1
|
Melnik BC, Weiskirchen R, John SM, Stremmel W, Leitzmann C, Weiskirchen S, Schmitz G. White Adipocyte Stem Cell Expansion Through Infant Formula Feeding: New Insights into Epigenetic Programming Explaining the Early Protein Hypothesis of Obesity. Int J Mol Sci 2025; 26:4493. [PMID: 40429638 PMCID: PMC12110815 DOI: 10.3390/ijms26104493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 05/03/2025] [Accepted: 05/06/2025] [Indexed: 05/29/2025] Open
Abstract
Prolonged breastfeeding (BF), as opposed to artificial infant formula feeding (FF), has been shown to prevent the development of obesity later in life. The aim of our narrative review is to investigate the missing molecular link between postnatal protein overfeeding-often referred to as the "early protein hypothesis"-and the subsequent transcriptional and epigenetic changes that accelerate the expansion of adipocyte stem cells (ASCs) in the adipose vascular niche during postnatal white adipose tissue (WAT) development. To achieve this, we conducted a search on the Web of Science, Google Scholar, and PubMed databases from 2000 to 2025 and reviewed 750 papers. Our findings revealed that the overactivation of mechanistic target of rapamycin complex 1 (mTORC1) and S6 kinase 1 (S6K1), which inhibits wingless (Wnt) signaling due to protein overfeeding, serves as the primary pathway promoting ASC commitment and increasing preadipocyte numbers. Moreover, excessive protein intake, combined with the upregulation of the fat mass and obesity-associated gene (FTO) and a deficiency of breast milk-derived microRNAs from lactation, disrupts the proper regulation of FTO and Wnt pathway components. This disruption enhances ASC expansion in WAT while inhibiting brown adipose tissue development. While BF has been shown to have protective effects against obesity, the postnatal transcriptional and epigenetic changes induced by excessive protein intake from FF may predispose infants to early and excessive ASC commitment in WAT, thereby increasing the risk of obesity later in life.
Collapse
Affiliation(s)
- Bodo C. Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, D-49076 Osnabrück, Germany;
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, D-52074 Aachen, Germany;
| | - Swen Malte John
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, D-49076 Osnabrück, Germany;
- Institute for Interdisciplinary Dermatological Prevention and Rehabilitation (iDerm), University of Osnabrück, D-49076 Osnabrück, Germany
| | | | - Claus Leitzmann
- Institut für Ernährungswissenschaft, Universität Gießen, D-35392 Gießen, Germany;
| | - Sabine Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, D-52074 Aachen, Germany;
| | - Gerd Schmitz
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, D-93053 Regensburg, Germany;
| |
Collapse
|
2
|
Hou L, Wu J, Liu D, Xu H, Yao H, Liang Y, Xia Q, Lin P, Shen G. Estrogen-Related Receptor Potential Target Genes in Silkworm ( Bombyx mori): Insights into Metabolic Regulation. INSECTS 2025; 16:469. [PMID: 40429182 PMCID: PMC12112554 DOI: 10.3390/insects16050469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/26/2025] [Accepted: 04/28/2025] [Indexed: 05/29/2025]
Abstract
Estrogen-related receptors (ERRs) are important transcription factors within the nuclear receptor family that regulate cellular energy storage and consumption by binding to estrogen-related receptor response elements (ERREs) on gene promoters. While ERRs' role in vertebrates is well-studied, their molecular mechanisms in insect metabolism and development remain unclear. This study systematically summarizes the functions of ERRs in insects, focusing on silkworms by analyzing gene functions and comparing databases. ERRE-like elements were identified in the 2000 bp upstream promoter regions of 69 metabolism-related silkworm genes. Furthermore, electrophoretic mobility shift assays (EMSAs) revealed that ERREs within the promoters of 15 genes related to sugar, fat, and protein metabolism specifically bind to ERR. Notably, an ERRE in the promoter of the trehalose transporter 1 gene (BmTret1), crucial for trehalose homeostasis in insect hemolymph, exhibited significantly enhanced activity in ERR-overexpressing cells. These findings suggest that ERR is a potential regulatory factor in silkworm metabolism and refine its metabolic regulatory network. This study highlights the broader and more critical role of ERR in insects than that previously recognized, contributing to a deeper understanding of insect metabolism and its potential applications in related fields.
Collapse
Affiliation(s)
- Luyu Hou
- Biological Science Research Center, Southwest University, Chongqing 400715, China; (L.H.); (J.W.); (D.L.); (H.X.); (H.Y.); (Q.X.); (P.L.)
| | - Jinxin Wu
- Biological Science Research Center, Southwest University, Chongqing 400715, China; (L.H.); (J.W.); (D.L.); (H.X.); (H.Y.); (Q.X.); (P.L.)
| | - Die Liu
- Biological Science Research Center, Southwest University, Chongqing 400715, China; (L.H.); (J.W.); (D.L.); (H.X.); (H.Y.); (Q.X.); (P.L.)
| | - Haoran Xu
- Biological Science Research Center, Southwest University, Chongqing 400715, China; (L.H.); (J.W.); (D.L.); (H.X.); (H.Y.); (Q.X.); (P.L.)
| | - Hongbo Yao
- Biological Science Research Center, Southwest University, Chongqing 400715, China; (L.H.); (J.W.); (D.L.); (H.X.); (H.Y.); (Q.X.); (P.L.)
| | - Yiwen Liang
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China;
| | - Qingyou Xia
- Biological Science Research Center, Southwest University, Chongqing 400715, China; (L.H.); (J.W.); (D.L.); (H.X.); (H.Y.); (Q.X.); (P.L.)
| | - Ping Lin
- Biological Science Research Center, Southwest University, Chongqing 400715, China; (L.H.); (J.W.); (D.L.); (H.X.); (H.Y.); (Q.X.); (P.L.)
| | - Guanwang Shen
- Biological Science Research Center, Southwest University, Chongqing 400715, China; (L.H.); (J.W.); (D.L.); (H.X.); (H.Y.); (Q.X.); (P.L.)
| |
Collapse
|
3
|
Stanojević M, Sollner Dolenc M. Mechanisms of bisphenol A and its analogs as endocrine disruptors via nuclear receptors and related signaling pathways. Arch Toxicol 2025:10.1007/s00204-025-04025-z. [PMID: 40116906 DOI: 10.1007/s00204-025-04025-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 03/13/2025] [Indexed: 03/23/2025]
Abstract
Bisphenol A (BPA) is a widely used chemical that is slowly being phased out due to its toxic properties. The industry is therefore looking for alternatives in the form of BPA analogs. However, studies have shown that BPA analogs can have comparable or even stronger endocrine and toxic effects than BPA. This review describes various mechanisms and interactions of BPA analogs with individual nuclear receptors. They interfere with downstream signaling pathways not only by binding to the nuclear receptors, but also by various alternative mechanisms, such as altering receptor expression, affecting co-receptors, altering signal transduction pathways, and even epigenetic changes. Further studies are needed to fully investigate the potential synergistic and additive effects that may result. In the search for a less harmful alternative to BPA, affinity to the nuclear receptor may not be the decisive factor. We therefore recommend a different study approach to assess their effects on the endocrine system before new BPA analogs are introduced to the market to protect public health and the environment.
Collapse
Affiliation(s)
- Mark Stanojević
- Bisafe Doo, 1000, Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, 1000, Ljubljana, Slovenia
| | | |
Collapse
|
4
|
Ma T, Xie W, Xu Z, Gao W, Zhou J, Wang Y, Chan FL. Estrogen-related receptor alpha (ERRα) controls the stemness and cellular energetics of prostate cancer cells via its direct regulation of citrate metabolism and zinc transportation. Cell Death Dis 2025; 16:154. [PMID: 40044646 PMCID: PMC11882781 DOI: 10.1038/s41419-025-07460-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 01/24/2025] [Accepted: 02/18/2025] [Indexed: 03/09/2025]
Abstract
Compared to most tumors that are more glycolytic, primary prostate cancer is less glycolytic but more dependent on TCA cycle coupled with OXPHOS for its energy demand. This unique metabolic energetic feature is attributed to activation of mitochondrial m-aconitase in TCA caused by decreased cellular Zn level. Evidence suggests that a small subpopulation of cancer cells within prostate tumors, designated as prostate cancer stem cells (PCSCs), play significant roles in advanced prostate cancer progression. However, their cellular energetics status is still poorly understood. Nuclear receptor ERRα (ESRRA) is a key regulator of energy metabolism. Previous studies characterize that ERRα exhibits an upregulation in prostate cancer and can perform multiple oncogenic functions. Here, we demonstrate a novel role of ERRα in the control of stemness and energetics metabolism in PCSCs via a mechanism of combined transrepression of Zn transporter ZIP1 in reducing intracellular Zn uptake and transactivation of ACO2 (m-aconitase) in completion of TCA cycle. Results also showed that restoration of Zn accumulation by treatment with a Zn ionophore Clioquinol could significantly suppress both in vitro growth of PCSCs and also their in vivo tumorigenicity, implicating that enhanced cellular Zn uptake could be a potential therapeutic approach for targeting PCSCs in advanced prostate cancer.
Collapse
Affiliation(s)
- Taiyang Ma
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Wenjuan Xie
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Zhenyu Xu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Weijie Gao
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Jianfu Zhou
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Department of Urology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuliang Wang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | - Franky Leung Chan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| |
Collapse
|
5
|
Park IR, Chung YG, Won KC. Overcoming β-Cell Dysfunction in Type 2 Diabetes Mellitus: CD36 Inhibition and Antioxidant System. Diabetes Metab J 2025; 49:1-12. [PMID: 39828973 PMCID: PMC11788556 DOI: 10.4093/dmj.2024.0796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 12/24/2024] [Indexed: 01/22/2025] Open
Abstract
Type 2 diabetes mellitus (T2DM) is marked by chronic hyperglycemia, gradually worsening β-cell failure, and insulin resistance. Glucotoxicity and oxidative stress cause β-cell failure by increasing reactive oxygen species (ROS) production, impairing insulin secretion, and disrupting transcription factors such as pancreatic and duodenal homeobox 1 (PDX-1) and musculoaponeurotic fibrosarcoma oncogene family A (MafA). Cluster determinant 36 (CD36), an essential glycoprotein responsible for fatty acid uptake, exacerbates oxidative stress and induces the apoptosis of β-cells under hyperglycemic conditions through pathways involving ceramide, thioredoxin-interacting protein (TXNIP), and Rac1-nicotinamide adenine dinucleotide phosphate oxidase (NOX)-mediated redoxosome formation. Targeting CD36 pathways has emerged as a promising therapeutic strategy. Oral hypoglycemic agents, such as metformin, teneligliptin, and pioglitazone, have shown protective effects on β-cells by enhancing antioxidant defenses. These agents reduce glucotoxicity via mechanisms such as suppressing CD36 expression and stabilizing mitochondrial function. Additionally, novel insights into the glutathione antioxidant system and its role in β-cell survival underscore its therapeutic potential. This review focuses on the key contribution of oxidative stress and CD36 to β-cell impairment, the therapeutic promise of antioxidants, and the need for further research to apply these findings in clinical practice. Promising strategies targeting these mechanisms may help preserve β-cell function and slow T2DM progression.
Collapse
Affiliation(s)
- Il Rae Park
- Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, Korea
| | - Yong Geun Chung
- Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, Korea
| | - Kyu Chang Won
- Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, Korea
| |
Collapse
|
6
|
Qiu B, Xie X, Xi Y. Mitochondrial quality control: the real dawn of intervertebral disc degeneration? J Transl Med 2024; 22:1126. [PMID: 39707402 DOI: 10.1186/s12967-024-05943-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 12/05/2024] [Indexed: 12/23/2024] Open
Abstract
Intervertebral disc degeneration is the most common disease in chronic musculoskeletal diseases and the main cause of low back pain, which seriously endangers social health level and increases people's economic burden. Disc degeneration is characterized by NP cell apoptosis, extracellular matrix degradation and disc structure changes. It progresses with age and under the influence of mechanical overload, oxidative stress and genetics. Mitochondria are not only the energy factories of cells, but also participate in a variety of cellular functions such as calcium homeostasis, regulation of cell proliferation, and control of apoptosis. The mitochondrial quality control system involves many mechanisms such as mitochondrial gene regulation, mitochondrial protein import, mitophagy, and mitochondrial dynamics. A large number of studies have confirmed that mitochondrial dysfunction is a key factor in the pathological mechanism of aging and intervertebral disc degeneration, and balancing mitochondrial quality control is extremely important for delaying and treating intervertebral disc degeneration. In this paper, we first demonstrate the molecular mechanism of mitochondrial quality control in detail by describing mitochondrial biogenesis and mitophagy. Then, we describe the ways in which mitochondrial dysfunction leads to disc degeneration, and review in detail the current research on targeting mitochondria for the treatment of disc degeneration, hoping to draw inspiration from the current research to provide innovative perspectives for the treatment of disc degeneration.
Collapse
Affiliation(s)
- Ba Qiu
- Department of Orthopedics, Spine Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Xiaoxing Xie
- Department of Orthopedics, Spine Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Yanhai Xi
- Department of Orthopedics, Spine Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China.
| |
Collapse
|
7
|
Lou Y, Wu L, Cai W, Deng H, Sang R, Xie S, Xu X, Yuan X, Wu C, Xu M, Ge W, Xi Y, Yang X. The FAcilitates Chromatin Transcription complex regulates the ratio of glycolysis to oxidative phosphorylation in neural stem cells. J Mol Cell Biol 2024; 16:mjae017. [PMID: 38719542 PMCID: PMC11467811 DOI: 10.1093/jmcb/mjae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 02/08/2024] [Accepted: 04/29/2024] [Indexed: 10/12/2024] Open
Abstract
Defects in the FAcilitates Chromatin Transcription (FACT) complex, a histone chaperone composed of SSRP1 and SUPT16H, are implicated in intellectual disability. Here, we reveal that the FACT complex promotes glycolysis and sustains the correct cell fate of neural stem cells/neuroblasts in the Drosophila 3rd instar larval central brain. We show that the FACT complex binds to the promoter region of the estrogen-related receptor (ERR) gene and positively regulates ERR expression. ERR is known to act as an aerobic glycolytic switch by upregulating the enzymes required for glycolysis. Dysfunction of the FACT complex leads to the downregulation of ERR transcription, resulting in a decreased ratio of glycolysis to oxidative phosphorylation (G/O) in neuroblasts. Consequently, neuroblasts exhibit smaller cell sizes, lower proliferation potential, and altered cell fates. Overexpression of ERR or suppression of mitochondrial oxidative phosphorylation in neuroblasts increases the relative G/O ratio and rescues defective phenotypes caused by dysfunction of the FACT complex. Thus, the G/O ratio, mediated by the FACT complex, plays a crucial role in neuroblast cell fate maintenance. Our study may shed light on the mechanism by which mutations in the FACT complex lead to intellectual disability in humans.
