1
|
Dinges SS, Amini K, Notarangelo LD, Delmonte OM. Primary and secondary defects of the thymus. Immunol Rev 2024; 322:178-211. [PMID: 38228406 PMCID: PMC10950553 DOI: 10.1111/imr.13306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
The thymus is the primary site of T-cell development, enabling generation, and selection of a diverse repertoire of T cells that recognize non-self, whilst remaining tolerant to self- antigens. Severe congenital disorders of thymic development (athymia) can be fatal if left untreated due to infections, and thymic tissue implantation is the only cure. While newborn screening for severe combined immune deficiency has allowed improved detection at birth of congenital athymia, thymic disorders acquired later in life are still underrecognized and assessing the quality of thymic function in such conditions remains a challenge. The thymus is sensitive to injury elicited from a variety of endogenous and exogenous factors, and its self-renewal capacity decreases with age. Secondary and age-related forms of thymic dysfunction may lead to an increased risk of infections, malignancy, and autoimmunity. Promising results have been obtained in preclinical models and clinical trials upon administration of soluble factors promoting thymic regeneration, but to date no therapy is approved for clinical use. In this review we provide a background on thymus development, function, and age-related involution. We discuss disease mechanisms, diagnostic, and therapeutic approaches for primary and secondary thymic defects.
Collapse
Affiliation(s)
- Sarah S. Dinges
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Kayla Amini
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Luigi D. Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ottavia M. Delmonte
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
2
|
Savino W, Durães J, Maldonado-Galdeano C, Perdigon G, Mendes-da-Cruz DA, Cuervo P. Thymus, undernutrition, and infection: Approaching cellular and molecular interactions. Front Nutr 2022; 9:948488. [PMID: 36225882 PMCID: PMC9549110 DOI: 10.3389/fnut.2022.948488] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/05/2022] [Indexed: 11/29/2022] Open
Abstract
Undernutrition remains a major issue in global health. Low protein-energy consumption, results in stunting, wasting and/or underweight, three deleterious forms of malnutrition that affect roughly 200 million children under the age of five years. Undernutrition compromises the immune system with the generation of various degrees of immunodeficiency, which in turn, renders undernourished individuals more sensitive to acute infections. The severity of various infectious diseases including visceral leishmaniasis (VL), influenza, and tuberculosis is associated with undernutrition. Immunosuppression resulting from protein-energy undernutrition severely impacts primary and secondary lymphoid organs involved in the response to related pathogens. The thymus-a primary lymphoid organ responsible for the generation of T lymphocytes-is particularly compromised by both undernutrition and infectious diseases. In this respect, we will discuss herein various intrathymic cellular and molecular interactions seen in undernutrition alone or in combination with acute infections. Many examples illustrated in studies on humans and experimental animals clearly revealed that protein-related undernutrition causes thymic atrophy, with cortical thymocyte depletion. Moreover, the non-lymphoid microenvironmental compartment of the organ undergoes important changes in thymic epithelial cells, including their secretory products such as hormones and extracellular matrix proteins. Of note, deficiencies in vitamins and trace elements also induce thymic atrophy. Interestingly, among the molecular interactions involved in the control of undernutrition-induced thymic atrophy is a hormonal imbalance with a rise in glucocorticoids and a decrease in leptin serum levels. Undernutrition also yields a negative impact of acute infections upon the thymus, frequently with the intrathymic detection of pathogens or their antigens. For instance, undernourished mice infected with Leishmania infantum (that causes VL) undergo drastic thymic atrophy, with significant reduction in thymocyte numbers, and decreased levels of intrathymic chemokines and cytokines, indicating that both lymphoid and microenvironmental compartments of the organ are affected. Lastly, recent data revealed that some probiotic bacteria or probiotic fermented milks improve the thymus status in a model of malnutrition, thus raising a new field for investigation, namely the thymus-gut connection, indicating that probiotics can be envisioned as a further adjuvant therapy in the control of thymic changes in undernutrition accompanied or not by infection.
Collapse
Affiliation(s)
- Wilson Savino
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Brazilian National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Rio de Janeiro Research Network on Neuroinflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Jonathan Durães
- Rio de Janeiro Research Network on Neuroinflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Laboratory on Leishmaniasis Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Carolina Maldonado-Galdeano
- Laboratory of Immunology, Reference Center for Lactobacilli Centro de Referencia para Lactobacilos-Consejo Nacional de Investigaciones Científicas y Técnicas (CERELA-CONICET), San Miguel de Tucumán, Argentina
- Laboratory of Immunology, Faculty of Biochemistry, Chemistry and Pharmacy, National University of Tucumán, San Miguel de Tucumán, Argentina
| | - Gabriela Perdigon
- Laboratory of Immunology, Reference Center for Lactobacilli Centro de Referencia para Lactobacilos-Consejo Nacional de Investigaciones Científicas y Técnicas (CERELA-CONICET), San Miguel de Tucumán, Argentina
- Laboratory of Immunology, Faculty of Biochemistry, Chemistry and Pharmacy, National University of Tucumán, San Miguel de Tucumán, Argentina
| | - Daniella Arêas Mendes-da-Cruz
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Brazilian National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Rio de Janeiro Research Network on Neuroinflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, United Kingdom
| | - Patricia Cuervo
- Rio de Janeiro Research Network on Neuroinflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Laboratory on Leishmaniasis Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Mileto SJ, Hutton ML, Walton SL, Das A, Ioannidis LJ, Ketagoda D, Quinn KM, Denton KM, Hansen DS, Lyras D. Bezlotoxumab prevents extraintestinal organ damage induced by Clostridioides difficile infection. Gut Microbes 2022; 14:2117504. [PMID: 36045589 PMCID: PMC9450906 DOI: 10.1080/19490976.2022.2117504] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Clostridioides difficile is the most common cause of infectious antibiotic-associated diarrhea, with disease mediated by two major toxins TcdA and TcdB. In severe cases, systemic disease complications may arise, resulting in fatal disease. Systemic disease in animal models has been described, with thymic damage an observable consequence of severe disease in mice. Using a mouse model of C. difficile infection, we examined this disease phenotype, focussing on the thymus and serum markers of systemic disease. The efficacy of bezlotoxumab, a monoclonal TcdB therapeutic, to prevent toxin mediated systemic disease complications was also examined. C. difficile infection causes toxin-dependent thymic damage and CD4+CD8+ thymocyte depletion in mice. These systemic complications coincide with changes in biochemical markers of liver and kidney function, including increased serum urea and creatinine, and hypoglycemia. Administration of bezlotoxumab during C. difficile infection prevents systemic disease and thymic atrophy, without blocking gut damage, suggesting the leakage of gut contents into circulation may influence systemic disease. As the thymus has such a crucial role in T cell production and immune system development, these findings may have important implications in relapse of C. difficile disease and impaired immunity during C. difficile infection. The prevention of thymic atrophy and reduced systemic response following bezlotoxumab treatment, without altering colonic damage, highlights the importance of systemic disease in C. difficile infection, and provides new insights into the mechanism of action for this therapeutic.Abbreviations: Acute kidney injury (AKI); Alanine Transaminase (ALT); Aspartate Aminotransferase (AST); C. difficile infection (CDI); chronic kidney disease (CKD); combined repetitive oligo-peptides (CROPS); cardiovascular disease (CVD); Double positive (DP); hematoxylin and eosin (H&E); immunohistochemical (IHC); multiple organ dysfunction syndrome (MODS); phosphate buffered saline (PBS); standard error of the mean (SEM); surface layer proteins (SLP); Single positive (SP); wild-type (WT).
Collapse
Affiliation(s)
- Steven J. Mileto
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia
| | - Melanie L. Hutton
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia
| | - Sarah L. Walton
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Australia
| | - Antariksh Das
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia
| | - Lisa J. Ioannidis
- Walter and Eliza Hall Insitiute, Infectious Diseases and Immune Defence Division, Parkville, Australia,Department of Medical Biology, the University of Melbourne, Parkville, Australia
| | - Don Ketagoda
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia
| | - Kylie M. Quinn
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia,RMIT University School of Biomedical and Health Sciences, Chronic Inflammatory and Infectious Diseases Program, Bundoora, Australia
| | - Kate M. Denton
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Australia
| | - Diana S. Hansen
- Walter and Eliza Hall Insitiute, Infectious Diseases and Immune Defence Division, Parkville, Australia,Department of Medical Biology, the University of Melbourne, Parkville, Australia
| | - Dena Lyras
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia,CONTACT Dena Lyras Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, 19 Innovation Walk, Clayton, Victoria3800, Australia
| |
Collapse
|
4
|
Barreira-Silva P, Melo-Miranda R, Nobrega C, Roque S, Serre-Miranda C, Borges M, Armada G, de Sá Calçada D, Behar SM, Appelberg R, Correia-Neves M. IFNγ and iNOS-Mediated Alterations in the Bone Marrow and Thymus and Its Impact on Mycobacterium avium-Induced Thymic Atrophy. Front Immunol 2021; 12:696415. [PMID: 34987496 PMCID: PMC8721011 DOI: 10.3389/fimmu.2021.696415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
Disseminated infection with the high virulence strain of Mycobacterium avium 25291 leads to progressive thymic atrophy. We previously showed that M. avium-induced thymic atrophy results from increased glucocorticoid levels that synergize with nitric oxide (NO) produced by interferon gamma (IFNγ) activated macrophages. Where and how these mediators act is not understood. We hypothesized that IFNγ and NO promote thymic atrophy through their effects on bone marrow (BM) T cell precursors and T cell differentiation in the thymus. We show that M. avium infection cause a reduction in the percentage and number of common lymphoid progenitors (CLP). Additionally, BM precursors from infected mice show an overall impaired ability to reconstitute thymi of RAGKO mice, in part due to IFNγ. Thymi from infected mice present an IFNγ and NO-driven inflammation. When transplanted under the kidney capsule of uninfected mice, thymi from infected mice are unable to sustain T cell differentiation. Finally, we observed increased thymocyte death via apoptosis after infection, independent of both IFNγ and iNOS; and a decrease on active caspase-3 positive thymocytes, which is not observed in the absence of iNOS expression. Together our data suggests that M. avium-induced thymic atrophy results from a combination of defects mediated by IFNγ and NO, including alterations in the BM T cell precursors, the thymic structure and the thymocyte differentiation.
