antimicrobial agents. The present study shows that Campylobacter spp. is most prevalent among the hospital-admitted diarrheal patients, and proper measures should be taken to reduce the burden focusing on the potential determinants.
Collapse
Affiliation(s)
- Md. Ashikur Rahman
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Priyanka Rani Paul
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Nazmul Hoque
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Sk Shaheenur Islam
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - A. K. M. Ziaul Haque
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Mahmudul Hasan Sikder
- Department of Pharmacology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Aminul Matin
- Health Care Center, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Shinji Yamasaki
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 598-8531, Japan
| | - S. M. Lutful Kabir
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| |
Collapse
|
25
|
Guk JH, Song H, Yi S, An JU, Lee S, Kim WH, Cho S. Hyper-Aerotolerant Campylobacter coli From Swine May Pose a Potential Threat to Public Health Based on Its Quinolone Resistance, Virulence Potential, and Genetic Relatedness. Front Microbiol 2021; 12:703993. [PMID: 34381431 PMCID: PMC8352582 DOI: 10.3389/fmicb.2021.703993] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 06/24/2021] [Indexed: 01/05/2023] Open
Abstract
Campylobacter, a major foodborne pathogen, is susceptible to oxygen. Recently, aerotolerant Campylobacter with enhanced tolerance to aerobic stress has become a major concern in food safety. However, the aerotolerance of Campylobacter coli from pigs has not been studied extensively. Here, we sought to investigate the prevalence of C. coli across multiple swine groups in farms, including weaning, growing, and fattening pigs in production stages and pregnant sows. Additionally, we analyzed C. coli aerotolerance, quinolone resistance, virulence potential, and multilocus sequence typing (MLST) genotypes. Finally, we compared the characteristics of C. coli according to the aerotolerance levels. In total, we obtained 124 (66.3%) C. coli isolates from 187 swine fecal samples across six swine farms. The pathogen was prevalent in weaning (45.5%), growing (68.3%), and fattening (75.4%) pigs, and pregnant sows (66.7%). Hyper-aerotolerant HAT C. coli (13.7% of 124 isolates) was present in all swine groups, with the highest proportion in the pregnant sows (27.3%). All HAT isolates possessed diverse virulence-related genes such as flaA, cadF, pldA, ceuE, and cdtA. All C. coli isolates were resistant to quinolones, and 12 (10%) presented high-level ciprofloxacin resistance (MIC ≥ 32 μg/mL). The proportion of C. coli isolates with a high-level ciprofloxacin resistance was the highest in HAT C. coli (18.8%). Furthermore, six MLST sequence types (STs) (ST827, ST830, ST854, ST1016, ST1068, and ST1096) of swine-derived C. coli were in common with human-derived C. coli (PubMLST). The proportion of C. coli belonging to such shared STs at each aerotolerance level was the highest in HAT C. coli (HAT vs. oxygen-sensitive; OR = 3.13). In conclusion, quinolone resistance of C. coli may be distributed throughout in all swine groups in farms. HAT C. coli is likely to remain in pig farms and re-infect other pigs in the farms. Furthermore, swine-derived HAT C. coli could be transmitted to humans easily through the food chain owing to its aerotolerance, and it could pose a threat to public health owing to its high-level ciprofloxacin resistance and virulence. This study highlights the need to develop management practices that prevent the transmission of swine-derived HAT C. coli to humans.
Collapse
Affiliation(s)
- Jae-Ho Guk
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Hyokeun Song
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Saehah Yi
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Jae-Uk An
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Soomin Lee
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Woo-Hyun Kim
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Seongbeom Cho
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| |
Collapse
|
26
|
Lopez-Chavarrias V, Ugarte-Ruiz M, Barcena C, Olarra A, Garcia M, Saez JL, de Frutos C, Serrano T, Perez I, Moreno MA, Dominguez L, Alvarez J. Monitoring of Antimicrobial Resistance to Aminoglycosides and Macrolides in Campylobacter coli and Campylobacter jejuni From Healthy Livestock in Spain (2002-2018). Front Microbiol 2021; 12:689262. [PMID: 34276619 PMCID: PMC8283307 DOI: 10.3389/fmicb.2021.689262] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/08/2021] [Indexed: 11/13/2022] Open
Abstract
Antimicrobial resistance (AMR) in Campylobacter spp. (Campylobacter coli and Campylobacter jejuni) is a concern due to its importance in public health, particularly when it involves aminoglycosides and macrolides, drugs of choice for treatment of human cases. Co-resistance to these two antimicrobial classes involves transfer of genetic elements and/or acquisition of mutations in different genetic loci, which can in turn spread through vertical or horizontal gene transfer (HGT) phenomena, with each route having different potential implications. This study aimed at evaluating the association between the presence of phenotypic resistance to these two antimicrobial classes in C. coli and C. jejuni recovered from livestock at slaughterhouses in Spain (as part of the AMR surveillance program), and at assessing the genetic heterogeneity between resistant and susceptible isolates by analysing the "short variable region" (SVR) of the flaA gene. Over the 2002-2018 period, antimicrobial susceptibility test results from 10,965 Campylobacter isolates retrieved from fecal samples of broilers, turkeys, pigs and cattle were collected to compare the proportion of resistant isolates and the Minimum Inhibitory Concentrations (MICs) against six antimicrobials including gentamicin (GEN), streptomycin (STR), and erythromycin (ERY). AMR-associated genes were determined for a group of 51 isolates subjected to whole genome sequencing, and the flaA SVR of a subset of 168 isolates from all hosts with different resistotypes was used to build a Neighbor-Joining-based phylogenetic tree and assess the existence of groups by means of "relative synonymous codon usage" (RSCU) analysis. The proportion of antimicrobial resistant isolates to both, aminoglycosides and macrolides, varied widely for C. coli (7-91%) and less for C. jejuni (all hosts 0-11%). Across hosts, these proportions were 7-56% in poultry, 12-82% in cattle, and 22-91% in pigs for C. coli and 0-8% in poultry and 1-11% in cattle for C. jejuni. Comparison of the MIC distributions revealed significant host-specific differences only for ERY in C. jejuni (p = 0.032). A significant association in the simultaneous presentation of AMR to both antimicrobial classes was observed across hosts/bacterial species. The flaA gene analysis showed clustering of isolates sharing resistotype and to a lesser degree bacterial species and host. Several resistance markers associated with resistance to aminoglycosides and macrolides were found among the sequenced isolates. The consistent association between the simultaneous presentation of AMR to aminoglycosides and macrolides in all hosts could be due to the persistence of strains and/or resistance mechanisms in Campylobacter populations in livestock over time. Further studies based on whole genome sequencing are needed to assess the epidemiological links between hosts and bacterial strains.
