1
|
Chen K, Li L, Wang N, Zhou Z, Pan P, Xu C, Sun D, Li J, Dai C, Kuang D, Liao M, Zhang J. Newly identified c-di-GMP pathway putative EAL domain gene STM0343 regulates stress resistance and virulence in Salmonella enterica serovar Typhimurium. Vet Res 2025; 56:13. [PMID: 39815376 PMCID: PMC11737180 DOI: 10.1186/s13567-024-01437-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 10/14/2024] [Indexed: 01/18/2025] Open
Abstract
S. Typhimurium is a significant zoonotic pathogen, and its survival and transmission rely on stress resistance and virulence factors. Therefore, identifying key regulatory elements is crucial for preventing and controlling S. Typhimurium. We performed transcriptomic analysis and screened for a c-di-GMP pathway key gene STM0343, a putative EAL domain protein with an unknown function. Our findings revealed that the deletion of this gene (269ΔSTM0343) led to a 29.85% increase in c-di-GMP. In terms of stress resistance, the strain 269ΔSTM0343 showed significant improvements compared to the wild strain WT269. Specifically, it exhibited increases of 95.74% in extracellular protein and 35.96% in exopolysaccharide production by upregulating the expression of relevant genes. As a result, the biofilm formation ability of 269ΔSTM0343 was enhanced by 21.54%, accompanied by a more pronounced red, dry, and rough colony morphology. 269ΔSTM0343 also showed a 19.03% decrease in motility due to the downregulation of flhD expression. As a result, 269ΔSTM0343 increased resistance to various antibiotics, as well as to acidic conditions, oxidative stress, and disinfectants. In terms of virulence, compared to WT269, the adhesion and invasive ability of 269ΔSTM0343 to HeLa cells was enhanced by onefold and 25.67%, respectively. In in vivo experiments, mice challenged with 269ΔSTM0343 experienced greater weight loss, and the bacterial loads in the spleen, liver, and intestines were elevated by fivefold, 30-fold, and 21-fold, respectively, accompanied by more severe pathological damage. Mechanistic studies revealed that the adhesion and invasion capacities of 269ΔSTM0343ΔCsgB decreased by 29.41% and 68.58%, respectively, compared to 269ΔSTM0343. Additionally, LacZ gene reporting indicated that STM0343 inhibited the expression of CsgB. This suggests that STM0343 suppresses virulence by downregulating CsgB expression. This study provides insights into the regulatory mechanisms by which STM0343 reduces the stress resistance and pathogenicity of S. Typhimurium.
Collapse
Affiliation(s)
- Kaifeng Chen
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Lili Li
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Nanwei Wang
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Zhouping Zhou
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Peng Pan
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Chenggang Xu
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Dage Sun
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Jiayi Li
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Changzhi Dai
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Dai Kuang
- National Health Commission (NHC) Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, China
| | - Ming Liao
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Jianmin Zhang
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
2
|
Chao NV, Phung LD, Dung HT, Hien BT, Hung PHS, Vui TQ, Hoa NT, Mondal A, Nsereko VL, Thao LD. Effect of Feeding a Saccharomyces cerevisiae Fermentation Product on Pathogenic and Antibiotic Resistance Bacteria in Crossbred F 1 (Luong Phuong × Ri) Broiler Chickens in the Production Systems With Low Biosecurity (Sector 3). Anim Sci J 2025; 96:e70049. [PMID: 40143614 DOI: 10.1111/asj.70049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 02/26/2025] [Accepted: 03/03/2025] [Indexed: 03/28/2025]
Abstract
This study explored the effects of dietary inclusion of a Saccharomyces cerevisiae fermentation product (SCFP) on bacterial pathogens and associated antimicrobial resistance (AMR) in chickens raised in a Sector 3 production system in Vietnam. A total of 196 one-day-old F1 (Luong Phuong × Ri) chickens were assigned to two treatments. The treatments were a standard basal diet (control) and a standard basal diet containing 1.25 kg/MT of SCFP (treatment). Fecal samples were collected three times: at 1, 42, and 85 days of age for enumeration of Escherichia coli and isolation of Salmonella. The isolates were tested for AMR and the presence of antimicrobial resistance genes (ARGs) using the disk diffusion and the PCR method. Chickens supplemented with SCFP showed significantly lower of E. coli counts (log CFU/g) compared to the control group at 85 days of age (p = 0.04). There were no differences in the level of AMR of E. coli and Salmonella between the control and treatment groups (p > 0.05). Overall, dietary supplementation of the SCFP did not affect to the frequency of Salmonella colonization and the level of AMR. However, dietary supplementation of the SCFP reduced the E. coli counts at 85 days of age.
Collapse
Affiliation(s)
- Nguyen Van Chao
- Faculty of Animal Sciences and Veterinary Medicine, University of Agriculture and Forestry, Hue University, Hue City, Vietnam
| | - Le Dinh Phung
- Faculty of Animal Sciences and Veterinary Medicine, University of Agriculture and Forestry, Hue University, Hue City, Vietnam
| | - Ho Thi Dung
- Faculty of Animal Sciences and Veterinary Medicine, University of Agriculture and Forestry, Hue University, Hue City, Vietnam
| | - Bui Thi Hien
- Faculty of Animal Sciences and Veterinary Medicine, University of Agriculture and Forestry, Hue University, Hue City, Vietnam
| | - Pham Hoang Son Hung
- Faculty of Animal Sciences and Veterinary Medicine, University of Agriculture and Forestry, Hue University, Hue City, Vietnam
| | - Tran Quang Vui
- Faculty of Animal Sciences and Veterinary Medicine, University of Agriculture and Forestry, Hue University, Hue City, Vietnam
| | - Nguyen Thi Hoa
- Faculty of Animal Sciences and Veterinary Medicine, University of Agriculture and Forestry, Hue University, Hue City, Vietnam
| | - Anjan Mondal
- USAID-TRANSFORM, Cargill Inc., Iowa City, Iowa, USA
| | | | - Le Duc Thao
- Faculty of Animal Sciences and Veterinary Medicine, University of Agriculture and Forestry, Hue University, Hue City, Vietnam
| |
Collapse
|
3
|
Zhao G, Duan W, Zhang L, Sun W, Liu W, Zhang X, Zhang Y, Shi Q, Wu T. The peptidoglycan-associated lipoprotein gene mutant elicits robust immunological defense in mice against Salmonella enteritidis. Front Microbiol 2024; 15:1422202. [PMID: 38903796 PMCID: PMC11188350 DOI: 10.3389/fmicb.2024.1422202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 05/27/2024] [Indexed: 06/22/2024] Open
Abstract
Background Salmonella enteritidis (S. enteritidis), a zoonotic pathogen with a broad host range, presents a substantial threat to global public health safety. Vaccination stands as an effective strategy for the prevention and control of S. enteritidis infection, highlighting an immediate clinical need for the creation of safe and efficient attenuated live vaccines. Methods In this study, a S. enteritidis peptidoglycan-associated lipoprotein (pal) gene deletion strain (Δpal), was constructed. To assess its virulence, we conducted experiments on biofilm formation capability, motility, as well as cell and mouse infection. Subsequently, we evaluated the immune-protective effect of Δpal. Results It was discovered that deletion of the pal gene reduced the biofilm formation capability and motility of S. enteritidis. Cell infection experiments revealed that the Δpal strain exhibited significantly decreased abilities in invasion, adhesion, and intracellular survival, with downregulation of virulence gene expression, including mgtC, invH, spvB, sipA, sipB, ssaV, csgA, and pipB. Mouse infection experiments showed that the LD50 of Δpal increased by 104 times, and its colonization ability in mouse tissue organs was significantly reduced. The results indicated that the pal gene severely affected the virulence of S. enteritidis. Further, immunogenicity evaluation of Δpal showed a significant enhancement in the lymphocyte transformation proliferation capability of immunized mice, producing high titers of specific IgG and IgA, suggesting that Δpal possesses good immunogenicity. Challenge protection tests demonstrated that the strain could provide 100% immune protection against wild-type strains in mice. Discussion This study proves that the pal gene influences the virulence of S. enteritidis, and Δpal could serve as a candidate strain for attenuated live vaccines, laying the foundation for the development of attenuated live vaccines against Salmonella.
Collapse
Affiliation(s)
- Guixin Zhao
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Wenlong Duan
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Lu Zhang
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Wenchao Sun
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou, China
| | - Wan Liu
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Xiaoyu Zhang
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Yanying Zhang
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Qiumei Shi
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Tonglei Wu
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| |
Collapse
|
4
|
Im SH, Robby AI, Choi H, Chung JY, Kim YS, Park SY, Chung HJ. A Wireless, CRISPR-Polymer Dot Electrochemical Sensor for the Diagnosis of Bacterial Pneumonia and Multi-Drug Resistance. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5637-5647. [PMID: 38278531 DOI: 10.1021/acsami.3c17151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Rapid and accurate diagnosis is crucial for managing the global health threat posed by multidrug-resistant bacterial infections; however, current methods have limitations in either being time-consuming, labor-intensive, or requiring instruments with high costs. Addressing these challenges, we introduce a wireless electrochemical sensor integrating the CRISPR/Cas system with electroconductive polymer dot (PD) nanoparticles to rapidly detect bacterial pathogens from human sputum. To enhance the electroconductive properties, we synthesized copper-ion-immobilized PD (PD-Cu), followed by conjugation of the deactivated Cas9 protein (dCas9) onto PD-Cu-coated Si electrodes to generate the dCas9-PD-Cu sensor. The dCas9-PD-Cu sensor integrated with isothermal amplification can specifically detect target nucleic acids of multidrug-resistant bacteria, such as the antibiotic resistance genes kpc-2 and mecA. The dCas9-PD-Cu sensor exhibits high sensitivity, allowing for the detection of ∼54 femtograms of target nucleic acids, based on measuring the changes in resistivity of the Si electrodes through target capture by dCas9. Furthermore, a wireless sensing platform of the dCas9-PD-Cu sensor was established using a Bluetooth module and a microcontroller unit for detection using a smartphone. We demonstrate the feasibility of the platform in diagnosing multidrug-resistant bacterial pneumonia in patients' sputum samples, achieving 92% accuracy. The current study presents a versatile biosensor platform that can overcome the limitations of conventional diagnostics in the clinic.
