1
|
Gu Z, Kong W, Liu X, Hu L, Zhou Y, Liang Z, Zhang M, Chen D, Li F, Chen W. Drug discovery targeting protein arginine methyltransferase 5 (PRMT5): an update. Bioorg Med Chem 2025; 128:118240. [PMID: 40412016 DOI: 10.1016/j.bmc.2025.118240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 05/01/2025] [Accepted: 05/12/2025] [Indexed: 05/27/2025]
Abstract
Protein arginine methyltransferase 5 (PRMT5) plays an important role in regulating gene expression, cell differentiation and development, and chromatin structure by catalyzing the methylation of histones and non-histone proteins. The aberrant expression of PRMT5 is closely associated with the occurrence and progression of various diseases, particularly malignant tumors. Accordingly, developing potent and specific PRMT5 inhibitors may provide a potential novel therapeutic approach. In this Perspective, we highlight the structures, the biological functions, regulatory mechanisms, relevant signaling pathways, and associations with cancer development of PRMT5, as well as the recent advances in drug discovery strategies targeting PRMT5. The challenges, opportunities, and future directions for developing PRMT5 inhibitors and degraders are also discussed.
Collapse
Affiliation(s)
- Zhouyang Gu
- Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Weizheng Kong
- Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Xing Liu
- Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Liangju Hu
- Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yucheng Zhou
- Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Zhenchu Liang
- Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Minyue Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Dongyin Chen
- Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China.
| | - Fei Li
- Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China.
| | - Weilin Chen
- Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
2
|
Wu S, Rossi V, Jackson CA, Lonardo I, Ricottone JA, Hevel J, Yu MC. Serine phosphorylation of protein arginine methyltransferase Hmt1 is critical for controlling its protein levels. Int J Biochem Cell Biol 2025:106790. [PMID: 40398714 DOI: 10.1016/j.biocel.2025.106790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 03/21/2025] [Accepted: 05/04/2025] [Indexed: 05/23/2025]
Abstract
In eukaryotes, protein arginine methylation is a prevalent post-translational modification found in a multitude of proteins responsible for key biological processes, ranging from transcription to signaling. One model suggests that phosphorylation of serine 9 (S9) in the Saccharomyces cerevisiae major protein arginine methyltransferase Hmt1 is critical for its oligomerization and activity. In this study, we used classic biochemical approaches to demonstrate that neither the S9 phosphomimetic nor the non-phosphorylatable substitution mutants of Hmt1 affect its oligomerization. These mutants remain active in vivo, retaining their ability to methylate the SR-/hnRNP-like protein Npl3 and displaying a monomethylarginine and asymmetric dimethylarginine banding profile similar to that of the wild-type. In cells lacking Dbf2, the proposed kinase responsible for phosphorylating Hmt1 at S9, Npl3 remains methylated. Additionally, monomethylarginine and asymmetric dimethylarginine banding profiles in cells lacking Dbf2 mostly resemble those observed in the wild-type rather than in hmt1Δ cells. Synchronized yeast cells expressing either S9 substitution exhibit entry into the M phase of the cell cycle at a rate similar to that of both wild-type and hmt1Δ cells. Our results suggest that the C-terminal epitope tagging of Hmt1 is responsible for the previously observed loss of enzymatic activities, rather than the S9 phosphorylation status of Hmt1. Finally, we demonstrate that S9 phosphorylation plays a role in maintaining Hmt1 protein levels in vivo. Overall, our finding demonstrates a novel role for Hmt1 S9 phosphorylation in tuning its in vivo protein levels.
Collapse
Affiliation(s)
- Sai Wu
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, USA
| | - Vincent Rossi
- Department of Chemistry & Biochemistry, Utah State University, Logan, UT, USA
| | | | - Isabella Lonardo
- Department of Chemistry & Biochemistry, Utah State University, Logan, UT, USA
| | - Joseph A Ricottone
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, USA
| | - Joanie Hevel
- Department of Chemistry & Biochemistry, Utah State University, Logan, UT, USA
| | - Michael C Yu
- Dept of Biological Sciences, University at Buffalo, Buffalo, NY. 14260, USA.
| |
Collapse
|
3
|
Wang J, Bao D, Chen X, Yu Z, Kong W, Xu C, Li S, Yue Y. Arginine methylation modulates tumor fate and prognosis in clear cell renal cell carcinoma. Discov Oncol 2025; 16:756. [PMID: 40360844 PMCID: PMC12075052 DOI: 10.1007/s12672-025-02505-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND Arginine methylation, a key post-translational modification, plays a pivotal role in regulating various cellular processes and has been implicated in cancer progression. However, the potential of arginine methylation-related genes as prognostic markers in clear cell renal cell carcinoma (ccRCC) remains underexplored. METHODS We utilized public transcriptomic datasets from TCGA, E-MTAB-1980 and ICGC, for model construction and validation. Single-cell RNA sequencing datasets were employed to evaluate gene expression patterns at the cellular level. Consensus clustering, KM survival analysis, and GSVA were applied to identify molecular subtypes and related pathways. Univariate and multivariate Cox regression analyses were applied to develop an arginine methylation-related signature (AMS). Immune profiling, mutation landscape, and drug sensitivity prediction were also employed to explore the model's association with clinical features, immune infiltration, mutation burden, and therapeutic responses. RESULTS The AMS demonstrated robust prognostic performance, with consistent validation across external cohorts. High-risk patients exhibited significantly worse survival, elevated TMB, and an immunosuppressive tumor microenvironment characterized by increased infiltration of regulatory immune cells. Single-cell RNA sequencing revealed key prognostic genes expressed predominantly in cancer and immune cells, supporting their role in tumor progression and immune interactions. CONCLUSION The arginine methylation-based prognostic model provides a reliable framework for survival risk stratification in ccRCC and holds promise for guiding personalized therapeutic strategies. Future research should emphasize clinical validation of this model and explore its potential role in optimizing immunotherapy and targeted treatment strategies for ccRCC.
Collapse
Affiliation(s)
- Jiahao Wang
- Department of Clinical Laboratory, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
- First Clinical Medical College of Nanjing Medical University, Nanjing, 210029, China
| | - Dan Bao
- Institute of Dermatology & Hospital for Skin Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, 210042, Jiangsu Province, China
| | - Xiaochao Chen
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, 200001, China
| | - Zijie Yu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Weiyu Kong
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Chen Xu
- Department of Urology, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, 215200, China.
| | - Songtao Li
- Department of Clinical Laboratory, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China.
| | - Yulin Yue
- Department of Clinical Laboratory, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China.
| |
Collapse
|
4
|
Wang Z, Yang C, Wang X, Lyu W, Liao H, Liu X, Liu H, Zhang J, Shen H, Zhang L, Wang H. Decoding stress granules dynamics: Implications for neurodegenerative disease. Prog Neurobiol 2025; 248:102758. [PMID: 40132681 DOI: 10.1016/j.pneurobio.2025.102758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/01/2025] [Accepted: 03/19/2025] [Indexed: 03/27/2025]
Abstract
Stress granules (SGs) are membrane-less cytoplasmic structures formed by cells in response to external stress, primarily composed of mRNA and proteins. The dynamic properties of their assembly, maintenance, and disassembly play crucial roles in cellular homeostasis. Recent studies have increasingly revealed that aberrations in SGs dynamics are closely related to the pathogenesis of various neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. This review summarizes the latest research progress on SGs dynamics in neurodegenerative diseases. It begins with an overview of the basic biological characteristics of SGs and their functions in neurons, followed by an in-depth exploration of the mechanisms and regulatory pathways of SGs dynamics. The review then summarizes potential therapeutic strategies targeting SGs dynamics abnormalities, particularly through small molecule drugs to modulate SGs formation and disassembly, aiming to delay or halt the progression of neurodegenerative diseases. The review also highlights the application prospects of these interventions in treating neurodegenerative diseases. Finally, the review introduces current techniques used to study SGs dynamics, discussing their advantages, limitations, and future development possibilities. This review aims to provide researchers with a comprehensive perspective to advance the understanding and clinical application of SGs dynamics in the field of neurodegenerative diseases.
Collapse
Affiliation(s)
- Zixuan Wang
- The Third Central Clinical College of Tianjin Medical University, Tianjin 300170, China; Department of Anesthesiology, The Third Central Hospital of Tianjin, Tianjin 300170, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin 300170, China; Artificial Cell Engineering Technology Research Center, Tianjin 300170, China
| | - Chenyi Yang
- Nankai University, Tianjin 300170, China; Department of Anesthesiology, The Third Central Hospital of Tianjin, Tianjin 300170, China; Nankai University Affinity the Third Central Hospital, Tianjin 300170, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin 300170, China; Artificial Cell Engineering Technology Research Center, Tianjin 300170, China
| | - Xinyi Wang
- Nankai University, Tianjin 300170, China; Department of Anesthesiology, The Third Central Hospital of Tianjin, Tianjin 300170, China; Nankai University Affinity the Third Central Hospital, Tianjin 300170, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin 300170, China; Artificial Cell Engineering Technology Research Center, Tianjin 300170, China
| | - Wenyuan Lyu
- The Third Central Clinical College of Tianjin Medical University, Tianjin 300170, China; Qilu Hospital of Shandong University (Qingdao), Qingdao 266000, China
| | - Huihui Liao
- The Third Central Clinical College of Tianjin Medical University, Tianjin 300170, China; Department of Anesthesiology, The Third Central Hospital of Tianjin, Tianjin 300170, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin 300170, China; Artificial Cell Engineering Technology Research Center, Tianjin 300170, China
| | - Xing Liu
- The Third Central Clinical College of Tianjin Medical University, Tianjin 300170, China; Department of Anesthesiology, The Third Central Hospital of Tianjin, Tianjin 300170, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin 300170, China; Artificial Cell Engineering Technology Research Center, Tianjin 300170, China
| | - Huan Liu
- The Third Central Clinical College of Tianjin Medical University, Tianjin 300170, China; Department of Anesthesiology, The Third Central Hospital of Tianjin, Tianjin 300170, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin 300170, China; Artificial Cell Engineering Technology Research Center, Tianjin 300170, China
| | - Jingwei Zhang
- The Third Central Clinical College of Tianjin Medical University, Tianjin 300170, China; Department of Anesthesiology, The Third Central Hospital of Tianjin, Tianjin 300170, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin 300170, China; Artificial Cell Engineering Technology Research Center, Tianjin 300170, China
| | - Huai Shen
- The Third Central Clinical College of Tianjin Medical University, Tianjin 300170, China; Department of Anesthesiology, The Third Central Hospital of Tianjin, Tianjin 300170, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin 300170, China; Artificial Cell Engineering Technology Research Center, Tianjin 300170, China
| | - Lin Zhang
- The Third Central Clinical College of Tianjin Medical University, Tianjin 300170, China; Department of Anesthesiology, The Third Central Hospital of Tianjin, Tianjin 300170, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin 300170, China; Artificial Cell Engineering Technology Research Center, Tianjin 300170, China
| | - Haiyun Wang
- The Third Central Clinical College of Tianjin Medical University, Tianjin 300170, China; Nankai University, Tianjin 300170, China; Department of Anesthesiology, The Third Central Hospital of Tianjin, Tianjin 300170, China; Nankai University Affinity the Third Central Hospital, Tianjin 300170, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin 300170, China; Artificial Cell Engineering Technology Research Center, Tianjin 300170, China.
| |
Collapse
|
5
|
Dong Z, She X, Ma J, Chen Q, Gao Y, Chen R, Qin H, Shen B, Gao H. The E3 Ligase NEDD4L Prevents Colorectal Cancer Liver Metastasis via Degradation of PRMT5 to Inhibit the AKT/mTOR Signaling Pathway. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2504704. [PMID: 40279519 DOI: 10.1002/advs.202504704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Indexed: 04/27/2025]
Abstract
Colorectal cancer is the second most common cause of cancer mortality worldwide, and liver metastasis is the major cause of death of patients with colorectal cancer. Dysfunctional E3 ligase activity has recently been shown to be associated with colorectal cancer. However, the key E3 ligases affecting colorectal cancer liver metastasis remain unknown. Therefore, an shRNA library targeting 156 E3 ubiquitin ligases has been used to perform an in vivo loss-of-function screen of a human colorectal cancer cell line in a mouse model of liver metastasis. The screen reveals that neural precursor cell expressed developmentally down-regulated gene 4-like (NEDD4L) knockdown promotes colorectal cancer liver metastasis. Mechanistic studies reveal that NEDD4L binds to the PPNAY motif in protein arginine methyltransferase 5 (PRMT5) and ubiquitinates PRMT5 to promote its degradation. PRMT5 degradation attenuates the arginine methylation of AKT1 to inhibit the AKT/mTOR signaling pathway. The effect of NEDD4L decreases colorectal cancer cell proliferation to suppress colonization. This study is the first to show that PRMT5 is a substrate of NEDD4L and reveals not only the metastasis-inhibiting function of NEDD4L but also a novel mechanism by which NEDD4L prevents colorectal cancer liver metastasis. These findings may provide a new preventive strategy for liver metastasis.
