1
|
Hidalgo-Sánchez M, Sánchez-Guardado L, Rodríguez-León J, Francisco-Morcillo J. The role of FGF15/FGF19 in the development of the central nervous system, eyes and inner ears in vertebrates. Tissue Cell 2024; 91:102619. [PMID: 39579736 DOI: 10.1016/j.tice.2024.102619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/25/2024]
Abstract
Fibroblast growth factor 19 (FGF19), and its rodent ortholog FGF15, is a member of a FGF subfamily directly involved in metabolism, acting in an endocrine way. During embryonic development, FGF15/FGF19 also functions as a paracrine or autocrine factor, regulating key events in a large number of organs. In this sense, the Fgf15/Fgf19 genes control the correct development of the brain, eye, inner ear, heart, pharyngeal pouches, tail bud and limbs, among other organs, as well as muscle growth in adulthood. These growth factors show relevant differences according to molecular structures, signalling pathway and function. Moreover, their expression patterns are highly dynamic at different stages of development, in particular in the central nervous system. The difficulty in understanding the action of these genes increases when comparing their expression patterns and regulatory mechanisms between different groups of vertebrates. The present review will address the expression patterns and functions of the Fgf15/Fgf19 genes at different stages of vertebrate embryonic development, with special attention to the regulation of the early specification, cell differentiation, and morphogenesis of the central nervous system and some sensory organs such as eye and inner ear. The most relevant anatomical aspects related to the structures analysed have also been considered in detail to provide an understandable context for the molecular and cellular studies shown.
Collapse
Affiliation(s)
- Matías Hidalgo-Sánchez
- Área de Biología Celular, Facultad de Ciencias, Universidad de Extremadura, Avda. de Elvas s/n, Badajoz 06071, Spain.
| | - Luis Sánchez-Guardado
- Área de Biología Celular, Facultad de Ciencias, Universidad de Extremadura, Avda. de Elvas s/n, Badajoz 06071, Spain
| | - Joaquín Rodríguez-León
- Área de Anatomía Humana, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, Avda. de Elvas s/n, Badajoz 06071, Spain
| | - Javier Francisco-Morcillo
- Área de Biología Celular, Facultad de Ciencias, Universidad de Extremadura, Avda. de Elvas s/n, Badajoz 06071, Spain
| |
Collapse
|
2
|
Ueda Y, Nakamura T, Nie J, Solivais AJ, Hoffman JR, Daye BJ, Hashino E. Defining developmental trajectories of prosensory cells in human inner ear organoids at single-cell resolution. Development 2023; 150:dev201071. [PMID: 37381908 PMCID: PMC10323240 DOI: 10.1242/dev.201071] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 05/24/2023] [Indexed: 06/29/2023]
Abstract
The inner ear sensory epithelia contain mechanosensitive hair cells and supporting cells. Both cell types arise from SOX2-expressing prosensory cells, but the mechanisms underlying the diversification of these cell lineages remain unclear. To determine the transcriptional trajectory of prosensory cells, we established a SOX2-2A-ntdTomato human embryonic stem cell line using CRISPR/Cas9, and performed single-cell RNA-sequencing analyses with SOX2-positive cells isolated from inner ear organoids at various time points between differentiation days 20 and 60. Our pseudotime analysis suggests that vestibular type II hair cells arise primarily from supporting cells, rather than bi-fated prosensory cells in organoids. Moreover, ion channel- and ion-transporter-related gene sets were enriched in supporting cells versus prosensory cells, whereas Wnt signaling-related gene sets were enriched in hair cells versus supporting cells. These findings provide valuable insights into how prosensory cells give rise to hair cells and supporting cells during human inner ear development, and may provide a clue to promote hair cell regeneration from resident supporting cells in individuals with hearing loss or balance disorders.
Collapse
Affiliation(s)
- Yoshitomo Ueda
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Takashi Nakamura
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Jing Nie
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Alexander J. Solivais
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - John R. Hoffman
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Becca J. Daye
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Eri Hashino
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
3
|
Origin of Neuroblasts in the Avian Otic Placode and Their Distributions in the Acoustic and Vestibular Ganglia. BIOLOGY 2023; 12:biology12030453. [PMID: 36979145 PMCID: PMC10045822 DOI: 10.3390/biology12030453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
The inner ear is a complex three-dimensional sensorial structure with auditory and vestibular functions. This intricate sensory organ originates from the otic placode, which generates the sensory elements of the membranous labyrinth, as well as all the ganglionic neuronal precursors. How auditory and vestibular neurons establish their fate identities remains to be determined. Their topological origin in the incipient otic placode could provide positional information before they migrate, to later segregate in specific portions of the acoustic and vestibular ganglia. To address this question, transplants of small portions of the avian otic placode were performed according to our previous fate map study, using the quail/chick chimeric graft model. All grafts taking small areas of the neurogenic placodal domain contributed neuroblasts to both acoustic and vestibular ganglia. A differential distribution of otic neurons in the anterior and posterior lobes of the vestibular ganglion, as well as in the proximal, intermediate, and distal portions of the acoustic ganglion, was found. Our results clearly show that, in birds, there does not seem to be a strict segregation of acoustic and vestibular neurons in the incipient otic placode.
Collapse
|
4
|
Stepwise fate conversion of supporting cells to sensory hair cells in the chick auditory epithelium. iScience 2023; 26:106046. [PMID: 36818302 PMCID: PMC9932131 DOI: 10.1016/j.isci.2023.106046] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/17/2022] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
In contrast to mammals, the avian cochlea, specifically the basilar papilla, can regenerate sensory hair cells, which involves fate conversion of supporting cells to hair cells. To determine the mechanisms for converting supporting cells to hair cells, we used single-cell RNA sequencing during hair cell regeneration in explant cultures of chick basilar papillae. We identified dynamic changes in the gene expression of supporting cells, and the pseudotime trajectory analysis demonstrated the stepwise fate conversion from supporting cells to hair cells. Initially, supporting cell identity was erased and transition to the precursor state occurred. A subsequent gain in hair cell identity progressed together with downregulation of precursor-state genes. Transforming growth factor β receptor 1-mediated signaling was involved in induction of the initial step, and its inhibition resulted in suppression of hair cell regeneration. Our data provide new insights for understanding fate conversion from supporting cells to hair cells in avian basilar papillae.
Collapse
|
5
|
Qi J, Ma L, Guo W. Recent advances in the regulation mechanism of SOX10. J Otol 2022; 17:247-252. [PMID: 36249926 PMCID: PMC9547104 DOI: 10.1016/j.joto.2022.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/29/2022] Open
Abstract
Neural crest (NC) is the primitive neural structure in embryonic stage, which develops from ectodermal neural plate cells and epithelial cells. When the neural fold forms into neural tube, neural crest also forms a cord like structure above the neural tube and below the ectoderm. Neural crest cells (NCC) have strong migration and proliferation abilities. A number of tissue cells differentiate from neural crest cells, such as melanocytes, central and peripheral neurons, glial cells, craniofacial cells, osteoblasts, chondrocytes and smooth muscle cells. The migration and differentiation of neural crest cells are regulated by a gene network where a variety of genes, transcriptional factors, signal pathways and growth factors are involved.