Collapse
Affiliation(s)
- Yuhan Lou
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Litao Wu
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China
| | - Wanlin Cai
- Institute of Genetics, Center for Genetic Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Huan Deng
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Rong Sang
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Shanshan Xie
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiao Xu
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xin Yuan
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Cheng Wu
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Man Xu
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Wanzhong Ge
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yongmei Xi
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Institute of Genetics, Center for Genetic Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Xiaohang Yang
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Institute of Genetics, Center for Genetic Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| |
Collapse
|
8
|
Chakraborty A, Bandyopadhaya A, Singh VK, Kovacic F, Cha S, Oldham WM, Tzika AA, Rahme LG. The bacterial quorum sensing signal 2'-aminoacetophenone rewires immune cell bioenergetics through the Ppargc1a/Esrra axis to mediate tolerance to infection. eLife 2024; 13:RP97568. [PMID: 39269443 PMCID: PMC11398867 DOI: 10.7554/elife.97568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024] Open
Abstract
How bacterial pathogens exploit host metabolism to promote immune tolerance and persist in infected hosts remains elusive. To achieve this, we show that Pseudomonas aeruginosa (PA), a recalcitrant pathogen, utilizes the quorum sensing (QS) signal 2'-aminoacetophenone (2-AA). Here, we unveil how 2-AA-driven immune tolerization causes distinct metabolic perturbations in murine macrophages' mitochondrial respiration and bioenergetics. We present evidence indicating that these effects stem from decreased pyruvate transport into mitochondria. This reduction is attributed to decreased expression of the mitochondrial pyruvate carrier (Mpc1), which is mediated by diminished expression and nuclear presence of its transcriptional regulator, estrogen-related nuclear receptor alpha (Esrra). Consequently, Esrra exhibits weakened binding to the Mpc1 promoter. This outcome arises from the impaired interaction between Esrra and the peroxisome proliferator-activated receptor gamma coactivator 1-alpha (Ppargc1a). Ultimately, this cascade results in diminished pyruvate influx into mitochondria and, consequently reduced ATP production in tolerized murine and human macrophages. Exogenously added ATP in infected macrophages restores the transcript levels of Mpc1 and Esrra and enhances cytokine production and intracellular bacterial clearance. Consistent with the in vitro findings, murine infection studies corroborate the 2-AA-mediated long-lasting decrease in ATP and acetyl-CoA and its association with PA persistence, further supporting this QS signaling molecule as the culprit of the host bioenergetic alterations and PA persistence. These findings unveil 2-AA as a modulator of cellular immunometabolism and reveal an unprecedented mechanism of host tolerance to infection involving the Ppargc1a/Esrra axis in its influence on Mpc1/OXPHOS-dependent energy production and PA clearance. These paradigmatic findings pave the way for developing treatments to bolster host resilience to pathogen-induced damage. Given that QS is a common characteristic of prokaryotes, it is likely that 2-AA-like molecules with similar functions may be present in other pathogens.
Collapse
Affiliation(s)
- Arijit Chakraborty
- Department of Surgery, Massachusetts General Hospital, and Harvard Medical SchoolBostonUnited States
- Shriners Hospitals for Children BostonBostonUnited States
- Department of Microbiology, Harvard Medical SchoolBostonUnited States
| | - Arunava Bandyopadhaya
- Department of Surgery, Massachusetts General Hospital, and Harvard Medical SchoolBostonUnited States
- Shriners Hospitals for Children BostonBostonUnited States
| | - Vijay K Singh
- Department of Surgery, Massachusetts General Hospital, and Harvard Medical SchoolBostonUnited States
- Shriners Hospitals for Children BostonBostonUnited States
| | - Filip Kovacic
- Department of Surgery, Massachusetts General Hospital, and Harvard Medical SchoolBostonUnited States
- Department of Microbiology, Harvard Medical SchoolBostonUnited States
- Institute of Molecular Enzyme Technology, Heinrich Heine University DüsseldorfJülichGermany
| | - Sujin Cha
- Department of Surgery, Massachusetts General Hospital, and Harvard Medical SchoolBostonUnited States
| | - William M Oldham
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical SchoolBostonUnited States
| | - A Aria Tzika
- Department of Surgery, Massachusetts General Hospital, and Harvard Medical SchoolBostonUnited States
- Shriners Hospitals for Children BostonBostonUnited States
| | - Laurence G Rahme
- Department of Surgery, Massachusetts General Hospital, and Harvard Medical SchoolBostonUnited States
- Shriners Hospitals for Children BostonBostonUnited States
- Department of Microbiology, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
9
|
Chakraborty A, Bandyopadhaya A, Singh V, Kovacic F, Cha S, Oldham W, Tzika AA, Rahme L. The Bacterial Quorum-Sensing Signal 2-Aminoacetophenone Rewires Immune Cell Bioenergetics through the PGC-1α/ERRα Axis to Mediate Tolerance to Infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.26.582124. [PMID: 38464050 PMCID: PMC10925214 DOI: 10.1101/2024.02.26.582124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
How bacterial pathogens exploit host metabolism to promote immune tolerance and persist in infected hosts remains elusive. To achieve this, we show that Pseudomonas aeruginosa (PA), a recalcitrant pathogen, utilizes the quorum sensing (QS) signal 2-aminoacetophenone (2-AA). Here, we unveil how 2-AA-driven immune tolerization causes distinct metabolic perturbations in macrophages mitochondrial respiration and bioenergetics. We present evidence indicating that these effects stem from decreased pyruvate transport into mitochondria. This reduction is attributed to decreased expression of the mitochondrial pyruvate carrier (MPC1), which is mediated by diminished expression and nuclear presence of its transcriptional regulator, estrogen-related nuclear receptor alpha (ERRα). Consequently, ERRα exhibits weakened binding to the MPC1 promoter. This outcome arises from the impaired interaction between ERRα and the peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α). Ultimately, this cascade results in diminished pyruvate influx into mitochondria and, consequently reduced ATP production in tolerized macrophages. Exogenously added ATP in infected macrophages restores the transcript levels of MPC1 and ERRα and enhances cytokine production and intracellular bacterial clearance. Consistent with the in vitro findings, murine infection studies corroborate the 2-AA-mediated long-lasting decrease in ATP and acetyl-CoA and its association with PA persistence, further supporting this QS signaling molecule as the culprit of the host bioenergetic alterations and PA persistence. These findings unveil 2-AA as a modulator of cellular immunometabolism and reveal an unprecedented mechanism of host tolerance to infection involving the PGC-1α/ERRα axis in its influence on MPC1/OXPHOS-dependent energy production and PA clearance. These paradigmatic findings pave the way for developing treatments to bolster host resilience to pathogen-induced damage. Given that QS is a common characteristic of prokaryotes, it is likely that 2-AA-like molecules with similar functions may be present in other pathogens.
Collapse
|
10
|
Shen GW, Liu D, Xu HR, Hou LY, Wu JX, Xia QY, Lin P. Estrogen-related receptor, a molecular target against lepidoptera pests. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 202:105947. [PMID: 38879334 DOI: 10.1016/j.pestbp.2024.105947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/16/2024] [Accepted: 05/04/2024] [Indexed: 06/29/2024]
Abstract
Until recently, chemical pesticides were one of the most effective means of controlling agricultural pests; therefore, the search for insecticide targets for agricultural pests has been an ongoing problem. Estrogen-related receptors (ERRs) are transcription factors that regulate cellular metabolism and energy homeostasis in animals. Silkworms are highly sensitive to chemical pesticides, making them ideal models for pesticide screening and evaluation. In this study, we detected ERR expression in key organs involved in pesticide metabolism in silkworms (Bombyx mori), including the fat body and midgut. Using ChIP-seq technology, many estrogen- related response elements were identified in the 2000-bp promoter region upstream of metabolism-related genes, almost all of which were potential ERR target genes. The ERR inhibitor, XCT-790, and the endocrine disruptor, bisphenol A, significantly inhibited expression of the ERR target genes, BmTreh-1, BmTret-1, BmPK, BmPFK, and BmHK, in the fat bodies of silkworms, resulting in pupation difficulties in silkworm larvae that ultimately lead to death. In addition, based on the clarification that the ERR can bind to XCT-790, as observed through biofilm interferometry, its three-dimensional spatial structure was predicted, and using molecular docking techniques, small-molecule compounds with a stronger affinity for the ERR were identified. In summary, utilizing the powerful metabolic regulatory function of ERR in Lepidoptera pests, the developed small molecule inhibitors of ERR can be used for future control of Lepidoptera pests.
Collapse
Affiliation(s)
- Guan Wang Shen
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China.
| | - Die Liu
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China.
| | - Hao Ran Xu
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China.
| | - Lu Yu Hou
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China.
| | - Jin Xin Wu
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China.
| | - Qing You Xia
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China.
| | - Ping Lin
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China.
| |
Collapse
|
11
|
Liu YB, Hong JR, Jiang N, Jin L, Zhong WJ, Zhang CY, Yang HH, Duan JX, Zhou Y. The Role of Mitochondrial Quality Control in Chronic Obstructive Pulmonary Disease. J Transl Med 2024; 104:100307. [PMID: 38104865 DOI: 10.1016/j.labinv.2023.100307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/22/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a major cause of morbidity, mortality, and health care use worldwide with heterogeneous pathogenesis. Mitochondria, the powerhouses of cells responsible for oxidative phosphorylation and energy production, play essential roles in intracellular material metabolism, natural immunity, and cell death regulation. Therefore, it is crucial to address the urgent need for fine-tuning the regulation of mitochondrial quality to combat COPD effectively. Mitochondrial quality control (MQC) mainly refers to the selective removal of damaged or aging mitochondria and the generation of new mitochondria, which involves mitochondrial biogenesis, mitochondrial dynamics, mitophagy, etc. Mounting evidence suggests that mitochondrial dysfunction is a crucial contributor to the development and progression of COPD. This article mainly reviews the effects of MQC on COPD as well as their specific regulatory mechanisms. Finally, the therapeutic approaches of COPD via MQC are also illustrated.
Collapse
Affiliation(s)
- Yu-Biao Liu
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Jie-Ru Hong
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Nan Jiang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Ling Jin
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Wen-Jing Zhong
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Chen-Yu Zhang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Hui-Hui Yang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Jia-Xi Duan
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Yong Zhou
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China.
| |
Collapse
|
12
|
Luo L, Zhang H, Chen W, Zheng Z, He Z, Wang H, Wang K, Zhang Y. Angelica sinensis polysaccharide ameliorates nonalcoholic fatty liver disease via restoring estrogen-related receptor α expression in liver. Phytother Res 2023; 37:5407-5417. [PMID: 37563852 DOI: 10.1002/ptr.7982] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 07/19/2023] [Accepted: 07/30/2023] [Indexed: 08/12/2023]
Abstract
Angelica sinensis polysaccharide (ASP) showed increasingly recognized hepatoprotective effects and lipid regulation. Because polysaccharides are typically degraded into fragments or short-chain fatty acids in the gut, rather than being absorbed in their intact form, it is worth pondering why ASP can regulate hepatic lipid metabolism and protect the liver from damage caused by lipid accumulation. In vivo and in vitro nonalcoholic fatty liver disease (NAFLD) models with lipid accumulation were established to investigate the effect and potential mechanisms of ASP on hepatic fat accumulation. Our results showed that ASP remodeled the composition and abundance of the gut microbiota in high-fat diet-fed mice and increased their levels of propionate (0.92 ± 0.30 × 107 vs. 2.13 ± 0.52 × 107 ) and butyrate (1.83 ± 1.31 × 107 vs. 6.39 ± 1.44 × 107 ). Sodium propionate significantly increased the expression of estrogen-related receptor α (ERRα) in liver cells (400 mM sodium propionate for 2.19-fold increase) and alleviated the progress of NAFLD in methionine-choline-deficient diet model. Taken together, our study demonstrated that ASP can regulate hepatic lipid metabolism via propionate/ERRα pathway and ultimately relieving NAFLD. Our findings demonstrate that ASP can be used as a health care product or food supplement to prevent NAFLD.
Collapse
Affiliation(s)
- Li Luo
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Huazhong University of Science and Technology, Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Huafeng Zhang
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weiliang Chen
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Ziming Zheng
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Huazhong University of Science and Technology, Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Zihao He
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haoyu Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kaiping Wang
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Huazhong University of Science and Technology, Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| |
Collapse
|
13
|
Shen G, Liu D, Xu H, Wu J, Hou L, Yang C, Xia Q, Lin P. A Study on the Effect of Energy on the Development of Silkworm Embryos Using an Estrogen-Related Receptor. Int J Mol Sci 2023; 24:14485. [PMID: 37833932 PMCID: PMC10572312 DOI: 10.3390/ijms241914485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/04/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023] Open
Abstract
Energy metabolism is a fundamental process in all organisms. During silkworm (Bombyx mori) embryonic development, there is a high demand for energy due to continuous cell proliferation and differentiation. Estrogen-related receptors (ERRs) are transcriptional regulatory factors that play crucial roles in mammalian energy storage and expenditure. Although most insects have one ERR gene, it also participates in the regulation of energy metabolism, including carbohydrate metabolism in Drosophila, Aphid, and Silkworm. However, no study has reported the direct impact of energy metabolism on embryonic development in silkworms. In this study, we used transgenic technology to increase silkworm (B. mori; Bm) BmERR expression during embryonic development and explored the impact of energy on embryonic development. We found no significant change in the quality of silkworm eggs compared to that of wild-type silkworms. However, there was an increase in the consumption of vitellin, a major nutrient in embryos. This resulted in a decrease in glucose content and a significant increase in ATP content. These findings provide evidence that the acceleration of energy metabolism promotes embryonic development and enhances the motility of hatched silkworms. In addition, these results provide a novel perspective on the relationship between energy metabolism and embryonic development in other insects.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qingyou Xia
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China; (G.S.); (D.L.)
| | - Ping Lin
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China; (G.S.); (D.L.)
| |
Collapse
|
14
|
Zhao T, Zhang J, Lei H, Meng Y, Cheng H, Zhao Y, Geng G, Mu C, Chen L, Liu Q, Luo Q, Zhang C, Long Y, Su J, Wang Y, Li Z, Sun J, Chen G, Li Y, Liao X, Shang Y, Hu G, Chen Q, Zhu Y. NRF1-mediated mitochondrial biogenesis antagonizes innate antiviral immunity. EMBO J 2023; 42:e113258. [PMID: 37409632 PMCID: PMC10425878 DOI: 10.15252/embj.2022113258] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 05/24/2023] [Accepted: 06/01/2023] [Indexed: 07/07/2023] Open
Abstract
Mitochondrial biogenesis is the process of generating new mitochondria to maintain cellular homeostasis. Here, we report that viruses exploit mitochondrial biogenesis to antagonize innate antiviral immunity. We found that nuclear respiratory factor-1 (NRF1), a vital transcriptional factor involved in nuclear-mitochondrial interactions, is essential for RNA (VSV) or DNA (HSV-1) virus-induced mitochondrial biogenesis. NRF1 deficiency resulted in enhanced innate immunity, a diminished viral load, and morbidity in mice. Mechanistically, the inhibition of NRF1-mediated mitochondrial biogenesis aggravated virus-induced mitochondrial damage, promoted the release of mitochondrial DNA (mtDNA), increased the production of mitochondrial reactive oxygen species (mtROS), and activated the innate immune response. Notably, virus-activated kinase TBK1 phosphorylated NRF1 at Ser318 and thereby triggered the inactivation of the NRF1-TFAM axis during HSV-1 infection. A knock-in (KI) strategy that mimicked TBK1-NRF1 signaling revealed that interrupting the TBK1-NRF1 connection ablated mtDNA release and thereby attenuated the HSV-1-induced innate antiviral response. Our study reveals a previously unidentified antiviral mechanism that utilizes a NRF1-mediated negative feedback loop to modulate mitochondrial biogenesis and antagonize innate immune response.