Collapse
Affiliation(s)
- Zhewen Dong
- Tongji University Cancer Center and Research Institute of Intestinal Diseases, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, P. R. China
| | - Xiaofei She
- Tongji University Cancer Center and Research Institute of Intestinal Diseases, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, P. R. China
| | - Junxian Ma
- Tongji University Cancer Center and Research Institute of Intestinal Diseases, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, P. R. China
| | - Qian Chen
- Tongji University Cancer Center and Research Institute of Intestinal Diseases, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
| | - Yaqun Gao
- Tongji University Cancer Center and Research Institute of Intestinal Diseases, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, P. R. China
| | - Ruiyan Chen
- Tongji University Cancer Center and Research Institute of Intestinal Diseases, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, P. R. China
| | - Huanlong Qin
- Tongji University Cancer Center and Research Institute of Intestinal Diseases, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
| | - Bing Shen
- Tongji University Cancer Center and Research Institute of Intestinal Diseases, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
- Department of Urology and Urologic Cancer Institute, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
| | - Hua Gao
- Tongji University Cancer Center and Research Institute of Intestinal Diseases, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, P. R. China
| |
Collapse
|
6
|
Yin S, Brobbey C, Ball LE, Fu T, Sprague DJ, Gan W. BRD9 functions as a methylarginine reader to regulate AKT-EZH2 signaling. SCIENCE ADVANCES 2025; 11:eads6385. [PMID: 40279411 PMCID: PMC12024519 DOI: 10.1126/sciadv.ads6385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 03/20/2025] [Indexed: 04/27/2025]
Abstract
Recognition of methylarginine marks by effector proteins ("readers") is a critical link between arginine methylation and various cellular processes. Recently, we identified methylation of AKT1 at arginine-391 (R391), but the reader for this methylation has yet to be characterized. Here, we show that bromodomain-containing protein 9 (BRD9), a reader of acetylated lysine, unexpectedly recognizes methylated R391 of AKT1 through an aromatic cage in its bromodomain. Disrupting the methylarginine reader function of BRD9 suppresses AKT activation and tumorigenesis. RNA sequencing data show that BRD9 and AKT coregulate a hallmark transcriptional program in part through enhancer of zeste homolog 2 (EZH2)-mediated methylation of histone-3 lysine-27. We also find that inhibitors of BRD9 and EZH2 display synergistic effects on suppression of cell proliferation and tumor growth. Collectively, our study reveals a previously unknown function of BRD9 and a potential therapeutic strategy for cancer treatment by combining BRD9 and EZH2 inhibitors.
Collapse
Affiliation(s)
- Shasha Yin
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Charles Brobbey
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Lauren E. Ball
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Tianmin Fu
- Department of Biological Chemistry and Pharmacology, Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Daniel J. Sprague
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Wenjian Gan
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
7
|
Wen R, Huang R, Yang M, Yang J, Yi X. Regulation of protein arginine methyltransferase in osteoporosis: a narrative review. Front Cell Dev Biol 2025; 13:1453624. [PMID: 40342926 PMCID: PMC12058719 DOI: 10.3389/fcell.2025.1453624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 04/14/2025] [Indexed: 05/11/2025] Open
Abstract
Osteoporosis (OP), a systemic bone disease characterised by increased bone fragility and susceptibility to fracture, is mainly caused by a decline in bone mineral density (BMD) and quality caused by an imbalance between bone formation and resorption. Protein arginine methyltransferases (PRMTs) are epigenetic factors and post-translational modification (PTM) enzymes participating in various biological processes, including mRNA splicing, DNA damage repair, transcriptional regulation, and cell signalling. They act by catalysing the transfer and modification of arginine residues and, thus, have become therapeutic targets for OP. In-depth studies have found that these enzymes also play key roles in bone matrix protein metabolism, skeletal cell proliferation and differentiation, and signal pathway regulation to regulate bone formation, bone resorption balance, or both and jointly maintain bone health and stability. However, the expression changes and mechanisms of action of multiple members of the PRMT family differ in OP. Therefore, this paper discusses the biological functions, mechanisms of action, and influencing factors of PRMTs in OP, which is expected to provide a new understanding of the pathogenesis of OP. Furthermore, we present theoretical support for the development of more precise and effective treatment strategies as well as for further study of the molecular mechanisms of PRMTs.
Collapse
Affiliation(s)
| | | | | | | | - Xuejie Yi
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning, China
| |
Collapse
|
8
|
Wang X, Jin J, Yan H, Liu J, Huang S, Bai H, Guo M, Cheng X, Deng T, Ba Y, Gu Y, Gao X, Hu D. The mRNA export pathway licenses viral mimicry response and antitumor immunity by actively exporting nuclear retroelement transcripts. Sci Transl Med 2025; 17:eado4370. [PMID: 40203080 DOI: 10.1126/scitranslmed.ado4370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 08/07/2024] [Accepted: 03/06/2025] [Indexed: 04/11/2025]
Abstract
Nuclear retroelement transcripts (RTs), which can be elicited both transcriptionally and posttranscriptionally, form double-stranded RNA (dsRNA) in cytosol to trigger the viral mimicry response (VMR) and antitumor immunity. However, the strength of the induced VMR varies tremendously across tumor types, and the underlying mechanisms remain poorly understood. Here, we demonstrate that the mRNA export pathway modulates the VMR through actively exporting nuclear RTs for cytosolic dsRNA formation after their induction. Tumor cells hijack this process for immune evasion through aberrant coactivator-associated arginine methyltransferase 1 (CARM1) expression. Mechanistically, we show that the cytoplasmic transportation of RTs by the mRNA export pathway is counteracted by the RNA exosome, which cleaves multiple transcripts within this pathway, including those encoding the essential DExD-box helicase 39A (DDX39A) and the adaptor protein ALYREF. CARM1 enhances the RNA exosome activity to attenuate the nuclear export of RTs by the mRNA export pathway through two synergistic mechanisms: (i) transcriptionally activating several RNA exosome components and (ii) posttranslationally methylating arginine 6 of the RNA exosome subunit EXOSC1, which protects it from proteasome-mediated degradation. Collectively, our study highlights the critical active regulatory role of the mRNA export pathway in transporting nuclear RTs into the cytosol for triggering the VMR and tumor immunity. Furthermore, we propose that enhancing the mRNA export pathway activity, either through CARM1 inhibition or RNA exosome modulation, could reinforce the therapeutic agent-induced VMR, thus holding the promise for overcoming tumor immune evasion and immunotherapy resistance.
Collapse
Affiliation(s)
- Xiaoqiang Wang
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of GI Medical Oncology, Tianjin Medical University Cancer Institute and Hospital, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Jiaxing Jin
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of GI Medical Oncology, Tianjin Medical University Cancer Institute and Hospital, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Han Yan
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of GI Medical Oncology, Tianjin Medical University Cancer Institute and Hospital, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Jinhua Liu
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of GI Medical Oncology, Tianjin Medical University Cancer Institute and Hospital, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Shan Huang
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of GI Medical Oncology, Tianjin Medical University Cancer Institute and Hospital, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Hui Bai
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of GI Medical Oncology, Tianjin Medical University Cancer Institute and Hospital, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Mingrui Guo
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of GI Medical Oncology, Tianjin Medical University Cancer Institute and Hospital, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Xinyue Cheng
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of GI Medical Oncology, Tianjin Medical University Cancer Institute and Hospital, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Ting Deng
- Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Yi Ba
- Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Yong Gu
- Clinical Research Center, Hainan Hospital, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Hainan, 570203, China
| | - Xin Gao
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of GI Medical Oncology, Tianjin Medical University Cancer Institute and Hospital, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Deqing Hu
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of GI Medical Oncology, Tianjin Medical University Cancer Institute and Hospital, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
- Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| |
Collapse
|
9
|
Chen S, Chen Z, Zhou B, Chen Y, Huang Y, Cao J, Shen L, Zheng Y. PRMT5 deficiency in myeloid cells reprograms macrophages to enhance antitumor immunity and synergizes with anti-PD-L1 therapy. J Immunother Cancer 2025; 13:e011299. [PMID: 40187753 PMCID: PMC11973769 DOI: 10.1136/jitc-2024-011299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/17/2025] [Indexed: 04/07/2025] Open
Abstract
BACKGROUND Arginine methyltransferase protein arginine methyltransferase 5 (PRMT5) plays a significant role in immune regulation, particularly within the tumor microenvironment (TME). Macrophages are crucial modulators of both innate and adaptive immune responses, and their differentiation into tumor-associated macrophages is critical in shaping the TME. Despite ongoing clinical trials of small molecule inhibitors of PRMT5 for cancer therapy, their effects on macrophages, a key component of the immune system, remain poorly understood. METHODS A pan-cancer single-cell transcriptional analysis was initially conducted to investigate the expression of PRMT5 in tumor-infiltrating myeloid cells. Myeloid-specific deletion of Prmt5 in mice, as well as the use of a PRMT5-specific inhibitor, was performed to evaluate the impact of PRMT5 on macrophage polarization and tumor progression. Bulk and single-cell transcriptomics were employed to explore the mechanistic roles of PRMT5 in regulating lipid metabolism and macrophage polarization. Additionally, the therapeutic potential of combining Prmt5 deletion with anti-programmed death-ligand 1 (PD-L1) therapy was assessed to study its effects on antitumor immunity in vivo. RESULTS The pan-cancer single-cell transcriptional analysis revealed that PRMT5 is highly expressed in the PPARG-macrophage subset, which correlates with poor patient survival. Myeloid-specific deletion of Prmt5 reprogrammed macrophages towards an antitumor phenotype, effectively inhibiting tumor progression. Mechanistically, PRMT5 was found to regulate lipid metabolism and drive macrophage polarization toward an anti-inflammatory state via the STAT6-PPARγ pathway, fostering an immunosuppressive TME conducive to tumor growth. Notably, Prmt5 deletion induced PD-L1 expression on myeloid cells. Combining Prmt5 deletion with anti-PD-L1 therapy significantly enhanced antitumor efficacy, demonstrating a synergistic therapeutic effect. CONCLUSIONS These findings uncover a crucial role for PRMT5 in macrophage biology and suggest that targeting PRMT5 in myeloid cells offers a promising new approach for cancer immunotherapy. The combination of PRMT5 inhibition with anti-PD-L1 therapy may provide a potent strategy to reprogram the TME and enhance antitumor immune responses.
Collapse
Affiliation(s)
- Shiyu Chen
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Faculty of Medical Laboratory Science, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Institute of Artificial Intelligence Medicine, Shanghai Academy of Experimental Medicine, Shanghai, People's Republic of China
| | - Zheyi Chen
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Bingqian Zhou
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yongyu Chen
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yiren Huang
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Jian Cao
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
- Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Lisong Shen
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Faculty of Medical Laboratory Science, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Institute of Artificial Intelligence Medicine, Shanghai Academy of Experimental Medicine, Shanghai, People's Republic of China
| | - Yingxia Zheng
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Faculty of Medical Laboratory Science, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Institute of Artificial Intelligence Medicine, Shanghai Academy of Experimental Medicine, Shanghai, People's Republic of China
| |
Collapse
|
10
|
Barbier-Torres L, Luque-Urbano M, Chhimwal J, Robinson AE, Fernández-Ramos D, Lopitz-Otsoa F, Van Eyk JE, Millet O, Mato JM, Lu SC. Fructose-induced progression of steatohepatitis involves disrupting aldolase B-AMPK signaling in methionine adenosyltransferase 1A deficient mice. Metabolism 2025; 165:156154. [PMID: 39922455 PMCID: PMC12036799 DOI: 10.1016/j.metabol.2025.156154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/23/2025] [Accepted: 02/03/2025] [Indexed: 02/10/2025]
Abstract
OBJECTIVE Aldolases (ALDO) are sensors that regulate AMPK via binding to fructose 1,6-biphosphate (FBP), an intermediate of glucose and fructose metabolism. Fructose consumption is linked to metabolic dysfunction-associated steatotic liver disease (MASLD) progression but whether ALDO-AMPK signaling is involved is unknown. Methionine adenosyltransferase alpha 1 (Mat1a) knockout (KO) mice have low hepatic S-adenosylmethionine (SAMe) level and spontaneously develop steatohepatitis. ALDOB methylation has not been reported and here we investigated whether SAMe level regulates ALDOB and ALDOB-AMPK signaling and whether fructose feeding accelerates MASLD progression by disrupting ALDOB-AMPK signaling. METHODS Mass spectrometry identified ALDOB methylation sites and recombinant in vitro approaches assessed how methylation at those sites affects ALDOB oligomerization and activity. Primary hepatocytes cultured with high/low glucose and/or fructose and wild type (WT) and Mat1a KO mice fed with a high-fructose diet examined AMPK-ALDOB signaling and MASLD progression. RESULTS In Mat1a KO livers ALDOB R173 is hypomethylated while ALDOB activity is enhanced. Recombinant ALDOB is methylated at R173 and R304 by protein arginine methyltransferase 1. Low hepatic SAMe level results in hypomethylated ALDOB, which favors the tetrameric form that has higher enzymatic activity, and higher capacity to signal to activate AMPK. Fructose, independently of glucose levels, inhibited AMPK activity and induced lipid accumulation in hepatocytes. Mat1a KO mice have hyperactivated AMPK and fructose feeding inhibits it, enhancing the accumulation of fat in the liver and the progression of MASLD. CONCLUSION Hepatic SAMe levels regulate ALDOB oligomeric state and enzymatic activity impacting on AMPK signaling and fructose-induced MASLD progression.