Collapse
Affiliation(s)
- Jingcui Qi
- Department of Otorhinolaryngology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Long Ma
- PLA Rocket Force Characteristic Medical Center Department of Stomatology, China
| | - Weiwei Guo
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- Key Lab of Hearing Science, Ministry of Education, China
- Beijing Key Lab of Hearing Impairment for Prevention and Treatment, Beijing, China
- Corresponding author. College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
6
|
Riley BB. Comparative assessment of Fgf's diverse roles in inner ear development: A zebrafish perspective. Dev Dyn 2021; 250:1524-1551. [PMID: 33830554 DOI: 10.1002/dvdy.343] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 01/21/2023] Open
Abstract
Progress in understanding mechanisms of inner ear development has been remarkably rapid in recent years. The research community has benefited from the availability of several diverse model organisms, including zebrafish, chick, and mouse. The complexity of the inner ear has proven to be a challenge, and the complexity of the mammalian cochlea in particular has been the subject of intense scrutiny. Zebrafish lack a cochlea and exhibit a number of other differences from amniote species, hence they are sometimes seen as less relevant for inner ear studies. However, accumulating evidence shows that underlying cellular and molecular mechanisms are often highly conserved. As a case in point, consideration of the diverse functions of Fgf and its downstream effectors reveals many similarities between vertebrate species, allowing meaningful comparisons the can benefit the entire research community. In this review, I will discuss mechanisms by which Fgf controls key events in early otic development in zebrafish and provide direct comparisons with chick and mouse.
Collapse
Affiliation(s)
- Bruce B Riley
- Biology Department, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
7
|
Magariños M, Barajas-Azpeleta R, Varela-Nieto I, R Aburto M. Otic Neurogenesis Is Regulated by TGFβ in a Senescence-Independent Manner. Front Cell Neurosci 2020; 14:217. [PMID: 32973450 PMCID: PMC7461926 DOI: 10.3389/fncel.2020.00217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/18/2020] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence has classically been associated with aging. Intriguingly, recent studies have also unraveled key roles for senescence in embryonic development, regeneration, and reprogramming. Developmental senescence has been reported during embryonic development in different organisms and structures, such as the endolymphatic duct during inner ear development of mammals and birds. However, there is no study addressing the possible role of senescence on otic neurogenesis. TGFβ/SMAD is the best-known pathway linked to the induction of developmentally programmed cell senescence. Here, we studied if TGFβ2 induces cellular senescence during acoustic-vestibular-ganglion (AVG) formation. Using organotypic cultures of AVG, and characterizing different stages of otic neurogenesis in the presence of TGFβ2 and a selective TGF-β receptor type-I inhibitor, we show that TGFβ2 exerts a powerful action in inner ear neurogenesis but, contrary to what we recently observed during endolymphatic duct development, these actions are independent of cellular senescence. We show that TGFβ2 reduces proliferation, and induces differentiation and neuritogenesis of neuroblasts, without altering cell death. Our studies highlight the roles of TGFβ2 and cellular senescence in the precise regulation of cell fate within the developing inner ear and its different cell types, being their mechanisms of action highly cell-type dependent.
Collapse
Affiliation(s)
- Marta Magariños
- Institute for Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain.,Centre for Biomedical Network Research (CIBER) on Rare Diseases (CIBERER), Institute of Health Carlos III, Madrid, Spain.,Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
| | - Raquel Barajas-Azpeleta
- Institute for Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain.,Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
| | - Isabel Varela-Nieto
- Institute for Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain.,Centre for Biomedical Network Research (CIBER) on Rare Diseases (CIBERER), Institute of Health Carlos III, Madrid, Spain.,Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Maria R Aburto
- Institute for Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
8
|
Cardeña-Núñez S, Sánchez-Guardado LÓ, Hidalgo-Sánchez M. Cyp1B1 expression patterns in the developing chick inner ear. Dev Dyn 2019; 249:410-424. [PMID: 31400045 DOI: 10.1002/dvdy.99] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/26/2019] [Accepted: 07/26/2019] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Retinoic acid (RA) plays an important role in organogenesis as a paracrine signal through transcriptional regulation of an increasing number of known downstream target genes, regulating cell proliferation, and differentiation. During the development of the inner ear, RA directly governs the morphogenesis and specification processes mainly by means of RA-synthesizing retinaldehyde dehydrogenase (RALDH) enzymes. Interestingly, CYP1B1, a cytochrome P450 enzyme, is able to mediate the oxidative metabolisms also leading to RA generation, its expression patterns being associated with many known sites of RA activity. RESULTS This study describes for the first time the presence of CYP1B1 in the developing chick inner ear as a RALDH-independent RA-signaling mechanism. In our in situ hybridization analysis, Cyp1B1 expression was first observed in a domain located in the ventromedial wall of the otic anlagen, being included within the rostralmost aspect of an Fgf10-positive pan-sensory domain. As development proceeds, all identified Fgf10-positive areas were Cyp1B1 stained, with all sensory patches being Cyp1B1 positive at stage HH34, except the macula neglecta. CONCLUSIONS Cyp1B1 expression suggested a possible contribution of CYP1B1 action in the specification of the lateral-to-medial and dorsal-to-ventral axes of the developing chick inner ear.
Collapse
Affiliation(s)
- Sheila Cardeña-Núñez
- Department of Cell Biology, School of Science, University of Extremadura, Badajoz, Spain
| | - Luis Ó Sánchez-Guardado
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California
| | - Matías Hidalgo-Sánchez
- Department of Cell Biology, School of Science, University of Extremadura, Badajoz, Spain
| |
Collapse
|
9
|
Scott MK, Yue J, Biesemeier DJ, Lee JW, Fekete DM. Expression of class III Semaphorins and their receptors in the developing chicken (Gallus gallus) inner ear. J Comp Neurol 2019; 527:1196-1209. [PMID: 30520042 PMCID: PMC6401314 DOI: 10.1002/cne.24595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/15/2018] [Accepted: 11/23/2018] [Indexed: 12/22/2022]
Abstract
Class III Semaphorin (Sema) secreted ligands are known to repel neurites expressing Neuropilin (Nrp) and/or Plexin (Plxn) receptors. There is, however, a growing body of literature supporting that Sema signaling also has alternative roles in development such as synaptogenesis, boundary formation, and vasculogenesis. To evaluate these options during inner ear development, we used in situ hybridization or immunohistochemistry to map the expression of Sema3D, Sema3F, Nrp1, Nrp2, and PlxnA1 in the chicken (Gallus gallus) inner ear from embryonic day (E)5-E10. The resulting expression patterns in either the otic epithelium or its surrounding mesenchyme suggest that Sema signaling could be involved in each of the varied functions reported for other tissues. Sema3D expression flanking the sensory tissue in vestibular organs suggests that it may repel Nrp2- and PlxnA1-expressing neurites of the vestibular ganglion away from nonsensory epithelia, thus channeling them into the sensory domains at E5-E8. Expression of Sema signaling genes in the sensory hair cells of both the auditory and vestibular organs on E8-E10 may implicate Sema signaling in synaptogenesis. In the nonsensory regions of the cochlea, Sema3D in the future tegmentum vasculosum opposes Nrp1 and PlxnA1 in the future cuboidal cells; the abutment of ligand and receptors in adjacent domains may enforce or maintain the boundary between them. In the mesenchyme, Nrp1 colocalized with capillary-rich tissue. Sema3D immediately flanks this Nrp1-expressing tissue, suggesting a role in endothelial cell migration towards the inner ear. In summary, Sema signaling may play multiple roles in the developing inner ear.
