1
|
Kim HR, Kim SH, Le HD, Kim JK, Her M. The complete genome sequence of quail coronavirus identified in disease surveillance on quail farms in South Korea. Poult Sci 2025; 104:105007. [PMID: 40088533 PMCID: PMC11957520 DOI: 10.1016/j.psj.2025.105007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/22/2025] [Accepted: 03/07/2025] [Indexed: 03/17/2025] Open
Abstract
Avian carcasses collected from 103 flocks on 14 quail farms in Korea between 2022 and 2023 were diagnosed with viral diseases (22 flocks), bacterial disease (58 flocks), parasitic diseases (28 flocks) and non-infectious diseases (60 flocks). The only viral disease identified was viral enteritis in quails that showed pathological lesions in duodenum and appeared to be caused by quail coronavirus (QcoV) through viral metagenomics and RT-PCR assay. Two complete genomes of QCoV from samples diagnosed as viral enteritis were obtained using amplicon-based whole genome sequencing. The two QcoVs were gammacoronavirus, but were distinct from other avian coronaviruses. The spike genes of QCoV have 86.2 ∼ 87.1 % identity with that of American turkey coronavirus, but other gene sequences of QcoV was found to be similar to those of Korean infectious bronchitis virus. Genetic analysis based on the complete genomic sequences found QCoVs had a genetic structure similar to avian coronaviruses, yet it seems to be a unique pathogen specific to quail. This is the first report about the complete genome and genetic analysis of QCoV and the result of disease surveillance in quail in South Korea.
Collapse
Affiliation(s)
- Hye-Ryoung Kim
- Avian Disease Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si, Gyeongsangbuk-do, 39660, Republic of Korea.
| | - So-Hyeon Kim
- Avian Disease Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si, Gyeongsangbuk-do, 39660, Republic of Korea
| | - Hoang Duc Le
- Avian Disease Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si, Gyeongsangbuk-do, 39660, Republic of Korea
| | - Jae-Kyeom Kim
- Avian Disease Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si, Gyeongsangbuk-do, 39660, Republic of Korea
| | - Moon Her
- Avian Disease Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si, Gyeongsangbuk-do, 39660, Republic of Korea
| |
Collapse
|
2
|
Viana JT, Freitas JOD, Rocha RDS, Maggioni R. Viral mutations and their implications for genetic diversity of the Infectious Myonecrosis Virus (IMNV). J Invertebr Pathol 2025; 211:108325. [PMID: 40187484 DOI: 10.1016/j.jip.2025.108325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 03/06/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Infectious Myonecrosis Virus (IMNV) is a main pathogen affecting global shrimp farming. It was first recorded in Brazil in 2002, but has spread to other Asian countries, especially Indonesia. Records of strains from different origins show different infection progress. Therefore, the present work aimed to evaluate the genetic differences between the IMMV strains, as well as their possible causes. Our results showed a great diversity of haplotypes, especially in Asia. We also observed that the majority of viral proteins present positive type selection, preserving their primary structure, although there are differences in SNPs among them. Our results reinforce the theory of the spread of IMNV from Brazil to Indonesia, where it appears to have spread to other Asian countries. Thus, the South American and Asian strains have a divergent evolutionary history, showing that virus mutations are influenced by the environment.
Collapse
Affiliation(s)
- Jhonatas Teixeira Viana
- Instituto Federal de Educação, Ciência e Tecnologia do Ceará, Acaraú, CE, Brazil; Instituto de Ciências do Mar, Universidade Federal do Ceará, Fortaleza, CE, Brazil.
| | - Juliana Oliveira de Freitas
- Instituto Federal de Educação, Ciência e Tecnologia do Ceará, Acaraú, CE, Brazil; Instituto de Ciências do Mar, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | | | - Rodrigo Maggioni
- Instituto de Ciências do Mar, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| |
Collapse
|
3
|
Santos JAA, Duay SS. Molecular dynamics of SARS-CoV-2 omicron variants from Philippine isolates against hesperidin as spike protein inhibitor. Biophys Chem 2025; 318:107387. [PMID: 39742696 DOI: 10.1016/j.bpc.2024.107387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/10/2024] [Accepted: 12/27/2024] [Indexed: 01/04/2025]
Abstract
SARS-CoV-2 remains a global threat with new sublineages posing challenges, particularly in the Philippines. Hesperidin (HD) is being studied as a potential prophylactic for COVID-19. However, the virus's rapid evolution could alter how HD binds to it, affecting its effectiveness. Here, we study the mutation-induced variabilities of HD dynamics and their effects on molecular energetics in SARS-CoV-2 spike receptor complex systems. We considered eight different point mutations present in the Omicron variant. Root-mean-square deviation and binding energy analysis showed that S477N and Omicron did not eject HD throughout the simulation. Hydrogen bond distribution analysis highlighted the involvement of hydrogen bonding in mutant-HD stabilization, especially for S477N and Omicron. Root-mean-square fluctuation analysis revealed evidence of Y505H destabilization on complex systems, while distal-end loop mutations increased loop flexibility for all models bearing the three mutations. Per-residue energy decomposition demonstrated that Q493R substitution increased HD interaction. Free energy landscape and essential dynamics through principal component analysis provided insights into the conformational subspace distribution of mutant model molecular dynamics trajectories. In conclusion, significant mutations contributed to the HD interaction in different ways. S477N has shown significant binding contributions through favorable ligand interaction, while other mutations contribute via conformational modifications, increased affinity due to sidechain mutations, and increased loop flexibility.
Collapse
Affiliation(s)
| | - Searle S Duay
- Department of Chemistry, De La Salle University, Manila 0922, Philippines.
| |
Collapse
|
4
|
da Silva MBF, Teixeira CMLL. Cyanobacterial and microalgae polymers: antiviral activity and applications. Braz J Microbiol 2024; 55:3287-3301. [PMID: 39008244 PMCID: PMC11711419 DOI: 10.1007/s42770-024-01452-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
At the end of 2019, the world witnessed the beginning of the COVID-19 pandemic. As an aggressive viral infection, the entire world remained attentive to new discoveries about the SARS-CoV-2 virus and its effects in the human body. The search for new antivirals capable of preventing and/or controlling the infection became one of the main goals of research during this time. New biocompounds from marine sources, especially microalgae and cyanobacteria, with pharmacological benefits, such as anticoagulant, anti-inflammatory and antiviral attracted particular interest. Polysaccharides (PS) and extracellular polymeric substances (EPS), especially those containing sulfated groups in their structure, have potential antiviral activity against several types of viruses including HIV-1, herpes simplex virus type 1, and SARS-CoV-2. We review the main characteristics of PS and EPS with antiviral activity, the mechanisms of action, and the different extraction methodologies from microalgae and cyanobacteria biomass.
Collapse
Affiliation(s)
- Mariana Barbalho Farias da Silva
- Laboratório de Genética Microbiana, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | | |
Collapse
|
5
|
Khongsiri W, Poolchanuan P, Dulsuk A, Thippornchai N, Phunpang R, Runcharoen C, Boonprakob T, Hemtong O, Chowplijit S, Chuapaknam V, Siripoon T, Piyaphanee W, Luvira V, Rotejanaprasert C, Leaungwutiwong P, Chantratita W, Chantratita N, Kosoltanapiwat N. Associations between clinical data, vaccination status, antibody responses, and post-COVID-19 symptoms in Thais infected with SARS-CoV-2 Delta and Omicron variants: a 1-year follow-up study. BMC Infect Dis 2024; 24:1116. [PMID: 39375604 PMCID: PMC11460119 DOI: 10.1186/s12879-024-09999-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/25/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), led to a global pandemic from 2020. In Thailand, five waves of outbreaks were recorded, with the fourth and fifth waves driven by the Delta and Omicron variants, resulting in over 20,000 new confirmed cases daily at their peaks. METHODS This cross-sectional study investigated the associations between clinical symptoms, vaccination status, antibody responses, and post-COVID-19 sequelae in COVID-19 patients. Plasma samples and clinical data were collected from participants admitted to hospitals in Thailand between July 2021 and August 2022, with follow-ups conducted for one year. The study included 110 participants infected with either the Delta (n = 46) or Omicron (n = 64) variants. Virus genotypes were confirmed by RT-PCR of nasal swab RNA and partial nucleotide sequencing of the S gene. IgG and IgA antibody levels against the receptor-binding domain (RBD) of SARS-CoV-2 Delta and Omicron variants were measured in plasma samples using ELISA. RESULTS Pneumonia was found to be associated with Delta variant infections, while sore throat, congestion or runny nose, and headache were linked to Omicron infections. Vaccination with fewer than two doses and diabetes mellitus were significantly associated with higher disease severity. Specific IgG and IgA antibodies against the RBD of the Delta variant generally rose by day 14 and were maintained for up to two months, whereas the pattern of antibody response to the Omicron variant was less clear. Antibody risings were found to be positively associated with pneumonia, certain underlying conditions (obesity, hypertension, dyslipidemia, and diabetes mellitus), and age ≥ 60 years. Delta variant infections were associated with forgetfulness, hair loss, and headache during the 1-year post-infection period. Females were more likely to experience hair loss, forgetfulness, and joint pain, while older age was associated with joint pain. CONCLUSIONS This study enhances our understanding of SARS-CoV-2 infections in Thais, particularly concerning the Delta and Omicron variants. The findings can inform public health planning and response strategies for future outbreaks of SARS-CoV-2 or other emerging viral diseases.
Collapse
Affiliation(s)
- Wathusiri Khongsiri
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Prapassorn Poolchanuan
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Adul Dulsuk
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Narin Thippornchai
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Rungnapa Phunpang
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Chakkaphan Runcharoen
- Center for Medical Genomics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | | | | | | | | | - Tanaya Siripoon
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Watcharapong Piyaphanee
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Thai Travel Clinic, Hospital for Tropical Diseases, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Viravarn Luvira
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Chawarat Rotejanaprasert
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Pornsawan Leaungwutiwong
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Wasun Chantratita
- Center for Medical Genomics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Narisara Chantratita
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Nathamon Kosoltanapiwat
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
6
|
Danda M, Klimešová A, Kušková K, Dostálková A, Pagáčová A, Prchal J, Kapisheva M, Ruml T, Rumlová M. Biochemical characterization of naturally occurring mutations in SARS-CoV-2 RNA-dependent RNA polymerase. Protein Sci 2024; 33:e5103. [PMID: 39145418 PMCID: PMC11325161 DOI: 10.1002/pro.5103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/06/2024] [Accepted: 06/21/2024] [Indexed: 08/16/2024]
Abstract
Since the emergence of SARS-CoV-2, mutations in all subunits of the RNA-dependent RNA polymerase (RdRp) of the virus have been repeatedly reported. Although RdRp represents a primary target for antiviral drugs, experimental studies exploring the phenotypic effect of these mutations have been limited. This study focuses on the phenotypic effects of substitutions in the three RdRp subunits: nsp7, nsp8, and nsp12, selected based on their occurrence rate and potential impact. We employed nano-differential scanning fluorimetry and microscale thermophoresis to examine the impact of these mutations on protein stability and RdRp complex assembly. We observed diverse impacts; notably, a single mutation in nsp8 significantly increased its stability as evidenced by a 13°C increase in melting temperature, whereas certain mutations in nsp7 and nsp8 reduced their binding affinity to nsp12 during RdRp complex formation. Using a fluorometric enzymatic assay, we assessed the overall effect on RNA polymerase activity. We found that most of the examined mutations altered the polymerase activity, often as a direct result of changes in stability or affinity to the other components of the RdRp complex. Intriguingly, a combination of nsp8 A21V and nsp12 P323L mutations resulted in a 50% increase in polymerase activity. To our knowledge, this is the first biochemical study to demonstrate the impact of amino acid mutations across all components constituting the RdRp complex in emerging SARS-CoV-2 subvariants.
Collapse
Affiliation(s)
- Matěj Danda
- Department of Biotechnology, University of Chemistry and Technology, Prague, Czech Republic
| | - Anna Klimešová
- Department of Biotechnology, University of Chemistry and Technology, Prague, Czech Republic
| | - Klára Kušková
- Department of Biotechnology, University of Chemistry and Technology, Prague, Czech Republic
| | - Alžběta Dostálková
- Department of Biotechnology, University of Chemistry and Technology, Prague, Czech Republic
| | - Aneta Pagáčová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czech Republic
| | - Jan Prchal
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czech Republic
| | - Marina Kapisheva
- Department of Biotechnology, University of Chemistry and Technology, Prague, Czech Republic
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czech Republic
| | - Michaela Rumlová
- Department of Biotechnology, University of Chemistry and Technology, Prague, Czech Republic
| |
Collapse
|
7
|
Silva T, Oliveira E, Oliveira A, Menezes A, Jeremias WDJ, Grenfell RF, Monte-Neto RLD, Pascoal-Xavier MA, Campos MA, Fernandes G, Alves P. Enhancing the epidemiological surveillance of SARS-CoV-2 using Sanger sequencing to identify circulating variants and recombinants. Braz J Microbiol 2024; 55:2085-2099. [PMID: 38802687 PMCID: PMC11405360 DOI: 10.1007/s42770-024-01387-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
Since the emergence of SARS-CoV-2 in December 2019, more than 12,000 mutations in the virus have been identified. These could cause changes in viral characteristics and directly impact global public health. The emergence of variants is a great concern due to the chance of increased transmissibility and infectivity. Sequencing for surveillance and monitoring circulating strains is extremely necessary as the early identification of new variants allows public health agencies to make faster and more effective decisions to contain the spread of the virus. In the present study, we identified circulating variants in samples collected in Belo Horizonte, Brazil, and detected a recombinant lineage using the Sanger method. The identification of lineages was done through gene amplification of SARS-CoV-2 by Reverse Transcription-Polymerase Chain Reaction (RT-PCR). By using these specific fragments, we were able to differentiate one variant of interest and five circulating variants of concern. We were also able to detect recombinants. Randomly selected samples were sequenced by either Sanger or Next Generation Sequencing (NGS). Our findings validate the effectiveness of Sanger sequencing as a powerful tool for monitoring variants. It is easy to perform and allows the analysis of a larger number of samples in countries that cannot afford NGS.
