1
|
Lima VA, Silva REC, Camargo LHMC, Hiramoto RM, Leal EDS, Braz LMA, Lindoso JAL. Genetic variability of Leishmania (Leishmania) infantum causing human visceral leishmaniasis in the Southeastern Brazil. Rev Inst Med Trop Sao Paulo 2023; 65:e55. [PMID: 37878972 PMCID: PMC10588988 DOI: 10.1590/s1678-9946202365055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 09/04/2023] [Indexed: 10/27/2023] Open
Abstract
Leishmania infantum is a protozoan that causes visceral leishmaniasis (VL) in the Americas and some regions of Europe. The disease is mainly characterized by hepatosplenomegaly and fever, and can be fatal. Factors related to the host and parasite can contribute to the transmission of Leishmania and the clinical outcome. The intraspecific genetic variability of L. infantum strains may be one of these factors. In this study, we evaluated the genetic variability of L. infantum obtained from bone marrow smear slides from patients in the Sao Paulo State, Brazil. For this, the minicircle of the kDNA hypervariable region was used as target by Sanger sequencing. By analyzing the similarity of the nucleotides and the maximum likelihood tree (Fasttree), we observed a high similarity (98%) among samples. Moreover, we identified four different profiles of L. infantum. In conclusion, L. infantum strains from Sao Paulo State, Brazil, showed low diversity measured by minicircle of the kDNA hypervariable region.
Collapse
Affiliation(s)
- Vinicius Alves Lima
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Moléstias Infecciosas e Parasitárias, São Paulo, São Paulo, Brazil
- Universidade de São Paulo, Faculdade de Medicina, Instituto de Medicina Tropical de São Paulo, Laboratório de Protozoologia (LIM-49), São Paulo, São Paulo, Brazil
| | - Renata Elen Costa Silva
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Moléstias Infecciosas e Parasitárias, São Paulo, São Paulo, Brazil
- Universidade Federal de São Paulo, Laboratório de Endocrinologia Molecular e Translacional, São Paulo, São Paulo, Brazil
| | | | | | - Elcio de Souza Leal
- Universidade Federal do Pará, Instituto de Ciências Biológicas, Belém, Pará, Brazil
| | - Lucia Maria Almeida Braz
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Medicina Preventiva, São Paulo, São Paulo, Brazil
| | - José Angelo Lauletta Lindoso
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Moléstias Infecciosas e Parasitárias, São Paulo, São Paulo, Brazil
- Universidade de São Paulo, Faculdade de Medicina, Instituto de Medicina Tropical de São Paulo, Laboratório de Protozoologia (LIM-49), São Paulo, São Paulo, Brazil
- Instituto de Infectologia Emilio Ribas, São Paulo, São Paulo, Brazil
| |
Collapse
|
2
|
Ratzlaff FR, Osmari V, da Silva D, de Paula Vasconcellos JS, Pötter L, Fernandes FD, de Mello Filho JA, de Avila Botton S, Vogel FSF, Sangioni LA. Identification of infection by Leishmania spp. in wild and domestic animals in Brazil: a systematic review with meta-analysis (2001-2021). Parasitol Res 2023; 122:1605-1619. [PMID: 37154922 DOI: 10.1007/s00436-023-07862-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 04/28/2023] [Indexed: 05/10/2023]
Abstract
Leishmaniasis is a zoonosis caused by protozoan species of the genus Leishmania. It generates different clinical manifestations in humans and animals, and it infects multiple hosts. Leishmania parasites are transmitted by sandfly vectors. The main objective of this systematic review was to identify the host, or reservoir animal species, of Leishmania spp., with the exception of domestic dogs, that were recorded in Brazil. This review included identification of diagnostic methods, and the species of protozoan circulating in the country. For this purpose, a literature search was conducted across index journals. This study covered the period from 2001 to 2021, and 124 studies were selected. Eleven orders possible hosts were identified, including 229 mammalian species. Perissodactyla had the highest number of infected individuals (30.69%, 925/3014), with the highest occurrence in horses. In Brazil, the most commonly infected species were found to be: horses, domestic cats, rodents, and marsupials. Bats, that were infected by one or more protozoan species, were identified as potential reservoirs of Leishmania spp. Molecular tests were the most commonly used diagnostic methods (94 studies). Many studies have detected Leishmania spp. (n = 1422): Leishmania (Leishmania) infantum (n = 705), Leishmania (Viannia) braziliensis (n = 319), and Leishmania (Leishmania) amazonensis (n = 141). Recognizing the species of animals involved in the epidemiology and biological cycle of the protozoan is important, as this allows for the identification of environmental biomarkers, knowledge of Leishmania species can improve the control zoonotic leishmaniasis.
Collapse
Affiliation(s)
- Fabiana Raquel Ratzlaff
- Laboratório de Doenças Parasitárias (LADOPAR), Departamento de Medicina Veterinária Preventiva, Centro de Ciências Rurais (CCR), Universidade Federal de Santa Maria (UFSM), Av. Roraima, N°1000, Prédio 63D, Bairro Camobi, Santa Maria, RS, CEP 97105900, Brazil
| | - Vanessa Osmari
- Laboratório de Doenças Parasitárias (LADOPAR), Departamento de Medicina Veterinária Preventiva, Centro de Ciências Rurais (CCR), Universidade Federal de Santa Maria (UFSM), Av. Roraima, N°1000, Prédio 63D, Bairro Camobi, Santa Maria, RS, CEP 97105900, Brazil
| | - Daniele da Silva
- Laboratório de Doenças Parasitárias (LADOPAR), Departamento de Medicina Veterinária Preventiva, Centro de Ciências Rurais (CCR), Universidade Federal de Santa Maria (UFSM), Av. Roraima, N°1000, Prédio 63D, Bairro Camobi, Santa Maria, RS, CEP 97105900, Brazil
| | - Jaíne Soares de Paula Vasconcellos
- Laboratório de Doenças Parasitárias (LADOPAR), Departamento de Medicina Veterinária Preventiva, Centro de Ciências Rurais (CCR), Universidade Federal de Santa Maria (UFSM), Av. Roraima, N°1000, Prédio 63D, Bairro Camobi, Santa Maria, RS, CEP 97105900, Brazil
| | - Luciana Pötter
- Laboratório de Pastos e Suplementos, Departamento de Zootecnia, Centro de Ciências Rurais (CCR), Universidade Federal de Santa Maria (UFSM), Av. Roraima, N°1000, Bairro Camobi, Santa Maria, RS, CEP 97105900, Brazil
| | - Fagner D'ambroso Fernandes
- Laboratório de Doenças Parasitárias (LADOPAR), Departamento de Medicina Veterinária Preventiva, Centro de Ciências Rurais (CCR), Universidade Federal de Santa Maria (UFSM), Av. Roraima, N°1000, Prédio 63D, Bairro Camobi, Santa Maria, RS, CEP 97105900, Brazil.
- Centro Universitário Ritter Dos Reis (UniRitter), Campus FAPA, Av. Manoel Elias, 2001 - Passo das Pedras, Porto Alegre, 91240-261, Brazil.
| | - José Américo de Mello Filho
- Laboratório de Análises Ambientais por Geoprocessamento (LAGEO), Departamento de Engenharia Rural, Centro de Ciências Rurais (CCR), Universidade Federal de Santa Maria (UFSM), Av. Roraima, N°1000, Prédio 44 J, Bairro Camobi, Santa Maria, RS, CEP 97105-900, Brazil
| | - Sônia de Avila Botton
- Laboratório de Saúde Única (LASUS), Departamento de Medicina Veterinária Preventiva, Centro de Ciências Rurais (CCR), Universidade Federal de Santa Maria (UFSM), Av. Roraima, nº 1000, Prédio 44, Bairro Camobi, Santa Maria, Rio Grande do Sul, CEP 97105-900, Brazil
| | - Fernanda Silveira Flores Vogel
- Laboratório de Doenças Parasitárias (LADOPAR), Departamento de Medicina Veterinária Preventiva, Centro de Ciências Rurais (CCR), Universidade Federal de Santa Maria (UFSM), Av. Roraima, N°1000, Prédio 63D, Bairro Camobi, Santa Maria, RS, CEP 97105900, Brazil
| | - Luís Antônio Sangioni
- Laboratório de Doenças Parasitárias (LADOPAR), Departamento de Medicina Veterinária Preventiva, Centro de Ciências Rurais (CCR), Universidade Federal de Santa Maria (UFSM), Av. Roraima, N°1000, Prédio 63D, Bairro Camobi, Santa Maria, RS, CEP 97105900, Brazil
| |
Collapse
|
3
|
Gow I, Smith NC, Stark D, Ellis J. Laboratory diagnostics for human Leishmania infections: a polymerase chain reaction-focussed review of detection and identification methods. Parasit Vectors 2022; 15:412. [PMID: 36335408 PMCID: PMC9636697 DOI: 10.1186/s13071-022-05524-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/02/2022] [Indexed: 11/08/2022] Open
Abstract
Leishmania infections span a range of clinical syndromes and impact humans from many geographic foci, but primarily the world's poorest regions. Transmitted by the bite of a female sand fly, Leishmania infections are increasing with human movement (due to international travel and war) as well as with shifts in vector habitat (due to climate change). Accurate diagnosis of the 20 or so species of Leishmania that infect humans can lead to the successful treatment of infections and, importantly, their prevention through modelling and intervention programs. A multitude of laboratory techniques for the detection of Leishmania have been developed over the past few decades, and although many have drawbacks, several of them show promise, particularly molecular methods like polymerase chain reaction. This review provides an overview of the methods available to diagnostic laboratories, from traditional techniques to the now-preferred molecular techniques, with an emphasis on polymerase chain reaction-based detection and typing methods.
Collapse
Affiliation(s)
- Ineka Gow
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007 Australia
| | - Nicholas C. Smith
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007 Australia
| | - Damien Stark
- Department of Microbiology, St Vincent’s Hospital Sydney, Darlinghurst, NSW 2010 Australia
| | - John Ellis
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007 Australia
| |
Collapse
|
4
|
Llanes A, Cruz G, Morán M, Vega C, Pineda VJ, Ríos M, Penagos H, Suárez JA, Saldaña A, Lleonart R, Restrepo CM. Genomic diversity and genetic variation of Leishmania panamensis within its endemic range. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 103:105342. [PMID: 35878820 DOI: 10.1016/j.meegid.2022.105342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Species belonging to the Leishmania (Viannia) subgenus are important causative agents of cutaneous and mucocutaneous leishmaniasis in Central and South America. These parasites possess several distinctive biological features that are influenced by their genetics, population structure, and genome instability. To date, several studies have revealed varying degrees of genetic diversity within Leishmania species. Particularly, in species of the L. (Viannia) subgenus, a generalized high intraspecific genetic diversity has been reported, although, conflicting conclusions have been drawn using different molecular techniques. Despite being the most common Leishmania species circulating in Panama and Colombia, few studies have analyzed clinical samples of Leishmania panamensis using whole-genome sequencing, and their restricted number of samples has limited the information they can provide to understand the population structure of L. panamensis. Here, we used next generation sequencing (NGS) to explore the genetic diversity of L. panamensis within its endemic range, analyzing data from 43 isolates of Colombian and Panamanian origin. Our results show the occurrence of three well-defined geographically correlated groups, and suggests the possible occurrence of additional phylogeographic groups. Furthermore, these results support the existence of a mixed mode of reproduction in L. panamensis, with varying frequencies of events of genetic recombination occurring primarily within subpopulations of closely related strains. This study offers important insights into the population genetics and reproduction mode of L. panamensis, paving the way to better understand their population structure and the emergence and maintenance of key eco-epidemiological traits.
Collapse
Affiliation(s)
- Alejandro Llanes
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama City, Panama, Panama
| | - Génesis Cruz
- Escuela de Biología, Facultad de Ciencias Naturales, Exactas y Tecnología, Universidad de Panamá, Panama City, Panama, Panama
| | - Mitchelle Morán
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama City, Panama, Panama
| | - Carlos Vega
- Escuela de Biología, Facultad de Ciencias Naturales, Exactas y Tecnología, Universidad de Panamá, Panama City, Panama, Panama
| | - Vanessa J Pineda
- Instituto Conmemorativo Gorgas de Estudios de la Salud (ICGES), Panama City, Panama, Panama
| | - Margarita Ríos
- Instituto Conmemorativo Gorgas de Estudios de la Salud (ICGES), Panama City, Panama, Panama
| | - Homero Penagos
- Hospital Regional Dr. Rafael Hernández, Caja de Seguro Social, David, Chiriquí, Panama; Sistema Nacional de Investigación-Secretaría Nacional de Ciencia, Tecnología e Innovación (SNI-SENACYT), Panama City, Panama, Panama
| | - José A Suárez
- Instituto Conmemorativo Gorgas de Estudios de la Salud (ICGES), Panama City, Panama, Panama; Sistema Nacional de Investigación-Secretaría Nacional de Ciencia, Tecnología e Innovación (SNI-SENACYT), Panama City, Panama, Panama
| | - Azael Saldaña
- Instituto Conmemorativo Gorgas de Estudios de la Salud (ICGES), Panama City, Panama, Panama; Sistema Nacional de Investigación-Secretaría Nacional de Ciencia, Tecnología e Innovación (SNI-SENACYT), Panama City, Panama, Panama
| | - Ricardo Lleonart
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama City, Panama, Panama; Sistema Nacional de Investigación-Secretaría Nacional de Ciencia, Tecnología e Innovación (SNI-SENACYT), Panama City, Panama, Panama.
| | - Carlos M Restrepo
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama City, Panama, Panama; Sistema Nacional de Investigación-Secretaría Nacional de Ciencia, Tecnología e Innovación (SNI-SENACYT), Panama City, Panama, Panama.
| |
Collapse
|
5
|
Van der Auwera G, Davidsson L, Buffet P, Ruf MT, Gramiccia M, Varani S, Chicharro C, Bart A, Harms G, Chiodini PL, Brekke H, Robert-Gangneux F, Cortes S, Verweij JJ, Scarabello A, Karlsson Söbirk S, Guéry R, van Henten S, Di Muccio T, Carra E, van Thiel P, Vandeputte M, Gaspari V, Blum J. Surveillance of leishmaniasis cases from 15 European centres, 2014 to 2019: a retrospective analysis. EURO SURVEILLANCE : BULLETIN EUROPEEN SUR LES MALADIES TRANSMISSIBLES = EUROPEAN COMMUNICABLE DISEASE BULLETIN 2022; 27. [PMID: 35086613 PMCID: PMC8796293 DOI: 10.2807/1560-7917.es.2022.27.4.2002028] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Background Surveillance of human leishmaniasis in Europe is mostly limited to country-specific information from autochthonous infections in the southern part. As at the end of 2021, no integrated analysis has been performed for cases seen across centres in different European countries. Aim To provide a broad perspective on autochthonous and imported leishmaniasis cases in endemic and non-endemic countries in Europe. Methods We retrospectively collected records from cutaneous, mucosal and visceral leishmaniasis cases diagnosed in 15 centres between 2014 and 2019. Centres were located in 11 countries: Belgium, France, Germany, Italy, the Netherlands, Norway, Portugal, Spain, Sweden, Switzerland and the United Kingdom. Data on country of infection, reason for travelling, infecting species, age and sex were analysed. Results We obtained diagnostic files from 1,142 cases, of which 76%, 21% and 3% had cutaneous, visceral, and mucosal disease, respectively. Of these, 68% were men, and 32% women, with the median age of 37 years (range: 0–90) at diagnosis. Visceral leishmaniasis was mainly acquired in Europe (88%; 167/190), while cutaneous leishmaniasis was primarily imported from outside Europe (77%; 575/749). Sixty-two percent of cutaneous leishmaniasis cases from outside Europe were from the Old World, and 38% from the New World. Geographic species distribution largely confirmed known epidemiology, with notable exceptions. Conclusions Our study confirms previous reports regarding geographic origin, species, and traveller subgroups importing leishmaniasis into Europe. We demonstrate the importance of pooling species typing data from many centres, even from areas where the aetiology is presumably known, to monitor changing epidemiology.