Collapse
Affiliation(s)
- M. Katie Scott
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana 47907
| | - Jia Yue
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| | | | - Joo Won Lee
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| | - Donna M. Fekete
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana 47907
- Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
10
|
Mann ZF, Gálvez H, Pedreno D, Chen Z, Chrysostomou E, Żak M, Kang M, Canden E, Daudet N. Shaping of inner ear sensory organs through antagonistic interactions between Notch signalling and Lmx1a. eLife 2017; 6:e33323. [PMID: 29199954 PMCID: PMC5724992 DOI: 10.7554/elife.33323] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 12/02/2017] [Indexed: 12/19/2022] Open
Abstract
The mechanisms of formation of the distinct sensory organs of the inner ear and the non-sensory domains that separate them are still unclear. Here, we show that several sensory patches arise by progressive segregation from a common prosensory domain in the embryonic chicken and mouse otocyst. This process is regulated by mutually antagonistic signals: Notch signalling and Lmx1a. Notch-mediated lateral induction promotes prosensory fate. Some of the early Notch-active cells, however, are normally diverted from this fate and increasing lateral induction produces misshapen or fused sensory organs in the chick. Conversely Lmx1a (or cLmx1b in the chick) allows sensory organ segregation by antagonizing lateral induction and promoting commitment to the non-sensory fate. Our findings highlight the dynamic nature of sensory patch formation and the labile character of the sensory-competent progenitors, which could have facilitated the emergence of new inner ear organs and their functional diversification in the course of evolution.
Collapse
Affiliation(s)
- Zoe F Mann
- The Ear InstituteUniversity College LondonLondonUnited Kingdom
| | - Héctor Gálvez
- The Ear InstituteUniversity College LondonLondonUnited Kingdom
| | - David Pedreno
- The Ear InstituteUniversity College LondonLondonUnited Kingdom
| | - Ziqi Chen
- The Ear InstituteUniversity College LondonLondonUnited Kingdom
| | | | - Magdalena Żak
- The Ear InstituteUniversity College LondonLondonUnited Kingdom
| | - Miso Kang
- The Ear InstituteUniversity College LondonLondonUnited Kingdom
| | | | - Nicolas Daudet
- The Ear InstituteUniversity College LondonLondonUnited Kingdom
| |
Collapse
|
11
|
Ray P, Hughes AJ, Sharif M, Chapman SC. Lectins selectively label cartilage condensations and the otic neuroepithelium within the embryonic chicken head. J Anat 2016; 230:424-434. [PMID: 27861854 DOI: 10.1111/joa.12565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2016] [Indexed: 12/27/2022] Open
Abstract
Cartilage morphogenesis during endochondral ossification follows a progression of conserved developmental events. Cells are specified towards a prechondrogenic fate and subsequently undergo condensation followed by overt differentiation. Currently available molecular markers of prechondrogenic and condensing mesenchyme rely on common regulators of the chondrogenic program that are not specific to the tissue type or location. Therefore tissue-specific condensations cannot be distinguished based on known molecular markers. Here, using the chick embryo model, we utilized lectin labeling on serial sections, demonstrating that differential labeling by peanut agglutinin (PNA) and Sambucus nigra agglutinin (SNA) successfully separates adjacently located condensations in the proximal second pharyngeal arch. PNA selectively labels chick middle ear columella and basal plate condensation, whereas SNA specifically marks extracolumella and the ventro-lateral part of the otic capsule. We further extended our study to examine lectin-binding properties of the different parts of the inner ear epithelium, neural tube and notochord. Our results show that SNA labels the auditory and vestibular hair cells of the inner ear, whereas PNA specifically recognizes the statoacoustic ganglion. PNA is also highly specific for the floor plate of the neural tube. Additionally, wheat germ agglutinin (WGA) labels the basement membrane of the notochord and is a marker of the apical-basal polarity of the cochlear duct. Overall, this study indicates that selective lectin labeling is a promising approach to differentiate between contiguously located mesenchymal condensations and subregions of epithelia globally during development.
Collapse
Affiliation(s)
- Poulomi Ray
- Biological Sciences, Clemson University, Clemson, SC, USA
| | - Ami J Hughes
- Biological Sciences, Clemson University, Clemson, SC, USA
| | - Misha Sharif
- Biological Sciences, Clemson University, Clemson, SC, USA
| | | |
Collapse
|
12
|
Cardeña-Núñez S, Sánchez-Guardado LÓ, Corral-San-Miguel R, Rodríguez-Gallardo L, Marín F, Puelles L, Aroca P, Hidalgo-Sánchez M. Expression patterns of Irx genes in the developing chick inner ear. Brain Struct Funct 2016; 222:2071-2092. [PMID: 27783221 DOI: 10.1007/s00429-016-1326-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 10/14/2016] [Indexed: 10/20/2022]
Abstract
The vertebrate inner ear is a complex three-dimensional sensorial structure with auditory and vestibular functions. The molecular patterning of the developing otic epithelium creates various positional identities, consequently leading to the stereotyped specification of each neurosensory and non-sensory element of the membranous labyrinth. The Iroquois (Iro/Irx) genes, clustered in two groups (A: Irx1, Irx2, and Irx4; and B: Irx3, Irx5, and Irx6), encode for transcriptional factors involved directly in numerous patterning processes of embryonic tissues in many phyla. This work presents a detailed study of the expression patterns of these six Irx genes during chick inner ear development, paying particular attention to the axial specification of the otic anlagen. The Irx genes seem to play different roles at different embryonic periods. At the otic vesicle stage (HH18), all the genes of each cluster are expressed identically. Both clusters A and B seem involved in the specification of the lateral and posterior portions of the otic anlagen. Cluster B seems to regulate a larger area than cluster A, including the presumptive territory of the endolymphatic apparatus. Both clusters seem also to be involved in neurogenic events. At stages HH24/25-HH27, combinations of IrxA and IrxB genes participate in the specification of most sensory patches and some non-sensory components of the otic epithelium. At stage HH34, the six Irx genes show divergent patterns of expression, leading to the final specification of the membranous labyrinth, as well as to cell differentiation.