Collapse
Affiliation(s)
- Thaís Silva
- Instituto René Rachou, Fundação Oswaldo Cruz, 1715, Augusto de Lima Avenue, Belo Horizonte, Minas Gerais, 30190-002, Brazil
| | - Eneida Oliveira
- Secretaria Municipal de Saúde, 2336, Afonso Pena Avenue, Belo Horizonte, Minas Gerais, 30130-007, Brazil
| | - Alana Oliveira
- Instituto René Rachou, Fundação Oswaldo Cruz, 1715, Augusto de Lima Avenue, Belo Horizonte, Minas Gerais, 30190-002, Brazil
| | - André Menezes
- Secretaria Municipal de Saúde, 2336, Afonso Pena Avenue, Belo Horizonte, Minas Gerais, 30130-007, Brazil
| | - Wander de Jesus Jeremias
- Department of Pharmacy, Federal University of Ouro Preto (UFOP), 27, Nine Street, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Rafaella Fq Grenfell
- Instituto René Rachou, Fundação Oswaldo Cruz, 1715, Augusto de Lima Avenue, Belo Horizonte, Minas Gerais, 30190-002, Brazil
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, 501 D.W. Brooks Drive, Athens, GA, 30602, USA
| | - Rubens Lima do Monte-Neto
- Instituto René Rachou, Fundação Oswaldo Cruz, 1715, Augusto de Lima Avenue, Belo Horizonte, Minas Gerais, 30190-002, Brazil
| | - Marcelo A Pascoal-Xavier
- Instituto René Rachou, Fundação Oswaldo Cruz, 1715, Augusto de Lima Avenue, Belo Horizonte, Minas Gerais, 30190-002, Brazil
- Department of Anatomic Pathology, College of Medicine, Federal University of Minas Gerais, 6627, Presidente Antônio Carlos Avenue, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Marco A Campos
- Instituto René Rachou, Fundação Oswaldo Cruz, 1715, Augusto de Lima Avenue, Belo Horizonte, Minas Gerais, 30190-002, Brazil
| | - Gabriel Fernandes
- Instituto René Rachou, Fundação Oswaldo Cruz, 1715, Augusto de Lima Avenue, Belo Horizonte, Minas Gerais, 30190-002, Brazil
| | - Pedro Alves
- Instituto René Rachou, Fundação Oswaldo Cruz, 1715, Augusto de Lima Avenue, Belo Horizonte, Minas Gerais, 30190-002, Brazil.
| |
Collapse
|
8
|
Malay S, Madabhavi IV, Tripathi A. SARS-CoV-2 JN.1 variant: a short review. Monaldi Arch Chest Dis 2024. [PMID: 39221683 DOI: 10.4081/monaldi.2024.2981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/16/2024] [Indexed: 09/04/2024] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a single-stranded, positive-sense RNA virus. The SARS-CoV-2 virus is evolving continuously, and many variants have been detected over the last few years. SARS-CoV-2, as an RNA virus, is more prone to mutating. The continuous evolution of the SARS-CoV-2 virus is due to genetic mutation and recombination during the genomic replication process. Recombination is a naturally occurring phenomenon in which two distinct viral lineages simultaneously infect the same cellular entity in an individual. The evolution rate depends on the rate of mutation. The rate of mutation is variable among the RNA viruses, with the SARS-CoV-2 virus exhibiting a lower rate of mutation than other RNA viruses. The novel 3'-to-5' exoribonuclease proofreading machinery is responsible for a lower rate of mutation. Infection due to the SARS-CoV-2, influenza, and respiratory syncytial virus has been reported from around the world during the same period of fall and winter, resulting in a "tripledemic." The JN.1 variant, which evolved from the predecessor, the omicron variant BA.2.86, is currently the most dominant globally. The impact of the JN.1 variant on transmissibility, disease severity, immune evasion, and diagnostic and therapeutic escape will be discussed.
Collapse
Affiliation(s)
- Sarkar Malay
- Department of Pulmonary Medicine, Indira Gandhi Medical College, Shimla, Himachal Pradesh.
| | - Irappa V Madabhavi
- Department of Medical and Pediatric Oncology, J N Medical College; KLE Academy of Higher Education and Research (KAHER), Belagavi; Kerudi Cancer Hospital, Bagalkot, Karnataka.
| | - Anurag Tripathi
- Department of Pulmonary and Critical Care Medicine, King George's Medical University, Lucknow.
| |
Collapse
|
9
|
Baral B, Saini V, Kandpal M, Kundu P, Dixit AK, Parmar HS, Meena AK, Trivedi P, Jha HC. The interplay of co-infections in shaping COVID-19 severity: Expanding the scope beyond SARS-CoV-2. J Infect Public Health 2024; 17:102486. [PMID: 39002466 DOI: 10.1016/j.jiph.2024.102486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 06/17/2024] [Accepted: 06/23/2024] [Indexed: 07/15/2024] Open
Abstract
High mortality has been reported in severe cases of COVID-19. Emerging reports suggested that the severity is not only due to SARS-CoV-2 infection, but also due to coinfections by other pathogens exhibiting symptoms like COVID-19. During the COVID-19 pandemic, simultaneous respiratory coinfections with various viral (Retroviridae, Flaviviridae, Orthomyxoviridae, and Picoviridae) and bacterial (Mycobacteriaceae, Mycoplasmataceae, Enterobacteriaceae and Helicobacteraceae) families have been observed. These pathogens intensify disease severity by potentially augmenting SARSCoV-2 replication, inflammation, and modulation of signaling pathways. Coinfection emerges as a critical determinant of COVID-19 severity, principally instigated by heightened pro-inflammatory cytokine levels, as cytokine storm. Thereby, in co-infection scenario, the severity is also driven by the modulation of inflammatory signaling pathways by both pathogens possibly associated with interleukin, interferon, and cell death exacerbating the severity. In the current review, we attempt to understand the role of co- infections by other pathogens and their involvement in the severity of COVID-19.
Collapse
Affiliation(s)
- Budhadev Baral
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, Madhya Pradesh, India
| | - Vaishali Saini
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, Madhya Pradesh, India
| | - Meenakshi Kandpal
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, Madhya Pradesh, India
| | - Pratik Kundu
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, Madhya Pradesh, India
| | - Amit Kumar Dixit
- Central Ayurveda Research Institute, 4-CN Block, Sector -V, Bidhannagar, Kolkata 700 091, India
| | - Hamendra Singh Parmar
- School of Biotechnology, Devi Ahilya Vishwavidyalaya, Takshashila Campus, Indore, Madhya Pradesh 452001, India
| | - Ajay Kumar Meena
- Regional Ayurveda Research Institute, Gwalior, Amkhoh, Gwalior, Madhya Pradesh 474001, India
| | - Pankaj Trivedi
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Hem Chandra Jha
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, Madhya Pradesh, India; Centre for Rural Development and Technology, Indian Institute of Technology Indore, Simrol, Indore 453552, Madhya Pradesh, India.
| |
Collapse
|
10
|
Zhang J. Immune responses in COVID-19 patients: Insights into cytokine storms and adaptive immunity kinetics. Heliyon 2024; 10:e34577. [PMID: 39149061 PMCID: PMC11325674 DOI: 10.1016/j.heliyon.2024.e34577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/11/2024] [Accepted: 07/11/2024] [Indexed: 08/17/2024] Open
Abstract
SARS-CoV-2 infection can trigger cytokine storm in some patients, which characterized by an excessive production of cytokines and chemical mediators. This hyperactive immune response may cause significant tissue damage and multiple organ failure (MOF). The severity of COVID-19 correlates with the intensity of cytokine storm, involving elements such as IFN, NF-κB, IL-6, HMGB1, etc. It is imperative to rapidly engage adaptive immunity to effectively control the disease progression. CD4+ T cells facilitate an immune response by improving B cells in the production of neutralizing antibodies and activating CD8+ T cells, which are instrumental in eradicating virus-infected cells. Meanwhile, antibodies from B cells can neutralize virus, obstructing further infection of host cells. In individuals who have recovered from the disease, virus-specific antibodies and memory T cells were observed, which could confer a level of protection, reducing the likelihood of re-infection or attenuating severity. This paper discussed the roles of macrophages, IFN, IL-6 and HMGB1 in cytokine release syndrome (CRS), the intricacies of adaptive immunity, and the persistence of immune memory, all of which are critical for the prevention and therapeutic strategies against COVID-19.
Collapse
Affiliation(s)
- Junguo Zhang
- Pulmonology Department, Fengdu General Hospital, Chongqing, 408200, China
| |
Collapse
|
11
|
Zhang Q, Zhang Z, Liu X, Wang Y, Chen H, Hao Y, Zha S, Zhang J, He Y, Zhou B, Hu K. Thyroid dysfunction in the wake of Omicron: understanding its role in COVID-19 severity and mortality. Front Endocrinol (Lausanne) 2024; 15:1412320. [PMID: 39081794 PMCID: PMC11286428 DOI: 10.3389/fendo.2024.1412320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/03/2024] [Indexed: 08/02/2024] Open
Abstract
Purpose SARS-CoV-2 can invade the thyroid gland. This study was to delineate the risk of thyroid dysfunction amidst the prevalence of the Omicron variant, and to investigate the correlation between thyroid function and Coronavirus disease 2019 (COVID-19) outcomes. The study also aimed to ascertain whether thyroid dysfunction persisted during COVID-19 recovery phase. Methods This was a retrospective cohort study. COVID-19 patients from the Renmin Hospital of Wuhan University, China during the epidemic of Omicron variants were included, and their thyroid function were analyzed in groups. Results A history of thyroid disease was not associated with COVID-19 outcomes. COVID-19 can lead to a bimodal distribution of thyroid dysfunction. The severity of COVID-19 was inversely proportional to the levels of thyroid- stimulating hormone (TSH), free triiodothyronine (FT3) and free thyroxine (FT4), leading to a higher prevalence of thyroid dysfunction. Severe COVID-19 was a risk factor for euthyroid sick syndrome (ESS) (OR=22.5, 95% CI, 12.1 - 45.6). Neutrophil to lymphocyte ratio mediated the association between severe COVID-19 and ESS (mediation effect ratio = 41.3%, p < 0.001). ESS and decreased indicators of thyroid function were associated with COVID-19 mortality, while high levels of FT3 and FT4 exhibited a protective effect against death. This effect was more significant in women (p < 0.05). During the recovery period, hyperthyroidism was quite uncommon, while a small percentage of individuals (7.7%) continued to exhibit hypothyroidism. Conclusion COVID-19 severity was linked to thyroid dysfunction. Severe COVID-19 increased the risk of ESS, which was associated with COVID-19 mortality. Post-recovery, hyperthyroidism was rare, but some individuals continued to have hypothyroidism.
Collapse
|
12
|
Machado LC, Dezordi FZ, de Lima GB, de Lima RE, Silva LCA, Pereira LDM, da Silva AF, da Silva Neto AM, de Oliveira ALS, Armstrong ADC, Pessoa-e-Silva R, Loyo RM, Silva BDO, de Almeida AR, da Rocha Pitta MG, Santos FDADS, Mendonça Siqueira M, Resende PC, Delatorre E, Naveca FG, Miyajima F, Gräf T, do Carmo RF, Pereira MC, Campos TDL, Bezerra MF, Paiva MHS, Wallau GDL. Spatiotemporal transmission of SARS-CoV-2 lineages during 2020-2021 in Pernambuco-Brazil. Microbiol Spectr 2024; 12:e0421823. [PMID: 38651879 PMCID: PMC11237429 DOI: 10.1128/spectrum.04218-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/04/2024] [Indexed: 04/25/2024] Open
Abstract
SARS-CoV-2 virus emerged as a new threat to humans and spread around the world, leaving a large death toll. As of January 2023, Brazil is among the countries with the highest number of registered deaths. Nonpharmacological and pharmacological interventions have been heterogeneously implemented in the country, which, associated with large socioeconomic differences between the country regions, has led to distinct virus spread dynamics. Here, we investigate the spatiotemporal dispersion of SARS-CoV-2 lineages in the Pernambuco state (Northeast Brazil) throughout the distinct epidemiological scenarios that unfolded in the first 2 years of the pandemic. We generated a total of 1,389 new SARS-CoV-2 genomes from June 2020 to August 2021. This sampling captured the arrival, communitary transmission, and the circulation of the B1.1, B.1.1.28, and B.1.1.33 lineages; the emergence of the former variant of interest P.2; and the emergence and fast replacement of all previous variants by the more transmissible variant of concern P.1 (Gamma). Based on the incidence and lineage spread pattern, we observed an East-to-West to inner state pattern of transmission, which is in agreement with the transmission of more populous metropolitan areas to medium- and small-size country-side cities in the state. Such transmission patterns may be partially explained by the main routes of traffic across municipalities in the state. Our results highlight that the fine-grained intrastate analysis of lineages and incidence spread can provide actionable insights for planning future nonpharmacological intervention for air-borne transmissible human pathogens.IMPORTANCEDuring the COVID-19 pandemic, Brazil was one of the most affected countries, mainly due its continental-size, socioeconomic differences among regions, and heterogeneous implementation of intervention methods. In order to investigate SARS-CoV-2 dynamics in the state of Pernambuco, we conducted a spatiotemporal dispersion study, covering the period from June 2020 to August 2021, to comprehend the dynamics of viral transmission during the first 2 years of the pandemic. Throughout this study, we were able to track three significant epidemiological waves of transmission caused by B1.1, B.1.1.28, B.1.1.33, P.2, and P.1 lineages. These analyses provided valuable insights into the evolution of the epidemiological landscape, contributing to a deeper understanding of the dynamics of virus transmission during the early years of the pandemic in the state of Pernambuco.