Collapse
Affiliation(s)
| | | | - Pierre Buffet
- Service des maladies infectieuses et tropicales, AP-HP, Hopital Necker, Paris, France
| | - Marie-Thérèse Ruf
- University of Basel, Basel, Switzerland.,Swiss Tropical and Public Health Institute, Basel, Switzerland
| | | | - Stefania Varani
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy.,IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | | | - Aldert Bart
- Amsterdam University Medical Centre, Amsterdam, the Netherlands
| | - Gundel Harms
- Institute of Tropical Medicine and International Health, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt - Universität zu Berlin, Berlin, Germany
| | | | | | | | - Sofia Cortes
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Jaco J Verweij
- Microvida Laboratory for Medical Microbiology and Immunology, Elisabeth-TweeSteden Hospital, Tilburg, the Netherlands
| | | | | | | | | | | | - Elena Carra
- Istituto Zooprofilattico Sperimentale della Lombardia e dell' Emilia-Romagna 'Bruno Ubertini', Brescia, Italy
| | | | | | - Valeria Gaspari
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Johannes Blum
- University of Basel, Basel, Switzerland.,Swiss Tropical and Public Health Institute, Basel, Switzerland
| | -
- The members of the network are listed under Investigators
| | | |
Collapse
|
6
|
Chen YF, Liao LF, Wu N, Gao JM, Zhang P, Wen YZ, Hide G, Lai DH, Lun ZR. Species identification and phylogenetic analysis of Leishmania isolated from patients, vectors and hares in the Xinjiang Autonomous Region, The People's Republic of China. PLoS Negl Trop Dis 2021; 15:e0010055. [PMID: 34919567 PMCID: PMC8752017 DOI: 10.1371/journal.pntd.0010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 01/11/2022] [Accepted: 12/04/2021] [Indexed: 11/18/2022] Open
Abstract
Background Visceral leishmaniasis (VL) has been declared as one of the six major tropical diseases by the World Health Organization. This disease has been successfully controlled in China, except for some areas in the western region, such as the Xinjiang Autonomous Region, where both anthroponotic VL (AVL) and desert type zoonotic VL (DT-ZVL) remain endemic with sporadic epidemics. Methodology/Principal findings Here, an eleven-year survey (2004–2014) of Leishmania species, encompassing both VL types isolated from patients, sand-fly vectors and Tarim hares (Lepus yarkandensis) from the Xinjiang Autonomous Region was conducted, with a special emphasis on the hares as a potential reservoir animal for DT-ZVL. Key diagnostic genes, ITS1, hsp70 and nagt (encoding N-acetylglucosamine-1-phosphate transferase) were used for phylogenetic analyses, placing all Xinjiang isolates into one clade of the L. donovani complex. Unexpectedly, AVL isolates were found to be closely related to L. infantum, while DT-ZVL isolates were closer to L. donovani. Unrooted parsimony networks of haplotypes for these isolates also revealed their relationship. Conclusions/Significance The above analyses of the DT-ZVL isolates suggested their geographic isolation and independent evolution. The sequence identity of isolates from patients, vectors and the Tarim hares in a single DT-ZVL site provides strong evidence in support of this species as an animal reservoir. Black faver, also known as visceral leishmaniasis (VL), is caused by pathogens of Leishmania species, spread by the bites of infected sand flies. This disease has been successfully controlled in China, except for some areas in the western region, such as Xinjiang. However, the knowledge on Leishmania in these areas remains a few important gaps. Particularly, what is the animal reservoir for desert type zoonotic VL (DT-ZVL), as sand flies get infected in areas free of patients or infected dogs? To address this question, an eleven-year survey (2004–2014) in Xinjiang for Leishmania species was carried out. We found that VLs in Xinjiang are contributed to Leishmania donovani complex, and Tarim hares is likely the reservoir animal for DT-ZVL.
Collapse
Affiliation(s)
- Yun-Fu Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, The People’s Republic of China
| | - Li-Fu Liao
- Center for Laboratory Animal Research, Xinjiang Uighur Autonomous Region Center for Disease Control and Prevention, Urumqi, The People’s Republic of China
| | - Na Wu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, The People’s Republic of China
| | - Jiang-Mei Gao
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, The People’s Republic of China
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of zoology, Guangdong Academy of Sciences, Guangzhou, The People’s Republic of China
| | - Peng Zhang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, The People’s Republic of China
| | - Yan-Zi Wen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, The People’s Republic of China
| | - Geoff Hide
- Ecosystems and Environment Research Centre and Biomedical Research Centre, School of Science, Engineering and Environment, University of Salford, Salford, United Kingdom
| | - De-Hua Lai
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, The People’s Republic of China
- * E-mail: (D-HL); (Z-RL)
| | - Zhao-Rong Lun
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, The People’s Republic of China
- Ecosystems and Environment Research Centre and Biomedical Research Centre, School of Science, Engineering and Environment, University of Salford, Salford, United Kingdom
- * E-mail: (D-HL); (Z-RL)
| |
Collapse
|
7
|
Zijlstra EE. Precision Medicine in Control of Visceral Leishmaniasis Caused by L. donovani. Front Cell Infect Microbiol 2021; 11:707619. [PMID: 34858865 PMCID: PMC8630745 DOI: 10.3389/fcimb.2021.707619] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 09/28/2021] [Indexed: 11/30/2022] Open
Abstract
Precision medicine and precision global health in visceral leishmaniasis (VL) have not yet been described and could take into account how all known determinants improve diagnostics and treatment for the individual patient. Precision public health would lead to the right intervention in each VL endemic population for control, based on relevant population-based data, vector exposures, reservoirs, socio-economic factors and other determinants. In anthroponotic VL caused by L. donovani, precision may currently be targeted to the regional level in nosogeographic entities that are defined by the interplay of the circulating parasite, the reservoir and the sand fly vector. From this 5 major priorities arise: diagnosis, treatment, PKDL, asymptomatic infection and transmission. These 5 priorities share the immune responses of infection with L. donovani as an important final common pathway, for which innovative new genomic and non-genomic tools in various disciplines have become available that provide new insights in clinical management and in control. From this, further precision may be defined for groups (e.g. children, women, pregnancy, HIV-VL co-infection), and eventually targeted to the individual level.
Collapse
Affiliation(s)
- Eduard E Zijlstra
- Clinical Sciences, Rotterdam Centre for Tropical Medicine, Rotterdam, Netherlands
| |
Collapse
|
8
|
Taxonomy, Population Structure and Genetic Diversity of Iranian Leishmania Strains of Cutaneous and Visceral Leishmaniasis. Acta Parasitol 2021; 66:1274-1284. [PMID: 33942225 DOI: 10.1007/s11686-021-00377-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 03/15/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Despite the broad distribution of leishmaniasis in Iran, there is a little genetic information about the causative agents and epidemiological status of the disease. Genetic diversity of the parasite is suggested to be one of the factors, which influences the clinical manifestations of the disease. In this study, we investigated the genetic variations, population structure, and evolutionary history of Leishmania species from endemic foci of Iran. METHODS Fifty-two isolates from humans, canines, and rodents from different endemic foci of Iran were used to sequence the N-acetyl glucosamine-1-phosphate transferase (Nagt) gene. Phylogenetic and structure analyses were performed to investigate inter- and intra-species diversity of the Leishmania isolates. RESULTS In total, 10 haplotypes including L. major (n = 6), L. tropica (n = 2), L. infantum (n = 1) and L. turanica (n = 1) were identified across 52 isolates. Haplotype diversity (Hd) ranged from zero for L. infantum and L. turanica to 0.78 ± 0.136 for L. major. This study identified population structure of Leishmania isolates from different geographical regions of Iran. The results of the phylogenetic tree showed 4 distinct clades for each species of Leishmania. In addition, the highest intraspecies diversity was observed among L. major isolates. No correlation was observed between species and geographic distribution of haplotypes. CONCLUSIONS Leishmania isolates were identified at the species level using the Nagt gene, low variation within species indicates conservation of this gene in Leishmania. The results provide knowledge into the evolutionary history of Iranian Leishmania isolates.
Collapse
|
9
|
Patino LH, Castillo-Castañeda A, Muñoz M, Muskus C, Rivero-Rodríguez M, Pérez-Doria A, Bejarano EE, Ramírez JD. Revisiting the heterogeneous global genomic population structure of Leishmania infantum. Microb Genom 2021; 7. [PMID: 34491157 PMCID: PMC8715437 DOI: 10.1099/mgen.0.000640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Leishmania infantum is the main causative agent responsible for visceral leishmaniasis (VL), a disease with global distribution. The genomic structure and genetic variation of this species have been widely studied in different parts of the world. However, in some countries, this information is still yet unknown, as is the genomic behaviour of the main antigens used in VL diagnosis (rK39 and rK28), which have demonstrated variable sensitivity and specificity in a manner dependent on the geographic region analysed. The objective of this study was to explore the genomic architecture and diversity of four Colombian L. infantum isolates obtained in this study and to compare these results with the genetic analysis of 183 L. infantum isolates from across the world (obtained from public databases), as well as to analyse the whole rK39 and rK28 antigen sequences in our dataset. The results showed that, at the global level, L. infantum has high genetic homogeneity and extensive aneuploidy. Furthermore, we demonstrated that there are distinct populations of L. infantum circulating in various countries throughout the globe and that populations of distant countries have close genomic relationships. Additionally, this study demonstrated the high genetic variability of the rK28 antigen worldwide. In conclusion, our study allowed us to (i) expand our knowledge of the genomic structure of global L. infantum; (ii) describe the intra-specific genomic variability of this species; and (iii) understand the genomic characteristics of the main antigens used in the diagnosis of VL. Additionally, this is the first study to report whole-genome sequences of Colombian L. infantum isolates.
Collapse
Affiliation(s)
- Luz H Patino
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Adriana Castillo-Castañeda
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Carlos Muskus
- Programa de Estudios y Control de Enfermedades Tropicales (PECET), Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Matilde Rivero-Rodríguez
- Grupo de Investigaciones Biomédicas, Universidad de Sucre, Sincelejo, Colombia.,Candidata a doctor en Medicina Tropical, Universidad de Cartagena-SUE Caribe, Colombia
| | - Alveiro Pérez-Doria
- Grupo de Investigaciones Biomédicas, Universidad de Sucre, Sincelejo, Colombia
| | - Eduar E Bejarano
- Grupo de Investigaciones Biomédicas, Universidad de Sucre, Sincelejo, Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
10
|
Flaih MH, Al-Abady FA, Hussein KR. Phylogenetic analysis of kinetoplast DNA: kDNA of Leishmania tropica in Thi-Qar province, Iraq. Comp Immunol Microbiol Infect Dis 2021; 78:101696. [PMID: 34416483 DOI: 10.1016/j.cimid.2021.101696] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 08/04/2021] [Accepted: 08/09/2021] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Cutaneous leishmaniasis (CL) is one of wobbling endemic disease in Iraq, that cause intracellular obligate protistan parasite returned to the genusLeishmania. This study is aimed to identify epidemiology of CL, detect the prevalence of Leishmania tropica and find the phylogenetic relationship. METHODOLOGY The current study was conducted in the main hospitals of Thi-Qar province-south of Iraq for period from November 2018 to October 2019. Nested-PCR was used to amplify kinetoplast minicircle fragments DNA. RESULTS It was recorded 247 clinical cases with CL, the infections of males were higher than females, while infection rate appeared gradual reduction with age progress. Furthermore, the most CL infections were as single lesions and occurred in December. The infections of upper limbs were high when compared with other body regions. The molecular diagnosis showed L. tropica was more frequently. DNA sequences of kDNA gene of L. tropica showed confirmative genetic detection of local isolates using NCBI-Blast data and phylogenetic tree analysis after comparison with global recorded isolates. The local L. tropica isolates showed genetically closed related to NCBI-Blast L. tropica with accession number AB678350.1. Generally, the analysis of kDNA nitrogen bases sequences showed that all of samples were consistent with those recorded at the NCBI. CONCLUSION The kDNA minicircle sequences analysis results showed mismatching of the local isolates decrease whenever approached from the Iranian border. In addition, genetic heterogeneity diagnosis is important for detection of therapy, control and epidemiological studies.
Collapse
Affiliation(s)
- Mohammed Hassan Flaih
- Department of Medical Laboratory Techniques, Nasiriyah Technical Institute, Southern Technical University, Nasiriyah 64001, Iraq.
| | - Fadhil Abbas Al-Abady
- Department of Biology, College of Education for Pure Sciences, University of Thi-Qar, Nasiriyah 64001, Iraq
| | - Khwam Reissan Hussein
- Department of Medical Laboratory Techniques, Nasiriyah Technical Institute, Southern Technical University, Nasiriyah 64001, Iraq
| |
Collapse
|
11
|
Kuhls K, Moskalenko O, Sukiasyan A, Manukyan D, Melik-Andreasyan G, Atshemyan L, Apresyan H, Strelkova M, Jaeschke A, Wieland R, Frohme M, Cortes S, Keshishyan A. Microsatellite based molecular epidemiology of Leishmania infantum from re-emerging foci of visceral leishmaniasis in Armenia and pilot risk assessment by ecological niche modeling. PLoS Negl Trop Dis 2021; 15:e0009288. [PMID: 33872307 PMCID: PMC8055006 DOI: 10.1371/journal.pntd.0009288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 03/03/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Visceral leishmaniasis (VL) is re-emerging in Armenia since 1999 with 167 cases recorded until 2019. The objectives of this study were (i) to determine for the first time the genetic diversity and population structure of the causative agent of VL in Armenia; (ii) to compare these genotypes with those from most endemic regions worldwide; (iii) to monitor the diversity of vectors in Armenia; (iv) to predict the distribution of the vectors and VL in time and space by ecological niche modeling. METHODOLOGY/PRINCIPAL FINDINGS Human samples from different parts of Armenia previously identified by ITS-1-RFLP as L. infantum were studied by Multilocus Microsatellite Typing (MLMT). These data were combined with previously typed L. infantum strains from the main global endemic regions for population structure analysis. Within the 23 Armenian L. infantum strains 22 different genotypes were identified. The combined analysis revealed that all strains belong to the worldwide predominating MON1-population, however most closely related to a subpopulation from Southeastern Europe, Maghreb, Middle East and Central Asia. The three observed Armenian clusters grouped within this subpopulation with strains from Greece/Turkey, and from Central Asia, respectively. Ecological niche modeling based on VL cases and collected proven vectors (P. balcanicus, P. kandelakii) identified Yerevan and districts Lori, Tavush, Syunik, Armavir, Ararat bordering Georgia, Turkey, Iran and Azerbaijan as most suitable for the vectors and with the highest risk for VL transmission. Due to climate change the suitable habitat for VL transmission will expand in future all over Armenia. CONCLUSIONS Genetic diversity and population structure of the causative agent of VL in Armenia were addressed for the first time. Further genotyping studies should be performed with samples from infected humans, animals and sand flies from all active foci including the neighboring countries to understand transmission cycles, re-emergence, spread, and epidemiology of VL in Armenia and the entire Transcaucasus enabling epidemiological monitoring.
Collapse
Affiliation(s)
- Katrin Kuhls
- Division of Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Wildau, Germany
- Research Platform Data Analysis & Simulation, Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| | - Olga Moskalenko
- Division of Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Wildau, Germany
| | - Anna Sukiasyan
- Division of Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Wildau, Germany
- Research Institute of Epidemiology, Virology and Medical Parasitology after A.B. Alexanyan, Ministry of Health, Yerevan, Armenia
- Eurasia International University, Yerevan, Armenia
| | - Dezdemonia Manukyan
- Research Institute of Epidemiology, Virology and Medical Parasitology after A.B. Alexanyan, Ministry of Health, Yerevan, Armenia
| | - Gayane Melik-Andreasyan
- Research Institute of Epidemiology, Virology and Medical Parasitology after A.B. Alexanyan, Ministry of Health, Yerevan, Armenia
- National Center of Disease Control and Prevention, Ministry of Health,Yerevan, Armenia
| | - Liana Atshemyan
- Research Institute of Epidemiology, Virology and Medical Parasitology after A.B. Alexanyan, Ministry of Health, Yerevan, Armenia
| | - Hripsime Apresyan
- Yerevan State Medical University after Mkitar Herats, Yerevan, Armenia
| | - Margarita Strelkova
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-borne Diseases, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Anja Jaeschke
- Department of Biogeography, University of Bayreuth, Bayreuth, Germany
| | - Ralf Wieland
- Research Platform Data Analysis & Simulation, Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| | - Marcus Frohme
- Division of Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Wildau, Germany
| | - Sofia Cortes
- Division of Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Wildau, Germany
- Global Health & Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Ara Keshishyan
- Research Institute of Epidemiology, Virology and Medical Parasitology after A.B. Alexanyan, Ministry of Health, Yerevan, Armenia
- National Center of Disease Control and Prevention, Ministry of Health,Yerevan, Armenia
| |
Collapse
|
12
|
Leishmania Sexual Reproductive Strategies as Resolved through Computational Methods Designed for Aneuploid Genomes. Genes (Basel) 2021; 12:genes12020167. [PMID: 33530584 PMCID: PMC7912377 DOI: 10.3390/genes12020167] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/21/2021] [Accepted: 01/21/2021] [Indexed: 11/23/2022] Open
Abstract
A cryptic sexual reproductive cycle in Leishmania has been inferred through population genetic studies revealing the presence of hybrid genotypes in natural isolates, with attempts made to decipher sexual strategies by studying complex chromosomal inheritance patterns. A more informative approach is to study the products of controlled, laboratory-based experiments where known strains or species are crossed in the sand fly vector to generate hybrid progeny. These hybrids can be subsequently studied through high resolution sequencing technologies and software suites such as PAINT that disclose inheritance patterns including ploidies, parental chromosome contributions and recombinations, all of which can inform the sexual strategy. In this work, we discuss the computational methods in PAINT that can be used to interpret the sexual strategies adopted specifically by aneuploid organisms and summarize how PAINT has been applied to the analysis of experimental hybrids to reveal meiosis-like sexual recombination in Leishmania.