Collapse
Affiliation(s)
- San Hae Im
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Akhmad Irhas Robby
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 380-702, Republic of Korea
| | - Heewon Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Ju Yeon Chung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Yang Soo Kim
- Division of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Sung Young Park
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 380-702, Republic of Korea
- Department of Green Bio Engineering, Korea National University of Transportation, Chungju 380-702, Republic of Korea
- Department of IT and Energy Convergence, Korea National University of Transportation, Chungju 380-702, Republic of Korea
| | - Hyun Jung Chung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|
5
|
Han S, Byun JW, Lee M. Comparative Transcriptomic Analysis of Flagellar-Associated Genes in Salmonella Typhimurium and Its rnc Mutant. J Microbiol 2024; 62:33-48. [PMID: 38182942 DOI: 10.1007/s12275-023-00099-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 01/07/2024]
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) is a globally recognized foodborne pathogen that affects both animals and humans. Endoribonucleases mediate RNA processing and degradation in the adaptation of bacteria to environmental changes and have been linked to the pathogenicity of S. Typhimurium. Not much is known about the specific regulatory mechanisms of these enzymes in S. Typhimurium, particularly in the context of environmental adaptation. Thus, this study carried out a comparative transcriptomic analysis of wild-type S. Typhimurium SL1344 and its mutant (∆rnc), which lacks the rnc gene encoding RNase III, thereby elucidating the detailed regulatory characteristics that can be attributed to the rnc gene. Global gene expression analysis revealed that the ∆rnc strain exhibited 410 upregulated and 301 downregulated genes (fold-change > 1.5 and p < 0.05), as compared to the wild-type strain. Subsequent bioinformatics analysis indicated that these differentially expressed genes are involved in various physiological functions, in both the wild-type and ∆rnc strains. This study provides evidence for the critical role of RNase III as a general positive regulator of flagellar-associated genes and its involvement in the pathogenicity of S. Typhimurium.
Collapse
Affiliation(s)
- Seungmok Han
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Ji-Won Byun
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Minho Lee
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, 24252, Republic of Korea.
- Institute of Medical Science, College of Medicine, Hallym University, Chuncheon, 24252, Republic of Korea.
| |
Collapse
|
6
|
Choudhury M, Borah P, Sarma HK, Deka D, Dutta R, Hazarika G, Deka NK. Development of recombinant subunit vaccine targeting InvH protein of Salmonella Typhimurium and evaluation of its immunoprotective efficacy against salmonellosis. Braz J Microbiol 2023; 54:3257-3264. [PMID: 37792270 PMCID: PMC10689308 DOI: 10.1007/s42770-023-01136-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 09/25/2023] [Indexed: 10/05/2023] Open
Abstract
Salmonella Typhimurium is the most prevalent non-host specific Salmonella serovars and a major concern for both human and animal health systems worldwide contributing to significant economic loss. Type 3 secretion system (T3SS) of Salmonella plays an important role in bacterial adherence and entry into the host epithelial cells. The product of invH gene of Salmonella is an important component of the needle complex of the type 3 secretion system. Hence, the present study was undertaken to clone and express the 15 kDa InvH surface protein of Salmonella Typhimurium in an E. coli host and to evaluate its immune potency in mice. The purified recombinant InvH (r-InvH) protein provoked a significant (p < 0.01) rise in IgG in the inoculated mice. The immunized mice were completely (100%) protected against the challenge dose of 107.5 LD50, while protection against challenge with the same dose of heterologous serovars was 90%. The bacterin-vaccinated group showed homologous protection of 60% against all three serovars. Findings in this study suggest the potential of the r-InvH protein of S. Typhimurium as an effective vaccine candidate against Salmonella infections.
Collapse
Affiliation(s)
| | - Probodh Borah
- Department of Animal Biotechnology, College of Veterinary Science, Assam Agriculture University, Khanapara, Guwahati, 781022, India.
| | - Hridip Kumar Sarma
- Department of Biotechnology, Gauhati University, Guwahati, 781014, Assam, India
| | - Dipak Deka
- Department of Animal Biotechnology, College of Veterinary Science, Assam Agriculture University, Khanapara, Guwahati, 781022, India
| | - Rupam Dutta
- Department of Animal Biotechnology, College of Veterinary Science, Assam Agriculture University, Khanapara, Guwahati, 781022, India
| | - Girin Hazarika
- Department of Animal Biotechnology, College of Veterinary Science, Assam Agriculture University, Khanapara, Guwahati, 781022, India
| | - Naba Kumar Deka
- Department of Biotechnology, Gauhati University, Guwahati, 781014, Assam, India
| |
Collapse
|
7
|
Hussain A, Ong EBB, Balaram P, Ismail A, Kien PK. Deletion of Salmonella enterica serovar Typhi tolC reduces bacterial adhesion and invasion toward host cells. Front Microbiol 2023; 14:1301478. [PMID: 38029101 PMCID: PMC10655110 DOI: 10.3389/fmicb.2023.1301478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Background S. Typhi is a Gram-negative bacterium that causes typhoid fever in humans. Its virulence depends on the TolC outer membrane pump, which expels toxic compounds and antibiotics. However, the role of TolC in the host cell adhesion and invasion by S. Typhi is unclear. Objective We aimed to investigate how deleting the tolC affects the adhesion and invasion of HT-29 epithelial and THP-1 macrophage cells by S. Typhi in vitro. Methods We compared the adhesion and invasion rates of the wild-type and the tolC mutant strains of S. Typhi using in vitro adhesion and invasion assays. We also measured the expression levels of SPI-1 genes (invF, sipA, sipC, and sipD) using quantitative PCR. Results We found that the tolC mutant showed a significant reduction in adhesion and invasion compared to the wild-type strain in both cell types. We also observed that the expression of SPI-1 genes was downregulated in the tolC mutant. Discussion Our results suggest that TolC modulates the expression of SPI-1 genes and facilitates the adhesion and invasion of host cells by S. Typhi. Our study provides new insights into the molecular mechanisms of S. Typhi pathogenesis and antibiotic resistance. However, our study is limited by the use of in vitro models and does not reflect the complex interactions between S. Typhi and host cells in vivo.
Collapse
Affiliation(s)
| | - Eugene Boon Beng Ong
- Institute for Research in Molecular Medicine (INFORMM), University Sains Malaysia, Penang, Malaysia
| | | | | | | |
Collapse
|
8
|
Mohakud NK, Panda RK, Singh D, Patra SD, Simnani FZ, Sinha A, Nandi A, Jha E, Singh S, Kaushik NK, Panda PK, Singh D, Verma SK, Suar M. Intrinsic insights to antimicrobial effects of Nitrofurantoin to multi drug resistant Salmonella enterica serovar Typhimurium ms202. Biomed Pharmacother 2023; 165:115180. [PMID: 37454596 DOI: 10.1016/j.biopha.2023.115180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/05/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023] Open
Abstract
Emerging multidrug resistant (MDR) serovar of Salmonella has raised the concern of their impactful effect on pathogenic infection and mortality in human lead by the enteric diseases. In order to combat the battle against these MDR Salmonella pathogen, new drug molecules need to be evaluated for their potent antibacterial application. This study evaluates the mechanistic antimicrobial effect of nitrofurantoin against a MDR strain of Salmonella named S. enterica Typhimurium ms202. The antimicrobial effect of nitrofurantoin was studied through experimental and computational approach using standard microbiological and molecular techniques like growth curve analysis, live-dead analysis, oxidative stress evaluation using high throughput techniques like flow cytometry and fluorescent microscopy. The result showed a potent dose dependent antibacterial effect of nitrofurantoin against S. enterica Typhimurium ms202 with a MIC value of 64 µg/ml. Moreover, the mechanistic excavation of the phenomenon described the mechanism as an effect of molecular interaction of nitrofurantoin molecule with membrane receptor proteins OmpC of S. enterica Typhimurium ms202 leading to internalization of the nitrofurantoin heading towards the occurrence of cellular physiological disturbances through oxidative stress impeded by nitrofurantoin-Sod1 C protein interaction. The results indicated towards a synergistic effect of membrane damage, oxidative stress and genotoxicity for the antibacterial effect of nitrofurantoin against S. enterica Typhimurium ms202. The study described the potent dose-dependent application of nitrofurantoin molecule against MDR strains of Salmonella and guided towards their use in further discovered MDR strains.
Collapse
Affiliation(s)
- Nirmal Kumar Mohakud
- Kalinga Institute of Medical Sciences (KIMS), KIIT University, Bhubaneswar 751024, India; School of Biotechnology, KIIT University, Bhubaneswar 751024, India
| | - Rakesh Kumar Panda
- Kalinga Institute of Medical Sciences (KIMS), KIIT University, Bhubaneswar 751024, India; SCB Medical College, Cuttack, India
| | | | | | | | - Adrija Sinha
- School of Biotechnology, KIIT University, Bhubaneswar 751024, India
| | - Aditya Nandi
- School of Biotechnology, KIIT University, Bhubaneswar 751024, India
| | - Ealisha Jha
- School of Biotechnology, KIIT University, Bhubaneswar 751024, India
| | - Sarita Singh
- BVG Life Sciences Limited, Sagar Complex, Old Pune-Mumbai Road, Chinchwad, Pune 411034, India
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, South Korea
| | - Pritam Kumar Panda
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Deobrat Singh
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden.
| | - Suresh K Verma
- School of Biotechnology, KIIT University, Bhubaneswar 751024, India.
| | - Mrutyunjay Suar
- School of Biotechnology, KIIT University, Bhubaneswar 751024, India.
| |
Collapse
|
9
|
Zhao Y, Bi Q, Wei Y, Wang R, Wang G, Fu G, Ran Z, Lu J, Zhang H, Zhang L, Jin R, Nie Y. A DNA vaccine (EG95-PT1/2/3-IL2) encoding multi-epitope antigen and IL-2 provokes efficient and long-term immunity to echinococcosis. J Control Release 2023; 361:402-416. [PMID: 37527761 DOI: 10.1016/j.jconrel.2023.07.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 07/20/2023] [Accepted: 07/29/2023] [Indexed: 08/03/2023]
Abstract
Echinococcosis is a highly prevalent global zoonosis, and vaccines are required. The commercial vaccine based on a protein-based subunit (EG95), however, is limited by its insufficient cellular immunity, a short protection period, and limited prevention against novel mutant strains. Herein, we applied bioinformatics to develop a DNA vaccine (pEG95-IL2) expressing both multi-epitope-based antigens (EG95-PT1/2/3) and an IL-2 adjuvant to regulate T cell differentiation and memory cell response. EG95-PT1/2/3 was screened with hierarchical structure prediction from the epitope conformation of B cells with high confidence across various species to guarantee immunogenicity. Importantly, cationic arginine-rich lipid nanoparticles (RNP) were utilized as a delivery vehicle to form lipoplexes that had a transfection efficiency of nearly two orders of magnitude greater than that of commercial reagents (Lipofectamine 2000 and polyethyleneimine) with both immune and nonimmune cells (DC2.4 and L929 cells, respectively). RNP/pEG95-IL2 lipoplexes displayed a robust and long-term antigen expression, as well as adjuvant effects during the immunization. Consequently, intramuscular injection of RNP/pEG95-IL2 elicited similar humoral immune responses and significantly greater cellular responses in mice when compared with those of the commercial vaccine. In addition, the inoculation protocol of RNP/pEG95-IL2 with sequential booster further strengthens cellular immunity in comparison with the homologous booster. Those findings provide a promising strategy for improving plasmid vaccine efficacy.