Collapse
Affiliation(s)
- Lais Ceschini Machado
- Departamento de Entomologia, Instituto Aggeu Magalhães (IAM)-Fundação Oswaldo Cruz-FIOCRUZ, Recife, Pernambuco, Brazil
| | - Filipe Zimmer Dezordi
- Departamento de Entomologia, Instituto Aggeu Magalhães (IAM)-Fundação Oswaldo Cruz-FIOCRUZ, Recife, Pernambuco, Brazil
- Núcleo de Bioinformática (NBI), Instituto Aggeu Magalhães (IAM), FIOCRUZ-Pernambuco, Recife, Pernambuco, Brazil
| | - Gustavo Barbosa de Lima
- Núcleo de Plataformas Tecnológicas (NPT), Instituto Aggeu Magalhães (IAM), FIOCRUZ-Pernambuco, Recife, Pernambuco, Brazil
| | - Raul Emídio de Lima
- Núcleo de Plataformas Tecnológicas (NPT), Instituto Aggeu Magalhães (IAM), FIOCRUZ-Pernambuco, Recife, Pernambuco, Brazil
| | - Lilian Caroliny Amorim Silva
- Núcleo de Plataformas Tecnológicas (NPT), Instituto Aggeu Magalhães (IAM), FIOCRUZ-Pernambuco, Recife, Pernambuco, Brazil
| | - Leandro de Mattos Pereira
- Núcleo de Bioinformática (NBI), Instituto Aggeu Magalhães (IAM), FIOCRUZ-Pernambuco, Recife, Pernambuco, Brazil
| | - Alexandre Freitas da Silva
- Departamento de Entomologia, Instituto Aggeu Magalhães (IAM)-Fundação Oswaldo Cruz-FIOCRUZ, Recife, Pernambuco, Brazil
- Núcleo de Bioinformática (NBI), Instituto Aggeu Magalhães (IAM), FIOCRUZ-Pernambuco, Recife, Pernambuco, Brazil
| | | | - André Luiz Sá de Oliveira
- Núcleo de Estatística e Geoprocessamento, Instituto Aggeu Magalhães (IAM)- Fundação Oswaldo Cruz Pernambuco- FIOCRUZ-PE, Recife, Brazil
| | | | - Rômulo Pessoa-e-Silva
- Suely-Galdino Therapeutic Innovation Research Center (NUPIT-SG), Federal University of Pernambuco (UFPE), Recife, Pernambuco, Brazil
| | - Rodrigo Moraes Loyo
- Departamento de Parasitologia, Instituto Aggeu Magalhães (IAM), FIOCRUZ-Pernambuco, Recife, Pernambuco, Brazil
| | - Barbara de Oliveira Silva
- Suely-Galdino Therapeutic Innovation Research Center (NUPIT-SG), Federal University of Pernambuco (UFPE), Recife, Pernambuco, Brazil
| | - Anderson Rodrigues de Almeida
- Suely-Galdino Therapeutic Innovation Research Center (NUPIT-SG), Federal University of Pernambuco (UFPE), Recife, Pernambuco, Brazil
| | - Maira Galdino da Rocha Pitta
- Suely-Galdino Therapeutic Innovation Research Center (NUPIT-SG), Federal University of Pernambuco (UFPE), Recife, Pernambuco, Brazil
| | | | - Marilda Mendonça Siqueira
- Laboratory of Respiratory Viruses and Measles (LVRS), Instituto Oswaldo Cruz, FIOCRUZ-Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paola Cristina Resende
- Laboratory of Respiratory Viruses and Measles (LVRS), Instituto Oswaldo Cruz, FIOCRUZ-Rio de Janeiro, Rio de Janeiro, Brazil
| | - Edson Delatorre
- Departamento de Biologia, Centro de Ciências Exatas, Naturais e da Saúde, Universidade Federal do Espírito Santo, Alegre, Espírito Santo, Brazil
| | - Felipe Gomes Naveca
- Laboratório de Ecologia de Doenças Transmissíveis na Amazônia (EDTA), Instituto Leônidas e Maria Deane, FIOCRUZ-Amazonas, Manaus, Amazonas, Brazil
| | - Fabio Miyajima
- Analytical Competence Molecular Epidemiology Laboratory (ACME), FIOCRUZ-Ceará, Fortaleza, Ceará, Brazil
| | - Tiago Gräf
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, Fundação Oswaldo Cruz, Curitiba, Paraná, Brazil
| | | | - Michelly Cristiny Pereira
- Suely-Galdino Therapeutic Innovation Research Center (NUPIT-SG), Federal University of Pernambuco (UFPE), Recife, Pernambuco, Brazil
| | - Tulio de Lima Campos
- Núcleo de Bioinformática (NBI), Instituto Aggeu Magalhães (IAM), FIOCRUZ-Pernambuco, Recife, Pernambuco, Brazil
| | - Matheus Filgueira Bezerra
- Departamento de Microbiologia, Instituto Aggeu Magalhães (IAM), FIOCRUZ-Pernambuco, Recife, Pernambuco, Brazil
| | - Marcelo Henrique Santos Paiva
- Departamento de Entomologia, Instituto Aggeu Magalhães (IAM)-Fundação Oswaldo Cruz-FIOCRUZ, Recife, Pernambuco, Brazil
- Núcleo de Ciências da Vida, Universidade Federal de Pernambuco (UFPE), Centro Acadêmico do Agreste, Caruaru, Brazil
| | - Gabriel da Luz Wallau
- Departamento de Entomologia, Instituto Aggeu Magalhães (IAM)-Fundação Oswaldo Cruz-FIOCRUZ, Recife, Pernambuco, Brazil
- Núcleo de Bioinformática (NBI), Instituto Aggeu Magalhães (IAM), FIOCRUZ-Pernambuco, Recife, Pernambuco, Brazil
- Department of Arbovirology, Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Center for Arbovirus and Hemorrhagic Fever Reference and Research, National Reference Center for Tropical Infectious Diseases, Hamburg, Germany
| | - On behalf of Fiocruz COVID-19 Genomic Network
- Departamento de Entomologia, Instituto Aggeu Magalhães (IAM)-Fundação Oswaldo Cruz-FIOCRUZ, Recife, Pernambuco, Brazil
- Núcleo de Bioinformática (NBI), Instituto Aggeu Magalhães (IAM), FIOCRUZ-Pernambuco, Recife, Pernambuco, Brazil
- Núcleo de Plataformas Tecnológicas (NPT), Instituto Aggeu Magalhães (IAM), FIOCRUZ-Pernambuco, Recife, Pernambuco, Brazil
- Núcleo de Estatística e Geoprocessamento, Instituto Aggeu Magalhães (IAM)- Fundação Oswaldo Cruz Pernambuco- FIOCRUZ-PE, Recife, Brazil
- Colegiado de Medicina, Universidade Federal do Vale do São Francisco, Petrolina, Brazil
- Suely-Galdino Therapeutic Innovation Research Center (NUPIT-SG), Federal University of Pernambuco (UFPE), Recife, Pernambuco, Brazil
- Departamento de Parasitologia, Instituto Aggeu Magalhães (IAM), FIOCRUZ-Pernambuco, Recife, Pernambuco, Brazil
- Núcleo de Ciências da Vida, Universidade Federal de Pernambuco (UFPE), Centro Acadêmico do Agreste, Caruaru, Brazil
- Laboratory of Respiratory Viruses and Measles (LVRS), Instituto Oswaldo Cruz, FIOCRUZ-Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Biologia, Centro de Ciências Exatas, Naturais e da Saúde, Universidade Federal do Espírito Santo, Alegre, Espírito Santo, Brazil
- Laboratório de Ecologia de Doenças Transmissíveis na Amazônia (EDTA), Instituto Leônidas e Maria Deane, FIOCRUZ-Amazonas, Manaus, Amazonas, Brazil
- Analytical Competence Molecular Epidemiology Laboratory (ACME), FIOCRUZ-Ceará, Fortaleza, Ceará, Brazil
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, Fundação Oswaldo Cruz, Curitiba, Paraná, Brazil
- Colegiado de Ciências Farmacêuticas, Universidade Federal do Vale do São Francisco, Petrolina, Brazil
- Departamento de Microbiologia, Instituto Aggeu Magalhães (IAM), FIOCRUZ-Pernambuco, Recife, Pernambuco, Brazil
- Department of Arbovirology, Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Center for Arbovirus and Hemorrhagic Fever Reference and Research, National Reference Center for Tropical Infectious Diseases, Hamburg, Germany
| |
Collapse
|
13
|
He P, Song Y, Jin W, Li Y, Xia K, Kim SB, Dwivedi R, Farrag M, Bates J, Pomin VH, Wang C, Linhardt RJ, Dordick JS, Zhang F. Marine sulfated glycans inhibit the interaction of heparin with S-protein of SARS-CoV-2 Omicron XBB variant. Glycoconj J 2024; 41:163-174. [PMID: 38642280 DOI: 10.1007/s10719-024-10150-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/26/2024] [Accepted: 04/04/2024] [Indexed: 04/22/2024]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a worldwide COVID-19 pandemic, leading to 6.8 million deaths. Numerous variants have emerged since its outbreak, resulting in its significantly enhanced ability to spread among humans. As with many other viruses, SARS‑CoV‑2 utilizes heparan sulfate (HS) glycosaminoglycan (GAG) on the surface of host cells to facilitate viral attachment and initiate cellular entry through the ACE2 receptor. Therefore, interfering with virion-HS interactions represents a promising target to develop broad-spectrum antiviral therapeutics. Sulfated glycans derived from marine organisms have been proven to be exceptional reservoirs of naturally existing HS mimetics, which exhibit remarkable therapeutic properties encompassing antiviral/microbial, antitumor, anticoagulant, and anti-inflammatory activities. In the current study, the interactions between the receptor-binding domain (RBD) of S-protein of SARS-CoV-2 (both WT and XBB.1.5 variants) and heparin were applied to assess the inhibitory activity of 10 marine-sourced glycans including three sulfated fucans, three fucosylated chondroitin sulfates and two fucoidans derived from sea cucumbers, sea urchin and seaweed Saccharina japonica, respectively. The inhibitory activity of these marine derived sulfated glycans on the interactions between RBD of S-protein and heparin was evaluated using Surface Plasmon Resonance (SPR). The RBDs of S-proteins from both Omicrion XBB.1.5 and wild-type (WT) were found to bind to heparin, which is a highly sulfated form of HS. All the tested marine-sourced sulfated glycans exhibited strong inhibition of WT and XBB.1.5 S-protein binding to heparin. We believe the study on the molecular interactions between S-proteins and host cell glycosaminoglycans provides valuable insight for the development of marine-sourced, glycan-based inhibitors as potential anti-SARS-CoV-2 agents.
Collapse
Affiliation(s)
- Peng He
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
- School of Oceanography, Beibu Gulf University, 535011, Qinzhou, China
| | - Yuefan Song
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 12180, Troy, NY, USA
| | - Weihua Jin
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 310014, Hangzhou, China
| | - Yunran Li
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 12180, Troy, NY, USA
| | - Ke Xia
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 12180, Troy, NY, USA
| | - Seon Beom Kim
- Department of BioMolecular Sciences, Research Institute of Pharmaceutical Sciences, The University of Mississippi, Oxford, MS, USA
- Department of Food Science & Technology, College of Natural Resources and Life Science, Pusan National University, Miryang, Republic of Korea
| | - Rohini Dwivedi
- Department of BioMolecular Sciences, Research Institute of Pharmaceutical Sciences, The University of Mississippi, Oxford, MS, USA
| | - Marwa Farrag
- Department of BioMolecular Sciences, Research Institute of Pharmaceutical Sciences, The University of Mississippi, Oxford, MS, USA
| | - John Bates
- Department of BioMolecular Sciences, Research Institute of Pharmaceutical Sciences, The University of Mississippi, Oxford, MS, USA
| | - Vitor H Pomin
- Department of BioMolecular Sciences, Research Institute of Pharmaceutical Sciences, The University of Mississippi, Oxford, MS, USA
| | - Chunyu Wang
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 12180, Troy, NY, USA
| | - Robert J Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 12180, Troy, NY, USA
- Departments of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, 12180, Troy, NY, USA
| | - Jonathan S Dordick
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA.
- Departments of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, 12180, Troy, NY, USA.
| | - Fuming Zhang
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA.
- Departments of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, 12180, Troy, NY, USA.
| |
Collapse
|
14
|
Kandel S, Hartzell SL, Ingold AK, Turner GA, Kennedy JL, Ussery DW. Genomic surveillance of SARS-CoV-2 using long-range PCR primers. Front Microbiol 2024; 15:1272972. [PMID: 38440140 PMCID: PMC10910555 DOI: 10.3389/fmicb.2024.1272972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/03/2024] [Indexed: 03/06/2024] Open
Abstract
Introduction Whole Genome Sequencing (WGS) of the SARS-CoV-2 virus is crucial in the surveillance of the COVID-19 pandemic. Several primer schemes have been developed to sequence nearly all of the ~30,000 nucleotide SARS-CoV-2 genome, using a multiplex PCR approach to amplify cDNA copies of the viral genomic RNA. Midnight primers and ARTIC V4.1 primers are the most popular primer schemes that can amplify segments of SARS-CoV-2 (400 bp and 1200 bp, respectively) tiled across the viral RNA genome. Mutations within primer binding sites and primer-primer interactions can result in amplicon dropouts and coverage bias, yielding low-quality genomes with 'Ns' inserted in the missing amplicon regions, causing inaccurate lineage assignments, and making it challenging to monitor lineage-specific mutations in Variants of Concern (VoCs). Methods In this study we used a set of seven long-range PCR primer pairs to sequence clinical isolates of SARS-CoV-2 on Oxford Nanopore sequencer. These long-range primers generate seven amplicons approximately 4500 bp that covered whole genome of SARS-CoV-2. One of these regions includes the full-length S-gene by using a set of flanking primers. We also evaluated the performance of these long-range primers with Midnight primers by sequencing 94 clinical isolates in a Nanopore flow cell. Results and discussion Using a small set of long-range primers to sequence SARS-CoV-2 genomes reduces the possibility of amplicon dropout and coverage bias. The key finding of this study is that long range primers can be used in single-molecule sequencing of RNA viruses in surveillance of emerging variants. We also show that by designing primers flanking the S-gene, we can obtain reliable identification of SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Sangam Kandel
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | | | - Ashton K. Ingold
- Arkansas Children's Research Institute, Little Rock, AR, United States
| | - Grace A. Turner
- Arkansas Children's Research Institute, Little Rock, AR, United States
| | - Joshua L. Kennedy
- Arkansas Children's Research Institute, Little Rock, AR, United States
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - David W. Ussery
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
15
|
Lee DW, Kim JM, Kim DW, Kim JY, Kim JA, Lee CY, No JS, Kim IH, Rhee JE, Kim EJ, Kwon JH. Three distinct ORF1a recombinants of the SARS-CoV-2 Delta variant of concern. Virology 2024; 590:109945. [PMID: 38064871 DOI: 10.1016/j.virol.2023.109945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/07/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024]
Abstract
The ongoing COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to the emergency of various lineages through mutations and recombination. In the Delta lineage, we identified recombination events in the ORF1a gene, which divided the Delta sublineages into three different genotypes (Delta R1-R3). The regional distributions of Delta R1 and Delta R2 were not correlated, indicating that recombination occurred early in the Delta outbreak. The impact of the ORF1a gene on SARS-CoV-2 transmission remains unclear; however, our findings suggest that recombination may have contributed to the evolution and global spread of the Delta lineage.
Collapse
Affiliation(s)
- Dong-Wook Lee
- Laboratory of Veterinary Microbiology, College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jeong-Min Kim
- Division of Emerging Infectious Diseases, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency, Cheongju-si, 28159, Republic of Korea
| | - Da-Won Kim
- Laboratory of Veterinary Microbiology, College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Ji-Yun Kim
- Laboratory of Veterinary Microbiology, College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jeong-Ah Kim
- Division of Emerging Infectious Diseases, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency, Cheongju-si, 28159, Republic of Korea
| | - Chae Young Lee
- Division of Emerging Infectious Diseases, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency, Cheongju-si, 28159, Republic of Korea
| | - Jin Sun No
- Division of Emerging Infectious Diseases, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency, Cheongju-si, 28159, Republic of Korea
| | - Il-Hwan Kim
- Division of Emerging Infectious Diseases, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency, Cheongju-si, 28159, Republic of Korea
| | - Jee Eun Rhee
- Division of Emerging Infectious Diseases, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency, Cheongju-si, 28159, Republic of Korea
| | - Eun-Jin Kim
- Division of Emerging Infectious Diseases, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency, Cheongju-si, 28159, Republic of Korea.
| | - Jung-Hoon Kwon
- Laboratory of Veterinary Microbiology, College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
16
|
Huang F, Chen C. Investigation of Bucillamine as anti-COVID-19 drug: DFT study, molecular docking, molecular dynamic simulation and ADMET analysis. J Biomol Struct Dyn 2024; 42:34-42. [PMID: 36995042 DOI: 10.1080/07391102.2023.2192791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 03/10/2023] [Indexed: 03/31/2023]
Abstract
The novel coronavirus disease-2019 (COVID-19), caused by SARS-CoV-2, is a global health pandemic beginning in early December 2019 in Wuhan, Hubei province, China. The effective drug target among coronaviruses is the SARS-CoV-2 main protease (Mpro), because of its crucial role in processing viral polyproteins translated from the viral RNA. In this study, the bioactivity of the selected thiol drug named Bucillamine (BUC) was evaluated as a potential drug for COVID-19 treatment by using computational modeling strategies. First, the molecular electrostatic potential density (ESP) calculation was performed to estimate the chemically active atoms of BUC. Additionally, BUC was docked to the Mpro (PDB: 6LU7) to evaluate the protein-ligand binding affinities. Besides, the estimated ESP results by density functional theory (DFT) were used to illustrate the molecular docking findings. Moreover, the frontier orbitals analysis was calculated to determine the charge transfer between the Mpro and BUC. Then, the stability of protein-ligand complex was subjected to the molecular dynamic simulations. Finally, an in silico study was performed to predict drug-likeness and absorption, distribution, metabolism, excretion and toxicity profiles (ADMET) of BUC. These results propose that BUC can be a potential drug candidate against the COVID-19 disease progression.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Fengwen Huang
- Key Laboratory of Neuroscience, Department of Biomedical Science, City University of HongKong, Hong Kong, China
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Chen Chen
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| |
Collapse
|
17
|
Arefzadeh A. A Review of Thyroid Dysfunction Due to COVID-19. Mini Rev Med Chem 2024; 24:265-271. [PMID: 37069724 DOI: 10.2174/1389557523666230413090332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 04/19/2023]
Abstract
Coronavirus disease 2019 (COVID-19) affects thyroid function. These changes are due to the direct impact of the virus on thyroid cells via angiotensin-converting-enzyme 2 (ACE2) receptors, inflammatory reaction, apoptosis in thyroid follicular cells, suppression of hypothalamus-pituitarythyroid axis, an increase in activity of adrenocortical axis, and excess cortisol release due to cytokine storm of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Euthyroid sick syndrome (ESS), thyroiditis, clinical and subclinical hypothyroidism, central hypothyroidism, exacerbation of underlying autoimmune thyroid disease, and clinical and subclinical hyperthyroidism can be associated with coronavirus. Adjuvants in coronavirus vaccines induce autoimmune/inflammatory syndrome known as vaccine adjuvants (ASIA) syndrome. Thyroiditis and Graves' disease have been reported to be associated with ASIA syndrome after some coronavirus vaccinations. Some coronavirus medications, such as hydroxychloroquine, monoclonal antibodies, lopinavir/ritonavir, remdesivir, naproxen, anticoagulants, and glucocorticoids can also affect thyroid tests, and correct diagnosis of thyroid disorders will be more difficult. Changes in thyroid tests may be one of the most important manifestations of COVID-19. These changes can be confusing for clinicians and can lead to inappropriate diagnoses and decisions. Prospective studies should be conducted in the future to increase epidemiological and clinical data and optimize the management of thyroid dysfunctions in patients with COVID-19.