Collapse
|
13
|
Rioux JA, Gramiccia M, Léger N, Desjeux P, Depaquit J. Leishmaniasis and phlebotomine sand flies in Oman Sultanate. ACTA ACUST UNITED AC 2020; 27:68. [PMID: 33258444 PMCID: PMC7708229 DOI: 10.1051/parasite/2020064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/03/2020] [Indexed: 11/29/2022]
Abstract
There are few data on leishmaniases and sandflies in Oman Sultanate. We carried out an eco-epidemiological study in 1998 in the two main mountains of the country, the Sharqiyah and the Dhofar. This study allowed us to isolate and identify three Leishmania strains from patients exhibiting cutaneous leishmaniasis. The typing carried out by isoenzymatic study and by molecular biology were congruent: two strains of Leishmania donovani zymodeme (Z) MON-31 isolated in the Sharqiyah and one L. tropica ZROM102 (ZMON-39 variant for 4 isoenzymes) from the Dhofar. No strain was isolated from canids. The study of sandflies identified 14 species distributed in the genera Phlebotomus, Sergentomyia and Grassomyia: Ph. papatasi, Ph. bergeroti, Ph. duboscqi, Ph. alexandri, Ph. saevus, Ph. sergenti, Se. fallax, Se. baghdadis, Se. cincta, Se. christophersi, Se. clydei, Se. tiberiadis, Se. africana, and Gr. dreyfussi. In Sharqiyah, the only candidate for the transmission of L. donovani was Ph. alexandri, but the low densities observed of this species do not argue in favor of any role. In Dhofar, Ph. sergenti is the most important proven vector of L. tropica, but Ph. saevus, a locally much more abundant species, constitutes a good candidate for transmission.
Collapse
Affiliation(s)
- Jean-Antoine Rioux
- Faculté de Médecine, Université Montpellier 1, 1 rue de l'Éencole de Médecine, 34000 Montpellier, France
| | - Marina Gramiccia
- Department of Infectious Diseases, Unit of Vector-borne Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Nicole Léger
- Université de Reims Champagne-Ardenne, EA7510, Université de Reims Champagne-Ardenne, Faculté de Pharmacie, 51 rue Cognacq-Jay, 51096 Reims cedex, France
| | - Philippe Desjeux
- PATH OWH (formerly One World Health), A-9, Qutub Institutional area, USO Road, New Delhi 110067, India
| | - Jérôme Depaquit
- Université de Reims Champagne-Ardenne, EA7510, Université de Reims Champagne-Ardenne, Faculté de Pharmacie, 51 rue Cognacq-Jay, 51096 Reims cedex, France - ANSES, USC Transmission Vectorielle et Épidémiosurveillance de Maladies Parasitaires (VECPAR), 51100 Reims, France - Laboratoire de Parasitologie, Pôle de Biologie, Centre Hospitalier Universitaire de Reims, 51100 Reims, France
| |
Collapse
|
14
|
Salloum T, Moussa R, Rahy R, Al Deek J, Khalifeh I, El Hajj R, Hall N, Hirt RP, Tokajian S. Expanded genome-wide comparisons give novel insights into population structure and genetic heterogeneity of Leishmania tropica complex. PLoS Negl Trop Dis 2020; 14:e0008684. [PMID: 32946436 PMCID: PMC7526921 DOI: 10.1371/journal.pntd.0008684] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 09/30/2020] [Accepted: 08/06/2020] [Indexed: 12/18/2022] Open
Abstract
Leishmania tropica is one of the main causative agents of cutaneous leishmaniasis (CL). Population structures of L. tropica appear to be genetically highly diverse. However, the relationship between L. tropica strains genomic diversity, protein coding gene evolution and biogeography are still poorly understood. In this study, we sequenced the genomes of three new clinical L. tropica isolates, two derived from a recent outbreak of CL in camps hosting Syrian refugees in Lebanon and one historical isolate from Azerbaijan to further refine comparative genome analyses. In silico multilocus microsatellite typing (MLMT) was performed to integrate the current diversity of genome sequence data in the wider available MLMT genetic population framework. Single nucleotide polymorphism (SNPs), gene copy number variations (CNVs) and chromosome ploidy were investigated across the available 18 L. tropica genomes with a main focus on protein coding genes. MLMT divided the strains in three populations that broadly correlated with their geographical distribution but not populations defined by SNPs. Unique SNPs profiles divided the 18 strains into five populations based on principal component analysis. Gene ontology enrichment analysis of the protein coding genes with population specific SNPs profiles revealed various biological processes, including iron acquisition, sterols synthesis and drug resistance. This study further highlights the complex links between L. tropica important genomic heterogeneity and the parasite broad geographic distribution. Unique sequence features in protein coding genes identified in distinct populations reveal potential novel markers that could be exploited for the development of more accurate typing schemes to further improve our knowledge of the evolution and epidemiology of the parasite as well as highlighting protein variants of potential functional importance underlying L. tropica specific biology.
Collapse
Affiliation(s)
- Tamara Salloum
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos, Lebanon
| | - Rim Moussa
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos, Lebanon
| | - Ryan Rahy
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos, Lebanon
| | - Jospin Al Deek
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos, Lebanon
| | - Ibrahim Khalifeh
- Department of Pathology and Laboratory Medicine, American University of Beirut, Beirut, Lebanon
| | - Rana El Hajj
- Department of Pathology and Laboratory Medicine, American University of Beirut, Beirut, Lebanon
| | - Neil Hall
- Earlham Institute, Norwich research Park, University of East Anglia, Norwich, United Kingdom
| | - Robert P. Hirt
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- * E-mail: (RPH); (ST)
| | - Sima Tokajian
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos, Lebanon
- * E-mail: (RPH); (ST)
| |
Collapse
|
15
|
Cupolillo E, Cavalcanti AS, Ferreira GEM, Boité MC, Morgado FN, Porrozzi R. Occurrence of multiple genotype infection caused by Leishmania infantum in naturally infected dogs. PLoS Negl Trop Dis 2020; 14:e0007986. [PMID: 32716941 PMCID: PMC7410330 DOI: 10.1371/journal.pntd.0007986] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 08/06/2020] [Accepted: 06/16/2020] [Indexed: 12/28/2022] Open
Abstract
Genetic polymorphisms in natural Leishmania populations have been reported in endemic areas. Microsatellite typing is a useful tool to elucidate the genetic variability of parasite strains, due to its capability for high-resolution mapping of genomic targets. The present study employed multilocus microsatellite typing (MLMT) to explore the genotypic composition of Leishmania infantum in naturally infected dogs by genotyping parasites infecting different tissues with or without in vitro expansion. Eighty-six samples were collected from 46 animals in an endemic region of visceral leishmaniasis (VL). MLMT was performed for 38 spleen samples and 48 L. infantum cultures isolated from different tissues. Of the 86 samples, 23 were effectively genotyped by MLMT, identifying nine multilocus genotypes (MLG; referred to as MLG A–I). MLGs A, B and C were detected in more than one type of tissue and in more than one sample. Conversely, MLG D-I were uniquely detected in one sample each. The results showed that multiple genotype infections occur within a single host and tissue. Paired sample analysis revealed the presence of different MLMT alleles in 14 dogs, while the same MLG allele was present in 15 animals. STRUCTURE analysis demonstrated the presence of two populations; 13 samples displayed a similar admixture of both ancestral populations, and these were not assigned to any population. Only samples for which Q ≥ 0.70 after CLUMPP alignment were considered to be part of Population 1 (POP1) or Population 2 (POP2). POP2 comprised the majority of samples (n = 54) compared to POP1 (n = 19). This study presents evidence of multiple genotype infections (caused by L. infantum) in dogs in an area with high VL transmission. Further investigations must be undertaken to determine the effects of multiple infection on the host immune response and disease dynamics and treatment. American visceral leishmaniasis (VL) is a parasitic disease caused by the protozoan Leishmania infantum. This parasite can infect humans and animals and is transmitted by sand flies. Domestic dogs are considered an important host, and like humans, they can manifest the disease or present asymptomatic infections. Studies have identified genetic variations among L. infantum parasites from different endemic regions in the American continent. For other parasitic diseases (e.g., malaria), studies have suggested that multigenetic infection predicts the development of symptoms and can lead to a high level of transmission. However, the effects of the genetic composition of Leishmania parasites on VL need to be ascertained. This study used highly variable microsatellite markers to investigate multigenotype L. infantum populations among naturally infected dogs living in an area in which VL is highly prevalent. Samples obtained from different tissues were examined to identify the occurrence of multiple genotypes in the same animal and even within the same tissue.
Collapse
Affiliation(s)
- Elisa Cupolillo
- Laboratório de Pesquisa em Leishmaniose, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brasil
- * E-mail:
| | - Amanda S. Cavalcanti
- Laboratório de Pesquisa em Leishmaniose, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brasil
| | | | - Mariana Côrtes Boité
- Laboratório de Pesquisa em Leishmaniose, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brasil
| | - Fernanda Nazaré Morgado
- Laboratório de Pesquisa em Leishmaniose, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brasil
| | - Renato Porrozzi
- Laboratório de Pesquisa em Leishmaniose, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
16
|
Avelar GST, Gonçalves LO, Guimarães FG, Guimarães PAS, do Nascimento Rocha LG, Carvalho MGR, de Melo Resende D, Ruiz JC. Diversity and genome mapping assessment of disordered and functional domains in trypanosomatids. J Proteomics 2020; 227:103919. [PMID: 32721629 DOI: 10.1016/j.jprot.2020.103919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/27/2020] [Accepted: 07/20/2020] [Indexed: 12/20/2022]
Abstract
The proteins that have structural disorder exemplify a class of proteins which is part of a new frontier in structural biology that demands a new understanding of the paradigm of structure/function correlations. In order to address the location, relative distances and the functional/structural correlation between disordered and conserved domains, consensus disordered predictions were mapped together with CDD domains in Leishmania braziliensis M2904, Leishmania infantum JPCM5, Trypanosoma cruzi CL-Brener Esmeraldo-like, Trypanosoma cruzi Dm28c, Trypanosoma cruzi Sylvio X10, Blechomonas ayalai B08-376 and Paratrypanosoma confusum CUL13 predicted proteomes. Our results depicts the role of protein disorder in key aspects of parasites biology highlighting: a) statistical significant association between genome structural location of protein disordered consensus stretches and functional domains; b) that disordered protein stretches appear in greater percentage at upstream or downstream position of the predicted domain; c) a possible role of structural disorder in several gene expression, control points that includes but are not limited to: i) protein folding; ii) protein transport and degradation; and iii) protein modification. In addition, for values of protein with disorder content greater than 40%, a small percentage of protein binding sites in IDPs/IDRs, a higher hypothetical protein annotation frequency was observed than expected by chance and trypanosomatid multigene families linked with virulence are rich in protein with disorder content. SIGNIFICANCE: T. cruzi and Leishmania spp are the etiological agents of Chagas disease and leishmaniasis, respectively. Currently, no vaccine or effective drug treatment is available against these neglected diseases and the knowledge about the post-transcriptional and post-translational mechanisms of these organisms, which are key for this scenario, remain scarce. This study depicts the potential impact of the proximity between protein structural disorder and functional domains in the post-transcriptional regulation of pathogenic versus human non-pathogenic trypanosomatids. Our results revealed a significant statistical relationship between the genome structural locations of these two variables and disordered regions appearing more frequently at upstream or downstream positions of the CDD locus domain. This flexibility feature would maintain structural accessibility of functional sites for post-translational modifications, shedding light into this important aspect of parasite biology. This hypothesis is corroborated by the functional enrichment analysis of disordered proteins subset that highlight the involvement of this class of proteins in protein folding, protein transport and degradation and protein modification. Furthermore, our results pointed out: a) the impact of protein disorder in the process of genome annotation (proteins tend to be annotated as hypothetical when the disorder content reaches ~40%); b) that trypanosomatid multigenic families linked with virulence have a key protein disorder content.
Collapse
Affiliation(s)
- Grace Santos Tavares Avelar
- Programa de Pós-graduação em Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil; Grupo Informática de Biossistemas, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, MG, Brazil
| | - Leilane Oliveira Gonçalves
- Programa de Pós-graduação em Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil; Grupo Informática de Biossistemas, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, MG, Brazil
| | - Frederico Gonçalves Guimarães
- Programa de Pós-graduação em Ciências da Saúde, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, MG, Brazil; Grupo Informática de Biossistemas, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, MG, Brazil
| | - Paul Anderson Souza Guimarães
- Programa de Pós-graduação em Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil; Grupo Informática de Biossistemas, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, MG, Brazil
| | - Luiz Gustavo do Nascimento Rocha
- Programa de Pós-graduação em Ciências da Saúde, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, MG, Brazil; Grupo Informática de Biossistemas, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, MG, Brazil
| | | | - Daniela de Melo Resende
- Programa de Pós-graduação em Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil; Programa de Pós-graduação em Ciências da Saúde, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, MG, Brazil; Grupo Informática de Biossistemas, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, MG, Brazil
| | - Jeronimo Conceição Ruiz
- Programa de Pós-graduação em Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil; Programa de Pós-graduação em Ciências da Saúde, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, MG, Brazil; Grupo Informática de Biossistemas, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, MG, Brazil.
| |
Collapse
|
17
|
Castelli G, Bruno F, Caputo V, Fiorella S, Sammarco I, Lupo T, Migliazzo A, Vitale F, Reale S. Genetic tools discriminate strains of Leishmania infantum isolated from humans and dogs in Sicily, Italy. PLoS Negl Trop Dis 2020; 14:e0008465. [PMID: 32706789 PMCID: PMC7406075 DOI: 10.1371/journal.pntd.0008465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 08/05/2020] [Accepted: 06/09/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Leishmaniasis is one of the most important vector-borne diseases and it represents a serious world health problem affecting millions of people. High levels of Leishmania infections, affecting both humans and animals, are recognized among Italian regions. Among these, Sicily has one of the highest prevalence of Leishmania infection. METHODOLOGY/PRINCIPAL FINDINGS Seventy-eight Leishmania strains isolated from human and animal samples across Sicily, were analyzed for the polymorphic k26-gene and genotypes were assigned according to the size of the PCR products. A multilocus microsatellite typing (MLMT) approach based on the analysis of 11 independent loci was used to investigate populations structure and genetic diversity of the isolated strains. Six L. infantum reference strains were included in the analysis for comparison. Bayesian clustering analysis of microsatellite data showed that all the isolated strains clustered in two genetically distinct populations, corresponding to human and canine isolates respectively. A further subdivision was observed between the two main groups, giving a good correlation between human strains and their geographic origin, conversely canine population showed a great genetic variability diffused in the territory. CONCLUSIONS/SIGNIFICANCE Among the 78 Leishmania isolates, K26 analysis detected 71 samples (91%) as MON-1 zymodeme, confirming it as the predominant strain in Mediterranean area and 7 human samples (9%) as non-MON-1. MLMT gives important insights into the epidemiology of leishmaniases and allows characterization of different strains to a higher resolution than possible with zymodeme typing. Two main populations presented a strong correlation respect to the different hosts, exhibiting a co-circulation of two distinct populations of L. infantum. The population found in infected humans exhibited a correlation with geographic origin. These clusters could represent a geographically restricted population of strains with the same or related genotypes. This study can contribute to an understanding of Leishmania epidemiology, including the spread of reservoirs and sand fly vectors in the different foci of infection, characterizing parasites within the different hosts.
Collapse
Affiliation(s)
- Germano Castelli
- National Reference Center for Leishmaniasis (C.Re.Na.L.), Istituto Zooprofilattico Sperimentale della Sicilia, Palermo, Italy
| | - Federica Bruno
- National Reference Center for Leishmaniasis (C.Re.Na.L.), Istituto Zooprofilattico Sperimentale della Sicilia, Palermo, Italy
| | - Valentina Caputo
- Section of Dermatology, Department of Health Promotion, Maternal-Infant, Internal Medicine and Specialization of Excellence “G. D’Alessandro” (PROMISE) University of Palermo, Palermo, Italy.
| | - Santi Fiorella
- Section of Dermatology, Department of Health Promotion, Maternal-Infant, Internal Medicine and Specialization of Excellence “G. D’Alessandro” (PROMISE) University of Palermo, Palermo, Italy.
| | - Ignazio Sammarco
- Tecnologie Diagnostiche Innovative, Istituto Zooprofilattico Sperimentale della Sicilia, Palermo, Italy
| | - Tiziana Lupo
- Tecnologie Diagnostiche Innovative, Istituto Zooprofilattico Sperimentale della Sicilia, Palermo, Italy
| | - Antonella Migliazzo
- National Reference Center for Leishmaniasis (C.Re.Na.L.), Istituto Zooprofilattico Sperimentale della Sicilia, Palermo, Italy
| | - Fabrizio Vitale
- National Reference Center for Leishmaniasis (C.Re.Na.L.), Istituto Zooprofilattico Sperimentale della Sicilia, Palermo, Italy
- * E-mail:
| | - Stefano Reale
- Tecnologie Diagnostiche Innovative, Istituto Zooprofilattico Sperimentale della Sicilia, Palermo, Italy
| |
Collapse
|
18
|
Cotton JA, Durrant C, Franssen SU, Gelanew T, Hailu A, Mateus D, Sanders MJ, Berriman M, Volf P, Miles MA, Yeo M. Genomic analysis of natural intra-specific hybrids among Ethiopian isolates of Leishmania donovani. PLoS Negl Trop Dis 2020; 14:e0007143. [PMID: 32310945 PMCID: PMC7237039 DOI: 10.1371/journal.pntd.0007143] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 05/19/2020] [Accepted: 12/24/2019] [Indexed: 12/30/2022] Open
Abstract
Parasites of the genus Leishmania (Kinetoplastida: Trypanosomatidae) cause widespread and devastating human diseases. Visceral leishmaniasis due to Leishmania donovani is endemic in Ethiopia where it has also been responsible for major epidemics. The presence of hybrid genotypes has been widely reported in surveys of natural populations, genetic variation reported in a number of Leishmania species, and the extant capacity for genetic exchange demonstrated in laboratory experiments. However, patterns of recombination and the evolutionary history of admixture that produced these hybrid populations remain unclear. Here, we use whole-genome sequence data to investigate Ethiopian L. donovani isolates previously characterized as hybrids by microsatellite and multi-locus sequencing. To date there is only one previous study on a natural population of Leishmania hybrids based on whole-genome sequences. We propose that these hybrids originate from recombination between two different lineages of Ethiopian L. donovani occurring in the same region. Patterns of inheritance are more complex than previously reported with multiple, apparently independent, origins from similar parents that include backcrossing with parental types. Analysis indicates that hybrids are representative of at least three different histories. Furthermore, isolates were highly polysomic at the level of chromosomes with differences between parasites recovered from a recrudescent infection from a previously treated individual. The results demonstrate that recombination is a significant feature of natural populations and contributes to the growing body of data that shows how recombination, and gene flow, shape natural populations of Leishmania.