Collapse
Affiliation(s)
- Tian Zhao
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Jiaojiao Zhang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Hong Lei
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Yuanyuan Meng
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Hongcheng Cheng
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Yanping Zhao
- School of Statistics and Data Science, LPMC and KLMDASRNankai UniversityTianjinChina
| | - Guangfeng Geng
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Chenglong Mu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Linbo Chen
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Qiangqiang Liu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Qian Luo
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Chuanmei Zhang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Yijia Long
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Jingyi Su
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Yinhao Wang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Zhuoya Li
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Jiaxing Sun
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Guo Chen
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Yanjun Li
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Xudong Liao
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Yingli Shang
- Department of Preventive Veterinary Medicine, College of Veterinary MedicineShandong Agricultural UniversityTaianChina
| | - Gang Hu
- School of Statistics and Data Science, LPMC and KLMDASRNankai UniversityTianjinChina
| | - Quan Chen
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Yushan Zhu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| |
Collapse
|
15
|
Alva-Gallegos R, Carazo A, Mladěnka P. Toxicity overview of endocrine disrupting chemicals interacting in vitro with the oestrogen receptor. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 99:104089. [PMID: 36841273 DOI: 10.1016/j.etap.2023.104089] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
The oestrogen receptor (ER) from the nuclear receptor family is involved in different physiological processes, which can be affected by multiple xenobiotics. Some of these compounds, such as bisphenols, pesticides, and phthalates, are widespread as consequence of human activities and are commonly present also in human organism. Xenobiotics able to interact with ER and trigger a hormone-like response, are known as endocrine disruptors. In this review, we aim to summarize the available knowledge on products derived from human industrial activity and other xenobiotics reported to interact with ER. ER-disrupting chemicals behave differently towards oestrogen-dependent cell lines than endogenous oestradiol. In low concentrations, they stimulate proliferation, whereas at higher concentrations, are toxic to cells. In addition, most of the knowledge on the topic is based on individual compound testing, and only a few studies assess xenobiotic combinations, which better resemble real circumstances. Confirmation from in vivo models is lacking also.
Collapse
Affiliation(s)
- Raul Alva-Gallegos
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Alejandro Carazo
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic.
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| |
Collapse
|
16
|
Wattez JS, Eury E, Hazen BC, Wade A, Chau S, Ou SC, Russell AP, Cho Y, Kralli A. Loss of skeletal muscle estrogen-related receptors leads to severe exercise intolerance. Mol Metab 2023; 68:101670. [PMID: 36642217 PMCID: PMC9938320 DOI: 10.1016/j.molmet.2023.101670] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/02/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
OBJECTIVE Skeletal muscle oxidative capacity is central to physical activity, exercise capacity and whole-body metabolism. The three estrogen-related receptors (ERRs) are regulators of oxidative metabolism in many cell types, yet their roles in skeletal muscle remain unclear. The main aim of this study was to compare the relative contributions of ERRs to oxidative capacity in glycolytic and oxidative muscle, and to determine defects associated with loss of skeletal muscle ERR function. METHODS We assessed ERR expression, generated mice lacking one or two ERRs specifically in skeletal muscle and compared the effects of ERR loss on the transcriptomes of EDL (predominantly glycolytic) and soleus (oxidative) muscles. We also determined the consequences of the loss of ERRs for exercise capacity and energy metabolism in mice with the most severe loss of ERR activity. RESULTS ERRs were induced in human skeletal muscle in response to an exercise bout. Mice lacking both ERRα and ERRγ (ERRα/γ dmKO) had the broadest and most dramatic disruption in skeletal muscle gene expression. The most affected pathway was "mitochondrial function", in particular Oxphos and TCA cycle genes, and transcriptional defects were more pronounced in the glycolytic EDL than the oxidative soleus. Mice lacking ERRβ and ERRγ, the two isoforms expressed highly in oxidative muscles, also exhibited defects in lipid and branch chain amino acid metabolism genes, specifically in the soleus. The pronounced disruption of oxidative metabolism in ERRα/γ dmKO mice led to pale muscles, decreased oxidative capacity, histochemical patterns reminiscent of minicore myopathies, and severe exercise intolerance, with the dmKO mice unable to switch to lipid utilization upon running. ERRα/γ dmKO mice showed no defects in whole-body glucose and energy homeostasis. CONCLUSIONS Our findings define gene expression programs in skeletal muscle that depend on different combinations of ERRs, and establish a central role for ERRs in skeletal muscle oxidative metabolism and exercise capacity. Our data reveal a high degree of functional redundancy among muscle ERR isoforms for the protection of oxidative capacity, and show that ERR isoform-specific phenotypes are driven in part, but not exclusively, by their relative levels in different muscles.
Collapse
Affiliation(s)
- Jean-Sébastien Wattez
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Elodie Eury
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Bethany C Hazen
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Alexa Wade
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sarah Chau
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shu-Ching Ou
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Aaron P Russell
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Yoshitake Cho
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Division of Cardiovascular Medicine, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Anastasia Kralli
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
17
|
Zhao HY, Xin M, Zhang SQ. Progress of small molecules for targeted protein degradation: PROTACs and other technologies. Drug Dev Res 2023; 84:337-394. [PMID: 36606428 DOI: 10.1002/ddr.22026] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 12/01/2022] [Accepted: 12/17/2022] [Indexed: 01/07/2023]
Abstract
Recent years have witnessed the rapid development of targeted protein degradation (TPD), especially proteolysis targeting chimeras. These degraders have manifested many advantages over small molecule inhibitors. To date, a huge number of degraders have been excavated against over 70 disease-related targets. In particular, degraders against estrogen receptor and androgen receptor have crowded into phase II clinical trial. TPD technologies largely expand the scope of druggable targets, and provide powerful tools for addressing intractable problems that can not be tackled by traditional small molecule inhibitors. In this review, we mainly focus on the structures and biological activities of small molecule degraders as well as the elucidation of mechanisms of emerging TPD technologies. We also propose the challenges that exist in the TPD field at present.
Collapse
Affiliation(s)
- Hong-Yi Zhao
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Minhang Xin
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - San-Qi Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| |
Collapse
|
18
|
Van Le TN, Zoungrana LI, Wang H, Fatmi MK, Ren D, Krause-Hauch M, Li J. Sirtuin 1 aggravates hypertrophic heart failure caused by pressure overload via shifting energy metabolism. Biochem Biophys Res Commun 2022; 637:170-180. [PMID: 36403480 PMCID: PMC9752708 DOI: 10.1016/j.bbrc.2022.11.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 11/15/2022]
Abstract
Sirtuin1 (SIRT1) is involved in regulating substrate metabolism in the cardiovascular system. Metabolic homeostasis plays a critical role in hypertrophic heart failure. We hypothesize that cardiac SIRT1 can modulate substrate metabolism during pressure overload-induced heart failure. The inducible cardiomyocyte Sirt1 knockout (icSirt1-/-) and its wild type littermates (Sirt1f/f) C57BL/6J mice were subjected to transverse aortic constriction (TAC) surgery to induce pressure overload. The pressure overload induces upregulation of cardiac SIRT1 in Sirt1f/f but not icSirt1-/- mice. The cardiac contractile dysfunctions caused by TAC-induced pressure overload occurred in Sirt1f/f but not in icSirt1-/- mice. Intriguingly, Sirt1f/f heart showed a drastic reduction in systolic contractility and electric signals during post-TAC surgery, whereas icSirt1-/- heart demonstrated significant resistance to pathological stress by TAC-induced pressure overload as evidenced by no significant changes in systolic contractile functions and electric properties. The targeted proteomics showed that the pressure overload triggered downregulation of the SIRT1-associated IDH2 (isocitrate dehydrogenase 2) that resulted in increased oxidative stress in mitochondria. Moreover, metabolic alterations were observed in Sirt1f/f but not in icSirt1-/- heart in response to TAC-induced pressure overload. Thus, SIRT1 interferes with metabolic homeostasis through mitochondrial IDH2 during pressure overload. Inhibition of SIRT1 activity benefits cardiac functions under pressure overload-related pathological conditions.
Collapse
Affiliation(s)
- Tran Ngoc Van Le
- Department of Surgery, USF Health Heart Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Linda Ines Zoungrana
- Department of Surgery, USF Health Heart Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Hao Wang
- Department of Surgery, USF Health Heart Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Mohammad Kasim Fatmi
- Department of Surgery, USF Health Heart Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Di Ren
- Department of Surgery, USF Health Heart Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Meredith Krause-Hauch
- Department of Surgery, USF Health Heart Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA; James A. Haley Veterans Hospital, Tampa, FL, 33612, USA
| | - Ji Li
- Department of Surgery, USF Health Heart Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA; James A. Haley Veterans Hospital, Tampa, FL, 33612, USA.
| |
Collapse
|
19
|
Dai X, Thompson EW, Ostrikov K(K. Receptor-Mediated Redox Imbalance: An Emerging Clinical Avenue against Aggressive Cancers. Biomolecules 2022; 12:biom12121880. [PMID: 36551308 PMCID: PMC9775490 DOI: 10.3390/biom12121880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Cancer cells are more vulnerable to abnormal redox fluctuations due to their imbalanced antioxidant system, where cell surface receptors sense stress and trigger intracellular signal relay. As canonical targets of many targeted therapies, cell receptors sensitize the cells to specific drugs. On the other hand, cell target mutations are commonly associated with drug resistance. Thus, exploring effective therapeutics targeting diverse cell receptors may open new clinical avenues against aggressive cancers. This paper uses focused case studies to reveal the intrinsic relationship between the cell receptors of different categories and the primary cancer hallmarks that are associated with the responses to external or internal redox perturbations. Cold atmospheric plasma (CAP) is examined as a promising redox modulation medium and highly selective anti-cancer therapeutic modality featuring dynamically varying receptor targets and minimized drug resistance against aggressive cancers.
Collapse
Affiliation(s)
- Xiaofeng Dai
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
- Correspondence:
| | - Erik W. Thompson
- School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia
- Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Kostya (Ken) Ostrikov
- School of Chemistry, Physics and Center for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| |
Collapse
|
20
|
c-Abl tyrosine kinase inhibition attenuate oxidative stress-induced pancreatic β-Cell dysfunction via glutathione antioxidant system. Transl Res 2022; 249:74-87. [PMID: 35697276 DOI: 10.1016/j.trsl.2022.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 05/12/2022] [Accepted: 06/06/2022] [Indexed: 11/24/2022]
Abstract
Chronic oxidative stress, which is caused by aberrant non-receptor tyrosine kinase (c-Abl) signaling, plays a key role in the progression of β-cell loss in diabetes mellitus. Recent studies, however, have linked ferroptotic-like death to the β-cell loss in diabetes mellitus. Here, we report that oxidative stress-driven reduced/oxidized glutathione (GSH/GSSG) loss and proteasomal degradation of glutathione peroxidase 4 (GPX4) promote ferroptotic-like cell damage through increased lipid peroxidation. Mechanistically, treatment with GNF2, a non-ATP competitive c-Abl kinase inhibitor, selectively preserves β-cell function by inducing the orphan nuclear receptor estrogen-related receptor gamma (ERRγ). ERRγ-driven glutaminase 1 (GLS1) expression promotes the elevation of the GSH/GSSG ratio, and this increase leads to the inhibition of lipid peroxidation by GPX4. Strikingly, pharmacological inhibition of ERRγ represses the expression of GLS1 and reverses the GSH/GSSG ratio linked to mitochondrial dysfunction and increased lipid peroxidation mediated by GPX4 degradation. Inhibition of GLS1 suppresses the ERRγ agonist DY131-induced GSH/GSSG ratio linked to ferroptotic-like death owing to the loss of GPX4. Furthermore, immunohistochemical analysis showed enhanced ERRγ and GPX4 expression in the pancreatic islets of GNF2-treated mice compared to that in streptozotocin-treated mice. Altogether, our results provide the first evidence that the orphan nuclear receptor ERRγ-induced GLS1 expression augments the glutathione antioxidant system, and its downstream signaling leads to improved β-cell function and survival under oxidative stress conditions.
Collapse
|
21
|
Melnik BC, Schmitz G. Milk Exosomal microRNAs: Postnatal Promoters of β Cell Proliferation but Potential Inducers of β Cell De-Differentiation in Adult Life. Int J Mol Sci 2022; 23:ijms231911503. [PMID: 36232796 PMCID: PMC9569743 DOI: 10.3390/ijms231911503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Pancreatic β cell expansion and functional maturation during the birth-to-weaning period is driven by epigenetic programs primarily triggered by growth factors, hormones, and nutrients provided by human milk. As shown recently, exosomes derived from various origins interact with β cells. This review elucidates the potential role of milk-derived exosomes (MEX) and their microRNAs (miRs) on pancreatic β cell programming during the postnatal period of lactation as well as during continuous cow milk exposure of adult humans to bovine MEX. Mechanistic evidence suggests that MEX miRs stimulate mTORC1/c-MYC-dependent postnatal β cell proliferation and glycolysis, but attenuate β cell differentiation, mitochondrial function, and insulin synthesis and secretion. MEX miR content is negatively affected by maternal obesity, gestational diabetes, psychological stress, caesarean delivery, and is completely absent in infant formula. Weaning-related disappearance of MEX miRs may be the critical event switching β cells from proliferation to TGF-β/AMPK-mediated cell differentiation, whereas continued exposure of adult humans to bovine MEX miRs via intake of pasteurized cow milk may reverse β cell differentiation, promoting β cell de-differentiation. Whereas MEX miR signaling supports postnatal β cell proliferation (diabetes prevention), persistent bovine MEX exposure after the lactation period may de-differentiate β cells back to the postnatal phenotype (diabetes induction).