Collapse
Affiliation(s)
- Palmira Barreira-Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute/Biomaterials, Biodegradables and Biomimetics Research Group (ICVS/3B’s), PT Government Associate Laboratory, Braga, Portugal
- *Correspondence: Palmira Barreira-Silva, ; Margarida Correia-Neves,
| | - Rita Melo-Miranda
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute/Biomaterials, Biodegradables and Biomimetics Research Group (ICVS/3B’s), PT Government Associate Laboratory, Braga, Portugal
| | - Claudia Nobrega
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute/Biomaterials, Biodegradables and Biomimetics Research Group (ICVS/3B’s), PT Government Associate Laboratory, Braga, Portugal
| | - Susana Roque
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute/Biomaterials, Biodegradables and Biomimetics Research Group (ICVS/3B’s), PT Government Associate Laboratory, Braga, Portugal
| | - Cláudia Serre-Miranda
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute/Biomaterials, Biodegradables and Biomimetics Research Group (ICVS/3B’s), PT Government Associate Laboratory, Braga, Portugal
| | - Margarida Borges
- Research Unit on Applied Molecular Biosciences (UCIBIO)/Rede de Química e Tecnologia (REQUINTE), Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Gisela Armada
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute/Biomaterials, Biodegradables and Biomimetics Research Group (ICVS/3B’s), PT Government Associate Laboratory, Braga, Portugal
| | - Daniela de Sá Calçada
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute/Biomaterials, Biodegradables and Biomimetics Research Group (ICVS/3B’s), PT Government Associate Laboratory, Braga, Portugal
| | - Samuel M. Behar
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States
| | - Rui Appelberg
- Instituto de Investigação e Inovação em Saúde (i3S), Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Margarida Correia-Neves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute/Biomaterials, Biodegradables and Biomimetics Research Group (ICVS/3B’s), PT Government Associate Laboratory, Braga, Portugal
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- *Correspondence: Palmira Barreira-Silva, ; Margarida Correia-Neves,
| |
Collapse
|
5
|
Bachert BA, Richardson JB, Mlynek KD, Klimko CP, Toothman RG, Fetterer DP, Luquette AE, Chase K, Storrs JL, Rogers AK, Cote CK, Rozak DA, Bozue JA. Development, Phenotypic Characterization and Genomic Analysis of a Francisella tularensis Panel for Tularemia Vaccine Testing. Front Microbiol 2021; 12:725776. [PMID: 34456897 PMCID: PMC8386241 DOI: 10.3389/fmicb.2021.725776] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/21/2021] [Indexed: 11/23/2022] Open
Abstract
Francisella tularensis is one of several biothreat agents for which a licensed vaccine is needed to protect against this pathogen. To aid in the development of a vaccine protective against pneumonic tularemia, we generated and characterized a panel of F. tularensis isolates that can be used as challenge strains to assess vaccine efficacy. Our panel consists of both historical and contemporary isolates derived from clinical and environmental sources, including human, tick, and rabbit isolates. Whole genome sequencing was performed to assess the genetic diversity in comparison to the reference genome F. tularensis Schu S4. Average nucleotide identity analysis showed >99% genomic similarity across the strains in our panel, and pan-genome analysis revealed a core genome of 1,707 genes, and an accessory genome of 233 genes. Three of the strains in our panel, FRAN254 (tick-derived), FRAN255 (a type B strain), and FRAN256 (a human isolate) exhibited variation from the other strains. Moreover, we identified several unique mutations within the Francisella Pathogenicity Island across multiple strains in our panel, revealing unexpected diversity in this region. Notably, FRAN031 (Scherm) completely lacked the second pathogenicity island but retained virulence in mice. In contrast, FRAN037 (Coll) was attenuated in a murine pneumonic tularemia model and had mutations in pdpB and iglA which likely led to attenuation. All of the strains, except FRAN037, retained full virulence, indicating their effectiveness as challenge strains for future vaccine testing. Overall, we provide a well-characterized panel of virulent F. tularensis strains that can be utilized in ongoing efforts to develop an effective vaccine against pneumonic tularemia to ensure protection is achieved across a range F. tularensis strains.
Collapse
Affiliation(s)
- Beth A. Bachert
- Division of Bacteriology, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Joshua B. Richardson
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Kevin D. Mlynek
- Division of Bacteriology, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Christopher P. Klimko
- Division of Bacteriology, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Ronald G. Toothman
- Division of Bacteriology, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - David P. Fetterer
- Division of Biostatistics, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Andrea E. Luquette
- Biodefense Reference Material Repository, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Kitty Chase
- Biodefense Reference Material Repository, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Jessica L. Storrs
- Biodefense Reference Material Repository, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Ashley K. Rogers
- Biodefense Reference Material Repository, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Christopher K. Cote
- Division of Bacteriology, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - David A. Rozak
- Biodefense Reference Material Repository, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Joel A. Bozue
- Division of Bacteriology, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| |
Collapse
|
6
|
Luo M, Xu L, Qian Z, Sun X. Infection-Associated Thymic Atrophy. Front Immunol 2021; 12:652538. [PMID: 34113341 PMCID: PMC8186317 DOI: 10.3389/fimmu.2021.652538] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 05/07/2021] [Indexed: 12/17/2022] Open
Abstract
The thymus is a vital organ of the immune system that plays an essential role in thymocyte development and maturation. Thymic atrophy occurs with age (physiological thymic atrophy) or as a result of viral, bacterial, parasitic or fungal infection (pathological thymic atrophy). Thymic atrophy directly results in loss of thymocytes and/or destruction of the thymic architecture, and indirectly leads to a decrease in naïve T cells and limited T cell receptor diversity. Thus, it is important to recognize the causes and mechanisms that induce thymic atrophy. In this review, we highlight current progress in infection-associated pathogenic thymic atrophy and discuss its possible mechanisms. In addition, we discuss whether extracellular vesicles/exosomes could be potential carriers of pathogenic substances to the thymus, and potential drugs for the treatment of thymic atrophy. Having acknowledged that most current research is limited to serological aspects, we look forward to the possibility of extending future work regarding the impact of neural modulation on thymic atrophy.
Collapse
Affiliation(s)
- Mingli Luo
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Lingxin Xu
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Zhengyu Qian
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Xi Sun
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| |
Collapse
|
7
|
Abstract
Following periods of haematopoietic cell stress, such as after chemotherapy, radiotherapy, infection and transplantation, patient outcomes are linked to the degree of immune reconstitution, specifically of T cells. Delayed or defective recovery of the T cell pool has significant clinical consequences, including prolonged immunosuppression, poor vaccine responses and increased risks of infections and malignancies. Thus, strategies that restore thymic function and enhance T cell reconstitution can provide considerable benefit to individuals whose immune system has been decimated in various settings. In this Review, we focus on the causes and consequences of impaired adaptive immunity and discuss therapeutic strategies that can recover immune function, with a particular emphasis on approaches that can promote a diverse repertoire of T cells through de novo T cell formation.
Collapse
|
8
|
Streptococcus suis Serotype 2 Infection Causes Host Immunomodulation through Induction of Thymic Atrophy. Infect Immun 2020; 88:IAI.00950-19. [PMID: 31932328 DOI: 10.1128/iai.00950-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 01/04/2020] [Indexed: 02/05/2023] Open
Abstract
Streptococcus suis serotype 2 is an important bacterial pathogen of swine and is also an emerging zoonotic agent that may be harmful to human health. Although the virulence genes of S. suis have been extensively studied, the mechanisms by which they damage the central immune organs have rarely been studied. In the current work, we wanted to uncover more details about the impact and mechanisms of S. suis on specific populations of thymic and immune cells in infected mice. Terminal deoxynucleotidyl transferase (TdT)-mediated dUTP-biotin nick end labeling (TUNEL) assays revealed that S. suis infection induced apoptosis in CD3+, CD14+, and epithelial cells from the thymus. S. suis infection resulted in a rapid depletion of mitochondrial permeability and release of cytochrome c (CytC) and apoptosis-inducing factor (AIF) through upregulation of Bax expression and downregulation of Bcl-xl and Bcl2 expression in thymocytes. Moreover, S. suis infection increased cleavage of caspase-3, caspase-8, and caspase-9. Thus, S. suis induced thymocyte apoptosis through a p53- and caspase-dependent pathway, which led to a decrease of CD3+ cells in the thymus, subsequently decreasing the numbers of CD4+ and CD8+ cells in the peripheral blood. Finally, expression dysregulation of proinflammatory cytokines in the serum, including interleukin 2 (IL-2), IL-6, IL-12 (p70), tumor necrosis factor (TNF), and IL-10, was observed in mice after S. suis type 2 infection. Taken together, these results suggest that S. suis infection can cause atrophy of the thymus and induce apoptosis of thymocytes in mice, thus likely suppressing host immunity.
Collapse
|
9
|
Dzhalilova DS, Kosyreva AM, Diatroptov ME, Zolotova NA, Tsvetkov IS, Mkhitarov VA, Makarova OV, Khochanskiy DN. Morphological Characteristics of the Thymus and Spleen and the Subpopulation Composition of Lymphocytes in Peripheral Blood during Systemic Inflammatory Response in Male Rats with Different Resistance to Hypoxia. Int J Inflam 2019; 2019:7584685. [PMID: 31057785 PMCID: PMC6463648 DOI: 10.1155/2019/7584685] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 01/15/2019] [Accepted: 02/19/2019] [Indexed: 12/30/2022] Open
Abstract
On the model of the systemic inflammatory response (SIRS), induced by lipopolysaccharide (LPS), the morphological and functional changes in the thymus and spleen and the subpopulation composition of peripheral blood lymphocytes of rats differing in resistance to hypoxia were studied. It was demonstrated that the level of endotoxin in blood serum after 3 hours of LPS administration in susceptible-to-hypoxia rats was 64 times higher than in the control group, while in tolerant-to-hypoxia animals it was only 8 times higher in 6 hours. After 24 hours of LPS injection, only in susceptible-to-hypoxia rats did the level of C-reactive protein in blood serum increase. There is a difference in the dynamics of morphological changes of lymphoid organs after LPS injection in tolerant- and susceptible-to-hypoxia animals. After 3 hours of LPS administration, the tolerant-to-hypoxia rats showed no changes in the thymus, spleen, and subpopulation composition of lymphocytes in peripheral blood. After 6 hours there was only a decrease in B-lymphocytes and increase in cytotoxic T-lymphocytes and NK cells. After 1 day of LPS injection, the tolerant-to-hypoxia rats had devastation in PALS of the spleen. After 3 hours of LPS injection the susceptible-to-hypoxia animals had reactive changes in the lymphoid organs: decrease of the thymus cortex, narrowing of the marginal zones of spleen lymphoid follicles, widening of their germinal centers, and a decrease in the absolute number of cytotoxic T-lymphocytes, NK cells, and B-lymphocytes. After 24 hours of LPS injection the tolerant-to-hypoxia animals had a greater absolute number of T-lymphocytes and NK cells in comparison with the susceptible rats. Thus, in animals with different resistance to hypoxia the LPS-induced SIRS is characterized by different dynamics of morphological and functional changes of the thymus and spleen. The obtained data will serve as a basis for the development of new individual approaches to the prevention and treatment of infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Dzhuliia Sh. Dzhalilova
- Department of Immunomorphology of Inflammation, Federal State Budgetary Scientific Institution “Research Institute of Human Morphology,” Tsyurupy St., 3, Moscow, Russia
| | - Anna M. Kosyreva
- Department of Immunomorphology of Inflammation, Federal State Budgetary Scientific Institution “Research Institute of Human Morphology,” Tsyurupy St., 3, Moscow, Russia
| | - Mikhail E. Diatroptov
- Department of Immunomorphology of Inflammation, Federal State Budgetary Scientific Institution “Research Institute of Human Morphology,” Tsyurupy St., 3, Moscow, Russia
| | - Natalia A. Zolotova
- Department of Immunomorphology of Inflammation, Federal State Budgetary Scientific Institution “Research Institute of Human Morphology,” Tsyurupy St., 3, Moscow, Russia
| | - Ivan S. Tsvetkov
- Department of Immunomorphology of Inflammation, Federal State Budgetary Scientific Institution “Research Institute of Human Morphology,” Tsyurupy St., 3, Moscow, Russia
| | - Vladimir A. Mkhitarov
- Department of Immunomorphology of Inflammation, Federal State Budgetary Scientific Institution “Research Institute of Human Morphology,” Tsyurupy St., 3, Moscow, Russia
| | - Olga V. Makarova
- Department of Immunomorphology of Inflammation, Federal State Budgetary Scientific Institution “Research Institute of Human Morphology,” Tsyurupy St., 3, Moscow, Russia
| | - Dmitry N. Khochanskiy
- Department of Immunomorphology of Inflammation, Federal State Budgetary Scientific Institution “Research Institute of Human Morphology,” Tsyurupy St., 3, Moscow, Russia
| |
Collapse
|
10
|
Majumdar S, Adiga V, Raghavan A, Rananaware SR, Nandi D. Comparative analysis of thymic subpopulations during different modes of atrophy identifies the reactive oxygen species scavenger, N-acetyl cysteine, to increase the survival of thymocytes during infection-induced and lipopolysaccharide-induced thymic atrophy. Immunology 2019; 157:21-36. [PMID: 30659606 DOI: 10.1111/imm.13043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/07/2018] [Accepted: 01/10/2019] [Indexed: 12/17/2022] Open
Abstract
The development of immunocompetent T cells entails a complex pathway of differentiation in the thymus. Thymic atrophy occurs with ageing and during conditions such as malnutrition, infections and cancer chemotherapy. The comparative changes in thymic subsets under different modes of thymic atrophy and the mechanisms involved are not well characterized. These aspects were investigated, using mice infected with Salmonella Typhimurium, injection with lipopolysaccharide (LPS), an inflammatory but non-infectious stimulus, etoposide (Eto), a drug used to treat some cancers, and dexamethasone (Dex), a steroid used in some inflammatory diseases. The effects on the major subpopulations of thymocytes based on multicolour flow cytometry studies were, first, the CD4- CD8- double-negative (DN) cells, mainly DN2-4, were reduced with infection, LPS and Eto treatment, but not with Dex. Second, the CD8+ CD3lo immature single-positive cells (ISPs) were highly sensitive to infection, LPS and Eto, but not Dex. Third, treatment with LPS, Eto and Dex reduced all three subpopulations of CD4+ CD8+ double-positive (DP) thymocytes, i.e. DP1, DP2 and DP3, but the DP3 subset was relatively more resistant during infection. Fourth, both CD4+ and CD8+ single-positive (SP) thymocytes were lowered by Eto and Dex, but not during infection. Notably, LPS lowered CD4+ SP subsets, whereas the CD8+ SP subsets were relatively more resistant. Interestingly, the reactive oxygen species quencher, N-acetyl cysteine, greatly improved the survival of thymocytes, especially DNs, ISPs and DPs, during infection and LPS treatment. The implications of these observations for the development of potential thymopoietic drugs are discussed.