Collapse
Affiliation(s)
| | | | | | - Tesfaye Gelanew
- Faculty of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | - Asrat Hailu
- Faculty of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | - David Mateus
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | | | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Michael A. Miles
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Matthew Yeo
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
19
|
Franssen SU, Durrant C, Stark O, Moser B, Downing T, Imamura H, Dujardin JC, Sanders MJ, Mauricio I, Miles MA, Schnur LF, Jaffe CL, Nasereddin A, Schallig H, Yeo M, Bhattacharyya T, Alam MZ, Berriman M, Wirth T, Schönian G, Cotton JA. Global genome diversity of the Leishmania donovani complex. eLife 2020; 9:e51243. [PMID: 32209228 PMCID: PMC7105377 DOI: 10.7554/elife.51243] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 02/27/2020] [Indexed: 12/30/2022] Open
Abstract
Protozoan parasites of the Leishmania donovani complex - L. donovani and L. infantum - cause the fatal disease visceral leishmaniasis. We present the first comprehensive genome-wide global study, with 151 cultured field isolates representing most of the geographical distribution. L. donovani isolates separated into five groups that largely coincide with geographical origin but vary greatly in diversity. In contrast, the majority of L. infantum samples fell into one globally-distributed group with little diversity. This picture is complicated by several hybrid lineages. Identified genetic groups vary in heterozygosity and levels of linkage, suggesting different recombination histories. We characterise chromosome-specific patterns of aneuploidy and identified extensive structural variation, including known and suspected drug resistance loci. This study reveals greater genetic diversity than suggested by geographically-focused studies, provides a resource of genomic variation for future work and sets the scene for a new understanding of the evolution and genetics of the Leishmania donovani complex.
Collapse
Affiliation(s)
| | - Caroline Durrant
- Wellcome Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
| | | | | | - Tim Downing
- Wellcome Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
- Dublin City UniversityDublinIreland
| | | | - Jean-Claude Dujardin
- Institute of Tropical MedicineAntwerpBelgium
- Department of Biomedical Sciences, University of AntwerpAntwerpBelgium
| | - Mandy J Sanders
- Wellcome Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
| | - Isabel Mauricio
- Universidade Nova de Lisboa Instituto de Higiene e MedicinaLisboaPortugal
| | - Michael A Miles
- London School of Hygiene and Tropical MedicineLondonUnited Kingdom
| | - Lionel F Schnur
- Kuvin Centre for the Study of Infectious and Tropical Diseases, IMRIC, Hebrew University-Hadassah, Medical SchoolJerusalemIsrael
| | - Charles L Jaffe
- Kuvin Centre for the Study of Infectious and Tropical Diseases, IMRIC, Hebrew University-Hadassah, Medical SchoolJerusalemIsrael
| | - Abdelmajeed Nasereddin
- Kuvin Centre for the Study of Infectious and Tropical Diseases, IMRIC, Hebrew University-Hadassah, Medical SchoolJerusalemIsrael
| | - Henk Schallig
- Amsterdam University Medical Centres – Academic Medical Centre at the University of Amsterdam, Department of Medical Microbiology – Experimental ParasitologyAmsterdamNetherlands
| | - Matthew Yeo
- London School of Hygiene and Tropical MedicineLondonUnited Kingdom
| | | | - Mohammad Z Alam
- Department of Parasitology, Bangladesh Agricultural UniversityMymensinghBangladesh
| | - Matthew Berriman
- Wellcome Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
| | - Thierry Wirth
- Institut de Systématique, Evolution, Biodiversité, ISYEB, Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des AntillesParisFrance
- École Pratique des Hautes Études (EPHE)Paris Sciences & Lettres (PSL)ParisFrance
| | | | - James A Cotton
- Wellcome Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
| |
Collapse
|
20
|
Dispersion of Leishmania (Leishmania) infantum in central-southern Brazil: Evidence from an integrative approach. PLoS Negl Trop Dis 2019; 13:e0007639. [PMID: 31465422 PMCID: PMC6715157 DOI: 10.1371/journal.pntd.0007639] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 07/17/2019] [Indexed: 11/19/2022] Open
Abstract
Leishmania (Leishmania) infantum is the zoonotic agent of visceral leishmaniasis (VL), a disease with a global distribution. The transmission scenario of VL has been undergoing changes worldwide, with the biologic cycle invading urbanized areas and dispersing the parasites into other previously free areas. The epidemiological cycle in Brazil has dispersed from the Northeast to other regions of the country. In this study, an integrative approach, including genotyping Brazilian strains of L. (L.) infantum for 14 microsatellite markers and reviewing historical records of the disease, was used to assess dispersion routes throughout central-southern Brazil. Our results support three L. (L.) infantum dispersion routes: A) dispersion from Bolivia to the states of Mato Grosso, Mato Grosso do Sul and São Paulo via the Bolivia-Brazil gas pipeline from 1998 to 2005; B) VL dispersion from Paraguay to the Brazilian side of the triple border (Foz do Iguaçu and Santa Terezinha de Itaipu) during after 2012; and C) emergence of a new L. (L.) infantum cluster in western Santa Catarina State and its dispersion to southern Paraná State (municipality of Pato Branco), after 2013. Hypotheses regarding possible entries of Leishmania (L.) infantum into the area of the triple border are presented and discussed. Understanding how VL has dispersed is vital to the development of control measures for this disease and to avoid future dispersion events. The dispersion of visceral leishmaniasis is an enigma. The State of Paraná, in southern Brazil, borders the states of São Paulo and Mato Grosso, which have experienced LV epidemics over the past 20 years. Therefore, we expected that the disease would enter this state through the contiguity of epidemics from other regions following by "ghost shadows". However, in 2012, the vectors of the parasite were reported in the western region (Foz do Iguaçu) of Paraná state, far from the epidemic regions. In the cross-sectional study, 23.8% of the dogs were infected, which is more than the eyes can see, showing an unexpected scenario where the disease was already widespread in the city. Now the question was: where does the life cycle element came from? In this study, we used genetic markers to understand the dispersion of Leishmania infantum throughout central-southern Brazil. Our results showed two possible agent inputs in the Paraná state, one coming from Paraguay and, another from Santa Catarina state. When we verify our results we perceived the monitoring importance of the distribution of these agents by diverse hypotheses, not only those that the scientific literature presents. Another relevant factor is always to be attentive to the environmental and socioeconomic events that can provide this dispersion.
Collapse
|
21
|
Douse DM, Goldstein RS, Montgomery DJ, Sinnott M. Gastric leishmaniasis in the setting of HIV/AIDS infection at Community Hospital in Southeastern United States. Access Microbiol 2019; 1:e000045. [PMID: 32974551 PMCID: PMC7470405 DOI: 10.1099/acmi.0.000045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 06/27/2019] [Indexed: 11/23/2022] Open
Abstract
Introduction Visceral leishmaniasis, caused by the Leishmania donovani complex, is responsible for over 20 000 deaths per year. This disease often affects the immunocompromised with an increased prevalence in those with human immunodeficiency virus (HIV). The immunocompromised are not only more susceptible to infection, but disseminated disease including gastric leishmaniasis. This is a case of gastric leishmaniasis occurring in a non-endemic region in a patient with comorbid HIV. Case presentation The patient is a 39 year old originally from Central America currently living in Southeast Georgia. His history is significant for HIV, alcohol abuse, tobacco dependency and bone marrow biopsy-proven leishmaniasis. He denied any recent travel. At initial presentation, he had abdominal pain, nausea/vomiting, chills and dysphagia along with leukopenia and thrombocytopenia. Treatment with amphotericin B was initiated for his leishmaniasis as well as highly active antiretroviral therapy (HAART). The patient was discharged home on a 3 month course of amphotericin B with continued HAART therapy. Following resolution of his acute symptoms, six months later, the patient developed acute abdominal pain with nausea prompting presentation to the emergency department. Leishmaniasis was found again following bone marrow biopsy and the patient restarted amphotericin B and HAART. Several years later the patient presented again with similar symptoms, this time with accompanying rectal bleeding. The patient received an esophagogastroduodenoscopy and on gastric mucosal biopsy was found to have gastric leishmaniasis. Conclusion This manuscript highlights the key features of this case, including recognizing leishmaniasis clinically, proving diagnosis through definitive testing and understanding the connection between leishmaniasis and HIV.
Collapse
Affiliation(s)
| | | | | | - Michael Sinnott
- Department of Pathology, Memorial Health University Medical Center, Savannah, GA, USA
| |
Collapse
|
22
|
Banu SS, Meyer W, Ferreira-Paim K, Wang Q, Kuhls K, Cupolillo E, Schönian G, Lee R. A novel multilocus sequence typing scheme identifying genetic diversity amongst Leishmania donovani isolates from a genetically homogeneous population in the Indian subcontinent. Int J Parasitol 2019; 49:555-567. [PMID: 31108098 DOI: 10.1016/j.ijpara.2019.02.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 02/20/2019] [Accepted: 02/23/2019] [Indexed: 01/29/2023]
Abstract
In the Indian subcontinent, infection with Leishmania donovani can cause fatal visceral leishmaniasis. Genetic variation in L. donovani is believed to occur rapidly from environmental changes and through selective drug pressures, thereby allowing continued disease occurrence in this region. All previous molecular markers that are commonly in use multilocus microsatellite typing and multilocus sequence typing, were monomorphic in L. donovani originating from the Indian subcontinent (with only a few exceptions) and hence are not suitable for this region. An multilocus sequence typing scheme consisting of a new set of seven housekeeping genes was developed in this study, based on recent findings from whole genome sequencing data. This new scheme was used to assess the genetic diversity amongst 22 autochthonous L. donovani isolates from Bangladesh. Nineteen additional isolates of the L. donovani complex (including sequences of L. donovani reference strain BPK282A1) from other countries were included for comparison. By using restriction fragment length polymorphism of the internal transcribed spacer 1 region (ITS1-RFLP) and ITS1 sequencing, all Bangladeshi isolates were confirmed to be L. donovani. Population genetic analyses of 41 isolates using the seven new MLST loci clearly separated L. donovani from Leishmania infantum. With this multilocus sequence typing scheme, seven genotypes were identified amongst Bangladeshi L. donovani isolates, and these isolates were found to be phylogenetically different compared with those from India, Nepal, Iraq and Africa. This novel multilocus sequence typing approach can detect intra- and inter-species variations within the L. donovani complex, but most importantly these molecular markers can be applied to resolve the phylogenetically very homogeneous L. donovani strains from the Indian subcontinent. Four of these markers were found suitable to differentiate strains originating from Bangladesh, with marker A2P being the most discriminative one.
Collapse
Affiliation(s)
- Sultana Shahana Banu
- Parasitology Department, Centre for Infectious Diseases and Microbiology Laboratory Services (CIDMLS), Institute of Clinical Pathology and Medical Research (ICPMR), Westmead Hospital, Westmead, Sydney, NSW, Australia; Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, Marie Bashir Institute for Emerging Infectious Diseases and Biosecurity, Westmead Hospital (Research and Education Network), The University of Sydney, Sydney, NSW, Australia; Westmead Institute for Medical Research, Westmead, Sydney, NSW, Australia; Directorate General of Health Services (DGHS), Ministry of Health and Family Welfare (MOHFW), Dhaka, Bangladesh
| | - Wieland Meyer
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, Marie Bashir Institute for Emerging Infectious Diseases and Biosecurity, Westmead Hospital (Research and Education Network), The University of Sydney, Sydney, NSW, Australia; Westmead Institute for Medical Research, Westmead, Sydney, NSW, Australia
| | - Kennio Ferreira-Paim
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, Marie Bashir Institute for Emerging Infectious Diseases and Biosecurity, Westmead Hospital (Research and Education Network), The University of Sydney, Sydney, NSW, Australia; Westmead Institute for Medical Research, Westmead, Sydney, NSW, Australia; Department of Microbiology, Federal University of Triangulo Mineiro, Uberaba, Brazil
| | - Qinning Wang
- Parasitology Department, Centre for Infectious Diseases and Microbiology Laboratory Services (CIDMLS), Institute of Clinical Pathology and Medical Research (ICPMR), Westmead Hospital, Westmead, Sydney, NSW, Australia
| | - Katrin Kuhls
- Division of Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Wildau, Germany
| | - Elisa Cupolillo
- Laboratory on Leishmaniasis Research, Oswaldo Cruz Institute - Fiocruz, Rio de Janeiro, Brazil
| | - Gabriele Schönian
- Institute for Microbiology and Hygiene CC05, Charité University Medicine Berlin, Berlin, Germany
| | - Rogan Lee
- Parasitology Department, Centre for Infectious Diseases and Microbiology Laboratory Services (CIDMLS), Institute of Clinical Pathology and Medical Research (ICPMR), Westmead Hospital, Westmead, Sydney, NSW, Australia; Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, Marie Bashir Institute for Emerging Infectious Diseases and Biosecurity, Westmead Hospital (Research and Education Network), The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
23
|
Abstract
Visceral leishmaniasis (VL), a deadly parasitic disease, is a major public health concern globally. Countries affected by VL have signed the London Declaration on Neglected Tropical Diseases and committed to eliminate VL as a public health problem by 2020. To achieve and sustain VL elimination, it will become progressively important not to miss any remaining cases in the community who can maintain transmission. This requires accurate identification of symptomatic and asymptomatic carriers using highly sensitive diagnostic tools at the primary health service setting. The rK39 rapid diagnostic test (RDT) is the most widely used tool and with its good sensitivity and specificity is the first choice for decentralized diagnosis of VL in endemic areas. However, this test cannot discriminate between current, subclinical, or past infections and is useless for diagnosis of relapses and as a prognostic (cure) test. Importantly, as the goal of elimination of VL as a public health problem is approaching, the number of people susceptible to infection will increase. Therefore, correct diagnosis using a highly sensitive diagnostic test is crucial for applying appropriate treatment and management of cases. Recent advances in molecular techniques have improved Leishmania detection and quantification, and therefore this technology has become increasingly relevant due to its possible application in a variety of clinical sample types. Most importantly, given current problems in identifying asymptomatic individuals because of poor correlation between the main methods of detection, molecular tests are valuable for VL elimination programs, especially to monitor changes in burden of infection in specific communities. This review provides a comprehensive overview of the available VL diagnostics and discusses the usefulness of molecular methods in the diagnosis, quantification, and species differentiation as well as their clinical applications.
Collapse
Affiliation(s)
- Shyam Sundar
- Infectious Disease Research Laboratory, Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, 221 005, India
| | - Om Prakash Singh
- Infectious Disease Research Laboratory, Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, 221 005, India.
| |
Collapse
|
24
|
Jaber HT, Hailu A, Pratlong F, Lami P, Bastien P, Jaffe CL. Analysis of genetic polymorphisms and tropism in East African Leishmania donovani by Amplified Fragment Length Polymorphism and kDNA minicircle sequencing. INFECTION GENETICS AND EVOLUTION 2018; 65:80-90. [PMID: 30016714 PMCID: PMC6218636 DOI: 10.1016/j.meegid.2018.07.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 07/06/2018] [Accepted: 07/13/2018] [Indexed: 01/01/2023]
Abstract
Visceral leishmaniasis (VL), the most severe form of leishmaniasis, is caused by Leishmania donovani. In addition to fatal VL, these parasites also cause skin diseases in immune-competent and -suppressed people, post-kala azar dermal leishmaniasis (PKDL) and HIV/VL co-infections, respectively. Genetic polymorphism in 36 Ethiopian and Sudanese L. donovani strains from VL, PKDL and HIV/VL patients was examined using Amplified Fragment Length Polymorphism (AFLP), kDNA minicircle sequencing and Southern blotting. Strains were isolated from different patient tissues: in VL from lymph node, spleen or bone marrow; and in HIV/VL from skin, spleen or bone marrow. When VL and PKDL strains from the same region in Sudan were examined by Southern blotting using a DNA probe to the L. donovani 28S rRNA gene only minor differences were observed. kDNA sequence analysis distributed the strains in no particular order among four clusters (A - D), while AFLP analysis grouped the strains according to geographical origin into two major clades, Southern Ethiopia (SE) and Sudan/Northern Ethiopia (SD/NE). Strains in the latter clade were further divided into subpopulations by zymodeme, geography and year of isolation, but not by clinical symptoms. However, skin isolates showed significantly (p < 0.0001) fewer polymorphic AFLP fragments (average 10 strains = 348.6 ± 8.1) than VL strains (average 26 strains = 383.5 ± 3.8).