Collapse
Affiliation(s)
- Yangyang Zhao
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610041, China
| | - Qunjie Bi
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610041, China
| | - Yu Wei
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610041, China
| | - Ruohan Wang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610041, China
| | - Gang Wang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610041, China
| | - Gang Fu
- Chongqing Auleon Biological Co., Ltd., Chongqing 402460, China
| | - Zhiguang Ran
- Chongqing Auleon Biological Co., Ltd., Chongqing 402460, China
| | - Jiao Lu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610041, China
| | - Heyang Zhang
- Leiden Academic Center for Drug Research (LACDR), Leiden University, Leiden 2333 CC, the Netherlands
| | - Ling Zhang
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China
| | - Rongrong Jin
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610041, China.
| | - Yu Nie
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
10
|
Transcriptional insight into the effect of benzalkonium chloride on resistance and virulence potential in Salmonella Typhimurium. Microbiol Res 2023; 266:127240. [DOI: 10.1016/j.micres.2022.127240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/26/2022] [Accepted: 10/12/2022] [Indexed: 11/27/2022]
|
11
|
Fan HH, Fang SB, Chang YC, Huang ST, Huang CH, Chang PR, Chang WC, Yang LTL, Lin PC, Cheng HY. Effects of colonization-associated gene yqiC on global transcriptome, cellular respiration, and oxidative stress in Salmonella Typhimurium. J Biomed Sci 2022; 29:102. [PMID: 36457101 PMCID: PMC9714038 DOI: 10.1186/s12929-022-00885-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/20/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND yqiC is required for colonizing the Salmonella enterica serovar Typhimurium (S. Typhimurium) in human cells; however, how yqiC regulates nontyphoidal Salmonella (NTS) genes to influence bacteria-host interactions remains unclear. METHODS The global transcriptomes of S. Typhimurium yqiC-deleted mutant (ΔyqiC) and its wild-type strain SL1344 after 2 h of in vitro infection with Caco-2 cells were obtained through RNA sequencing to conduct comparisons and identify major yqiC-regulated genes, particularly those involved in Salmonella pathogenicity islands (SPIs), ubiquinone and menaquinone biosynthesis, electron transportation chains (ETCs), and carbohydrate/energy metabolism. A Seahorse XFp Analyzer and assays of NADH/NAD+ and H2O2 were used to compare oxygen consumption and extracellular acidification, glycolysis parameters, adenosine triphosphate (ATP) generation, NADH/NAD+ ratios, and H2O2 production between ΔyqiC and SL1344. RESULTS After S. Typhimurium interacts with Caco-2 cells, yqiC represses gene upregulation in aspartate carbamoyl transferase, type 1 fimbriae, and iron-sulfur assembly, and it is required for expressing ilvB operon, flagellin, tdcABCD, and dmsAB. Furthermore, yqiC is required for expressing mainly SPI-1 genes and specific SPI-4, SPI-5, and SPI-6 genes; however, it diversely regulates SPI-2 and SPI-3 gene expression. yqiC significantly contributes to menD expression in menaquinone biosynthesis. A Kyoto Encyclopedia of Genes and Genomes analysis revealed the extensive association of yqiC with carbohydrate and energy metabolism. yqiC contributes to ATP generation, and the analyzer results demonstrate that yqiC is required for maintaining cellular respiration and metabolic potential under energy stress and for achieving glycolysis, glycolytic capacity, and glycolytic reserve. yqiC is also required for expressing ndh, cydA, nuoE, and sdhB but suppresses cyoC upregulation in the ETC of aerobically and anaerobically grown S. Typhimurium; priming with Caco-2 cells caused a reversed regulation of yiqC toward upregulation in these ETC complex genes. Furthermore, yqiC is required for maintaining NADH/NAD+ redox status and H2O2 production. CONCLUSIONS Specific unreported genes that were considerably regulated by the colonization-associated gene yqiC in NTS were identified, and the key role and tentative mechanisms of yqiC in the extensive modulation of virulence factors, SPIs, ubiquinone and menaquinone biosynthesis, ETCs, glycolysis, and oxidative stress were discovered.
Collapse
Affiliation(s)
- Hung-Hao Fan
- grid.412955.e0000 0004 0419 7197Division of Pediatric Gastroenterology and Hepatology, Department of Pediatrics, Shuang Ho Hospital, Taipei Medical University, No. 291, Jhong Jheng Road, Jhong Ho, New Taipei City, 23561 Taiwan ,grid.412896.00000 0000 9337 0481Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan ,grid.412955.e0000 0004 0419 7197Department of Emergency Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Shiuh-Bin Fang
- grid.412955.e0000 0004 0419 7197Division of Pediatric Gastroenterology and Hepatology, Department of Pediatrics, Shuang Ho Hospital, Taipei Medical University, No. 291, Jhong Jheng Road, Jhong Ho, New Taipei City, 23561 Taiwan ,grid.412896.00000 0000 9337 0481Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan ,grid.412896.00000 0000 9337 0481Master Program for Clinical Genomics and Proteomics, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chu Chang
- grid.412896.00000 0000 9337 0481Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Sheng-Tung Huang
- grid.412087.80000 0001 0001 3889Graduate Institute of Biochemical and Biomedical Engineering, National Taipei University of Technology, Taipei, Taiwan
| | - Chih-Hung Huang
- grid.412087.80000 0001 0001 3889Graduate Institute of Biochemical and Biomedical Engineering, National Taipei University of Technology, Taipei, Taiwan
| | - Pei-Ru Chang
- grid.412955.e0000 0004 0419 7197Division of Pediatric Gastroenterology and Hepatology, Department of Pediatrics, Shuang Ho Hospital, Taipei Medical University, No. 291, Jhong Jheng Road, Jhong Ho, New Taipei City, 23561 Taiwan ,grid.412896.00000 0000 9337 0481Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wei-Chiao Chang
- grid.412896.00000 0000 9337 0481Master Program for Clinical Genomics and Proteomics, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Lauderdale Tsai-Ling Yang
- grid.59784.370000000406229172National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Pei-Chun Lin
- grid.412955.e0000 0004 0419 7197Division of Pediatric Gastroenterology and Hepatology, Department of Pediatrics, Shuang Ho Hospital, Taipei Medical University, No. 291, Jhong Jheng Road, Jhong Ho, New Taipei City, 23561 Taiwan
| | - Hung-Yen Cheng
- grid.412955.e0000 0004 0419 7197Division of Pediatric Gastroenterology and Hepatology, Department of Pediatrics, Shuang Ho Hospital, Taipei Medical University, No. 291, Jhong Jheng Road, Jhong Ho, New Taipei City, 23561 Taiwan
| |
Collapse
|
12
|
Lactobacilli, a Weapon to Counteract Pathogens through the Inhibition of Their Virulence Factors. J Bacteriol 2022; 204:e0027222. [PMID: 36286515 PMCID: PMC9664955 DOI: 10.1128/jb.00272-22] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To date, several studies have reported an alarming increase in pathogen resistance to current antibiotic therapies and treatments. Therefore, the search for effective alternatives to counter their spread and the onset of infections is becoming increasingly important.
Collapse
|
13
|
Bhattacharjee R, Nandi A, Sinha A, Kumar H, Mitra D, Mojumdar A, Patel P, Jha E, Mishra S, Rout PK, Panda PK, Suar M, Verma SK. Phage-tail-like bacteriocins as a biomedical platform to counter anti-microbial resistant pathogens. Biomed Pharmacother 2022; 155:113720. [PMID: 36162371 DOI: 10.1016/j.biopha.2022.113720] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 11/25/2022] Open
Abstract
Phage Tail Like bacteriocins (PTLBs) has been an area of interest in the last couple of years owing to their varied application against multi-drug resistant (MDR), anti-microbial resistant (AMR) pathogens and their evolutionary link with the dsDNA virus and bacteriophages. PTLBs are defective phages derived from Myoviridae and Siphoviridae phages, PTLBs are distinguished into R-type (Rigid type) characterized by a non-flexible contractile nanotube resembling Myoviridae phage contractile tails, and F-type (Flexible type) with a flexible non-contractile rod-like structure similar to Siphoviridae phages. In this review, we have discussed the structural association, mechanism, and characterization of PTLBs. Moreover, we have elucidated the symbiotic biological function and application of PTLBs against MDR and XDR pathogens and highlighted the evolutionary role of PTLBs. The difficulties that must be overcome to implement PTLBs clinically are also discussed. It is imperative that these issues be addressed by academics in future studies before being implemented in clinical settings. This article is novel in its way as it will not only provide us with a gateway that acts as a novel strategy for scholars to mitigate and control the uprising issue of AMR pathogens but also promote the development of clinical studies for PTLBs.