Collapse
Affiliation(s)
- Alireza Arefzadeh
- Department of Endocrinology, Farhikhtegan Hospital, Faculty of Medicine, Tehran Medical Sciences Islamic Azad University, Tehran, Iran
| |
Collapse
|
18
|
He S, Gou H, Zhou Y, Wu C, Ren X, Wu X, Guan G, Jin B, Huang J, Jin Z, Zhao T. The SARS-CoV-2 nucleocapsid protein suppresses innate immunity by remodeling stress granules to atypical foci. FASEB J 2023; 37:e23269. [PMID: 37889852 DOI: 10.1096/fj.202201973rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 08/10/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023]
Abstract
Viruses deploy multiple strategies to suppress the host innate immune response to facilitate viral replication and pathogenesis. Typical G3BP1+ stress granules (SGs) are usually formed in host cells after virus infection to restrain viral translation and to stimulate innate immunity. Thus, viruses have evolved various mechanisms to inhibit SGs or to repurpose SG components such as G3BP1. Previous studies showed that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection inhibited host immunity during the early stage of COVID-19. However, the precise mechanism is not yet well understood. Here we showed that the SARS-CoV-2 nucleocapsid (SARS2-N) protein suppressed the double-stranded RNA (dsRNA)-induced innate immune response, concomitant with inhibition of SGs and the induction of atypical SARS2-N+ /G3BP1+ foci (N+ foci). The SARS2-N protein-induced formation of N+ foci was dependent on the ability of its ITFG motif to hijack G3BP1, which contributed to suppress the innate immune response. Importantly, SARS2-N protein facilitated viral replication by inducing the formation of N+ foci. Viral mutations within SARS2-N protein that impair the formation of N+ foci are associated with the inability of the SARS2-N protein to suppress the immune response. Taken together, our study has revealed a novel mechanism by which SARS-CoV-2 suppresses the innate immune response via induction of atypical N+ foci. We think that this is a critical strategy for viral pathogenesis and has potential therapeutic implications.
Collapse
Affiliation(s)
- Su He
- College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Hongwei Gou
- College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
- School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Yulin Zhou
- College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Chunxiu Wu
- College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Xinxin Ren
- College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
- School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Xiajunpeng Wu
- College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
- School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Guanwen Guan
- College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Boxing Jin
- College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Jinhua Huang
- College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
- School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Zhigang Jin
- College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Tiejun Zhao
- College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
- School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| |
Collapse
|
19
|
Uzunoglu A, Gunes Altuntas E, Huseyin Ipekci H, Ozoglu O. Two-Dimensional (2D) materials in the detection of SARS-CoV-2. Microchem J 2023; 193:108970. [PMID: 37342763 PMCID: PMC10265934 DOI: 10.1016/j.microc.2023.108970] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/10/2023] [Accepted: 06/10/2023] [Indexed: 06/23/2023]
Abstract
The SARS-CoV-2 pandemic has resulted in a devastating effect on human health in the last three years. While tremendous effort has been devoted to the development of effective treatment and vaccines against SARS-CoV-2 and controlling the spread of it, collective health challenges have been encountered along with the concurrent serious economic impacts. Since the beginning of the pandemic, various detection methods like PCR-based methods, isothermal nucleic acid amplification-based (INAA) methods, serological methods or antibody tests, and evaluation of X-ray chest results have been exploited to diagnose SARS-CoV-2. PCR-based detection methods in these are considered gold standards in the current stage despite their drawbacks, including being high-cost and time-consuming procedures. Furthermore, the results obtained from the PCR tests are susceptible to sample collection methods and time. When the sample is not collected properly, obtaining a false result may be likely. The use of specialized lab equipment and the need for trained people for the experiments pose additional challenges in PCR-based testing methods. Also, similar problems are observed in other molecular and serological methods. Therefore, biosensor technologies are becoming advantageous with their quick response, high specificity and precision, and low-cost characteristics for SARS-CoV-2 detection. In this paper, we critically review the advances in the development of sensors for the detection of SARS-CoV-2 using two-dimensional (2D) materials. Since 2D materials including graphene and graphene-related materials, transition metal carbides, carbonitrides, and nitrides (MXenes), and transition metal dichalcogenides (TMDs) play key roles in the development of novel and high-performance electrochemical (bio)sensors, this review pushes the sensor technologies against SARS-CoV-2 detection forward and highlights the current trends. First, the basics of SARS-CoV-2 detection are described. Then the structure and the physicochemical properties of the 2D materials are explained, which is followed by the development of SARS-CoV-2 sensors by exploiting the exceptional properties of the 2D materials. This critical review covers most of the published papers in detail from the beginning of the outbreak.
Collapse
Affiliation(s)
- Aytekin Uzunoglu
- Faculty of Engineering, Metallurgical & Materials Engineering, Necmettin Erbakan University, Konya 42090, Turkey
| | - Evrim Gunes Altuntas
- Ankara University, Biotechnology Institute, Gumusdere Campus, 06135, Ankara, Turkey
| | - Hasan Huseyin Ipekci
- Faculty of Engineering, Metallurgical & Materials Engineering, Necmettin Erbakan University, Konya 42090, Turkey
| | - Ozum Ozoglu
- Department of Food Engineering, Faculty of Agriculture, Bursa Uludag University, 16059 Bursa, Turkey
| |
Collapse
|
20
|
Xie M, Zou X, Xie Y, Hu L, Tang Y, Cai J, Kuang Y, Zhu L, Zou M, Wang Q. Childhood trauma and suicide risk in hospitalized patients with schizophrenia: the sequential mediating roles of pandemic related post-traumatic stress symptoms, sleep quality, and psychological distress. Front Psychiatry 2023; 14:1221529. [PMID: 37810605 PMCID: PMC10551446 DOI: 10.3389/fpsyt.2023.1221529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/01/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction Stressful global situation due to the COVID-19 pandemic caused a tremendous impact on mental health in hospitalized patients with schizophrenia. The mediating roles of psychological impact related to COVID-19, sleep quality, and psychological distress were investigated in the association between childhood trauma and suicidal risk in hospitalized patients with schizophrenia. Methods We analyzed cross-sectional data of 147 patients with schizophrenia and 189 healthy controls (HCs). Results Histories of childhood trauma and schizophrenia were good predictors of COVID-19-related psychological impact, global sleep quality, and psychological distress. Moreover, the series mediation model showed that the effect of childhood trauma on suicidal risk in hospitalized patients with schizophrenia was totally sequential mediated by the psychological impact of COVID-19, sleep quality, and psychological distress. Conclusion Clinicians need to recognize the increased suicidal risk associated with COVID-19-related psychological distress in schizophrenia patients with a history of childhood trauma.
Collapse
Affiliation(s)
- Min Xie
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, China
| | - Xuemin Zou
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, China
| | - Yingjing Xie
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, China
| | - Li Hu
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, China
| | - Yiguo Tang
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, China
| | - Jai Cai
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, China
| | - Yunxue Kuang
- The First People’s Hospital of Longquanyi District Chengdu, West China Longquan Hospital Sichuan University, Chengdu, China
| | - Ling Zhu
- Department of Clinical Psychology, Southwest Hospital, The First Hospital Affiliated to Army Medical University (Third Military Medical University), Chongqing, China
| | - Min Zou
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Qiang Wang
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, China
| |
Collapse
|
21
|
Rahman A, Roy KJ, Deb GK, Ha T, Rahman S, Aktar MK, Ali MI, Kafi MA, Choi JW. Nano-Enabled Antivirals for Overcoming Antibody Escaped Mutations Based SARS-CoV-2 Waves. Int J Mol Sci 2023; 24:13130. [PMID: 37685938 PMCID: PMC10488153 DOI: 10.3390/ijms241713130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/11/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
This review discusses receptor-binding domain (RBD) mutations related to the emergence of various SARS-CoV-2 variants, which have been highlighted as a major cause of repetitive clinical waves of COVID-19. Our perusal of the literature reveals that most variants were able to escape neutralizing antibodies developed after immunization or natural exposure, pointing to the need for a sustainable technological solution to overcome this crisis. This review, therefore, focuses on nanotechnology and the development of antiviral nanomaterials with physical antagonistic features of viral replication checkpoints as such a solution. Our detailed discussion of SARS-CoV-2 replication and pathogenesis highlights four distinct checkpoints, the S protein (ACE2 receptor coupling), the RBD motif (ACE2 receptor coupling), ACE2 coupling, and the S protein cleavage site, as targets for the development of nano-enabled solutions that, for example, prevent viral attachment and fusion with the host cell by either blocking viral RBD/spike proteins or cellular ACE2 receptors. As proof of this concept, we highlight applications of several nanomaterials, such as metal and metal oxide nanoparticles, carbon-based nanoparticles, carbon nanotubes, fullerene, carbon dots, quantum dots, polymeric nanoparticles, lipid-based, polymer-based, lipid-polymer hybrid-based, surface-modified nanoparticles that have already been employed to control viral infections. These nanoparticles were developed to inhibit receptor-mediated host-virus attachments and cell fusion, the uncoating of the virus, viral gene expression, protein synthesis, the assembly of progeny viral particles, and the release of the virion. Moreover, nanomaterials have been used as antiviral drug carriers and vaccines, and nano-enabled sensors have already been shown to enable fast, sensitive, and label-free real-time diagnosis of viral infections. Nano-biosensors could, therefore, also be useful in the remote testing and tracking of patients, while nanocarriers probed with target tissue could facilitate the targeted delivery of antiviral drugs to infected cells, tissues, organs, or systems while avoiding unwanted exposure of non-target tissues. Antiviral nanoparticles can also be applied to sanitizers, clothing, facemasks, and other personal protective equipment to minimize horizontal spread. We believe that the nanotechnology-enabled solutions described in this review will enable us to control repeated SAR-CoV-2 waves caused by antibody escape mutations.
Collapse
Affiliation(s)
- Aminur Rahman
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.R.); (K.J.R.); (S.R.); (M.K.A.); (M.I.A.)
| | - Kumar Jyotirmoy Roy
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.R.); (K.J.R.); (S.R.); (M.K.A.); (M.I.A.)
| | - Gautam Kumar Deb
- Department of Biotechnology, Bangladesh Livestock Research Institute, Dhaka 1341, Bangladesh;
| | - Taehyeong Ha
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea;
| | - Saifur Rahman
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.R.); (K.J.R.); (S.R.); (M.K.A.); (M.I.A.)
| | - Mst. Khudishta Aktar
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.R.); (K.J.R.); (S.R.); (M.K.A.); (M.I.A.)
| | - Md. Isahak Ali
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.R.); (K.J.R.); (S.R.); (M.K.A.); (M.I.A.)
| | - Md. Abdul Kafi
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.R.); (K.J.R.); (S.R.); (M.K.A.); (M.I.A.)
| | - Jeong-Woo Choi
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea;
| |
Collapse
|
22
|
Kandel S, Hartzell SL, Ingold AK, Turner GA, Kennedy JL, Ussery DW. Genomic Surveillance of SARS-CoV-2 Using Long-Range PCR Primers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.10.548464. [PMID: 37502853 PMCID: PMC10369864 DOI: 10.1101/2023.07.10.548464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Whole Genome Sequencing (WGS) of the SARS-CoV-2 virus is crucial in the surveillance of the COVID-19 pandemic. Several primer schemes have been developed to sequence the ~30,000 nucleotide SARS-CoV-2 genome that use a multiplex PCR approach to amplify cDNA copies of the viral genomic RNA. Midnight primers and ARTIC V4.1 primers are the most popular primer schemes that can amplify segments of SARS-CoV-2 (400 bp and 1200 bp, respectively) tiled across the viral RNA genome. Mutations within primer binding sites and primer-primer interactions can result in amplicon dropouts and coverage bias, yielding low-quality genomes with 'Ns' inserted in the missing amplicon regions, causing inaccurate lineage assignments, and making it challenging to monitor lineage-specific mutations in Variants of Concern (VoCs). This study uses seven long-range PCR primers with an amplicon size of ~4500 bp to tile across the complete SARS-CoV-2 genome. One of these regions includes the full-length S-gene by using a set of flanking primers. Using a small set of long-range primers to sequence SARS-CoV-2 genomes reduces the possibility of amplicon dropout and coverage bias.