Collapse
Affiliation(s)
- Lucía Barbier-Torres
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - María Luque-Urbano
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology Park of Bizkaia, 48160 Derio, Bizkaia, Spain
| | - Jyoti Chhimwal
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Aaron E Robinson
- Advanced Clinical Biosystems Research Institute, The Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - David Fernández-Ramos
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology Park of Bizkaia, 48160 Derio, Bizkaia, Spain
| | - Fernando Lopitz-Otsoa
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology Park of Bizkaia, 48160 Derio, Bizkaia, Spain
| | - Jennifer E Van Eyk
- Advanced Clinical Biosystems Research Institute, The Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Oscar Millet
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology Park of Bizkaia, 48160 Derio, Bizkaia, Spain
| | - José M Mato
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology Park of Bizkaia, 48160 Derio, Bizkaia, Spain.
| | - Shelly C Lu
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| |
Collapse
|
11
|
Alfaez A, Christopher MW, Garrett TJ, Papp B. Analysis of Metabolomic Reprogramming Induced by Infection with Kaposi's Sarcoma-Associated Herpesvirus Using Untargeted Metabolomic Profiling. Int J Mol Sci 2025; 26:3109. [PMID: 40243754 PMCID: PMC11988554 DOI: 10.3390/ijms26073109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic double-stranded DNA virus. There are no vaccines or antiviral therapies for KSHV. Identifying the cellular metabolic pathways that KSHV manipulates can broaden the knowledge of how these pathways contribute to sustaining lytic infection, which can be targeted in future therapies to prevent viral spread. In this study, we performed an untargeted metabolomic analysis of KSHV infected telomerase-immortalized gingival keratinocytes (TIGK) cells at 4 h post-infection compared to mock-infected cells. We found that the metabolomic landscape of KSHV-infected TIGK differed from that of the mock. Specifically, a total of 804 differential metabolic features were detected in the two groups, with 741 metabolites that were significantly upregulated, and 63 that were significantly downregulated in KSHV-infected TIGK cells. The differential metabolites included ornithine, arginine, putrescine, dimethylarginine, orotate, glutamate, and glutamine, and were associated with pathways, such as the urea cycle, polyamine synthesis, dimethylarginine synthesis, and de novo pyrimidine synthesis. Overall, our untargeted metabolomics analysis revealed that KSHV infection results in marked rapid alterations in the metabolic profile of the oral epithelial cells. We envision that a subset of these rapid metabolic changes might result in altered cellular functions that can promote viral lytic replication and transmission in the oral cavity.
Collapse
Affiliation(s)
- Abdulkarim Alfaez
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, College of Medicine, Gainesville, FL 32610, USA;
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, 11433, Saudi Arabia
| | | | - Timothy J. Garrett
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, College of Medicine, Gainesville, FL 32610, USA;
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA;
| | - Bernadett Papp
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL 32610, USA
- Genetics Institute, University of Florida, Gainesville, FL 32610, USA
- Health Cancer Center, University of Florida, Gainesville, FL 32610, USA
- Informatics Institute, University of Florida, Gainesville, FL 32610, USA
- Center for Orphaned Autoimmune Disorders, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
12
|
Hannemann J, Oliveira-Ferrer L, Goele AK, Mileva Y, Kleinsang F, Röglin A, Witzel I, Müller V, Böger R. L-arginine dependence of breast cancer - molecular subtypes matter. BMC Cancer 2025; 25:546. [PMID: 40140975 PMCID: PMC11948839 DOI: 10.1186/s12885-025-13908-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
L-arginine limits proliferation in highly proliferative tissues. It is a substrate for nitric oxide synthases, arginases; its methylation by protein-L-arginine methyltransferases (PRMTs) leads to asymmetric (ADMA) and symmetric dimethylarginine (SDMA). We measured L-arginine and its metabolites L-ornithine, L-citrulline, ADMA, and SDMA in a prospective cohort of 243 women with primary breast cancer (BC) and their associations with mortality and disease recurrence during 88 (IQR, 82-93) months of follow-up. We quantified these metabolites and expression of genes involved in L-arginine metabolic pathways in MCF-7, BT-474, SK-BR-3, MDA-MB-231, and MDA-MB-468 cells representing ER-positive, HER2-positive, and triple-negative BC compared to MCF-12 A cells. Plasma L-arginine and ADMA concentrations were elevated in 47 patients with recurrent disease and in 34 non-survivors. ADMA was significantly associated with mortality and recurrent disease in Luminal A patients; low L-citrulline was significantly associated with survival in triple-negative BC. In all BC cells except MCF-7, DDAH1 and DDAH2 expression was higher than in MCF-12 A (DDAH1: 32-44 fold, DDAH2: 1.7-4.2 fold; p < 0.05). By contrast, MCF-7 cells showed low DDAH1 and DDAH2, but high PRMT4 and PRMT6 expression and high L-arginine content. BT-474 and MDA-MB-468 cells showed high ARG2 expression and high L-ornithine concentrations, and MDA-MB-468 cells had the highest L-citrulline/L-arginine ratio. In conclusion, regulation of L-arginine metabolic pathways shows a complex and differential pattern between BC subtypes. ADMA is a prognostic biomarker in Luminal A patients; its metabolizing enzyme, DDAH, is highly overexpressed in BC cells. Thus, fingerprinting of L-arginine metabolism may offer novel personalized treatment options within BC subtypes.
Collapse
Affiliation(s)
- Juliane Hannemann
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | | | - Anne Kathrin Goele
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yoana Mileva
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fiona Kleinsang
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Antonia Röglin
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Isabell Witzel
- Department of Gynecology, University Hospital Zürich, Zürich, Switzerland
| | - Volkmar Müller
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Rainer Böger
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
13
|
Zhang Y, Qing J, Li Y, Gao X, Lu D, Wang Y, Gu L, Zhang H, Li Z, Wang X, Zhou Y, Zhang P. PRMT7-Mediated PTEN Activation Enhances Bone Regeneration in Female Mice. Int J Mol Sci 2025; 26:2981. [PMID: 40243588 PMCID: PMC11988880 DOI: 10.3390/ijms26072981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/17/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
Epigenetic regulation provides new insights into the mechanisms of osteogenic differentiation and identifies potential targets for treating bone-related diseases. However, the specific regulatory networks and mechanisms involved still need further investigation. In this study, we identify PRMT7 as a novel epigenetic regulator of mesenchymal stem cells (MSCs) osteogenic commitment. Conditional knockout of Prmt7 in mice reveals a significant impairment in osteogenesis and bone regeneration, specifically in females, affecting both femurs and mandibles, with no noticeable effect in males. Mechanistically, PRMT7 modulates MSCs osteogenic differentiation by activating PTEN. Specifically, PRMT7 enhances PTEN transcription by increasing H3R2me1 levels at the PTEN promoter. Additionally, PRMT7 interacts with the PTEN protein and stabilizes nuclear PTEN, revealing an unprecedented pathway. Notably, overexpression of PTEN alleviates the osteogenic deficits observed in Prmt7-deficient mice. This research establishes PRMT7 as a potential therapeutic target for promoting bone formation/regeneration and offers novel molecular insights into the PRMT7-PTEN regulatory axis, underscoring its significance in bone biology and regenerative medicine.
Collapse
Affiliation(s)
- Yingfei Zhang
- Department of Prosthodontics, Peking University Hospital of Stomatology, Beijing 100081, China; (Y.Z.); (J.Q.); (Y.L.); (X.G.); (D.L.); (Y.W.); (L.G.); (H.Z.); (Z.L.); (X.W.)
- National Clinical Research Center for Oral Diseases, Peking University Hospital of Stomatology, Beijing 100081, China
| | - Jia Qing
- Department of Prosthodontics, Peking University Hospital of Stomatology, Beijing 100081, China; (Y.Z.); (J.Q.); (Y.L.); (X.G.); (D.L.); (Y.W.); (L.G.); (H.Z.); (Z.L.); (X.W.)
- National Clinical Research Center for Oral Diseases, Peking University Hospital of Stomatology, Beijing 100081, China
| | - Yang Li
- Department of Prosthodontics, Peking University Hospital of Stomatology, Beijing 100081, China; (Y.Z.); (J.Q.); (Y.L.); (X.G.); (D.L.); (Y.W.); (L.G.); (H.Z.); (Z.L.); (X.W.)
- National Clinical Research Center for Oral Diseases, Peking University Hospital of Stomatology, Beijing 100081, China
| | - Xin Gao
- Department of Prosthodontics, Peking University Hospital of Stomatology, Beijing 100081, China; (Y.Z.); (J.Q.); (Y.L.); (X.G.); (D.L.); (Y.W.); (L.G.); (H.Z.); (Z.L.); (X.W.)
- National Clinical Research Center for Oral Diseases, Peking University Hospital of Stomatology, Beijing 100081, China
| | - Dazhuang Lu
- Department of Prosthodontics, Peking University Hospital of Stomatology, Beijing 100081, China; (Y.Z.); (J.Q.); (Y.L.); (X.G.); (D.L.); (Y.W.); (L.G.); (H.Z.); (Z.L.); (X.W.)
- National Clinical Research Center for Oral Diseases, Peking University Hospital of Stomatology, Beijing 100081, China
| | - Yiyang Wang
- Department of Prosthodontics, Peking University Hospital of Stomatology, Beijing 100081, China; (Y.Z.); (J.Q.); (Y.L.); (X.G.); (D.L.); (Y.W.); (L.G.); (H.Z.); (Z.L.); (X.W.)
- National Clinical Research Center for Oral Diseases, Peking University Hospital of Stomatology, Beijing 100081, China
| | - Lanxin Gu
- Department of Prosthodontics, Peking University Hospital of Stomatology, Beijing 100081, China; (Y.Z.); (J.Q.); (Y.L.); (X.G.); (D.L.); (Y.W.); (L.G.); (H.Z.); (Z.L.); (X.W.)
- National Clinical Research Center for Oral Diseases, Peking University Hospital of Stomatology, Beijing 100081, China
| | - Hui Zhang
- Department of Prosthodontics, Peking University Hospital of Stomatology, Beijing 100081, China; (Y.Z.); (J.Q.); (Y.L.); (X.G.); (D.L.); (Y.W.); (L.G.); (H.Z.); (Z.L.); (X.W.)
- National Clinical Research Center for Oral Diseases, Peking University Hospital of Stomatology, Beijing 100081, China
| | - Zechuan Li
- Department of Prosthodontics, Peking University Hospital of Stomatology, Beijing 100081, China; (Y.Z.); (J.Q.); (Y.L.); (X.G.); (D.L.); (Y.W.); (L.G.); (H.Z.); (Z.L.); (X.W.)
- National Clinical Research Center for Oral Diseases, Peking University Hospital of Stomatology, Beijing 100081, China
| | - Xu Wang
- Department of Prosthodontics, Peking University Hospital of Stomatology, Beijing 100081, China; (Y.Z.); (J.Q.); (Y.L.); (X.G.); (D.L.); (Y.W.); (L.G.); (H.Z.); (Z.L.); (X.W.)
- National Clinical Research Center for Oral Diseases, Peking University Hospital of Stomatology, Beijing 100081, China
| | - Yongsheng Zhou
- Department of Prosthodontics, Peking University Hospital of Stomatology, Beijing 100081, China; (Y.Z.); (J.Q.); (Y.L.); (X.G.); (D.L.); (Y.W.); (L.G.); (H.Z.); (Z.L.); (X.W.)
- National Clinical Research Center for Oral Diseases, Peking University Hospital of Stomatology, Beijing 100081, China
| | - Ping Zhang
- Department of Prosthodontics, Peking University Hospital of Stomatology, Beijing 100081, China; (Y.Z.); (J.Q.); (Y.L.); (X.G.); (D.L.); (Y.W.); (L.G.); (H.Z.); (Z.L.); (X.W.)