Collapse
Affiliation(s)
- Rahul Bhattacharjee
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Aditya Nandi
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Adrija Sinha
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Hrithik Kumar
- School of Biology, Indian Institute of Science Education and Research (IISER)-Thiruvananthapuram, Kerala 695551, India
| | - Disha Mitra
- University of Calcutta, 92, APC Road, Kolkata 700009, India
| | - Abhik Mojumdar
- Center for Research Equipment, Korea Basic Science Institute (KBSI), Ochang Center, Cheongju, Chungcheongbuk 28119, Republic of Korea; Department of Bio-Analytical Science, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Paritosh Patel
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Ealisha Jha
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Suman Mishra
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Prabhat Kumar Rout
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Pritam Kumar Panda
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden.
| | - Mrutyunjay Suar
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India.
| | - Suresh K Verma
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India; Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden.
| |
Collapse
|
14
|
Nath A, Bhattacharjee R, Nandi A, Sinha A, Kar S, Manoharan N, Mitra S, Mojumdar A, Panda PK, Patro S, Dutt A, Ahuja R, Verma SK, Suar M. Phage delivered CRISPR-Cas system to combat multidrug-resistant pathogens in gut microbiome. Biomed Pharmacother 2022; 151:113122. [PMID: 35594718 DOI: 10.1016/j.biopha.2022.113122] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 11/02/2022] Open
Abstract
The Host-microbiome interactions that exist inside the gut microbiota operate in a synergistic and abnormal manner. Additionally, the normal homeostasis and functioning of gut microbiota are frequently disrupted by the intervention of Multi-Drug Resistant (MDR) pathogens. CRISPR-Cas (CRISPR-associated protein with clustered regularly interspersed short palindromic repeats) recognized as a prokaryotic immune system has emerged as an effective genome-editing tool to edit and delete specific microbial genes for the expulsion of bacteria through bactericidal action. In this review, we demonstrate many functioning CRISPR-Cas systems against the anti-microbial resistance of multiple pathogens, which infiltrate the gastrointestinal tract. Moreover, we discuss the advancement in the development of a phage-delivered CRISPR-Cas system for killing a gut MDR pathogen. We also discuss a combinatorial approach to use bacteriophage as a delivery system for the CRISPR-Cas gene for targeting a pathogenic community in the gut microbiome to resensitize the drug sensitivity. Finally, we discuss engineered phage as a plausible potential option for the CRISPR-Cas system for pathogenic killing and improvement of the efficacy of the system.
Collapse
Affiliation(s)
- Arijit Nath
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Rahul Bhattacharjee
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Aditya Nandi
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Adrija Sinha
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Sulagna Kar
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | | | - Shirsajit Mitra
- KaviKrishna Laboratory, Indian Institute of Technology, Guwahati, Assam, India
| | - Abhik Mojumdar
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Pritam Kumar Panda
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Swadheena Patro
- KIIT School of Dental Sciences, KIIT University. Bhubaneswar 751024, Odisha
| | - Ateet Dutt
- Instituto de Investigaciones en Materiales, UNAM, CDMX, Mexico
| | - Rajeev Ahuja
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden.
| | - Suresh K Verma
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India; Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden.
| | - Mrutyunjay Suar
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India.
| |
Collapse
|
15
|
Ménard S, Lacroix-Lamandé S, Ehrhardt K, Yan J, Grassl GA, Wiedemann A. Cross-Talk Between the Intestinal Epithelium and Salmonella Typhimurium. Front Microbiol 2022; 13:906238. [PMID: 35733975 PMCID: PMC9207452 DOI: 10.3389/fmicb.2022.906238] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
Salmonella enterica serovars are invasive gram-negative bacteria, causing a wide range of diseases from gastroenteritis to typhoid fever, representing a public health threat around the world. Salmonella gains access to the intestinal lumen after oral ingestion of contaminated food or water. The crucial initial step to establish infection is the interaction with the intestinal epithelium. Human-adapted serovars such as S. Typhi or S. Paratyphi disseminate to systemic organs and induce life-threatening disease known as typhoid fever, whereas broad-host serovars such as S. Typhimurium usually are limited to the intestine and responsible for gastroenteritis in humans. To overcome intestinal epithelial barrier, Salmonella developed mechanisms to induce cellular invasion, intracellular replication and to face host defence mechanisms. Depending on the serovar and the respective host organism, disease symptoms differ and are linked to the ability of the bacteria to manipulate the epithelial barrier for its own profit and cross the intestinal epithelium.This review will focus on S. Typhimurium (STm). To better understand STm pathogenesis, it is crucial to characterize the crosstalk between STm and the intestinal epithelium and decipher the mechanisms and epithelial cell types involved. Thus, the purpose of this review is to summarize our current knowledge on the molecular dialogue between STm and the various cell types constituting the intestinal epithelium with a focus on the mechanisms developed by STm to cross the intestinal epithelium and access to subepithelial or systemic sites and survive host defense mechanisms.
Collapse
Affiliation(s)
- Sandrine Ménard
- IRSD - Institut de Recherche en Santé Digestive, Université́ de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| | | | - Katrin Ehrhardt
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School and German Center for Infection Research (DZIF), Hannover, Germany
| | - Jin Yan
- IRSD - Institut de Recherche en Santé Digestive, Université́ de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, China
- Research Center of Digestive Disease, Central South University, Changsha, China
| | - Guntram A. Grassl
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School and German Center for Infection Research (DZIF), Hannover, Germany
| | - Agnès Wiedemann
- IRSD - Institut de Recherche en Santé Digestive, Université́ de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
- *Correspondence: Agnès Wiedemann,
| |
Collapse
|
16
|
Identification of Two Sel1-like Proteins in SPI-19 of Salmonella enterica Serovar Pullorum That Can Mediate Bacterial Infection Through T3SS. Microbiol Res 2022; 262:127085. [DOI: 10.1016/j.micres.2022.127085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/19/2022] [Accepted: 05/31/2022] [Indexed: 01/04/2023]
|
17
|
Gupta A, Bansal M, Liyanage R, Upadhyay A, Rath N, Donoghue A, Sun X. Sodium butyrate modulates chicken macrophage proteins essential for Salmonella Enteritidis invasion. PLoS One 2021; 16:e0250296. [PMID: 33909627 PMCID: PMC8081216 DOI: 10.1371/journal.pone.0250296] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/02/2021] [Indexed: 12/28/2022] Open
Abstract
Salmonella Enteritidis is an intracellular foodborne pathogen that has developed multiple mechanisms to alter poultry intestinal physiology and infect the gut. Short chain fatty acid butyrate is derived from microbiota metabolic activities, and it maintains gut homeostasis. There is limited understanding on the interaction between S. Enteritidis infection, butyrate, and host intestinal response. To fill this knowledge gap, chicken macrophages (also known as HTC cells) were infected with S. Enteritidis, treated with sodium butyrate, and proteomic analysis was performed. A growth curve assay was conducted to determine sub-inhibitory concentration (SIC, concentration that do not affect bacterial growth compared to control) of sodium butyrate against S. Enteritidis. HTC cells were infected with S. Enteritidis in the presence and absence of SIC of sodium butyrate. The proteins were extracted and analyzed by tandem mass spectrometry. Our results showed that the SIC was 45 mM. Notably, S. Enteritidis-infected HTC cells upregulated macrophage proteins involved in ATP synthesis through oxidative phosphorylation such as ATP synthase subunit alpha (ATP5A1), ATP synthase subunit d, mitochondrial (ATP5PD) and cellular apoptosis such as Cytochrome-c (CYC). Furthermore, sodium butyrate influenced S. Enteritidis-infected HTC cells by reducing the expression of macrophage proteins mediating actin cytoskeletal rearrangements such as WD repeat-containing protein-1 (WDR1), Alpha actinin-1 (ACTN1), Vinculin (VCL) and Protein disulfide isomerase (P4HB) and intracellular S. Enteritidis growth and replication such as V-type proton ATPase catalytic subunit A (ATPV1A). Interestingly, sodium butyrate increased the expression of infected HTC cell protein involving in bacterial killing such as Vimentin (VIM). In conclusion, sodium butyrate modulates the expression of HTC cell proteins essential for S. Enteritidis invasion.
Collapse
Affiliation(s)
- Anamika Gupta
- Department of Poultry Science, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Mohit Bansal
- Department of Poultry Science, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Rohana Liyanage
- Department of Chemistry, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Abhinav Upadhyay
- Department of Animal Science, University of Connecticut, Storrs, Connecticut, United States of America
| | - Narayan Rath
- Poultry Production and Product Safety Research Unit, United States Department of Agriculture-Agriculture Research Station, Fayetteville, Arkansas, United States of America
| | - Annie Donoghue
- Poultry Production and Product Safety Research Unit, United States Department of Agriculture-Agriculture Research Station, Fayetteville, Arkansas, United States of America
| | - Xiaolun Sun
- Department of Poultry Science, University of Arkansas, Fayetteville, Arkansas, United States of America
| |
Collapse
|
18
|
The Hha-TomB toxin-antitoxin module in Salmonella enterica serovar Typhimurium limits its intracellular survival profile and regulates host immune response. Cell Biol Toxicol 2021; 38:111-127. [PMID: 33651227 DOI: 10.1007/s10565-021-09587-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/09/2021] [Indexed: 12/24/2022]
Abstract
The key to bacterial virulence relies on an exquisite balance of signals between microbe and hosts. Bacterial toxin-antitoxin (TA) system is known to play a vital role in response to stress adaptation, drug resistance, biofilm formation, intracellular survival, persistence as well as pathogenesis. In the present study, we investigated the role of Hha-TomB TA system in regulating virulence of Salmonella enterica serovar Typhimurium (S. Typhimurium) in a host model system, where we showed that deletion of hha and tomB genes displayed impaired cell adhesion, invasion, and uptake. The isogenic hha and tomB mutant strain was also found to be deficient in intracellular replication in vitro, with a highly repressed Salmonella Pathogenicity Island-2 (SPI-2) genes and downregulation of Salmonella Pathogenicity Island-1 (SPI-1) genes. In addition, the Δhha and ΔtomB did not show acute colitis in C57BL/6 mice and displayed less dissemination to systemic organs followed by their cecal pathology. The TA mutants also showed reduction in serum cytokine and nitric oxide levels both in vitro and in vivo. However, the inflammation phenotype was restored on complementing strain of TA gene to its mutant strain. In silico studies depicted firm interaction of Hha-TomB complex and the regulatory proteins, namely, SsrA, SsrB, PhoP, and PhoQ. Overall, we demonstrate that this study of Hha-TomB TA system is one of the prime regulating networks essential for S. Typhimurium pathogenesis. 1. Role of Hha-TomB toxin-antitoxin (TA) system in Salmonella pathogenesis was examined. 2. The TA mutants resulted in impaired invasion and intracellular replication in vitro. 3. The TA mutants displayed alteration in SPI-1 and SPI-2 regulatory genes inside host cells. 4. Mutation in TA genes also limited systemic colonization and inflammatory response in vivo.