Collapse
Affiliation(s)
- Shamik Majumdar
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Vasista Adiga
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| | - Abinaya Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | | | - Dipankar Nandi
- Department of Biochemistry, Indian Institute of Science, Bangalore, India.,Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| |
Collapse
|
11
|
Starikova EA, Golovin AS, Vasilyev KA, Karaseva AB, Serebriakova MK, Sokolov AV, Kudryavtsev IV, Burova LA, Voynova IV, Suvorov AN, Vasilyev VB, Freidlin IS. Role of arginine deiminase in thymic atrophy during experimental Streptococcus pyogenes infection. Scand J Immunol 2019; 89:e12734. [PMID: 30471128 DOI: 10.1111/sji.12734] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 11/11/2018] [Accepted: 11/18/2018] [Indexed: 01/08/2023]
Abstract
Expression of gene of arginine deiminase (AD) allows adaptation of Streptococcus pyogenes to adverse environmental conditions. AD activity can lead to L-arginine deficiency in the host cells' microenvironment. Bioavailability of L-arginine is an important factor regulating the functions of the immune cells in mammals. By introducing a mutation into S pyogenes M46-16, we obtained a strain with inactivated arcA/sagp gene (M49-16 delArcA), deficient in AD. This allowed elucidating the function of AD in pathogenesis of streptococcal infection. The virulence of the parental and mutant strains was examined in a murine model of subcutaneous streptococcal infection. L-arginine concentration in the plasma of mice infected with S pyogenes M49-16 delArcA remained unchanged in course of the entire experiment. At the same time mice infected with S pyogenes M49-16 demonstrated gradual diminution of L-arginine concentration in the blood plasma, which might be due to the activity of streptococcal AD. Mice infected with S pyogenes M49-16 delArcA demonstrated less intensive bacterial growth in the primary foci and less pronounced bacterial dissemination as compared with animals infected with the parental strain S pyogenes M46-16. Similarly, thymus involution, alterations in apoptosis, thymocyte subsets and Treg cells differentiation were less pronounced in mice infected with S pyogenes M49-16 delArcA than in those infected with the parental strain. The results obtained showed that S pyogenes M49-16 delArcA, unable to produce AD, had reduced virulence in comparison with the parental S pyogenes M49-16 strain. AD is an important factor for the realization of the pathogenic potential of streptococci.
Collapse
Affiliation(s)
| | | | | | - Alena Borisovna Karaseva
- Federal State Budgetary Scientific Institution, Institute of Experimental Medicine, St. Petersburg, Russia
| | | | - Alexey Victorovich Sokolov
- Federal State Budgetary Scientific Institution, Institute of Experimental Medicine, St. Petersburg, Russia.,Saint-Petersburg State University, St. Petersburg, Russia
| | - Igor Vladimirovich Kudryavtsev
- Federal State Budgetary Scientific Institution, Institute of Experimental Medicine, St. Petersburg, Russia.,Far Eastern Federal University Vladivostok, Russia
| | | | - Irina Vitalyevna Voynova
- Federal State Budgetary Scientific Institution, Institute of Experimental Medicine, St. Petersburg, Russia
| | - Alexander Nikolaevich Suvorov
- Federal State Budgetary Scientific Institution, Institute of Experimental Medicine, St. Petersburg, Russia.,Saint-Petersburg State University, St. Petersburg, Russia
| | - Vadim Borisovich Vasilyev
- Federal State Budgetary Scientific Institution, Institute of Experimental Medicine, St. Petersburg, Russia.,Saint-Petersburg State University, St. Petersburg, Russia
| | - Irina Solomonovna Freidlin
- Federal State Budgetary Scientific Institution, Institute of Experimental Medicine, St. Petersburg, Russia.,Saint-Petersburg State University, St. Petersburg, Russia.,Pavlov First Saint-Petersburg State Medical University, St. Petersburg, Russia
| |
Collapse
|
12
|
Majumdar S, Nandi D. Thymic Atrophy: Experimental Studies and Therapeutic Interventions. Scand J Immunol 2017; 87:4-14. [PMID: 28960415 DOI: 10.1111/sji.12618] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 09/01/2017] [Accepted: 09/25/2017] [Indexed: 12/13/2022]
Abstract
The thymus is essential for T cell development and maturation. It is extremely sensitive to atrophy, wherein loss in cellularity of the thymus and/or disruption of the thymic architecture occur. This may lead to lower naïve T cell output and limited TCR diversity. Thymic atrophy is often associated with ageing. What is less appreciated is that proper functioning of the thymus is critical for reduction in morbidity and mortality associated with various clinical conditions including infections and transplantation. Therefore, therapeutic interventions which possess thymopoietic potential and lower thymic atrophy are required. These treatments enhance thymic output, which is a vital factor in generating favourable outcomes in clinical conditions. In this review, experimental studies on thymic atrophy in rodents and clinical cases where the thymus atrophies are discussed. In addition, mechanisms leading to thymic atrophy during ageing as well as during various stress conditions are reviewed. Therapies such as zinc supplementation, IL7 administration, leptin treatment, keratinocyte growth factor administration and sex steroid ablation during thymic atrophy involving experiments in animals and various clinical scenarios are reviewed. Interventions that have been used across different scenarios to reduce the extent of thymic atrophy and enhance its output are discussed. This review aims to speculate on the roles of combination therapies, which by acting additively or synergistically may further alleviate thymic atrophy and boost its function, thereby strengthening cellular T cell responses.
Collapse
Affiliation(s)
- S Majumdar
- Department of Biochemistry & Centre for Infectious Diseases Research, Indian Institute of Science, Bangalore, India
| | - D Nandi
- Department of Biochemistry & Centre for Infectious Diseases Research, Indian Institute of Science, Bangalore, India
| |
Collapse
|
13
|
Ansari AR, Liu H. Acute Thymic Involution and Mechanisms for Recovery. Arch Immunol Ther Exp (Warsz) 2017; 65:401-420. [PMID: 28331940 DOI: 10.1007/s00005-017-0462-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 03/12/2017] [Indexed: 12/14/2022]
Abstract
Acute thymic involution (ATI) is usually regarded as a virulence trait. It is caused by several infectious agents (bacteria, viruses, parasites, fungi) and other factors, including stress, pregnancy, malnutrition and chemotherapy. However, the complex mechanisms that operate during ATI differ substantially from each other depending on the causative agent. For instance, a transient reduction in the size and weight of the thymus and depletion of populations of T cell subsets are hallmarks of ATI in many cases, whereas severe disruption of the anatomical structure of the organ is also associated with some factors, including fungal, parasitic and viral infections. However, growing evidence shows that ATI may be therapeutically halted or reversed. In this review, we highlight the current progress in this field with respect to numerous pathological factors and discuss the possible mechanisms. Moreover, these new observations also show that ATI can be mechanistically reversed.
Collapse
Affiliation(s)
- Abdur Rahman Ansari
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, 430070, Wuhan, Hubei, China
- Section of Anatomy and Histology, Department of Basic Sciences, College of Veterinary and Animal Sciences (CVAS), Jhang, Pakistan
- University of Veterinary and Animal Sciences (UVAS), Lahore, Pakistan
| | - Huazhen Liu
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, 430070, Wuhan, Hubei, China.
| |
Collapse
|
14
|
Majumdar S, Deobagkar-Lele M, Adiga V, Raghavan A, Wadhwa N, Ahmed SM, Rananaware SR, Chakraborty S, Joy O, Nandi D. Differential susceptibility and maturation of thymocyte subsets during Salmonella Typhimurium infection: insights on the roles of glucocorticoids and Interferon-gamma. Sci Rep 2017; 7:40793. [PMID: 28091621 PMCID: PMC5238503 DOI: 10.1038/srep40793] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 12/09/2016] [Indexed: 11/08/2022] Open
Abstract
The thymus is known to atrophy during infections; however, a systematic study of changes in thymocyte subpopulations has not been performed. This aspect was investigated, using multi-color flow cytometry, during oral infection of mice with Salmonella Typhimurium (S. Typhimurium). The major highlights are: First, a block in the developmental pathway of CD4-CD8- double negative (DN) thymocytes is observed. Second, CD4+CD8+ double positive (DP) thymocytes, mainly in the DP1 (CD5loCD3lo) and DP2 (CD5hiCD3int), but not DP3 (CD5intCD3hi), subsets are reduced. Third, single positive (SP) thymocytes are more resistant to depletion but their maturation is delayed, leading to accumulation of CD24hiCD3hi SP. Kinetic studies during infection demonstrated differences in sensitivity of thymic subpopulations: Immature single positive (ISP) > DP1, DP2 > DN3, DN4 > DN2 > CD4+ > CD8+. Upon infection, glucocorticoids (GC), inflammatory cytokines, e.g. Ifnγ, etc are induced, which enhance thymocyte death. Treatment with RU486, the GC receptor antagonist, increases the survival of most thymic subsets during infection. Studies with Ifnγ-/- mice demonstrated that endogenous Ifnγ produced during infection enhances the depletion of DN2-DN4 subsets, promotes the accumulation of DP3 and delays the maturation of SP thymocytes. The implications of these observations on host cellular responses during infections are discussed.