Collapse
Affiliation(s)
- Bodo C. Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, D-49076 Osnabrück, Germany
- Correspondence: ; Tel.: +49-52-4198-8060
| | - Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, University of Regensburg, D-93053 Regensburg, Germany
| |
Collapse
|
22
|
Guajardo-Correa E, Silva-Agüero JF, Calle X, Chiong M, Henríquez M, García-Rivas G, Latorre M, Parra V. Estrogen signaling as a bridge between the nucleus and mitochondria in cardiovascular diseases. Front Cell Dev Biol 2022; 10:968373. [PMID: 36187489 PMCID: PMC9516331 DOI: 10.3389/fcell.2022.968373] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/25/2022] [Indexed: 11/29/2022] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of morbidity and mortality worldwide. Epidemiological studies indicate that pre-menopausal women are more protected against the development of CVDs compared to men of the same age. This effect is attributed to the action/effects of sex steroid hormones on the cardiovascular system. In this context, estrogen modulates cardiovascular function in physiological and pathological conditions, being one of the main physiological cardioprotective agents. Here we describe the common pathways and mechanisms by which estrogens modulate the retrograde and anterograde communication between the nucleus and mitochondria, highlighting the role of genomic and non-genomic pathways mediated by estrogen receptors. Additionally, we discuss the presumable role of bromodomain-containing protein 4 (BRD4) in enhancing mitochondrial biogenesis and function in different CVD models and how this protein could act as a master regulator of estrogen protective activity. Altogether, this review focuses on estrogenic control in gene expression and molecular pathways, how this activity governs nucleus-mitochondria communication, and its projection for a future generation of strategies in CVDs treatment.
Collapse
Affiliation(s)
- Emanuel Guajardo-Correa
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Juan Francisco Silva-Agüero
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Ximena Calle
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
- Center of Applied Nanoscience (CANS), Facultad de Ciencias Exactas, Universidad Andres Bello, Santiago, Chile
| | - Mario Chiong
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Mauricio Henríquez
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Red para el Estudio de Enfermedades Cardiopulmonares de Alta Letalidad (REECPAL), Universidad de Chile, Santiago, Chile
| | - Gerardo García-Rivas
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León, Mexico
- Tecnológico de Monterrey, The Institute for Obesity Research, Hospital Zambrano Hellion, San Pedro Garza Garcia, Nuevo León, Mexico
| | - Mauricio Latorre
- Laboratorio de Bioingeniería, Instituto de Ciencias de la Ingeniería, Universidad de O’Higgins, Rancagua, Chile
- Laboratorio de Bioinformática y Expresión Génica, INTA, Universidad de Chile, Santiago, Chile
| | - Valentina Parra
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
- Red para el Estudio de Enfermedades Cardiopulmonares de Alta Letalidad (REECPAL), Universidad de Chile, Santiago, Chile
| |
Collapse
|
23
|
Fox SN, McMeekin LJ, Savage CH, Joyce KL, Boas SM, Simmons MS, Farmer CB, Ryan J, Pereboeva L, Becker K, Auwerx J, Sudarshan S, Ma J, Lee A, Roberts RC, Crossman DK, Kralli A, Cowell RM. Estrogen-related receptor gamma regulates mitochondrial and synaptic genes and modulates vulnerability to synucleinopathy. NPJ Parkinsons Dis 2022; 8:106. [PMID: 35982091 PMCID: PMC9388660 DOI: 10.1038/s41531-022-00369-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 07/12/2022] [Indexed: 11/17/2022] Open
Abstract
Many studies implicate mitochondrial dysfunction as a key contributor to cell loss in Parkinson disease (PD). Previous analyses of dopaminergic (DAergic) neurons from patients with Lewy-body pathology revealed a deficiency in nuclear-encoded genes for mitochondrial respiration, many of which are targets for the transcription factor estrogen-related receptor gamma (Esrrg/ERRγ). We demonstrate that deletion of ERRγ from DAergic neurons in adult mice was sufficient to cause a levodopa-responsive PD-like phenotype with reductions in mitochondrial gene expression and number, that partial deficiency of ERRγ hastens synuclein-mediated toxicity, and that ERRγ overexpression reduces inclusion load and delays synuclein-mediated cell loss. While ERRγ deletion did not fully recapitulate the transcriptional alterations observed in postmortem tissue, it caused reductions in genes involved in synaptic and mitochondrial function and autophagy. Altogether, these experiments suggest that ERRγ-deficient mice could provide a model for understanding the regulation of transcription in DAergic neurons and that amplifying ERRγ-mediated transcriptional programs should be considered as a strategy to promote DAergic maintenance in PD.
Collapse
Affiliation(s)
- S N Fox
- Neuroscience Department, Drug Discovery Division, Southern Research, Birmingham, AL, 35205, USA
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - L J McMeekin
- Neuroscience Department, Drug Discovery Division, Southern Research, Birmingham, AL, 35205, USA
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - C H Savage
- Neuroscience Department, Drug Discovery Division, Southern Research, Birmingham, AL, 35205, USA
| | - K L Joyce
- Neuroscience Department, Drug Discovery Division, Southern Research, Birmingham, AL, 35205, USA
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - S M Boas
- Neuroscience Department, Drug Discovery Division, Southern Research, Birmingham, AL, 35205, USA
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - M S Simmons
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - C B Farmer
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - J Ryan
- NeuroInitiative, LLC, Jacksonville, FL, 32207, USA
| | - L Pereboeva
- Department of Pediatrics, Infectious Disease, Neuroscience Vector and Virus Core, University of Alabama at Birmingham, Birmingham, AL, 35223, USA
| | - K Becker
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, 49503, USA
| | - J Auwerx
- Swiss Federal Institute of Technology Lausanne, Lausanne, Switzerland
| | - S Sudarshan
- Department of Urology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - J Ma
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, 49503, USA
| | - A Lee
- NeuroInitiative, LLC, Jacksonville, FL, 32207, USA
| | - R C Roberts
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - D K Crossman
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - A Kralli
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - R M Cowell
- Neuroscience Department, Drug Discovery Division, Southern Research, Birmingham, AL, 35205, USA.
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
24
|
Trewin AJ, Silver J, Dillon HT, Della Gatta PA, Parker L, Hiam DS, Lee YP, Richardson M, Wadley GD, Lamon S. Long non-coding RNA Tug1 modulates mitochondrial and myogenic responses to exercise in skeletal muscle. BMC Biol 2022; 20:164. [PMID: 35850762 PMCID: PMC9295458 DOI: 10.1186/s12915-022-01366-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 07/05/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Mitochondria have an essential role in regulating metabolism and integrate environmental and physiological signals to affect processes such as cellular bioenergetics and response to stress. In the metabolically active skeletal muscle, mitochondrial biogenesis is one important component contributing to a broad set of mitochondrial adaptations occurring in response to signals, which converge on the biogenesis transcriptional regulator peroxisome proliferator-activated receptor coactivator 1-alpha (PGC-1α), and is central to the beneficial effects of exercise in skeletal muscle. We investigated the role of long non-coding RNA (lncRNA) taurine-upregulated gene 1 (TUG1), which interacts with PGC-1α in regulating transcriptional responses to exercise in skeletal muscle. RESULTS In human skeletal muscle, TUG1 gene expression was upregulated post-exercise and was also positively correlated with the increase in PGC-1α gene expression (PPARGC1A). Tug1 knockdown (KD) in differentiating mouse myotubes led to decreased Ppargc1a gene expression, impaired mitochondrial respiration and morphology, and enhanced myosin heavy chain slow isoform protein expression. In response to a Ca2+-mediated stimulus, Tug1 KD prevented an increase in Ppargc1a expression. RNA sequencing revealed that Tug1 KD impacted mitochondrial Ca2+ transport genes and several downstream PGC-1α targets. Finally, Tug1 KD modulated the expression of ~300 genes that were upregulated in response to an in vitro model of exercise in myotubes, including genes involved in regulating myogenesis. CONCLUSIONS We found that TUG1 is upregulated in human skeletal muscle after a single session of exercise, and mechanistically, Tug1 regulates transcriptional networks associated with mitochondrial calcium handling, muscle differentiation and myogenesis. These data demonstrate that lncRNA Tug1 exerts regulation over fundamental aspects of skeletal muscle biology and response to exercise stimuli.
Collapse
Affiliation(s)
- Adam J Trewin
- Institute for Physical Activity and Nutrition, and School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia.
| | - Jessica Silver
- Institute for Physical Activity and Nutrition, and School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Hayley T Dillon
- Institute for Physical Activity and Nutrition, and School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
- Human Integrated Physiology and Sports Cardiology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Paul A Della Gatta
- Institute for Physical Activity and Nutrition, and School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Lewan Parker
- Institute for Physical Activity and Nutrition, and School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Danielle S Hiam
- Institute for Physical Activity and Nutrition, and School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
| | - Yin Peng Lee
- Genomics Centre, School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, Waurn Ponds, Victoria, Australia
| | - Mark Richardson
- Genomics Centre, School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, Waurn Ponds, Victoria, Australia
| | - Glenn D Wadley
- Institute for Physical Activity and Nutrition, and School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Séverine Lamon
- Institute for Physical Activity and Nutrition, and School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia.
| |
Collapse
|
25
|
Choi J, Oh TG, Jung HW, Park KY, Shin H, Jo T, Kang DS, Chanda D, Hong S, Kim J, Hwang H, Ji M, Jung M, Shoji T, Matsushima A, Kim P, Mun JY, Paik MJ, Cho SJ, Lee IK, Whitcomb DC, Greer P, Blobner B, Goodarzi MO, Pandol SJ, Rotter JI, Fan W, Bapat SP, Zheng Y, Liddle C, Yu RT, Atkins AR, Downes M, Yoshihara E, Evans RM, Suh JM. Estrogen-Related Receptor γ Maintains Pancreatic Acinar Cell Function and Identity by Regulating Cellular Metabolism. Gastroenterology 2022; 163:239-256. [PMID: 35461826 PMCID: PMC9233018 DOI: 10.1053/j.gastro.2022.04.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 02/22/2022] [Accepted: 04/03/2022] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Mitochondrial dysfunction disrupts the synthesis and secretion of digestive enzymes in pancreatic acinar cells and plays a primary role in the etiology of exocrine pancreas disorders. However, the transcriptional mechanisms that regulate mitochondrial function to support acinar cell physiology are poorly understood. Here, we aim to elucidate the function of estrogen-related receptor γ (ERRγ) in pancreatic acinar cell mitochondrial homeostasis and energy production. METHODS Two models of ERRγ inhibition, GSK5182-treated wild-type mice and ERRγ conditional knock-out (cKO) mice, were established to investigate ERRγ function in the exocrine pancreas. To identify the functional role of ERRγ in pancreatic acinar cells, we performed histologic and transcriptome analysis with the pancreas isolated from ERRγ cKO mice. To determine the relevance of these findings for human disease, we analyzed transcriptome data from multiple independent human cohorts and conducted genetic association studies for ESRRG variants in 2 distinct human pancreatitis cohorts. RESULTS Blocking ERRγ function in mice by genetic deletion or inverse agonist treatment results in striking pancreatitis-like phenotypes accompanied by inflammation, fibrosis, and cell death. Mechanistically, loss of ERRγ in primary acini abrogates messenger RNA expression and protein levels of mitochondrial oxidative phosphorylation complex genes, resulting in defective acinar cell energetics. Mitochondrial dysfunction due to ERRγ deletion further triggers autophagy dysfunction, endoplasmic reticulum stress, and production of reactive oxygen species, ultimately leading to cell death. Interestingly, ERRγ-deficient acinar cells that escape cell death acquire ductal cell characteristics, indicating a role for ERRγ in acinar-to-ductal metaplasia. Consistent with our findings in ERRγ cKO mice, ERRγ expression was significantly reduced in patients with chronic pancreatitis compared with normal subjects. Furthermore, candidate locus region genetic association studies revealed multiple single nucleotide variants for ERRγ that are associated with chronic pancreatitis. CONCLUSIONS Collectively, our findings highlight an essential role for ERRγ in maintaining the transcriptional program that supports acinar cell mitochondrial function and organellar homeostasis and provide a novel molecular link between ERRγ and exocrine pancreas disorders.