Collapse
Affiliation(s)
- Sheila Cardeña-Núñez
- Department of Cell Biology, School of Science, University of Extremadura, Avda de Elvas s/n, E06071, Badajoz, Spain
| | - Luis Óscar Sánchez-Guardado
- Department of Cell Biology, School of Science, University of Extremadura, Avda de Elvas s/n, E06071, Badajoz, Spain
| | - Rubén Corral-San-Miguel
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia and Instituto Murciano de Investigación Biosanitaria-Virgen de La Arrixaca (IMIB-Arrixaca), E30100, Murcia, Spain
| | - Lucía Rodríguez-Gallardo
- Department of Cell Biology, School of Science, University of Extremadura, Avda de Elvas s/n, E06071, Badajoz, Spain
| | - Faustino Marín
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia and Instituto Murciano de Investigación Biosanitaria-Virgen de La Arrixaca (IMIB-Arrixaca), E30100, Murcia, Spain
| | - Luis Puelles
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia and Instituto Murciano de Investigación Biosanitaria-Virgen de La Arrixaca (IMIB-Arrixaca), E30100, Murcia, Spain
| | - Pilar Aroca
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia and Instituto Murciano de Investigación Biosanitaria-Virgen de La Arrixaca (IMIB-Arrixaca), E30100, Murcia, Spain
| | - Matías Hidalgo-Sánchez
- Department of Cell Biology, School of Science, University of Extremadura, Avda de Elvas s/n, E06071, Badajoz, Spain.
| |
Collapse
|
13
|
Olaya-Sánchez D, Sánchez-Guardado LÓ, Ohta S, Chapman SC, Schoenwolf GC, Puelles L, Hidalgo-Sánchez M. Fgf3 and Fgf16 expression patterns define spatial and temporal domains in the developing chick inner ear. Brain Struct Funct 2016; 222:131-149. [PMID: 26995070 DOI: 10.1007/s00429-016-1205-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 02/19/2016] [Indexed: 11/26/2022]
Abstract
The inner ear is a morphologically complex sensory structure with auditory and vestibular functions. The developing otic epithelium gives rise to neurosensory and non-sensory elements of the adult membranous labyrinth. Extrinsic and intrinsic signals manage the patterning and cell specification of the developing otic epithelium by establishing lineage-restricted compartments defined in turn by differential expression of regulatory genes. FGF3 and FGF16 are excellent candidates to govern these developmental events. Using the chick inner ear, we show that Fgf3 expression is present in the borders of all developing cristae. Strong Fgf16 expression was detected in a portion of the developing vertical and horizontal pouches, whereas the cristae show weaker or undetected Fgf16 expression at different developmental stages. Concerning the rest of the vestibular sensory elements, both the utricular and saccular maculae were Fgf3 positive. Interestingly, strong Fgf16 expression delimited these Fgf16-negative sensory patches. The Fgf3-negative macula neglecta and the Fgf3-positive macula lagena were included within weakly Fgf16-expressing areas. Therefore, different FGF-mediated mechanisms might regulate the specification of the anterior (utricular and saccular) and posterior (neglecta and lagena) maculae. In the developing cochlear duct, dynamic Fgf3 and Fgf16 expression suggests their cooperation in the early specification and later cell differentiation in the hearing system. The requirement of Fgf3 and Fgf16 genes in endolymphatic apparatus development and neurogenesis are discussed. Based on these observations, FGF3 and FGF16 seem to be key signaling pathways that control the inner ear plan by defining epithelial identities within the developing otic epithelium.
Collapse
Affiliation(s)
- Daniel Olaya-Sánchez
- Department of Cell Biology, School of Science, University of Extremadura, Avda. de Elvas s/n, 06071, Badajoz, Spain
| | - Luis Óscar Sánchez-Guardado
- Department of Cell Biology, School of Science, University of Extremadura, Avda. de Elvas s/n, 06071, Badajoz, Spain
| | - Sho Ohta
- Department of Neurobiology and Anatomy, University of Utah, 2R066 School of Medicine, 30 N. 1900 E., Salt Lake City, UT, 84132-3401, USA
| | - Susan C Chapman
- Department of Biological Sciences, Clemson University, 340 Long Hall, Clemson, SC, 29634, USA
| | - Gary C Schoenwolf
- Department of Neurobiology and Anatomy, University of Utah, 2R066 School of Medicine, 30 N. 1900 E., Salt Lake City, UT, 84132-3401, USA
| | - Luis Puelles
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, 30100, Murcia, Spain
| | - Matías Hidalgo-Sánchez
- Department of Cell Biology, School of Science, University of Extremadura, Avda. de Elvas s/n, 06071, Badajoz, Spain.
| |
Collapse
|
14
|
Ronaghi M, Nasr M, Ealy M, Durruthy-Durruthy R, Waldhaus J, Diaz GH, Joubert LM, Oshima K, Heller S. Inner ear hair cell-like cells from human embryonic stem cells. Stem Cells Dev 2014; 23:1275-84. [PMID: 24512547 DOI: 10.1089/scd.2014.0033] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In mammals, the permanence of many forms of hearing loss is the result of the inner ear's inability to replace lost sensory hair cells. Here, we apply a differentiation strategy to guide human embryonic stem cells (hESCs) into cells of the otic lineage using chemically defined attached-substrate conditions. The generation of human otic progenitor cells was dependent on fibroblast growth factor (FGF) signaling, and protracted culture led to the upregulation of markers indicative of differentiated inner ear sensory epithelia. Using a transgenic ESC reporter line based on a murine Atoh1 enhancer, we show that differentiated hair cell-like cells express multiple hair cell markers simultaneously. Hair cell-like cells displayed protrusions reminiscent of stereociliary bundles, but failed to fully mature into cells with typical hair cell cytoarchitecture. We conclude that optimized defined conditions can be used in vitro to attain otic progenitor specification and sensory cell differentiation.
Collapse
Affiliation(s)
- Mohammad Ronaghi
- 1 Department of Otolaryngology-Head & Neck Surgery, Stanford University School of Medicine , Stanford, California
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Sánchez-Guardado LÓ, Puelles L, Hidalgo-Sánchez M. Fgf10 expression patterns in the developing chick inner ear. J Comp Neurol 2013; 521:1136-64. [PMID: 22987750 DOI: 10.1002/cne.23224] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 06/22/2012] [Accepted: 09/05/2012] [Indexed: 12/21/2022]
Abstract
The inner ear is a complex three-dimensional sensorial structure with auditory and vestibular functions. It originates from the otic placode, which invaginates, forming the otic vesicle; the latter gives rise to neurosensory and nonsensory elements of the adult membranous labyrinth. A hypothesis based on descriptive and experimental evidence suggests that the acquisition of discrete sensory patches during evolution of this primordium may be related to subdivision of an early pansensory domain. In order to gain insight into this developmental mechanism, we carried out a detailed analysis of the spatial and temporal expression pattern of the gene Fgf10, by comparing different markers of otic patterning and hair cell differentiation. Fgf10 expression labels a sensory-competent domain included in a Serrate-positive territory from which most of the sensory epithelia arise. Our data show that Fgf10 transcripts are present initially in a narrow ventromedial band of the rudimentary otocyst, extending between its rostral and caudal poles. During development, this Fgf10-expressing area splits repetitively into several separate subareas, creating six of the eight sensory organs present in birds. Only the lateral crista and the macula neglecta were initially Fgf10 negative, although they activated Fgf10 expression after their specification as sensory elements. These results allowed us to determine a timetable of sensory specification in the developing chick inner ear. The comparison of the expression pattern of Fgf10 with those of other markers of sensory differentiation contributes to our understanding of the mechanism by which vertebrate inner ear prosensory domains have arisen during evolution.