Collapse
Affiliation(s)
- Shamik Majumdar
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Mukta Deobagkar-Lele
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Vasista Adiga
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore 560012, India
- Flow Cytometry Facility, Indian Institute of Science, Bangalore 560012, India
| | - Abinaya Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Nitin Wadhwa
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Syed Moiz Ahmed
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | | | | - Omana Joy
- Flow Cytometry Facility, Indian Institute of Science, Bangalore 560012, India
| | - Dipankar Nandi
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore 560012, India
- Flow Cytometry Facility, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
15
|
Hotta A, Fujita O, Uda A, Yamamoto Y, Sharma N, Tanabayashi K, Yamada A, Morikawa S. Virulence of representative Japanese Francisella tularensis and immunologic consequences of infection in mice. Microbiol Immunol 2017; 60:168-76. [PMID: 26853540 DOI: 10.1111/1348-0421.12363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/19/2016] [Accepted: 02/02/2016] [Indexed: 11/28/2022]
Abstract
Francisella tularensis, which causes tularemia, is widely distributed in the Northern hemisphere. F. tularensis strains isolated in Japan are genetically unique from non-Japanese strains; however, their phenotypic properties have not been well studied. Thus, mice were infected with representative Japanese strains of F. tularensis and their virulence and mouse immune responses to them assessed. Of four representative Japanese strains, the Ebina, Jap and Tsuchiya strains were susceptible to H2 O2 and did not grow well intracellularly. Only Yama strain grew intracellularly and was lethal to mice. Infection with Yama strain resulted in drastic increases in IFN-γ, CD4 and CD8 double-positive T cells and Th1 cells (CD3, CD4 and Tim3-positive cells), and a decrease in the ratio of CD8-positive CD4-negative T cells in mice. C57BL/6J mice that survived infection produced IgM antibodies to LPS and IgG2c antibodies to 43, 19 and 17 kDa proteinase K-sensitive components. These data are valuable for understanding the phenotypic properties of F. tularensis in Japan.
Collapse
Affiliation(s)
- Akitoyo Hotta
- Department of Veterinary Science, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku, Tokyo 162-8640
| | - Osamu Fujita
- Department of Veterinary Science, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku, Tokyo 162-8640
| | - Akihiko Uda
- Department of Veterinary Science, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku, Tokyo 162-8640
| | - Yoshie Yamamoto
- Department of Veterinary Science, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku, Tokyo 162-8640
| | - Neekun Sharma
- Department of Veterinary Science, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku, Tokyo 162-8640.,United Graduate School of Veterinary Science Gifu University, 1-1 Yanagido, Gifu 501-1193
| | - Kiyoshi Tanabayashi
- Department of Veterinary Science, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku, Tokyo 162-8640
| | - Akio Yamada
- Laboratory of Veterinary Public Health, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan
| | - Shigeru Morikawa
- Department of Veterinary Science, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku, Tokyo 162-8640.,United Graduate School of Veterinary Science Gifu University, 1-1 Yanagido, Gifu 501-1193
| |
Collapse
|
16
|
Alves da Costa T, Di Gangi R, Thomé R, Barreto Felisbino M, Pires Bonfanti A, Lumi Watanabe Ishikawa L, Sartori A, Burger E, Verinaud L. Severe Changes in Thymic Microenvironment in a Chronic Experimental Model of Paracoccidioidomycosis. PLoS One 2016; 11:e0164745. [PMID: 27736987 PMCID: PMC5063316 DOI: 10.1371/journal.pone.0164745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 09/29/2016] [Indexed: 12/26/2022] Open
Abstract
T cell maturation takes place within the thymus, a primary lymphoid organ that is commonly targeted during infections. Previous studies showed that acute infection with Paracoccidioides brasiliensis (Pb), the causative agent of paracoccidioidomycosis (PCM), promotes thymic atrophy that is associated with the presence of yeast cells in the organ. However, as human PCM is a chronic infection, it is imperative to investigate the consequences of Pb infection over the thymic structure and function in chronic infection. In this sense, we developed a new experimental model where Pb yeast cells are injected through the intraperitoneal route and mice are evaluated over 120 days of infection. Thymuses were analyzed in chronically infected mice and we found that the thymus underwent extensive morphological alterations and severe infiltration of P. brasiliensis yeast cells. Further analyses showed an altered phenotype and function of thymocytes that are commonly found in peripheral mature T lymphocytes. We also observed activation of the NLRP3 inflammasome in the thymus. Our data provide new information on the severe changes observed in the thymic microenvironment in a model of PCM that more closely mimics the human infection.
Collapse
Affiliation(s)
- Thiago Alves da Costa
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Rosária Di Gangi
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Rodolfo Thomé
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Marina Barreto Felisbino
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Amanda Pires Bonfanti
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Larissa Lumi Watanabe Ishikawa
- Department of Microbiology and Immunology, Institute of Biosciences of Botucatu, Univ. Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Alexandrina Sartori
- Department of Microbiology and Immunology, Institute of Biosciences of Botucatu, Univ. Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Eva Burger
- Department of Microbiology and Immunology, Institute of Biomedical Sciences, Federal University of Alfenas (UNIFAL-MG), Alfenas, Minas Gerais, Brazil
| | - Liana Verinaud
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
17
|
Kong Y, Li Y, Zhang W, Yuan S, Winkler R, Kröhnert U, Han J, Lin T, Zhou Y, Miao P, Wang B, Zhang J, Yu Z, Zhang Y, Kosan C, Zeng H. Sepsis-Induced Thymic Atrophy Is Associated with Defects in Early Lymphopoiesis. Stem Cells 2016; 34:2902-2915. [PMID: 27422171 DOI: 10.1002/stem.2464] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/28/2016] [Accepted: 07/06/2016] [Indexed: 12/24/2022]
Abstract
Impaired T lymphopoiesis is associated with immunosuppression of the adaptive immune response and plays a role in the morbidity and mortality of patients and animal models of sepsis. Although previous studies examined several intrathymic mechanisms that negatively affect T lymphopoiesis, the extrathymic mechanisms remain poorly understood. Here, we report a dramatic decrease in the percentage of early T lineage progenitors (ETPs) in three models of sepsis in mice (cecal ligation and puncture, lipopolysaccharide continuous injection, and poly I:C continuous injection). However, septic mice did not show a decrease in the number of bone marrow (BM) precursor cells. Instead, the BM progenitors for ETPs expressed reduced mRNA levels of CC chemokine receptor (CCR) 7, CCR9 and P-selectin glycoprotein ligand 1, and exhibited impaired homing capacity in vitro and in vivo. Furthermore, RNA-Seq analysis and real-time PCR showed a marked downregulation of several lymphoid-related genes in hematopoietic stem and progenitor cells. Hematopoietic stem and progenitor cells differentiated into myeloid cells but failed to generate T lymphocytes in vitro and in vivo. Our results indicate that the depletion of ETPs in septic mice might be a consequence of an impaired migration of BM progenitors to the thymus, as well as a defect in lymphoid lineage commitment. Stem Cells 2016;34:2902-2915.
Collapse
Affiliation(s)
- Yaxian Kong
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
| | - Yajie Li
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
| | - Weimei Zhang
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
| | - Shaoxin Yuan
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
| | - René Winkler
- Department of Biochemistry, Center for Molecular Biomedicine (CMB), Friedrich-Schiller-University, Jena, Germany
| | - Ulrike Kröhnert
- Department of Biochemistry, Center for Molecular Biomedicine (CMB), Friedrich-Schiller-University, Jena, Germany
| | - Junyan Han
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
| | - Tao Lin
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
| | - Yu Zhou
- Department of Immunology, School of Basic Medical Sciences, Key Laboratory of Medical Immunology (Ministry of Health), Peking University Health Science Center, Beijing, China
| | - Peng Miao
- Department of Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Beibei Wang
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
| | - Jianping Zhang
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
| | - Zhengya Yu
- Department of Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yu Zhang
- Department of Immunology, School of Basic Medical Sciences, Key Laboratory of Medical Immunology (Ministry of Health), Peking University Health Science Center, Beijing, China
| | - Christian Kosan
- Department of Biochemistry, Center for Molecular Biomedicine (CMB), Friedrich-Schiller-University, Jena, Germany
| | - Hui Zeng
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
| |
Collapse
|
18
|
Morrot A, Villar SR, González FB, Pérez AR. Evasion and Immuno-Endocrine Regulation in Parasite Infection: Two Sides of the Same Coin in Chagas Disease? Front Microbiol 2016; 7:704. [PMID: 27242726 PMCID: PMC4876113 DOI: 10.3389/fmicb.2016.00704] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 04/28/2016] [Indexed: 12/16/2022] Open
Abstract
Chagas disease is a serious illness caused by the protozoan parasite Trypanosoma cruzi. Nearly 30% of chronically infected people develop cardiac, digestive, or mixed alterations, suggesting a broad range of host-parasite interactions that finally impact upon chronic disease outcome. The ability of T. cruzi to persist and cause pathology seems to depend on diverse factors like T. cruzi strains, the infective load and the route of infection, presence of virulence factors, the parasite capacity to avoid protective immune response, the strength and type of host defense mechanisms and the genetic background of the host. The host-parasite interaction is subject to a constant neuro-endocrine regulation that is thought to influence the adaptive immune system, and as the infection proceeds it can lead to a broad range of outcomes, ranging from pathogen elimination to its continued persistence in the host. In this context, T. cruzi evasion strategies and host defense mechanisms can be envisioned as two sides of the same coin, influencing parasite persistence and different outcomes observed in Chagas disease. Understanding how T. cruzi evade host's innate and adaptive immune response will provide important clues to better dissect mechanisms underlying the pathophysiology of Chagas disease.
Collapse
Affiliation(s)
- Alexandre Morrot
- Institute of Microbiology, Federal University of Rio de Janeiro Rio de Janeiro, Brazil
| | - Silvina R Villar
- Institute of Clinical and Experimental Immunology of Rosario, CONICET, National University of RosarioRosario, Argentina; Faculty of Medical Sciences, National University of RosarioRosario, Argentina
| | - Florencia B González
- Institute of Clinical and Experimental Immunology of Rosario, CONICET, National University of RosarioRosario, Argentina; Faculty of Medical Sciences, National University of RosarioRosario, Argentina
| | - Ana R Pérez
- Institute of Clinical and Experimental Immunology of Rosario, CONICET, National University of RosarioRosario, Argentina; Faculty of Medical Sciences, National University of RosarioRosario, Argentina
| |
Collapse
|
19
|
Duan X, Lu J, Zhou K, Wang J, Wu J, Fu Gao G, Fang M. NK-cells are involved in thymic atrophy induced by influenza A virus infection. J Gen Virol 2016; 96:3223-3235. [PMID: 26346306 DOI: 10.1099/jgv.0.000276] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
NK-cells have traditionally been viewed as innate effector lymphocytes that serve as a first line of defence against a range of viruses and tumours. More recently, the importance of NK-cell immunoregulatory functions has been highlighted. NK-cells can inhibit antiviral T-cell responses, and also play an important role in controlling harmful T-cell activity in autoimmunity and transplantation settings. Moreover, immunopathological effects of NK-cells during infection have been reported. Nevertheless, the phenotype and function of NK-cells in the thymus during influenza virus infection is not understood. In the present study, we demonstrated that influenza A virus (IAV) infection in mice led to severe thymic atrophy caused by increased thymic T-cell apoptosis and suppressed proliferation. We found that NK-cells played a critical role in this phenotype. IFN-c production by NK-cells was a contributing factor for thymic atrophy during IAV infection. Taken together, our data indicate that NK-cells are involved in the thymic atrophy associated with IAV infection.