Collapse
Affiliation(s)
- Sangam Kandel
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, 4301 West Markham Street (slot 782), Little Rock, AR 72205, USA
| | - Susanna L. Hartzell
- Arkansas Children’s Research Institute, 13 Children’s Way, Little Rock, AR 72202, USA
| | - Ashton K. Ingold
- Arkansas Children’s Research Institute, 13 Children’s Way, Little Rock, AR 72202, USA
| | - Grace A. Turner
- Arkansas Children’s Research Institute, 13 Children’s Way, Little Rock, AR 72202, USA
| | - Joshua L. Kennedy
- Arkansas Children’s Research Institute, 13 Children’s Way, Little Rock, AR 72202, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, 72202, USA
- Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - David W. Ussery
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, 4301 West Markham Street (slot 782), Little Rock, AR 72205, USA
| |
Collapse
|
23
|
Saleh NA. In-silico study: docking simulation and molecular dynamics of peptidomimetic fullerene-based derivatives against SARS-CoV-2 M pro. 3 Biotech 2023; 13:185. [PMID: 37193325 PMCID: PMC10182551 DOI: 10.1007/s13205-023-03608-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 05/03/2023] [Indexed: 05/18/2023] Open
Abstract
COVID-19 is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, has become a global pandemic resulting in significant morbidity and mortality. This study presents 12 new peptidomimetic fullerene-based derivatives in three groups that are investigated theoretically as SARS-CoV-2 Mpro inhibitors to increase the chance of treating COVID-19. Studied compounds are designed and optimized at B88-LYP/DZVP method. Molecular descriptors results show the stability and reactivity of the compounds with Mpro, especially in the 3rd group (Ser compounds). However, Lipinski's Rule of Five values indicates that the compounds are not suitable as oral drugs. Furthermore, molecular docking simulations are carried out to investigate the binding affinity and interaction modes of the top five compounds (compounds 1, 9, 11, 2, and 10) with the Mpro protein, which have the lowest binding energy. Molecular dynamics simulations are also performed to evaluate the stability of the protein-ligand complexes with compounds 1 and 9 and compare them with natural substrate interaction. The analysis of RMSD, H-bonds, Rg, and SASA indicates that both compounds 1 (Gly-α acid) and 9 (Ser-α acid) have good stability and strong binding affinity with the Mpro protein. However, compound 9 shows slightly better stability and binding affinity compared to compound 1.
Collapse
Affiliation(s)
- Noha A. Saleh
- Department of Physics, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441 Dammam, Saudi Arabia
- Basic and Applied Scientific Research Centre, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441 Dammam, Saudi Arabia
| |
Collapse
|
24
|
Rahimian K, Arefian E, Mahdavi B, Mahmanzar M, Kuehu D, Deng Y. SARS2Mutant: SARS-CoV-2 amino-acid mutation atlas database. NAR Genom Bioinform 2023; 5:lqad037. [PMID: 37101659 PMCID: PMC10124966 DOI: 10.1093/nargab/lqad037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/27/2023] [Accepted: 04/18/2023] [Indexed: 04/28/2023] Open
Abstract
The coronavirus disease 19 (COVID-19) is a highly pathogenic viral infection of the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), resulted in the global pandemic of 2020. A lack of therapeutic and preventive strategies has quickly posed significant threats to world health. A comprehensive understanding of SARS-CoV-2 evolution and natural selection, how it impacts host interaction, and phenotype symptoms is vital to develop effective strategies against the virus. The SARS2Mutant database (http://sars2mutant.com/) was developed to provide valuable insights based on millions of high-quality, high-coverage SARS-CoV-2 complete protein sequences. Users of this database have the ability to search for information on three amino acid substitution mutation strategies based on gene name, geographical zone, or comparative analysis. Each strategy is presented in five distinct formats which includes: (i) mutated sample frequencies, (ii) heat maps of mutated amino acid positions, (iii) mutation survivals, (iv) natural selections and (v) details of substituted amino acids, including their names, positions, and frequencies. GISAID is a primary database of genomics sequencies of influenza viruses updated daily. SARS2Mutant is a secondary database developed to discover mutation and conserved regions from the primary data to assist with design for targeted vaccine, primer, and drug discoveries.
Collapse
Affiliation(s)
- Karim Rahimian
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Ehsan Arefian
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Bahar Mahdavi
- Department of Computer Science, Tarbiat Modares University, Tehran, Iran
| | - Mohammadamin Mahmanzar
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Donna Lee Kuehu
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Youping Deng
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| |
Collapse
|
25
|
Wojczyk M, Kowalska M. The prevalence and determinants of SARS-CoV-2 infections among healthcare workers, results of a cross-sectional study in the Silesian Voivodeship. Int J Occup Med Environ Health 2023; 36:201-213. [PMID: 37184147 PMCID: PMC10464735 DOI: 10.13075/ijomeh.1896.02101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 02/22/2023] [Indexed: 05/16/2023] Open
Abstract
OBJECTIVES A significant proportion of healthcare workers (HCWs) had been infected with SARS-CoV-2, which complicated the organization of patient care during the COVID-19 pandemic. However, the exact scale of infection prevalence among the group of HCWs is not known, therefore this study aimed to assess the prevalence of SARS-CoV-2 infection among HCWs in the Silesian voivodeship, Poland, and to define its determinants. MATERIAL AND METHODS The cross-sectional study was conducted in 2 multidisciplinary hospitals in the Silesian voivodeship during the period October 2021-February 2022. The standardized WHO questionnaire Surveillance protocol for SARS-CoV-2 infection among health workers was completed by 242 HCWs. To assess the prevalence of SARS-CoV-2 infection and its determinants, such as personal, occupational, and work environment-related conditions and preventive behaviors, the collected data were subjected to statistical analysis. For this purpose, descriptive and analytical statistics (significance of differences in χ2 test) were used. RESULTS Almost half (42.6%) of subjects were infected with coronavirus, most frequently care assistants (57.1%) and paramedics (50%). People suffering from chronic diseases were infected significantly more often (p < 0.001). The majority of the infected HCWs declared previous contact with COVID-19 patients (56.3%). Unfortunately, 10.3% of respondents refused to be vaccinated against COVID-19, most often care assistants (38.1%) and nurses (10.6%). The determinants such as sex, age, occupation, place of work (ward), participation in occupational safety and health training, use of personal protective equipment (PPE), or preventive behaviors did not significantly affect the risk of infection (p > 0.05). CONCLUSIONS Even though the PPE was used and the percentage of fully vaccinated HCWs against COVID-19 was high (89.7%), the frequency of SARS-CoV-2 infected HCWs remains high at 42.6% (95% CI: 40.7-44.5%). The main determinants of SARS-CoV-2 infection risk among HCWs were previous contact with infected individuals and the presence of chronic disease. Int J Occup Med Environ Health. 2023;36(2):201-13.
Collapse
Affiliation(s)
- Marek Wojczyk
- Medical University of Silesia, Doctoral School, Katowice, Poland
| | - Małgorzata Kowalska
- Medical University of Silesia, Department of Epidemiology, Faculty of Medical Science, Katowice, Poland
| |
Collapse
|
26
|
Liang F. Quantitative Mutation Analysis of Genes and Proteins of Major SARS-CoV-2 Variants of Concern and Interest. Viruses 2023; 15:v15051193. [PMID: 37243278 DOI: 10.3390/v15051193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/09/2023] [Accepted: 05/14/2023] [Indexed: 05/28/2023] Open
Abstract
Of various SARS-CoV-2 variants, some have drawn special concern or interest because of their heightened disease threat. The mutability of individual SARS-CoV-2 genes/proteins presumably varies. The present study quantified gene/protein mutations in 13 major SARS-CoV-2 variants of concern/interest, and analyzed viral protein antigenicity using bioinformatics. The results from 187 carefully perused genome clones showed significantly higher mean percent mutations in the spike, ORF8, nucleocapsid, and NSP6 than in other viral proteins. The ORF8 and spike proteins also tolerated higher maximal percent mutations. The omicron variant presented more percent mutations in the NSP6 and structural proteins, whereas the delta featured more in the ORF7a. Omicron subvariant BA.2 exhibited more mutations in ORF6, and omicron BA.4 had more in NSP1, ORF6, and ORF7b, relative to omicron BA.1. Delta subvariants AY.4 and AY.5 bore more mutations in ORF7b and ORF8 than delta B.1.617.2. Predicted antigen ratios of SARS-CoV-2 proteins significantly vary (range: 38-88%). To overcome SARS-CoV-2 immune evasion, the relatively conserved, potentially immunogenic NSP4, NSP13, NSP14, membrane, and ORF3a viral proteins may serve as more suitable targets for molecular vaccines or therapeutics than the mutation-prone NSP6, spike, ORF8, or nucleocapsid protein. Further investigation into distinct mutations of the variants/subvariants may help understand SARS-CoV-2 pathogenesis.
Collapse
Affiliation(s)
- Fengyi Liang
- Department of Anatomy, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore 117594, Singapore
| |
Collapse
|
27
|
Chen S, Arutyunova E, Lu J, Khan MB, Rut W, Zmudzinski M, Shahbaz S, Iyyathurai J, Moussa EW, Turner Z, Bai B, Lamer T, Nieman JA, Vederas JC, Julien O, Drag M, Elahi S, Young HS, Lemieux MJ. SARS-CoV-2 M pro Protease Variants of Concern Display Altered Viral Substrate and Cell Host Target Galectin-8 Processing but Retain Sensitivity toward Antivirals. ACS CENTRAL SCIENCE 2023; 9:696-708. [PMID: 37122453 PMCID: PMC10042146 DOI: 10.1021/acscentsci.3c00054] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Indexed: 05/03/2023]
Abstract
The main protease of SARS-CoV-2 (Mpro) is the most promising drug target against coronaviruses due to its essential role in virus replication. With newly emerging variants there is a concern that mutations in Mpro may alter the structural and functional properties of protease and subsequently the potency of existing and potential antivirals. We explored the effect of 31 mutations belonging to 5 variants of concern (VOCs) on catalytic parameters and substrate specificity, which revealed changes in substrate binding and the rate of cleavage of a viral peptide. Crystal structures of 11 Mpro mutants provided structural insight into their altered functionality. Additionally, we show Mpro mutations influence proteolysis of an immunomodulatory host protein Galectin-8 (Gal-8) and a subsequent significant decrease in cytokine secretion, providing evidence for alterations in the escape of host-antiviral mechanisms. Accordingly, mutations associated with the Gamma VOC and highly virulent Delta VOC resulted in a significant increase in Gal-8 cleavage. Importantly, IC50s of nirmatrelvir (Pfizer) and our irreversible inhibitor AVI-8053 demonstrated no changes in potency for both drugs for all mutants, suggesting Mpro will remain a high-priority antiviral drug candidate as SARS-CoV-2 evolves.
Collapse
Affiliation(s)
- Sizhu
Amelia Chen
- Department
of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
- Li
Ka Shing Institute of Virology, University
of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Elena Arutyunova
- Department
of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
- Li
Ka Shing Institute of Virology, University
of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Jimmy Lu
- Department
of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
- Li
Ka Shing Institute of Virology, University
of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Muhammad Bashir Khan
- Department
of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Wioletta Rut
- Department
of Chemical Biology and Bioimaging, Wroclaw
University of Science and Technology, Wroclaw, 50-370, Poland
| | - Mikolaj Zmudzinski
- Department
of Chemical Biology and Bioimaging, Wroclaw
University of Science and Technology, Wroclaw, 50-370, Poland
| | - Shima Shahbaz
- Department
of Dentistry & Dental Hygiene, University
of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Jegan Iyyathurai
- Department
of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
- Li
Ka Shing Institute of Virology, University
of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Eman W. Moussa
- Department
of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Zoe Turner
- Department
of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Bing Bai
- Li
Ka Shing Applied Virology Institute, University
of Alberta, Edmonton, Alberta T6G 2E1, Canada
- Department
of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Tess Lamer
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - James A. Nieman
- Li
Ka Shing Applied Virology Institute, University
of Alberta, Edmonton, Alberta T6G 2E1, Canada
- Department
of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - John C. Vederas
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Olivier Julien
- Department
of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Marcin Drag
- Department
of Chemical Biology and Bioimaging, Wroclaw
University of Science and Technology, Wroclaw, 50-370, Poland
| | - Shokrollah Elahi
- Department
of Dentistry & Dental Hygiene, University
of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Howard S. Young
- Department
of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - M. Joanne Lemieux
- Department
of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
- Li
Ka Shing Institute of Virology, University
of Alberta, Edmonton, Alberta T6G 2E1, Canada
| |
Collapse
|
28
|
Markowska-Szczupak A, Paszkiewicz O, Yoshiiri K, Wang K, Kowalska E. Can photocatalysis help in the fight against COVID-19 pandemic? CURRENT OPINION IN GREEN AND SUSTAINABLE CHEMISTRY 2023; 40:100769. [PMID: 36846296 PMCID: PMC9942773 DOI: 10.1016/j.cogsc.2023.100769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 01/21/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Mould fungi are serious threats to humans and animals (allergen) and might be the main cause of COVID-19-associated pulmonary aspergillosis. The common methods of disinfection are not highly effective against fungi due to the high resistance of fungal spores. Recently, photocatalysis has attracted significant attention towards antimicrobial action. Outstanding properties of titania photocatalysts have already been used in many areas, e.g., for building materials, air conditioner filters, and air purifiers. Here, the efficiency of photocatalytic methods to remove fungi and bacteria (risk factors for Severe Acute Respiratory Syndrome Coronavirus 2 co-infection) is presented. Based on the relevant literature and own experience, there is no doubt that photocatalysis might help in the fight against microorganisms, and thus prevent the severity of COVID-19 pandemic.
Collapse
Affiliation(s)
- Agata Markowska-Szczupak
- Department of Chemical and Process Engineering, West Pomeranian University of Technology in Szczecin, Piastow 42, 71-065 Szczecin, Poland
| | - Oliwia Paszkiewicz
- Department of Chemical and Process Engineering, West Pomeranian University of Technology in Szczecin, Piastow 42, 71-065 Szczecin, Poland
| | - Kenta Yoshiiri
- Institute for Catalysis (ICAT), Hokkaido University, N21, W10, 001-0021 Sapporo, Japan
- Graduate School of Environmental Science, Hokkaido University, N10, W5, 060-0810 Sapporo, Japan
| | - Kunlei Wang
- Institute for Catalysis (ICAT), Hokkaido University, N21, W10, 001-0021 Sapporo, Japan
| | - Ewa Kowalska
- Institute for Catalysis (ICAT), Hokkaido University, N21, W10, 001-0021 Sapporo, Japan
- Graduate School of Environmental Science, Hokkaido University, N10, W5, 060-0810 Sapporo, Japan
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| |
Collapse
|
29
|
Nogueira BP, Lavor IR, Muniz CR. Ribonucleic acid genome mutations induced by the Casimir effect. Biosystems 2023; 226:104888. [PMID: 36997148 PMCID: PMC10043983 DOI: 10.1016/j.biosystems.2023.104888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023]
Abstract
In this paper, we investigate the Casimir effect within a virus RNA, particularizing the study to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Then, we discuss the possibility of occurring damage or mutation in its genome due to the presence of quantum vacuum fluctuations inside and around the RNA ribbon. For this, we consider the geometry and the nontrivial topology of the viral RNA as having a simple helical structure. We initially compute the non-thermal Casimir energy associated to that geometry, considering boundary conditions that constrain the zero point oscillations of a massless scalar field to the cylindrical cavity containing a helix pitch of RNA ribbon. Then we extend the obtained result to the electromagnetic field and, following, we calculate the probability of occurring damage or mutation in RNA by using the normalized inverse exponential distribution, which suppresses very low energies, and consider cutoff (threshold) energies corresponding to UV-A and UV-C rays, surely responsible by mutations. Then, by taking into account UV-A, we arrive at a mutation rate per base per infection cycle, which in the case of the SARS-CoV-2 is non-negligible. We find a maximum value of this mutation rate for an RNA ribbon radius, applying it for SARS-CoV-2, in particular. We also calculate a characteristic longitudinal oscillation frequency for the helix pitch value corresponding to the local minimum of the Casimir energy. Finally, we consider thermal fluctuations of classical and quantum nature and show that the corresponding probability of mutation is completely negligible for that virus. Therefore, we conclude that only the nontrivial topology and the geometric attributes of the RNA molecule contribute to the possible mutations caused by quantum vacuum fluctuations in the viral genome.