- National Clinical Research Center for Oral Diseases, Peking University Hospital of Stomatology, Beijing 100081, China
| |
Collapse
|
14
|
Ozturk H, Seker-Polat F, Abbaszadeh N, Kingham Y, Orsulic S, Adli M. High PRMT5 levels, maintained by KEAP1 inhibition, drive chemoresistance in high-grade serous ovarian cancer. J Clin Invest 2025; 135:e184283. [PMID: 40091834 PMCID: PMC11910213 DOI: 10.1172/jci184283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 01/16/2025] [Indexed: 03/19/2025] Open
Abstract
Protein arginine methyl transferases (PRMTs) are generally upregulated in cancers. However, the mechanisms leading to this upregulation and its biological consequences are poorly understood. Here, we identify PRMT5, the main symmetric arginine methyltransferase, as a critical driver of chemoresistance in high-grade serous ovarian cancer (HGSOC). PRMT5 levels and its enzymatic activity are induced in a platinum-resistant (Pt-resistant) state at the protein level. To reveal potential regulators of high PRMT5 protein levels, we optimized intracellular immunostaining conditions and performed unbiased CRISPR screening. We identified Kelch-like ECH-associated protein 1 (KEAP1) as a top-scoring negative regulator of PRMT5. Our mechanistic studies show that KEAP1 directly interacted with PRMT5, leading to its ubiquitin-dependent degradation under normal physiological conditions. At the genomic level, ChIP studies showed that elevated PRMT5 directly interacted with the promoters of stress response genes and positively regulated their transcription. Combined PRMT5 inhibition with Pt resulted in synergistic cellular cytotoxicity in vitro and reduced tumor growth in vivo in Pt-resistant patient-derived xenograft tumors. Overall, the findings from this study identify PRMT5 as a critical therapeutic target in Pt-resistant HGSOC cells and reveal the molecular mechanisms that lead to high PRMT5 levels in Pt-treated and chemo-resistant tumors.
Collapse
Affiliation(s)
- Harun Ozturk
- Robert Lurie Comprehensive Cancer Center, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, Illinois, USA
| | - Fidan Seker-Polat
- Robert Lurie Comprehensive Cancer Center, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, Illinois, USA
| | - Neda Abbaszadeh
- Robert Lurie Comprehensive Cancer Center, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, Illinois, USA
| | - Yasemin Kingham
- Robert Lurie Comprehensive Cancer Center, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, Illinois, USA
| | - Sandra Orsulic
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Mazhar Adli
- Robert Lurie Comprehensive Cancer Center, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
15
|
Zhong Y, Zhang R, Lu L, Tan H, You Y, Mao Y, Yuan Y. Specific sDMA modifications on the RGG/RG motif of METTL14 regulate its function in AML. Cell Commun Signal 2025; 23:126. [PMID: 40057764 PMCID: PMC11889898 DOI: 10.1186/s12964-025-02130-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 02/26/2025] [Indexed: 05/13/2025] Open
Abstract
BACKGROUND Protein arginine methylations are crucial post-translational modifications (PTMs) in eukaryotes, playing a significant regulatory role in diverse biological processes. Here, we present our investigation into the detailed arginine methylation pattern of the C-terminal RG-rich region of METTL14, a key component of the m6A RNA methylation machinery, and its functional implications in biology and disease. METHODS Using ETD-based mass spectrometry and in vitro enzyme reactions, we uncover a specific arginine methylation pattern on METTL14. RNA methyltransferase activity assays were used to assess the impact of sDMA on METTL3:METTL14 complex activity. RNA immunoprecipitation was used to evaluate mRNA-m6A reader interactions. MeRIP-seq analysis was used to study the genome-wide effect of METTL14 sDMA on m6A modification in acute myeloid leukemia cells. RESULTS We demonstrate that PRMT5 catalyzes the site-specific symmetric dimethylation at R425 and R445 within the extensively methylated RGG/RG motifs of METTL14. We show a positive regulatory role of symmetric dimethylarginines (sDMA) in the catalytic efficiency of the METTL3:METTL14 complex and m6A-specific gene expression in HEK293T and acute myeloid leukemia cells, potentially through the action of m6A reader protein YTHDF1. In addition, the combined inhibition of METTL3 and PRMT5 further reduces the expression of several m6A substrate genes essential for AML proliferation, suggesting a potential therapeutic strategy for AML treatment. CONCLUSIONS The study confirms the coexistence of sDMA and aDMA modifications on METTL14's RGG/RG motifs, with sDMA at R425 and R445 enhancing METTL3:METTL14's catalytic efficacy and regulating gene expression through m6A deposition in cancer cells.
Collapse
Affiliation(s)
- Yulun Zhong
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Rou Zhang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Lingzi Lu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Huijian Tan
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Yuyu You
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China.
| | - Yang Mao
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Drug Non-Clinical Evaluation and Research, Guangzhou, China.
| | - Yanqiu Yuan
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China.
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
16
|
Cho Y, Hwang JW, Bedford MT, Song DG, Kim SN, Kim YK. CARM1 regulates tubulin autoregulation through PI3KC2α R175 methylation. Cell Commun Signal 2025; 23:120. [PMID: 40045375 PMCID: PMC11884010 DOI: 10.1186/s12964-025-02124-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/23/2025] [Indexed: 03/09/2025] Open
Abstract
Tubulin is crucial in several cellular processes, including intracellular organization, organelle transport, motility, and chromosome segregation. Intracellular tubulin concentration is tightly regulated by an autoregulation mechanism, in which excess free tubulin promotes tubulin mRNA degradation. However, the details of how changes in free tubulin levels initiate this autoregulation remain unclear. In this study, we identified coactivator-associated arginine methyltransferase 1 (CARM1)-phosphatidylinositol 3-kinase class 2α (PI3KC2α) axis as a novel regulator of tubulin autoregulation. CARM1 stabilizes PI3KC2α by methylating its R175 residue. Once PI3KC2α is not methylated, it becomes unstable, leading to decreased cellular levels. Loss of PI3KC2α results in the release of tetratricopeptide repeat domain 5 (TTC5), which initiates tubulin autoregulation. Thus, PI3KC2α, along with its CARM1-mediated arginine methylation, regulates the initiation of tubulin autoregulation. Additionally, disruption of the CARM1-PI3KC2α axis decreases intracellular tubulin levels, leading to a synergistic increase in the cytotoxicity of microtubule-targeting agents (MTAs). Taken together, our study demonstrates that the CARM1-PI3KC2α axis is a key regulator of TTC5-mediated tubulin autoregulation and that disrupting this axis enhances the anti-cancer activity of MTAs.
Collapse
Affiliation(s)
- Yena Cho
- Muscle Physiome Research Center and Research Institute of Pharmaceutical Sciences, Sookmyung Women's University, Seoul, 04310, Republic of Korea
- College of Pharmacy, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Jee Won Hwang
- College of Pharmacy, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Mark T Bedford
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Dae-Geun Song
- Natural Products Research Institute, KIST Gangneung, Gangneung, 25451, Republic of Korea
- Division of Natural Product Applied Science, University of Science and Technology KIST School, Seoul, 02792, Republic of Korea
| | - Su-Nam Kim
- Natural Products Research Institute, KIST Gangneung, Gangneung, 25451, Republic of Korea
- Division of Natural Product Applied Science, University of Science and Technology KIST School, Seoul, 02792, Republic of Korea
| | - Yong Kee Kim
- Muscle Physiome Research Center and Research Institute of Pharmaceutical Sciences, Sookmyung Women's University, Seoul, 04310, Republic of Korea.
- College of Pharmacy, Sookmyung Women's University, Seoul, 04310, Republic of Korea.
| |
Collapse
|
17
|
Ramos-Rodríguez C, Rojas-Gomez A, Santos-Calderón LA, Ceruelo S, Ríos L, Ueland PM, Fernandez-Ballart JD, Salas-Huetos A, Murphy MM. The l-Arginine pathway may act as a mediator in the association between impaired one-carbon metabolism and hypertension. Biochimie 2025; 230:86-94. [PMID: 39549999 DOI: 10.1016/j.biochi.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 11/13/2024] [Accepted: 11/13/2024] [Indexed: 11/18/2024]
Abstract
Elevated fasting plasma total homocysteine (tHcy) and the methylenetetrahydrofolate reductase C677T polymorphism (rs1801133) have been associated with hypertension. Whether the l-Arginine pathway is involved, is unclear. We aimed to investigate whether the association between tHcy, the rs1801133 polymorphism and hypertension involves the l-Arginine pathway. THcy, plasma folate and cobalamin, erythrocyte glutathionine reductase activation coefficient, rs1801133 genotype, plasma l-Arginine, asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA) were determined in a cross-sectional study of 788 adults (aged 18 to 75), randomly selected from 2 town population registers. Participants participated in a medical checkup and provided a fasting blood sample. Associations between tHcy, rs1801133 genotype and l-Arginine pathway metabolites were assessed by multiple linear regression analysis and whether the tHcy and rs1801133 genotype are associated with hypertension via the l-Arginine pathway was investigated using mediation analysis. tHcy was positively associated with ADMA (B = 0.003; SE = 0.001; P < 0.001) and SDMA (B = 0.007; SE = 0.002; P < 0.001) and negatively associated with the l-Arginine/ADMA (B = -1.140; SE = 0.451; P < 0.05) and ADMA/SDMA (B = -0.006; SE = 0.003; P < 0.05) ratios. The MTHFR 677 CT vs CC genotype was negatively associated with ADMA (B = -0.013; SE = 0.007; P < 0.05) and with SDMA (B = -0.029; SE = 0.013; P < 0.05) in participants under 50 years. Each standard deviation increase (37.6) in the l-Arginine/ADMA ratio was associated with reduced hypertension risk (OR [95%CI], 0.6 [0.5, 0.8]). Mediation analysis showed that tHcy and ADMA were mediators in the association between the rs1801133 TT vs CC genotypes and hypertension. Our results support the l-Arginine pathway as a mediator in the association of impaired One-Carbon metabolism and hypertension.
Collapse
Affiliation(s)
- Carla Ramos-Rodríguez
- Unitat de Medicina Preventiva, ANUT-DSM, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Reus, (FMCS URV), Spain; IISPV, Areas of Family and Community Medicine, Spain.
| | - Alejandra Rojas-Gomez
- Unitat de Medicina Preventiva, ANUT-DSM, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Reus, (FMCS URV), Spain; IISPV, Areas of Family and Community Medicine, Spain.
| | - Luis A Santos-Calderón
- Unitat de Medicina Preventiva, ANUT-DSM, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Reus, (FMCS URV), Spain; IISPV, Areas of Family and Community Medicine, Spain.
| | | | - Lídia Ríos
- Hospital Lleuger Antoni de Gimbernat de Cambrils, Spain.
| | | | - Joan D Fernandez-Ballart
- Unitat de Medicina Preventiva, ANUT-DSM, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Reus, (FMCS URV), Spain; IISPV, Areas of Family and Community Medicine, Spain; CIBERobn ISCIII, Spain.
| | - Albert Salas-Huetos
- Unitat de Medicina Preventiva, ANUT-DSM, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Reus, (FMCS URV), Spain; IISPV, Areas of Family and Community Medicine, Spain; CIBERobn ISCIII, Spain.
| | - Michelle M Murphy
- Unitat de Medicina Preventiva, ANUT-DSM, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Reus, (FMCS URV), Spain; IISPV, Areas of Family and Community Medicine, Spain; CIBERobn ISCIII, Spain.
| |
Collapse
|
18
|
Park YJ, German AJ, Brewer D, O'Connell E. A Retrospective Evaluation of Serum Symmetric Dimethylarginine Concentration in Dogs With Protein-Losing Enteropathy. J Vet Intern Med 2025; 39:e70068. [PMID: 40123416 PMCID: PMC11931192 DOI: 10.1111/jvim.70068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 03/02/2025] [Accepted: 03/07/2025] [Indexed: 03/25/2025] Open
Abstract
BACKGROUND Serum symmetric dimethylarginine (SDMA) is abnormally increased in people with inflammatory bowel disease (IBD). Changes in dogs with gastrointestinal disease, such as protein-losing enteropathy (PLE), have not been assessed. OBJECTIVES Evaluate SDMA concentration in non-azotemic dogs with PLE. ANIMALS A total of 127 client-owned dogs, 17 with PLE, 34 controls matched for age, breed, sex, and neuter status, and 76 additional controls for multiple linear regression modeling. METHODS Retrospective case-control study. The clinical records of a United Kingdom referral hospital were reviewed. Dogs with azotemia or prior glucocorticoid or immunosuppressive treatment were excluded. Dogs diagnosed with PLE that had serum symmetric dimethylarginine (SDMA) concentrations measured were compared with the matched controls. Signalment, clinical presentation, clinicopathological abnormalities, treatment, and SDMA concentration pre- (PLE-T0) and post- (PLE-T1) treatment were recorded. RESULTS At baseline, SDMA concentration was higher in PLE (T0, 15.2 ± 2.02 μg/dL) than in control (11.0 ± 3.13 μg/dL) dogs (p < 0.001; Hedge's G, 1.48), but decreased with treatment (PLE-T1: 10.3 ± 2.78 μg/dL; T0 vs. T1: p = 0.01, Hedge's G, 1.31). Serum creatinine concentration was similar in PLE (T0, 0.81 ± 0.24 μg/dL) and control (0.85 ± 0.26 μg/dL) dogs at baseline (p = 0.57; Hedge's G, 0.18). Serum albumin concentration was lower in PLE (1.60 ± 0.51 g/dL) than in control (2.96 ± 0.49 g/dL) dogs (p < 0.001; Hedge's G, 2.68) before treatment, but increased with treatment (PLE-T1: 2.29 ± 0.65 g/dL; T0 vs. T1: p = 0.003; Hedge's G, 1.14), although it remained lower than the concentration in controls (p = 0.002; Hedge's G, 1.23). No other clinicopathological differences were evident. CONCLUSIONS AND CLINICAL IMPORTANCE Serum SDMA concentration is increased in dogs with PLE; the clinical relevance of this finding requires further investigation.