Collapse
|
16
|
Fantetti KN, Fekete DM. Members of the BMP, Shh, and FGF morphogen families promote chicken statoacoustic ganglion neurite outgrowth and neuron survival in vitro. Dev Neurobiol 2012; 72:1213-28. [PMID: 22006861 DOI: 10.1002/dneu.20988] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 06/07/2011] [Accepted: 06/08/2011] [Indexed: 01/20/2023]
Abstract
Mechanosensory hair cells of the chicken inner ear are innervated by the peripheral processes of statoacoustic ganglion (SAG) neurons. Members of several morphogen families are expressed within and surrounding the chick inner ear during stages of SAG axon outgrowth and pathfinding. On the basis of their localized expression patterns, we hypothesized that bone morphogenetic proteins (BMPs), fibroblast growth factors (FGFs), and sonic hedgehog (Shh) may function as guidance cues for growing axons and/or may function as trophic factors once axons have reached their targets. To test this hypothesis, three-dimensional collagen cultures were used to grow Embryonic Day 4 (E4) chick SAG explants for 24 h in the presence of purified proteins or beads soaked in proteins. The density of neurite outgrowth was quantified to determine effects on neurite outgrowth. Explants displayed enhanced neurite outgrowth when cultured in the presence of purified BMP4, BMP7, a low concentration of Shh, FGF8, FGF10, or FGF19. In contrast, SAG neurons appeared unresponsive to FGF2. Collagen gel cultures were labeled with terminal dUTP nick-end labeling and immunostained with anti-phosphohistone H3 to determine effects on neuron survival and proliferation, respectively. Treatments that increased neurite outgrowth also yielded significantly fewer apoptotic cells, with no effect on cell proliferation. When presented as focal sources, BMP4, Shh, and FGFs -8, -10, and -19 promoted asymmetric outgrowth from the ganglion in the direction of the beads. BMP7-soaked beads did not induce this response. These results suggest that a subset of morphogens enhance both survival and axon outgrowth of otic neurons.
Collapse
Affiliation(s)
- Kristen N Fantetti
- Department of Biological Sciences and Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907-1392, USA
| | | |
Collapse
|
17
|
Jacques BE, Dabdoub A, Kelley MW. Fgf signaling regulates development and transdifferentiation of hair cells and supporting cells in the basilar papilla. Hear Res 2012; 289:27-39. [PMID: 22575790 DOI: 10.1016/j.heares.2012.04.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 04/24/2012] [Accepted: 04/24/2012] [Indexed: 11/17/2022]
Abstract
The avian basilar papilla (BP) is a likely homolog of the auditory sensory epithelium of the mammalian cochlea, the organ of Corti. During mammalian development Fibroblast growth factor receptor-3 (Fgfr3) is known to regulate the differentiation of auditory mechanosensory hair cells (HCs) and supporting cells (SCs), both of which are required for sound detection. Fgfr3 is expressed in developing progenitor cells (PCs) and SCs of both the BP and the organ of Corti; however its role in BP development is unknown. Here we utilized an in vitro whole organ embryonic culture system to examine the role of Fgf signaling in the developing avian cochlea. SU5402 (an antagonist of Fgf signaling) was applied to developing BP cultures at different stages to assay the role of Fgf signaling during HC formation. Similar to the observed effects of inhibition of Fgfr3 in the mammalian cochlea, Fgfr inhibition in the developing BP increased the number of HCs that formed. This increase was not associated with increased proliferation, suggesting that inhibition of the Fgf pathway leads to the direct conversion of PCs or supporting cells into HCs, a process known as transdifferentiation. This also implies that Fgf signaling is required to prevent the conversion of PCs and SCs into HCs. The ability of Fgf signaling to inhibit transdifferentiation suggests that its down-regulation may be essential for the initial steps of HC formation, as well as for the maintenance of SC phenotypes.
Collapse
Affiliation(s)
- Bonnie E Jacques
- Laboratory of Cochlear Development, NIDCD, NIH, Porter Neuroscience Research Center, 35 Convent Dr, Room 2A-100, Bethesda, MD 20892-3729, USA.
| | | | | |
Collapse
|
18
|
Aburto MR, Magariños M, Leon Y, Varela-Nieto I, Sanchez-Calderon H. AKT signaling mediates IGF-I survival actions on otic neural progenitors. PLoS One 2012; 7:e30790. [PMID: 22292041 PMCID: PMC3264639 DOI: 10.1371/journal.pone.0030790] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 12/29/2011] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Otic neurons and sensory cells derive from common progenitors whose transition into mature cells requires the coordination of cell survival, proliferation and differentiation programmes. Neurotrophic support and survival of post-mitotic otic neurons have been intensively studied, but the bases underlying the regulation of programmed cell death in immature proliferative otic neuroblasts remains poorly understood. The protein kinase AKT acts as a node, playing a critical role in controlling cell survival and cell cycle progression. AKT is activated by trophic factors, including insulin-like growth factor I (IGF-I), through the generation of the lipidic second messenger phosphatidylinositol 3-phosphate by phosphatidylinositol 3-kinase (PI3K). Here we have investigated the role of IGF-dependent activation of the PI3K-AKT pathway in maintenance of otic neuroblasts. METHODOLOGY/PRINCIPAL FINDINGS By using a combination of organotypic cultures of chicken (Gallus gallus) otic vesicles and acoustic-vestibular ganglia, Western blotting, immunohistochemistry and in situ hybridization, we show that IGF-I-activation of AKT protects neural progenitors from programmed cell death. IGF-I maintains otic neuroblasts in an undifferentiated and proliferative state, which is characterised by the upregulation of the forkhead box M1 (FoxM1) transcription factor. By contrast, our results indicate that post-mitotic p27(Kip)-positive neurons become IGF-I independent as they extend their neuronal processes. Neurons gradually reduce their expression of the Igf1r, while they increase that of the neurotrophin receptor, TrkC. CONCLUSIONS/SIGNIFICANCE Proliferative otic neuroblasts are dependent on the activation of the PI3K-AKT pathway by IGF-I for survival during the otic neuronal progenitor phase of early inner ear development.