Collapse
Affiliation(s)
| | - Maria Ugarte-Ruiz
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain
| | - Carmen Barcena
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain
| | - Adolfo Olarra
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Maria Garcia
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain
| | - Jose Luis Saez
- Subdirección General de Sanidad e Higiene Animal y Trazabilidad, Dirección General de la Producción Agraria, Ministerio de Agricultura, Pesca y Alimentación, Madrid, Spain
| | - Cristina de Frutos
- Laboratorio Central de Veterinaria (LCV Algete), Ministerio de Agricultura, Pesca y Alimentación, Madrid, Spain
| | - Tania Serrano
- TRAGSATEC, Tecnologías y Servicios Agrarios S.A., Madrid, Spain
| | - Iratxe Perez
- Laboratorio Central de Veterinaria (LCV Algete), Ministerio de Agricultura, Pesca y Alimentación, Madrid, Spain
| | - Miguel Angel Moreno
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Lucas Dominguez
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain.,Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Julio Alvarez
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain.,Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
27
|
Rodrigues JA, Cha W, Mosci RE, Mukherjee S, Newton DW, Lephart P, Salimnia H, Khalife W, Rudrik JT, Manning SD. Epidemiologic Associations Vary Between Tetracycline and Fluoroquinolone Resistant Campylobacter jejuni Infections. Front Public Health 2021; 9:672473. [PMID: 34262891 PMCID: PMC8273344 DOI: 10.3389/fpubh.2021.672473] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/27/2021] [Indexed: 11/13/2022] Open
Abstract
Campylobacter jejuni is the leading cause of bacterial gastroenteritis and antibiotic resistant C. jejuni are a serious threat to public health. Herein, we sought to evaluate trends in C. jejuni infections, quantify resistance frequencies, and identify epidemiological factors associated with infection. Campylobacter jejuni isolates (n = 214) were collected from patients via an active surveillance system at four metropolitan hospitals in Michigan between 2011 and 2014. The minimum inhibitory concentration for nine antibiotics was determined using microbroth dilution, while demographic and clinical data were used for the univariate and multivariate analyses. Over the 4-year period, a significant increase in the recovery of C. jejuni was observed (p ≤ 0.0001). Differences in infection rates were observed by hospital and several factors were linked to more severe disease. Patients residing in urban areas, for instance, were significantly more likely to be hospitalized than rural residents as were patients over 40 years of age and those self-identifying as non-White, highlighting potential disparities in disease outcomes. Among the 214 C. jejuni isolates, 135 (63.1%) were resistant to at least one antibiotic. Resistance was observed for all nine antibiotics tested yielding 11 distinct resistance phenotypes. Tetracycline resistance predominated (n = 120; 56.1%) followed by resistance to ciprofloxacin (n = 49; 22.9%), which increased from 15.6% in 2011 to 25.0% in 2014. Resistance to two antibiotic classes was observed in 38 (17.8%) isolates, while multidrug resistance, or resistance to three or more classes, was observed in four (1.9%). Notably, patients with ciprofloxacin resistant infections were more likely to report traveling in the past month (Odds Ratio (OR): 3.0; 95% confidence interval (CI): 1.37, 6.68) and international travel (OR: 9.8; 95% CI: 3.69, 26.09). Relative to patients with only tetracycline resistant infections, those with ciprofloxacin resistance were more likely to travel internationally, be hospitalized and have an infection during the fall or summer. Together, these findings show increasing rates of infection and resistance and highlight specific factors that impact both outcomes. Enhancing understanding of factors linked to C. jejuni resistance and more severe infections is critical for disease prevention, particularly since many clinical laboratories have switched to the use of culture-independent tests for the detection of Campylobacter.
Collapse
Affiliation(s)
- Jose A. Rodrigues
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Wonhee Cha
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Rebekah E. Mosci
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Sanjana Mukherjee
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Duane W. Newton
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States
| | - Paul Lephart
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States
| | - Hossein Salimnia
- School of Medicine, Wayne State University, Detroit, MI, United States
- Sparrow Hospital, Lansing, MI, United States
| | - Walid Khalife
- Detroit Medical Center University Laboratories, Detroit, MI, United States
| | - James T. Rudrik
- Michigan Department of Health and Human Services, Bureau of Laboratories, Lansing, MI, United States
| | - Shannon D. Manning
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
28
|
Ma L, Chen L, Chou KC, Lu X. Campylobacter jejuni Antimicrobial Resistance Profiles and Mechanisms Determined Using a Raman Spectroscopy-Based Metabolomic Approach. Appl Environ Microbiol 2021; 87:e0038821. [PMID: 33837016 PMCID: PMC8174766 DOI: 10.1128/aem.00388-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/02/2021] [Indexed: 12/25/2022] Open
Abstract
Rapid identification of antimicrobial resistance (AMR) profiles and mechanisms is critical for clinical management and drug development. However, the current AMR detection approaches take up to 48 h to obtain a result. Here, we demonstrate a Raman spectroscopy-based metabolomic approach to rapidly determine the AMR profile of Campylobacter jejuni, a major cause of foodborne gastroenteritis worldwide. C. jejuni isolates with susceptible and resistant traits to ampicillin and tetracycline were subjected to different antibiotic concentrations for 5 h, followed by Raman spectral collection and chemometric analysis (i.e., second-derivative transformation analysis, hierarchical clustering analysis [HCA], and principal-component analysis [PCA]). The MICs obtained by Raman-2nd derivative transformation agreed with the reference agar dilution method for all isolates. The AMR profile of C. jejuni was accurately classified by Raman-HCA after treating bacteria with antibiotics at clinical susceptible and resistant breakpoints. According to PCA loading plots, susceptible and resistant strains showed different Raman metabolomic patterns for antibiotics. Ampicillin-resistant isolates had distinctive Raman signatures of peptidoglycan, which is related to cell wall synthesis. The ratio of saturated to unsaturated fatty acids in the lipid membrane layer of ampicillin-resistant isolates was higher than in susceptible ones, indicating more rigid envelope structure under ampicillin treatment. In comparison, tetracycline-resistant isolates exhibited prominent Raman spectral features associated with proteins and nucleic acids, demonstrating more active protein synthesis than susceptible strains with the presence of tetracycline. Taken together, Raman spectroscopy is a powerful metabolic fingerprinting technique for simultaneously revealing the AMR profiles and mechanisms of foodborne pathogens. IMPORTANCE Metabolism plays the central role in bacteria to mediate the early response against antibiotics and demonstrate antimicrobial resistance (AMR). Understanding the whole-cell metabolite profiles gives rise to a more complete AMR mechanism insight. In this study, we have applied Raman spectroscopy and chemometrics to achieve a rapid, accurate, and easy-to-operate investigation of bacterial AMR profiles and mechanisms. Raman spectroscopy reduced the analysis time by an order of magnitude to obtain the same results achieved through traditional culture-based antimicrobial susceptibility approaches. It offers great benefits as a high-throughput screening method in food chain surveillance and clinical diagnostics. Meanwhile, the AMR mechanisms toward two representative antibiotic classes, namely, ampicillin and tetracycline, were revealed by Raman spectroscopy at the metabolome level. This approach is based on bacterial phenotypic responses to antibiotics, providing information complementary to that obtained by conventional genetic methods such as genome sequencing. The knowledge obtained from Raman metabolomic data can be used in drug discovery and pathogen intervention.
Collapse
Affiliation(s)
- Luyao Ma
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Lei Chen
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Chemistry, Faculty of Science, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Keng C. Chou
- Department of Chemistry, Faculty of Science, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Xiaonan Lu
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| |
Collapse
|
29
|
Antimicrobial Resistance, FlaA Sequencing, and Phylogenetic Analysis of Campylobacter Isolates from Broiler Chicken Flocks in Greece. Vet Sci 2021; 8:vetsci8050068. [PMID: 33919370 PMCID: PMC8143292 DOI: 10.3390/vetsci8050068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 01/22/2023] Open
Abstract
Human campylobacteriosis caused by thermophilic Campylobacter species is the most commonly reported foodborne zoonosis. Consumption of contaminated poultry meat is regarded as the main source of human infection. This study was undertaken to determine the antimicrobial susceptibility and the molecular epidemiology of 205 Campylobacter isolates derived from Greek flocks slaughtered in three different slaughterhouses over a 14-month period. A total of 98.5% of the isolates were resistant to at least one antimicrobial agent. In terms of multidrug resistance, 11.7% of isolates were resistant to three or more groups of antimicrobials. Extremely high resistance to fluoroquinolones (89%), very high resistance to tetracycline (69%), and low resistance to macrolides (7%) were detected. FlaA sequencing was performed for the subtyping of 64 C. jejuni and 58 C. coli isolates. No prevalence of a specific flaA type was observed, indicating the genetic diversity of the isolates, while some flaA types were found to share similar antimicrobial resistance patterns. Phylogenetic trees were constructed using the neighbor-joining method. Seven clusters of the C. jejuni phylogenetic tree and three clusters of the C. coli tree were considered significant with bootstrap values >75%. Some isolates clustered together were originated from the same or adjacent farms, indicating transmission via personnel or shared equipment. These results are important and help further the understanding of the molecular epidemiology and antimicrobial resistance of Campylobacter spp. derived from poultry in Greece.