Collapse
Affiliation(s)
- Jinhyuk Choi
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Tae Gyu Oh
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California
| | - Hee-Won Jung
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Kun-Young Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Hyemi Shin
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Taehee Jo
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Du-Seock Kang
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Dipanjan Chanda
- Leading-Edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu, Republic of Korea; Bio-Medical Research Institute, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Sujung Hong
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Jina Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea
| | - Hayoung Hwang
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea
| | - Moongi Ji
- College of Pharmacy, Sunchon National University, Suncheon, Republic of Korea
| | - Minkyo Jung
- Neural Circuit Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Takashi Shoji
- Department of Medicine, Kyoto University, Kyoto, Japan
| | - Ayami Matsushima
- Laboratory of Structure-Function Biochemistry, Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Pilhan Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Ji Young Mun
- Neural Circuit Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Man-Jeong Paik
- College of Pharmacy, Sunchon National University, Suncheon, Republic of Korea
| | - Sung Jin Cho
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea
| | - In-Kyu Lee
- Leading-Edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu, Republic of Korea; Bio-Medical Research Institute, Kyungpook National University Hospital, Daegu, Republic of Korea; Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Republic of Korea; Department of Internal Medicine, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - David C Whitcomb
- Ariel Precision Medicine, Pittsburgh, Pennsylvania; Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Cell Biology and Molecular Physiology and the Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Phil Greer
- Ariel Precision Medicine, Pittsburgh, Pennsylvania; Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Brandon Blobner
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Mark O Goodarzi
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Stephen J Pandol
- Cedars-Sinai Cancer, Cedars-Sinai Medical Center, Los Angeles, California; Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California; Departments of Pediatrics and Human Genetics, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, California
| | - Weiwei Fan
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California
| | - Sagar P Bapat
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California; Department of Laboratory Medicine, University of California-San Francisco, San Francisco, California; Diabetes Center, University of California-San Francisco, San Francisco, California; Nomis Laboratories for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, California
| | - Ye Zheng
- Nomis Laboratories for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, California
| | - Chris Liddle
- Storr Liver Centre, Westmead Institute for Medical Research and Sydney School of Medicine, University of Sydney, Westmead, New South Wales, Australia
| | - Ruth T Yu
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California
| | - Annette R Atkins
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California
| | - Michael Downes
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California
| | - Eiji Yoshihara
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California; The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California; David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, California.
| | - Ronald M Evans
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, California.
| | - Jae Myoung Suh
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.
| |
Collapse
|
26
|
Mao L, Peng L, Ren X, Chu Y, Nie T, Lin W, Libby A, Xu Y, Chang Y, Lei C, Loomes K, Wang N, Liu J, Levi M, Wu D, Hui X, Ding K. Discovery of JND003 as a New Selective Estrogen-Related Receptor α Agonist Alleviating Nonalcoholic Fatty Liver Disease and Insulin Resistance. ACS BIO & MED CHEM AU 2022; 2:282-296. [PMID: 35874496 PMCID: PMC9302452 DOI: 10.1021/acsbiomedchemau.1c00050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most prevalent forms of chronic liver diseases and is causally linked to hepatic insulin resistance and reduced fatty acid oxidation. Therapeutic treatments targeting both hepatic insulin resistance and lipid oxidative metabolism are considered as feasible strategies to alleviate this disease. Emerging evidence suggests Estrogen-Related Receptor alpha (ERRα), the first orphan nuclear receptor identified, as a master regulator in energy homeostasis by controlling glucose and lipid metabolism. Small molecules improving the functions of ERRα may provide a new option for management of NAFLD. In the present study, by using liver-specific Errα knockout mouse (Errα-LKO), we showed that liver-specific deletion of ERRα exacerbated diet-evoked fatty liver, hepatic and systemic insulin resistance in mice. A potent and selective ERRα agonist JND003 (7) was also discovered. In vitro and in vivo investigation demonstrated that the compound enhanced the transactivation of ERRα downstream target genes, which was accompanied by improved insulin sensitivity and fatty liver symptoms. Furthermore, the therapeutic effects were completely abolished in Errα-LKO mice, indicative of its on-target efficacy. Our study thus suggests that hepatic ERRα is a viable target for NAFLD and that ERRα agonist may serve as an intriguing pharmacological option for management of metabolic diseases.
Collapse
Affiliation(s)
- Liufeng Mao
- Scientific
Research Center, The First Affiliated Hospital
of Guangdong Pharmaceutical University, Nonglinxi Road 19, Guangzhou, Guangdong 510080, P. R. China
| | - Lijie Peng
- International
Cooperative Laboratory of Traditional Chinese Medicine Modernization
and Innovative Drug Development of Chinese Ministry of Education (MOE),
School of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 510632, China
| | - Xiaomei Ren
- International
Cooperative Laboratory of Traditional Chinese Medicine Modernization
and Innovative Drug Development of Chinese Ministry of Education (MOE),
School of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 510632, China
| | - Yi Chu
- Guangzhou
Institutes of Biomedicine and Health, #190 Kaiyuan Avenue, Guangzhou 510530, China
- China-New
Zealand Joint Laboratory on Biomedicine and Health, Guangzhou 510530, China
| | - Tao Nie
- Guangzhou
Institutes of Biomedicine and Health, #190 Kaiyuan Avenue, Guangzhou 510530, China
- China-New
Zealand Joint Laboratory on Biomedicine and Health, Guangzhou 510530, China
| | - Wanhua Lin
- School
of Life Sciences, Guangxi Normal University, Guilin 541004, China
| | - Andrew Libby
- Department
of Biochemistry and Molecular & Cellular Biology, Basic Science
353, Georgetown University, 3900 Reservoir Road, Washington, District of Columbia 20057, United States
| | - Yong Xu
- Guangzhou
Institutes of Biomedicine and Health, #190 Kaiyuan Avenue, Guangzhou 510530, China
- China-New
Zealand Joint Laboratory on Biomedicine and Health, Guangzhou 510530, China
| | - Yu Chang
- International
Cooperative Laboratory of Traditional Chinese Medicine Modernization
and Innovative Drug Development of Chinese Ministry of Education (MOE),
School of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 510632, China
| | - Chong Lei
- International
Cooperative Laboratory of Traditional Chinese Medicine Modernization
and Innovative Drug Development of Chinese Ministry of Education (MOE),
School of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 510632, China
| | - Kerry Loomes
- School
of Biological Sciences and Maurice Wilkins Centre, University of Auckland, Auckland 1010, New Zealand
| | - Na Wang
- Guangzhou
Institutes of Biomedicine and Health, #190 Kaiyuan Avenue, Guangzhou 510530, China
- School
of Life Sciences, University of Science
and Technology of China, Hefei 230026, China
| | - Jinsong Liu
- Guangzhou
Institutes of Biomedicine and Health, #190 Kaiyuan Avenue, Guangzhou 510530, China
- School
of Life Sciences, University of Science
and Technology of China, Hefei 230026, China
| | - Moshe Levi
- Department
of Biochemistry and Molecular & Cellular Biology, Basic Science
353, Georgetown University, 3900 Reservoir Road, Washington, District of Columbia 20057, United States
| | - Donghai Wu
- Guangzhou
Institutes of Biomedicine and Health, #190 Kaiyuan Avenue, Guangzhou 510530, China
- China-New
Zealand Joint Laboratory on Biomedicine and Health, Guangzhou 510530, China
| | - Xiaoyan Hui
- School of
Biomedical Sciences, The Chinese University
of Hong Kong, Kowloon, Hong Kong SAR 99077, China
| | - Ke Ding
- International
Cooperative Laboratory of Traditional Chinese Medicine Modernization
and Innovative Drug Development of Chinese Ministry of Education (MOE),
School of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 510632, China
- The First
Affiliated Hospital of Jinan University, Guangzhou 510630, China
- State Key Laboratory of Bioorganic Chemistry
and Natural Products,
Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 210530, China
| |
Collapse
|
27
|
Triplication of HSA21 on alterations in structure and function of mitochondria. Mitochondrion 2022; 65:88-101. [PMID: 35623559 DOI: 10.1016/j.mito.2022.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/13/2022] [Accepted: 05/22/2022] [Indexed: 01/22/2023]
Abstract
Triplication of genes encoded in human chromosome 21 (HSA21) is responsible for the phenotypes of Down syndrome (DS). The dosage-imbalance of the nuclear genes and the extra-nuclear mitochondrial DNA (mtDNA) jointly contributes to patho-mechanisms in DS. The mitochondrial organelles are the power house of cells for generation of ATP and maintaining cellular calcium and redox homeostasis, and cellular energy-metabolism processes. Each cell contains hundreds to thousands of mitochondria depending on their energy consumption. The dynamic structure of mitochondria is maintained with continuous fission and fusion events, and thus, content of mtDNA and its genetic composition are widely variable among cells. Cells of brain and heart tissues of DS patients and DS-mouse models have demonstrated elevated number but reduced amount of mtDNA due to higher fission process. This mechanism perturbs the oxidative phosphorylation (OXPHOS) and generates more free radicals such as reactive oxygen species (ROS), suggesting contribution of mtDNA in proliferation and protection of cells from endogenous toxic environment and external stressors. Gene-dosage in DS population collectively contributes to mitochondrial dysfunction by lowering energy production and respiratory capacity via the impaired OXPHOS, and damaged redox homeostasis and mitochondrial dynamics in all types of cells in DS. The context is highly complex and affects the functioning of all organs. The effect in brain and heart tissues promotes myriads of neurodegenerative diseases and cardiac complexities in individuals with DS. Crosstalk between trisomic nuclear and mitochondrial genome has been crucial for identification of potential therapeutic targets.
Collapse
|
28
|
Scholtes C, Giguère V. Transcriptional control of energy metabolism by nuclear receptors. Nat Rev Mol Cell Biol 2022; 23:750-770. [DOI: 10.1038/s41580-022-00486-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2022] [Indexed: 12/11/2022]
|
29
|
Mitochondria homeostasis: Biology and involvement in hepatic steatosis to NASH. Acta Pharmacol Sin 2022; 43:1141-1155. [PMID: 35105958 PMCID: PMC9061859 DOI: 10.1038/s41401-022-00864-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/09/2022] [Indexed: 12/13/2022]
Abstract
Mitochondrial biology and behavior are central to the physiology of liver. Multiple mitochondrial quality control mechanisms remodel mitochondrial homeostasis under physiological and pathological conditions. Mitochondrial dysfunction and damage induced by overnutrition lead to oxidative stress, inflammation, liver cell death, and collagen production, which advance hepatic steatosis to nonalcoholic steatohepatitis (NASH). Accumulating evidence suggests that specific interventions that target mitochondrial homeostasis, including energy metabolism, antioxidant effects, and mitochondrial quality control, have emerged as promising strategies for NASH treatment. However, clinical translation of these findings is challenging due to the complex and unclear mechanisms of mitochondrial homeostasis in the pathophysiology of NASH.
Collapse
|
30
|
Xia H, Scholtes C, Dufour CR, Ouellet C, Ghahremani M, Giguère V. Insulin action and resistance are dependent on a GSK3β-FBXW7-ERRα transcriptional axis. Nat Commun 2022; 13:2105. [PMID: 35440636 PMCID: PMC9019090 DOI: 10.1038/s41467-022-29722-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 03/30/2022] [Indexed: 12/15/2022] Open
Abstract
Insulin resistance, a harbinger of the metabolic syndrome, is a state of compromised hormonal response resulting from the dysregulation of a wide range of insulin-controlled cellular processes. However, how insulin affects cellular energy metabolism via long-term transcriptional regulation and whether boosting mitochondrial function alleviates insulin resistance remains to be elucidated. Herein we reveal that insulin directly enhances the activity of the nuclear receptor ERRα via a GSK3β/FBXW7 signaling axis. Liver-specific deletion of GSK3β or FBXW7 and mice harboring mutations of ERRα phosphosites (ERRα3SA) co-targeted by GSK3β/FBXW7 result in accumulated ERRα proteins that no longer respond to fluctuating insulin levels. ERRα3SA mice display reprogrammed liver and muscle transcriptomes, resulting in compromised energy homeostasis and reduced insulin sensitivity despite improved mitochondrial function. This crossroad of insulin signaling and transcriptional control by a nuclear receptor offers a framework to better understand the complex cellular processes contributing to the development of insulin resistance.
Collapse
Affiliation(s)
- Hui Xia
- Rosalind and Morris Goodman Cancer Research Institute, McGill University, Montréal, QC, H3A 1A3, Canada
- Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC, H3G 1Y6, Canada
| | - Charlotte Scholtes
- Rosalind and Morris Goodman Cancer Research Institute, McGill University, Montréal, QC, H3A 1A3, Canada
| | - Catherine R Dufour
- Rosalind and Morris Goodman Cancer Research Institute, McGill University, Montréal, QC, H3A 1A3, Canada
| | - Carlo Ouellet
- Rosalind and Morris Goodman Cancer Research Institute, McGill University, Montréal, QC, H3A 1A3, Canada
| | - Majid Ghahremani
- Rosalind and Morris Goodman Cancer Research Institute, McGill University, Montréal, QC, H3A 1A3, Canada
| | - Vincent Giguère
- Rosalind and Morris Goodman Cancer Research Institute, McGill University, Montréal, QC, H3A 1A3, Canada.
- Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC, H3G 1Y6, Canada.
| |
Collapse
|
31
|
Bhatia S, Rawal R, Sharma P, Singh T, Singh M, Singh V. Mitochondrial Dysfunction in Alzheimer's Disease: Opportunities for Drug Development. Curr Neuropharmacol 2022; 20:675-692. [PMID: 33998995 PMCID: PMC9878959 DOI: 10.2174/1570159x19666210517114016] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/24/2021] [Accepted: 04/28/2021] [Indexed: 11/22/2022] Open
Abstract
Alzheimer's disease (AD) is one of the major reasons for 60-80% cases of senile dementia occurring as a result of the accumulation of plaques and tangles in the hippocampal and cortical neurons of the brain leading to neurodegeneration and cell death. The other pathological features of AD comprise abnormal microvasculature, network abnormalities, interneuronal dysfunction, increased β-amyloid production and reduced clearance, increased inflammatory response, elevated production of reactive oxygen species, impaired brain metabolism, hyperphosphorylation of tau, and disruption of acetylcholine signaling. Among all these pathologies, Mitochondrial Dysfunction (MD), regardless of it being an inciting insult or a consequence of the alterations, is related to all the associated AD pathologies. Observed altered mitochondrial morphology, distribution and movement, increased oxidative stress, dysregulation of enzymes involved in mitochondrial functioning, impaired brain metabolism, and impaired mitochondrial biogenesis in AD subjects suggest the involvement of mitochondrial malfunction in the progression of AD. Here, various pre-clinical and clinical evidence establishing MD as a key mediator in the progression of neurodegeneration in AD are reviewed and discussed with an aim to foster future MD based drug development research for the management of AD.
Collapse
Affiliation(s)
- Shiveena Bhatia
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Rishi Rawal
- School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Pratibha Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Tanveer Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Manjinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India;,Address correspondence to this author at the Chitkara College of Pharmacy, Chitkara University, Punjab, India; E-mails: ;
| | - Varinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India;,Address correspondence to this author at the Chitkara College of Pharmacy, Chitkara University, Punjab, India; E-mails: ;
| |
Collapse
|
32
|
Li D, Jiang K, Teng D, Wu Z, Li W, Tang Y, Wang R, Liu G. Discovery of New Estrogen-Related Receptor α Agonists via a Combination Strategy Based on Shape Screening and Ensemble Docking. J Chem Inf Model 2022; 62:486-497. [PMID: 35041411 DOI: 10.1021/acs.jcim.1c00662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Estrogen-related receptor α (ERRα), a member of nuclear receptors (NRs), plays a role in the regulation of cellular energy metabolism and is reported to be a novel potential target for type 2 diabetes therapy. To date, only a few agonists of ERRα have been identified to improve insulin sensitivity and decrease blood glucose levels. Herein, the discovery of novel potent agonists of ERRα determined using a combined virtual screening approach is described. Molecular dynamics (MD) simulations were used to obtain structural ensembles that can consider receptor flexibility. Then, an efficient virtual screening strategy with a combination of similarity search and ensemble docking was performed against the Enamine, SPECS, and Drugbank databases to identify potent ERRα agonists. Finally, a total of 66 compounds were purchased for experimental testing. Biological investigation of promising candidates identified seven compounds that have activity against ERRα with EC50 values ranging from 1.11 to 21.70 μM, with novel scaffolds different from known ERRα agonists until now. Additionally, the molecule GX66 showed micromolar inverse activity against ERRα with an IC50 of 0.82 μM. The predicted binding modes showed that these compounds were anchored in ERRα-LBP via interactions with several residues of ERRα. Overall, this study not only identified the novel potent ERRα agonists or an inverse agonist that would be the promising starting point for further exploration but also demonstrated a successful molecular dynamics-guided approach applicable in virtual screening for ERRα agonists.