Collapse
Affiliation(s)
- Maria R. Aburto
- Instituto de Investigaciones Biomedicas “Alberto Sols”, CSIC-UAM, Madrid, Spain
- CIBERER, Unit 761, ISCIII, Madrid, Spain
| | - Marta Magariños
- Instituto de Investigaciones Biomedicas “Alberto Sols”, CSIC-UAM, Madrid, Spain
- CIBERER, Unit 761, ISCIII, Madrid, Spain
- Departamento de Biologia, Universidad Autonoma de Madrid, Madrid, Spain
| | - Yolanda Leon
- Instituto de Investigaciones Biomedicas “Alberto Sols”, CSIC-UAM, Madrid, Spain
- Departamento de Biologia, Universidad Autonoma de Madrid, Madrid, Spain
| | - Isabel Varela-Nieto
- Instituto de Investigaciones Biomedicas “Alberto Sols”, CSIC-UAM, Madrid, Spain
- CIBERER, Unit 761, ISCIII, Madrid, Spain
| | - Hortensia Sanchez-Calderon
- Instituto de Investigaciones Biomedicas “Alberto Sols”, CSIC-UAM, Madrid, Spain
- CIBERER, Unit 761, ISCIII, Madrid, Spain
| |
Collapse
|
19
|
Fantetti KN, Zou Y, Fekete DM. Wnts and Wnt inhibitors do not influence axon outgrowth from chicken statoacoustic ganglion neurons. Hear Res 2011; 278:86-95. [PMID: 21530628 DOI: 10.1016/j.heares.2011.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 03/04/2011] [Accepted: 04/07/2011] [Indexed: 10/18/2022]
Abstract
The peripheral growth cones of statoacoustic ganglion (SAG) neurons are presumed to sense molecular cues to navigate to their sensory targets during development. Based on previously reported expression data for Frizzled receptors, Wnt ligands, and Wnt inhibitors, we hypothesized that some members of the Wnt morphogen family may function as repulsive cues for SAG neurites. The responses of SAG neurons to mammalian Wnts -1, -4, -5a, -6, and -7b, and the Wnt inhibitors sFRP -1, -2, and -3, were tested in vitro by growing SAG explants from embryonic day 4 (E4) chicken embryos for two days in 3D collagen gels. Average neurite length and density were quantified to determine effects on neurite outgrowth. SAG neurites were strongly repelled by human Sema3E, demonstrating SAG neurons are responsive under these assay conditions. In contrast, SAG neurons showed no changes in neurite outgrowth when cultured in the presence of Wnts and Wnt inhibitors. As an alternative approach, Wnt4 and Wnt5a were also tested in vivo by injecting retroviruses encoding these genes into the chicken otocyst on E3. On E6, no differences were evident in the peripheral projections of SAG axons terminating in infected sensory organs as compared to uninfected organs on the contralateral side of the same embryo. For all Wnt sources, bioactivity was confirmed on E6 chick spinal cord explants by observing enhanced axon outgrowth, as reported previously in the mouse. These results suggest that the tested Wnts do not play a role in guiding peripheral axons in the chicken inner ear.
Collapse
Affiliation(s)
- Kristen N Fantetti
- Department of Biological Sciences, Purdue University, 915 W State St, West Lafayette, IN 47907-1392, USA.
| | | | | |
Collapse
|
20
|
Sánchez-Guardado LÓ, Ferran JL, Rodríguez-Gallardo L, Puelles L, Hidalgo-Sánchez M. Meis gene expression patterns in the developing chicken inner ear. J Comp Neurol 2011; 519:125-47. [PMID: 21120931 DOI: 10.1002/cne.22508] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We are interested in stable gene network activities operating sequentially during inner ear specification. The implementation of this patterning process is a key event in the generation of functional subdivisions of the otic vesicle during early embryonic development. The vertebrate inner ear is a complex sensory structure that is a good model system for characterization of developmental mechanisms controlling patterning and specification. Meis genes, belonging to the TALE family, encode homodomain-containing transcription factors remarkably conserved during evolution, which play a role in normal and neoplastic development. To gain understanding of the possible role of homeobox Meis genes in the developing chick inner ear, we comprehensively analyzed their spatiotemporal expression patterns from early otic specification stages onwards. In the invaginating otic placode, Meis1/2 transcripts were observed in the borders of the otic cup, being absent in the portion of otic epithelium closest to the hindbrain. As development proceeds, Meis1 and Meis2 expressions became restricted to the dorsomedial otic epithelium. Both genes were strongly expressed in the entire presumptive domain of the semicircular canals, and more weakly in all associated cristae. The endolymphatic apparatus was labeled in part by Meis1/2. Meis1 was also expressed in the lateral wall of the growing cochlear duct, while Meis2 expression was detected in a few cells of the developing acoustic-vestibular ganglion. Our results suggest a possible role of Meis assigning regional identity in the morphogenesis, patterning, and specification of the developing inner ear.
Collapse
|
21
|
Sanchez-Calderon H, Rodriguez-de la Rosa L, Milo M, Pichel JG, Holley M, Varela-Nieto I. RNA microarray analysis in prenatal mouse cochlea reveals novel IGF-I target genes: implication of MEF2 and FOXM1 transcription factors. PLoS One 2010; 5:e8699. [PMID: 20111592 PMCID: PMC2810322 DOI: 10.1371/journal.pone.0008699] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Accepted: 12/18/2009] [Indexed: 01/19/2023] Open
Abstract
Background Insulin-like growth factor-I (IGF-I) provides pivotal cell survival and differentiation signals during inner ear development throughout evolution. Homozygous mutations of human IGF1 cause syndromic sensorineural deafness, decreased intrauterine and postnatal growth rates, and mental retardation. In the mouse, deficits in IGF-I result in profound hearing loss associated with reduced survival, differentiation and maturation of auditory neurons. Nevertheless, little is known about the molecular basis of IGF-I activity in hearing and deafness. Methodology/Principal Findings A combination of quantitative RT-PCR, subcellular fractionation and Western blotting, along with in situ hybridization studies show IGF-I and its high affinity receptor to be strongly expressed in the embryonic and postnatal mouse cochlea. The expression of both proteins decreases after birth and in the cochlea of E18.5 embryonic Igf1−/− null mice, the balance of the main IGF related signalling pathways is altered, with lower activation of Akt and ERK1/2 and stronger activation of p38 kinase. By comparing the Igf1−/− and Igf1+/+ transcriptomes in E18.5 mouse cochleae using RNA microchips and validating their results, we demonstrate the up-regulation of the FoxM1 transcription factor and the misexpression of the neural progenitor transcription factors Six6 and Mash1 associated with the loss of IGF-I. Parallel, in silico promoter analysis of the genes modulated in conjunction with the loss of IGF-I revealed the possible involvement of MEF2 in cochlear development. E18.5 Igf1+/+ mouse auditory ganglion neurons showed intense MEF2A and MEF2D nuclear staining and MEF2A was also evident in the organ of Corti. At P15, MEF2A and MEF2D expression were shown in neurons and sensory cells. In the absence of IGF-I, nuclear levels of MEF2 were diminished, indicating less transcriptional MEF2 activity. By contrast, there was an increase in the nuclear accumulation of FoxM1 and a corresponding decrease in the nuclear cyclin-dependent kinase inhibitor p27Kip1. Conclusions/Significance We have defined the spatiotemporal expression of elements involved in IGF signalling during inner ear development and reveal novel regulatory mechanisms that are modulated by IGF-I in promoting sensory cell and neural survival and differentiation. These data will help us to understand the molecular bases of human sensorineural deafness associated to deficits in IGF-I.
Collapse
|
22
|
Sánchez-Guardado LÓ, Ferran JL, Mijares J, Puelles L, Rodríguez-Gallardo L, Hidalgo-Sánchez M. Raldh3gene expression pattern in the developing chicken inner ear. J Comp Neurol 2009; 514:49-65. [DOI: 10.1002/cne.21984] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
23
|
Warchol ME, Richardson GP. Expression of the Pax2 transcription factor is associated with vestibular phenotype in the avian inner ear. Dev Neurobiol 2009; 69:191-202. [PMID: 19130600 PMCID: PMC2731773 DOI: 10.1002/dneu.20684] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The paired-domain transcription factor Pax2 is involved in many facets of inner ear development, but relatively little is known about the expression or function of Pax2 in the mature ear. In this study, we have used immunohistochemical methods to characterize the expression patterns of Pax2 in the sensory organs of inner ears from posthatch chicks. Immunoreactivity for Pax2 was observed in the nuclei of most hair cells and supporting cells in the vestibular organs. In contrast, Pax2 expression in the chick cochlea was limited to hair cells located in the very distal (low frequency) region. We then used organotypic cultures of the chick utricle to examine changes in Pax2 expression in response to ototoxic injury and during hair cell regeneration. Treatment with streptomycin resulted in the loss of most Pax2 immunoreactivity from the lumenal (hair cell) stratum of the utricle. During the early phases of regeneration, moderate Pax2 expression was maintained in the nuclei of proliferating supporting cells. Expression of Pax2 in the hair cell stratum recovered in parallel with hair cell regeneration. The results indicate that Pax2 continues to be expressed in the mature avian ear, and that its expression pattern is correlated with a vestibular phenotype.