Collapse
|
19
|
Lee M, Ryu M, Joo M, Seo YJ, Lee J, Kim HM, Shin E, Yeom JH, Kim YH, Bae J, Lee K. Endoribonuclease-mediated control of hns mRNA stability constitutes a key regulatory pathway for Salmonella Typhimurium pathogenicity island 1 expression. PLoS Pathog 2021; 17:e1009263. [PMID: 33524062 PMCID: PMC7877770 DOI: 10.1371/journal.ppat.1009263] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 02/11/2021] [Accepted: 01/01/2021] [Indexed: 01/04/2023] Open
Abstract
Bacteria utilize endoribonuclease-mediated RNA processing and decay to rapidly adapt to environmental changes. Here, we report that the modulation of hns mRNA stability by the endoribonuclease RNase G plays a key role in Salmonella Typhimurium pathogenicity. We found that RNase G determines the half-life of hns mRNA by cleaving its 5′ untranslated region and that altering its cleavage sites by genome editing stabilizes hns mRNA, thus decreasing S. Typhimurium virulence in mice. Under anaerobic conditions, the FNR-mediated transcriptional repression of rnc encoding RNase III, which degrades rng mRNA, and simultaneous induction of rng transcription resulted in rapid hns mRNA degradation, leading to the derepression of genes involved in the Salmonella pathogenicity island 1 (SPI-1) type III secretion system (T3SS). Together, our findings show that RNase III and RNase G levels-mediated control of hns mRNA abundance acts as a regulatory pathway upstream of a complex feed-forward loop for SPI-1 expression. Recent studies have shown that pathogenic bacteria with ribonuclease mutations display attenuated virulence, impaired mobility, and reduced proliferation in host cells. However, the molecular mechanisms underlying ribonuclease-associated pathogenesis have not yet been characterised. Here, we provide strong experimental evidence that the coordinated modulation of endoribonuclease activity constitutes an additional regulatory layer upstream of a complex feed-forward loop controlling global regulatory systems in the Salmonella pathogenicity island 1 (SPI-1) type III secretion system (T3SS). In addition, we showed that this regulatory pathway plays a key role in the virulence of S. Typhimurium in the host. Thus, our study improves the understanding of the mechanisms through which bacterial pathogens sense the host environment and respond precisely by expressing gene products required for adaptation to that particular niche.
Collapse
Affiliation(s)
- Minho Lee
- Department of Life Science, Chung-Ang University, Dongjak-Gu, Seoul, Republic of Korea
| | - Minkyung Ryu
- Department of Life Science, Chung-Ang University, Dongjak-Gu, Seoul, Republic of Korea
| | - Minju Joo
- Department of Life Science, Chung-Ang University, Dongjak-Gu, Seoul, Republic of Korea
| | - Young-Jin Seo
- Department of Life Science, Chung-Ang University, Dongjak-Gu, Seoul, Republic of Korea
| | - Jaejin Lee
- Department of Life Science, Chung-Ang University, Dongjak-Gu, Seoul, Republic of Korea
| | - Hong-Man Kim
- Department of Life Science, Chung-Ang University, Dongjak-Gu, Seoul, Republic of Korea
| | - Eunkyoung Shin
- Department of Pharmacy, Chung-Ang University, Dongjak-Gu, Seoul, Republic of Korea
| | - Ji-Hyun Yeom
- Department of Life Science, Chung-Ang University, Dongjak-Gu, Seoul, Republic of Korea
| | - Yong-Hak Kim
- Department of Microbiology, Daegu Catholic University School of Medicine, Daegu, Republic of Korea
- * E-mail: (Y-HK); (JB); (KL)
| | - Jeehyeon Bae
- Department of Pharmacy, Chung-Ang University, Dongjak-Gu, Seoul, Republic of Korea
- * E-mail: (Y-HK); (JB); (KL)
| | - Kangseok Lee
- Department of Life Science, Chung-Ang University, Dongjak-Gu, Seoul, Republic of Korea
- * E-mail: (Y-HK); (JB); (KL)
| |
Collapse
|
20
|
Role of OB-Fold Protein YdeI in Stress Response and Virulence of Salmonella enterica Serovar Enteritidis. J Bacteriol 2020; 203:JB.00237-20. [PMID: 33106344 DOI: 10.1128/jb.00237-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 10/01/2020] [Indexed: 01/11/2023] Open
Abstract
An essential feature of the pathogenesis of the Salmonella enterica serovar Enteritidis wild type (WT) is its ability to survive under diverse microenvironmental stress conditions, such as encountering antimicrobial peptides (AMPs) or glucose and micronutrient starvation. These stress factors trigger virulence genes carried on Salmonella pathogenicity islands (SPIs) and determine the efficiency of enteric infection. Although the oligosaccharide/oligonucleotide binding-fold (OB-fold) family of proteins has been identified as an important stress response and virulence determinant, functional information on members of this family is currently limited. In this study, we decipher the role of YdeI, which belongs to OB-fold family of proteins, in stress response and virulence of S Enteritidis. When ydeI was deleted, the ΔydeI mutant showed reduced survival during exposure to AMPs or glucose and Mg2+ starvation stress compared to the WT. Green fluorescent protein (GFP) reporter and quantitative real-time PCR (qRT-PCR) assays showed ydeI was transcriptionally regulated by PhoP, which is a major regulator of stress and virulence. Furthermore, the ΔydeI mutant displayed ∼89% reduced invasion into HCT116 cells, ∼15-fold-reduced intramacrophage survival, and downregulation of several SPI-1 and SPI-2 genes encoding the type 3 secretion system apparatus and effector proteins. The mutant showed attenuated virulence compared to the WT, confirmed by its reduced bacterial counts in feces, mesenteric lymph node (mLN), spleen, and liver of C57BL/6 mice. qRT-PCR analyses of the ΔydeI mutant displayed differential expression of 45 PhoP-regulated genes, which were majorly involved in metabolism, transport, membrane remodeling, and drug resistance under different stress conditions. YdeI is, therefore, an important protein that modulates S Enteritidis virulence and adaptation to stress during infection.IMPORTANCE S Enteritidis during its life cycle encounters diverse stress factors inside the host. These intracellular conditions allow activation of specialized secretion systems to cause infection. We report a conserved membrane protein, YdeI, and elucidate its role in protection against various intracellular stress conditions. A key aspect of the study of a pathogen's stress response mechanism is its clinical relevance during host-pathogen interaction. Bacterial adaptation to stress plays a vital role in evolution of a pathogen's resistance to therapeutic agents. Therefore, investigation of the role of YdeI is vital for understanding the molecular basis of regulation of Salmonella pathogenesis. In conclusion, our findings may contribute to finding potential targets to develop new intervention strategies for treatment and prevention of enteric diseases.
Collapse
|
21
|
Das S, Ray S, Arunima A, Sahu B, Suar M. A ROD9 island encoded gene in Salmonella Enteritidis plays an important role in acid tolerance response and helps in systemic infection in mice. Virulence 2020; 11:247-259. [PMID: 32116124 PMCID: PMC7051147 DOI: 10.1080/21505594.2020.1733203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/26/2019] [Accepted: 12/02/2019] [Indexed: 10/31/2022] Open
Abstract
Salmonella, like other pathogenic bacteria has undergone multiple genomic alterations to adapt itself into specific host environments executing varied degrees of virulence through evolution. Such variations in genome content have been assumed to lead the closely related non-typhoidal serovars, S. Enteritidis, and S. Typhimurium to exhibit Type Three Secretion System -2 (T3SS-2) based diverse colonization and inflammation kinetics. Mutually exclusive genes present in either of the serovars are recently being studied and in our currentwork, we focused on a particular island ROD9, present in S. Enteritidis but not in S. Typhimurium. Earlier reports have identified a few genes from this island to be responsible for virulence in vitro as well as in vivo. In this study, we have identified another gene, SEN1008 from the same island encoding a hypothetical protein to be a potential virulence determinant showing systemic attenuation upon mutation in C57BL/6 mice infection model. The isogenic mutant strain displayed reduced adhesion to epithelial cells in vitro as well as was highly immotile. It was also deficient in intracellular replication in vitro, with a highly suppressed SPI-2and failed to cause acute colitis at 72-h p.i.in vivo. Moreover, on acid exposure, SEN1008 showed 17 folds and 2 fold up-regulations during adaptation and challenge phases,respectively and ΔSEN1008 failed to survive during ATR assay, indicating its role under acid stress. Together, our findings suggested ΔSEN1008 to be significantly attenuated and we propose this gene to be a potent factor responsible for S. Enteritidis pathogenesis.
Collapse
Affiliation(s)
- Susmita Das
- School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Shilpa Ray
- School of Biotechnology, KIIT University, Bhubaneswar, India
| | | | - Bikash Sahu
- School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Mrutyunjay Suar
- School of Biotechnology, KIIT University, Bhubaneswar, India
| |
Collapse
|
22
|
Gupta A, Bansal M, Wagle B, Sun X, Rath N, Donoghue A, Upadhyay A. Sodium Butyrate Reduces Salmonella Enteritidis Infection of Chicken Enterocytes and Expression of Inflammatory Host Genes in vitro. Front Microbiol 2020; 11:553670. [PMID: 33042060 PMCID: PMC7524895 DOI: 10.3389/fmicb.2020.553670] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 08/27/2020] [Indexed: 12/14/2022] Open
Abstract
Salmonella Enteritidis (SE) is a facultative intracellular pathogen that colonizes the chicken gut leading to contamination of carcasses during processing. A reduction in intestinal colonization by SE could result in reduced carcass contamination thereby reducing the risk of illnesses in humans. Short chain fatty acids such as butyrate are microbial metabolites produced in the gut that exert various beneficial effects. However, its effect on SE colonization is not well known. The present study investigated the effect of sub-inhibitory concentrations (SICs) of sodium butyrate on the adhesion and invasion of SE in primary chicken enterocytes and chicken macrophages. In addition, the effect of sodium butyrate on the expression of SE virulence genes and selected inflammatory genes in chicken macrophages challenged with SE were investigated. Based on the growth curve analysis, the two SICs of sodium butyrate that did not reduce SE growth were 22 and 45 mM, respectively. The SICs of sodium butyrate did not affect the viability and proliferation of chicken enterocytes and macrophage cells. The SICs of sodium butyrate reduced SE adhesion by ∼1.7 and 1.8 Log CFU/mL, respectively. The SE invasion was reduced by ∼2 and 2.93 Log CFU/mL, respectively in chicken enterocytes (P < 0.05). Sodium butyrate did not significantly affect the adhesion of SE to chicken macrophages. However, 45 mM sodium butyrate reduced invasion by ∼1.7 Log CFU/mL as compared to control (P < 0.05). Exposure to sodium butyrate did not change the expression of SE genes associated with motility (flgG, prot6E), invasion (invH), type 3 secretion system (sipB, pipB), survival in macrophages (spvB, mgtC), cell wall and membrane integrity (tatA), efflux pump regulator (mrr1) and global virulence regulation (lrp) (P > 0.05). However, a few genes contributing to type-3 secretion system (ssaV, sipA), adherence (sopB), macrophage survival (sodC) and oxidative stress (rpoS) were upregulated by at least twofold. The expression of inflammatory genes (Il1β, Il8, and Mmp9) that are triggered by SE for host colonization was significantly downregulated (at least 25-fold) by sodium butyrate as compared to SE (P < 0.05). The results suggest that sodium butyrate has an anti-inflammatory potential to reduce SE colonization in chickens.