Collapse
Affiliation(s)
- Xuefeng Duan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China.,Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing, PR China
| | - Jiao Lu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China.,Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing, PR China.,University of Chinese Academy of Sciences, Beijing, PR China
| | - Kai Zhou
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China.,Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing, PR China
| | - Jing Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China.,Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing, PR China.,University of Chinese Academy of Sciences, Beijing, PR China
| | - Jihua Wu
- Department of Pathology, 306 Hospital of PLA, Beijing, PR China
| | - George Fu Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China.,Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing, PR China
| | - Min Fang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China.,Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing, PR China
| |
Collapse
|
20
|
Abstract
As the primary site of T-cell development, the thymus plays a key role in the generation of a strong yet self-tolerant adaptive immune response, essential in the face of the potential threat from pathogens or neoplasia. As the importance of the role of the thymus has grown, so too has the understanding that it is extremely sensitive to both acute and chronic injury. The thymus undergoes rapid degeneration following a range of toxic insults, and also involutes as part of the aging process, albeit at a faster rate than many other tissues. The thymus is, however, capable of regenerating, restoring its function to a degree. Potential mechanisms for this endogenous thymic regeneration include keratinocyte growth factor (KGF) signaling, and a more recently described pathway in which innate lymphoid cells produce interleukin-22 (IL-22) in response to loss of double positive thymocytes and upregulation of IL-23 by dendritic cells. Endogenous repair is unable to fully restore the thymus, particularly in the aged population, and this paves the way toward the need for exogenous strategies to help regenerate or even replace thymic function. Therapies currently in clinical trials include KGF, use of the cytokines IL-7 and IL-22, and hormonal modulation including growth hormone administration and sex steroid inhibition. Further novel strategies are emerging in the preclinical setting, including the use of precursor T cells and thymus bioengineering. The use of such strategies offers hope that for many patients, the next regeneration of their thymus is a step closer.
Collapse
Affiliation(s)
- Mohammed S Chaudhry
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Enrico Velardi
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jarrod A Dudakov
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Marcel R M van den Brink
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
21
|
Immune Evasion Strategies of Trypanosoma cruzi. J Immunol Res 2015; 2015:178947. [PMID: 26240832 PMCID: PMC4512591 DOI: 10.1155/2015/178947] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 12/31/2014] [Indexed: 01/03/2023] Open
Abstract
Microbes have evolved a diverse range of strategies to subvert the host immune system. The protozoan parasite Trypanosoma cruzi, the causative agent of Chagas disease, provides a good example of such adaptations. This parasite targets a broad spectrum of host tissues including both peripheral and central lymphoid tissues. Rapid colonization of the host gives rise to a systemic acute response which the parasite must overcome. The parasite in fact undermines both innate and adaptive immunity. It interferes with the antigen presenting function of dendritic cells via an action on host sialic acid-binding Ig-like lectin receptors. These receptors also induce suppression of CD4(+) T cells responses, and we presented evidence that the sialylation of parasite-derived mucins is required for the inhibitory effects on CD4 T cells. In this review we highlight the major mechanisms used by Trypanosoma cruzi to overcome host immunity and discuss the role of parasite colonization of the central thymic lymphoid tissue in chronic disease.
Collapse
|
22
|
Successful protection against tularemia in C57BL/6 mice is correlated with expansion of Francisella tularensis-specific effector T cells. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 22:119-28. [PMID: 25410207 DOI: 10.1128/cvi.00648-14] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Francisella tularensis is an intracellular, Gram-negative bacterium that causes the fatal disease tularemia. Currently, there are no licensed vaccines for tularemia and the requirements for protection against infection are poorly defined. To identify correlates of vaccine-induced immunity against tularemia, we compared different strains of the live vaccine strain (LVS) for their relative levels of virulence and ability to protect C57BL/6 mice against challenge with virulent F. tularensis strain SchuS4. Successful vaccination, as defined by survival of C57BL/6 mice, was correlated with significantly greater numbers of effector T cells in the spleen and lung. Further, lung cells and splenocytes from fully protected animals were more effective than lung cells and splenocytes from vaccinated but nonimmune animals in limiting intracellular replication of SchuS4 in vitro. Together, our data provide a unique model to compare efficacious vaccines to nonefficacious vaccines, which will enable comprehensive identification of host and bacterial components required for immunization against tularemia.
Collapse
|
23
|
Liu B, Zhang X, Deng W, Liu J, Li H, Wen M, Bao L, Qu J, Liu Y, Li F, An Y, Qin C, Cao B, Wang C. Severe influenza A(H1N1)pdm09 infection induces thymic atrophy through activating innate CD8(+)CD44(hi) T cells by upregulating IFN-γ. Cell Death Dis 2014; 5:e1440. [PMID: 25275588 PMCID: PMC4649502 DOI: 10.1038/cddis.2014.323] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 07/02/2014] [Accepted: 07/02/2014] [Indexed: 11/12/2022]
Abstract
Thymic atrophy has been described as a consequence of infection by several pathogens including highly pathogenic avian influenza virus and is induced through diverse mechanisms. However, whether influenza A(H1N1)pdm09 infection induces thymic atrophy and the mechanisms underlying this process have not been completely elucidated. Our results show that severe infection of influenza A(H1N1)pdm09 led to progressive thymic atrophy and CD4+CD8+ double-positive (DP) T-cells depletion due to apoptosis. The viruses were present in thymus, where they activated thymic innate CD8+CD44hi single-positive (SP) thymocytes to secrete a large amount of IFN-γ. Milder thymic atrophy was observed in innate CD8+ T-cell-deficient mice (C57BL/6J). Neutralization of IFN-γ could significantly rescue the atrophy, but peramivir treatment did not significantly alleviate thymic atrophy. In this study, we demonstrated that thymic innate CD8+CD44hi SP T-cells have critical roles in influenza A(H1N1)pdm09 infection-induced thymic atrophy through secreting IFN-γ. This exceptional mechanism might serve as a target for the prevention and treatment of thymic atrophy induced by influenza A(H1N1)pdm09.
Collapse
Affiliation(s)
- B Liu
- Department of Infectious Diseases and Clinical Microbiology, Beijing Chao-Yang Hospital, Beijing Institute of Respiratory Medicine, Capital Medical University, Beijing, China
| | - X Zhang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - W Deng
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - J Liu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - H Li
- Department of Infectious Diseases and Clinical Microbiology, Beijing Chao-Yang Hospital, Beijing Institute of Respiratory Medicine, Capital Medical University, Beijing, China
| | - M Wen
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - L Bao
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - J Qu
- Department of Infectious Diseases and Clinical Microbiology, Beijing Chao-Yang Hospital, Beijing Institute of Respiratory Medicine, Capital Medical University, Beijing, China
| | - Y Liu
- Department of Infectious Diseases and Clinical Microbiology, Beijing Chao-Yang Hospital, Beijing Institute of Respiratory Medicine, Capital Medical University, Beijing, China
| | - F Li
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Y An
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - C Qin
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - B Cao
- Department of Infectious Diseases and Clinical Microbiology, Beijing Chao-Yang Hospital, Beijing Institute of Respiratory Medicine, Capital Medical University, Beijing, China
| | - C Wang
- 1] Department of Infectious Diseases and Clinical Microbiology, Beijing Chao-Yang Hospital, Beijing Institute of Respiratory Medicine, Capital Medical University, Beijing, China [2] Department of Respiratory Medicine, Capital Medical University, Beijing, China [3] Beijing Institute of Respiratory Medicine, Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Beijing, China [4] Beijing Institute of Respiratory Medicine, Beijing Hospital, Ministry of Heath, P. R. China, Beijing, China
| |
Collapse
|
24
|
Deobagkar-Lele M, Victor ES, Nandi D. c-Jun NH2 -terminal kinase is a critical node in the death of CD4+ CD8+ thymocytes during Salmonella enterica serovar Typhimurium infection. Eur J Immunol 2013; 44:137-49. [PMID: 24105651 DOI: 10.1002/eji.201343506] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 08/15/2013] [Accepted: 09/13/2013] [Indexed: 12/13/2022]
Abstract
Thymic atrophy, due to the depletion of CD4(+) CD8(+) thymocytes, is observed during infections with numerous pathogens. Several mechanisms, such as glucocorticoids and inflammatory cytokines, are known to be involved in this process; however, the roles of intracellular signaling molecules have not been investigated. In this study, the functional role of c-Jun NH2 -terminal kinase (JNK) during infection-induced thymic atrophy was addressed. The levels of phosphorylated JNK in immature CD4(+) CD8(+) thymocytes from C57BL/6 (Nramp-deficient) and 129/SvJ (Nramp-sufficient) mice were increased upon oral infection of mice with Salmonella enterica serovar Typhimurium (S. typhimurium). Furthermore, inhibition of JNK signaling, but not ERK or p38 MAPK, prevented the in vitro death of infected thymocytes. Importantly, the in vivo inhibition of JNK signaling with SP600125 protected C57BL/6 CD4(+) CD8(+) thymocytes from depletion via multiple mechanisms as follows: lower intracellular ROS, inflammatory cytokines, Bax and caspase 3 activity, increase in Bcl-xL amounts, and prevention of the loss in mitochondrial membrane potential. Notably, thymic architecture was preserved in infected mice treated with SP600125. Overall, this study identifies a novel role for JNK as a crucial regulator of the death of CD4(+) CD8(+) thymocytes during S. typhimurium infection.
Collapse
Affiliation(s)
- Mukta Deobagkar-Lele
- Department of Biochemistry and Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| | | | | |
Collapse
|
25
|
Tolerance has its limits: how the thymus copes with infection. Trends Immunol 2013; 34:502-10. [PMID: 23871487 DOI: 10.1016/j.it.2013.06.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 05/25/2013] [Accepted: 06/17/2013] [Indexed: 01/11/2023]
Abstract
The thymus is required for T cell differentiation; a process that depends on which antigens are encountered by thymocytes, the environment surrounding the differentiating cells, and the thymic architecture. These features are altered by local infection of the thymus and by the inflammatory mediators that accompany systemic infection. Although once believed to be an immune privileged site, it is now known that antimicrobial responses are recruited to the thymus. Resolving infection in the thymus is important because chronic persistence of microbes impairs the differentiation of pathogen-specific T cells and diminishes resistance to infection. Understanding how these mechanisms contribute to disease susceptibility, particularly in infants with developing T cell repertoires, requires further investigation.