Collapse
Affiliation(s)
- Mark E Warchol
- Fay and Carl Simons Center for the Biology of Hearing and Deafness, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | |
Collapse
|
24
|
Sienknecht UJ, Fekete DM. Comprehensive Wnt-related gene expression during cochlear duct development in chicken. J Comp Neurol 2008; 510:378-95. [PMID: 18671253 PMCID: PMC2566905 DOI: 10.1002/cne.21791] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The avian cochlear duct houses both a vestibular and auditory sensory organ (the lagena macula and basilar papilla, respectively), which each have a distinct structure and function. Comparative mRNA in situ hybridization mapping conducted over the time course of chicken cochlear duct development reveals that Wnt-related gene expression is concomitant with various developmental processes such as regionalization, convergent extension of the cochlear duct, cell fate specification, synaptogenesis, and the establishment of planar cell polarity. Wnts mostly originate from nonsensory tissue domains, whereas the sensory primordia preferentially transcribe Frizzled receptors, suggesting that paracrine Wnt signaling predominates in the cochlear duct. Superimposed over this is the strong expression of two secreted Frizzled-related Wnt inhibitors that tend to show complementary expression patterns. Frzb (SFRP3) is confined to the nonsensory cochlear duct and the lagena macula, whereas SFRP2 is maintained in the basilar papilla along with Fzd10 and Wnt7b. Flanking the basilar papilla are Wnt7a, Wnt9a, Wnt11, and SFRP2 on the neural side and Wnt5a, Wnt5b, and Wnt7a on the abneural side. The lateral nonsensory cochlear duct continuously expresses Frzb and temporarily expresses Wnt6 and SFRP1. Characteristic for the entire lagena is the expression of Frzb; in the lagena macula are Fzd1, Fzd7, and Wnt7b, and in the nonsensory tissues are Wnt4 and Wnt5a. Auditory hair cells preferentially express Fzd2 and Fzd9, whereas the main receptors expressed in vestibular hair cells are Fzd1 and Fzd7, in addition to Fzd2 and Fzd9.
Collapse
Affiliation(s)
- Ulrike J Sienknecht
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | | |
Collapse
|
25
|
Abstract
Mechanosensory hair cells in the chick inner ear synapse onto afferent neurons of the statoacoustic ganglion (SAG). During development, these neurons extend a central process to the brain and a peripheral process into one of eight sensory organs. A combination of cues, including chemoattractants and chemorepellents, direct otic axons to their peripheral targets. As a first step in evaluating the role of known axon guidance molecules, Slits and Robos, we examined expression of their transcripts in the chick inner ear from embryonic day 2-11 (Hamburger and Hamilton stages 14-37). Robo2 and slit2 are in migrating neuroblasts and the SAG, while both slits and robos are in the otic epithelium. We speculate that this family of signaling molecules may be involved in repulsion, first of otic neuroblasts and then of otic axons. Later our expression data revealed a potentially novel role for these molecules in maintaining sensory/nonsensory boundaries.
Collapse
Affiliation(s)
- Andrea C Battisti
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47906-2054, USA
| | | |
Collapse
|
26
|
Neves J, Kamaid A, Alsina B, Giraldez F. Differential expression of Sox2 and Sox3 in neuronal and sensory progenitors of the developing inner ear of the chick. J Comp Neurol 2007; 503:487-500. [PMID: 17534940 DOI: 10.1002/cne.21299] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The generation of the mechanosensory elements of the inner ear during development proceeds in a precise temporal and spatial pattern. First, neurosensory precursors form sensory neurons. Then, prosensory patches emerge and give rise to hair and supporting cells. Hair cells are innervated by cochleovestibular neurons that convey sound and balance information to the brain. SOX2 is an HMG transcription factor characteristic of the stem-cell genetic network responsible for progenitor self-renewal and commitment, and its loss of function generates defects in ear sensory epithelia. The present study shows that SOX2 protein is expressed in a spatially and temporally restricted manner throughout development of the chick inner ear. SOX2 is first expressed in the neurogenic region that gives rise to sensory neurons. SOX2 is then restricted to the prosensory patches in E4 and E5 embryos, as revealed by double and parallel labelling with SOX2 and Tuj1, MyoVIIa, or Islet1. Proliferating cell nuclear antigen labelling showed that SOX2 is expressed in proliferating cells during those stages. By E5, SOX2 is also expressed in the Schwann cells of the cochleovestibular ganglion, but not in the otic neurons. At E8 and E17, beyond stages of sensory cell specification, SOX2 is transiently expressed in hair cells, but its level remains high in supporting cells. SOX3 is concomitantly expressed with SOX2 in the neurogenic domain of the otic cup, but not in prosensory patches. Our data are consistent with a role for SOX2 in specifying a population of otic progenitors committed to a neural fate, giving rise to neurons and hair cells.
Collapse
Affiliation(s)
- Joana Neves
- Biologia del Desenvolupament, Departament de Ciències Experimentals i de la Salut (DCEXS), Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona (PRBB), 08003-Barcelona, Spain
| | | | | | | |
Collapse
|
27
|
Yamanishi T, Katsu K, Funahashi JI, Yumoto E, Yokouchi Y. Dan is required for normal morphogenesis and patterning in the developing chick inner ear. Dev Growth Differ 2007; 49:13-26. [PMID: 17227341 DOI: 10.1111/j.1440-169x.2007.00900.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
During vertebrate inner ear development, compartmentalization of the auditory and vestibular apparatuses along two axes depends on the patterning of transcription factors expressed in a region-specific manner. Although most of the patterning is regulated by extrinsic signals, it is not known how Nkx5.1 and Msx1 are patterned. We focus on Dan, the founding member of the Cerberus/Dan gene family that encodes BMP antagonists, and describe its function in morphogenesis and patterning. First, we confirmed that Dan is expressed in the dorso-medial region of the otic vesicle that corresponds to the presumptive endolymphatic duct and sac (ed/es). Second, we used siRNA knockdown to demonstrate that depletion of Dan induced both a severe reduction in the size of the ed/es and moderate deformities of the semicircular canals and cochlear duct. Depletion of Dan also caused suppression of Nkx5.1 in the dorso-lateral region, suppression of Msx1 in the dorso-medial region, and ectopic induction of Nkx5.1 and Msx1 in the ventro-medial region. Most of these phenotypes also appeared following misexpression of the constitutively active form of BMP receptor type Ib. Thus, Dan is required for the normal morphogenesis of the inner ear and, by inhibiting BMP signaling, for the patterning of the transcription factors Nkx5.1 and Msx1.