Collapse
Affiliation(s)
- B P Nogueira
- Universidade Estadual do Ceará, Faculdade de Educação, Ciências e Letras de Iguatu, Iguatu, CE, Brazil.
| | - I R Lavor
- Instituto Federal de Educação, Ciência e Tecnologia do Maranhão, Pinheiro, Maranhão, Brazil; Departamento de Física, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil.
| | - C R Muniz
- Universidade Estadual do Ceará, Faculdade de Educação, Ciências e Letras de Iguatu, Iguatu, CE, Brazil.
| |
Collapse
|
30
|
Karakousis ND, Gourgoulianis KI, Kotsiou OS. The Role of Folic Acid in SARS-CoV-2 Infection: An Intriguing Linkage under Investigation. J Pers Med 2023; 13:jpm13030561. [PMID: 36983742 PMCID: PMC10052526 DOI: 10.3390/jpm13030561] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/12/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND SARS-CoV-2 is a life-threatening RNA virus that may cause an acute respiratory syndrome associated with extremely high morbidity and mortality rates. Folic acid (FA), also known as folate, is an essential vitamin vital for human homeostasis, participating in many biochemical pathways, and its deficiency has been associated with viral infection vulnerability. In this review, we investigated the association between FA intake and SARS-CoV-2 infection, along with the existence of any potential impact of FA on the health outcome of patients suffering from this new viral infection. METHODS Studies included were patients' and in silico and molecular docking studies. RESULTS Data from in silico studies and molecular docking support that FA inhibits SARS-CoV-2 entry into the host and viral replication, binding at essential residues. Accordingly, in patients' studies, a protective role of FA supplementation against SARS-CoV-2 infection is indicated. However, contradictory data from observational studies indicate that FA supplementation, often linked to deficits during systemic inflammation due to SARS-CoV-2, increases the risk of post-infection mortality. CONCLUSIONS Future randomized controlled trial studies, including the FA pharmacological group, are needed to better understand the role of FA as a potential protective or mortality risk indicator in COVID-19 patients.
Collapse
Affiliation(s)
- Nikolaos D Karakousis
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, Biopolis, 41110 Larissa, Greece
| | - Konstantinos I Gourgoulianis
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, Biopolis, 41110 Larissa, Greece
| | - Ourania S Kotsiou
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, Biopolis, 41110 Larissa, Greece
- Faculty of Nursing, University of Thessaly, Gaiopolis, 41500 Larissa, Greece
| |
Collapse
|
31
|
Askari H, Rabiei F, Lohrasbi F, Ghadir S, Ghasemi-Kasman M. The Latest Cellular and Molecular Mechanisms of COVID-19 on Non-Lung Organs. Brain Sci 2023; 13:brainsci13030415. [PMID: 36979225 PMCID: PMC10046222 DOI: 10.3390/brainsci13030415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
Understanding the transmission pathways of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) will aid in developing effective therapies directed at the virus’s life cycle or its side effects. While severe respiratory distress is the most common symptom of a coronavirus 2019 (COVID-19) infection, the virus is also known to cause damage to almost every major organ and system in the body. However, it is not obvious whether pathological changes in extra-respiratory organs are caused by direct infection, indirect, or combination of these effects. In this narrative review, we first elaborate on the characteristics of SARS-CoV-2, followed by the mechanisms of this virus on various organs such as brain, eye, and olfactory nerve and different systems such as the endocrine and gastrointestinal systems.
Collapse
Affiliation(s)
- Hamid Askari
- Student Research Committee, Babol University of Medical Sciences, Babol 47176-47745, Iran
| | - Fatemeh Rabiei
- Student Research Committee, Babol University of Medical Sciences, Babol 47176-47745, Iran
| | - Fatemeh Lohrasbi
- Student Research Committee, Babol University of Medical Sciences, Babol 47176-47745, Iran
| | - Sara Ghadir
- Student Research Committee, Babol University of Medical Sciences, Babol 47176-47745, Iran
| | - Maryam Ghasemi-Kasman
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol 47176-47745, Iran
- Department of Physiology, School of Medicine, Babol University of Medical Sciences, Babol 47176-47745, Iran
- Correspondence: ; Tel./Fax: +98-11-32190557
| |
Collapse
|
32
|
Sharma S, Sarkar R, Mitra K, Giri L. Computational framework to understand the clinical stages of COVID-19 and visualization of time course for various treatment strategies. Biotechnol Bioeng 2023; 120:1640-1656. [PMID: 36810760 DOI: 10.1002/bit.28358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 12/09/2022] [Accepted: 02/13/2023] [Indexed: 02/24/2023]
Abstract
Coronavirus disease 2019 is known to be regulated by multiple factors such as delayed immune response, impaired T cell activation, and elevated levels of proinflammatory cytokines. Clinical management of the disease remains challenging due to interplay of various factors as drug candidates may elicit different responses depending on the staging of the disease. In this context, we propose a computational framework which provides insights into the interaction between viral infection and immune response in lung epithelial cells, with an aim of predicting optimal treatment strategies based on infection severity. First, we formulate the model for visualizing the nonlinear dynamics during the disease progression considering the role of T cells, macrophages and proinflammatory cytokines. Here, we show that the model is capable of emulating the dynamic and static data trends of viral load, T cell, macrophage levels, interleukin (IL)-6 and TNF-α levels. Second, we demonstrate the ability of the framework to capture the dynamics corresponding to mild, moderate, severe, and critical condition. Our result shows that, at late phase (>15 days), severity of disease is directly proportional to pro-inflammatory cytokine IL6 and tumor necrosis factor (TNF)-α levels and inversely proportional to the number of T cells. Finally, the simulation framework was used to assess the effect of drug administration time as well as efficacy of single or multiple drugs on patients. The major contribution of the proposed framework is to utilize the infection progression model for clinical management and administration of drugs inhibiting virus replication and cytokine levels as well as immunosuppressant drugs at various stages of the disease.
Collapse
Affiliation(s)
- Surbhi Sharma
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, India
| | - Rahuldeb Sarkar
- Departments of Respiratory Medicine and Critical Care, Medway NHS Foundation Trust, Gillingham, Kent, UK.,Faculty of Life Sciences, King's College London, London, UK
| | - Kishalay Mitra
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, India
| | - Lopamudra Giri
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, India
| |
Collapse
|
33
|
Wang W, Hu Y, Li B, Wang H, Shen J. Applications of nanobodies in the prevention, detection, and treatment of the evolving SARS-CoV-2. Biochem Pharmacol 2023; 208:115401. [PMID: 36592707 PMCID: PMC9801699 DOI: 10.1016/j.bcp.2022.115401] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
Global health and economy are deeply influenced by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its newly emerging variants. Nanobodies with nanometer-scale size are promising for the detection and treatment of SARS-CoV-2 and its variants because they are superior to conventional antibodies in terms of cryptic epitope accessibility, tissue penetration, cost, formatting adaptability, and especially protein stability, which enables their aerosolized specific delivery to lung tissues. This review summarizes the progress in the prevention, detection, and treatment of SARS-CoV-2 using nanobodies, as well as strategies to combat the evolving SARS-CoV-2 variants. Generally, highly efficient generation of potent broad-spectrum nanobodies targeting conserved epitopes or further construction of multivalent formats targeting non-overlapping epitopes can promote neutralizing activity against SARS-CoV-2 variants and suppress immune escape.
Collapse
Affiliation(s)
- Wenyi Wang
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, Hubei 430074, PR China,Corresponding author
| | - Yue Hu
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, Hubei 430074, PR China
| | - Bohan Li
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, Hubei 430074, PR China
| | - Huanan Wang
- Department of Respiratory Medicine, The 990th Hospital of Joint Logistics Support Force, Zhumadian, Henan 463000, PR China
| | - Jinhua Shen
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, Hubei 430074, PR China
| |
Collapse
|
34
|
In silico transcriptional analysis of asymptomatic and severe COVID-19 patients reveals the susceptibility of severe patients to other comorbidities and non-viral pathological conditions. HUMAN GENE 2023; 35. [PMID: 37521006 PMCID: PMC9754755 DOI: 10.1016/j.humgen.2022.201135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
COVID-19 is a severe respiratory disease caused by SARS-CoV-2, a novel human coronavirus. Patients infected with SARS-CoV-2 exhibit heterogeneous symptoms that pose pragmatic hurdles for implementing appropriate therapy and management of the COVID-19 patients and their post-COVID complications. Thus, understanding the impact of infection severity at the molecular level in the host is vital to understand the host response and accordingly it's precise management. In the current study, we performed a comparative transcriptomics analysis of publicly available seven asymptomatic and eight severe COVID-19 patients. Exploratory data analysis employing Principal Component Analysis (PCA) showed the distinct clusters of asymptomatic and severe patients. Subsequently, the differential gene expression analysis using DESeq2 identified 1224 significantly upregulated genes (logFC≥ 1.5, p-adjusted value <0.05) and 268 significantly downregulated genes (logFC≤ −1.5, p-adjusted value <0.05) in severe samples in comparison to asymptomatic samples. Eventually, Gene Set Enrichment Analysis (GSEA) revealed the upregulation of anti-viral and anti-inflammatory pathways, secondary infections, Iron homeostasis, anemia, cardiac-related, etc.; while, downregulation of lipid metabolism, adaptive immune response, translation, recurrent respiratory infections, heme-biosynthetic pathways, etc. Conclusively, these findings provide insight into the enhanced susceptibility of severe COVID-19 patients to other health comorbidities including non-viral pathogenic infections, atherosclerosis, autoinflammatory diseases, anemia, male infertility, etc. owing to the activation of biological processes, pathways and molecular functions associated with them. We anticipate this study will facilitate the researchers in finding efficient therapeutic targets and eventually the clinicians in management of COVID-19 patients and post-COVID-19 effects in them.
Collapse
|
35
|
Rapid System to Detect Variants of SARS-CoV-2 in Nasopharyngeal Swabs. Viruses 2023; 15:v15020353. [PMID: 36851567 PMCID: PMC9966895 DOI: 10.3390/v15020353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/28/2023] Open
Abstract
Currently, the reference method for identifying the presence of variants of SARS-CoV-2 is whole genome sequencing. Although it is less expensive than in the past, it is still time-consuming, and interpreting the results is difficult, requiring staff with specific skills who are not always available in diagnostic laboratories. The test presented in this study aimed to detect, using traditional real-time PCR, the presence of the main variants described for the spike protein of the SARS-CoV-2 genome. The primers and probes were designed to detect the main deletions that characterize the different variants. The amplification targets were deletions in the S gene: 25-27, 69-70, 241-243, and 157-158. In the ORF1a gene, the deletion 3675-3677 was chosen. Some of these mutations can be considered specific variants, while others can be identified by the simultaneous presence of one or more deletions. We avoided using point mutations in order to improve the speed of the test. Our test can help clinical and medical microbiologists quickly recognize the presence of variants in biological samples (particularly nasopharyngeal swabs). The test can also be used to identify variants of the virus that could potentially be more diffusive as well as not responsive to the vaccine.
Collapse
|
36
|
Tu H, Wang X, Tang S. Exploring COVID-19 transmission patterns and key factors during epidemics caused by three major strains in Asia. J Theor Biol 2023; 557:111336. [PMID: 36323394 PMCID: PMC9617800 DOI: 10.1016/j.jtbi.2022.111336] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/15/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022]
Abstract
The COVID-19 epidemic has lasted for more than two years since the outbreak in late 2019. An urgent and challenging question is how to systematically evaluate epidemic developments in different countries, during different periods, and to determine which measures that could be implemented are key for successful epidemic prevention. In this study, SBD distance-based K-shape clustering and hierarchical clustering methods were used to analyse epidemics in Asian countries. For the hierarchical clustering, epidemic time series were divided into three periods (epidemics induced by the Original/Alpha, Delta and Omicron variants separately). Standard deviations, the Hurst index, mortality rates, peak value of confirmed cases per capita, average growth rates, and the control efficiency of each period were used to characterize the epidemics. In addition, the total numbers of cases in the different countries were analysed by correlation and regression in relation to 15 variables that could have impacts on COVID-19. Finally, some suggestions on prevention and control measures for each category of country are given. We found that the total numbers of cases per million of a population, total deaths per million and mortality rates were highly correlated with the proportion of people aged over 65 years, the prevalence of multiple diseases, and the national GDP. We also found significant associations between case numbers and vaccination rates, health expenditures, and stringency of control measures. Vaccinations have played a positive role in COVID-19, with a gradual decline in mortality rates in later periods, and are still playing protective roles against the Delta and Omicron strains. The stringency of control measures taken by a government is not an indicator of the appropriateness of a country's response to the outbreak, and a higher index does not necessarily mean more effective measures; a combination of factors such as national vaccination rates, the country's economic foundation and the availability of medical equipment is also needed. This manuscript was submitted as part of a theme issue on "Modelling COVID-19 and Preparedness for Future Pandemics".
Collapse
Affiliation(s)
- Han Tu
- School of Mathematics and Statistics, Shaanxi Normal University, Xi'an 710119, PR China
| | - Xia Wang
- School of Mathematics and Statistics, Shaanxi Normal University, Xi'an 710119, PR China.
| | - Sanyi Tang
- School of Mathematics and Statistics, Shaanxi Normal University, Xi'an 710119, PR China
| |
Collapse
|
37
|
Alquraan L, Alzoubi KH, Rababa'h SY. Mutations of SARS-CoV-2 and their impact on disease diagnosis and severity. INFORMATICS IN MEDICINE UNLOCKED 2023; 39:101256. [PMID: 37131549 PMCID: PMC10127666 DOI: 10.1016/j.imu.2023.101256] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/04/2023] Open
Abstract
Numerous variations of the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), including D614G, B.1.1.7 (United Kingdom), B.1.1.28 (Brazil P1, P2), CAL.20C (Southern California), B.1.351 (South Africa), B.1.617 (B.1.617.1 Kappa & Delta B.1.617.2) and B.1.1.529, have been reported worldwide. The receptor-binding domain (RBD) of the spike (S) protein is involved in virus-cell binding, where virus-neutralizing antibodies (NAbs) react. Novel variants in the S-protein could maximize viral affinity for the human angiotensin-converting enzyme 2 (ACE2) receptor and increase virus transmission. Molecular detection with false-negative results may refer to mutations in the part of the virus's genome used for virus diagnosis. Furthermore, these changes in S-protein structure alter the neutralizing ability of NAbs, resulting in a reduction in vaccine efficiency. Further information is needed to evaluate how new mutations may affect vaccine efficacy.