Collapse
|
26
|
Deobagkar-Lele M, Chacko SK, Victor ES, Kadthur JC, Nandi D. Interferon-γ- and glucocorticoid-mediated pathways synergize to enhance death of CD4(+) CD8(+) thymocytes during Salmonella enterica serovar Typhimurium infection. Immunology 2013. [PMID: 23186527 DOI: 10.1111/imm.12047] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Thymic atrophy is known to occur during infections; however, there is limited understanding of its causes and of the cross-talk between different pathways. This study investigates mechanisms involved in thymic atrophy during a model of oral infection by Salmonella enterica serovar Typhimurium (S. typhimurium). Significant death of CD4(+) CD8(+) thymocytes, but not of single-positive thymocytes or peripheral lymphocytes, is observed at later stages during infection with live, but not heat-killed, bacteria. The death of CD4(+) CD8(+) thymocytes is Fas-independent as shown by infection studies with lpr mice. However, apoptosis occurs with lowering of mitochondrial potential and higher caspase-3 activity. The amounts of cortisol, a glucocorticoid, and interferon-γ (IFN-γ), an inflammatory cytokine, increase upon infection. To investigate the functional roles of these molecules, studies were performed using Ifnγ(-/-) mice together with RU486, a glucocorticoid receptor antagonist. Treatment of C57BL/6 mice with RU486 does not affect colony-forming units (CFU), amounts of IFN-γ and mouse survival; however, there is partial rescue in thymocyte death. Upon infection, Ifnγ(-/-) mice display higher CFU and lower survival but more surviving thymocytes are recovered. However, there is no difference in cortisol amounts in C57BL/6 and Ifnγ(-/-) mice. Importantly, the number of CD4(+) CD8(+) thymocytes is significantly higher in Ifnγ(-/-) mice treated with RU486 along with lower caspase-3 activity and mitochondrial damage. Hence, endogenous glucocorticoid and IFN-γ-mediated pathways are parallel but synergize in an additive manner to induce death of CD4(+) CD8(+) thymocytes during S. typhimurium infection. The implications of this study for host responses during infection are discussed.
Collapse
|
27
|
Fine tuning inflammation at the front door: macrophage complement receptor 3-mediates phagocytosis and immune suppression for Francisella tularensis. PLoS Pathog 2013; 9:e1003114. [PMID: 23359218 PMCID: PMC3554622 DOI: 10.1371/journal.ppat.1003114] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 11/19/2012] [Indexed: 12/11/2022] Open
Abstract
Complement receptor 3 (CR3, CD11b/CD18) is a major macrophage phagocytic receptor. The biochemical pathways through which CR3 regulates immunologic responses have not been fully characterized. Francisella tularensis is a remarkably infectious, facultative intracellular pathogen of macrophages that causes tularemia. Early evasion of the host immune response contributes to the virulence of F. tularensis and CR3 is an important receptor for its phagocytosis. Here we confirm that efficient attachment and uptake of the highly virulent Type A F. tularensis spp. tularensis strain Schu S4 by human monocyte-derived macrophages (hMDMs) requires complement C3 opsonization and CR3. However, despite a>40-fold increase in uptake following C3 opsonization, Schu S4 induces limited pro-inflammatory cytokine production compared with non-opsonized Schu S4 and the low virulent F. novicida. This suggests that engagement of CR3 by opsonized Schu S4 contributes specifically to the immune suppression during and shortly following phagocytosis which we demonstrate by CD11b siRNA knockdown in hMDMs. This immune suppression is concomitant with early inhibition of ERK1/2, p38 MAPK and NF-κB activation. Furthermore, TLR2 siRNA knockdown shows that pro-inflammatory cytokine production and MAPK activation in response to non-opsonized Schu S4 depends on TLR2 signaling providing evidence that CR3-TLR2 crosstalk mediates immune suppression for opsonized Schu S4. Deletion of the CD11b cytoplasmic tail reverses the CR3-mediated decrease in ERK and p38 activation during opsonized Schu-S4 infection. The CR3-mediated signaling pathway involved in this immune suppression includes Lyn kinase and Akt activation, and increased MKP-1, which limits TLR2-mediated pro-inflammatory responses. These data indicate that while the highly virulent F. tularensis uses CR3 for efficient uptake, optimal engagement of this receptor down-regulates TLR2-dependent pro-inflammatory responses by inhibiting MAPK activation through outside-in signaling. CR3-linked immune suppression is an important mechanism involved in the pathogenesis of F. tularensis infection.
Collapse
|
28
|
Effects of Pentoxifylline on Liver and Thymus of Plasmodium berghei ANKA Infected Swiss Albino Mice. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s12595-012-0048-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
29
|
Borges M, Barreira-Silva P, Flórido M, Jordan MB, Correia-Neves M, Appelberg R. Molecular and cellular mechanisms of Mycobacterium avium-induced thymic atrophy. THE JOURNAL OF IMMUNOLOGY 2012; 189:3600-8. [PMID: 22922815 DOI: 10.4049/jimmunol.1201525] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Thymic atrophy has been described as a consequence of infection by several pathogens and shown to be induced through diverse mechanisms. Using the mouse model of Mycobacterium avium infection, we show in this study that the production of NO from IFN-γ-activated macrophages plays a major role in mycobacterial infection-induced thymic atrophy. Our results show that disseminated infection with a highly virulent strain of M. avium, but not with a low-virulence strain, led to a progressive thymic atrophy. Thymic involution was prevented in genetically manipulated mice unable to produce IFN-γ or the inducible NO synthase. In addition, mice with a selective impairment of IFN-γ signaling in macrophages were similarly protected from infection-induced thymic atrophy. A slight increase in the concentration of corticosterone was found in mice infected with the highly virulent strain, and thymocytes presented an increased susceptibility to dexamethasone-induced death during disseminated infection. The administration of an antagonist of glucocorticoid receptors partially reverted the infection-induced thymic atrophy. We observed a reduction in all thymocyte populations analyzed, including the earliest thymic precursors, suggesting a defect during thymic colonization by T cell precursors and/or during the differentiation of these cells in the bone marrow in addition to local demise of thymic cells. Our data suggest a complex picture underlying thymic atrophy during infection by M. avium with the participation of locally produced NO, endogenous corticosteroid activity, and reduced bone marrow seeding.
Collapse
Affiliation(s)
- Margarida Borges
- Institute for Molecular and Cell Biology, University of Porto, 4150-180 Porto, Portugal
| | | | | | | | | | | |
Collapse
|
30
|
Pérez AR, Berbert LR, Lepletier A, Revelli S, Bottasso O, Silva-Barbosa SD, Savino W. TNF-α is involved in the abnormal thymocyte migration during experimental Trypanosoma cruzi infection and favors the export of immature cells. PLoS One 2012; 7:e34360. [PMID: 22461911 PMCID: PMC3312912 DOI: 10.1371/journal.pone.0034360] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 02/27/2012] [Indexed: 11/28/2022] Open
Abstract
Previous studies revealed a significant production of inflammatory cytokines together with severe thymic atrophy and thymocyte migratory disturbances during experimental Chagas disease. Migratory activity of thymocytes and mature T cells seem to be finely tuned by cytokines, chemokines and extracellular matrix (ECM) components. Systemic TNF-α is enhanced during infection and appears to be crucial in the response against the parasite. However, it also seems to be involved in disease pathology, since it is implicated in the arrival of T cells to effector sites, including the myocardium. Herein, we analyzed the role of TNF-α in the migratory activity of thymocytes in Trypanosoma cruzi (T. cruzi) acutely-infected mice. We found increased expression and deposition of TNF-α in the thymus of infected animals compared to controls, accompanied by increased co-localization of fibronectin, a cell migration-related ECM molecule, whose contents in the thymus of infected mice is also augmented. In-vivo studies showed an enhanced export of thymocytes in T. cruzi-infected mice, as ascertained by intrathymic injection of FITC alone or in combination with TNF-α. The increase of immature CD4+CD8+ T cells in secondary lymphoid organs was even more clear-cut when TNF-α was co-injected with FITC. Ex-vivo transmigration assays also revealed higher number of migrating cells when TNF-α was added onto fibronectin lattices, with higher input of all thymocyte subsets, including immature CD4+CD8+. Infected animals also exhibit enhanced levels of expression of both mRNA TNF-α receptors in the CD4+CD8+ subpopulation. Our findings suggest that in T. cruzi acute infection, when TNF-α is complexed with fibronectin, it favours the altered migration of thymocytes, promoting the release of mature and immature T cells to different compartments of the immune system. Conceptually, this work reinforces the notion that thymocyte migration is a multivectorial biological event in health and disease, and that TNF-α is a further player in the process.
Collapse
Affiliation(s)
- Ana Rosa Pérez
- Faculty of Medical Sciences, Institute of Immunology, National University of Rosario, Rosario, Argentina.
| | | | | | | | | | | | | |
Collapse
|
31
|
Conlan JW. Tularemia vaccines: recent developments and remaining hurdles. Future Microbiol 2011; 6:391-405. [PMID: 21526941 DOI: 10.2217/fmb.11.22] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Francisella tularensis subsp. tularensis is a facultative intracellular bacterial pathogen of humans and other mammals. Its inhaled infectious dose is very low and can result in very high mortality. Historically, subsp. tularensis was developed as a biological weapon and there are now concerns about its abuse as such by terrorists. A live attenuated vaccine developed pragmatically more than half a century ago from the less virulent holarctica subsp. is the sole prophylactic available, but it remains unlicensed. In recent years several other potential live, killed and subunit vaccine candidates have been developed and tested in mice for their efficacy against respiratory challenge with subsp. tularensis. This article will review these vaccine candidates and the development hurdles they face.
Collapse
Affiliation(s)
- J Wayne Conlan
- National Research Council, Institute for Biological Sciences, Ottawa, Ontario, Canada.
| |
Collapse
|
32
|
Effects of Plasmodium berghei on thymus: high levels of apoptosis and premature egress of CD4(+)CD8(+) thymocytes in experimentally infected mice. Immunobiology 2011; 216:1148-54. [PMID: 21601941 DOI: 10.1016/j.imbio.2011.03.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 03/30/2011] [Indexed: 01/13/2023]
Abstract
We have previously showed alterations in the thymus during experimental infection with Plasmodium berghei, the causative agent of Malaria. Such alterations comprised histological changes with loss of delimitation between cortical and medullar regions, a profound atrophy with depletion of CD4(+)CD8(+) double-positive (DP) thymocytes, and severe changes in the expression of cell migration-related molecules, belonging to the extracellular matrix and chemokine protein families. Taken together, these considerations prompted us to evaluate if the acute thymic atrophy observed during Plasmodium infection was correlated with increased apoptotic levels of thymocytes or with their premature emigration to the periphery. Our results confirmed that the marked reduction of the thymus weight in infected animals was accompanied by histological alterations, which included a very large number of cells showing nuclear condensation and karyorrhectic changes surrounded by histiocytes suggesting increased levels of apoptosis. This was confirmed by immunohistochemistry and flow cytometry techniques. In order to verify if an accelerated emigration of thymic cells to the peripheral lymphoid organs was also occurring we analyzed the spleen and mesenteric lymph nodes from control and infected mice. No significant differences were found in the spleen, but were seen after 14 days of infection between control and infected mice in the mesenteric lymph nodes. The main alteration was the presence of double negative (CD4(-)CD8(-)) and double positive (CD4(+)CD8(+)) cells. We concluded that both apoptosis of thymocytes and premature egress of immature cells take place during infection. Additional studies will be necessary to verify how such alterations might influence the systemic immune response to the parasite.