Collapse
|
30
|
Multiple drug resistance of Campylobacter jejuni and Shigella isolated from diarrhoeic children at Kapsabet County referral hospital, Kenya. BMC Infect Dis 2021; 21:109. [PMID: 33485326 PMCID: PMC7825205 DOI: 10.1186/s12879-021-05788-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 01/11/2021] [Indexed: 11/24/2022] Open
Abstract
Background Diarrhoea is a common cause of mortality and morbidity in children under five years old. In Kenya, it has a 21% case fatality with Enteropathogenic E. coli, Campylobacter jejuni, Shigella spp. and Salmonella spp. accounting for 50–60% of the cases. Sulphonamides, tetracycline, ampicillin and trimethoprim/sulfamethoxazole are typically used in the treatment of diarrhoeal diseases but have become ineffective in the face of emerging antimicrobial resistance. The objective of this study was to evaluate the prevalence and antimicrobial susceptibility of Campylobacter jejuni and Shigella species in children under five years of age presenting with diarrhoea at Kapsabet County Referral Hospital in Kenya. Methods Faecal samples were collected from 139 children admitted with diarrhoea. Each sample was examined macroscopically for colour, texture, and presence of extraneous material. The samples were then cultured for bacterial growth. Observed bacterial growth was isolated and identified by a series of biochemical tests. Resistance patterns were also evaluated using the Kirby – Bauer Disk diffusion method. The chi – square test and Pearson Correlation Coefficient were used to establish statistical significance. Results Approximately 33.1% of the total faecal samples tested were positive for enteric pathogens. Shigella spp. demonstrated resistance to erythromycin (91.7%), doxycyclin (83.3%), ampicillin (82.1%), cotrimoxazole (73.1%), minocycline (66.7%) and cefuroxime (54.2%). Campylobacter jejuni also exhibited resistance to erythromycin (87.5%), doxycyclin (75%), ampicillin (73.7%), cotrimoxazole (73.3%) and minocycline (68.8%). Conclusions The resistance patterns of Shigella spp. and Campylobacter jejuni reported in this study necessitates the need for a comprehensive multiregional investigation to evaluate the geographical prevalence and antimicrobial resistance distributions of these microorganisms. These findings also support the need for the discovery and development of effective therapeutic alternatives. Trial registration Retrospectively registered. Certificate No. 00762
Collapse
|
31
|
Lin CSH, Chan ACK, Vermeulen J, Brockerman J, Soni AS, Tanner ME, Gaynor EC, McIntosh LP, Simorre JP, Murphy MEP. Peptidoglycan binding by a pocket on the accessory NTF2-domain of Pgp2 directs helical cell shape of Campylobacter jejuni. J Biol Chem 2021; 296:100528. [PMID: 33711341 PMCID: PMC8038945 DOI: 10.1016/j.jbc.2021.100528] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/01/2021] [Accepted: 03/08/2021] [Indexed: 01/25/2023] Open
Abstract
The helical morphology of Campylobacter jejuni, a bacterium involved in host gut colonization and pathogenesis in humans, is determined by the structure of the peptidoglycan (PG) layer. This structure is dictated by trimming of peptide stems by the LD-carboxypeptidase Pgp2 within the periplasm. The interaction interface between Pgp2 and PG to select sites for peptide trimming is unknown. We determined a 1.6 Å resolution crystal structure of Pgp2, which contains a conserved LD-carboxypeptidase domain and a previously uncharacterized domain with an NTF2-like fold (NTF2). We identified a pocket in the NTF2 domain formed by conserved residues and located ∼40 Å from the LD-carboxypeptidase active site. Expression of pgp2 in trans with substitutions of charged (Lys257, Lys307, Glu324) and hydrophobic residues (Phe242 and Tyr233) within the pocket did not restore helical morphology to a pgp2 deletion strain. Muropeptide analysis indicated a decrease of murotripeptides in the deletion strain expressing these mutants, suggesting reduced Pgp2 catalytic activity. Pgp2 but not the K307A mutant was pulled down by C. jejuni Δpgp2 PG sacculi, supporting a role for the pocket in PG binding. NMR spectroscopy was used to define the interaction interfaces of Pgp2 with several PG fragments, which bound to the active site within the LD-carboxypeptidase domain and the pocket of the NTF2 domain. We propose a model for Pgp2 binding to PG strands involving both the LD-carboxypeptidase domain and the accessory NTF2 domain to induce a helical cell shape.
Collapse
Affiliation(s)
- Chang Sheng-Huei Lin
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Anson C K Chan
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jenny Vermeulen
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jacob Brockerman
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Arvind S Soni
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Martin E Tanner
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Erin C Gaynor
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lawrence P McIntosh
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada; Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Michael E P Murphy
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
32
|
Elgamoudi BA, Taha T, Korolik V. Inhibition of Campylobacter jejuni Biofilm Formation by D-Amino Acids. Antibiotics (Basel) 2020; 9:E836. [PMID: 33238583 PMCID: PMC7700173 DOI: 10.3390/antibiotics9110836] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/20/2020] [Accepted: 11/20/2020] [Indexed: 12/21/2022] Open
Abstract
The ability of bacterial pathogens to form biofilms is an important virulence mechanism in relation to their pathogenesis and transmission. Biofilms play a crucial role in survival in unfavorable environmental conditions, acting as reservoirs of microbial contamination and antibiotic resistance. For intestinal pathogen Campylobacter jejuni, biofilms are considered to be a contributing factor in transmission through the food chain and currently, there are no known methods for intervention. Here, we present an unconventional approach to reducing biofilm formation by C. jejuni by the application of D-amino acids (DAs), and L-amino acids (LAs). We found that DAs and not LAs, except L-alanine, reduced biofilm formation by up to 70%. The treatment of C. jejuni cells with DAs changed the biofilm architecture and reduced the appearance of amyloid-like fibrils. In addition, a mixture of DAs enhanced antimicrobial efficacy of D-Cycloserine (DCS) up to 32% as compared with DCS treatment alone. Unexpectedly, D-alanine was able to reverse the inhibitory effect of other DAs as well as that of DCS. Furthermore, L-alanine and D-tryptophan decreased transcript levels of peptidoglycan biosynthesis enzymes alanine racemase (alr) and D-alanine-D-alanine ligase (ddlA) while D-serine was only able to decrease the transcript levels of alr. Our findings suggest that a combination of DAs could reduce biofilm formation, viability and persistence of C. jejuni through dysregulation of alr and ddlA.
Collapse
Affiliation(s)
| | | | - Victoria Korolik
- Institute for Glycomics, Griffith University, Gold Coast QLD 4222, Australia; (B.A.E.); (T.T.)
| |
Collapse
|
33
|
Tang M, Zhou Q, Zhang X, Zhou S, Zhang J, Tang X, Lu J, Gao Y. Antibiotic Resistance Profiles and Molecular Mechanisms of Campylobacter From Chicken and Pig in China. Front Microbiol 2020; 11:592496. [PMID: 33193261 PMCID: PMC7652819 DOI: 10.3389/fmicb.2020.592496] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/08/2020] [Indexed: 01/22/2023] Open
Abstract
The purpose of this research was to characterize the antibiotic resistance profiles of Campylobacter spp. derived from chicken and pig feces collected from farms in Jiangsu Province, China, and to analyze the relevant resistance mechanisms among antimicrobial-resistant Campylobacter spp. isolates. Antibiotic susceptibility to nine antibiotic agents was tested with the microdilution method in 93 Campylobacter spp. (45 C. jejuni and 25 C. coli from chickens; 23 C. coli from pigs). High rates of resistance were observed to nalidixic acid (79.6%), erythromycin (75.3%), tetracycline (68.8%), azithromycin (66.7%), ciprofloxacin (64.5%), and gentamicin (35.5%), with a lower resistance rate to florfenicol (8.6%). The prevalence of the tested antibiotic resistance in C. coli was higher than in C. jejuni from chickens. The rate of antimicrobial resistance to ciprofloxacin in C. coli isolates from chickens was 100.0%, and the C. coli isolates from pigs were all resistant to erythromycin (100%). Most of C. jejuni (64.4%) and C. coli (64.5%) isolates displayed multi-drug resistance. All the Campylobacter spp. isolates resistant to fluoroquinolones had the C257T mutation in the gyrA gene. All 64 tetracycline-resistant Campylobacter spp. isolates were positive for the tetO gene. The tetA gene was also amplified in 6.5% of Campylobacter spp. isolates, whereas tetB was not detected among the isolates. The A2075G point mutation in the 23S rRNA gene occurred in 86.1% (62/72) of the macrolides-resistant Campylobacter spp. isolates, and the ermB gene was identified in 49 Campylobacter spp. isolates (30 C. jejuni and 19 C. coli). Amino acid insertions or mutations in the L4 and L22 ribosomal proteins were not linked to macrolide resistance. These results highlight the high prevalence of resistance to multiple antibiotics, particular macrolides, among Campylobacter spp. from chickens and pigs in Jiangsu Province, China, which is probably attributable to the overuse of antimicrobials in chicken and pig production. These findings recommend the more cautious use of critical antimicrobial agents in swine and poultry production. Stringent and continuous surveillance is required to reduce the drug-resistant campylobacteriosis in food animals and humans.