Collapse
Affiliation(s)
- Hanan T Jaber
- Department of Microbiology and Molecular Genetics, Kuvin Centre for the Study of Infectious and Tropical Diseases, IMRIC, Hebrew University - Hadassah Medical School, Jerusalem, Israel
| | - Asrat Hailu
- School of Medicine, College of Health Sciences, Department of Microbiology, Immunology & Parasitology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Francine Pratlong
- Department of Parasitology-Mycology, National Reference Centre for Leishmanioses, Academic Hospital of Montpellier, France; University of Montpellier, CNRS 5290/IRD 224 "MiVEGEC", Montpellier, France
| | - Patrick Lami
- Department of Parasitology-Mycology, National Reference Centre for Leishmanioses, Academic Hospital of Montpellier, France; University of Montpellier, CNRS 5290/IRD 224 "MiVEGEC", Montpellier, France
| | - Patrick Bastien
- Department of Parasitology-Mycology, National Reference Centre for Leishmanioses, Academic Hospital of Montpellier, France; University of Montpellier, CNRS 5290/IRD 224 "MiVEGEC", Montpellier, France
| | - Charles L Jaffe
- Department of Microbiology and Molecular Genetics, Kuvin Centre for the Study of Infectious and Tropical Diseases, IMRIC, Hebrew University - Hadassah Medical School, Jerusalem, Israel.
| |
Collapse
|
25
|
Rugna G, Carra E, Bergamini F, Calzolari M, Salvatore D, Corpus F, Gennari W, Baldelli R, Fabbi M, Natalini S, Vitale F, Varani S, Merialdi G. Multilocus microsatellite typing (MLMT) reveals host-related population structure in Leishmania infantum from northeastern Italy. PLoS Negl Trop Dis 2018; 12:e0006595. [PMID: 29975697 PMCID: PMC6057669 DOI: 10.1371/journal.pntd.0006595] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 07/24/2018] [Accepted: 06/08/2018] [Indexed: 11/28/2022] Open
Abstract
Background Visceral leishmaniasis (VL) caused by Leishmania infantum is an ongoing health problem in southern Europe, where dogs are considered the main reservoirs of the disease. Current data point to a northward spread of VL and canine leishmaniasis (CanL) in Italy, with new foci in northern regions previously regarded as non-endemic. Methodology/Principal findings Multilocus microsatellite typing (MLMT) was performed to investigate genetic diversity and population structure of L. infantum on 55 samples from infected humans, dogs and sand flies of the E-R region between 2013 and 2017. E-R samples were compared with 10 L. infantum samples from VL cases in other Italian regions (extra E-R) and with 52 strains within the L. donovani complex. Data displayed significant microsatellite polymorphisms with low allelic heterozygosity. Forty-one unique and eight repeated MLMT profiles were recognized among the L. infantum samples from E-R, and ten unique MLMT profiles were assigned to the extra E-R samples. Bayesian analysis assigned E-R samples to two distinct populations, with further sub-structuring within each of them; all CanL samples belonged to one population, genetically related to Mediterranean MON-1 strains, while all but one VL cases as well as the isolate from the sand fly Phlebotomus perfiliewi fell under the second population. Conversely, VL samples from other Italian regions proved to be genetically similar to strains circulating in dogs. Conclusions/Significance A peculiar epidemiological situation was observed in northeastern Italy, with the co-circulation of two distinct populations of L. infantum; one population mainly detected in dogs and the other population detected in humans and in a sand fly. While the classical cycle of CanL in Italy fits well into the data obtained for the first population, the population found in infected humans exhibits a different cycle, probably not involving a canine reservoir. This study can contribute to a better understanding of the population structure of L. infantum circulating in northeastern Italy, thus providing useful epidemiologic information for public health authorities. Visceral leishmaniasis is a sand fly-borne disease caused by protozoan parasites of the genus Leishmania. Leishmania infantum is the only parasitic species circulating in Italy and dogs are considered the main reservoirs of the disease. In this study, 55 L. infantum strains obtained from humans, dogs and sand flies from the Emiliana-Romagna (E-R) region, northeastern Italy, were assessed using multilocus microsatellite typing, a tool applied for population genetic studies. Results were compared with those obtained from 10 samples of visceral leishmaniasis cases occurring in other Italian regions and with 52 strains of the L. donovani complex from other foci of leishmaniasis. Our genetic analysis revealed that canine and human L. infantum strains from the E-R region were separated in two distinct populations; all samples obtained from dogs belonged to one population, while all but one human samples as well as a sand fly sample fell under another population. Samples from patients with visceral leishmaniasis from other Italian regions proved to be genetically similar to strains circulating in dogs. Our findings raise questions on the role of dogs as main reservoirs for human visceral leishmaniasis in the investigated area of northeastern Italy.
Collapse
Affiliation(s)
- Gianluca Rugna
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna, Brescia, Italy
- * E-mail:
| | - Elena Carra
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna, Brescia, Italy
| | - Federica Bergamini
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna, Brescia, Italy
| | - Mattia Calzolari
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna, Brescia, Italy
| | - Daniela Salvatore
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, Italy
| | - Francesco Corpus
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna, Brescia, Italy
| | - William Gennari
- Dipartimento Integrati Interaziendali Medicina di Laboratorio e Anatomia Patologica, Azienda Ospedaliero-Universitaria, Policlinico di Modena, Italy
| | - Raffaella Baldelli
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, Italy
| | - Massimo Fabbi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna, Brescia, Italy
| | - Silvano Natalini
- Department of Animal Health, Azienda Unità Sanitaria Locale, Bologna, Italy
| | - Fabrizio Vitale
- National Reference Center for Leishmaniasis (C.Re.Na.L.), Istituto Zooprofilattico Sperimentale della Sicilia, Palermo, Italy
| | - Stefania Varani
- Unit of Clinical Microbiology, Regional Reference Centre for Microbiological Emergencies (CRREM), St. Orsola-Malpighi University Hospital, Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Italy
| | - Giuseppe Merialdi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna, Brescia, Italy
| |
Collapse
|
26
|
Kuang Z, Zhang C, Pang H, Ma Y. A rapid high-resolution melting method for differentiation of Leishmania species targeting lack gene. Acta Trop 2018; 178:103-106. [PMID: 29107571 DOI: 10.1016/j.actatropica.2017.10.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 10/13/2017] [Accepted: 10/16/2017] [Indexed: 02/05/2023]
Abstract
OBJECTIVES The aim of this research is to verify that if lack gene can be used for differentiation of Leishmania under HRM assay. METHODS Two specific primers were designed targeting polymorphic sites on the lack gene sequence. DNA from promastigotes of six species of Leishmania based on reference strains were tested following a HRM protocol. We also tested ten Chinese isolates in blind to validate our method. RESULTS Combined with amplicon of the two primers, the six reference strains can be easily discriminated without the effect of initial concentration of DNA templates. Ten Chinese isolates detected by our HRM method resulted in full accord with the standard identification results in previous study. CONCLUSION HRM is a rapid and reproducible method to discriminate different Leishmania species and lack gene is a potential novel biological characteristic for easy differentiation of Leishmania isolates in China.
Collapse
|
27
|
Zackay A, Cotton JA, Sanders M, Hailu A, Nasereddin A, Warburg A, Jaffe CL. Genome wide comparison of Ethiopian Leishmania donovani strains reveals differences potentially related to parasite survival. PLoS Genet 2018; 14:e1007133. [PMID: 29315303 PMCID: PMC5777657 DOI: 10.1371/journal.pgen.1007133] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/22/2018] [Accepted: 11/28/2017] [Indexed: 12/22/2022] Open
Abstract
Leishmania donovani is the main cause of visceral leishmaniasis (VL) in East Africa. Differences between northern Ethiopia/Sudan (NE) and southern Ethiopia (SE) in ecology, vectors, and patient sensitivity to drug treatment have been described, however the relationship between differences in parasite genotype between these two foci and phenotype is unknown. Whole genomic sequencing (WGS) was carried out for 41 L. donovani strains and clones from VL and VL/HIV co-infected patients in NE (n = 28) and SE (n = 13). Chromosome aneuploidy was observed in all parasites examined with each isolate exhibiting a unique karyotype. Differences in chromosome ploidy or karyotype were not correlated with the geographic origin of the parasites. However, correlation between single nucleotide polymorphism (SNP) and geographic origin was seen for 38/41 isolates, separating the NE and SE parasites into two large groups. SNP restricted to NE and SE groups were associated with genes involved in viability and parasite resistance to drugs. Unique copy number variation (CNV) were also associated with NE and SE parasites, respectively. One striking example is the folate transporter (FT) family genes (LdBPK_100390, LdBPK_100400 and LdBPK_100410) on chromosome 10 that are single copy in all 13 SE isolates, but either double copy or higher in 39/41 NE isolates (copy number 2-4). High copy number (= 4) was also found for one Sudanese strain examined. This was confirmed by quantitative polymerase chain reaction for LdBPK_100400, the L. donovani FT1 transporter homolog. Good correlation (p = 0.005) between FT copy number and resistance to methotrexate (0.5 mg/ml MTX) was also observed with the haploid SE strains examined showing higher viability than the NE strains at this concentration. Our results emphasize the advantages of whole genome analysis to shed light on vital parasite processes in Leishmania.
Collapse
Affiliation(s)
- Arie Zackay
- Dept Microbiology & Molecular Genetics, The Kuvin Center for the Study of Infectious & Tropical Diseases, IMRIC, Hebrew University–Hadassah Medical School, Jerusalem, Israel
| | - James A. Cotton
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Mandy Sanders
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Asrat Hailu
- Dept Microbiology, Immunology & Parasitology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Abedelmajeed Nasereddin
- Dept Microbiology & Molecular Genetics, The Kuvin Center for the Study of Infectious & Tropical Diseases, IMRIC, Hebrew University–Hadassah Medical School, Jerusalem, Israel
| | - Alon Warburg
- Dept Microbiology & Molecular Genetics, The Kuvin Center for the Study of Infectious & Tropical Diseases, IMRIC, Hebrew University–Hadassah Medical School, Jerusalem, Israel
| | - Charles L. Jaffe
- Dept Microbiology & Molecular Genetics, The Kuvin Center for the Study of Infectious & Tropical Diseases, IMRIC, Hebrew University–Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
28
|
Bilbao-Ramos P, Dea-Ayuela MA, Cardenas-Alegría O, Salamanca E, Santalla-Vargas JA, Benito C, Flores N, Bolás-Fernández F. Leishmaniasis in the major endemic region of Plurinational State of Bolivia: Species identification, phylogeography and drug susceptibility implications. Acta Trop 2017; 176:150-161. [PMID: 28751163 DOI: 10.1016/j.actatropica.2017.07.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 07/21/2017] [Accepted: 07/23/2017] [Indexed: 01/23/2023]
Abstract
The Plurinational State of Bolivia is one of the Latin American countries with the highest prevalence of leishmaniasis, highlighting the lowlands of the Department of La Paz where about 50% of the total cases were reported. The control of the disease can be seriously compromised by the intrinsic variability of the circulating species that may limit the efficacy of treatment while favoring the emergence of resistance. Fifty-five isolates of Leishmania from cutaneous and mucocutaneous lesions from patients living in different provinces of the Department of La Paz were tested. Molecular characterization of isolates was carried out by 3 classical markers: the rRNA internal transcribed spacer 1 (ITS-1), the heat shock protein 70 (HSP70) and the mitochondrial cytochrome b (Cyt-b). These markers were amplified by PCR and their products digested by the restriction endonuclease enzymes AseI and HaeIII followed by subsequent sequencing of Cyt-b gene and ITS-1 region for subsequent phylogenetic analysis. The combined use of these 3 markers allowed us to assign 36 isolates (65.5%) to the complex Leishmania (Viannia) braziliensis, 4 isolates (7, 27%) to L. (Viannia) lainsoni. and the remaining 15 isolates (23.7%) to a local variant of L. (Leishmania) mexicana. Concerning in vitro drug susceptibility the amastigotes from all isolates where highly sensitive to Fungizone® (mean IC50 between 0.23 and 0.5μg/mL) whereas against Glucantime® the sensitivity was moderate (mean IC50 ranging from 50.84μg/mL for L. (V.) braziliensis to 18.23μg/mL for L. (L.) mexicana. L. (V.) lainsoni was not sensitive to Glucantime®. The susceptibility to miltefosine was highly variable among species isolates, being L. (L.) mexicana the most sensitive, followed by L. (V.) braziliensis and L. (V.) lainsoni (mean IC50 of 8.24μg/mL, 17.85μg/mL and 23.28μg/mL, respectively).
Collapse
|
29
|
Karakuş M, Yılmaz B, Özbel Y, Töz S. A new cost and time effective method for multilocus microsatellite typing (MLMT) studies: Application of Leishmania tropica isolates and clinical samples from Turkey. J Microbiol Methods 2017; 141:97-100. [PMID: 28818599 DOI: 10.1016/j.mimet.2017.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/12/2017] [Accepted: 08/14/2017] [Indexed: 11/24/2022]
Abstract
Molecular techniques are widely used in the field of parasitology to identify the genetic profile of the microbiological agents. Microsatellite typing studies are comprised of the amplification of polymorphic markers to analyze the fragment sizes using bioinformatics tools. Current methods need fluorescently labeled primers and size markers to obtain fragment peaks in ABI PRISM® systems and due to low discrimination power of gel-electrophoresis, it is not possible to differentiate primer-dimers from small fragments In the present study, we designed a new method for fragment analysis studies, which reduce the time by eliminating the classical PCR, the gel-electrophoresis and the preparation steps of fragment analysis. Ten previously studied Leishmania tropica strains and one Giemsa-stained slide were tested by new method and obtained fragment peaks were compared to the previous data obtained from ABI PRISM® system. Overall twelve makers were tested and the signal peak from each fragment was compared to classical ABI PRISM®-based fragment analysis and noted as identical. The new protocol is time saving, cost effective, and eliminates the human error comparing to classical MLMT analysis protocol. We believe that this method enables the easy detection of the fragment lengths without having bioinformatics experience and the obtained data can be easily shared with other laboratories.
Collapse
Affiliation(s)
- Mehmet Karakuş
- Ege University, Faculty of Medicine, Parasitology Department, Izmir, Turkey.
| | - Bahtiyar Yılmaz
- Ege University, Faculty of Science, Department of Biology, Izmir, Turkey
| | - Yusuf Özbel
- Ege University, Faculty of Medicine, Parasitology Department, Izmir, Turkey
| | - Seray Töz
- Ege University, Faculty of Medicine, Parasitology Department, Izmir, Turkey
| |
Collapse
|
30
|
Karakuş M, Nasereddin A, Onay H, Karaca E, Özkeklikçi A, Jaffe CL, Kuhls K, Özbilgin A, Ertabaklar H, Demir S, Özbel Y, Töz S. Epidemiological analysis of Leishmania tropica strains and giemsa-stained smears from Syrian and Turkish leishmaniasis patients using multilocus microsatellite typing (MLMT). PLoS Negl Trop Dis 2017; 11:e0005538. [PMID: 28403153 PMCID: PMC5402985 DOI: 10.1371/journal.pntd.0005538] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 04/24/2017] [Accepted: 03/30/2017] [Indexed: 01/24/2023] Open
Abstract
Turkey is located in an important geographical location, in terms of the epidemiology of vector-borne diseases, linking Asia and Europe. Cutaneous leishmaniasis (CL) is one of the endemic diseases in a Turkey and according to the Ministry Health of Turkey, 45% of CL patients originate from Şanlıurfa province located in southeastern Turkey. Herein, the epidemiological status of CL, caused by L. tropica, in Turkey was examined using multilocus microsatellite typing (MLMT) of strains obtained from Turkish and Syrian patients. A total of 38 cryopreserved strains and 20 Giemsa-stained smears were included in the present study. MLMT was performed using 12 highly specific microsatellite markers. Delta K (ΔK) calculation and Bayesian statistics were used to determine the population structure. Three main populations (POP A, B and C) were identified and further examination revealed the presence of three subpopulations for POP B and C. Combined analysis was performed using the data of previously typed L. tropica strains and Mediterranean and Şanlıurfa populations were identified. This finding suggests that the epidemiological status of L. tropica is more complicated than expected when compared to previous studies. A new population, comprised of Syrian L. tropica samples, was reported for the first time in Turkey, and the data presented here will provide new epidemiological information for further studies.