Collapse
|
33
|
Abstract
In recent years, studies on the intracellular pathogen Francisella tularensis have greatly intensified, generating a wealth of new information on the interaction of this organism with the immune system. Here we review the basic elements of the innate and adaptive immune responses that contribute to protective immunity against Francisella species, with special emphasis on new data that has emerged in the last 5 years. Most studies have utilized the mouse model of infection, although there has been an expansion of work on human cells and other new animal models. In mice, basic immune parameters that operate in defense against other intracellular pathogen infections, such as interferon gamma, TNF-α, and reactive nitrogen intermediates, are central for control of Francisella infection. However, new important immune mediators have been revealed, including IL-17A, Toll-like receptor 2, and the inflammasome. Further, a variety of cell types in addition to macrophages are now recognized to support Francisella growth, including epithelial cells and dendritic cells. CD4+ and CD8+ T cells are clearly important for control of primary infection and vaccine-induced protection, but new T cell subpopulations and the mechanisms employed by T cells are only beginning to be defined. A significant role for B cells and specific antibodies has been established, although their contribution varies greatly between bacterial strains of lower and higher virulence. Overall, recent data profile a pathogen that is adept at subverting host immune responses, but susceptible to many elements of the immune system's antimicrobial arsenal.
Collapse
Affiliation(s)
- Siobhán C Cowley
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration Bethesda, MD, USA
| | | |
Collapse
|
34
|
Bublitz DC, Noah CE, Benach JL, Furie MB. Francisella tularensis suppresses the proinflammatory response of endothelial cells via the endothelial protein C receptor. THE JOURNAL OF IMMUNOLOGY 2010; 185:1124-31. [PMID: 20543103 DOI: 10.4049/jimmunol.0902429] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Various bacterial pathogens activate the endothelium to secrete proinflammatory cytokines and recruit circulating leukocytes. In contrast, there is a distinct lack of activation of these cells by Francisella tularensis, the causative agent of tularemia. Given the importance of endothelial cells in facilitating innate immunity, we investigated the ability of the attenuated live vaccine strain and virulent Schu S4 strain of F. tularensis to inhibit the proinflammatory response of HUVECs. Living F. tularensis live vaccine strain and Schu S4 did not stimulate secretion of the chemokine CCL2 by HUVECs, whereas material released from heat-killed bacteria did. Furthermore, the living bacteria suppressed secretion in response to heat-killed F. tularensis. This phenomenon was dose and contact dependent, and it occurred rapidly upon infection. The living bacteria did not inhibit the activation of HUVECs by Escherichia coli LPS, highlighting the specificity of this suppression. The endothelial protein C receptor (EPCR) confers anti-inflammatory properties when bound by activated protein C. When the EPCR was blocked, F. tularensis lost the ability to suppress activation of HUVECs. To our knowledge, this is the first report that a bacterial pathogen inhibits the host immune response via the EPCR. Endothelial cells are a critical component of the innate immune response to infection, and suppression of their activation by F. tularensis is likely a mechanism that aids in bacterial dissemination and evasion of host defenses.
Collapse
Affiliation(s)
- DeAnna C Bublitz
- Center for Infectious Diseases, School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | | | | | | |
Collapse
|
35
|
Twine SM, Petit MD, Fulton KM, House RV, Conlan JW. Immunoproteomics analysis of the murine antibody response to vaccination with an improved Francisella tularensis live vaccine strain (LVS). PLoS One 2010; 5:e10000. [PMID: 20368994 PMCID: PMC2848853 DOI: 10.1371/journal.pone.0010000] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 03/05/2010] [Indexed: 11/18/2022] Open
Abstract
Background Francisella tularensis subspecies tularensis is the causative agent of a spectrum of diseases collectively known as tularemia. An attenuated live vaccine strain (LVS) has been shown to be efficacious in humans, but safety concerns have prevented its licensure by the FDA. Recently, F. tularensis LVS has been produced under Current Good Manufacturing Practice (CGMP guidelines). Little is known about the immunogenicity of this new vaccine preparation in comparison with extensive studies conducted with laboratory passaged strains of LVS. Thus, the aim of the current work was to evaluate the repertoire of antibodies produced in mouse strains vaccinated with the new LVS vaccine preparation. Methodology/Principal Findings In the current study, we used an immunoproteomics approach to examine the repertoire of antibodies induced following successful immunization of BALB/c versus unsuccessful vaccination of C57BL/6 mice with the new preparation of F. tularensis LVS. Successful vaccination of BALB/c mice elicited antibodies to nine identified proteins that were not recognized by antisera from vaccinated but unprotected C57BL/6 mice. In addition, the CGMP formulation of LVS stimulated a greater repertoire of antibodies following vaccination compared to vaccination with laboratory passaged ATCC LVS strain. A total of 15 immunoreactive proteins were identified in both studies, however, 16 immunoreactive proteins were uniquely reactive with sera from the new formulation of LVS. Conclusions/Significance This is the first report characterising the antibody based immune response of the new formulation of LVS in the widely used murine model of tularemia. Using two mouse strains, we show that successfully vaccinated mice can be distinguished from unsuccessfully vaccinated mice based upon the repertoire of antibodies generated. This opens the door towards downselection of antigens for incorporation into tularemia subunit vaccines. In addition, this work also highlights differences in the humoral immune response to vaccination with the commonly used laboratory LVS strain and the new vaccine formulation of LVS.
Collapse
Affiliation(s)
- Susan M Twine
- National Research Council Institute for Biological Sciences, Ottawa, Ontario, Canada.
| | | | | | | | | |
Collapse
|
36
|
Olsson IAS, Costa A, Nobrega C, Roque S, Correia-Neves M. Environmental Enrichment does not Compromise the Immune Response in Mice Chronically Infected withMycobacterium avium. Scand J Immunol 2010; 71:249-57. [DOI: 10.1111/j.1365-3083.2010.02371.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- I A S Olsson
- Laboratory Animal Science, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Portugal
| | | | | | | | | |
Collapse
|
37
|
Pechous RD, McCarthy TR, Zahrt TC. Working toward the future: insights into Francisella tularensis pathogenesis and vaccine development. Microbiol Mol Biol Rev 2009; 73:684-711. [PMID: 19946137 PMCID: PMC2786580 DOI: 10.1128/mmbr.00028-09] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Francisella tularensis is a facultative intracellular gram-negative pathogen and the etiological agent of the zoonotic disease tularemia. Recent advances in the field of Francisella genetics have led to a rapid increase in both the generation and subsequent characterization of mutant strains exhibiting altered growth and/or virulence characteristics within various model systems of infection. In this review, we summarize the major properties of several Francisella species, including F. tularensis and F. novicida, and provide an up-to-date synopsis of the genes necessary for pathogenesis by these organisms and the determinants that are currently being targeted for vaccine development.
Collapse
Affiliation(s)
- Roger D. Pechous
- Center for Biopreparedness and Infectious Disease and Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226-0509
| | - Travis R. McCarthy
- Center for Biopreparedness and Infectious Disease and Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226-0509
| | - Thomas C. Zahrt
- Center for Biopreparedness and Infectious Disease and Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226-0509
| |
Collapse
|
38
|
Sifontes-Rodríguez S, Infante-Bourzac JF, Díaz-Rivero D, López-Feria Y, Pérez-Pérez M, Sosa-Roble E, Pérez-Amat V, López-Hernández Y, Álvarez-Figueredo E, Martínez-Rodríguez JC, Fariñas-Medina M, Hernández-Salazar T, Tamayo-García Y, Valdés-Abreu Y, Ponce-Collera A, Rodríguez-Pérez N. Repeated Dose Toxicity Study of a Live Attenuated Oral Cholera Vaccine in Sprague Dawley Rats. Arch Med Res 2009; 40:527-35. [DOI: 10.1016/j.arcmed.2009.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Accepted: 07/20/2009] [Indexed: 10/20/2022]
|
39
|
Parmely MJ, Fischer JL, Pinson DM. Programmed cell death and the pathogenesis of tissue injury induced by type A Francisella tularensis. FEMS Microbiol Lett 2009; 301:1-11. [PMID: 19811540 DOI: 10.1111/j.1574-6968.2009.01791.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Francisella tularensis is a highly virulent bacterial species that causes various forms of tularemia in humans. The urgency in understanding the pathogenesis of these diseases has stimulated unprecedented interest in this bacterial species over the past few years. Recent findings underscore a number of important distinctions between the Francisella ssp. and emphasize the importance of using type A F. tularensis strains when characterizing pathophysiological responses that are relevant to the lethal forms of human disease. This review focuses on the mediators of cell death induction in infected tissues and the implications of these processes on the pathophysiological changes observed in various host species.
Collapse
Affiliation(s)
- Michael J Parmely
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | | | | |
Collapse
|
40
|
Sharma J, Li Q, Mishra BB, Pena C, Teale JM. Lethal pulmonary infection with Francisella novicida is associated with severe sepsis. J Leukoc Biol 2009; 86:491-504. [PMID: 19401387 PMCID: PMC2735285 DOI: 10.1189/jlb.1208728] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Revised: 02/23/2009] [Accepted: 03/02/2009] [Indexed: 11/24/2022] Open
Abstract
The bacterial or host determinants of lethality associated with respiratory Francisella infections are currently unknown. No exo- or endotoxins that contribute to the severity of this disease have been identified. However, a deregulated host immune response upon infection is characterized by an initial 36- to 48-h delay followed by a rapid and excessive inflammatory response prior to death at 72-120 h. Here, we extend these findings by comparing host immune responses between sublethal and lethal respiratory infections of mice with an attenuated transposon mutant (Mut) of F. novicida (F.n.) strain U112 (sublethal) versus the wild-type (WT) strain (lethal). Infection with WT bacteria, but not the Mut, was characterized by sustained bacteremia and systemic dissemination of the pathogen with temporal increases in bacterial burdens in liver and spleen. Severe pathology with large foci of infiltrates associated with extensive tissue damage was evident in WT-infected lungs, and Mut-infected mice displayed much reduced pathology with intact lung architecture. Similar to other experimental models of severe sepsis, WT- but not the Mut-infected mice exhibited a robust increase in numbers of Gr1+ and CD11b+ cells, while displaying a significant depletion of alphabeta T cells. Further, a dramatic up-regulation of multiple cytokines and chemokines was observed only in lethal WT infection. In addition, an earlier and larger increased expression of S100A9, a known mediator of sepsis, was observed in WT-infected mice. Taken together, these results show that a hyperinflammatory host immune response, culminating in severe sepsis, is responsible for the lethal outcome of respiratory tularemia.
Collapse
Affiliation(s)
- Jyotika Sharma
- South Texas Center for Emerging Diseases and Department of Biology, University of Texas at San Antonio, San Antonio, Texas 78249-1644, USA
| | | | | | | | | |
Collapse
|
41
|
Francisella tularensis induces extensive caspase-3 activation and apoptotic cell death in the tissues of infected mice. Infect Immun 2009; 77:4827-36. [PMID: 19703976 DOI: 10.1128/iai.00246-09] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although Francisella tularensis subsp. tularensis is known to cause extensive tissue necrosis, the pathogenesis of tissue injury has not been elucidated. To characterize cell death in tularemia, C57BL/6 mice were challenged by the intranasal route with type A F. tularensis, and the pathological changes in infected tissues were characterized over the next 4 days. At 3 days postinfection, well-organized inflammatory infiltrates developed in the spleen and liver following the spread of infection from the lungs. By the next day, extensive cell death, characterized by the presence of pyknotic cells containing double-strand DNA breaks, was apparent throughout these inflammatory foci. Cell death was not mediated by activated caspase-1, as has been reported for cells infected with other Francisella subspecies. Mouse macrophages and dendritic cells that had been stimulated with type A F. tularensis did not release interleukin-18 in vitro, a response that requires the activation of procaspase-1. Dying cells within type A F. tularensis-infected tissues expressed activated caspase-3 but very little activated caspase-1. When caspase-1-deficient mice were challenged with type A F. tularensis, pathological changes, including extensive cell death, were similar to those seen in infected wild-type mice. In contrast, type A F. tularensis-infected caspase-3-deficient mice showed much less death among their F4/80+ spleen cells than did infected wild-type mice, and they retained the ability to express tumor necrosis factor alpha and inducible NO synthase. These findings suggest that type A F. tularensis induces caspase-3-dependent macrophage apoptosis, resulting in the loss of potentially important innate immune responses to the pathogen.