Collapse
Affiliation(s)
- Yeon Joon Park
- Institute of Infection, Veterinary and Ecological SciencesUniversity of LiverpoolNestonUK
| | - Alexander J. German
- Institute of Life Course and Medical SciencesUniversity of LiverpoolNestonUK
| | - David Brewer
- Institute of Infection, Veterinary and Ecological SciencesUniversity of LiverpoolNestonUK
| | - Erin O'Connell
- Institute of Infection, Veterinary and Ecological SciencesUniversity of LiverpoolNestonUK
| |
Collapse
|
19
|
Dhang S, Mondal A, Das C, Roy S. Metformin inhibits the histone methyltransferase CARM1 and attenuates H3 histone methylation during gluconeogenesis. J Biol Chem 2025; 301:108271. [PMID: 39922487 PMCID: PMC11910104 DOI: 10.1016/j.jbc.2025.108271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/18/2025] [Accepted: 01/30/2025] [Indexed: 02/10/2025] Open
Abstract
Hyperglycemia is a hallmark of metabolic disorders, yet the precise mechanisms linking epigenetic regulation to glucose metabolism remain underexplored. Coactivator-associated arginine methyltransferase 1 (CARM1), a type I histone methyltransferase, promotes transcriptional activation through the methylation of histone H3 at arginine residues H3R17 and H3R26. Here, we identify a novel mechanism by which metformin, a widely prescribed antidiabetic drug, inhibits CARM1 activity. Using biochemical and biophysical assays, we show that metformin binds to the substrate-binding site of CARM1, reducing histone H3 methylation levels in CARM1-overexpressing hepatic cells and liver tissues from metformin-fed mice. This epigenetic modulation suppresses the expression of gluconeogenic enzymes (G6Pase, FBPase, and PCK1), thereby reversing CARM1-induced glycolytic suppression and regulating gluconeogenesis. Importantly, metformin does not alter CARM1 protein levels and its recruitment to gluconeogenic gene promoters but diminishes H3R17me2a marks at these loci. Our findings reveal a previously unrecognized epigenetic mechanism of metformin action, offering new therapeutic insights for hyperglycemia management.
Collapse
Affiliation(s)
- Sinjini Dhang
- Structural Biology and Bio-Informatics Division, Council of Scientific & Industrial Research-Indian Institute of Chemical Biology, Kolkata, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Atanu Mondal
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, Mumbai, India
| | - Chandrima Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, Mumbai, India
| | - Siddhartha Roy
- Structural Biology and Bio-Informatics Division, Council of Scientific & Industrial Research-Indian Institute of Chemical Biology, Kolkata, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
20
|
Li L, Zhang Z, Wang X, Zhao H, Liu L, Xiao Y, Hua S, Chen Y. PRMT5 Maintains Homeostasis of the Intestinal Epithelium by Modulating Cell Proliferation and Survival. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2415559. [PMID: 39899687 PMCID: PMC11948081 DOI: 10.1002/advs.202415559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Indexed: 02/05/2025]
Abstract
Intestinal homeostasis is sustained by self-renewal of intestinal stem cells, which continuously divide and produce proliferative transit-amplifying (TA) and progenitor cells. Protein arginine methyltransferases 5 (PRMT5) plays a crucial role in regulating homeostasis of various mammalian tissues. However, its function in intestinal homeostasis remains elusive. In this study, conditional knockout of Prmt5 in the mouse intestinal epithelium leads to a reduction in stem cell population, suppression of cell proliferation, and increased cell apoptosis within the intestinal crypts, accompanied with shortened gut length, decreased mouse body weight, and eventual animal mortality. Additionally, Prmt5 deletion or its enzymatic inhibition in intestinal organoids in vitro also shows resembling cellular phenotypes. Methylome profiling identifies 90 potential Prmt5 substrates, which are involved in RNA-related biological processes and cell division. Consistently, Prmt5 depletion in intestinal organoids leads to aberrant alternative splicing in a subset of genes related to the mitotic cell cycle. Furthermore, Prmt5 loss triggers p53-mediated apoptosis in the intestinal epithelium. Collectively, the findings uncover an indispensable role of PRMT5 in promoting cell proliferation and survival, as well as maintaining stem cells in the gut epithelium.
Collapse
Affiliation(s)
- Leilei Li
- Guangzhou LaboratoryGuangzhou510700China
| | - Zhe Zhang
- Guangzhou LaboratoryGuangzhou510700China
| | - Xu Wang
- Guangzhou LaboratoryGuangzhou510700China
| | | | | | | | - Shan Hua
- Guangzhou LaboratoryGuangzhou510700China
| | - Ye‐Guang Chen
- Guangzhou LaboratoryGuangzhou510700China
- The State Key Laboratory of Membrane BiologyTsinghua‐Peking Center for Life SciencesSchool of Life SciencesTsinghua UniversityBeijing100084China
- School of Basic MedicineJiangxi Medical CollegeNanchang UniversityNanchang330031China
| |
Collapse
|
21
|
Zhou L, Yu L, Song S, Wang Y, Zhu Q, Li M, Sha Y, Xu L, Shu X, Liao Q, Wu T, Yang B, Chai S, Lin B, Wu L, Zhou R, Duan X, Zhu C, Ruan Y, Yi W. Mina53 catalyzes arginine demethylation of p53 to promote tumor growth. Cell Rep 2025; 44:115242. [PMID: 39864061 DOI: 10.1016/j.celrep.2025.115242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 11/20/2024] [Accepted: 01/08/2025] [Indexed: 01/28/2025] Open
Abstract
Arginine methylation is a common post-translational modification that plays critical roles in many biological processes. However, the existence of arginine demethylases that remove the modification has not been fully established. Here, we report that Myc-induced nuclear antigen 53 (Mina53), a member of the jumonji C (JmjC) protein family, is an arginine demethylase. Mina53 catalyzes the removal of asymmetric dimethylation at arginine 337 of p53. Mina53-mediated demethylation reduces p53 stability and oligomerization and alters chromatin modifications at the gene promoter, thereby suppressing p53-mediated transcriptional activation and cell-cycle arrest. Mina53 represses p53-dependent tumor suppression both in mouse xenografts and spontaneous tumor models. Moreover, downregulation of p53-mediated gene expression is observed in several types of cancer with elevated expression of Mina53. Thus, our study reveals a regulatory mechanism of p53 homeostasis and activity and, more broadly, defines a paradigm for dynamic arginine methylation in controlling important biological functions.
Collapse
Affiliation(s)
- Lixiao Zhou
- Ministry of Education Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Liyang Yu
- Ministry of Education Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Shushu Song
- NHC Key Laboratory of Glycoconjugates Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yong Wang
- Ministry of Education Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, China; The Provincial International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, China
| | - Qiang Zhu
- Ministry of Education Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Meng Li
- Ministry of Education Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yutong Sha
- Ministry of Education Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Liang Xu
- Ministry of Education Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Xin Shu
- Life Science Institute, Zhejiang University, Hangzhou, China
| | - Qingqing Liao
- Life Science Institute, Zhejiang University, Hangzhou, China
| | - Ting Wu
- Life Science Institute, Zhejiang University, Hangzhou, China
| | - Bing Yang
- Life Science Institute, Zhejiang University, Hangzhou, China
| | - Siyuan Chai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang Provincial Key Laboratory of Pancreatic Disease, School of Medicine, Zhejiang University, Hangzhou, China
| | - Bingyi Lin
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang Provincial Key Laboratory of Pancreatic Disease, School of Medicine, Zhejiang University, Hangzhou, China
| | - Liming Wu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang Provincial Key Laboratory of Pancreatic Disease, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ruhong Zhou
- Ministry of Education Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, China; The Provincial International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, China; Cancer Center, Zhejiang University, Hangzhou, China
| | - Xiaotao Duan
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Chenggang Zhu
- Ministry of Education Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yuanyuan Ruan
- NHC Key Laboratory of Glycoconjugates Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| | - Wen Yi
- Ministry of Education Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, China; Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang Provincial Key Laboratory of Pancreatic Disease, School of Medicine, Zhejiang University, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
22
|
Zhou M, Huang Y, Xu P, Li S, Duan C, Lin X, Bao S, Zou W, Pan J, Liu C, Jin Y. PRMT1 Promotes the Self-renewal of Leukemia Stem Cells by Regulating Protein Synthesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2308586. [PMID: 39668478 PMCID: PMC11791931 DOI: 10.1002/advs.202308586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 10/14/2024] [Indexed: 12/14/2024]
Abstract
The application of tyrosine kinase inhibitors (TKIs) has revolutionized the management of chronic myeloid leukemia (CML). However, disease relapse and progression particularly due to persistent leukemia stem cells (LSCs) remain a big challenge in the clinic. Therefore, validation of the therapeutic vulnerability in LSCs is urgently needed. This study verifies the critical role of protein arginine methyltransferase 1 (PRMT1) in the maintenance of CML LSCs. It is found that PRMT1 promotes the survival and serially plating abilities of human primary CML LSCs. Genetic deletion of Prmt1 significantly delays the leukemogenesis and impairs the self-renewal of LSCs in BCR-ABL-driven CML mice. PRMT1 regulates LSCs and leukemia development depending on its methyltransferase activity. Pharmacological inhibition of PRMT1 activity by MS023 remarkably eliminates LSCs and prolongs the survival of CML mice. Mechanistical studies reveal that PRMT1 promotes transcriptional activation of ribosomal protein L29 (RPL29) via catalyzing asymmetric dimethylation of histone H4R3 (H4R3me2a) at its gene promoter region. PRMT1 augments the global protein synthesis via RPL29 in CML LSCs. Taken together, the findings provide new evidence that histone arginine methylation modification regulates protein synthesis in LSCs and highlight PRMT1 as a valuable druggable target for patients with CML.
Collapse
Affiliation(s)
- Min Zhou
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhou510632China
- Jinan University Institute of Tumor PharmacologyCollege of PharmacyJinan UniversityGuangzhou510632China
| | - Yi Huang
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhou510632China
- Jinan University Institute of Tumor PharmacologyCollege of PharmacyJinan UniversityGuangzhou510632China
| | - Ping Xu
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhou510632China
- Jinan University Institute of Tumor PharmacologyCollege of PharmacyJinan UniversityGuangzhou510632China
| | - Shuyi Li
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhou510632China
- Jinan University Institute of Tumor PharmacologyCollege of PharmacyJinan UniversityGuangzhou510632China
| | - Chen Duan
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhou510632China
- Jinan University Institute of Tumor PharmacologyCollege of PharmacyJinan UniversityGuangzhou510632China
| | - Xiaoying Lin
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhou510632China
- Jinan University Institute of Tumor PharmacologyCollege of PharmacyJinan UniversityGuangzhou510632China
| | - Shilai Bao
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101China
- School of Life SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Waiyi Zou
- Department of HematologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhou510080China
| | - Jingxuan Pan
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhou510060China
| | - Chang Liu
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhou510632China
- Jinan University Institute of Tumor PharmacologyCollege of PharmacyJinan UniversityGuangzhou510632China
| | - Yanli Jin
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhou510632China
- Jinan University Institute of Tumor PharmacologyCollege of PharmacyJinan UniversityGuangzhou510632China
| |
Collapse
|
23
|
Zaccarelli-Magalhães J, Citadin CT, Langman J, Smith DJ, Matuguma LH, Lin HW, Udo MSB. Protein arginine methyltransferases as regulators of cellular stress. Exp Neurol 2025; 384:115060. [PMID: 39551462 PMCID: PMC11973959 DOI: 10.1016/j.expneurol.2024.115060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024]
Abstract
Arginine modification can be a "switch" to regulate DNA transcription and a post-translational modification via methylation of a variety of cellular targets involved in signal transduction, gene transcription, DNA repair, and mRNA alterations. This consequently can turn downstream biological effectors "on" and "off". Arginine methylation is catalyzed by protein arginine methyltransferases (PRMTs 1-9) in both the nucleus and cytoplasm, and is thought to be involved in many disease processes. However, PRMTs have not been well-documented in the brain and their function as it relates to metabolism, circulation, functional learning and memory are understudied. In this review, we provide a comprehensive overview of PRMTs relevant to cellular stress, and future directions into PRMTs as therapeutic regulators in brain pathologies.