Collapse
Affiliation(s)
- Laiali Alquraan
- Department of Biology, Faculty of Science, Yarmouk University, Irbid, Jordan
| | - Karem H Alzoubi
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Suzie Y Rababa'h
- Department of Medical Science, Irbid Faculty, Al-Balqa Applied University (BAU), Irbid, Jordan
| |
Collapse
|
38
|
Patel CN, Jani SP, Prasanth Kumar S, Modi KM, Kumar Y. Computational investigation of natural compounds as potential main protease (M pro) inhibitors for SARS-CoV-2 virus. Comput Biol Med 2022; 151:106318. [PMID: 36423529 PMCID: PMC9673090 DOI: 10.1016/j.compbiomed.2022.106318] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 11/05/2022] [Accepted: 11/13/2022] [Indexed: 11/19/2022]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is significantly impacting human lives, overburdening the healthcare system and weakening global economies. Plant-derived natural compounds are being largely tested for their efficacy against COVID-19 targets to combat SARS-CoV-2 infection. The SARS-CoV-2 Main protease (Mpro) is considered an appealing target because of its role in replication in host cells. We curated a set of 7809 natural compounds by combining the collections of five databases viz Dr Duke's Phytochemical and Ethnobotanical database, IMPPAT, PhytoHub, AromaDb and Zinc. We applied a rigorous computational approach to identify lead molecules from our curated compound set using docking, dynamic simulations, the free energy of binding and DFT calculations. Theaflavin and ginkgetin have emerged as better molecules with a similar inhibition profile in both SARS-CoV-2 and Omicron variants.
Collapse
Affiliation(s)
- Chirag N Patel
- Computer-Aided Drug Design Group, Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institute of Health, Frederick, MD, 21702, USA; Department of Botany, Bioinformatics, and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India.
| | - Siddhi P Jani
- Institute of Science, Nirma University, Ahmedabad, 382481, Gujarat, India
| | - Sivakumar Prasanth Kumar
- Department of Botany, Bioinformatics, and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Krunal M Modi
- Department of Molecular Electrochemistry and Catalysis, J. Heyrovsky Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejskova 2155/3, 182 23 Prague 8, Czech Republic; Department of Humanities and Science, School of Engineering, Indrashil University, Mehsana, 382740, Gujarat, India.
| | - Yogesh Kumar
- Department of General Visceral and Thoracic Surgery, University Medical Center Hamburg- Eppendorf, Martinistrasse 52, Hamburg, 20246, Germany
| |
Collapse
|
39
|
Acuña-Castillo C, Maisey K, Vidal M, Barrera-Avalos C, Inostroza-Molina A, Luraschi R, Vallejos-Vidal E, Valdés D, Imarai M, Reyes-López FE, Sandino AM. Genomic Evidence Suggests Viral Persistence of SARS-CoV-2 for 386 Days in Health Worker: A Case Report from Santiago of Chile. Infect Dis Rep 2022; 14:971-978. [PMID: 36547242 PMCID: PMC9778366 DOI: 10.3390/idr14060096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 12/03/2022] Open
Abstract
The COVID-19 pandemic continues to affect several countries. One of the best ways to control its spread is the timely identification of infected patients for isolation and quarantine. While an episode of infection lasts an average of 8-10 days from the onset of symptoms, there is literature describing long-lasting viral persistence events. Here, we report a case of persistence of SARS-CoV-2 for 386 days in a health worker from Santiago de Chile. Our study could be one of the longest reported viral persistence events. RNA sequencing analyses indicated that the first positive diagnosis (8 June 2020) corresponded to a SARS-CoV-2 variant belonging to Clade Nextstrain 20A. Three hundred eighty-six days later (23 September 2021), the second positive result reached the same viral variant (Clade 20A) but without presence or circulation in Chile since May 2021. Both sequencing coverages showed an identity of 99.21%, with some mutations related to the severity of the disease (ORF1b:P314L) and more infectivity (S:D614G). This work reinforces the idea of implementing an RT-qPCR or rapid antigen test once the quarantine is fulfilled to ensure viral absence, identify potential persistence, and, consequently, minimize the risk of local outbreaks of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Claudio Acuña-Castillo
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9160000, Chile
- Departamento de Biolgía, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9160000, Chile
| | - Kevin Maisey
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9160000, Chile
| | - Mabel Vidal
- Department of Computer Science, University of Concepcion, Concepción 4070409, Chile
| | - Carlos Barrera-Avalos
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9160000, Chile
| | - Ailen Inostroza-Molina
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9160000, Chile
| | - Roberto Luraschi
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9160000, Chile
| | - Eva Vallejos-Vidal
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9160000, Chile
- Centro de Nanociencia y Nanotecnología CEDENNA, Universidad de Santiago de Chile, Santiago 9160000, Chile
- Núcleo de Investigación Aplicada en Ciencias Veterinarias y Agronómicas, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago 7500975, Chile
| | - Daniel Valdés
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9160000, Chile
- Departamento de Biolgía, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9160000, Chile
| | - Mónica Imarai
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9160000, Chile
- Departamento de Biolgía, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9160000, Chile
| | - Felipe E. Reyes-López
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9160000, Chile
- Correspondence: (F.E.R.-L.); (A.M.S.)
| | - Ana María Sandino
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9160000, Chile
- Departamento de Biolgía, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9160000, Chile
- Correspondence: (F.E.R.-L.); (A.M.S.)
| |
Collapse
|
40
|
Yamoah P, Mensah KB, Attakorah J, Padayachee N, Oosthuizen F, Bangalee V. Adverse events following immunization associated with coronavirus disease 2019 (COVID-19) vaccines: A descriptive analysis from VigiAccess. Hum Vaccin Immunother 2022; 18:2109365. [PMID: 35947052 PMCID: PMC9897635 DOI: 10.1080/21645515.2022.2109365] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
This study assessed adverse events following immunizations (AEFIs) reported on COVID-19 vaccines in VigiAccess and determined the reporting trends across all continents of the world. The study was cross-sectional quantitative in design. VigiAccess was searched on 10 November 10 2021 for reported adverse events following the introduction of COVID-19 vaccines. After entering the search term, "COVID-19 vaccines" in VigiAccess, AEFIs associated with nine approved brands of COVID-19 vaccines had been documented in the database. Data were captured among age groups, sex, and continents of the world and analyzed using Statistical Package for Social Sciences (SPSS) version 25. Overall, 2,457,386 AEFIs had been reported in VigiAccess at the time of the search. No causal associations could be established between the vaccines and the AEFIs. The public accessing VigiAccess data should therefore be made aware of this in order to not falsely attribute AEFIs to COVID-19 vaccines when assessing the database.
Collapse
Affiliation(s)
- Peter Yamoah
- School of Pharmacy, University of Health and Allied Sciences, Ho, Ghana,College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa,CONTACT Peter Yamoah School of Pharmacy, University of Health and Allied Sciences, HoPMB 31, Ghana
| | - Kofi Boamah Mensah
- College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa,Department of Pharmacy Practice, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Joseph Attakorah
- Department of Pharmacy Practice, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Neelaveni Padayachee
- Department of Pharmacy and Pharmacology, University of Witwatersrand, Johannesburg, South Africa
| | - Frasia Oosthuizen
- College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Varsha Bangalee
- College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
41
|
K A, Sharma A, Kumar D, Singh SK, Gupta G, Chellappan DK, Dua K, Nagraik R. Molecular aspects of Omicron, vaccine development, and recombinant strain XE: A review. J Med Virol 2022; 94:4628-4643. [PMID: 35705439 PMCID: PMC9349635 DOI: 10.1002/jmv.27936] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/02/2022] [Accepted: 06/14/2022] [Indexed: 12/19/2022]
Abstract
The global pandemic of COVID-19 began in December 2019 and is still continuing. The past 2 years have seen the emergence of several variants that were more vicious than each other. The emergence of Omicron (B.1.1.529) proved to be a huge epidemiological concern as the rate of infection of this particular strain was enormous. The strain was identified in South Africa on November 24, 2021 and was classified as a "Variant of Concern" on November 26, 2021. The Omicron variant possessed mutations in the key RBD region, the S region, thereby increasing the affinity of ACE2 for better transmission of the virus. Antibody resistance was found in this variant and it was able to reduce vaccine efficiency of vaccines. The need for a booster vaccine was brought forth due to the prevalence of the Omicron variant and, subsequently, this led to targeted research and development of variant-specific vaccines and booster dosage. This review discusses broadly the genomic characters and features of Omicron along with its specific mutations, evolution, antibody resistance, and evasion, utilization of CRISPR-Cas12a assay for Omicron detection, T-cell immunity elicited by vaccines against Omicron, and strategies to decrease Omicron infection along with COVID-19 and it also discusses on XE recombinant variant and on infectivity of BA.2 subvariant of Omicron.
Collapse
Affiliation(s)
- Akash K
- School of Bioengineering and Food Technology, Faculty of Applied Sciences and BiotechnologyShoolini UniversitySolanHimachal PradeshIndia
| | - Avinash Sharma
- School of Bioengineering and Food Technology, Faculty of Applied Sciences and BiotechnologyShoolini UniversitySolanHimachal PradeshIndia
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical SciencesShoolini UniversitySolanHimachal PradeshIndia
| | - Sachin K. Singh
- School of Pharmaceutical SciencesLovely Professional UniversityPhagwara, PunjabIndia
| | - Gaurav Gupta
- School of PharmacySuresh Gyan Vihar UniversityJagatpura, JaipurIndia
- Uttaranchal Institute of Pharmaceutical SciencesUttaranchal UniversityDehradunIndia
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical SciencesSaveetha UniversityChennaiIndia
| | | | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative MedicineUniversity of Technology SydneyUltimoNSWAustralia
- Discipline of Pharmacy Graduate School of HealthUniversity of Technology SydneyUltimoNSWAustralia
| | - Rupak Nagraik
- School of Bioengineering and Food Technology, Faculty of Applied Sciences and BiotechnologyShoolini UniversitySolanHimachal PradeshIndia
| |
Collapse
|
42
|
Zhang JN, Gao Y, Wang XT, Li NN, Du X, Tang YJ, Lai QQ, Chen PF, Yue CS, Wu JH, Kang K, Zhao MY. Lymphocyte–C-reactive protein ratio can differentiate disease severity of COVID-19 patients and serve as an assistant screening tool for hospital and ICU admission. Front Immunol 2022; 13:957407. [PMID: 36248811 PMCID: PMC9554799 DOI: 10.3389/fimmu.2022.957407] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
In this study, we aimed to explore whether lymphocyte–C-reactive protein ratio (LCR) can differentiate disease severity of coronavirus disease 2019 (COVID-19) patients and its value as an assistant screening tool for admission to hospital and intensive care unit (ICU). A total of 184 adult COVID-19 patients from the COVID-19 Treatment Center in Heilongjiang Province at the First Affiliated Hospital of Harbin Medical University between January 2020 and March 2021 were included in this study. Patients were divided into asymptomatic infection group, mild group, moderate group, severe group, and critical group according to the Diagnosis and Treatment of New Coronavirus Pneumonia (ninth edition). Demographic and clinical data including gender, age, comorbidities, severity of COVID-19, white blood cell count (WBC), neutrophil proportion (NEUT%), lymphocyte count (LYMPH), lymphocyte percentage (LYM%), red blood cell distribution width (RDW), platelet (PLT), C-reactive protein (CRP), alanine aminotransferase (ALT), aspartate aminotransferase (AST), serum creatinine (SCr), albumin (ALB), total bilirubin (TB), direct bilirubin (DBIL), indirect bilirubin (IBIL), and D-dimer were obtained and collated from medical records at admission, from which sequential organ failure assessment (SOFA) score and LCR were calculated, and all the above indicators were compared among the groups. Multiple clinical parameters, including LYMPH, CRP, and LCR, showed significant differences among the groups. The related factors to classify COVID-19 patients into moderate, severe, and critical groups included age, number of comorbidities, WBC, LCR, and AST. Among these factors, the number of comorbidities showed the greatest effect, and only WBC and LCR were protective factors. The area under the receiver operating characteristic (ROC) curve of LCR to classify COVID-19 patients into moderate, severe, and critical groups was 0.176. The cutoff value of LCR and the sensitivity and specificity of the ROC curve were 1,780.7050 and 84.6% and 66.2%, respectively. The related factors to classify COVID-19 patients into severe and critical groups included the number of comorbidities, PLT, LCR, and SOFA score. Among these factors, SOFA score showed the greatest effect, and LCR was the only protective factor. The area under the ROC curve of LCR to classify COVID-19 patients into severe and critical groups was 0.106. The cutoff value of LCR and the sensitivity and specificity of the ROC curve were 571.2200 and 81.3% and 90.0%, respectively. In summary, LCR can differentiate disease severity of COVID-19 patients and serve as a simple and objective assistant screening tool for hospital and ICU admission.
Collapse
Affiliation(s)
- Jian-Nan Zhang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yang Gao
- Department of Critical Care Medicine, The Sixth Affiliated Hospital of Harbin Medical University, Harbin, China
- Institute of Critical Care Medicine, The Sino Russian Medical Research Center of Harbin Medical University, Harbin, China
| | - Xin-Tong Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Na-Na Li
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xue Du
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yu-Jia Tang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qi-Qi Lai
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Peng-Fei Chen
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chuang-Shi Yue
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ji-Han Wu
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Kai Kang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Institute of Critical Care Medicine, The Sino Russian Medical Research Center of Harbin Medical University, Harbin, China
- *Correspondence: Kai Kang, ; Ming-Yan Zhao,
| | - Ming-Yan Zhao
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Kai Kang, ; Ming-Yan Zhao,
| |
Collapse
|
43
|
Li X, Xu Y, Li X, Liu W, Yao D, Chen W, Yu H, He L, Lu S, Jiang C, Zhu W, Meng L. Real-world effectiveness and protection of SARS-CoV-2 vaccine among patients hospitalized for COVID-19 in Xi'an, China, December 8, 2021, to January 20, 2022: A retrospective study. Front Immunol 2022; 13:978977. [PMID: 36211421 PMCID: PMC9538118 DOI: 10.3389/fimmu.2022.978977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/09/2022] [Indexed: 01/08/2023] Open
Abstract
Introduction In December 2021, a large-scale epidemic broke out in Xi'an, China, due to SARS-CoV-2 infection. This study reports the effect of vaccination on COVID-19 and evaluates the impact of different vaccine doses on routine laboratory markers. Methods The laboratory data upon admission, of 231 cases with COVID-19 hospitalized from December 8, 2021 to January 20, 2022 in Xi'an, including blood routine, lymphocyte subtypes, coagulative function tests, virus specific antibodies and blood biochemical tests were collected and analyzed. Results Of the 231 patients, 21 were not vaccinated, 158 were vaccinated with two doses and 52 with three doses. Unvaccinated patients had a higher proportion of moderate and severe symptoms than vaccinated patients, while two-dose vaccinated patients had a higher proportion than three-dose vaccinated patients. SARS-CoV-2 specific IgG levels were significantly elevated in vaccinated patients compared with unvaccinated patients. Particularly, unvaccinated patients had lower counts and percentages of lymphocytes, eosinophils and CD8+ T-lymphocytes, and elevated coagulation-related markers. In addition, vaccination had no effect on liver and kidney function. Conclusions Vaccination against SARS-CoV-2, inducing high IgG level and increased CD8+ T cells and eosinophils, and regulating coagulation function, can significantly attenuate symptoms of COVID-19, suggesting that the vaccine remains protective against SARS-CoV-2.