Collapse
Affiliation(s)
- Mengjun Tang
- Jiangsu Institute of Poultry Sciences, Supervision, Inspection and Testing Centre for Poultry Quality (Yangzhou), Ministry of Agriculture, Yangzhou, China
| | - Qian Zhou
- Jiangsu Institute of Poultry Sciences, Supervision, Inspection and Testing Centre for Poultry Quality (Yangzhou), Ministry of Agriculture, Yangzhou, China
| | - Xiaoyan Zhang
- Jiangsu Institute of Poultry Sciences, Supervision, Inspection and Testing Centre for Poultry Quality (Yangzhou), Ministry of Agriculture, Yangzhou, China
| | - Sheng Zhou
- Jiangsu Institute of Poultry Sciences, Supervision, Inspection and Testing Centre for Poultry Quality (Yangzhou), Ministry of Agriculture, Yangzhou, China
| | - Jing Zhang
- Jiangsu Institute of Poultry Sciences, Supervision, Inspection and Testing Centre for Poultry Quality (Yangzhou), Ministry of Agriculture, Yangzhou, China
| | - Xiujun Tang
- Jiangsu Institute of Poultry Sciences, Supervision, Inspection and Testing Centre for Poultry Quality (Yangzhou), Ministry of Agriculture, Yangzhou, China
| | - Junxian Lu
- Jiangsu Institute of Poultry Sciences, Supervision, Inspection and Testing Centre for Poultry Quality (Yangzhou), Ministry of Agriculture, Yangzhou, China
| | - Yushi Gao
- Jiangsu Institute of Poultry Sciences, Supervision, Inspection and Testing Centre for Poultry Quality (Yangzhou), Ministry of Agriculture, Yangzhou, China
| |
Collapse
|
34
|
Isolates, Antimicrobial Susceptibility Profiles and Multidrug Resistance of Bacteria Cultured from Pig Submissions in New Zealand. Animals (Basel) 2020; 10:ani10081427. [PMID: 32824043 PMCID: PMC7460312 DOI: 10.3390/ani10081427] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/12/2020] [Accepted: 08/12/2020] [Indexed: 01/30/2023] Open
Abstract
Data on the scope of bacterial pathogens present and the frequency of antimicrobial resistance (AMR) in New Zealand's pigs are limited. This study describes bacterial isolates, antimicrobial susceptibility data, and multidrug resistance (MDR; resistance to ≥3 antimicrobial classes) from New Zealand pig submissions. Porcine test data from June 2003 to February 2016 were obtained from commercial veterinary pathology laboratory records. In total, 470/477 unique submissions resulted in bacterial growth, yielding 779 isolates. Sample type was recorded for 360/477 (75.5%); lung (79/360; 21.9%), faecal (61/360; 16.9%) and intestinal (45/360; 12.5%) were most common. The most common isolates were Escherichia coli (186/779, 23.9%), Actinobacillus pleuropneumoniae (43/779; 5.5%), Streptococcus suis (43/779; 5.5%), unidentified Campylobacter spp. (38/779; 4.9%), alpha haemolytic Streptococci (32/779; 4.1%), coagulase negative Staphylococcus spp. (26/779; 3.3%), and Pasteurella multocida (25/779; 3.2%). Susceptibility results were available for 141/779 (18.1%) isolates from 62/470 (13.2%) submissions. Most were susceptible to trimethoprim-sulphonamide (75/81; 92.6%), but fewer were susceptible to penicillin (37/77; 48.1%), tilmicosin (18/43; 41.9%), or tetracyclines (41/114; 36.0%). No susceptibility data were available for Salmonella spp., Campylobacter spp., or Yersinia spp. isolates. MDR was present in 60/141 (42.6%) isolates. More data on sample submission drivers, antimicrobial drug use, and susceptibilities of important porcine bacterial isolates are required to inform guidelines for prudent antimicrobial use, to reduce their prevalence, human transmission, and to minimise AMR and MDR.
Collapse
|
35
|
Dramé O, Leclair D, Parmley EJ, Deckert A, Ouattara B, Daignault D, Ravel A. Antimicrobial Resistance of Campylobacter in Broiler Chicken Along the Food Chain in Canada. Foodborne Pathog Dis 2020; 17:512-520. [PMID: 32130036 PMCID: PMC7415884 DOI: 10.1089/fpd.2019.2752] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Antimicrobial resistance (AMR) is a major public health threat worldwide. The main objective of this study was to compare AMR in Campylobacter from broiler chickens raised on Canadian farms and their products in different geographical regions of Canada. To do this, antimicrobial susceptibility results from isolates of Campylobacter recovered from a national microbiological baseline study conducted in federally registered establishments and in the retail marketplace were analyzed. Among 1460 isolates tested, 774 (53%) were resistant to at least one antimicrobial, with a predominance of three profiles: tetracycline (39%), quinolone-tetracycline (6.6%), and quinolones only (3.5%). The results showed no significant difference in the frequency of resistant profiles (p ≥ 0.05) among the isolates originating from different points in the food processing chain at slaughterhouses and in retail establishments. This suggests that AMR observed in Campylobacter isolates from raw chicken at retail originated further upstream in the system. A difference in the frequency of certain resistance profiles was observed between the regions of Canada. For instance, in British Columbia, there was more resistance to quinolones, while in Ontario and Quebec, Campylobacter isolates were more resistant to tetracyclines, macrolides, ketolides, and lincosamides. Comparison of AMR data from this study with those from the Canadian Integrated Program for Antimicrobial Resistance Surveillance (CIPARS) did not show any significant difference and provides evidence that CIPARS produces nationally representative resistance results.
Collapse
Affiliation(s)
- Ousmane Dramé
- Food Safety Science Directorate, Canadian Food Inspection Agency, Ottawa, Canada
- Groupe de recherche en épidémiologie des zoonoses et santé publique, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| | - Daniel Leclair
- Food Safety Science Directorate, Canadian Food Inspection Agency, Ottawa, Canada
| | - E. Jane Parmley
- Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, Canada
| | - Anne Deckert
- Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, Canada
| | - Blaise Ouattara
- Food Safety Science Directorate, Canadian Food Inspection Agency, Ottawa, Canada
| | - Danielle Daignault
- National Microbiology Laboratory at Saint-Hyacinthe, Public Health Agency of Canada, Saint-Hyacinthe, Canada
| | - André Ravel
- Groupe de recherche en épidémiologie des zoonoses et santé publique, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| |
Collapse
|
36
|
Antimicrobial Susceptibility of Campylobacter isolates in the Capital of North Macedonia. ACTA ACUST UNITED AC 2020; 40:73-80. [PMID: 31605592 DOI: 10.2478/prilozi-2019-0017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Campylobacter infections are typically self-limited, but in cases with severe enteritis, immuno-compromised system and bacteremia, an appropriate antimicrobial treatment is demanding. Our study aim was to determine the isolation rate of Campylobacter among patients with acute enteritis in the capital of North Macedonia and its antimicrobial susceptibility. MATERIAL AND METHODS A total number of 3820 patients clinically diagnosed as acute enteritis, were included in the study. Stool samples were collected and Campylobacter was isolated and identified by classical microbiological methods. Antimicrobial susceptibility of all isolates to Ceftriaxone, Amoxicillin-clavulonic acid, Erythromycin, Ciprofloxacin, Tetracycline and Gentamicin was determined by disc-diffusion technique. Additionally, minimal inhibitory concentrations of all Campylobacter isolates against erythromycin, ciprofloxacin and tetracycline were determined by Epsilon gradient tests. RESULTS Campylobacter species was isolated in 97 patients. Although the mean isolation rate of Campylobacter spp. during the whole study period was 2.53%, a statistically significant increase was detected in 2016 and 2017, in comparison with the data from previous four years of the study. The isolation rate of Campylobacter spp. didn't reveal statistically significant difference between males and females (p > 0.05). 46.4 % of patients with Campylobacter enteritis were children at the age under 15 years. Forty-three C. jejuni isolates were susceptible to all six antibiotics, but the remaining 44 isolates revealed resistance to at least one antibiotic. C. coli isolates were resistant to 3 antibiotics simultaneously. Two C. coli isolates only, were susceptible to all 6 antibiotics. 40.90% of C. jejuni and 50% of C. coli isolates were resistant to beta-lactams, fluoroquinolones and tetracyclines, simultaneously. CONCLUSION The increase of the isolation rate of Campylobacter from patients with acute enteritis indicates the need for permanent isolation and identification of Campylobacter from every clinically diagnosed patient, as acute enteritis. Erythromicin is the most effective antibiotic for treatment of Campylobacter enteritis in our patients. The high level of Campylobacter resistance to beta-lactams, fluoroquinolones and tetracyclines requires more rational approach in the treatment of Campylobacter enteritis.