Collapse
Affiliation(s)
- Anamika Gupta
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Mohit Bansal
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Basanta Wagle
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Xiaolun Sun
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Narayan Rath
- Poultry Production and Product Safety Research Unit, United States Department of Agriculture-Agriculture Research Station, Fayetteville, AR, United States
| | - Annie Donoghue
- Poultry Production and Product Safety Research Unit, United States Department of Agriculture-Agriculture Research Station, Fayetteville, AR, United States
| | - Abhinav Upadhyay
- Department of Animal Science, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
23
|
Majewski DD, Okon M, Heinkel F, Robb CS, Vuckovic M, McIntosh LP, Strynadka NCJ. Characterization of the Pilotin-Secretin Complex from the Salmonella enterica Type III Secretion System Using Hybrid Structural Methods. Structure 2020; 29:125-138.e5. [PMID: 32877645 DOI: 10.1016/j.str.2020.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/21/2020] [Accepted: 08/11/2020] [Indexed: 12/01/2022]
Abstract
The type III secretion system (T3SS) is a multi-membrane-spanning protein channel used by Gram-negative pathogenic bacteria to secrete effectors directly into the host cell cytoplasm. In the many species reliant on the T3SS for pathogenicity, proper assembly of the outer membrane secretin pore depends on a diverse family of lipoproteins called pilotins. We present structural and biochemical data on the Salmonella enterica pilotin InvH and the S domain of its cognate secretin InvG. Characterization of InvH by X-ray crystallography revealed a dimerized, α-helical pilotin. Size-exclusion-coupled multi-angle light scattering and small-angle X-ray scattering provide supporting evidence for the formation of an InvH homodimer in solution. Structures of the InvH-InvG heterodimeric complex determined by X-ray crystallography and NMR spectroscopy indicate a predominantly hydrophobic interface. Knowledge of the interaction between InvH and InvG brings us closer to understanding the mechanisms by which pilotins assemble the secretin pore.
Collapse
Affiliation(s)
- Dorothy D Majewski
- Department of Biochemistry and Molecular Biology and the Center for Blood Research, University of British Columbia, Vancouver, BC, Canada
| | - Mark Okon
- Michael Smith Laboratories, Department of Biochemistry and Molecular Biology, and Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| | - Florian Heinkel
- Michael Smith Laboratories, Department of Biochemistry and Molecular Biology, and Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| | - Craig S Robb
- Department of Biochemistry and Molecular Biology and the Center for Blood Research, University of British Columbia, Vancouver, BC, Canada
| | - Marija Vuckovic
- Department of Biochemistry and Molecular Biology and the Center for Blood Research, University of British Columbia, Vancouver, BC, Canada
| | - Lawrence P McIntosh
- Michael Smith Laboratories, Department of Biochemistry and Molecular Biology, and Department of Chemistry, University of British Columbia, Vancouver, BC, Canada.
| | - Natalie C J Strynadka
- Department of Biochemistry and Molecular Biology and the Center for Blood Research, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
24
|
Silva YRDO, Contreras-Martel C, Macheboeuf P, Dessen A. Bacterial secretins: Mechanisms of assembly and membrane targeting. Protein Sci 2020; 29:893-904. [PMID: 32020694 DOI: 10.1002/pro.3835] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/25/2020] [Accepted: 01/28/2020] [Indexed: 12/20/2022]
Abstract
Secretion systems are employed by bacteria to transport macromolecules across membranes without compromising their integrities. Processes including virulence, colonization, and motility are highly dependent on the secretion of effector molecules toward the immediate cellular environment, and in some cases, into the host cytoplasm. In Type II and Type III secretion systems, as well as in Type IV pili, homomultimeric complexes known as secretins form large pores in the outer bacterial membrane, and the localization and assembly of such 1 MDa molecules often relies on pilotins or accessory proteins. Significant progress has been made toward understanding details of interactions between secretins and their partner proteins using approaches ranging from bacterial genetics to cryo electron microscopy. This review provides an overview of the mode of action of pilotins and accessory proteins for T2SS, T3SS, and T4PS secretins, highlighting recent near-atomic resolution cryo-EM secretin complex structures and underlining the importance of these interactions for secretin functionality.
Collapse
Affiliation(s)
- Yuri Rafael de Oliveira Silva
- Brazilian Biosciences National Laboratory (LNBio), CNPEM, Campinas, São Paulo, Brazil.,Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Carlos Contreras-Martel
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Pauline Macheboeuf
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Andréa Dessen
- Brazilian Biosciences National Laboratory (LNBio), CNPEM, Campinas, São Paulo, Brazil.,Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Grenoble, France
| |
Collapse
|
25
|
Canals R, Chaudhuri RR, Steiner RE, Owen SV, Quinones-Olvera N, Gordon MA, Baym M, Ibba M, Hinton JCD. The fitness landscape of the African Salmonella Typhimurium ST313 strain D23580 reveals unique properties of the pBT1 plasmid. PLoS Pathog 2019; 15:e1007948. [PMID: 31560731 PMCID: PMC6785131 DOI: 10.1371/journal.ppat.1007948] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 10/09/2019] [Accepted: 08/30/2019] [Indexed: 12/13/2022] Open
Abstract
We have used a transposon insertion sequencing (TIS) approach to establish the fitness landscape of the African Salmonella enterica serovar Typhimurium ST313 strain D23580, to complement our previous comparative genomic and functional transcriptomic studies. We used a genome-wide transposon library with insertions every 10 nucleotides to identify genes required for survival and growth in vitro and during infection of murine macrophages. The analysis revealed genomic regions important for fitness under two in vitro growth conditions. Overall, 724 coding genes were required for optimal growth in LB medium, and 851 coding genes were required for growth in SPI-2-inducing minimal medium. These findings were consistent with the essentiality analyses of other S. Typhimurium ST19 and S. Typhi strains. The global mutagenesis approach also identified 60 sRNAs and 413 intergenic regions required for growth in at least one in vitro growth condition. By infecting murine macrophages with the transposon library, we identified 68 genes that were required for intra-macrophage replication but did not impact fitness in vitro. None of these genes were unique to S. Typhimurium D23580, consistent with a high conservation of gene function between S. Typhimurium ST313 and ST19 and suggesting that novel virulence factors are not involved in the interaction of strain D23580 with murine macrophages. We discovered that transposon insertions rarely occurred in many pBT1 plasmid-encoded genes (36), compared with genes carried by the pSLT-BT virulence plasmid and other bacterial plasmids. The key essential protein encoded by pBT1 is a cysteinyl-tRNA synthetase, and our enzymological analysis revealed that the plasmid-encoded CysRSpBT1 had a lower ability to charge tRNA than the chromosomally-encoded CysRSchr enzyme. The presence of aminoacyl-tRNA synthetases in plasmids from a range of Gram-negative and Gram-positive bacteria suggests that plasmid-encoded essential genes are more common than had been appreciated.
Collapse
Affiliation(s)
- Rocío Canals
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Roy R Chaudhuri
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Rebecca E Steiner
- Department of Microbiology, The Ohio State University, Columbus, Ohio, United States of America.,Center for RNA Biology, The Ohio State University, Columbus, Ohio, United States of America
| | - Siân V Owen
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Natalia Quinones-Olvera
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Melita A Gordon
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom.,Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi, Central Africa
| | - Michael Baym
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Michael Ibba
- Department of Microbiology, The Ohio State University, Columbus, Ohio, United States of America.,Center for RNA Biology, The Ohio State University, Columbus, Ohio, United States of America
| | - Jay C D Hinton
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
26
|
Antibiofilm activity of coenzyme Q0 against Salmonella Typhimurium and its effect on adhesion-invasion and survival-replication. Appl Microbiol Biotechnol 2019; 103:8545-8557. [PMID: 31468089 DOI: 10.1007/s00253-019-10095-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/22/2019] [Accepted: 08/08/2019] [Indexed: 01/08/2023]
Abstract
Salmonella Typhimurium, a common Gram-negative foodborne pathogen, threatens public health and hinders the development of the food industry. In this study, we evaluated the antibiofilm activity of coenzyme Q0 (CoQ0) against S. Typhimurium. Besides, the inhibition of the S. Typhimurium's adhesion to and invasion of Caco-2 cells and its survival and replication in RAW 264.7 cells by CoQ0 were also explored. The minimum inhibitory concentrations and minimal bactericidal concentrations of CoQ0 against Salmonella were both 100-400 μg/mL. Salmonella Typhimurium biofilm formation was effectively inhibited by subinhibitory concentrations (SICs) of CoQ0. The CoQ0-affected biofilm morphology was observed with light microscopy and field-emission scanning electron microscopy. CoQ0 at SICs reduced the swimming motility and quorum sensing of S. Typhimurium and repressed the transcription of critical virulence-related genes. CoQ0 at SICs also clearly reduced the adhesion of S. Typhimurium to and its invasion of Caco-2 cells and reduced its survival and replication within RAW 264.7 macrophage cells. These findings suggest that CoQ0 has strong antibiofilm activity and can be used as an anti-infectious agent against Salmonella.