Collapse
Affiliation(s)
- Xiaowei Li
- National Joint Engineering Research Center of Biodiagnostics and Biotherapy, Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an Jiaotong University, Xi’an, China
| | - Yinjuan Xu
- Department of Biochemistry and Molecular Biology, Institute of Molecular and Translational Medicine (IMTM), Xi’an Jiaotong University Health Science Center, Xi’an, China
- Department of Laboratory Medicine, Xi’an Chest Hospital, Xi'an, China
| | - Xiaomeng Li
- Department of Biochemistry and Molecular Biology, Institute of Molecular and Translational Medicine (IMTM), Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Wenbin Liu
- Department of Biochemistry and Molecular Biology, Institute of Molecular and Translational Medicine (IMTM), Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Dan Yao
- Nursing Department, Xi’an Children’s Hospital, Affiliated Children’s Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Weichao Chen
- Department of Respiratory Medicine, Xi’an Children’s Hospital, Affiliated Children’s Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Hongchuan Yu
- Department of Respiratory Medicine, Xi’an Children’s Hospital, Affiliated Children’s Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Langchong He
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, China
| | - Shemin Lu
- National Joint Engineering Research Center of Biodiagnostics and Biotherapy, Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an Jiaotong University, Xi’an, China
- Department of Biochemistry and Molecular Biology, Institute of Molecular and Translational Medicine (IMTM), Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Congshan Jiang
- National Regional Children’s Medical Center (Northwest), Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, Xi’an Key Laboratory of Children’s Health and Diseases, Shaanxi Institute for Pediatric Diseases, Xi’an Children’s Hospital, Affiliated Children’s Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Wenhua Zhu
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an Jiaotong University, Xi’an, China
- Department of Biochemistry and Molecular Biology, Institute of Molecular and Translational Medicine (IMTM), Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Liesu Meng
- National Joint Engineering Research Center of Biodiagnostics and Biotherapy, Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an Jiaotong University, Xi’an, China
- Department of Biochemistry and Molecular Biology, Institute of Molecular and Translational Medicine (IMTM), Xi’an Jiaotong University Health Science Center, Xi’an, China
| |
Collapse
|
44
|
Abstract
The World Health Organisation has reported that the viral disease known as COVID-19, caused by SARS-CoV-2, is the leading cause of death by a single infectious agent. This narrative review examines certain components of the pandemic: its origins, early clinical data, global and UK-focussed epidemiology, vaccination, variants, and long COVID.
Collapse
Affiliation(s)
- A. D. Blann
- School of Applied Sciences, University of Huddersfield Queensgate, Huddersfield, United Kingdom
| | | |
Collapse
|
45
|
Urakawa R, Isomura ET, Matsunaga K, Kubota K. Young Age, Female Sex, and No Comorbidities Are Risk Factors for Adverse Reactions after the Third Dose of BNT162b2 COVID-19 Vaccine against SARS-CoV-2: A Prospective Cohort Study in Japan. Vaccines (Basel) 2022; 10:vaccines10081357. [PMID: 36016244 PMCID: PMC9416095 DOI: 10.3390/vaccines10081357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 11/24/2022] Open
Abstract
Background: This study compared the adverse events (AEs) of the second and third doses of BNT162b2, as well as investigated the impact of vaccine recipients’ background and vaccination interval on the AEs of the third dose. Methods: We conducted a questionnaire survey of AEs among health care workers at Osaka University Dental Hospital. Chi-square tests were performed to compare AEs to the administration of second and third vaccine doses. Logistic regression analyses were conducted to identify factors influencing the presence of AEs using age, sex, comorbidities, and the vaccination interval. Spearman’s rank correlation coefficient was calculated to investigate the correlation between age, vaccination interval, and severity of each AE. Results: The third dose of BNT162b2 was associated with significantly more frequent or milder AEs than the second dose. Logistic regression analyses detected significant differences in six items of AEs by age, three by sex, two by comorbidities, and zero by vaccination interval. Consistently, the risk of AEs was greater among younger persons, females, and those without comorbidities. Significant negative correlations were detected between age and vaccination interval, and between age and the severity of most AEs. Conclusions: Young, female, and having no comorbidities are risk factors for AEs after the third dose of BNT162b2, while vaccination interval is not.
Collapse
Affiliation(s)
- Ryuta Urakawa
- Department of Pharmacy, Osaka University Dental Hospital, 1-8 Yamada-oka, Suita 565-0871, Osaka, Japan
- Department of Clinical Pharmacy Research and Education, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita 565-0871, Osaka, Japan
- Correspondence: ; Tel.: +81-6-6879-2379
| | - Emiko Tanaka Isomura
- First Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, 1-8 Yamada-oka, Suita 565-0871, Osaka, Japan
| | - Kazuhide Matsunaga
- Second Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, 1-8 Yamada-oka, Suita 565-0871, Osaka, Japan
| | - Kazumi Kubota
- Department of Healthcare Information Management, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| |
Collapse
|
46
|
Fang Z, Lyu J, Li J, Li C, Zhang Y, Guo Y, Wang Y, Zhang Y, Chen K. Application of bioreactor technology for cell culture-based viral vaccine production: Present status and future prospects. Front Bioeng Biotechnol 2022; 10:921755. [PMID: 36017347 PMCID: PMC9395942 DOI: 10.3389/fbioe.2022.921755] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 07/06/2022] [Indexed: 11/24/2022] Open
Abstract
Bioreactors are widely used in cell culture-based viral vaccine production, especially during the coronavirus disease 2019 (COVID-19) pandemic. In this context, the development and application of bioreactors can provide more efficient and cost-effective vaccine production to meet the global vaccine demand. The production of viral vaccines is inseparable from the development of upstream biological processes. In particular, exploration at the laboratory-scale is urgently required for further development. Therefore, it is necessary to evaluate the existing upstream biological processes, to enable the selection of pilot-scale conditions for academic and industrial scientists to maximize the yield and quality of vaccine development and production. Reviewing methods for optimizing the upstream process of virus vaccine production, this review discusses the bioreactor concepts, significant parameters and operational strategies related to large-scale amplification of virus. On this basis, a comprehensive analysis and evaluation of the various process optimization methods for the production of various viruses (SARS-CoV-2, Influenza virus, Tropical virus, Enterovirus, Rabies virus) in bioreactors is presented. Meanwhile, the types of viral vaccines are briefly introduced, and the established animal cell lines for vaccine production are described. In addition, it is emphasized that the co-development of bioreactor and computational biology is urgently needed to meet the challenges posed by the differences in upstream production scales between the laboratory and industry.
Collapse
Affiliation(s)
- Zhongbiao Fang
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Jingting Lyu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Jianhua Li
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Chaonan Li
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Yuxuan Zhang
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Yikai Guo
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Ying Wang
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
- *Correspondence: Ying Wang, ; Yanjun Zhang, ; Keda Chen,
| | - Yanjun Zhang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
- *Correspondence: Ying Wang, ; Yanjun Zhang, ; Keda Chen,
| | - Keda Chen
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
- *Correspondence: Ying Wang, ; Yanjun Zhang, ; Keda Chen,
| |
Collapse
|
47
|
Madurani KA, Suprapto, Yudha Syahputra M, Puspita I, Furqoni AH, Puspasari L, Rosyidah H, Hatta AM, Juniastuti, Lusida MI, Tominaga M, Kurniawan F. Fluorescence spectrophotometry for COVID-19 determination in clinical swab samples. ARAB J CHEM 2022; 15:104020. [PMID: 35664893 PMCID: PMC9150911 DOI: 10.1016/j.arabjc.2022.104020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/25/2022] [Indexed: 11/29/2022] Open
Abstract
Considering the limitations of the assays currently available for the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its emerging variants, a simple and rapid method using fluorescence spectrophotometry was developed to detect coronavirus disease 2019 (COVID-19). Forty clinical swab samples were collected from the nasopharyngeal and oropharyngeal cavities of COVID-19-positive and -negative. Each sample was divided into two parts. The first part of the samples was analyzed using reverse transcription-polymerase chain reaction (RT-qPCR) as the control method to identify COVID-19-positive and -negative samples. The second part of the samples was analyzed using fluorescence spectrophotometry. Fluorescence measurements were performed at excitation and emission wavelengths ranging from 200 to 800 nm. Twenty COVID-19-positive samples and twenty COVID-19-negative samples were detected based on RT-qPCR results. The fluorescence spectrum data indicated that the COVID-19-positive and -negative samples had significantly different characteristics. All positive samples could be distinguished from negative samples by fluorescence spectrophotometry. Principal component analysis showed that COVID-19-positive samples were clustered separately from COVID-19-negative samples. The specificity and accuracy of this experiment reached 100%. Limit of detection (LOD) obtained 42.20 copies/ml (Ct value of 33.65 cycles) for E gene and 63.60 copies/ml (Ct value of 31.36 cycles) for ORF1ab gene. This identification process only required 4 min. Thus, this technique offers an efficient and accurate method to identify an individual with active SARS-CoV-2 infection and can be easily adapted for the early investigation of COVID-19, in general.
Collapse
Affiliation(s)
- Kartika A Madurani
- Laboratory of Instrumentation and Analytical Science, Chemistry Department, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia
| | - Suprapto
- Laboratory of Instrumentation and Analytical Science, Chemistry Department, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia
| | - Muhammad Yudha Syahputra
- Laboratory of Instrumentation and Analytical Science, Chemistry Department, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia
| | - Ika Puspita
- Photonics Engineering Laboratory, Department of Engineering Physics, Faculty of Industrial Technology and Systems Engineering, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia
| | - Abdul Hadi Furqoni
- Human Genetic Laboratory, Institute of Tropical Disease, Airlangga University, Surabaya 60115, Indonesia
| | - Listya Puspasari
- Laboratory of Instrumentation and Analytical Science, Chemistry Department, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia
| | - Hafildatur Rosyidah
- Laboratory of Instrumentation and Analytical Science, Chemistry Department, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia
| | - Agus Muhamad Hatta
- Photonics Engineering Laboratory, Department of Engineering Physics, Faculty of Industrial Technology and Systems Engineering, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia
| | - Juniastuti
- Faculty of Medicine, Airlangga University, Surabaya 60131, Indonesia.,Institute of Tropical Disease, Airlangga University, Surabaya 60115, Indonesia
| | - Maria Inge Lusida
- Faculty of Medicine, Airlangga University, Surabaya 60131, Indonesia.,Institute of Tropical Disease, Airlangga University, Surabaya 60115, Indonesia
| | - Masato Tominaga
- Department of Chemistry and Applied Chemistry, Graduate School of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Fredy Kurniawan
- Laboratory of Instrumentation and Analytical Science, Chemistry Department, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia
| |
Collapse
|
48
|
David S, Dorado G, Duarte EL, David-Bosne S, Trigueiro-Louro J, Rebelo-de-Andrade H. COVID-19: impact on Public Health and hypothesis-driven investigations on genetic susceptibility and severity. Immunogenetics 2022; 74:381-407. [PMID: 35348847 PMCID: PMC8961091 DOI: 10.1007/s00251-022-01261-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/14/2022] [Indexed: 12/12/2022]
Abstract
COVID-19 is a new complex multisystem disease caused by the novel coronavirus SARS-CoV-2. In slightly over 2 years, it infected nearly 500 million and killed 6 million human beings worldwide, causing an unprecedented coronavirus pandemic. Currently, the international scientific community is engaged in elucidating the molecular mechanisms of the pathophysiology of SARS-CoV-2 infection as a basis of scientific developments for the future control of COVID-19. Global exome and genome analysis efforts work to define the human genetics of protective immunity to SARS-CoV-2 infection. Here, we review the current knowledge regarding the SARS-CoV-2 infection, the implications of COVID-19 to Public Health and discuss genotype to phenotype association approaches that could be exploited through the selection of candidate genes to identify the genetic determinants of severe COVID-19.
Collapse
Affiliation(s)
- Susana David
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge (INSA,IP), Lisboa, Portugal.
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal.
| | - Guillermo Dorado
- Atlántida Centro de Investigación y Desarrollo de Estudios Profesionales (CIDEP), Granada, Spain
| | - Elsa L Duarte
- MED-Instituto Mediterrâneo para a Agricultura, Ambiente e Desenvolvimento, Escola de Ciências e Tecnologia, Universidade de Évora, Évora, Portugal
| | | | - João Trigueiro-Louro
- Departamento de Doenças Infeciosas, INSA, IP, Lisboa, Portugal
- Host-Pathogen Interaction Unit, Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
- Hospital Egas Moniz, Centro Hospitalar Lisboa Ocidental, Lisboa, Portugal
| | - Helena Rebelo-de-Andrade
- Departamento de Doenças Infeciosas, INSA, IP, Lisboa, Portugal
- Host-Pathogen Interaction Unit, Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
49
|
Clinical and Virological Features of Patients Hospitalized with Different Types of COVID-19 Vaccination in Mexico City. Vaccines (Basel) 2022; 10:vaccines10081181. [PMID: 35893830 PMCID: PMC9330015 DOI: 10.3390/vaccines10081181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/27/2022] [Accepted: 07/04/2022] [Indexed: 02/05/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) vaccines effectively protect against severe disease and death. However, the impact of the vaccine used, viral variants, and host factors on disease severity remain poorly understood. This work aimed to compare COVID-19 clinical presentations and outcomes in vaccinated and unvaccinated patients in Mexico City. From March to September 2021, clinical, demographic characteristics, and viral variants were obtained from 1014 individuals with a documented SARS-CoV-2 infection. We compared unvaccinated, partially vaccinated, and fully vaccinated patients, stratifying by age groups. We also fitted multivariate statistical models to evaluate the impact of vaccination status, SARS-CoV-2 lineages, vaccine types, and clinical parameters. Most hospitalized patients were unvaccinated. In patients over 61 years old, mortality was significantly higher in unvaccinated compared to fully vaccinated individuals. In patients aged 31 to 60 years, vaccinated patients were more likely to be outpatients (46%) than unvaccinated individuals (6.1%). We found immune disease and age above 61 years old to be risk factors, while full vaccination was found to be the most protective factor against in-hospital death. This study suggests that vaccination is essential to reduce mortality in a comorbid population such as that of Mexico.
Collapse
|
50
|
Scovino AM, Dahab EC, Vieira GF, Freire-de-Lima L, Freire-de-Lima CG, Morrot A. SARS-CoV-2’s Variants of Concern: A Brief Characterization. Front Immunol 2022; 13:834098. [PMID: 35958548 PMCID: PMC9361785 DOI: 10.3389/fimmu.2022.834098] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 06/13/2022] [Indexed: 12/23/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) disclose the variants of concern (VOC) including Alpha (B.1.1.7), Beta (B.1.351), Gamma (P1), Delta (B.1.617.2), and Omicron (B.1.1.529). Its spike protein (S) present on the surface of the virus is recognized by the host cell receptor, the angiotensin-2 converting enzyme (ACE2) which promotes their entry into the cell. The mutations presented by VOCs are found in RBD and the N-terminal region of S protein. Therefore, mutations occurring in RBD can modify the biological and immunogenic characteristics of the virus, such as modifying the spike affinity for ACE2, increasing the virus transmissibility, or conferring the ability to escape the immune responses. The raise of a potential new SARS-CoV-2 variant capable of evading the host defenses at the same time maintaining its fitness justifies the importance of continued genetic monitoring of the pandemic coronavirus.
Collapse
Affiliation(s)
- Aline Miranda Scovino
- Instituto de Microbiologia Paulo de Goes, Universidade federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Elizabeth Chen Dahab
- Instituto de Microbiologia Paulo de Goes, Universidade federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | | | - Leonardo Freire-de-Lima
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Alexandre Morrot
- Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
- Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- *Correspondence: Alexandre Morrot,
| |
Collapse
|