Collapse
|
37
|
Elhadidy M, Ali MM, El-Shibiny A, Miller WG, Elkhatib WF, Botteldoorn N, Dierick K. Antimicrobial resistance patterns and molecular resistance markers of Campylobacter jejuni isolates from human diarrheal cases. PLoS One 2020; 15:e0227833. [PMID: 31951631 PMCID: PMC6968864 DOI: 10.1371/journal.pone.0227833] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/30/2019] [Indexed: 12/20/2022] Open
Abstract
The aim of this study is to characterize the antimicrobial resistance of Campylobacter jejuni recovered from diarrheal patients in Belgium, focusing on the genetic diversity of resistant strains and underlying molecular mechanisms of resistance among Campylobacter jejuni resistant strains isolated from diarrheal patients in Belgium. Susceptibility profile of 199 clinical C. jejuni isolates was determined by minimum inhibitory concentrations against six commonly-used antibiotics (ciprofloxacin, nalidixic acid, tetracycline, streptomycin, gentamicin, and erythromycin). High rates of resistance were observed against nalidixic acid (56.3%), ciprofloxacin (55.8%) and tetracycline (49.7%); these rates were similar to those obtained from different national reports in broilers intended for human consumption. Alternatively, lower resistance rates to streptomycin (4.5%) and erythromycin (2%), and absolute sensitivity to gentamicin were observed. C. jejuni isolates resistant to tetracycline or quinolones (ciprofloxacin and/or nalidixic acid) were screened for the presence of the tetO gene and the C257T mutation in the quinolone resistance determining region (QRDR) of the gyrase gene gyrA, respectively. Interestingly, some of the isolates that displayed phenotypic resistance to these antimicrobials lacked the corresponding genetic determinants. Among erythromycin-resistant isolates, a diverse array of potential molecular resistance mechanisms was investigated, including the presence of ermB and mutations in the 23S rRNA gene, the rplD and rplV ribosomal genes, and the regulatory region of the cmeABC operon. Two of the four erythromycin-resistant isolates harboured the A2075G transition mutation in the 23S rRNA gene; one of these isolates exhibited further mutations in rplD, rplV and in the cmeABC regulatory region. This study expands the current understanding of how different genetic determinants and particular clones shape the epidemiology of antimicrobial resistance in C. jejuni in Belgium. It also reveals many questions in need of further investigation, such as the role of other undetermined molecular mechanisms that may potentially contribute to the antimicrobial resistance of Campylobacter.
Collapse
Affiliation(s)
- Mohamed Elhadidy
- University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Mohamed Medhat Ali
- University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Ayman El-Shibiny
- University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
- Faculty of Environmental Agricultural Sciences, Arish University, Arish, Egypt
| | - William G. Miller
- Prodce Safety and Microbiology Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Albany, CA, United States of America
| | - Walid F. Elkhatib
- Department of Microbiology and Immunology, School of Pharmacy & Pharmaceutical Industries, Badr University in Cairo (BUC), Entertainment Area, Badr City, Cairo, Egypt
- Department of Microbiology & Immunology, Faculty of Pharmacy, Ain Shams University, African Union Organization St. Abbassia, Cairo, Egypt
| | | | - Katelijne Dierick
- National Reference Laboratory for Campylobacter, Sciensano, Scientific Service: Foodborne Pathogens, Brussels, Belgium
| |
Collapse
|
38
|
Mendonça EP, Melo RT, Oliveira MR, Monteiro GP, Peres PA, Fonseca BB, Giombelli A, Rossi DA. Characteristics of virulence, resistance and genetic diversity of strains of Salmonella Infantis isolated from broiler chicken in Brazil. PESQUISA VETERINÁRIA BRASILEIRA 2020. [DOI: 10.1590/1678-5150-pvb-5546] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ABSTRACT: Salmonella Infantis is frequently associated with human infections worldwide and is transmitted by consumption of contaminated foods, particularly those of animal origin, especially the chicken meat. We aimed to evaluate virulence characteristics, antimicrobial resistance and the genetic similarity of 51 strains of S. Infantis isolated from samples of poultry origin. The strains were isolated from 2009 to 2010 in a company with full cycle of broiler’s production in the state of São Paulo, Brazil. The antimicrobial susceptibility test was performed and, by PCR, we evaluated the presence of the genes lpfA (hem-adhesion), agfA (hem-biofilm) and sefA (hem-adhesion) and resistance genes to beta-lactams (blaTEM, blaSHV, bla CTX-M and blaAmpC ). The phylogenetic relationship was determined by RAPD-PCR method. Among the drugs tested, the highest percentages of resistance were to amoxicillin (35.3%) and to sulfonamide (15.7%). Eleven antimicrobial resistance patterns were identified (A1 to A11), none of them presented a multiresistance profile (> 3 antimicrobials classes). There was 100% of positivity for the agfA gene, 92.2% for the lpfA gene, and no strain presented the sefA gene. Most of the isolates showed similarities in virulence potential, since they were simultaneously positive for two studied genes, agfA and lpfA (92.2%, 47/51). Of the 18 (35.3%) strains resistant to antimicrobials of the β-lactam class, 10 (55.5%) were positive to blaAmpC gene, five (27.8%) for blaCTX-M , two (11.1%) to blaSHV and no strain presented the blaTEM gene. The phylogenetic evaluation has shown the presence of five clusters (A, B, C, D and E) with similarity greater than 80%, and three distinct strains which were not grouped in any cluster. Cluster B grouped 33 strains, all positive for lpfA and agfA genes, from both, the broiler farming facility and the slaughterhouse, persistent throughout all the study period. This cluster also grouped 18 strains clones with genetic similarity greater than 99%, all isolated in the slaughterhouse. The presence of virulence genes associated with persistent strains clones for a long period, warns to the possibility of S. Infantis to form biofilm, and should be constantly monitored in broilers’ production chain, in order to know the profile of the strains that may contaminate the final product and evaluate the hazards that represents to public health.