Collapse
|
27
|
Ray S, Das S, Panda PK, Suar M. Identification of a new alanine racemase in Salmonella Enteritidis and its contribution to pathogenesis. Gut Pathog 2018; 10:30. [PMID: 30008809 PMCID: PMC6040060 DOI: 10.1186/s13099-018-0257-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/03/2018] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Non-typhoidal Salmonella (NTS) infections caused primarily by S. Enteritidis and S. Typhimurium particularly in immunocompromised hosts have accounted for a large percentage of fatalities in developed nations. Antibiotics have revolutionized the cure of enteric infections but have also led to the rapid emergence of pathogen resistance. New powerful therapeutics involving metabolic enzymes are expected to be potential targets for combating microbial infections and ensuring effective health management. Therefore, the need for new antimicrobials to fight such health emergencies is paramount. Enteric bacteria successfully evade the gut and colonize their hosts through specialized virulence strategies. An important player, alanine racemase is a key enzyme facilitating bacterial survival. RESULTS This study aims at understanding the contribution of alanine racemase genes alr, dadX and SEN3897 to Salmonella survival in vitro and in vivo. We have shown SEN3897 to function as a unique alanine racemase in S. Enteritidis which displayed essential alanine racemase activity. Interestingly, the sole presence of this gene in alr dadX double mutant showed a strict dependence on d-alanine supplementation both in vitro and in vivo. However, Alr complementation in d-alanine auxotrophic strain restored the alanine racemase deficiency. The Km and Vmax of SEN3897 was 89.15 ± 10.2 mM, 400 ± 25.6 µmol/(min mg) for l-alanine and 35 ± 6 mM, 132.5 ± 11.3 µmol/(min mg) for d-alanine, respectively. In vitro assays for invasion and survival as well as in vivo virulence assays involving SEN3897 mutant showed attenuated phenotypes. Further, this study also showed attenuation of d-alanine auxotrophic strain in vivo for the development of potential targets against Salmonella that can be investigated further. CONCLUSION This study identified a third alanine racemase gene unique in S. Enteritidis which had a potential effect on survival and pathogenesis in vitro and in vivo. Our results also confirmed that SEN3897 by itself wasn't able to rescue d-alanine auxotrophy in S. Enteritidis which further contributed to its virulence properties.
Collapse
Affiliation(s)
- Shilpa Ray
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha India
| | - Susmita Das
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha India
| | | | - Mrutyunjay Suar
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha India
| |
Collapse
|
28
|
Biological and regulatory roles of acid-induced small RNA RyeC in Salmonella Typhimurium. Biochimie 2018; 150:48-56. [PMID: 29730297 DOI: 10.1016/j.biochi.2018.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 05/01/2018] [Indexed: 12/23/2022]
Abstract
Salmonella Typhimurium is an enteric pathogen that has evolved masterful strategies to enable survival under stress conditions both within and outside a host. The acid tolerance response (ATR) is one such mechanism that enhances the viability of acid adapted bacteria to lethal pH levels. While numerous studies exist on the protein coding components of this response, there is very little data on the roles of small RNAs (sRNAs). These non-coding RNA molecules have recently been shown to play roles as regulators of bacterial stress response and virulence pathways. They function through complementary base pairing interactions with target mRNAs and affect their translation and/or stability. There are also a few that directly bind to proteins by mimicking their respective targets. Here, we identify several sRNAs expressed during the ATR of S. Typhimurium and characterize one highly induced candidate, RyeC. Further, we identify ptsI as a trans-encoded target that is directly regulated by this sRNA. From a functional perspective, over-expression of RyeC in Salmonella produced a general attenuation of several in vitro phenotypes including acid survival, motility, adhesion and invasion of epithelial cell lines as well as replication within macrophages. Together, this study highlights the diverse roles played by sRNAs in acid tolerance and virulence of S. Typhimurium.
Collapse
|
29
|
Das S, Ray S, Ryan D, Sahu B, Suar M. Identification of a novel gene in ROD9 island of Salmonella Enteritidis involved in the alteration of virulence-associated genes expression. Virulence 2018; 9:348-362. [PMID: 29130383 PMCID: PMC5955183 DOI: 10.1080/21505594.2017.1392428] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 10/06/2017] [Accepted: 10/10/2017] [Indexed: 01/10/2023] Open
Abstract
Salmonella enterica subsp. I serovar Enteritidis (S. Enteritidis), one of the causative agents for non-typhoidal gastrointestinal diseases in humans is an intracellular bacterium and mechanism for its invasion into host cells is critical to cause infection. The virulence of the pathogen is explained by the expression of genes located on its pathogenicity islands, mostly encoded under SPI-1 and SPI-2. However, S. Typhimurium SL1344, despite sharing ∼98% of its genome with S. Enteritidis P125109, lacks few regions of differences (ROD) that are hypothesized to impart virulence potential to S. Enteritidis. In this study, we created different mutants in the ROD9 island of S. Enteritidis, also referred as SPI-19 and identified a novel locus, SEN1005, encoding a hypothetical protein that is involved in its pathogenesis. ΔSEN1005 displayed significantly reduced entry into cultured epithelial cells as well as uptake by macrophages and failed to cause acute colitis in C57BL/6 mice at day 3 post-infection (p.i.). Additionally, the global transcriptome analysis revealed a highly repressed SPI-1 and other down-regulated genes responsible for flagellar assembly, chemotaxis and motility in the mutant which correlated with decreased invasion and abated inflammation as compared to the wild-type. Therefore, our findings revealed that ΔSEN1005 was attenuated in vitro as well as in vivo and we propose this hypothetical protein to play a role in altering the expression of genes involved in Salmonella virulence.
Collapse
Affiliation(s)
- Susmita Das
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha
| | - Shilpa Ray
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha
| | - Daniel Ryan
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha
| | - Bikash Sahu
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha
| | - Mrutyunjay Suar
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha
| |
Collapse
|
30
|
Muyyarikkandy MS, Amalaradjou MA. Lactobacillus bulgaricus, Lactobacillus rhamnosus and Lactobacillus paracasei Attenuate Salmonella Enteritidis, Salmonella Heidelberg and Salmonella Typhimurium Colonization and Virulence Gene Expression In Vitro. Int J Mol Sci 2017; 18:E2381. [PMID: 29120368 PMCID: PMC5713350 DOI: 10.3390/ijms18112381] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/01/2017] [Accepted: 11/06/2017] [Indexed: 02/06/2023] Open
Abstract
Salmonella Enteritidis (SE), Salmonella Typhimurium (ST), and Salmonella Heidelberg (SH) have been responsible for numerous outbreaks associated with the consumption of poultry meat and eggs. Salmonella colonization in chicken is characterized by initial attachment to the cecal epithelial cells (CEC) followed by dissemination to the liver, spleen, and oviduct. Since cecal colonization is critical to Salmonella transmission along the food chain continuum, reducing this intestinal association could potentially decrease poultry meat and egg contamination. Hence, this study investigated the efficacy of Lactobacillus delbreuckii sub species bulgaricus (NRRL B548; LD), Lactobacillus paracasei (DUP-13076; LP), and Lactobacillus rhamnosus (NRRL B442; LR) in reducing SE, ST, and SH colonization in CEC and survival in chicken macrophages. Additionally, their effect on expression of Salmonella virulence genes essential for cecal colonization and survival in macrophages was evaluated. All three probiotics significantly reduced Salmonella adhesion and invasion in CEC and survival in chicken macrophages (p < 0.05). Further, the probiotic treatment led to a significant reduction in Salmonella virulence gene expression (p < 0.05). Results of the study indicate that LD, LP, and LR could potentially be used to control SE, ST, and SH colonization in chicken. However, these observations warrant further in vivo validation.
Collapse
|
31
|
Ryan D, Mukherjee M, Suar M. The expanding targetome of small RNAs in Salmonella Typhimurium. Biochimie 2017; 137:69-77. [DOI: 10.1016/j.biochi.2017.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Accepted: 03/10/2017] [Indexed: 10/20/2022]
|
32
|
Wael AHH, Hisham AA. Evaluation of the role of SsaV Salmonella pathogenicity island-2 dependent type III secretion system components on the virulence behavior of Salmonella enterica serovar Typhimurium. ACTA ACUST UNITED AC 2017. [DOI: 10.5897/ajb2016.15852] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
33
|
Ryan D, Ojha UK, Jaiswal S, Padhi C, Suar M. The Small RNA DsrA Influences the Acid Tolerance Response and Virulence of Salmonella enterica Serovar Typhimurium. Front Microbiol 2016; 7:599. [PMID: 27199929 PMCID: PMC4844625 DOI: 10.3389/fmicb.2016.00599] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/11/2016] [Indexed: 01/05/2023] Open
Abstract
The Gram-negative, enteropathogen Salmonella enterica serovar Typhimurium (S. Typhimurium) is exposed to various stress conditions during pathogenesis, of which acid stress serves as a major defense mechanism in the host. Such environments are encountered in the stomach and Salmonella containing vacuole of phagocytic and non-phagocytic cells. It is only recently that small RNAs (sRNAs) have come to the forefront as major regulators of stress response networks. Consequently, the sRNA DsrA which regulates acid resistance in Escherichia coli, has not been characterized in the acid tolerance response (ATR) of Salmonella. In this study, we show dsrA to be induced two and threefold under adaptation and challenge phases of the ATR, respectively. Additionally, an isogenic mutant lacking dsrA (ΔDsrA) displayed lower viability under the ATR along with reduced motility, feeble adhesion and defective invasion efficacy in vitro. Expression analysis revealed down regulation of several Salmonella pathogenicity island-1 (SPI-1) effectors in ΔDsrA compared to the wild-type, under SPI-1 inducing conditions. Additionally, our in vivo data revealed ΔDsrA to be unable to cause gut inflammation in C57BL/6 mice at 72 h post infection, although intracellular survival and systemic dissemination remained unaffected. A possible explanation may be the significantly reduced expression of flagellin structural genes fliC and fljB in ΔDsrA, which have been implicated as major proinflammatory determinants. This study serves to highlight the role of sRNAs such as DsrA in both acid tolerance and virulence of S. Typhimurium. Additionally the robust phenotype of non-invasiveness could be exploited in developing SPI-I attenuated S. Typhimurium strains without disrupting SPI-I genes.