Collapse
Affiliation(s)
- Dongping Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Kexin Jiang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Dan Teng
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zengrui Wu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Weihua Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yun Tang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Rui Wang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Guixia Liu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
33
|
Wu J, Shen G, Liu D, Xu H, Jiao M, Zhang Y, Lin Y, Zhao P. The Response of the Estrogen-Related Receptor to 20-Hydroxyecdysone in Bombyx mori: Insight Into the Function of Estrogen-Related Receptor in Insect 20-Hydroxyecdysone Signaling Pathway. Front Physiol 2022; 12:785637. [PMID: 35115955 PMCID: PMC8804299 DOI: 10.3389/fphys.2021.785637] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/29/2021] [Indexed: 01/03/2023] Open
Abstract
Estrogen-related receptor (ERR) is an orphan nuclear receptor that was first discovered in animals, and play an important role in metabolism, development, and reproduction. Despite extensive research on the function of ERR, its transcriptional regulation mechanism remains unclear. In this study, we obtained the upstream region of Bombyx mori ERR (BmERR) and confirmed the promoter activity of this region. Interestingly, we found that 10 and 50 nM 20-hydroxyecdysone (20E) up-regulated the transcriptional activity of BmERR promoter. In addition, eight putative ecdysone response elements (EcREs) were predicted in the upstream sequence of BmERR. Based on their positions, the upstream sequence of BmERR was truncated into different fragments. Finally, an EcRE-like sequence (5′-AGTGCAGTAAACTGT-3′) was identified. Electrophoretic mobility shift assay (EMSA) and cell transfection experiments confirmed that this motif specifically binds to the complex formed between ecdysone receptor (BmEcR) and the ultraspiracle (BmUSP), a key complex in the 20E signaling pathway. Interference of BmERR or BmEcR mRNA in the embryonic cells of Bombyx mori significantly affected the expression of BmEcR and BmUSP. Overall, these results suggested that an EcRE element was identified from BmERR, and this will help understanding the detailed regulatory mechanism of ERR in insects.
Collapse
Affiliation(s)
- Jinxin Wu
- Biological Science Research Center, Southwest University, Chongqing, China
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Guanwang Shen
- Biological Science Research Center, Southwest University, Chongqing, China
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Die Liu
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Haoran Xu
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Mengyao Jiao
- Biological Science Research Center, Southwest University, Chongqing, China
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Yungui Zhang
- Biological Science Research Center, Southwest University, Chongqing, China
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Ying Lin
- Biological Science Research Center, Southwest University, Chongqing, China
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- *Correspondence: Ying Lin,
| | - Ping Zhao
- Biological Science Research Center, Southwest University, Chongqing, China
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Ping Zhao,
| |
Collapse
|
34
|
Huang T, Fu X, Wang N, Yang M, Zhang M, Wang B, Chen T, Majaz S, Wang H, Wong CW, Liu J, Guan M. Andrographolide prevents bone loss via targeting estrogen-related receptor-α-regulated metabolic adaption of osteoclastogenesis. Br J Pharmacol 2021; 178:4352-4367. [PMID: 34233019 DOI: 10.1111/bph.15614] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/27/2021] [Accepted: 06/28/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE Metabolic adaptation driven by oestrogen-related receptor-α (ERRα/NR3B1) is required to meet the increased energy demand during osteoclast differentiation. Here, we hypothesize that natural product, andrographolide, acts as an ERRα inverse agonist to inhibit osteoclastogenesis. EXPERIMENTAL APPROACH Virtual docking and site-directed mutagenesis analysis were employed to study the binding mode of andrographolide to ERRα. Co-immunoprecipitation, luciferase reporter assay, real-time polymerase chain reaction (PCR) and immunoblot analyses were performed to identify andrographolide as an ERRα inverse agonist. The pharmacological effects of andrographolide in vivo were assessed in mice models of osteopenia induced by either a high-fat diet in male or ovariectomy in female mice. KEY RESULTS ERRα-dependent expression of glutaminase, a rate-limiting enzyme of mitochondrial glutamine anaplerosis, is required for ex vivo bone marrow osteoclast differentiation. Andrographolide inhibited glutaminase expression induced by ERRα and co-activator peroxisome proliferator-activated receptor γ co-activator-1β (PGC-1β), leading to reduction in osteoclastogenesis. Andrographolide acted as an inverse agonist of ERRα by disrupting its interaction with co-activator PGC-1β. Phenylalanine 232, valine 395 and phenylalanine 399 of ERRα ligand-binding domain were confirmed to be essential for this effect. In contrast, glutaminase overexpression restored the impairment triggered by andrographolide. Accordingly, andrographolide suppressed osteoclastic bone resorption and attenuated bone loss in vivo. CONCLUSIONS AND IMPLICATIONS These findings demonstrate that andrographolide acts as an ERRα inverse agonist for perturbation of ERRα/PGC-1β/glutaminase axis-driven metabolic adaption during osteoclast differentiation, implying that andrographolide may be a promising natural compound for preventing physiological and pathological bone loss.
Collapse
Affiliation(s)
- Tongling Huang
- Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xuekun Fu
- Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Na Wang
- Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Meng Yang
- Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Minyi Zhang
- Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Binxu Wang
- Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Tianke Chen
- Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Sidra Majaz
- Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Huaiyu Wang
- Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Chi-Wai Wong
- NeuMed Pharmaceuticals Limited, Yuen Long, Hong Kong, China
| | - Jinsong Liu
- Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Min Guan
- Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
35
|
Tran A, Scholtes C, Songane M, Champagne C, Galarneau L, Levasseur MP, Fodil N, Dufour CR, Giguère V, Saleh M. Estrogen-related receptor alpha (ERRα) is a key regulator of intestinal homeostasis and protects against colitis. Sci Rep 2021; 11:15073. [PMID: 34302001 PMCID: PMC8302669 DOI: 10.1038/s41598-021-94499-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023] Open
Abstract
The estrogen-related receptor alpha (ERRα) is a primary regulator of mitochondrial energy metabolism, function and dynamics, and has been implicated in autophagy and immune regulation. ERRα is abundantly expressed in the intestine and in cells of the immune system. However, its role in inflammatory bowel disease (IBD) remains unknown. Here, we report a protective role of ERRα in the intestine. We found that mice deficient in ERRα were susceptible to experimental colitis, exhibiting increased colon inflammation and tissue damage. This phenotype was mediated by impaired compensatory proliferation of intestinal epithelial cells (IEC) following injury, enhanced IEC apoptosis and necrosis and reduced mucus-producing goblet cell counts. Longitudinal analysis of the microbiota demonstrated that loss of ERRα lead to a reduction in microbiome α-diversity and depletion of healthy gut bacterial constituents. Mechanistically, ERRα mediated its protective effects by acting within the radio-resistant compartment of the intestine. It promoted disease tolerance through transcriptional control of key genes involved in intestinal tissue homeostasis and repair. These findings provide new insights on the role of ERRα in the gut and extends our current knowledge of nuclear receptors implicated in IBD.
Collapse
Affiliation(s)
- Allan Tran
- Department of Microbiology and Immunology, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Charlotte Scholtes
- Goodman Cancer Research Centre, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Mario Songane
- Department of Medicine, McGill University, Montreal, QC, H3G 0B1, Canada
| | - Claudia Champagne
- Department of Medicine, McGill University, Montreal, QC, H3G 0B1, Canada
| | - Luc Galarneau
- Cedars Cancer Centre, Medical Physics, McGill University Health Centre, Montreal, H4A 3J1, Canada
| | - Marie-Pier Levasseur
- Goodman Cancer Research Centre, McGill University, Montreal, QC, H3A 2B4, Canada
- Department of Biochemistry, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Nassima Fodil
- Department of Biochemistry, McGill University, Montreal, QC, H3A 2B4, Canada
| | | | - Vincent Giguère
- Goodman Cancer Research Centre, McGill University, Montreal, QC, H3A 2B4, Canada
- Department of Medicine, McGill University, Montreal, QC, H3G 0B1, Canada
- Department of Biochemistry, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Maya Saleh
- Department of Microbiology and Immunology, McGill University, Montreal, QC, H3A 2B4, Canada.
- Department of Medicine, McGill University, Montreal, QC, H3G 0B1, Canada.
- Department of Life Sciences and Health, CNRS, ImmunoConcEpT, UMR 5164, The University of Bordeaux, 33000, Bordeaux, France.
| |
Collapse
|
36
|
Cholesterol-Induced Metabolic Reprogramming in Breast Cancer Cells Is Mediated via the ERRα Pathway. Cancers (Basel) 2021; 13:cancers13112605. [PMID: 34073320 PMCID: PMC8198778 DOI: 10.3390/cancers13112605] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/08/2021] [Accepted: 05/18/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary There is increasing evidence that obesity and high circulating cholesterol levels are associated with an increased risk of recurrence and a higher mortality rate in breast cancer patients via altering the metabolic programming in breast cancer cells. However, the underlying molecular mechanism by which high cholesterol levels reprogram the metabolic pathways in breast cancer cells is not well-understood. We have previously demonstrated that cholesterol acts as an endogenous agonist of estrogen-related receptor α (ERRα), a strong regulator of cellular metabolism. The aim of the current study is to demonstrate whether cholesterol/obesity mediates its pathogenic effect in breast cancer cells via altering metabolic pathways in an ERRα-dependent manner. The findings of this study provide mechanistic insights into the link between cholesterol/obesity and metabolic reprogramming in breast cancer patients and reveal the metabolic vulnerabilities in such breast cancer patients that could be therapeutically targeted. Abstract The molecular mechanism underlying the metabolic reprogramming associated with obesity and high blood cholesterol levels is poorly understood. We previously reported that cholesterol is an endogenous ligand of the estrogen-related receptor alpha (ERRα). Using functional assays, metabolomics, and genomics, here we show that exogenous cholesterol alters the metabolic pathways in estrogen receptor-positive (ER+) and triple-negative breast cancer (TNBC) cells, and that this involves increased oxidative phosphorylation (OXPHOS) and TCA cycle intermediate levels. In addition, cholesterol augments aerobic glycolysis in TNBC cells although it remains unaltered in ER+ cells. Interestingly, cholesterol does not alter the metabolite levels of glutaminolysis, one-carbon metabolism, or the pentose phosphate pathway, but increases the NADPH levels and cellular proliferation, in both cell types. Importantly, we show that the above cholesterol-induced modulations of the metabolic pathways in breast cancer cells are mediated via ERRα. Furthermore, analysis of the ERRα metabolic gene signature of basal-like breast tumours of overweight/obese versus lean patients, using the GEO database, shows that obesity may modulate ERRα gene signature in a manner consistent with our in vitro findings with exogenous cholesterol. Given the close link between high cholesterol levels and obesity, our findings provide a mechanistic explanation for the association between cholesterol/obesity and metabolic reprogramming in breast cancer patients.
Collapse
|
37
|
Gligorijević N, Stanić-Vučinić D, Radomirović M, Stojadinović M, Khulal U, Nedić O, Ćirković Veličković T. Role of Resveratrol in Prevention and Control of Cardiovascular Disorders and Cardiovascular Complications Related to COVID-19 Disease: Mode of Action and Approaches Explored to Increase Its Bioavailability. MOLECULES (BASEL, SWITZERLAND) 2021; 26:molecules26102834. [PMID: 34064568 PMCID: PMC8151233 DOI: 10.3390/molecules26102834] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 12/12/2022]
Abstract
Resveratrol is a phytoalexin produced by many plants as a defense mechanism against stress-inducing conditions. The richest dietary sources of resveratrol are berries and grapes, their juices and wines. Good bioavailability of resveratrol is not reflected in its high biological activity in vivo because of resveratrol isomerization and its poor solubility in aqueous solutions. Proteins, cyclodextrins and nanomaterials have been explored as innovative delivery vehicles for resveratrol to overcome this limitation. Numerous in vitro and in vivo studies demonstrated beneficial effects of resveratrol in cardiovascular diseases (CVD). Main beneficial effects of resveratrol intake are cardioprotective, anti-hypertensive, vasodilatory, anti-diabetic, and improvement of lipid status. As resveratrol can alleviate the numerous factors associated with CVD, it has potential as a functional supplement to reduce COVID-19 illness severity in patients displaying poor prognosis due to cardio-vascular complications. Resveratrol was shown to mitigate the major pathways involved in the pathogenesis of SARS-CoV-2 including regulation of the renin-angiotensin system and expression of angiotensin-converting enzyme 2, stimulation of immune system and downregulation of pro-inflammatory cytokine release. Therefore, several studies already have anticipated potential implementation of resveratrol in COVID-19 treatment. Regular intake of a resveratrol rich diet, or resveratrol-based complementary medicaments, may contribute to a healthier cardio-vascular system, prevention and control of CVD, including COVID-19 disease related complications of CVD.
Collapse
Affiliation(s)
- Nikola Gligorijević
- Institute for the Application of Nuclear Energy, Department for Metabolism, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia; (N.G.); (O.N.)
| | - Dragana Stanić-Vučinić
- Center of Excellence for Molecular Food Sciences, Department of Biochemistry, Faculty of Chemistry, University of Belgrade, Studentski trg 12–16, 11000 Belgrade, Serbia; (D.S.-V.); (M.R.); (M.S.)
| | - Mirjana Radomirović
- Center of Excellence for Molecular Food Sciences, Department of Biochemistry, Faculty of Chemistry, University of Belgrade, Studentski trg 12–16, 11000 Belgrade, Serbia; (D.S.-V.); (M.R.); (M.S.)
| | - Marija Stojadinović
- Center of Excellence for Molecular Food Sciences, Department of Biochemistry, Faculty of Chemistry, University of Belgrade, Studentski trg 12–16, 11000 Belgrade, Serbia; (D.S.-V.); (M.R.); (M.S.)
| | - Urmila Khulal
- Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
- Global Campus, Ghent University, Yeonsu-gu, Incheon 406-840, Korea
| | - Olgica Nedić
- Institute for the Application of Nuclear Energy, Department for Metabolism, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia; (N.G.); (O.N.)
| | - Tanja Ćirković Veličković
- Center of Excellence for Molecular Food Sciences, Department of Biochemistry, Faculty of Chemistry, University of Belgrade, Studentski trg 12–16, 11000 Belgrade, Serbia; (D.S.-V.); (M.R.); (M.S.)
- Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
- Global Campus, Ghent University, Yeonsu-gu, Incheon 406-840, Korea
- Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11000 Belgrade, Serbia
- Correspondence: ; Tel.: +381-11-333-6608
| |
Collapse
|
38
|
He S, Li X, Ma JZ, Yang Y, Luo S, Xie XD, Yan BH, Yang J, Luo L, Cao LY. The potential endocrine disruption mechanism of anthelmintic drug niclosamide by activating estrogen receptors and estrogen-related receptors. Toxicology 2021; 457:152805. [PMID: 33961950 DOI: 10.1016/j.tox.2021.152805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/06/2021] [Accepted: 04/29/2021] [Indexed: 12/24/2022]
Abstract
Niclosamide (NIC), a helminthic drug used widely for controlling schistosomiasis, can reportedly disrupt the endocrine system. However, its underlying mechanisms are still unclear. In this study, we revealed the potential endocrine disruption mechanism of NIC by activating estrogen receptors (ERs) and estrogen-related receptors (ERRs). The binding potency of NIC with ERα, ERβ and ERRγ were determined by fluorescence competitive binding assays, which shows an IC50 (the concentration of NIC needed to displace 50 % of the probe from the receptor) of 90 ± 4.1, 10 ± 1.7 nM and 0.59 ± 0.07 nM respectively. The IC50 for ERRγ is the lowest one among the three detected receptors, which is three orders of magnitude lower than the known agonist GSK4716.The transcriptional activities of NIC on ERs and ERRs were detected by MVLN cells (stably transfected with ERs reporter gene) and HeLa cells (transiently transfected with ERRs reporter gene)-based luciferase reporter gene assay. The lowest observable effective concentration (LOEC) ranked as follows: ERRγ (0.5 nM) < ERRα (10 nM) < ERs (100 nM). The maximum observed induction rate for ERRγ (294 %) was higher than that for ERRα (191 %). The maximum observed induction rate of NIC for ERs was 30 % relative to 17β-estradiol. In addition, we simulated the interactions of NIC with ERs and ERRs by molecular docking. NIC could dock into the ligand binding pockets of ERs and ERRs and form hydrogen bonds with different amino acids. The binding energy ranked as follows: ERRγ (-8.90 kcal/mol) < ERβ (-7.57 kcal/mol) < ERRα (-7.15 kcal/mol) < ERα (-6.53 kcal/mol), which implied that NIC bound to ERRγ with higher binding affinity than the other receptors. Overall, we clarify that ERRγ might be the dominant target for NIC in cells rather than ERRα and ERs. We reveal potential novel mechanisms for the endocrine disruption effects of NIC by activating both ERRs and ERs at environmentally-related nanomolar levels.
Collapse
Affiliation(s)
- Sen He
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, PR China
| | - Xin Li
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, PR China
| | - Jie-Zhi Ma
- Department of Obstetrics and Gynecology, Xiangya Third Hospital, Central South University, Changsha City, Hunan Province, 410013, PR China
| | - Yuan Yang
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, PR China
| | - Shuang Luo
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, PR China
| | - Xian-De Xie
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, PR China
| | - Bing-Hua Yan
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, PR China
| | - Jian Yang
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, PR China
| | - Lin Luo
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, PR China.
| | - Lin-Ying Cao
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, PR China.
| |
Collapse
|
39
|
Huang X, Ruan G, Sun P. Estrogen-related receptor alpha copy number variation is associated with ovarian cancer histological grade. J Obstet Gynaecol Res 2021; 47:1878-1883. [PMID: 33751740 DOI: 10.1111/jog.14741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 01/27/2021] [Accepted: 02/20/2021] [Indexed: 11/27/2022]
Abstract
AIM Copy number variations (CNVs) are related to the genetic and phenotypic diversity of cancers and identifying genetic alterations could improve treatment strategies. Here, we used The Cancer Genome Atlas (TCGA) to explore associations between estrogen-related receptor alpha (ESRRA) CNVs and histological grade in patients with ovarian cancer (OC). METHODS Gene expression data and clinical information of 620 OC patients were obtained from The Cancer Genome Atlas)TCGA and associations between ESRRA CNVs and clinical characteristics were evaluated. Multivariate logistic regression analyses to obtain odds ratios (ORs) using a 95% confidence interval (CI) were performed, adjusting for race, age, histological grade, and tumor size. RESULTS ESRRA CNVs were associated with histological grade (OR 0.6235 [95% CI, 0.3593-0.8877]; p < 0.05) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PPARGC1A) CNVs (OR -0.6298 [95% CI, -0.9011 to -0.3585]; p < 0.05). In multivariate analyses, ESRRA CNVs remained significantly associated with histological grade (OR 0.6492 [95% CI, 0.3549-0.9435]; p < 0.05) and PPARGC1A CNVs (OR -0.6236 [95% CI, -0.9269 to 0.3203]; p < 0.05). CONCLUSION There was a significant association between ESRRA CNVs in patients with OC and histological grade of the cancer.
Collapse
Affiliation(s)
- Xiqi Huang
- Laboratory of Gynecologic Oncology, Fujian Provincial Maternity and Children's Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Guanyu Ruan
- Laboratory of Gynecologic Oncology, Fujian Provincial Maternity and Children's Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Key Laboratory of Women and Children's Critical Diseases Research, Fujian Provincial Maternity and Children's Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Pengming Sun
- Laboratory of Gynecologic Oncology, Fujian Provincial Maternity and Children's Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Key Laboratory of Women and Children's Critical Diseases Research, Fujian Provincial Maternity and Children's Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
40
|
The effect of extracellular vesicles on the regulation of mitochondria under hypoxia. Cell Death Dis 2021; 12:358. [PMID: 33824273 PMCID: PMC8024302 DOI: 10.1038/s41419-021-03640-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023]
Abstract
Mitochondria are indispensable organelles for maintaining cell energy metabolism, and also are necessary to retain cell biological function by transmitting information as signal organelles. Hypoxia, one of the important cellular stresses, can directly regulates mitochondrial metabolites and mitochondrial reactive oxygen species (mROS), which affects the nuclear gene expression through mitochondrial retrograde signal pathways, and also promotes the delivery of signal components into cytoplasm, causing cellular injury. In addition, mitochondria can also trigger adaptive mechanisms to maintain mitochondrial function in response to hypoxia. Extracellular vesicles (EVs), as a medium of information transmission between cells, can change the biological effects of receptor cells by the release of cargo, including nucleic acids, proteins, lipids, mitochondria, and their compositions. The secretion of EVs increases in cells under hypoxia, which indirectly changes the mitochondrial function through the uptake of contents by the receptor cells. In this review, we focus on the mitochondrial regulation indirectly through EVs under hypoxia, and the possible mechanisms that EVs cause the changes in mitochondrial function. Finally, we discuss the significance of this EV-mitochondria axis in hypoxic diseases.
Collapse
|
41
|
Scholtes C, Giguère V. Transcriptional Regulation of ROS Homeostasis by the ERR Subfamily of Nuclear Receptors. Antioxidants (Basel) 2021; 10:antiox10030437. [PMID: 33809291 PMCID: PMC7999130 DOI: 10.3390/antiox10030437] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 01/08/2023] Open
Abstract
Reactive oxygen species (ROS) such as superoxide anion (O2•-) and hydrogen peroxide (H2O2) are generated endogenously by processes such as mitochondrial oxidative phosphorylation, or they may arise from exogenous sources like bacterial invasion. ROS can be beneficial (oxidative eustress) as signaling molecules but also harmful (oxidative distress) to cells when ROS levels become unregulated in response to physiological, pathological or pharmacological insults. Indeed, abnormal ROS levels have been shown to contribute to the etiology of a wide variety of diseases. Transcriptional control of metabolic genes is a crucial mechanism to coordinate ROS homeostasis. Therefore, a better understanding of how ROS metabolism is regulated by specific transcription factors can contribute to uncovering new therapeutic strategies. A large body of work has positioned the estrogen-related receptors (ERRs), transcription factors belonging to the nuclear receptor superfamily, as not only master regulators of cellular energy metabolism but, most recently, of ROS metabolism. Herein, we will review the role played by the ERRs as transcriptional regulators of ROS generation and antioxidant mechanisms and also as ROS sensors. We will assess how the control of ROS homeostasis by the ERRs can be linked to physiology and disease and the possible contribution of manipulating ERR activity in redox medicine.
Collapse
Affiliation(s)
- Charlotte Scholtes
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montréal, QC H3A 1A3, Canada;
| | - Vincent Giguère
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montréal, QC H3A 1A3, Canada;
- Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada
- Correspondence:
| |
Collapse
|
42
|
Hu W, Wu R, Gao C, Liu F, Zeng Z, Zhu Q, Chen J, Cheng S, Yu K, Qian Y, Zhao J, Zhong S, Li Q, Wang L, Liu X, Wang J. Knockdown of estrogen-related receptor α inhibits valve interstitial cell calcification in vitro by regulating heme oxygenase 1. FASEB J 2021; 35:e21183. [PMID: 33184978 DOI: 10.1096/fj.202001588rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/15/2020] [Accepted: 10/28/2020] [Indexed: 12/19/2022]
Abstract
Calcific aortic valve disease (CAVD) is the most common valvular heart disease in adults. The cellular mechanisms of CAVD are still unknown, but accumulating evidence has revealed that osteogenic differentiation of human valve interstitial cells (hVICs) plays an important role in CAVD. Thus, we aimed to investigate the function of estrogen-related receptor α (ERRα) in the osteogenic differentiation of hVICs. We found that the level of ERRα was significantly increased in CAVD samples compared to normal controls. In addition, ERRα was significantly upregulated during hVIC osteogenic differentiation in vitro. Gain- and loss-of-function experiments were performed to identify the function of ERRα in hVIC calcification in vitro. Inhibition of endogenous ERRα attenuated hVIC calcification, whereas overexpression of ERRα in hVICs promoted this process. RNA sequencing results suggested that heme oxygenase-1 (Hmox1) was a downstream target of ERRα, which was further confirmed by western blotting. Additionally, we also found that downregulation of Hmox1 by shHmox1 efficiently reversed the inhibition of calcification induced by ERRα shRNA in hVICs. ChIP-qPCR and luciferase assays indicated that Hmox1 was negatively regulated by ERRα. We found that overexpression of Hmox1 or its substrates significantly inhibited hVIC calcification in vitro. In conclusion, we found that knockdown of ERRα can inhibit hVIC calcification through upregulating Hmox1 and that ERRα and Hmox1 are potential targets for the treatment of CAVD.
Collapse
Affiliation(s)
- Wangxing Hu
- Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Cardiovascular Disease of Zhejiang Province, Hangzhou, China
| | - Rongrong Wu
- Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Cardiovascular Disease of Zhejiang Province, Hangzhou, China
| | - Chenyang Gao
- Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Cardiovascular Disease of Zhejiang Province, Hangzhou, China
| | - Feng Liu
- Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Cardiovascular Disease of Zhejiang Province, Hangzhou, China
| | - Zhiru Zeng
- Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Cardiovascular Disease of Zhejiang Province, Hangzhou, China
| | - Qifeng Zhu
- Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Cardiovascular Disease of Zhejiang Province, Hangzhou, China
| | - Jinyong Chen
- Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Cardiovascular Disease of Zhejiang Province, Hangzhou, China
| | - Si Cheng
- Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Cardiovascular Disease of Zhejiang Province, Hangzhou, China
| | - Kaixiang Yu
- Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Cardiovascular Disease of Zhejiang Province, Hangzhou, China
| | - Yi Qian
- Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Cardiovascular Disease of Zhejiang Province, Hangzhou, China
| | - Jing Zhao
- Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Cardiovascular Disease of Zhejiang Province, Hangzhou, China
| | - Shuhan Zhong
- Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Cardiovascular Disease of Zhejiang Province, Hangzhou, China
| | - Qingju Li
- Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Cardiovascular Disease of Zhejiang Province, Hangzhou, China
| | - Lihan Wang
- Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Cardiovascular Disease of Zhejiang Province, Hangzhou, China
| | - Xianbao Liu
- Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Cardiovascular Disease of Zhejiang Province, Hangzhou, China
| | - Jian'an Wang
- Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Cardiovascular Disease of Zhejiang Province, Hangzhou, China
| |
Collapse
|
43
|
Ren K, Feng L, Sun S, Zhuang X. Plant Mitophagy in Comparison to Mammals: What Is Still Missing? Int J Mol Sci 2021; 22:1236. [PMID: 33513816 PMCID: PMC7865480 DOI: 10.3390/ijms22031236] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/13/2021] [Accepted: 01/20/2021] [Indexed: 12/21/2022] Open
Abstract
Mitochondrial homeostasis refers to the balance of mitochondrial number and quality in a cell. It is maintained by mitochondrial biogenesis, mitochondrial fusion/fission, and the clearance of unwanted/damaged mitochondria. Mitophagy represents a selective form of autophagy by sequestration of the potentially harmful mitochondrial materials into a double-membrane autophagosome, thus preventing the release of death inducers, which can trigger programmed cell death (PCD). Recent advances have also unveiled a close interconnection between mitophagy and mitochondrial dynamics, as well as PCD in both mammalian and plant cells. In this review, we will summarize and discuss recent findings on the interplay between mitophagy and mitochondrial dynamics, with a focus on the molecular evidence for mitophagy crosstalk with mitochondrial dynamics and PCD.