Collapse
Affiliation(s)
- Julia Zaccarelli-Magalhães
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Cristiane Teresinha Citadin
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Julia Langman
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Drew James Smith
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Luiz Henrique Matuguma
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Hung Wen Lin
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA.
| | - Mariana Sayuri Berto Udo
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA.
| |
Collapse
|
24
|
de Korte D, Hoekstra M. Protein Arginine Methyltransferase 1: A Multi-Purpose Player in the Development of Cancer and Metabolic Disease. Biomolecules 2025; 15:185. [PMID: 40001488 PMCID: PMC11852820 DOI: 10.3390/biom15020185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
Protein arginine methyltransferase 1 (PRMT1) is the main PRMT family member involved in the formation of monomethylarginine and asymmetric dimethylarginine on its protein substrates. Many protein substrates of PRMT1 are key mediators of cell proliferation and oncogenesis. As such, the function of PRMT1 has been most prominently investigated in the context of cancer development. However, recent in vitro and in vivo studies have highlighted that PRMT1 may also promote metabolic disorders. With the current review, we aim to present an in-depth overview of how PRMT1 influences epigenetic modulation, transcriptional regulation, DNA damage repair, and signal transduction in cancer. Furthermore, we summarize the current knowledge regarding the role of PRMT1 in metabolic reprogramming, lipid metabolism, and glucose metabolism and describe the association of PRMT1 with numerous metabolic pathologies such as obesity, liver disease, and type 2 diabetes. It has become apparent that inhibiting the function of PRMT1 will likely serve as the most beneficial therapeutic approach, since several PRMT1 inhibitors have already been shown to exert positive effects on both cancer and metabolic disease in preclinical settings. However, pharmacological PRMT1 inhibition has not yet been shown to be therapeutically effective in clinical studies.
Collapse
Affiliation(s)
| | - Menno Hoekstra
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Centre for Drug Research, Leiden University, Gorlaeus Laboratories, Einsteinweg 55, 2333 CC Leiden, The Netherlands;
| |
Collapse
|
25
|
Zhang M, Ding X, Cao Z, Yang Y, Ding X, Cai X, Zhang M, Aliper A, Ren F, Lu H, Zhavoronkov A. Discovery of Potent, Highly Selective, and Orally Bioavailable MTA Cooperative PRMT5 Inhibitors with Robust In Vivo Antitumor Activity. J Med Chem 2025; 68:1940-1955. [PMID: 39787362 DOI: 10.1021/acs.jmedchem.4c02732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Protein arginine methyltransferase 5 (PRMT5), which catalyzes the symmetric dimethylation of arginine residues on target proteins, plays a critical role in gene expression regulation, RNA processing, and signal transduction. Aberrant PRMT5 activity has been implicated in cancers and other diseases, making it a potential therapeutic target. Here, we report the discovery of a methylthioadenosine (MTA) cooperative PRMT5 inhibitor. Compound 20 exhibited strong antiproliferation activity in multiple MTAP-deleted cancer cell lines, excellent selectivity over MTAP wild-type cell lines, as well as satisfactory oral pharmacokinetic properties over various preclinical species. Notably, compound 20 demonstrated a dose-dependent reduction of symmetric dimethylarginine (SDMA) expression in the LU99 cell line and robust in vivo antitumor activity in the LU99 subcutaneous model.
Collapse
Affiliation(s)
- Meng Zhang
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Xiaoyu Ding
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Zhongying Cao
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Yilin Yang
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Xiao Ding
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Xin Cai
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Man Zhang
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Alex Aliper
- Insilico Medicine AI Ltd, Masdar City, Abu Dhabi 145748, UAE
| | - Feng Ren
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Hongfu Lu
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Alex Zhavoronkov
- Insilico Medicine Shanghai Ltd, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
- Insilico Medicine AI Ltd, Masdar City, Abu Dhabi 145748, UAE
- Insilico Medicine Hong Kong Ltd, Hong Kong Science and Technology Park, Kowloon 999077, Hong Kong SAR, China
| |
Collapse
|
26
|
Zhang J, Ren Y, Teng Y, Wu H, Xue J, Chen L, Song X, Li Y, Zhou Y, Pang Z, Wang H. Discovery of novel PRMT1 inhibitors: a combined approach using AI classification model and traditional virtual screening. Front Chem 2025; 13:1548812. [PMID: 39906150 PMCID: PMC11788407 DOI: 10.3389/fchem.2025.1548812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 01/06/2025] [Indexed: 02/06/2025] Open
Abstract
Protein arginine methyltransferases (PRMTs) play crucial roles in gene regulation, signal transduction, mRNA splicing, DNA repair, cell differentiation, and embryonic development. Due to its significant impact, PRMTs is a target for the prevention and treatment of various diseases. Among the PRMT family, PRMT1 is the most abundant and ubiquitously expressed in the human body. Although extensive research has been conducted on PRMT1, the reported inhibitors have not successfully passed clinical trials. In this study, deep learning was employed to analyze the characteristics of existing PRMTs inhibitors and to construct a classification model for PRMT1 inhibitors. Through a classification model and molecular docking, a series of potential PRMT1 inhibitors were identified. The representative compound (compound 156) demonstrates stable binding to the PRMT1 protein by molecular hybridization, molecular dynamics simulations, and binding free energy analyses. The study discovered novel scaffolds for potential PRMT1 inhibitors.
Collapse
Affiliation(s)
- Jungan Zhang
- School of Pharmacy, Minzu University of China, Beijing, China
| | - Yixin Ren
- School of Pharmacy, Minzu University of China, Beijing, China
- Institute of National Security, Minzu University of China, Beijing, China
| | - Yun Teng
- School of Pharmacy, Minzu University of China, Beijing, China
| | - Han Wu
- School of Pharmacy, Minzu University of China, Beijing, China
| | - Jingsu Xue
- Institute of National Security, Minzu University of China, Beijing, China
| | - Lulu Chen
- Institute of National Security, Minzu University of China, Beijing, China
| | - Xiaoyue Song
- School of Pharmacy, Minzu University of China, Beijing, China
| | - Yan Li
- School of Pharmacy, Minzu University of China, Beijing, China
| | - Ying Zhou
- School of Pharmacy, Minzu University of China, Beijing, China
| | - Zongran Pang
- School of Pharmacy, Minzu University of China, Beijing, China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, China
| | - Hao Wang
- School of Pharmacy, Minzu University of China, Beijing, China
- Institute of National Security, Minzu University of China, Beijing, China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, China
| |
Collapse
|
27
|
Bhandari K, Kong JS, Tina Ho WT, Bourne PC, Mooers BH, Ding WQ. Arginine demethylation of Serine/Arginine-rich splicing factor 1 enhances miRNA enrichment in small extracellular vesicles derived from pancreatic ductal adenocarcinoma cells. FASEB J 2025; 39:e70287. [PMID: 39760222 PMCID: PMC11827091 DOI: 10.1096/fj.202401811rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 12/17/2024] [Accepted: 12/20/2024] [Indexed: 01/07/2025]
Abstract
Small extracellular vesicles (sEVs) are enriched in certain miRNAs, impacting the progression of pancreatic ductal adenocarcinoma (PDAC). The mechanisms involved in the selective sEV miRNA enrichment remain to be elucidated. We recently reported that Serine/Arginine-rich splicing factor 1 (SRSF1) regulates selective sEV miRNA enrichment in PDAC cells. SRSF1 is an onco-protein that is overexpressed in PDAC, and its function is dictated by posttranslational modifications such as phosphorylation and arginine methylation. The objective of this study was to examine the role of phosphorylation and arginine methylation in SRSF1-mediated sEV miRNA enrichment in PDAC cells. Treatment of PDAC cells with the protein arginine methyltransferase inhibitors AMI-5 and EPZ015666, but not with the phosphorylation inhibitor SRPIN340, selectively enhanced the level of sEV miR-1246, a miRNA known to be highly enriched in PDAC sEVs. Consistently, overexpression of the mutant SRSF1 with the three arginine residues R93, R97, and R109 being replaced with lysinaugmented sEV miR-1246 levels in both wild-type and SRSF1-knockdown PANC-1 cells. Interestingly, the binding of SRSF1 to miR-1246 was significantly reduced in PDAC cells overexpressing the mutant SRSF1, which was further confirmed using purified wild-type and the mutant SRSF1 proteins. We demonstrate that arginine demethylation of SRSF1 reduces SRSF1-miRNA binding in PDAC cells and enhances selective sEV miRNA enrichment, providing novel insight into SRSF1-mediated sEV miRNA enrichment in PDAC cells and opening up new avenues of investigation on the biology and function of extracellular vesicles in PDAC.
Collapse
Affiliation(s)
- Kritisha Bhandari
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Jeng Shi Kong
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Wang-Ting Tina Ho
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Philip C. Bourne
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| | - Blaine H.M. Mooers
- Department of Physiology and Biochemistry, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Wei-Qun Ding
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City
| |
Collapse
|
28
|
Xiong C, Chen H, Su B, Zhang L, Hu J, Wang Q, Zhuang S. PRMT1-mediated BRD4 arginine methylation and phosphorylation promote partial epithelial-mesenchymal transformation and renal fibrosis. FASEB J 2025; 39:e70293. [PMID: 39775984 DOI: 10.1096/fj.202401838r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/02/2024] [Accepted: 12/23/2024] [Indexed: 01/30/2025]
Abstract
Bromodomain-containing protein 4 (BRD4) plays a vital role in fibrosis of various organs. However, the underlying mechanism of BRD4 in renal fibrosis remains unclear. To construct in vitro and in vivo models of renal fibrosis, TCMK-1 cells were subjected to TGF-β1 treatment and mice were subjected to UUO surgery and adenine induction. IP assay was used for arginine asymmetric dimethylation (ADMA) level, ubiquitination degradation of Snail, and acetylation level of Snail test. Co-IP was used to validate the interactions of BRD4, protein arginine methyltransferase-1 (PRMT1), and Snail. HE staining and Masson staining were used for morphological examination of renal tissue. BRD4 was abnormally overexpressed during renal fibrosis. TGF-β1-induced fibrosis and partial epithelial-mesenchymal transition (pEMT) could be inhibited by BRD4 silencing. PRMT1 mediated ADMA level of BRD4 to enhance BRD4 phosphorylation and its protein stability. Snail protein degradation was attenuated by BRD4 overexpression in an acetylation-dependent manner in TCMK-1 cells. Furthermore, PRMT1 inhibitor abolished BRD4 overexpression-induced fibrosis and pEMT in TGF-β1-treated TCMK-1 cells and Snail overexpression reversed BRD4 silencing-induced inhibition of fibrosis and pEMT. What's more, the reduction of BRD4 arginine methylation inhibited BRD4 phosphorylation and Snail expression to alleviate renal fibrosis in UUO surgery and adenine induction mice. Collectively, PRMT1-mediated BRD4 arginine methylation and phosphorylation promoted pEMT and renal fibrosis through regulation of Snail expression.
Collapse
Affiliation(s)
- Chongxiang Xiong
- Department of Nephrology, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, People's Republic of China
| | - Haishan Chen
- Department of Nephrology, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, People's Republic of China
| | - Baoting Su
- Department of Nephrology, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, People's Republic of China
| | - Li Zhang
- Department of Nephrology, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, People's Republic of China
| | - Jingxiang Hu
- Department of Nephrology, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, People's Republic of China
| | - Qiaowen Wang
- Department of Nephrology, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, People's Republic of China
| | - Shougang Zhuang
- Department of Medicine, Rhode Island Hospital and Brown University School of Medicine, Providence, Rhode Island, USA
| |
Collapse
|
29
|
Li QQ, Quan X, Wang ZX, Qiao N, Ni XF, Jing XL, Zhou SS, Tian XL, Zheng GC, Zhan KN, Xu YJ, Yang J, Zhou Y, Liang XT, Zhao ZH, Wei TH, Liu Q, Bai MY, Sun SL, Yu YC, Cao P, Li NG, Zhang XM, Liu J, Shi ZH. Design, Synthesis, and Biological Evaluation of 3,4-Dihydroisoquinolin-1( 2H)-one Derivatives as Protein Arginine Methyltransferase 5 Inhibitors for the Treatment of Non-Hodgkin's Lymphoma. J Med Chem 2025; 68:108-134. [PMID: 39722476 DOI: 10.1021/acs.jmedchem.4c01548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Through catalyzing the transfer of methyl groups onto the guanidinium of arginine, protein arginine methyltransferase 5 (PRMT5) was essential to the cell growth of cancer cells. By utilizing a scaffold hopping strategy, a novel series of 3,4-dihydroisoquinolin-1(2H)-one derivatives were designed and synthesized. Through a systematic SAR study, D3 demonstrated excellent PRMT5 inhibitory activity, potent antiproliferative activity against Z-138, favorable pharmacokinetic profiles, and low hERG toxicity. Molecular docking, molecular dynamic (MD) simulation, and surface plasmon resonance (SPR) study indicated that D3 was tightly interacted with PRMT5. Meanwhile, D3 exhibited high selectivity against PRMT5, which could inhibit the growth of various cancer cells, induce apoptosis, and arrest the cell cycle in the G0/G1 phase. Additionally, D3 possessed excellent antitumor efficacy in Z-138 xenograft models, low toxicity in vivo, and acceptable drug metabolism and pharmacokinetics (DMPK) profiles in vitro. Therefore, D3 can be developed as a promising candidate for the treatment of non-Hodgkin's lymphoma (NHL).