Collapse
Affiliation(s)
- Takahiro Yamanishi
- Division of Pattern Formation, Department of Organogenesis, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811, Japan
| | | | | | | | | |
Collapse
|
28
|
Miyazaki H, Kobayashi T, Nakamura H, Funahashi JI. Role of Gbx2 and Otx2 in the formation of cochlear ganglion and endolymphatic duct. Dev Growth Differ 2007; 48:429-38. [PMID: 16961590 DOI: 10.1111/j.1440-169x.2006.00879.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The boundary of gene expression of transcription factors often plays a role in making a signaling center in development. In the otic vesicle, Gbx2 is expressed in the dorso-medial region including the endolymphatic duct, and Otx2 in the ventral region. Fgf10 is expressed between their expression boundaries, and the cochleovestibular ganglion develops close to the medial side of the Fgf10 expressing domain. Similar expression patterns are observed in the central nervous system, where Otx2 and Gbx2 expression abut at the mid-hindbrain boundary, and the repressive interaction between Otx2 and Gbx2 defines the mid-hindbrain boundary. These analogous expression patterns raise a question about the role of the interaction between Gbx2 and Otx2 in the otic vesicle. To address this, we misexpressed Gbx2 and Otx2 to the otic epithelium. Ectopic Gbx2 expression could repress Otx2 expression and vice versa. In addition, Fgf10 expression was repressed and cochlear ganglion formation was interfered with. Moreover, endolymphatic duct was severely hypomorphic in the Otx2 misexpressing embryos. These results suggest that the interaction between Gbx2 and Otx2 in developing inner ear defines Fgf10 expression domain to induce the cochlear ganglion. It is also suggested that Gbx2 expression is important for the formation of the endolymphatic duct.
Collapse
Affiliation(s)
- Hiromitsu Miyazaki
- Department of Molecular Neurobiology, Institute of Development, Aging and Cancer, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | | | | | | |
Collapse
|
29
|
Sánchez-Calderón H, Francisco-Morcillo J, Martín-Partido G, Hidalgo-Sánchez M. Fgf19 expression patterns in the developing chick inner ear. Gene Expr Patterns 2006; 7:30-8. [PMID: 16798106 DOI: 10.1016/j.modgep.2006.05.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Revised: 05/05/2006] [Accepted: 05/16/2006] [Indexed: 01/30/2023]
Abstract
The inner ear is a complex sensorial structure with hearing and balance functions. A key aim of developmental biology is to understand the molecular and cellular mechanisms involved in the induction, patterning and innervation of the vertebrate inner ear. These developmental events could be mediated by the expression of regulating genes, such as the members of the family of Fibroblast Growth Factors (Fgfs). This work reports the detailed spatial and temporal patterns of Fgf19 expression in the developing inner ear from otic cup (stage 14) to 8 embryonic days (stage 34). In the earliest stages, Fgf19 and Fgf8 expressions determine two subdomains within the Fgf10-positive proneural-sensory territory. We show that, from the earliest stages, the Fgf19 expression was detected in the acoustic-vestibular ganglion and the macula utriculi. The Fgf19 gene was also strongly, but transiently, expressed in the macula lagena, whereas the macula neglecta never expressed this gene in the period analysed. The Fgf19 expression was also clearly observed in some borders of various sensory elements. These results could be useful from further investigations into the role of FGF19 in otic patterning.
Collapse
Affiliation(s)
- Hortensia Sánchez-Calderón
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Extremadura, Avda. de Elvas s/n, 06071 Badajoz, Spain
| | | | | | | |
Collapse
|
30
|
Pujades C, Kamaid A, Alsina B, Giraldez F. BMP-signaling regulates the generation of hair-cells. Dev Biol 2006; 292:55-67. [PMID: 16458882 DOI: 10.1016/j.ydbio.2006.01.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2005] [Revised: 12/22/2005] [Accepted: 01/03/2006] [Indexed: 11/22/2022]
Abstract
Bone morphogenetic proteins (BMPs) are diffusible molecules involved in a variety of cellular interactions during development. Bmp4 expression accompanies the development of the ear sensory organs during patterning and specification of sensory cell fates, yet there is no understanding of the role of BMP4 in this process. The present work was aimed at exploring the effects of BMP-signaling on the development of hair-cells. For this purpose, we studied gene expression, cell proliferation and cell death in isolated chick otic vesicles that were grown in vitro in the presence of recombinant BMP4 or the BMP-inhibitor Noggin. Cath1 was used as a marker for hair-cell specification. BMP4 reduced the number of Cath1-cells and, conversely, Noggin increased the size of the sensory patches and the number of Cath1-positive cells. The effect of BMP4 was irreversible and occurred before hair-cell specification. Lfng and Fgf10 were expressed in the prosensory domain before Cath1, and their expression was expanded by Noggin. At these stages, modifications of BMP activity did not respecify non-sensory epithelium of the otic vesicle. The expression of Bmp4 at sensory patches was suppressed by BMP4 and induced by Noggin suggesting an autoregulatory loop. Analysis of BrdU incorporation during 6 and 18 h indicated that the effects of BMP4 were due to its ability to reduce the number of actively proliferating progenitors and inhibit cell fate specification. BMP4 induced cell death within the prosensory domain of the otic vesicle, along with the expression of Msx1, but not Msx2. On the contrary, BMP-inhibition with Noggin favored hair-cell specification without changes in the overall cell proliferation. We propose that about the stage of terminal division, the balance between BMP and BMP-inhibitory signals regulates survival and specification of hair-cell precursors, the final number of sensory hair-cells being limited by excess levels of BMPs. The final size of sensory patches would hence depend on the balance between BMP4 and opposing signals.
Collapse
Affiliation(s)
- Cristina Pujades
- Biologia del Desenvolupament, Departament de Ciències Experimentals i de la Salut (DCEXS), Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona (PRBB) c/Dr. Aiguader 80, 08003-Barcelona, Spain
| | | | | | | |
Collapse
|
31
|
Sánchez-Calderón H, Martín-Partido G, Hidalgo-Sánchez M. Pax2 expression patterns in the developing chick inner ear. Gene Expr Patterns 2005; 5:763-73. [PMID: 15979948 DOI: 10.1016/j.modgep.2005.04.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2005] [Revised: 04/05/2005] [Accepted: 04/05/2005] [Indexed: 11/15/2022]
Abstract
The fate specification of the developing vertebrate inner ear could be determined by complex regulatory genetic pathways involving the Pax2/5/8 genes. Pax2 expression has been reported in the otic placode and vesicle of all vertebrates that have been studied. Loss-of-function experiments suggest that the Pax2 gene plays a key role in the development of the cochlear duct and acoustic ganglion. Despite all these data, the role of Pax2 gene in the specification of the otic epithelium is still only poorly defined. In the present work, we report a detailed study of the spatial and temporal Pax2 expression patterns during the development of the chick inner ear. In the period analysed, Pax2 is expressed only in some presumptive sensory patches, but not all, even though all sensory patches show the scattered Pax2 expression pattern later on. We also show that Pax2 is also expressed in several non-sensory structures.
Collapse
|