Collapse
Affiliation(s)
| | | | | | - Xiaohong Zhuang
- Centre for Cell and Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (K.R.); (L.F.); (S.S.)
| |
Collapse
|
44
|
Lee H, Kim YI, Nirmala FS, Jeong HY, Seo HD, Ha TY, Jung CH, Ahn J. Chrysanthemum zawadskil Herbich attenuates dexamethasone-induced muscle atrophy through the regulation of proteostasis and mitochondrial function. Biomed Pharmacother 2021; 136:111226. [PMID: 33485066 DOI: 10.1016/j.biopha.2021.111226] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 12/18/2022] Open
Abstract
Chrysanthemum zawadskii Herbich (CZH) is used in traditional medicine to treat inflammatory diseases and diabetes. However, the effects of CZH on muscle wasting remains to be studied. Here, we investigated the effect of CZH on dexamethasone (DEX), a synthetic glucocorticoid, induced muscle atrophy. To examine the effect of CZH on muscle atrophy, C2C12 myotubes were co-treated with DEX and CZH for 24 h. The treatment with CZH prevented DEX-induced myotube atrophy in a dose-dependent manner. CZH inhibited the DEX-induced decrease of the MHC isoforms and the upregulation of atrogin-1 and MuRF1 in C2C12 differentiated cells. C57BL/6 mice were supplemented with 0.1 % CZH for 8 weeks, with DEX-induced muscle atrophy stimulated in the last 3 weeks. In the mice, CZH supplementation effectively reversed DEX-induced skeletal muscle atrophy and increased the exercise capacity of the mice through the inhibition of glucocorticoid receptor translocation. Additionally, we observed that DEX-evoked impaired proteostasis was ameliorated via the Akt/mTOR pathway. CZH also prevented the DEX-induced decrease in the mitochondrial respiration. HPLC analysis demonstrated the highest concentration of acacetin-7-O-β-d-rutinoside (AR) among 4 compounds. Moreover, AR, a functional compound of CZH, prevented DEX-evoked muscle atrophy. Thus, we suggest that CZH could be a potential therapeutic candidate against muscle atrophy and AR is the main functional compound of CZH.
Collapse
Affiliation(s)
- Hyunjung Lee
- Research Group of Natural Material and Metabolism, Korea Food Research Institute, Wanju, South Korea
| | - Young In Kim
- Research Group of Natural Material and Metabolism, Korea Food Research Institute, Wanju, South Korea; Department of Food Science and Technology, Jeonbuk National University, Jeonju-si, South Korea
| | - Farida S Nirmala
- Research Group of Natural Material and Metabolism, Korea Food Research Institute, Wanju, South Korea; Department of Food Biotechnology, University of Science and Technology, Daejeon, South Korea
| | - Hang Yeon Jeong
- Research Group of Natural Material and Metabolism, Korea Food Research Institute, Wanju, South Korea
| | - Hyo-Deok Seo
- Research Group of Natural Material and Metabolism, Korea Food Research Institute, Wanju, South Korea
| | - Tae Youl Ha
- Research Group of Natural Material and Metabolism, Korea Food Research Institute, Wanju, South Korea; Department of Food Biotechnology, University of Science and Technology, Daejeon, South Korea
| | - Chang Hwa Jung
- Research Group of Natural Material and Metabolism, Korea Food Research Institute, Wanju, South Korea; Department of Food Biotechnology, University of Science and Technology, Daejeon, South Korea
| | - Jiyun Ahn
- Research Group of Natural Material and Metabolism, Korea Food Research Institute, Wanju, South Korea; Department of Food Biotechnology, University of Science and Technology, Daejeon, South Korea.
| |
Collapse
|
45
|
Tang J, Liu T, Wen X, Zhou Z, Yan J, Gao J, Zuo J. Estrogen-related receptors: novel potential regulators of osteoarthritis pathogenesis. Mol Med 2021; 27:5. [PMID: 33446092 PMCID: PMC7809777 DOI: 10.1186/s10020-021-00270-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/08/2021] [Indexed: 12/26/2022] Open
Abstract
Osteoarthritis (OA) is a chronic inflammatory disease that is associated with articular cartilage destruction, subchondral bone alterations, synovitis, and even joint deformity and the loss of joint function. Although current basic research on the pathogenesis of OA has made remarkable progress, our understanding of this disease still needs to be further improved. Recent studies have shown that the estrogen-related receptor (ERR) family members ERRα and ERRγ may play significant roles in the pathogenesis of OA. In this review, we refer to the latest research on ERRs and the pathogenesis of OA, elucidate the structure and physiopathological functions of the ERR orphan nuclear receptor family, and systematically examine the relationship between ERRs and OA at the molecular level. Moreover, we also discuss and predict the capacity of ERRs as potential targets in the clinical treatment of OA.
Collapse
Affiliation(s)
- Jinshuo Tang
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China
| | - Tong Liu
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China
| | - Xinggui Wen
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China
| | - Zhongsheng Zhou
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China
| | - Jingtong Yan
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China
| | - Jianpeng Gao
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China
| | - Jianlin Zuo
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China.
| |
Collapse
|
46
|
Zhou J, Wang Y, Wu D, Wang S, Chen Z, Xiang S, Chan FL. Orphan nuclear receptors as regulators of intratumoral androgen biosynthesis in castration-resistant prostate cancer. Oncogene 2021; 40:2625-2634. [PMID: 33750894 PMCID: PMC8049868 DOI: 10.1038/s41388-021-01737-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/18/2021] [Accepted: 02/24/2021] [Indexed: 01/31/2023]
Abstract
Castration-resistant prostate cancer (CRPC) almost invariably occurs after androgen-deprivation therapy (ADT) for the advanced metastatic disease. It is generally believed that among multiple mechanisms and signaling pathways, CRPC is significantly driven by the reactivation of androgen receptor (AR) signaling in ADT-treated patients with castrate levels of androgen, partially at least mediated by the androgen biosynthesis within the tumor, also known as intratumoral or intraprostatic androgen biosynthesis. Steroidogenic enzymes, such as CYP11A1, CYP17A1, HSD3B1, AKR1C3 and SRD5A, are essential to catalyze the conversion of the initial substrate cholesterol into potent androgens that confers the CRPC progression. Accumulating evidences indicate that many steroidogenic enzymes are upregulated in the progression setting; however, little is known about the dysregulation of these enzymes in CRPC. Orphan nuclear receptors (ONRs) are members of the nuclear receptor superfamily, of which endogenous physiological ligands are unknown and which are constitutively active independent of any physiological ligands. Studies have validated that besides AR, ONRs could be the potential therapeutic targets for prostate cancer, particularly the lethal CRPC progression. Early studies reveal that ONRs play crucial roles in the transcriptional regulation of steroidogenic enzyme genes. Notably, we and others show that three distinct ONRs, including liver receptor homolog-1 (LRH-1, NR5A2), steroidogenic factor 1 (SF-1, AD4BP, NR5A1) and estrogen-related receptor α (ERRα, NR3B1), can contribute to the CRPC progression by promotion of the intratumoral androgen synthesis via their direct transcriptional regulation on multiple steroidogenic enzymes. This review presents an overview of the current understanding on the intratumoral androgen biosynthesis in CRPC, with a special focus on the emerging roles of ONRs in this process.
Collapse
Affiliation(s)
- Jianfu Zhou
- grid.411866.c0000 0000 8848 7685Department of Urology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China ,grid.411866.c0000 0000 8848 7685The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China ,grid.10784.3a0000 0004 1937 0482School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yuliang Wang
- grid.10784.3a0000 0004 1937 0482School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Dinglan Wu
- grid.488521.2Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Shusheng Wang
- grid.411866.c0000 0000 8848 7685Department of Urology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhiqiang Chen
- grid.411866.c0000 0000 8848 7685Department of Urology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Songtao Xiang
- grid.411866.c0000 0000 8848 7685Department of Urology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Franky Leung Chan
- grid.10784.3a0000 0004 1937 0482School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
47
|
Huang X, Ruan G, Liu G, Gao Y, Sun P. Immunohistochemical Analysis of PGC-1α and ERRα Expression Reveals Their Clinical Significance in Human Ovarian Cancer. Onco Targets Ther 2020; 13:13055-13062. [PMID: 33376354 PMCID: PMC7764629 DOI: 10.2147/ott.s288332] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/03/2020] [Indexed: 12/18/2022] Open
Abstract
Purpose Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) and estrogen-related receptor alpha (ERRα) play a vital role in various human cancers. The purpose of this study was to investigate whether the PGC-1α/ERRα axis could serve as an effective prognostic marker in ovarian cancer (OC). Patients and Methods We investigated the expression of both PGC-1α and ERRα in 42 ovarian cancer and 31 noncancerous ovarian samples by immunohistochemistry (IHC). The relationship between the expression of PGC-1α and ERRα in OC and the clinical characteristics of patients was evaluated. In addition, data from the Human Protein Atlas (HPA) database were collected to validate the prognostic significance of PGC-1α and ERRα mRNA expression in OC. Results PGC-1α and ERRα showed notably higher expression in OC tissues than in noncancerous tissues (P=0.0059, P=0.002). Moreover, in patients with OC, high ERRα and PGC-1α/ERRα expression significantly correlated with tumor differentiation (P=0.027; P=0.04), lymph node status (P=0.023; P=0.021), CA125 (P=0.036; P=0.021), and HE4 (P=0.021; P=0.05), while high PGC-1α expression was only significantly associated with tumor differentiation (P=0.029). The combined analysis of high PGC-1α and ERRα expression revealed a tendency towards poor cancer-specific survival (P=0.1276). Conclusion PGC-1α and ERRα are overexpressed in OC and might be significant prognostic factors for this cancer.
Collapse
Affiliation(s)
- Xiqi Huang
- Laboratory of Gynecologic Oncology, Fujian Provincial Maternity and Children's Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Guanyu Ruan
- Laboratory of Gynecologic Oncology, Fujian Provincial Maternity and Children's Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China.,Key Laboratory of Women and Children's Critical Diseases Research, Fujian Provincial Maternity and Children's Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Guifen Liu
- Laboratory of Gynecologic Oncology, Fujian Provincial Maternity and Children's Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Yuqin Gao
- Laboratory of Gynecologic Oncology, Fujian Provincial Maternity and Children's Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Pengming Sun
- Laboratory of Gynecologic Oncology, Fujian Provincial Maternity and Children's Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China.,Key Laboratory of Women and Children's Critical Diseases Research, Fujian Provincial Maternity and Children's Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| |
Collapse
|
48
|
De Vitto H, Ryu J, Calderon-Aparicio A, Monts J, Dey R, Chakraborty A, Lee MH, Bode AM, Dong Z. Estrogen-related receptor alpha directly binds to p53 and cooperatively controls colon cancer growth through the regulation of mitochondrial biogenesis and function. Cancer Metab 2020; 8:28. [PMID: 33303020 PMCID: PMC7731476 DOI: 10.1186/s40170-020-00234-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 11/30/2020] [Indexed: 03/14/2023] Open
Abstract
BACKGROUND Of the genes that control mitochondrial biogenesis and function, ERRα emerges as a druggable metabolic target to be exploited for cancer therapy. Of the genes mutated in cancer, TP53 remains the most elusive to target. A clear understanding of how mitochondrial druggable targets can be accessed to exploit the underlying mechanism(s) explaining how p53-deficient tumors promote cell survival remains elusive. METHODS We performed protein-protein interaction studies to demonstrate that ERRα binds to p53. Moreover, we used gene silencing and pharmacological approaches in tandem with quantitative proteomics analysis by SWATH-MS to investigate the role of the ERRα/p53 complex in mitochondrial biogenesis and function in colon cancer. Finally, we designed in vitro and in vivo studies to investigate the possibility of targeting colon cancers that exhibit defects in p53. RESULTS Here, we are the first to identify a direct protein-protein interaction between the ligand-binding domain (LBD) of ERRα and the C-terminal domain (CTD) of p53. ERRα binds to p53 regardless of p53 mutational status. Furthermore, we show that the ERRα and p53 complex cooperatively control mitochondrial biogenesis and function. Targeting ERRα creates mitochondrial metabolic stresses, such as production of reactive oxygen species (ROS) and mitochondrial membrane permeabilization (MMP), leading to a greater cytotoxic effect that is dependent on the presence of p53. Pharmacological inhibition of ERRα impairs the growth of p53-deficient cells and of p53 mutant patient-derived colon xenografts (PDX). CONCLUSIONS Therefore, our data suggest that by using the status of the p53 protein as a selection criterion, the ERRα/p53 transcriptional axis can be exploited as a metabolic vulnerability.
Collapse
Affiliation(s)
- Humberto De Vitto
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, 55912, USA
| | - Joohyun Ryu
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, 55912, USA
| | - Ali Calderon-Aparicio
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, 55912, USA
| | - Josh Monts
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, 55912, USA
| | - Raja Dey
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, 55912, USA
| | - Abhijit Chakraborty
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, 55912, USA
| | - Mee-Hyun Lee
- Department of Pathophysiology, Zhengzhou University School of Medicine, 40 North Road, 27 District University, Zhengzhou, 450052, China
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, 55912, USA.
| | - Zigang Dong
- Department of Pathophysiology, Zhengzhou University School of Medicine, 40 North Road, 27 District University, Zhengzhou, 450052, China.
| |
Collapse
|
49
|
Liang Y, Nandakumar KS, Cheng K. Design and pharmaceutical applications of proteolysis-targeting chimeric molecules. Biochem Pharmacol 2020; 182:114211. [DOI: 10.1016/j.bcp.2020.114211] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 12/14/2022]
|
50
|
Huang W, Wu K, Wu R, Chen Z, Zhai W, Zheng J. Bioinformatic gene analysis for possible biomarkers and therapeutic targets of hypertension-related renal cell carcinoma. Transl Androl Urol 2020; 9:2675-2687. [PMID: 33457239 PMCID: PMC7807377 DOI: 10.21037/tau-20-817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Renal cell carcinoma (RCC) is one of the most prevalent malignant tumors of the urinary system. Hypertension can cause hypertensive nephropathy (HN). Meanwhile, Hypertension is considered to be related to kidney cancer. We analyzed co-expressed genes to find out the relationship between hypertension and RCC and show possible biomarkers and novel therapeutic targets of hypertension-related RCC. METHODS We identified the differentially expressed genes (DEGs) of HN and RCC through analyzing Gene Expression Omnibus (GEO) datasets GSE99339, GSE99325, GSE53757 and GSE15641 by means of bioinformatics analysis, respectively. Then we evaluated these genes with protein-protein interaction (PPI) networks, Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and CTD database. Subsequently, we verified co-expressed DEGs with Gene Expression Profiling Interactive Analysis (GEPIA) database. Finally, corresponding predicted miRNAs of co-expressed DEGs were identified and verified via mirDIP database and Starbase, respectively. RESULTS We identified 9 co-expressed DEGs, including BCAT1, CORO1A, CRIP1, ESRRG, FN1, LYZ, PYCARD, SAP30, and PTRF. CRIP1 and ESRRG and their corresponding predicted miRNAs, especially hsa-miR-221-5p, hsa-miR-205-5p, hsa-miR-152-3p and hsa-miR-137 may be notably related to hypertension-related RCC. CONCLUSIONS CRIP1 and ESRRG genes have great potential to become novel biomarkers and therapeutic targets concerning hypertension-related RCC.
Collapse
Affiliation(s)
- Wenjie Huang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ke Wu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruoyu Wu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiguo Chen
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Zhai
- Department of Urology, Renji Hospital, School of Medicine in Shanghai Jiao Tong University, Shanghai, China
| | - Junhua Zheng
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|