Collapse
Affiliation(s)
- Mehmet Karakuş
- Ege University, Faculty of Medicine, Department of Parasitology, Izmir, Turkey
| | - Abed Nasereddin
- Department of Microbiology and Molecular Genetics, IMRIC, Hebrew University - Hadassah Medical Center, Jerusalem, Israel
- The Core Research Facility, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hüseyin Onay
- Ege University, Faculty of Medicine, Department of Medical Genetics, Izmir, Turkey
| | - Emin Karaca
- Ege University, Faculty of Medicine, Department of Medical Genetics, Izmir, Turkey
| | - Ahmet Özkeklikçi
- Dr. Ersin Arslan State Hospital, Microbiology Department, Gaziantep, Turkey
| | - Charles L. Jaffe
- Department of Microbiology and Molecular Genetics, IMRIC, Hebrew University - Hadassah Medical Center, Jerusalem, Israel
| | - Katrin Kuhls
- Technical University of Applied Sciences Wildau, Division of Molecular Biotechnology and Functional Genetics, Wildau, Germany
| | - Ahmet Özbilgin
- Celal Bayar University, Faculty of Medicine, Department of Parasitology, Manisa, Turkey
| | - Hatice Ertabaklar
- Adnan Menderes University, Faculty of Medicine, Department of Parasitology, Aydın, Turkey
| | - Samiye Demir
- Ege University, Faculty of Science, Department of Biology, Izmir, Turkey
| | - Yusuf Özbel
- Ege University, Faculty of Medicine, Department of Parasitology, Izmir, Turkey
| | - Seray Töz
- Ege University, Faculty of Medicine, Department of Parasitology, Izmir, Turkey
| |
Collapse
|
31
|
Rugna G, Carra E, Corpus F, Calzolari M, Salvatore D, Bellini R, Di Francesco A, Franceschini E, Bruno A, Poglayen G, Varani S, Vitale F, Merialdi G. Distinct Leishmania infantum Strains Circulate in Humans and Dogs in the Emilia-Romagna Region, Northeastern Italy. Vector Borne Zoonotic Dis 2017; 17:409-415. [PMID: 28301296 DOI: 10.1089/vbz.2016.2052] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human leishmaniasis is an emerging problem in Italy and is on the increase in the Emilia-Romagna region, northeastern part of the country. Nevertheless, studies dealing with the molecular characterization of Leishmania spp. circulating in these areas are limited. In the present work, we explored the genetic polymorphism of Leishmania isolates from 28 cases of canine leishmaniasis and three cases of human visceral leishmaniasis (VL), which occurred in 2013-2014 in the Emilia-Romagna region. The characterization was carried out in comparison with nine human isolates of Leishmania from other VL endemic Italian regions and two reference strains. Nucleic acid from 31 Leishmania-positive phlebotomine sandfly pools, sampled in 2012-2013 in the Emilia-Romagna region, were also evaluated. DNA amplification and sequencing of the ribosomal internal transcribed spacer-1 and of a repetitive nuclear region on chromosome 31 were carried out for genotyping. Two size polymorphic targets were also analyzed by PCR, the cpb E/F-gene and the k26-gene. Altogether, the analysis showed the circulation of different Leishmania infantum genotypes in the Emilia-Romagna region: two genotypes found in dogs from public kennels were similar to VL isolates from other Italian regions, whereas a third genotype was detected in VL cases of the Emilia-Romagna region and in all but one of the sandfly pools. The combined molecular tools applied in this study can constitute a helpful support for parasite tracking (e.g., in outbreak investigations) and for a better understanding of the epidemiological evolution of leishmaniasis in northeastern Italy.
Collapse
Affiliation(s)
- Gianluca Rugna
- 1 Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna "Bruno Ubertini", Brescia, Italy
| | - Elena Carra
- 1 Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna "Bruno Ubertini", Brescia, Italy
| | - Francesco Corpus
- 1 Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna "Bruno Ubertini", Brescia, Italy
| | - Mattia Calzolari
- 1 Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna "Bruno Ubertini", Brescia, Italy
| | - Daniela Salvatore
- 2 Department of Veterinary Medical Sciences, University of Bologna , Ozzano Emilia, Italy
| | - Romeo Bellini
- 3 Medical and Veterinary Entomology Department, Centro Agricoltura Ambiente "G. Nicoli" IAEA Collaborating Center , Crevalcore, Italy
| | | | - Erica Franceschini
- 4 Clinic of Infectious Diseases, Azienda Ospedaliero-Universitaria , Policlinico of Modena, Modena, Italy
| | - Antonella Bruno
- 5 Fondazione IRCCS Policlinico S. Matteo , S.C. Microbiologia e Virologia, Pavia, Italy
| | - Giovanni Poglayen
- 2 Department of Veterinary Medical Sciences, University of Bologna , Ozzano Emilia, Italy
| | - Stefania Varani
- 6 Unit of Microbiology, Department of Experimental, Diagnostic, and Specialty Medicine, St. Orsola Malpighi University Hospital, University of Bologna , Bologna, Italy
| | - Fabrizio Vitale
- 7 National Reference Center for Leishmaniasis (C.Re.Na.L.) , Istituto Zooprofilattico Sperimentale della Sicilia, Palermo, Italy
| | - Giuseppe Merialdi
- 1 Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna "Bruno Ubertini", Brescia, Italy
| |
Collapse
|
32
|
Akhoundi M, Downing T, Votýpka J, Kuhls K, Lukeš J, Cannet A, Ravel C, Marty P, Delaunay P, Kasbari M, Granouillac B, Gradoni L, Sereno D. Leishmania infections: Molecular targets and diagnosis. Mol Aspects Med 2017; 57:1-29. [PMID: 28159546 DOI: 10.1016/j.mam.2016.11.012] [Citation(s) in RCA: 212] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 11/08/2016] [Accepted: 11/28/2016] [Indexed: 12/15/2022]
Abstract
Progress in the diagnosis of leishmaniases depends on the development of effective methods and the discovery of suitable biomarkers. We propose firstly an update classification of Leishmania species and their synonymies. We demonstrate a global map highlighting the geography of known endemic Leishmania species pathogenic to humans. We summarize a complete list of techniques currently in use and discuss their advantages and limitations. The available data highlights the benefits of molecular markers in terms of their sensitivity and specificity to quantify variation from the subgeneric level to species complexes, (sub) species within complexes, and individual populations and infection foci. Each DNA-based detection method is supplied with a comprehensive description of markers and primers and proposal for a classification based on the role of each target and primer in the detection, identification and quantification of leishmaniasis infection. We outline a genome-wide map of genes informative for diagnosis that have been used for Leishmania genotyping. Furthermore, we propose a classification method based on the suitability of well-studied molecular markers for typing the 21 known Leishmania species pathogenic to humans. This can be applied to newly discovered species and to hybrid strains originating from inter-species crosses. Developing more effective and sensitive diagnostic methods and biomarkers is vital for enhancing Leishmania infection control programs.
Collapse
Affiliation(s)
- Mohammad Akhoundi
- Service de Parasitologie-Mycologie, Hôpital de l'Archet, Centre Hospitalier Universitaire de Nice, Nice, France; MIVEGEC, UMR CNRS5290-IRD224-Université de Montpellier Centre IRD, Montpellier, France.
| | - Tim Downing
- School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Jan Votýpka
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice, Czech Republic; Department of Parasitology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Katrin Kuhls
- Division of Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Wildau, Germany
| | - Julius Lukeš
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice, Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice, Czech Republic; Canadian Institute for Advanced Research, Toronto, Canada
| | - Arnaud Cannet
- Inserm U1065, Centre Méditerranéen de Médecine Moléculaire, Université de Nice-Sophia Antipolis, Nice, France
| | - Christophe Ravel
- French National Reference Centre on Leishmaniasis, Montpellier University, Montpellier, France
| | - Pierre Marty
- Service de Parasitologie-Mycologie, Hôpital de l'Archet, Centre Hospitalier Universitaire de Nice, Nice, France; Inserm U1065, Centre Méditerranéen de Médecine Moléculaire, Université de Nice-Sophia Antipolis, Nice, France
| | - Pascal Delaunay
- Service de Parasitologie-Mycologie, Hôpital de l'Archet, Centre Hospitalier Universitaire de Nice, Nice, France; Inserm U1065, Centre Méditerranéen de Médecine Moléculaire, Université de Nice-Sophia Antipolis, Nice, France; MIVEGEC, UMR CNRS5290-IRD224-Université de Montpellier Centre IRD, Montpellier, France
| | - Mohamed Kasbari
- Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail, ANSES, Laboratoire de Santé Animale, Maisons-Alfort, Cedex, France
| | - Bruno Granouillac
- IRD/UMI 233, INSERM U1175, Montpellier University, Montpellier, France; MIVEGEC, UMR CNRS5290-IRD224-Université de Montpellier Centre IRD, Montpellier, France
| | - Luigi Gradoni
- Unit of Vector-borne Diseases and International Health, Istituto Superiore di Sanità, Rome, Italy
| | - Denis Sereno
- MIVEGEC, UMR CNRS5290-IRD224-Université de Montpellier Centre IRD, Montpellier, France; Intertryp UMR IRD177, Centre IRD de Montpellier, Montpellier, France
| |
Collapse
|
33
|
Cassan C, Dione MM, Dereure J, Diedhiou S, Bucheton B, Hide M, Kako C, Gaye O, Senghor M, Niang AA, Bañuls AL, Faye B. First insights into the genetic diversity and origin of Leishmania infantum in Mont Rolland (Thiès region, Senegal). Microbes Infect 2016; 18:412-420. [DOI: 10.1016/j.micinf.2016.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 02/23/2016] [Accepted: 02/24/2016] [Indexed: 10/22/2022]
|
34
|
Khan NH, Messenger LA, Wahid S, Sutherland CJ. Phylogenetic position of Leishmania isolates from Khyber Pakhtunkhwa province of Pakistan. Exp Parasitol 2016; 167:61-6. [PMID: 27233810 DOI: 10.1016/j.exppara.2016.05.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 05/20/2016] [Accepted: 05/21/2016] [Indexed: 11/25/2022]
Abstract
Several species of the genus Leishmania are causative agents of cutaneous leishmaniasis in Pakistan. This study aimed to determine phylogenetic placement of Leishmania species causing cutaneous leishmaniasis in Khyber Pakhtunkhwa province, Pakistan (34 Leishmania tropica, 3 Leishmania infantum), in-relation to species from other geographical areas using gene sequences encoding cytochrome b (cytb) and internal transcribed spacer 2 (its2). Based on cytochrome b sequence analysis, L. tropica strains from Pakistan and other geographical regions were differentiated into two genotype groups, A and B. Within the province, five distinct L. tropica genotypes were recognized; two in group A, three in group B. Two L. infantum isolates from the province were closely associated with both Afro-Eurasian and American species of the Leishmania donovani complex, including Leishmania chagasi, L. infantum and L. donovani from Sudan and Ethiopia; while a third L. infantum isolate could not be differentiated from visceralizing Kenyan and Indian L. donovani. We observed apposite phylogenetic placement of CL-causing L. tropica and L. infantum from Khyber Pakhtunkhwa. Affinities ascribed to Leishmania spp. From the region are valuable in tracing potential importation of leishmaniasis.
Collapse
Affiliation(s)
- Nazma Habib Khan
- Department of Immunology & Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, WC1E 7HT, UK; Department of Zoology, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan.
| | - Louisa A Messenger
- Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, WC1E 7HT, UK.
| | - Sobia Wahid
- Department of Immunology & Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, WC1E 7HT, UK; Department of Zoology, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan.
| | - Colin J Sutherland
- Department of Immunology & Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, WC1E 7HT, UK.
| |
Collapse
|
35
|
Attia H, Sghaier RM, Gelanew T, Bali A, Schweynoch C, Guerfali FZ, Mkannez G, Chlif S, Belhaj-Hamida N, Dellagi K, Schönian G, Laouini D. Genetic micro-heterogeneity of Leishmania major in emerging foci of zoonotic cutaneous leishmaniasis in Tunisia. INFECTION GENETICS AND EVOLUTION 2016; 43:179-85. [PMID: 27137082 DOI: 10.1016/j.meegid.2016.04.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/27/2016] [Accepted: 04/28/2016] [Indexed: 02/07/2023]
Abstract
Tunisia is endemic for zoonotic cutaneous leishmaniasis (ZCL), a parasitic disease caused by Leishmania (L.) major. ZCL displays a wide clinical polymorphism, with severe forms present more frequently in emerging foci where naive populations are dominant. In this study, we applied the multi-locus microsatellite typing (MLMT) using ten highly informative and discriminative markers to investigate the genetic structure of 35 Tunisian Leishmania (L.) major isolates collected from patients living in five different foci of Central Tunisia (two old and three emerging foci). Phylogenetic reconstructions based on genetic distances showed that nine of the ten tested loci were homogeneous in all isolates with homozygous alleles, whereas one locus (71AT) had a 58/64-bp bi-allelic profile with an allele linked to emerging foci. Promastigote-stage parasites with the 58-bp allele tend to be more resistant to in vitro complement lysis. These results, which stress the geographical dependence of the genetic micro-heterogeneity, may improve our understanding of the ZCL epidemiology and clinical outcome.
Collapse
Affiliation(s)
- Hanene Attia
- Institut Pasteur de Tunis, LR11IPT02, Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), Tunis-Belvédère 1002, Tunisia; Université Tunis El Manar, Tunis 1068, Tunisia
| | - Rabiaa M Sghaier
- Institut Pasteur de Tunis, LR11IPT02, Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), Tunis-Belvédère 1002, Tunisia; Université Tunis El Manar, Tunis 1068, Tunisia
| | - Tesfaye Gelanew
- Institut für Mikrobiologie und Hygiene, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Aymen Bali
- Institut Pasteur de Tunis, LR11IPT02, Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), Tunis-Belvédère 1002, Tunisia; Université Tunis El Manar, Tunis 1068, Tunisia
| | - Carola Schweynoch
- Institut für Mikrobiologie und Hygiene, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Fatma Z Guerfali
- Institut Pasteur de Tunis, LR11IPT02, Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), Tunis-Belvédère 1002, Tunisia; Université Tunis El Manar, Tunis 1068, Tunisia
| | - Ghada Mkannez
- Institut Pasteur de Tunis, LR11IPT02, Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), Tunis-Belvédère 1002, Tunisia; Université Tunis El Manar, Tunis 1068, Tunisia
| | - Sadok Chlif
- Institut Pasteur de Tunis, LR11IPT02, Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), Tunis-Belvédère 1002, Tunisia; Université Tunis El Manar, Tunis 1068, Tunisia; Institut Pasteur de Tunis, Service of Medical Epidemiology, Tunis-Belvédère 1002, Tunisia
| | - Nabil Belhaj-Hamida
- Institut Pasteur de Tunis, LR11IPT02, Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), Tunis-Belvédère 1002, Tunisia; Université Tunis El Manar, Tunis 1068, Tunisia; Institut Pasteur de Tunis, Service of Medical Epidemiology, Tunis-Belvédère 1002, Tunisia
| | - Koussay Dellagi
- Institut Pasteur de Tunis, LR11IPT02, Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), Tunis-Belvédère 1002, Tunisia; Université Tunis El Manar, Tunis 1068, Tunisia
| | - Gabriele Schönian
- Institut für Mikrobiologie und Hygiene, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Dhafer Laouini
- Institut Pasteur de Tunis, LR11IPT02, Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), Tunis-Belvédère 1002, Tunisia; Université Tunis El Manar, Tunis 1068, Tunisia.
| |
Collapse
|
36
|
Osman HA, Mahamoud A, Abass EM, Madi RR, Semiao-Santos SJ, El Harith A. Local Production of a Liquid Direct Agglutination Test as a Sustainable Measure for Control of Visceral Leishmaniasis in Sudan. Am J Trop Med Hyg 2016; 94:982-6. [PMID: 26976890 DOI: 10.4269/ajtmh.15-0574] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 01/29/2016] [Indexed: 11/07/2022] Open
Abstract
A prerequisite for the control of visceral leishmaniasis (VL) is the accessibility to reference diagnostics. The high price of the freeze-dried direct agglutination test (FD-DAT) and the short shelf-life time of the rK39 strip test (rK39) have limited the application of these tests in Sudan. An original liquid DAT (LQ-DAT) with high reproducibility compared with the FD-DAT and rK39 has been routinely produced in our laboratory since 1999. In this study, a 3.4-year-old batch (of more than 90 test batches produced to date) was chosen to validate the diagnostic performance of this test against microscopy, FD-DAT, and rK39 in 96 VL and 42 non-VL serum samples. Relatively higher sensitivity (95/96, 99.0%) was recorded for the LQ-DAT than for the FD-DAT (92/96, 95.8%) and rK39 (76/96, 79.2%), probably because of the use of the endemic autochthonous Leishmania donovani isolate as the antigen. Experience with the LQ-DAT, its low cost of production, ease of providing this test, and diagnostic reliability compared with the FD-DAT suggest that widescale implementation of the LQ-DAT can contribute to sustainable VL control in Sudan.