Collapse
Affiliation(s)
- Qing-Qing Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
- R & D Center, Nanjing Sanhome Pharmaceutical Co. Ltd., Nanjing 211135, China
| | - Xu Quan
- R & D Center, Nanjing Sanhome Pharmaceutical Co. Ltd., Nanjing 211135, China
| | - Zi-Xuan Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Nuo Qiao
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xing-Feng Ni
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiao-Long Jing
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shuang-Shuang Zhou
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xin-Lei Tian
- R & D Center, Nanjing Sanhome Pharmaceutical Co. Ltd., Nanjing 211135, China
| | - Guo-Chuang Zheng
- R & D Center, Nanjing Sanhome Pharmaceutical Co. Ltd., Nanjing 211135, China
| | - Kang-Ning Zhan
- R & D Center, Nanjing Sanhome Pharmaceutical Co. Ltd., Nanjing 211135, China
| | - Yu-Jing Xu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jin Yang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yun Zhou
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiao-Ting Liang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zong-Hao Zhao
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tian-Hua Wei
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qian Liu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ming-Yu Bai
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shan-Liang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yan-Cheng Yu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Peng Cao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Nian-Guang Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiao-Meng Zhang
- R & D Center, Nanjing Sanhome Pharmaceutical Co. Ltd., Nanjing 211135, China
| | - Jian Liu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhi-Hao Shi
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| |
Collapse
|
30
|
Meng S, Liu H, Xu J, Deng C, Qian X, Chu S, Zhu WG, Zhu J, Yong H, Li Z, Bai J. PRMT5-Mediated ALKBH5 Methylation Promotes Colorectal Cancer Immune Evasion via Increasing CD276 Expression. RESEARCH (WASHINGTON, D.C.) 2025; 8:0549. [PMID: 39781264 PMCID: PMC11707101 DOI: 10.34133/research.0549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/13/2024] [Accepted: 11/20/2024] [Indexed: 01/12/2025]
Abstract
Numerous diseases have been connected to protein arginine methylations mediated by protein arginine methyltransferase 5 (PRMT5). Clinical investigations of the PRMT5-specific inhibitor GSK3326595 are currently being conducted, and the results are promising for preventing cancers. However, the detailed mechanism of PRMT5 promoting colorectal cancer (CRC) malignant progression remains unclear. Here, we found that PRMT5 directly catalyzes AlkB homologue 5 (ALKBH5) symmetric dimethylation at the R316 residue (meR316-ALKBH5), which enhances TRIM28-mediated ALKBH5 ubiquitination degradation. Then, an ALKBH5 decrease attenuates ALKBH5-mediated m6A demethylation on the CD276 transcript 3' untranslated region, which increases CD276 messenger RNA stability and its expression in CRC cells. Furthermore, a CD276 expression increase facilitates CRC immune evasion by inhibiting cytotoxic T-cell functions. Moreover, we revealed that PRMT5-mediated meR316-ALKBH5 activates CD276 transcription by increasing its messenger RNA m6A modification to increase CRC immune evasion in vitro and in vivo. Furthermore, we consistently showed a strong association between meR316-ALKBH5 and poor outcomes in patients with CRC. Finally, we demonstrated that combining an anti-PD1 antibody with the PRMT5 inhibitor GSK3326595 markedly halts the progression of CRC. Our findings could serve as a basis for the development of a PRMT5-meR316-ALKBH5-CD276 axis-targeting treatment approach for CRC.
Collapse
Affiliation(s)
- Sen Meng
- Cancer Institute,
Xuzhou Medical University, Xuzhou, Jiangsu, China
- Centre of Clinical Oncology,
The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hao Liu
- Centre of Clinical Oncology,
The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jiayu Xu
- Department of Oncology,
The Affiliated Huai’an Hospital of Xuzhou Medical University and The Second People’s Hospital of Huai’an, Huai’an, Jiangsu, China
| | - Chuyin Deng
- Cancer Institute,
Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xingyou Qian
- Cancer Institute,
Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Sufang Chu
- Cancer Institute,
Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wei-Guo Zhu
- Laboratory of Epigenetic Regulation in Molecular Medicine, Department of Pathophysiology, School of Basic Medical Sciences,
Wannan Medical College, Wuhu, Anhui, China
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Department of Biochemistry and Molecular Biology,
Shenzhen University Medical School, Shenzhen, China
| | - Jiuling Zhu
- Laboratory of Epigenetic Regulation in Molecular Medicine, Department of Pathophysiology, School of Basic Medical Sciences,
Wannan Medical College, Wuhu, Anhui, China
| | - Hongmei Yong
- Department of Oncology,
The Affiliated Huai’an Hospital of Xuzhou Medical University and The Second People’s Hospital of Huai’an, Huai’an, Jiangsu, China
| | - Zhongwei Li
- Laboratory of Epigenetic Regulation in Molecular Medicine, Department of Pathophysiology, School of Basic Medical Sciences,
Wannan Medical College, Wuhu, Anhui, China
- Anhui Province Key Laboratory of Basic Research and Transformation of Age-Related Diseases,
Wannan Medical College, Wuhu, Anhui, China
| | - Jin Bai
- Cancer Institute,
Xuzhou Medical University, Xuzhou, Jiangsu, China
- Centre of Clinical Oncology,
The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute,
Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
31
|
Li H, Yang H, Liu L, Zheng J, Shi Q, Li B, Wang X, Zhang Y, Zhou R, Zhang J, Chen ZZ, Wang CY, Wang Y, Huang X, Liu Z. One stone two birds: Introducing piperazine into a series of nucleoside derivatives as potent and selective PRMT5 inhibitors. Eur J Med Chem 2025; 281:116970. [PMID: 39488968 DOI: 10.1016/j.ejmech.2024.116970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 11/05/2024]
Abstract
The protein arginine methyltransferase 5 (PRMT5) has emerged as potential target for the treatment of cancer. Many efforts have been made to develop potent and selective PRMT5 inhibitors targeting either S-adenosyl methionine (SAM) pocket or substrate binding pocket. Here, we rationally designed a series of nucleoside derivatives incorporated with piperazine as novel PRMT5 inhibitors occupying both pockets. The representative compound 36 exhibited highly potent PRMT5 inhibition activity as well as good selectivity over other methyltransferases. Further cellular experiments revealed that compound 36 potently reduced the level of symmetric dimethylarginines (sDMA) and inhibited the proliferation of MOLM-13 cell lines by inducing apoptosis and cell cycle arrest. Moreover, compound 36 had more favorable metabolic stability and aqueous solubility than JNJ64619178 (9). Meanwhile, it obviously suppressed the tumor growth in a MOLM-13 tumor xenograft model. These results clearly indicate that 36 is a highly potent and selective PRMT5 inhibitor worthy for further development.
Collapse
Affiliation(s)
- Huaxuan Li
- MOE Key Laboratory of Marine Drugs and Key Laboratory of Evolution and Marine Biodiversity, School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China; Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Hong Yang
- Lingang Laboratory, Shanghai, 200031, China
| | - Li Liu
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Jiahong Zheng
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | | | - Bang Li
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Xingcan Wang
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Ying Zhang
- Lingang Laboratory, Shanghai, 200031, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Ruilin Zhou
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Jian Zhang
- Thoracic Surgery Department, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Zhong-Zhu Chen
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Chang-Yun Wang
- MOE Key Laboratory of Marine Drugs and Key Laboratory of Evolution and Marine Biodiversity, School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
| | - Yuanxiang Wang
- Balance-Based Drug Discovery Laboratory, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.
| | - Xun Huang
- Lingang Laboratory, Shanghai, 200031, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China; School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China; School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China.
| | - Zhiqing Liu
- MOE Key Laboratory of Marine Drugs and Key Laboratory of Evolution and Marine Biodiversity, School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
| |
Collapse
|
32
|
Pollin G, Chi YI, Mathison AJ, Zimmermann MT, Lomberk G, Urrutia R. Emergent properties of the lysine methylome reveal regulatory roles via protein interactions and histone mimicry. Epigenomics 2025; 17:5-20. [PMID: 39632680 DOI: 10.1080/17501911.2024.2435244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024] Open
Abstract
AIMS Epigenomics has significantly advanced through the incorporation of Systems Biology approaches. This study aims to investigate the human lysine methylome as a system, using a data-science approach to reveal its emergent properties, particularly focusing on histone mimicry and the broader implications of lysine methylation across the proteome. METHODS We employed a data-science-driven OMICS approach, leveraging high-dimensional proteomic data to study the lysine methylome. The analysis focused on identifying sequence-based recognition motifs of lysine methyltransferases and evaluating the prevalence and distribution of lysine methylation across the human proteome. RESULTS Our analysis revealed that lysine methylation impacts 15% of the known proteome, with a notable bias toward mono-methylation. We identified sequence-based recognition motifs of 13 lysine methyltransferases, highlighting candidates for histone mimicry. These findings suggest that the selective inhibition of individual lysine methyltransferases could have systemic effects rather than merely targeting histone methylation. CONCLUSIONS The lysine methylome has significant mechanistic value and should be considered in the design and testing of therapeutic strategies, particularly in precision oncology. The study underscores the importance of considering non-histone proteins involved in DNA damage and repair, cell signaling, metabolism, and cell cycle pathways when targeting lysine methyltransferases.
Collapse
Affiliation(s)
- Gareth Pollin
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine (Mellowes Center), Medical College of Wisconsin, Milwaukee, WI, USA
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Young-In Chi
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine (Mellowes Center), Medical College of Wisconsin, Milwaukee, WI, USA
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Angela J Mathison
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine (Mellowes Center), Medical College of Wisconsin, Milwaukee, WI, USA
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Michael T Zimmermann
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine (Mellowes Center), Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
- Clinical and Translational Sciences Institute, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Gwen Lomberk
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine (Mellowes Center), Medical College of Wisconsin, Milwaukee, WI, USA
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Raul Urrutia
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine (Mellowes Center), Medical College of Wisconsin, Milwaukee, WI, USA
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
33
|
Zhang B, Li L, Wang N, Zhu Z, Wang M, Tan WP, Liu J, Zhou S. A new pathway for ferroptosis regulation: The PRMTs. Int J Biol Macromol 2025; 285:138143. [PMID: 39622375 DOI: 10.1016/j.ijbiomac.2024.138143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/19/2024] [Accepted: 11/26/2024] [Indexed: 12/06/2024]
Abstract
Protein arginine methyltransferases (PRMTs) play an essential role in the regulation of ferroptosis, a form of programmed cell death characterized by abnormal iron ion metabolism, lipid peroxidation, and DNA damage. Through methylation, PRMTs modify specific proteins, thereby altering their activity, localizations, or interactions with other molecules to control the ferroptosis process. This study was conducted to provide a comprehensive overview of the relationship between PRMTs and ferroptosis, with a focus on the mechanisms by which PRMTs regulate ferroptosis and their effect on this cell death pathway. Currently, only a few studies have been conducted on the regulation of ferroptosis by PRMTs. However, this review provides insights into the effects of PRMTs on ferroptosis regulators, suggesting that the regulation of ferroptosis by PRMTs holds potential as a new therapeutic target for related diseases.
Collapse
Affiliation(s)
- Bei Zhang
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical College, Guilin 541199, China; Basic Medical College, Guilin Medical College, Guilin 541199, China
| | - Luyao Li
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical College, Guilin 541199, China; Basic Medical College, Guilin Medical College, Guilin 541199, China
| | - Nan Wang
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical College, Guilin 541199, China; Basic Medical College, Guilin Medical College, Guilin 541199, China
| | - Zixuan Zhu
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical College, Guilin 541199, China; Basic Medical College, Guilin Medical College, Guilin 541199, China
| | - Mingyang Wang
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical College, Guilin 541199, China; Basic Medical College, Guilin Medical College, Guilin 541199, China
| | - Wu Peng Tan
- Department of Gynaecology, Maternal and Child Health Hospital of Hengyang, Hengyang 421001, China
| | - Jianfeng Liu
- Department of Pediatrics, The Second Affiliated Hospital of South China University, Hengyang 421001, China
| | - Shouhong Zhou
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical College, Guilin 541199, China; Basic Medical College, Guilin Medical College, Guilin 541199, China.
| |
Collapse
|
34
|
Davie JR, Sattarifard H, Sudhakar SRN, Roberts CT, Beacon TH, Muker I, Shahib AK, Rastegar M. Basic Epigenetic Mechanisms. Subcell Biochem 2025; 108:1-49. [PMID: 39820859 DOI: 10.1007/978-3-031-75980-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
The human genome consists of 23 chromosome pairs (22 autosomes and one pair of sex chromosomes), with 46 chromosomes in a normal cell. In the interphase nucleus, the 2 m long nuclear DNA is assembled with proteins forming chromatin. The typical mammalian cell nucleus has a diameter between 5 and 15 μm in which the DNA is packaged into an assortment of chromatin assemblies. The human brain has over 3000 cell types, including neurons, glial cells, oligodendrocytes, microglial, and many others. Epigenetic processes are involved in directing the organization and function of the genome of each one of the 3000 brain cell types. We refer to epigenetics as the study of changes in gene function that do not involve changes in DNA sequence. These epigenetic processes include histone modifications, DNA modifications, nuclear RNA, and transcription factors. In the interphase nucleus, the nuclear DNA is organized into different structures that are permissive or a hindrance to gene expression. In this chapter, we will review the epigenetic mechanisms that give rise to cell type-specific gene expression patterns.