Collapse
|
42
|
Kirimanjeswara GS, Olmos S, Bakshi CS, Metzger DW. Humoral and cell-mediated immunity to the intracellular pathogen Francisella tularensis. Immunol Rev 2009; 225:244-55. [PMID: 18837786 DOI: 10.1111/j.1600-065x.2008.00689.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
SUMMARY Francisella tularensis can cause fatal respiratory tularemia in humans and animals and is increasingly being isolated in the United States and several European countries. The correlates of protective immunity against this intracellular bacterium are not known, and currently there are no licensed vaccines available for human use. Cell-mediated immunity has long been believed to be critical for protection, and the importance of humoral immunity is also now recognized. Furthermore, synergy between antibodies, T cell-derived cytokines, and phagocytes appears to be critical to achieve sterilizing immunity against F. tularensis. Thus, novel vaccine approaches should be designed to induce robust antibody and cell-mediated immune responses to this pathogen.
Collapse
|
43
|
Sharma J, Li Q, Mishra BB, Teale JM. Lethal pulmonary infection with Francisella novicida causes depletion of alphabeta T cells from lungs. Cell Immunol 2009; 257:1-4. [PMID: 19356746 DOI: 10.1016/j.cellimm.2009.03.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 03/11/2009] [Accepted: 03/12/2009] [Indexed: 11/25/2022]
Abstract
Respiratory Francisella infections induce a delayed innate immune response followed by a severe sepsis like condition. In this study, mice infected intranasally with Francisella novicida showed a depletion of alphabeta T cells in lungs while exhibiting large accumulations of other leukocytes correlating with disease severity. The depleted T cells were predominantly CD4(+). The alphabeta T cells in infected mice showed significantly higher levels of Annexin V binding than those in mock control mice suggesting increased apoptosis of T cells. These results suggest that lack of transition from an innate to adaptive host response is associated with lethality of respiratory tularemia.
Collapse
Affiliation(s)
- Jyotika Sharma
- Department of Biology, South Texas Center for Emerging Diseases, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249-1644, USA
| | | | | | | |
Collapse
|
44
|
Bradfute S, Braun D, Shamblin J, Geisbert J, Paragas J, Garrison A, Hensley L, Geisbert T. Lymphocyte Death in a Mouse Model of Ebola Virus Infection. J Infect Dis 2007; 196 Suppl 2:S296-304. [DOI: 10.1086/520602] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
45
|
Hayasaka D, Ennis FA, Terajima M. Pathogeneses of respiratory infections with virulent and attenuated vaccinia viruses. Virol J 2007; 4:22. [PMID: 17326843 PMCID: PMC1810241 DOI: 10.1186/1743-422x-4-22] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2006] [Accepted: 02/27/2007] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Respiratory infection with the neurovirulent vaccinia virus (VV) strain Western Reserve (WR) results in an acute infection of the lung followed by dissemination of the virus to other organs and causes lethality in mice. The mechanisms of lethality are not well-understood. In this study, we analyzed virus replication and host immune responses after intranasal infection with lethal and non-lethal doses of VV using the WR strain and the less virulent Wyeth strain. RESULTS The WR strain replicated more vigorously in the lung and in the brain than the Wyeth strain. There were, however, no differences between the virus titers in the brains of mice infected with the higher lethal dose and the lower non-lethal dose of WR strain, suggesting that the amount of virus replication in the brain is unlikely to be the sole determining factor of lethality. The WR strain grew better in primary mouse lung cells than the Wyeth strain. Lethal infection with WR strain was associated with a reduced number of lymphocytes and an altered phenotype of the T cells in the lung compared to non-lethal infections with the WR or Wyeth strains. Severe thymus atrophy with a reduction of CD4 and CD8 double positive T cells was also observed in the lethal infection. CONCLUSION These results suggest that the lethality induced by intranasal infection with a high dose of the WR strain is caused by the higher replication of virus in lung cells and immune suppression during the early phase of the infection, resulting in uncontrolled virus replication in the lung.
Collapse
Affiliation(s)
- Daisuke Hayasaka
- Center for Infectious Disease and Vaccine Research, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Francis A Ennis
- Center for Infectious Disease and Vaccine Research, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Masanori Terajima
- Center for Infectious Disease and Vaccine Research, University of Massachusetts Medical School, Worcester, MA 01655, USA
| |
Collapse
|
46
|
McLendon MK, Apicella MA, Allen LAH. Francisella tularensis: taxonomy, genetics, and Immunopathogenesis of a potential agent of biowarfare. Annu Rev Microbiol 2006; 60:167-85. [PMID: 16704343 PMCID: PMC1945232 DOI: 10.1146/annurev.micro.60.080805.142126] [Citation(s) in RCA: 182] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Tularemia is a zoonosis of humans caused by infection with the facultative intracellular bacterium Francisella tularensis. Interest in F. tularensis has increased markedly in the past few years because of its potential use as an agent of bioterrorism. Five subspecies of this organism are found in the Northern hemisphere, but only F. tularensis subsp. tularensis and subsp. holarctica cause disease in humans. This review summarizes what is known about the pathogenesis of tularemia with a focus on bacterial surface components such as lipopolysaccharide and capsule as well as information obtained from the F. tularensis subsp. tularensis SCHU S4 genome. In particular, the mechanisms of action of recently identified virulence factors are discussed in the context of bacterial replication in macrophages and manipulation of the host inflammatory response. Throughout this report, shared and unique features of F. tularensis subsp. tularensis, subsp. holarctica, and subsp. novicida are discussed.
Collapse
Affiliation(s)
- Molly K McLendon
- Inflammation Program, Department of Microbiology, University of Iowa and the VA Medical Center, Iowa City, Iowa 52242, USA.
| | | | | |
Collapse
|
47
|
Twine SM, Petit MD, Shen H, Mykytczuk NCS, Kelly JF, Conlan JW. Immunoproteomic analysis of the murine antibody response to successful and failed immunization with live anti-Francisella vaccines. Biochem Biophys Res Commun 2006; 346:999-1008. [PMID: 16781667 DOI: 10.1016/j.bbrc.2006.06.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Accepted: 06/02/2006] [Indexed: 11/26/2022]
Abstract
Francisella tularensis subspecies tularensis is one of the most virulent of bacterial pathogens for humans. Protective immunity against the pathogen can be induced in humans and some, but not all, mouse strains by vaccination with live, but not killed, vaccines. In mice, this protection is mediated predominantly by CD4+ and CD8+ T cells. This is thought to be the case too for humans. Nevertheless, it is possible that successful vaccination elicits antigen-specific antibodies that can serve as correlates of protection. To test this hypothesis we examined the repertoire of antibodies induced following successful immunization of BALB/c and CH3/HeN mice versus unsuccessful vaccination of C57BL/6 and DBA\2 mice with F. tularensis Live Vaccine Strain or following unsuccessful vaccination of BALB/c mice with highly related subspecies, F. novicida. The results showed that successful vaccination elicited antibodies to at least six proteins that were not recognized by antisera from vaccinated but unprotected mice.
Collapse
Affiliation(s)
- Susan M Twine
- Institute for Biological Sciences, National Research Council of Canada, 100 Sussex Drive, Ottawa, Ont., Canada K1A 0R6.
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
Infectious disease immunology has largely focused on the effector immune response, changes in the blood and peripheral lymphoid organs of infected individuals, and vaccine development. Studies of the thymus in infected individuals have been neglected, although this is progressively changing. The thymus is a primary lymphoid organ, able to generate mature T cells that eventually colonize secondary lymphoid organs, and is therefore essential for peripheral T cell renewal. Recent data show that normal thymocyte development and export can be altered as a result of an infectious disease. One common feature is the severe atrophy of the infected organ, mainly due to the apoptosis-related depletion of immature CD4+CD8+ thymocytes. Additionally, thymocyte proliferation is frequently diminished. The microenvironmental compartment of the thymus is also affected, particularly in acute infectious diseases, with a densification of the epithelial network and an increase in the deposition of extracellular matrix. In the murine model of Chagas disease, intrathymic chemokine production is also enhanced, and thymocytes from Trypanosoma cruzi-infected mice exhibit greater numbers of cell migration-related receptors for chemokines and extracellular matrix, as well as increased migratory responses to the corresponding ligands. This profile is correlated with the appearance of potentially autoreactive thymus-derived immature CD4+CD8+ T cells in peripheral organs of infected animals. A variety of infectious agents—including viruses, protozoa, and fungi—invade the thymus, raising the hypothesis of the generation of central immunological tolerance for at least some of the infectious agent-derived antigens. It seems clear that the thymus is targeted in a variety of infections, and that such targeting may have consequences on the behavior of peripheral T lymphocytes. In this context, thymus-centered immunotherapeutic approaches potentially represent a new tool for the treatment of severe infectious diseases.
Collapse
Affiliation(s)
- Wilson Savino
- Laboratory on Thymus Research, Department of Immunology, Oswaldo Cruz Institute, Inserm-Fiocruz Associated Laboratory of Immunology, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
49
|
Twine SM, Mykytczuk NCS, Petit MD, Shen H, Sjöstedt A, Wayne Conlan J, Kelly JF. In vivo proteomic analysis of the intracellular bacterial pathogen, Francisella tularensis, isolated from mouse spleen. Biochem Biophys Res Commun 2006; 345:1621-33. [PMID: 16730660 DOI: 10.1016/j.bbrc.2006.05.070] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2006] [Accepted: 05/12/2006] [Indexed: 11/23/2022]
Abstract
Understanding the pathogenesis of infectious diseases requires comprehensive knowledge of the proteins expressed by the pathogen during in vivo growth in the host. Proteomics provides the tools for such analyses but the protocols required to purify sufficient quantities of the pathogen from the host organism are currently lacking. Here, we present a rapid immunomagnetic protocol for the separation of Francisella tularensis, a highly virulent bacterium and potential biowarfare agent, from the spleens of infected mice. In less than one hour, bacteria can be isolated in quantities sufficient to carry out meaningful proteomic comparisons with in vitro grown bacteria. Furthermore, the isolates are virtually free from contaminating host proteins. Two-dimensional gel analysis revealed a host induced proteome in which 78 proteins were differentially expressed in comparison to in vitro grown controls. The results obtained clearly demonstrate the complexity of the adaptive response of F. tularensis to the host environment, and the difficulty of mimicking such behavior in vitro.
Collapse
Affiliation(s)
- Susan M Twine
- National Research Council Canada, Institute for Biological Sciences, Ottawa, Ont.
| | | | | | | | | | | | | |
Collapse
|