Collapse
Affiliation(s)
- Hussam Ali Osman
- Biomedical Research Laboratory, Ahfad University for Women, Omdurman, Sudan; Department of Microbiology, Faculty of Medical Laboratory Sciences, Sudan International University, Khartoum, Sudan; Postgraduate Program in Health and Environment, University of Tiradentes, Aracaju, Sergipe, Brazil; Department of Medicine and Nursing, University of Tiradentes, Aracaju, Sergipe, Brazil
| | - Abdelhafeiz Mahamoud
- Biomedical Research Laboratory, Ahfad University for Women, Omdurman, Sudan; Department of Microbiology, Faculty of Medical Laboratory Sciences, Sudan International University, Khartoum, Sudan; Postgraduate Program in Health and Environment, University of Tiradentes, Aracaju, Sergipe, Brazil; Department of Medicine and Nursing, University of Tiradentes, Aracaju, Sergipe, Brazil
| | - Elfadil Mustafa Abass
- Biomedical Research Laboratory, Ahfad University for Women, Omdurman, Sudan; Department of Microbiology, Faculty of Medical Laboratory Sciences, Sudan International University, Khartoum, Sudan; Postgraduate Program in Health and Environment, University of Tiradentes, Aracaju, Sergipe, Brazil; Department of Medicine and Nursing, University of Tiradentes, Aracaju, Sergipe, Brazil
| | - Rubens Riscala Madi
- Biomedical Research Laboratory, Ahfad University for Women, Omdurman, Sudan; Department of Microbiology, Faculty of Medical Laboratory Sciences, Sudan International University, Khartoum, Sudan; Postgraduate Program in Health and Environment, University of Tiradentes, Aracaju, Sergipe, Brazil; Department of Medicine and Nursing, University of Tiradentes, Aracaju, Sergipe, Brazil
| | - Saul J Semiao-Santos
- Biomedical Research Laboratory, Ahfad University for Women, Omdurman, Sudan; Department of Microbiology, Faculty of Medical Laboratory Sciences, Sudan International University, Khartoum, Sudan; Postgraduate Program in Health and Environment, University of Tiradentes, Aracaju, Sergipe, Brazil; Department of Medicine and Nursing, University of Tiradentes, Aracaju, Sergipe, Brazil
| | - Abdallah El Harith
- Biomedical Research Laboratory, Ahfad University for Women, Omdurman, Sudan; Department of Microbiology, Faculty of Medical Laboratory Sciences, Sudan International University, Khartoum, Sudan; Postgraduate Program in Health and Environment, University of Tiradentes, Aracaju, Sergipe, Brazil; Department of Medicine and Nursing, University of Tiradentes, Aracaju, Sergipe, Brazil
| |
Collapse
|
37
|
Akhoundi M, Kuhls K, Cannet A, Votýpka J, Marty P, Delaunay P, Sereno D. A Historical Overview of the Classification, Evolution, and Dispersion of Leishmania Parasites and Sandflies. PLoS Negl Trop Dis 2016; 10:e0004349. [PMID: 26937644 PMCID: PMC4777430 DOI: 10.1371/journal.pntd.0004349] [Citation(s) in RCA: 579] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The aim of this study is to describe the major evolutionary historical events among Leishmania, sandflies, and the associated animal reservoirs in detail, in accordance with the geographical evolution of the Earth, which has not been previously discussed on a large scale. METHODOLOGY AND PRINCIPAL FINDINGS Leishmania and sandfly classification has always been a controversial matter, and the increasing number of species currently described further complicates this issue. Despite several hypotheses on the origin, evolution, and distribution of Leishmania and sandflies in the Old and New World, no consistent agreement exists regarding dissemination of the actors that play roles in leishmaniasis. For this purpose, we present here three centuries of research on sandflies and Leishmania descriptions, as well as a complete description of Leishmania and sandfly fossils and the emergence date of each Leishmania and sandfly group during different geographical periods, from 550 million years ago until now. We discuss critically the different approaches that were used for Leishmana and sandfly classification and their synonymies, proposing an updated classification for each species of Leishmania and sandfly. We update information on the current distribution and dispersion of different species of Leishmania (53), sandflies (more than 800 at genus or subgenus level), and animal reservoirs in each of the following geographical ecozones: Palearctic, Nearctic, Neotropic, Afrotropical, Oriental, Malagasy, and Australian. We propose an updated list of the potential and proven sandfly vectors for each Leishmania species in the Old and New World. Finally, we address a classical question about digenetic Leishmania evolution: which was the first host, a vertebrate or an invertebrate? CONCLUSIONS AND SIGNIFICANCE We propose an updated view of events that have played important roles in the geographical dispersion of sandflies, in relation to both the Leishmania species they transmit and the animal reservoirs of the parasites.
Collapse
Affiliation(s)
- Mohammad Akhoundi
- Service de Parasitologie-Mycologie, Hôpital de l’Archet, Centre Hospitalier Universitaire de Nice, Nice, France
| | - Katrin Kuhls
- Division of Molecular Biotechnology and Functional Genetics, Technical University of Applied Sciences Wildau, Wildau, Germany
| | - Arnaud Cannet
- Inserm U1065, Centre Méditerranéen de Médecine Moléculaire, Université de Nice-Sophia Antipolis, Nice, France
| | - Jan Votýpka
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Prague, Czech Republic
- Department of Parasitology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Pierre Marty
- Service de Parasitologie-Mycologie, Hôpital de l’Archet, Centre Hospitalier Universitaire de Nice, Nice, France
- Inserm U1065, Centre Méditerranéen de Médecine Moléculaire, Université de Nice-Sophia Antipolis, Nice, France
| | - Pascal Delaunay
- Service de Parasitologie-Mycologie, Hôpital de l’Archet, Centre Hospitalier Universitaire de Nice, Nice, France
- Inserm U1065, Centre Méditerranéen de Médecine Moléculaire, Université de Nice-Sophia Antipolis, Nice, France
| | - Denis Sereno
- MIVEGEC, UMR CNRS-IRD-Université de Montpellier Centre IRD, Montpellier, France
- UMR177, Centre IRD de Montpellier, Montpellier, France
| |
Collapse
|
38
|
Gebhardt M, Ertas B, Falk T, Blödorn-Schlicht N, Metze D, Böer-Auer A. Fast, sensitive and specific diagnosis of infections withLeishmaniaspp. in formalin-fixed, paraffin-embedded skin biopsies by cytochrome b polymerase chain reaction. Br J Dermatol 2015; 173:1239-49. [DOI: 10.1111/bjd.14088] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2015] [Indexed: 11/29/2022]
Affiliation(s)
- M. Gebhardt
- Dermatologikum Hamburg; Stephansplatz 5 20354 Hamburg Germany
| | - B. Ertas
- Dermatologikum Hamburg; Stephansplatz 5 20354 Hamburg Germany
| | - T.M. Falk
- Dermatologikum Hamburg; Stephansplatz 5 20354 Hamburg Germany
| | | | - D. Metze
- Department of Dermatology; Münster University; Von Esmarch Strasse 58 48149 Münster Germany
| | - A. Böer-Auer
- Dermatologikum Hamburg; Stephansplatz 5 20354 Hamburg Germany
| |
Collapse
|
39
|
The Genetic Relationship between Leishmania aethiopica and Leishmania tropica Revealed by Comparing Microsatellite Profiles. PLoS One 2015. [PMID: 26196393 PMCID: PMC4511230 DOI: 10.1371/journal.pone.0131227] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Leishmania (Leishmania) aethiopica and L. (L.) tropica cause cutaneous leishmaniases and appear to be related. L. aethiopica is geographically restricted to Ethiopia and Kenya; L. tropica is widely dispersed from the Eastern Mediterranean, through the Middle East into eastern India and in north, east and south Africa. Their phylogenetic inter-relationship is only partially revealed. Some studies indicate a close relationship. Here, eight strains of L. aethiopica were characterized genetically and compared with 156 strains of L. tropica from most of the latter species' geographical range to discern the closeness. METHODOLOGY/PRINCIPAL FINDINGS Twelve unlinked microsatellite markers previously used to genotype strains of L. tropica were successfully applied to the eight strains of L. aethiopica and their microsatellite profiles were compared to those of 156 strains of L. tropica from various geographical locations that were isolated from human cases of cutaneous and visceral leishmaniasis, hyraxes and sand fly vectors. All the microsatellite profiles were subjected to various analytical algorithms: Bayesian statistics, distance-based and factorial correspondence analysis, revealing: (i) the species L. aethiopica, though geographically restricted, is genetically very heterogeneous; (ii) the strains of L. aethiopica formed a distinct genetic cluster; and (iii) strains of L. aethiopica are closely related to strains of L. tropica and more so to the African ones, although, by factorial correspondence analysis, clearly separate from them. CONCLUSIONS/SIGNIFICANCE The successful application of the 12 microsatellite markers, originally considered species-specific for the species L. tropica, to strains of L. aethiopica confirmed the close relationship between these two species. The Bayesian and distance-based methods clustered the strains of L. aethiopica among African strains of L. tropica, while the factorial correspondence analysis indicated a clear separation between the two species. There was no correlation between microsatellite profiles of the eight strains of L. aethiopica and the type of leishmaniasis, localized (LCL) versus diffuse cutaneous leishmaniasis (DCL), displayed by the human cases.
Collapse
|
40
|
Strelkova MV, Ponirovsky EN, Morozov EN, Zhirenkina EN, Razakov SA, Kovalenko DA, Schnur LF, Schönian G. A narrative review of visceral leishmaniasis in Armenia, Azerbaijan, Georgia, Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan, Uzbekistan, the Crimean Peninsula and Southern Russia. Parasit Vectors 2015; 8:330. [PMID: 26077778 PMCID: PMC4474452 DOI: 10.1186/s13071-015-0925-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 06/01/2015] [Indexed: 11/10/2022] Open
Abstract
There is an extensive body of medical and scientific research literature on visceral leishmaniasis (VL) in the Caucasus, Central Asia, the Crimean Peninsula and the southern part of The Russian Federation that is written in Russian, making it inaccessible to the majority of people who are interested in the leishmaniases in general and VL in particular. This review and summary in English of VL in what was Imperial Russia, which then became the Soviet Union and later a number of different independent states intends to give access to that majority. There are numerous publications in Russian on VL and, mostly, those published in books and the main scientific journals have been included here. The vast geographical area encompassed has been subdivided into four main parts: the southern Caucasus, covering Armenia, Azerbaijan and Georgia; Central Asia, covering Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan and Uzbekistan; the Crimean Peninsula and the northern Caucasus, which is part of The Russian Federation. Only rare cases of VL have been recorded in the northern Caucasus and Crimean Peninsula. In the other countries mentioned, human VL has been more intense but epidemics like those associated with L. donovani in India and East Africa have not occurred. For most of the countries, there are sections on the distribution, clinical aspects, the causative agent, the reservoirs and the vectors. Serological surveys and research into therapy are also covered. Recent studies on VL in Uzbekistan covered the application of serological, biochemical and molecular biological methods to diagnose human and canine VL, to identify the leishmanial parasites causing them in Uzbekistan and neighbouring Tajikistan and the epidemiology of VL in the Namangan Region of the Pap District, Eastern Uzbekistan. More recently, two studies were carried out in Georgia investigating the prevalence of human and canine VL, and the species composition of phlebotomine sand flies and their rates of infection with what was probably L. infantum in Tbilisi, eastern Georgia and Kutaisi, a new focus, in western Georgia. Though published in English, summaries of this information have been included where relevant to update the parts on VL in Uzbekistan and Georgia.
Collapse
Affiliation(s)
- Margarita V Strelkova
- The Sechenov First Moscow State Medical University, Martsinovsky Institute of Medical Parasitology and Tropical Medicine, Moscow, Russia.
| | - Evgeny N Ponirovsky
- The Sechenov First Moscow State Medical University, Martsinovsky Institute of Medical Parasitology and Tropical Medicine, Moscow, Russia.
| | - Evgeny N Morozov
- The Sechenov First Moscow State Medical University, Martsinovsky Institute of Medical Parasitology and Tropical Medicine, Moscow, Russia.
| | - Ekaterina N Zhirenkina
- The Sechenov First Moscow State Medical University, Martsinovsky Institute of Medical Parasitology and Tropical Medicine, Moscow, Russia.
| | - Shavkat A Razakov
- The Isaev Research Institute of Medical Parasitology, Samarqand, Uzbekistan.
| | - Dmitriy A Kovalenko
- The Isaev Research Institute of Medical Parasitology, Samarqand, Uzbekistan.
| | - Lionel F Schnur
- The Hebrew University-Hadassah Medical School, Jerusalem, Israel.
| | - Gabriele Schönian
- The Institute of Microbiology and Hygiene, Charite University Medicine, Hindenburgdamm 30, D-12203, Berlin, Germany.
| |
Collapse
|
41
|
Aluru S, Hide M, Michel G, Bañuls AL, Marty P, Pomares C. Multilocus microsatellite typing of Leishmania and clinical applications: a review. ACTA ACUST UNITED AC 2015; 22:16. [PMID: 25950900 PMCID: PMC4423940 DOI: 10.1051/parasite/2015016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 04/17/2015] [Indexed: 12/03/2022]
Abstract
Microsatellite markers have been used for Leishmania genetic studies worldwide, giving useful insight into leishmaniasis epidemiology. Understanding the geographic distribution, dynamics of Leishmania populations, and disease epidemiology improved markedly with this tool. In endemic foci, the origins of antimony-resistant strains and multidrug treatment failures were explored with multilocus microsatellite typing (MLMT). High genetic variability was detected but no association between parasite genotypes and drug resistance was established. An association between MLMT profiles and clinical disease manifestations was highlighted in only three studies and this data needs further confirmation. At the individual level, MLMT provided information on relapse and reinfection when multiple leishmaniasis episodes occurred. This information could improve knowledge of epidemiology and guide therapeutic choices for active chronic visceral leishmaniasis, the disease form in some HIV-positive patients.
Collapse
Affiliation(s)
- Srikanth Aluru
- Aix-Marseille Université, Marseille, France - INSERM, U1065, Centre Méditerranéen de Médecine Moléculaire, C3M, Toxines Microbiennes dans la Relation Hôte Pathogènes, 06204 Nice Cedex 3, France
| | - Mallorie Hide
- UMR MIVEGEC IRD 224-CNRS 5290, Universités Montpellier 1 et 2, Montpellier, France
| | - Gregory Michel
- INSERM, U1065, Centre Méditerranéen de Médecine Moléculaire, C3M, Toxines Microbiennes dans la Relation Hôte Pathogènes, 06204 Nice Cedex 3, France - Université de Nice Sophia Antipolis, Faculté de Médecine, 06107 Nice Cedex 2, France
| | - Anne-Laure Bañuls
- UMR MIVEGEC IRD 224-CNRS 5290, Universités Montpellier 1 et 2, Montpellier, France
| | - Pierre Marty
- INSERM, U1065, Centre Méditerranéen de Médecine Moléculaire, C3M, Toxines Microbiennes dans la Relation Hôte Pathogènes, 06204 Nice Cedex 3, France - Université de Nice Sophia Antipolis, Faculté de Médecine, 06107 Nice Cedex 2, France - Parasitologie-Mycologie, Centre Hospitalier Universitaire l'Archet, CS 23079, 06202 Nice Cedex 3, France
| | - Christelle Pomares
- INSERM, U1065, Centre Méditerranéen de Médecine Moléculaire, C3M, Toxines Microbiennes dans la Relation Hôte Pathogènes, 06204 Nice Cedex 3, France - Université de Nice Sophia Antipolis, Faculté de Médecine, 06107 Nice Cedex 2, France - Parasitologie-Mycologie, Centre Hospitalier Universitaire l'Archet, CS 23079, 06202 Nice Cedex 3, France
| |
Collapse
|
42
|
da Silva TAM, Gomes LI, Oliveira E, Coura-Vital W, Silva LDA, Pais FSM, Ker HG, Reis AB, Rabello A, Carneiro M. Genetic homogeneity among Leishmania (Leishmania) infantum isolates from dog and human samples in Belo Horizonte Metropolitan Area (BHMA), Minas Gerais, Brazil. Parasit Vectors 2015; 8:226. [PMID: 25889010 PMCID: PMC4407872 DOI: 10.1186/s13071-015-0837-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 03/31/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Certain municipalities in the Belo Horizonte Metropolitan Area (BHMA), Minas Gerais, Brazil, have the highest human visceral leishmaniasis (VL) mortality rates in the country and also demonstrate high canine seropositivity. In Brazil, the etiologic agent of VL is Leishmania (Leishmania) infantum. The aim of this study was to evaluate the intraspecific genetic variability of parasites from humans and from dogs with different clinical forms of VL in five municipalities of BHMA using PCR-RFLP and two target genes: kinetoplast DNA (kDNA) and gp63. METHODS In total, 45 samples of DNA extracted from clinical samples (n = 35) or L. infantum culture (n = 10) were evaluated. These samples originated from three groups: adults (with or without Leishmania/HIV co-infection; n = 14), children (n = 18) and dogs (n = 13). The samples were amplified for the kDNA target using the MC1 and MC2 primers (447 bp), while the Sg1 and Sg2 (1330 bp) primers were used for the gp63 glycoprotein target gene. RESULTS The restriction enzyme patterns of all the samples tested were monomorphic. CONCLUSIONS These findings reveal a high degree of genetic homogeneity for the evaluated gene targets among L. infantum samples isolated from different hosts and representing different clinical forms of VL in the municipalities of BHMA studied.