Collapse
|
39
|
Pavlova M, Alexandrova E, Donkov G, Mitova-Mineva Y, Kantardjiev T, Velev V. Campylobacter infections among Bulgarian children: molecular characterization and antimicrobial susceptibility. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1817783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Maria Pavlova
- Laboratory of Enteric Infections, Pathogenic Cocci and Diphtheria, Department of Microbiology, National Center of Infectious and Parasitic Diseases (NCIPD), Sofia, Bulgaria
| | - Ekaterina Alexandrova
- Laboratory of Enteric Infections, Pathogenic Cocci and Diphtheria, Department of Microbiology, National Center of Infectious and Parasitic Diseases (NCIPD), Sofia, Bulgaria
| | - George Donkov
- Department of Epidemiology, Faculty of Medicine, Medical University of Sofia, Bulgaria
| | | | - Todor Kantardjiev
- Laboratory of Enteric Infections, Pathogenic Cocci and Diphtheria, Department of Microbiology, National Center of Infectious and Parasitic Diseases (NCIPD), Sofia, Bulgaria
| | - Valeri Velev
- Clinic of Pediatric Infectious Diseases, Hospital for Infectious and Parasitic Diseases ‘Prof. Iv. Kirov’, Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|
40
|
Otto SJG, Levett PN, Reid-Smith RJ, Pearl DL, Daku D, Nagle E, Horsman GB, McEwen SA. Antimicrobial Resistance of Human Campylobacter Species Infections in Saskatchewan, Canada (1999-2006): A Historical Provincial Collection of All Reported Cases. Foodborne Pathog Dis 2019; 17:178-186. [PMID: 31661323 DOI: 10.1089/fpd.2019.2707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To describe a historical baseline of antimicrobial resistance (AMR) profiles for human clinical Campylobacter species isolates obtained by laboratory surveillance in the province of Saskatchewan from 1999 to 2006; to determine if there were differences in resistance between Campylobacter jejuni and Campylobacter coli; and to determine if there were changes in the annual resistance levels in the two species. One thousand three hundred seventy-eight Campylobacter isolates were subjected to antimicrobial susceptibility testing using the E-test method. Annual resistance levels in C. jejuni and C. coli were compared using logistic regression models. One thousand two hundred (87.1%) isolates were C. jejuni and 129 (9.4%) were C. coli. Resistance in C. jejuni isolates included ciprofloxacin (CIP: 9.4%), erythromycin (ERY: 0.5%), and tetracycline (33.3%). CIP resistance in C. jejuni was higher in 1999 (15.5%, odds ratio [OR] = 3.96, p = 0.01), 2000 (12.7%, OR = 3.10, p = 0.01), 2005 (10.2%, OR = 2.47, p = 0.05), and 2006 (13.0%, OR = 3.22, p = 0.01) compared with 2004 (4.4%). C. coli had significantly higher CIP resistance (15.5%, OR = 1.78, p = 0.03), ERY resistance (13.2%, OR = 60.12, p < 0.01), multidrug resistance (2.3%, OR = 36.29, p < 0.01), and CIP-ERY resistance (3.1%, OR = 50.23, p < 0.01) compared with C. jejuni. This represents the first and most current report of AMR of the collective human Campylobacter isolates from a province in Canada and provides a baseline against which current and future resistance patterns can be compared. Fluoroquinolone resistance in C. jejuni isolates fluctuated from 1999 to 2006, including an increased prevalence in 2005-2006, while macrolide/lincosamide resistance remained very low. Human clinical C. jejuni isolates from Saskatchewan demonstrated resistance to multiple antimicrobials but had significantly less fluoroquinolone and macrolide resistance than C. coli isolates.
Collapse
Affiliation(s)
- Simon J G Otto
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Canada.,School of Public Health, University of Alberta, Edmonton, Canada
| | - Paul N Levett
- Roy Romanow Provincial Laboratory (formerly the Saskatchewan Disease Control Laboratory), Regina, Canada.,British Columbia Centre for Disease Control, Vancouver, Canada
| | - Richard J Reid-Smith
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Canada.,Centre for Food-borne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, Canada
| | - David L Pearl
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Canada
| | - Dawn Daku
- Roy Romanow Provincial Laboratory (formerly the Saskatchewan Disease Control Laboratory), Regina, Canada
| | - Evelyn Nagle
- Roy Romanow Provincial Laboratory (formerly the Saskatchewan Disease Control Laboratory), Regina, Canada
| | - Greg B Horsman
- Roy Romanow Provincial Laboratory (formerly the Saskatchewan Disease Control Laboratory), Regina, Canada
| | - Scott A McEwen
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Canada
| |
Collapse
|
41
|
Marotta F, Garofolo G, di Marcantonio L, Di Serafino G, Neri D, Romantini R, Sacchini L, Alessiani A, Di Donato G, Nuvoloni R, Janowicz A, Di Giannatale E. Antimicrobial resistance genotypes and phenotypes of Campylobacter jejuni isolated in Italy from humans, birds from wild and urban habitats, and poultry. PLoS One 2019; 14:e0223804. [PMID: 31603950 PMCID: PMC6788699 DOI: 10.1371/journal.pone.0223804] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/27/2019] [Indexed: 11/18/2022] Open
Abstract
Campylobacter jejuni, a common foodborne zoonotic pathogen, causes gastroenteritis worldwide and is increasingly resistant to antibiotics. We aimed to investigate the antimicrobial resistance (AMR) genotypes of C. jejuni isolated from humans, poultry and birds from wild and urban Italian habitats to identify correlations between phenotypic and genotypic AMR in the isolates. Altogether, 644 C. jejuni isolates from humans (51), poultry (526) and wild- and urban-habitat birds (67) were analysed. The resistance phenotypes of the isolates were determined using the microdilution method with EUCAST breakpoints, and AMR-associated genes and single nucleotide polymorphisms were obtained from a publicly available database. Antimicrobial susceptibility testing showed that C. jejuni isolates from poultry and humans were highly resistant to ciprofloxacin (85.55% and 76.47%, respectively), nalidixic acid (75.48% and 74.51%, respectively) and tetracycline (67.87% and 49.02%, respectively). Fewer isolates from the wild- and urban-habitat birds were resistant to tetracycline (19.40%), fluoroquinolones (13.43%), and quinolone and streptomycin (10.45%). We retrieved seven AMR genes (tet (O), cmeA, cmeB, cmeC, cmeR, blaOXA-61 and blaOXA-184) and gyrA-associated point mutations. Two major B-lactam genes called blaOXA-61 and blaOXA-184 were prevalent at 62.93% and 82.08% in the poultry and the other bird groups, respectively. Strong correlations between genotypic and phenotypic resistance were found for fluoroquinolones and tetracycline. Compared with the farmed chickens, the incidence of AMR in the C. jejuni isolates from the other bird groups was low, confirming that the food-production birds are much more exposed to antimicrobials. The improper and overuse of antibiotics in the human population and in animal husbandry has resulted in an increase in antibiotic-resistant infections, particularly fluoroquinolone resistant ones. Better understanding of the AMR mechanisms in C. jejuni is necessary to develop new strategies for improving AMR programs and provide the most appropriate therapies to human and veterinary populations.
Collapse
Affiliation(s)
- Francesca Marotta
- National Reference Laboratory for Campylobacter, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Giuliano Garofolo
- National Reference Laboratory for Campylobacter, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Lisa di Marcantonio
- National Reference Laboratory for Campylobacter, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Gabriella Di Serafino
- National Reference Laboratory for Campylobacter, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Diana Neri
- National Reference Laboratory for Campylobacter, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Romina Romantini
- National Reference Laboratory for Campylobacter, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Lorena Sacchini
- National Reference Laboratory for Campylobacter, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Alessandra Alessiani
- National Reference Laboratory for Campylobacter, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Guido Di Donato
- National Reference Laboratory for Campylobacter, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Roberta Nuvoloni
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | - Anna Janowicz
- National Reference Laboratory for Campylobacter, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| | - Elisabetta Di Giannatale
- National Reference Laboratory for Campylobacter, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Teramo, Italy
| |
Collapse
|
42
|
Brooks PT, Bell JA, Bejcek CE, Malik A, Mansfield LS. An antibiotic depleted microbiome drives severe Campylobacter jejuni-mediated Type 1/17 colitis, Type 2 autoimmunity and neurologic sequelae in a mouse model. J Neuroimmunol 2019; 337:577048. [PMID: 31678855 DOI: 10.1016/j.jneuroim.2019.577048] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 09/01/2019] [Accepted: 09/02/2019] [Indexed: 10/26/2022]
Abstract
The peripheral neuropathy Guillain-Barré Syndrome can follow Campylobacter jejuni infection when outer core lipooligosaccharides induce production of neurotoxic anti-ganglioside antibodies. We hypothesized that gut microbiota depletion with an antibiotic would increase C. jejuni colonization, severity of gastroenteritis, and GBS. Microbiota depletion increased C. jejuni colonization, invasion, and colitis with Type 1/17 T cells in gut lamina propria. It also stimulated Type 1/17 anti-C. jejuni and -antiganglioside-antibodies, Type 2 anti-C. jejuni and -antiganglioside antibodies, and neurologic phenotypes. Results indicate that both C. jejuni strain and gut microbiota affect development of inflammation and GBS and suggest that probiotics following C. jejuni infection may ameliorate inflammation and autoimmune disease.