Collapse
Affiliation(s)
- Daniel Ryan
- Infection Biology Laboratory, School of Biotechnology, KIIT University Bhubaneswar, India
| | - Urmesh K Ojha
- Infection Biology Laboratory, School of Biotechnology, KIIT University Bhubaneswar, India
| | - Sangeeta Jaiswal
- Infection Biology Laboratory, School of Biotechnology, KIIT University Bhubaneswar, India
| | - Chandrashekhar Padhi
- Infection Biology Laboratory, School of Biotechnology, KIIT University Bhubaneswar, India
| | - Mrutyunjay Suar
- Infection Biology Laboratory, School of Biotechnology, KIIT University Bhubaneswar, India
| |
Collapse
|
34
|
Ryan D, Pati NB, Ojha UK, Padhi C, Ray S, Jaiswal S, Singh GP, Mannala GK, Schultze T, Chakraborty T, Suar M. Global transcriptome and mutagenic analyses of the acid tolerance response of Salmonella enterica serovar Typhimurium. Appl Environ Microbiol 2015; 81:8054-65. [PMID: 26386064 PMCID: PMC4651094 DOI: 10.1128/aem.02172-15] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 09/01/2015] [Indexed: 01/18/2023] Open
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) is one of the leading causative agents of food-borne bacterial gastroenteritis. Swift invasion through the intestinal tract and successful establishment in systemic organs are associated with the adaptability of S. Typhimurium to different stress environments. Low-pH stress serves as one of the first lines of defense in mammalian hosts, which S. Typhimurium must efficiently overcome to establish an infection. Therefore, a better understanding of the molecular mechanisms underlying the adaptability of S. Typhimurium to acid stress is highly relevant. In this study, we have performed a transcriptome analysis of S. Typhimurium under the acid tolerance response (ATR) and found a large number of genes (∼47%) to be differentially expressed (more than 1.5-fold or less than -1.5-fold; P < 0.01). Functional annotation revealed differentially expressed genes to be associated with regulation, metabolism, transport and binding, pathogenesis, and motility. Additionally, our knockout analysis of a subset of differentially regulated genes facilitated the identification of proteins that contribute to S. Typhimurium ATR and virulence. Mutants lacking genes encoding the K(+) binding and transport protein KdpA, hypothetical protein YciG, the flagellar hook cap protein FlgD, and the nitrate reductase subunit NarZ were significantly deficient in their ATRs and displayed varied in vitro virulence characteristics. This study offers greater insight into the transcriptome changes of S. Typhimurium under the ATR and provides a framework for further research on the subject.
Collapse
Affiliation(s)
- Daniel Ryan
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Niladri Bhusan Pati
- Institute of Medical Microbiology, German Centre of Infection Research, Site Giessen-Marburg-Langen, Justus-Liebig-University Giessen, Giessen, Germany
| | - Urmesh K Ojha
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | | | - Shilpa Ray
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Sangeeta Jaiswal
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Gajinder P Singh
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Gopala K Mannala
- Institute of Medical Microbiology, German Centre of Infection Research, Site Giessen-Marburg-Langen, Justus-Liebig-University Giessen, Giessen, Germany
| | - Tilman Schultze
- Institute of Medical Microbiology, German Centre of Infection Research, Site Giessen-Marburg-Langen, Justus-Liebig-University Giessen, Giessen, Germany
| | - Trinad Chakraborty
- Institute of Medical Microbiology, German Centre of Infection Research, Site Giessen-Marburg-Langen, Justus-Liebig-University Giessen, Giessen, Germany
| | - Mrutyunjay Suar
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| |
Collapse
|
35
|
Chen S, Zhang C, Liao C, Li J, Yu C, Cheng X, Yu Z, Zhang M, Wang Y. Deletion of Invasion Protein B in Salmonella enterica Serovar Typhimurium Influences Bacterial Invasion and Virulence. Curr Microbiol 2015; 71:687-92. [PMID: 26341924 DOI: 10.1007/s00284-015-0903-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 07/25/2015] [Indexed: 11/30/2022]
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) has a wide host range and causes infections ranging from severe gastroenteritis to systemic infections in human, as well as causing typhoid-like disease in murine models of infection. S. Typhimurium translocates its effector proteins through the Salmonella pathogenicity island-I (SPI-I)-encoded T3SS-I needle complex. This study focuses on invasion protein B (SipB) of S. Typhimurium, which plays an active role in SPI-I invasion efficiency. To test our hypothesis, a sipB deletion mutant was constructed through double-crossover allelic using the suicide vector pRE112ΔsipB, and its biological characteristics were analyzed. The results showed that the SipB does not affect the growth of Salmonella, but the adherence, invasion, and virulence of the mutant were significantly decreased compared with wild-type S. Typhimurium (SL1344). This research indicates that SipB is an important virulence factor in the pathogenicity of S. Typhimurium.
Collapse
Affiliation(s)
- Songbiao Chen
- Animal Disease and Public Security Academician Workstation of Henan Province. The Key Lab of Animal Disease and Public Security, Henan University of Science and Technology, Luoyang, 471003, Henan, People's Republic of China.
| | - Chunjie Zhang
- Animal Disease and Public Security Academician Workstation of Henan Province. The Key Lab of Animal Disease and Public Security, Henan University of Science and Technology, Luoyang, 471003, Henan, People's Republic of China.
| | - Chengshui Liao
- Animal Disease and Public Security Academician Workstation of Henan Province. The Key Lab of Animal Disease and Public Security, Henan University of Science and Technology, Luoyang, 471003, Henan, People's Republic of China
| | - Jing Li
- Animal Disease and Public Security Academician Workstation of Henan Province. The Key Lab of Animal Disease and Public Security, Henan University of Science and Technology, Luoyang, 471003, Henan, People's Republic of China
| | - Chuan Yu
- Animal Disease and Public Security Academician Workstation of Henan Province. The Key Lab of Animal Disease and Public Security, Henan University of Science and Technology, Luoyang, 471003, Henan, People's Republic of China
| | - Xiangchao Cheng
- Animal Disease and Public Security Academician Workstation of Henan Province. The Key Lab of Animal Disease and Public Security, Henan University of Science and Technology, Luoyang, 471003, Henan, People's Republic of China
| | - Zuhua Yu
- Animal Disease and Public Security Academician Workstation of Henan Province. The Key Lab of Animal Disease and Public Security, Henan University of Science and Technology, Luoyang, 471003, Henan, People's Republic of China
| | - Mingliang Zhang
- Animal Disease and Public Security Academician Workstation of Henan Province. The Key Lab of Animal Disease and Public Security, Henan University of Science and Technology, Luoyang, 471003, Henan, People's Republic of China
| | - Yang Wang
- Animal Disease and Public Security Academician Workstation of Henan Province. The Key Lab of Animal Disease and Public Security, Henan University of Science and Technology, Luoyang, 471003, Henan, People's Republic of China
| |
Collapse
|
36
|
The O-antigen negative ∆wbaV mutant of Salmonella enterica serovar Enteritidis shows adaptive resistance to antimicrobial peptides and elicits colitis in streptomycin pretreated mouse model. Gut Pathog 2015; 7:24. [PMID: 26346801 PMCID: PMC4559907 DOI: 10.1186/s13099-015-0070-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 08/07/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Salmonella enterica serovar Enteritidis, the most common cause of human gastroenteritis, employs several virulence factors including lipopolysaccharide (LPS) for infection and establishment of disease inside the host. The LPS of S. enterica serovar Enteritidis consists of lipid A, core oligosaccharide and O-antigen (OAg). The OAg consists of repeating units containing different sugars. The sugars of OAg are synthesized and assembled by a set of enzymes encoded by genes organized into clusters. Present study focuses on the effect of deletion of genes involved in biosynthesis of OAg repeating units on resistance to antimicrobial peptides and virulence in mice. METHODS In the present study, the OAg biosynthesis was impaired by deleting tyv, prt and wbaV genes involved in tyvelose biosynthesis and its transfer to OAg. The virulence phenotype of resulting mutants was evaluated by assessing resistance to antimicrobial peptides, serum complement, adhesion, invasion and in vivo colonization. RESULTS Deletion of the above three genes resulted in the production of OAg-negative LPS. All the OAg-negative mutants showed phenotype reported for rough strains. Interestingly, ΔwbaV mutant showed increased resistance against antimicrobial peptides and normal human serum. In addition, the ΔwbaV mutant also showed increased adhesion and invasion as compared to the other two O-Ag negative mutants Δtyv and Δprt. In vivo experiments also confirmed the increased virulent phenotype of ΔwbaV mutant as compared to Δprt mutant. CONCLUSION OAg-negative mutants are known to be avirulent; however, this study demonstrates that certain OAg negative mutants e.g. ∆wbaV may also show resistance to antimicrobial peptides and cause colitis in Streptomyces pretreated mouse model.
Collapse
|
37
|
ExsB is required for correct assembly of the Pseudomonas aeruginosa type III secretion apparatus in the bacterial membrane and full virulence in vivo. Infect Immun 2015; 83:1789-98. [PMID: 25690097 DOI: 10.1128/iai.00048-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 02/06/2015] [Indexed: 01/31/2023] Open
Abstract
Pseudomonas aeruginosa is responsible for high-morbidity infections of cystic fibrosis patients and is a major agent of nosocomial infections. One of its most potent virulence factors is a type III secretion system (T3SS) that injects toxins directly into the host cell cytoplasm. ExsB, a lipoprotein localized in the bacterial outer membrane, is one of the components of this machinery, of which the function remained elusive until now. The localization of the exsB gene within the exsCEBA regulatory gene operon suggested an implication in the T3SS regulation, while its similarity with yscW from Yersinia spp. argued in favor of a role in machinery assembly. The present work shows that ExsB is necessary for full in vivo virulence of P. aeruginosa. Furthermore, the requirement of ExsB for optimal T3SS assembly and activity is demonstrated using eukaryotic cell infection and in vitro assays. In particular, ExsB promotes the assembly of the T3SS secretin in the bacterial outer membrane, highlighting the molecular role of ExsB as a pilotin. This involvement in the regulation of the T3S apparatus assembly may explain the localization of the ExsB-encoding gene within the regulatory gene operon.
Collapse
|