Collapse
Affiliation(s)
- Thais Almeida Marques da Silva
- Laboratório de Pesquisas Clínicas, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brasil. .,Laboratório de Epidemiologia das Doenças Infecciosas e Parasitárias, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil.
| | - Luciana Inácia Gomes
- Laboratório de Pesquisas Clínicas, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brasil.
| | - Edward Oliveira
- Laboratório de Pesquisas Clínicas, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brasil.
| | - Wendel Coura-Vital
- Laboratório de Epidemiologia das Doenças Infecciosas e Parasitárias, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil. .,Pós-graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil. .,Laboratório de Pesquisas Clínicas, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brasil.
| | - Letícia de Azevedo Silva
- Laboratório de Toxoplasmose, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil.
| | - Fabiano Sviatopolk-Mirsky Pais
- Grupo de Genômica e Biologia Computacional, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brasil.
| | - Henrique Gama Ker
- Laboratório de Pesquisas Clínicas, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brasil.
| | - Alexandre Barbosa Reis
- Laboratório de Pesquisas Clínicas, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brasil.
| | - Ana Rabello
- Laboratório de Pesquisas Clínicas, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brasil.
| | - Mariangela Carneiro
- Laboratório de Epidemiologia das Doenças Infecciosas e Parasitárias, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil. .,Pós-graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil.
| |
Collapse
|
43
|
Abstract
Leishmania is an infectious protozoan parasite related to African and American trypanosomes. All Leishmania species that are pathogenic to humans can cause dermal disease. When one is confronted with cutaneous leishmaniasis, identification of the causative species is relevant in both clinical and epidemiological studies, case management, and control. This review gives an overview of the currently existing and most used assays for species discrimination, with a critical appraisal of the limitations of each technique. The consensus taxonomy for the genus is outlined, including debatable species designations. Finally, a numerical literature analysis is presented that describes which methods are most used in various countries and regions in the world, and for which purposes.
Collapse
Affiliation(s)
- Gert Van der Auwera
- Institute of Tropical Medicine, Department of Biomedical Sciences, Antwerp, Belgium
| | - Jean-Claude Dujardin
- Institute of Tropical Medicine, Department of Biomedical Sciences, Antwerp, Belgium Antwerp University, Department of Biomedical Sciences, Antwerp, Belgium
| |
Collapse
|
44
|
Abass E, Kang C, Martinkovic F, Semião-Santos SJ, Sundar S, Walden P, Piarroux R, el Harith A, Lohoff M, Steinhoff U. Heterogeneity of Leishmania donovani parasites complicates diagnosis of visceral leishmaniasis: comparison of different serological tests in three endemic regions. PLoS One 2015; 10:e0116408. [PMID: 25734336 PMCID: PMC4348478 DOI: 10.1371/journal.pone.0116408] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 12/01/2014] [Indexed: 12/01/2022] Open
Abstract
Diagnostic tests for visceral leishmaniasis that are based on antigens of a single Leishmania strain can have low diagnostic performance in regions where heterologous parasites predominate. The aim of this study was to investigate and compare the performance of five serological tests, based on different Leishmania antigens, in three endemic countries for visceral leishmaniasis. A total number of 231 sera of symptomatic and asymptomatic cases and controls from three endemic regions of visceral leishmaniasis in East Sudan, North India and South France were evaluated by following serological tests: rKLO8- and rK39 ELISA, DAT (ITMA-DAT) and two rapid tests of rK39 (IT LEISH) and rKE16 (Signal-KA). Overall, rKLO8- and rK39 ELISA were most sensitive in immunocompetent patients from all endemic regions (96–100%) and the sensitivity was reduced to 81.8% in HIV co-infected patients from France. Sera of patients from India demonstrated significantly higher antibody responses to rKLO8 and rK39 compared with sera from Sudan (p<0.0001) and France (p<0.0037). Further, some Indian and Sudanese patients reacted better with rKLO8 than rK39. Sensitivity of DAT (ITMA-DAT) was high in Sudan (94%) and India (92.3%) but low in France being 88.5% and 54.5% for VL and VL/HIV patients, respectively. In contrast, rapid tests displayed high sensitivity only in patients from India (96.2%) but not Sudan (64–88%) and France (73.1–88.5% and 63.6–81.8% in VL and VL/HIV patients, respectively). While the sensitivity varied, all tests showed high specificity in Sudan (96.7–100%) and India (96.6%).Heterogeneity of Leishmania parasites which is common in many endemic regions complicates the diagnosis of visceral leishmaniasis. Therefore, tests based on homologous Leishmania antigens are required for particular endemic regions to detect cases which are difficult to be diagnosed with currently available tests.
Collapse
Affiliation(s)
- Elfadil Abass
- Institute for Medical Microbiology and Hygiene, University of Marburg, 35043 Marburg, Germany
- Biomedical Research Laboratory, Ahfad University for Women, P.O. Box 167, Omdurman, Sudan
- Faculty of Medical Laboratory Sciences, Sudan International University, Khartoum, Sudan
- * E-mail: (EA); (US)
| | - Cholho Kang
- Institute for Medical Microbiology and Hygiene, University of Marburg, 35043 Marburg, Germany
| | - Franjo Martinkovic
- Department for Parasitology and Parasitic Diseases with Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia
| | - Saul J. Semião-Santos
- Department of Nursing, University Tiradentes (UNIT), Campus Farolândia, CEP 49.032-490, Aracaju, Sergipe- Brazil
| | - Shyam Sundar
- Institute of Medical Sciences, Banaras Hindu University, Varanasi—221 005 UP, India
| | - Peter Walden
- Charité–Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | | | - Abdallah el Harith
- Biomedical Research Laboratory, Ahfad University for Women, P.O. Box 167, Omdurman, Sudan
| | - Michael Lohoff
- Institute for Medical Microbiology and Hygiene, University of Marburg, 35043 Marburg, Germany
| | - Ulrich Steinhoff
- Institute for Medical Microbiology and Hygiene, University of Marburg, 35043 Marburg, Germany
- * E-mail: (EA); (US)
| |
Collapse
|
45
|
Rougeron V, De Meeûs T, Bañuls AL. A primer for Leishmania population genetic studies. Trends Parasitol 2015; 31:52-9. [PMID: 25592839 DOI: 10.1016/j.pt.2014.12.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 12/03/2014] [Accepted: 12/06/2014] [Indexed: 02/04/2023]
Abstract
Leishmaniases remain a major public health problem. Despite the development of elaborate experimental techniques and sophisticated statistical tools, how these parasites evolve, adapt themselves to new environmental compartments and hosts, and develop resistance to new drugs remains unclear. Leishmania parasites constitute a complex model from a biological, ecological, and epidemiological point of view but also with respect to their genetics and phylogenetics. With this in view, we seek to outline the criteria, caveats, and confounding factors to be considered for Leishmania population genetic studies. We examine how the taxonomic complexity, heterozygosity, intraspecific and interspecific recombination, aneuploidy, and ameiotic recombination of Leishmania intersect with population genetic studies of this parasite.
Collapse
Affiliation(s)
- V Rougeron
- MIVEGEC (Laboratoire Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle), Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 5290 - Institut de Recherche pour le Développement (IRD) 224 - Universités Montpellier 1 et 2, Montpellier, France; Centre International de Recherches Médicales de Franceville, Franceville, Gabon.
| | - T De Meeûs
- IRD/Centre International de Recherche-Développement sur l'Élevage en zone Subhumide (CIRDES), UMR 177, INTERTRYP IRD-Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), CIRDES 01, BP 454 Bobo-Dioulasso 01, Burkina Faso
| | - A-L Bañuls
- MIVEGEC (Laboratoire Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle), Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 5290 - Institut de Recherche pour le Développement (IRD) 224 - Universités Montpellier 1 et 2, Montpellier, France
| |
Collapse
|
46
|
Leishmania donovani populations in Eastern Sudan: temporal structuring and a link between human and canine transmission. Parasit Vectors 2014; 7:496. [PMID: 25410888 PMCID: PMC4255451 DOI: 10.1186/s13071-014-0496-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 10/21/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Visceral leishmaniasis (VL), caused by the members of the Leishmania donovani complex, has been responsible for devastating VL epidemics in the Sudan. Multilocus microsatellite and sequence typing studies can provide valuable insights into the molecular epidemiology of leishmaniasis, when applied at local scales. Here we present population genetic data for a large panel of strains and clones collected in endemic Sudan between 1993 and 2001. METHODS Genetic diversity was evaluated at fourteen microsatellite markers and eleven nuclear sequence loci across 124 strains and clones. RESULTS Microsatellite data defined six genetic subpopulations with which the nuclear sequence data were broadly congruent. Pairwise estimates of FST (microsatellite) and KST (sequence) indicated small but significant shifts among the allelic repertoires of circulating strains year on year. Furthermore, we noted the co-occurrence of human and canine L. donovani strains in three of the six clusters defined. Finally, we identified widespread deficit in heterozygosity in all four years tested but strong deviation from inter-locus linkage equilibrium in two years. CONCLUSIONS Significant genetic diversity is present among L. donovani in Sudan, and minor population structuring between years is characteristic of entrenched, endemic disease transmission. Seasonality in vector abundance and transmission may, to an extent, explain the shallow temporal clines in allelic frequency that we observed. Genetically similar canine and human strains highlight the role of dogs as important local reservoirs of visceral leishmaniasis.
Collapse
|
47
|
Screening and characterization of RAPD markers in viscerotropic Leishmania parasites. PLoS One 2014; 9:e109773. [PMID: 25313833 PMCID: PMC4196940 DOI: 10.1371/journal.pone.0109773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 09/02/2014] [Indexed: 11/19/2022] Open
Abstract
Visceral leishmaniasis (VL) is mainly due to the Leishmania donovani complex. VL is endemic in many countries worldwide including East Africa and the Mediterranean region where the epidemiology is complex. Taxonomy of these pathogens is under controversy but there is a correlation between their genetic diversity and geographical origin. With steady increase in genome knowledge, RAPD is still a useful approach to identify and characterize novel DNA markers. Our aim was to identify and characterize polymorphic DNA markers in VL Leishmania parasites in diverse geographic regions using RAPD in order to constitute a pool of PCR targets having the potential to differentiate among the VL parasites. 100 different oligonucleotide decamers having arbitrary DNA sequences were screened for reproducible amplification and a selection of 28 was used to amplify DNA from 12 L. donovani, L. archibaldi and L. infantum strains having diverse origins. A total of 155 bands were amplified of which 60.65% appeared polymorphic. 7 out of 28 primers provided monomorphic patterns. Phenetic analysis allowed clustering the parasites according to their geographical origin. Differentially amplified bands were selected, among them 22 RAPD products were successfully cloned and sequenced. Bioinformatic analysis allowed mapping of the markers and sequences and priming sites analysis. This study was complemented with Southern-blot to confirm assignment of markers to the kDNA. The bioinformatic analysis identified 16 nuclear and 3 minicircle markers. Analysis of these markers highlighted polymorphisms at RAPD priming sites with mainly 5′ end transversions, and presence of inter– and intra– taxonomic complex sequence and microsatellites variations; a bias in transitions over transversions and indels between the different sequences compared is observed, which is however less marked between L. infantum and L. donovani. The study delivers a pool of well-documented polymorphic DNA markers, to develop molecular diagnostics assays to characterize and differentiate VL causing agents.
Collapse
|
48
|
Gelanew T, Hailu A, Schőnian G, Lewis MD, Miles MA, Yeo M. Multilocus sequence and microsatellite identification of intra-specific hybrids and ancestor-like donors among natural Ethiopian isolates of Leishmania donovani. Int J Parasitol 2014; 44:751-7. [PMID: 24995620 PMCID: PMC4147965 DOI: 10.1016/j.ijpara.2014.05.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 05/16/2014] [Accepted: 05/17/2014] [Indexed: 01/03/2023]
Abstract
Protozoan parasites of the genus Leishmania (Kinetoplastida: Trypanosomatidae) cause widespread and devastating human diseases. Visceral leishmaniasis is endemic in Ethiopia where it has also been responsible for fatal epidemics. It is postulated that genetic exchange in Leishmania has implications for heterosis (hybrid vigour), spread of virulent strains, resistance to chemotherapeutics, and exploitation of different hosts and vectors. Here we analyse 11 natural Ethiopian Leishmania donovani isolates consisting of four putative hybrids, seven parent-like isolates and over 90 derived biological clones. We apply a novel combination of high resolution multilocus microsatellite typing (five loci) and multilocus sequence typing (four loci) that together distinguish parent-like and hybrid L. donovani strains. Results indicate that the four isolates (and their associated biological clones) are genetic hybrids, not the results of mixed infections, each possessing heterozygous markers consistent with inheritance of divergent alleles from genetically distinct Ethiopian L. donovani lineages. The allelic profiles of the putative hybrids may have arisen from a single hybridisation event followed by inbreeding or gene conversion, or alternatively from two or more hybridisation events. Mitochondrial sequencing showed uniparental maxicircle inheritance for all of the hybrids, each possessing a single mitochondrial genotype. Fluorescence activated cell sorting analysis of DNA content demonstrated that all hybrids and their associated clones were diploid. Together the data imply that intra-specific genetic exchange is a recurrent feature of natural L. donovani populations, with substantial implications for the phyloepidemiology of Leishmania.
Collapse
Affiliation(s)
- Tesfaye Gelanew
- Serology Diagnostics and Research Laboratory, Centers for Disease Control and Prevention, Division of Vector-Borne Diseases Dengue Branch, San Juan, PR, United States; Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Asrat Hailu
- Faculty of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | - Gabriele Schőnian
- Institute of Microbiology and Hygiene, Charité University Medicine, Berlin, Germany
| | - Michael D Lewis
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Michael A Miles
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Matthew Yeo
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom.
| |
Collapse
|
49
|
Andrade JM, Murta SMF. Functional analysis of cytosolic tryparedoxin peroxidase in antimony-resistant and -susceptible Leishmania braziliensis and Leishmania infantum lines. Parasit Vectors 2014; 7:406. [PMID: 25174795 PMCID: PMC4261743 DOI: 10.1186/1756-3305-7-406] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 08/16/2014] [Indexed: 12/12/2022] Open
Abstract
Background Tryparedoxin peroxidase (TXNPx) participates in defence against oxidative stress as an antioxidant by metabolizing hydrogen peroxide into water molecules. Reports suggest that drug-resistant parasites may increase the levels of TXNPx and other enzymes, thereby protecting them against oxidative stress. Methods In this study, the gene encoding cytosolic TXNPx (cTXNPx) was characterized in lines of Leishmania (Viannia) braziliensis and Leishmania (Leishmania) infantum that are susceptible and resistant to potassium antimony tartrate (Sb(III)). We investigated the levels of mRNA and genomic organization of the cTXNPx gene. In addition, we transfected the Leishmania lines with the cTXNPx gene and analysed the susceptibility of transfected parasites to Sb(III) and to hydrogen peroxide (H2O2). Results Northern blot and real-time reverse transcriptase polymerase chain reaction analyses revealed that the level of TXNPx mRNA was approximately 2.5-fold higher in the Sb(III)-resistant L. braziliensis line than in the parental line. In contrast, no significant difference in cTXNPx mRNA levels between the L. infantum lines was observed. Southern blot analyses revealed that the cTXNPx gene is not amplified in the genome of the Sb(III)-resistant Leishmania lines analysed. Functional analysis of cTXNPx was performed to determine whether overexpression of the enzyme in L. braziliensis and L. infantum lines would change their susceptibility to Sb(III). Western blotting analysis showed that the level of cTXNPx was 2 to 4-fold higher in transfected clones compared to non-transfected cells. Antimony susceptibility test (EC50 assay) revealed that L. braziliensis lines overexpressing cTXNPx had a 2-fold increase in resistance to Sb(III) when compared to the untransfected parental line. In addition, these clones are more tolerant to exogenous H2O2 than the untransfected parental line. In contrast, no difference in Sb(III) susceptibility and a moderate index of resistance to H2O2 was observed in L. infantum clones overexpressing cTXNPx. Conclusion Our functional analysis revealed that cTXNPx is involved in the antimony-resistance phenotype in L. braziliensis. Electronic supplementary material The online version of this article (doi:10.1186/1756-3305-7-406) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Silvane M F Murta
- Centro de Pesquisas René Rachou/FIOCRUZ, Avenida Augusto de Lima 1715, Belo Horizonte 30190-002, MG, Brazil.
| |
Collapse
|
50
|
Cortes S, Maurício IL, Kuhls K, Nunes M, Lopes C, Marcos M, Cardoso L, Schönian G, Campino L. Genetic diversity evaluation on Portuguese Leishmania infantum strains by multilocus microsatellite typing. INFECTION GENETICS AND EVOLUTION 2014; 26:20-31. [DOI: 10.1016/j.meegid.2014.04.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 04/23/2014] [Accepted: 04/29/2014] [Indexed: 11/24/2022]
|