Collapse
Affiliation(s)
- Phillip T Brooks
- Comparative Enteric Diseases Laboratory, Michigan State University, East Lansing, MI, USA; Comparative Medicine Integrative Biology Graduate Program, Michigan State University, East Lansing, MI, USA; College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
| | - Julia A Bell
- Comparative Enteric Diseases Laboratory, Michigan State University, East Lansing, MI, USA; Departments of Microbiology and Molecular Genetics and Large Animal Clinical Sciences, Michigan State University, East Lansing, MI, USA; College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Christopher E Bejcek
- Comparative Enteric Diseases Laboratory, Michigan State University, East Lansing, MI, USA; Departments of Microbiology and Molecular Genetics and Large Animal Clinical Sciences, Michigan State University, East Lansing, MI, USA
| | - Ankit Malik
- Comparative Enteric Diseases Laboratory, Michigan State University, East Lansing, MI, USA; Departments of Microbiology and Molecular Genetics and Large Animal Clinical Sciences, Michigan State University, East Lansing, MI, USA
| | - Linda S Mansfield
- Comparative Enteric Diseases Laboratory, Michigan State University, East Lansing, MI, USA; Departments of Microbiology and Molecular Genetics and Large Animal Clinical Sciences, Michigan State University, East Lansing, MI, USA; College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
43
|
Varga C, Guerin MT, Brash ML, Slavic D, Boerlin P, Susta L. Antimicrobial resistance in Campylobacter jejuni and Campylobacter coli isolated from small poultry flocks in Ontario, Canada: A two-year surveillance study. PLoS One 2019; 14:e0221429. [PMID: 31465474 PMCID: PMC6715200 DOI: 10.1371/journal.pone.0221429] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 08/06/2019] [Indexed: 11/18/2022] Open
Abstract
Antimicrobial resistance in Campylobacter, common in poultry, is a global public health issue. The emergence and spread of antimicrobial resistant Campylobacter has been linked to the use of antimicrobials in food animals. Small poultry flocks are becoming increasingly popular not only as a source of food but also as pets, yet not all small flock owners are aware of proper antimicrobial use practices and safe food handling protocols. This trend could contribute to antimicrobial resistance. In order to determine the prevalence of antimicrobial resistance in Campylobacter in small poultry flocks, we analyzed data from birds that had been submitted to a diagnostic laboratory in Ontario between October 2015 and September 2017. A pooled cecal sample was obtained from each submission and cultured for Campylobacter jejuni and Campylobacter coli. Three isolates were recovered from each positive sample and tested for susceptibility to nine antimicrobials using a broth microdilution method. Overall, 176 isolates were recovered (141 chicken, 21 turkey, 6 duck, and 8 game bird). A high frequency of resistance to tetracycline was observed in the C. jejuni isolates from chickens (77%) and turkeys (100%), and in the C. coli isolates from turkeys (50%) and game birds (40%). Campylobacter jejuni isolates had higher odds of resistance to tetracycline (OR = 3.54, P ≤ 0.01) compared to C. coli isolates. Overall, there was a low frequency of resistance to quinolones and a very low frequency of resistance to macrolides. Multidrug resistance was uncommon. The high prevalence of tetracycline resistance emphasizes the importance of prudent antimicrobial use in small flocks. Although low, the presence of resistance to macrolides and quinolones, which are used to treat campylobacteriosis in humans, highlights the need for proper food safety and infection control practices by small flock owners to prevent exposure to antimicrobial resistant Campylobacter.
Collapse
Affiliation(s)
- Csaba Varga
- Ontario Ministry of Agriculture, Food and Rural Affairs, Guelph, Ontario, Canada
| | - Michele T. Guerin
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Marina L. Brash
- Animal Health Laboratory, University of Guelph, Guelph, Ontario, Canada
| | - Durda Slavic
- Animal Health Laboratory, University of Guelph, Guelph, Ontario, Canada
| | - Patrick Boerlin
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Leonardo Susta
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
44
|
Kanwal S, Noreen Z, Aalam V, Akhtar J, Masood F, Javed S, Bokhari H. Variation in antibiotic susceptibility and presence of type VI secretion system (T6SS) in Campylobacter jejuni isolates from various sources. Comp Immunol Microbiol Infect Dis 2019; 66:101345. [PMID: 31476607 DOI: 10.1016/j.cimid.2019.101345] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 08/16/2019] [Indexed: 12/11/2022]
Abstract
Campylobacter jejuni is a major cause of infectious diarrhea in humans. The bacterium can be transmitted through contaminated poultry meat and waste water. We report the presence of C. jejuni from potential transmission sources including egg shells, poultry waste, waste water and migratory bird droppings with a prevalence rate of 78%, 66%, 86% and 70% respectively. Antibiotic resistance profile showed high number of isolates resistant to multiple antibiotics including 4th generation cephalosporins. C. jejuni isolates were further screened for presence of T6SS, an important virulence factor. None of the C. jejuni isolates from migratory birds carried a T6SS, whereas highest prevalence of T6SS isolates was observed in waste water samples, followed by poultry waste and egg shells. To determine virulence potential of the isolates, hemolytic activity of isolates was compared. Although variation in hemolytic potential between isolates from different sources was noted, higher hemolytic activity was observed for isolates possessing hcp, a T6SS gene. Furthermore, presence of T6SS affords the bacterium some survival advantage when compared to T6SS competent Helicobacter pullorum which occupies the same niche. Taken together our findings indicate that C. jejuni with T6SS have a fitness advantage increasing their isolation frequency from waste water and poultry waste.
Collapse
Affiliation(s)
- Sobia Kanwal
- Department of Biosciences, COMSATS University Islamabad, Pakistan
| | - Zobia Noreen
- Department of Biosciences, COMSATS University Islamabad, Pakistan
| | - Vajeeha Aalam
- Department of Biosciences, COMSATS University Islamabad, Pakistan
| | - Junaid Akhtar
- Department of Biosciences, COMSATS University Islamabad, Pakistan
| | - Fariha Masood
- Department of Biosciences, COMSATS University Islamabad, Pakistan; Department of Lifesciences, ABASYN University, Islamabad, Pakistan
| | - Sundus Javed
- Department of Biosciences, COMSATS University Islamabad, Pakistan.
| | - Habib Bokhari
- Department of Biosciences, COMSATS University Islamabad, Pakistan.
| |
Collapse
|
45
|
Carrigy NB, Liang L, Wang H, Kariuki S, Nagel TE, Connerton IF, Vehring R. Spray-dried anti-Campylobacter bacteriophage CP30A powder suitable for global distribution without cold chain infrastructure. Int J Pharm 2019; 569:118601. [PMID: 31394183 DOI: 10.1016/j.ijpharm.2019.118601] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/18/2019] [Accepted: 08/03/2019] [Indexed: 11/17/2022]
Abstract
Campylobacter jejuni is a leading cause of foodborne illness globally. In this study, a spray drying and packaging process was developed to produce a thermally-stable dry powder containing bacteriophages that retains biological activity against C. jejuni after long distance shipping at ambient temperature. Spray drying using a twin-fluid atomizer resulted in significantly less (p < 0.05) titer reduction than spray drying using a vibrating mesh nebulizer. The use of centrifugation and dilution of filtered bacteriophage lysate in the formulation step resulted in a significantly greater (p < 0.05) proportion of bacteriophages remaining active relative to use of no centrifugation and dilution. The spray-dried bacteriophage powder generated using leucine and trehalose as excipients was flowable, non-cohesive, and exhibited a high manufacturing yield. The powder retained its titer with no significant differences (p > 0.05) in biological activity after storage in suitable packaging for at least 3 weeks at room temperature and after ambient temperature shipping a total distance of approximately 19,800 km, including with a 38 °C temperature excursion. The bacteriophage powder therefore appears suitable for global distribution without the need for cold chain infrastructure.
Collapse
Affiliation(s)
- Nicholas B Carrigy
- Department of Mechanical Engineering, University of Alberta, Edmonton, Canada
| | - Lu Liang
- School of Biosciences, University of Nottingham, Loughborough, UK
| | - Hui Wang
- Department of Mechanical Engineering, University of Alberta, Edmonton, Canada
| | - Samuel Kariuki
- Centre for Microbiology Research, Kenyan Medical Research Institute, Nairobi, Kenya
| | | | - Ian F Connerton
- School of Biosciences, University of Nottingham, Loughborough, UK
| | - Reinhard Vehring
- Department of Mechanical Engineering, University of Alberta, Edmonton, Canada.
| |
Collapse
|
46
|
Redondo N, Carroll A, McNamara E. Molecular characterization of Campylobacter causing human clinical infection using whole-genome sequencing: Virulence, antimicrobial resistance and phylogeny in Ireland. PLoS One 2019; 14:e0219088. [PMID: 31291319 PMCID: PMC6619736 DOI: 10.1371/journal.pone.0219088] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 06/14/2019] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES We characterized clinical isolates of Campylobacter using whole-genome sequencing (WGS) for detection of virulence genes, antimicrobial resistance markers and phylogenetic analysis in order to increase the knowledge on the molecular epidemiology of Campylobacter in Ireland, where there are significant gaps due to the widespread in the use of culture independent methods for the diagnosis of campylobacteriosis. METHODS WGS was applied to 122 Campylobacter human isolates collected over a 10-years period, from diarrhoeal stool samples submitted for routine enteric screening. RESULTS Genes associated with cytotoxin production such as cdtA, cdtB and cdtC were found in 88%, 89% and 89% isolates, respectively; adherence, colonization and invasion genes such as cadF, dnaJ, racR, iam, virB11 and ciaB were found in 99%, 99%, 98%, 99%, 1% and 80% isolates, respectively. Genetic markers associated with resistance to quinolones (C257T in gyrA), beta-lactams (blaoxa-61) and tetracycline (tet(O)) were present in 43%, 71% and 25% isolates, respectively. The cmeABC operon was present in 94% of isolates. No macrolide or aminoglycoside resistance markers were detected. Phylogenetic analysis showed that 112 isolates were assigned to 29 sequence types grouped into 17 clonal complexes. Four clusters previously unidentified were detected. These results shown the similarity of Irish data compared to what has been described globally. CONCLUSIONS WGS has shown a high discriminatory power for cluster detection, demonstrating that its integration in routine laboratory surveillance could improve the detection and management of outbreaks. In addition we were able to demonstrate that virulence genes in clinical Campylobacter infections in Ireland were similar to those known previously. High prevalence of quinolone resistance markers has been found, which has implications for antimicrobial stewardship.
Collapse
Affiliation(s)
- Natalia Redondo
- Public Health Laboratory, Dublin-Health Service Executive, Dublin, Ireland
- European Public Health Microbiology Training Programme (EUPHEM), European Centre for Disease Prevention and Control, Stockholm, Sweden
| | - Anne Carroll
- Public Health Laboratory, Dublin-Health Service Executive, Dublin, Ireland
| | - Eleanor McNamara
- Public Health Laboratory, Dublin-Health Service Executive, Dublin, Ireland
| |
Collapse
|
47
|
Effects of antibiotic resistance (AR) and microbiota shifts on Campylobacter jejuni-mediated diseases. Anim Health Res Rev 2019; 18:99-111. [PMID: 29665882 DOI: 10.1017/s1466252318000014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Campylobacter jejuni is an important zoonotic pathogen recently designated a serious antimicrobial resistant (AR) threat. While most patients with C. jejuni experience hemorrhagic colitis, serious autoimmune conditions can follow including inflammatory bowel disease (IBD) and the acute neuropathy Guillain Barré Syndrome (GBS). This review examines inter-relationships among factors mediating C. jejuni diarrheal versus autoimmune disease especially AR C. jejuni and microbiome shifts. Because both susceptible and AR C. jejuni are acquired from animals or their products, we consider their role in harboring strains. Inter-relationships among factors mediating C. jejuni colonization, diarrheal and autoimmune disease include C. jejuni virulence factors and AR, the enteric microbiome, and host responses. Because AR C. jejuni have been suggested to affect the severity of disease, length of infections and propensity to develop GBS, it is important to understand how these interactions occur when strains are under selection by antimicrobials. More work is needed to elucidate host-pathogen interactions of AR C. jejuni compared with susceptible strains and how AR C. jejuni are maintained and evolve in animal reservoirs and the extent of transmission to humans. These knowledge gaps impair the development of effective strategies to prevent the emergence of AR C. jejuni in reservoir species and human populations.
Collapse
|
48
|
Campylobacter at the Human-Food Interface: The African Perspective. Pathogens 2019; 8:pathogens8020087. [PMID: 31242594 PMCID: PMC6631673 DOI: 10.3390/pathogens8020087] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/18/2019] [Accepted: 06/20/2019] [Indexed: 02/07/2023] Open
Abstract
The foodborne pathogen Campylobacter is a major cause of human gastroenteritis, accounting for an estimated annual 96 million cases worldwide. Assessment of the true burden of Campylobacter in the African context is handicapped by the under-reporting of diarrhoeal incidents and ineffective monitoring and surveillance programmes of foodborne illnesses, as well as the minimal attention given to Campylobacter as a causative agent of diarrhoea. The present review of the literature highlights the variability in the reported occurrence of Campylobacter in humans and animal food sources across different countries and regions in Africa. Campylobacter infection is particularly prevalent in the paediatric population and has been isolated from farm animals, particularly poultry, and foods of animal origin. The reported prevalence of Campylobacter in children under the age of five years ranges from 2% in Sudan to 21% in South Africa. In poultry, the prevalence ranges from 14.4% in Ghana to 96% in Algeria. This review also highlights the alarming trend of increased Campylobacter resistance to clinically important antimicrobials, such as ciprofloxacin and erythromycin, in humans and food animals in Africa. This review adds to our understanding of the global epidemiology of Campylobacter at the human–food animal interface, with an emphasis from the African perspective. Interinstitutional and intersectoral collaborations, as well as the adoption of the One Health approach, would be useful in bridging the gaps in the epidemiological knowledge of Campylobacter in Africa.
Collapse
|
49
|
|
50
|
Abbasi E, van Belkum A, Ghaznavi-Rad E. Quinolone and Macrolide-Resistant Campylobacter jejuni in Pediatric Gastroenteritis Patients from Central Iran. Microb Drug Resist 2019; 25:1080-1086. [PMID: 31021299 DOI: 10.1089/mdr.2018.0455] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Aims: To determine the prevalence and the antibiotic resistance patterns of Campylobacter jejuni isolated from pediatric diarrhea patients in central Iran. Materials and Methods: Stool specimens (n = 230) were investigated using a modified Gram stain, two specific culture media, and C. jejuni-specific PCR. Antibiotic resistance profiles and relevant resistance genes were determined. Genetic relationships among a selection of the isolates were studied by Fla typing. Results: Out of the 230 diarrhea samples, 48 (20.8%) cases of C. jejuni were identified using modified Gram stain, 45 (19.5%) using the culture media, and 76 (33%) cases were identified using PCR. The highest antibiotic resistance rates were observed in 37 (82.2%) strains against tetracycline, in 32 (71.1%) against ciprofloxacin, and in 31 (68.8%) against erythromycin. Twenty (44.4%) isolates were resistant to ciprofloxacin and erythromycin simultaneously. Genotypic investigations found 36 (97.3%) strains carrying the tet (o) gene, 31 (96.8%) harboring the cmeB gene, 22 (68.7%) strains with the gyrA6 gene, 20 (64.5%) strains containing a 23S rRNA mutation, and 21 (65.6%) strains with the qnrS gene. Fla typing of a random subset of 14 strains revealed 11 different types showing the genomic diversity of the isolates. Strains sharing the same Fla type could be easily distinguished by their resistance gene profile. Conclusions: This is the first study to demonstrate that genetically diverse quinolone-macrolide-resistant C. jejuni is an important cause of gastroenteritis in children from central Iran. Pediatricians should consider these resistance features once the antibiotic prescription is necessary for prevention of possible complications, especially in those under 5 years of age. Of note, most cases of Campylobacter diarrhea are self-limiting and antibiotics should only be prescribed in those cases where severe complications evolve.
Collapse
Affiliation(s)
- Elnaz Abbasi
- Department of Microbiology & Immunology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran.,Department of Microbiology & Immunology, Khomein University of Medical Sciences, Khomein, Iran
| | - Alex van Belkum
- Data Analytics Department, BioMérieux, La Balme les Grottes, France
| | - Ehsanollah Ghaznavi-Rad
- Department of Microbiology & Immunology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran.,Molecular and Medicine Research Center, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|