Collapse
Affiliation(s)
- James R Davie
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.
| | - Hedieh Sattarifard
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Sadhana R N Sudhakar
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Chris-Tiann Roberts
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Tasnim H Beacon
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Ishdeep Muker
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Ashraf K Shahib
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Mojgan Rastegar
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
35
|
Ozkarafakili MA, Kara ZMY, Musluman AM, Bek TT. The Association of Plasma Asymmetric Dimethylarginine Concentrations and Inflammation Markers in Non-small Cell Lung Cancer. SISLI ETFAL HASTANESI TIP BULTENI 2024; 58:460-467. [PMID: 39816429 PMCID: PMC11729830 DOI: 10.14744/semb.2024.29939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 01/18/2025]
Abstract
Objectives Nonsmall cell lung cancer (NSCLC) accounts for about 85% of all lung cancers. Asymmetric dimethylarginine (ADMA) is an emerging molecule that is highlighted in carcinogenesis and tumor progression in lung cancer. Since elevated concentrations of ADMA are observed in lung cancer patients, we aimed to explore its associations with inflammation markers and established prognostic indices. Methods 78 newly diagnosed non-small cell lung cancer patients who were presented with brain metastases at the initial admission and 41 Stage 1 patients with NSCLC were included in the study. ADMA concentrations among the groups were correlated. Further, the relationship between ADMA levels and the other inflammatory markers was analyzed. Results ADMA levels were significantly higher in the group of NSCLC patients with brain metastases than in the Stage 1 patients control group (p<0.001). A significant negative correlation was found between ADMA levels and BMI, albumin and hemoglobin (p<0.001), whereas it was positively correlated with platelet, WBC, neutrophil-to-lymphocyte ratio, RDW, RDW/albumin ratio, LDH, CRP, fibrinogen, platelet, and CRP/albumin ratio (p<0.001). Conclusion Increased circulating concentrations of ADMA were significantly correlated with higher NLR, CRP and LDH; which were accepted as indicators of poor prognosis in NSCLC patients. ADMA might contribute to tumor growth and dissemination via systemic inflammatory pathways.
Collapse
Affiliation(s)
- Mufide Arzu Ozkarafakili
- Department of Chest Diseases, University of Health Sciences Türkiye, Sisli Hamidiye Etfal Training and Research Hospital, Istanbul, Türkiye
| | - Zeynep Mine Yalcinkaya Kara
- Department of Biochemistry, University of Health Sciences Türkiye, Sisli Hamidiye Etfal Training and Research Hospital, Istanbul, Türkiye
| | - Ahmet Murat Musluman
- Department of Neurosurgery, University of Health Sciences Türkiye, Sisli Hamidiye Etfal Training and Research Hospital, Istanbul, Türkiye
| | - Tuba Tulin Bek
- Department of Radiation Oncology, University of Health Sciences Türkiye, Sisli Hamidiye Etfal Training and Research Hospital, Istanbul, Türkiye
| |
Collapse
|
36
|
Zhang N, Jiang N, Chen Q. Key Regulators of Parasite Biology Viewed Through a Post-Translational Modification Repertoire. Proteomics 2024:e202400120. [PMID: 39690890 DOI: 10.1002/pmic.202400120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/29/2024] [Accepted: 12/04/2024] [Indexed: 12/19/2024]
Abstract
Parasites are the leading causes of morbidity and mortality in both humans and animals, imposing substantial socioeconomic burdens worldwide. Controlling parasitic diseases has become one of the key issues in achieving "One Health". Most parasites have sophisticated life cycles exhibiting progressive developmental stages, morphologies, and host-switching, which are controlled by various regulatory machineries including protein post-translational modifications (PTMs). PTMs have emerged as a key mechanism by which parasites modulate their virulence, developmental transitions, and environmental adaptations. PTMs are enzyme-mediated additions or removals of chemical groups that dynamically regulate the stability and functions of proteins and confer novel properties, playing vital roles in a variety of biological processes and cellular functions. In this review, we circumscribe how parasites utilize various PTMs to regulate their intricate lives, with a focus on the biological role of PTMs in parasite biology and pathogenesis.
Collapse
Affiliation(s)
- Naiwen Zhang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Ning Jiang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Qijun Chen
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| |
Collapse
|
37
|
Feng Q, Yu L, Li L, Zhang Q. Covalent inhibitors meet epigenetics: New opportunities. Eur J Med Chem 2024; 280:116951. [PMID: 39406112 DOI: 10.1016/j.ejmech.2024.116951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/09/2024] [Accepted: 09/23/2024] [Indexed: 11/25/2024]
Abstract
Epigenetic intervention has become an important therapeutic strategy for a variety of diseases, such as cancer. Although a small number of epigenetic drugs have been marketed, most of these inhibitors are limited by their poor efficacy, dose-dependent toxicity, poor selectivity, and drug resistance. The development of covalent inhibitors has progressed from questioning to resurgence. Its slow dissociation is expected to inject new vitality into epigenetic drugs. In this review, more than 40 covalent inhibitors of 29 epigenetic targets were collated, focusing on their design strategies, reaction mechanisms, covalent warheads and targeted amino acids, and covalent verification methods. Furthermore, this review presented new opportunities based on the current development of covalent inhibitors targeting epigenetic regulators. It is believed that epigenetic covalent inhibitors will lead to more breakthroughs.
Collapse
Affiliation(s)
- Qiang Feng
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu, 611130, China
| | - Luoting Yu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, And Collaborative Innovation Center for Biotherapy, 17#3rd Section, Ren Min South Road, Chengdu 610041, China
| | - Lu Li
- Department of Pharmacy, NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Qiangsheng Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, And Collaborative Innovation Center for Biotherapy, 17#3rd Section, Ren Min South Road, Chengdu 610041, China; Department of Pharmacy, West China Second University Hospital, Sichuan University, Children's Medicine Key Laboratory of Sichuan Province, Chengdu, 610041, China.
| |
Collapse
|
38
|
Micallef I, Fenech K, Baron B. Therapeutic targeting potential of the protein lysine and arginine methyltransferases to reverse cancer chemoresistance. Front Mol Biosci 2024; 11:1455415. [PMID: 39703687 PMCID: PMC11656028 DOI: 10.3389/fmolb.2024.1455415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/10/2024] [Indexed: 12/21/2024] Open
Abstract
Cancer treatments have continued to improve tremendously over the past decade, but therapy resistance is still a common, major factor encountered by patients diagnosed with cancer. Chemoresistance arises due to various circumstances and among these causes, increasing evidence has shown that enzymes referred to as protein methyltransferases (PMTs) play a significant role in the development of chemoresistance in various cancers. These enzymes are responsible for the methylation of different amino acids, particularly lysine and arginine, via protein lysine methyltransferases (PKMTs) and protein arginine methyltransferases (PRMTs), respectively. Various PMTs have been identified to be dysregulated in the development of cancer and chemoresistance. Nonetheless, the functional role of these PMTs in the development of chemoresistance is poorly characterised. This advocates the need for innovative approaches and technologies suitable for better characterisation of these PMTs and their potential clinical inhibitors. In the case of a handful of PMTs, inhibitory small molecules which can function as anticancer drugs have been developed and have also entered clinical trials. Considering all this, PMTs have become a promising and valuable target in cancer chemoresistance related research. This review will give a small introduction on the different PKMTs and PRMTs families which are dysregulated in different cancers and the known proteins targeted by the respective enzymes. The focus will then shift towards PMTs known to be involved in chemoresistance development and the inhibitors developed against these, together with their mode of action. Lastly, the current obstacles and future perspectives of PMT inhibitors in cancer chemoresistance will be discussed.
Collapse
Affiliation(s)
- Isaac Micallef
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
- Department of Tumor Genetics and Biology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kimberly Fenech
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Byron Baron
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| |
Collapse
|
39
|
Behzadi P, St Hilaire C. Metabolites and metabolism in vascular calcification: links between adenosine signaling and the methionine cycle. Am J Physiol Heart Circ Physiol 2024; 327:H1361-H1375. [PMID: 39453431 PMCID: PMC11588312 DOI: 10.1152/ajpheart.00267.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 10/21/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
The global population of individuals with cardiovascular disease is expanding, and a key risk factor for major adverse cardiovascular events is vascular calcification. The pathogenesis of cardiovascular calcification is complex and multifaceted, with external cues driving epigenetic, transcriptional, and metabolic changes that promote vascular calcification. This review provides an overview of some of the lesser understood molecular processes involved in vascular calcification and discusses the links between calcification pathogenesis and aspects of adenosine signaling and the methionine pathway; the latter of which salvages the essential amino acid methionine, but also provides the substrate critical for methylation, a modification that regulates the function and activity of DNA and proteins. We explore the complex and dynamic nature of osteogenic reprogramming underlying intimal atherosclerotic calcification and medial arterial calcification (MAC). Atherosclerotic calcification is more widely studied; however, emerging studies now show that MAC is a significant pathology independent from atherosclerosis. Furthermore, we emphasize metabolite and metabolic-modulating factors that influence vascular calcification pathogenesis. Although the contributions of these mechanisms are more well-define in relation to atherosclerotic intimal calcification, understanding these pathways may provide crucial mechanistic insights into MAC and inform future therapeutic approaches. Herein, we highlight the significance of adenosine and methyltransferase pathways as key regulators of vascular calcification pathogenesis.
Collapse
Affiliation(s)
- Parya Behzadi
- Division of Cardiology, Department of Medicine, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Cynthia St Hilaire
- Division of Cardiology, Department of Medicine, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
40
|
Yang L, Xia H, Smith K, Gilbertsen AJ, Jbeli AH, Abrahante JE, Bitterman PB, Henke CA. Tumor suppressors RBL1 and PTEN are epigenetically silenced in IPF mesenchymal progenitor cells by a CD44/Brg1/PRMT5 regulatory complex. Am J Physiol Lung Cell Mol Physiol 2024; 327:L949-L963. [PMID: 39406384 PMCID: PMC11684952 DOI: 10.1152/ajplung.00182.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/20/2024] [Accepted: 10/14/2024] [Indexed: 12/06/2024] Open
Abstract
The idiopathic pulmonary fibrosis (IPF) lung contains mesenchymal progenitor cells (MPCs) that display durable activation of oncogenic signaling and cell-autonomous fibrogenicity in vivo. Prior work identified a CD44/Brg1/PRMT5 nuclear regulatory module in IPF MPCs that increased the expression of genes positively regulating pluripotency and self-renewal. Left unanswered is how IPF MPCs evade negative regulation of self-renewal. Here we sought to identify mechanisms disabling negative regulation of self-renewal in IPF MPCs. We demonstrate that expression of the tumor suppressor genes rbl1 and pten is decreased in IPF MPCs. The mechanism involves the CD44-facilitated association of the chromatin remodeler Brg1 with the histone-modifying methyltransferase PRMT5. Brg1 enhances chromatin accessibility leading to PRMT5-mediated methylation of H3R8 and H4R3 on the rbl1 and pten genes, repressing their expression. Genetic knockdown or pharmacological inhibition of either Brg1 or PRMT5 restored RBL1 and PTEN expression reduced IPF MPC self-renewal in vitro and inhibited IPF MPC-mediated pulmonary fibrosis in vivo. Our studies indicate that the CD44/Brg1/PRMT5 regulatory module not only functions to activate positive regulators of pluripotency and self-renewal but also functions to repress tumor suppressor genes rbl1 and pten. This confers IPF MPCs with the cancer-like property of cell-autonomous self-renewal providing a molecular mechanism for relentless fibrosis progression in IPF.NEW & NOTEWORTHY Here we demonstrate that a CD44/Brg1/PRMT5 epigenetic regulatory module represses the tumor suppressor genes RBL1 and PTEN in IPF mesenchymal progenitor cells, thereby promoting their self-renewal and maintenance of a critical pool of fibrogenic mesenchymal progenitor cells.
Collapse
Affiliation(s)
- Libang Yang
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States
| | - Hong Xia
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States
| | - Karen Smith
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States
| | - Adam J Gilbertsen
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States
| | - Aiham H Jbeli
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States
| | - Juan E Abrahante
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota, United States
| | - Peter B Bitterman
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States
| | - Craig A Henke
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States
| |
Collapse
|
41
|
Zhou L, Zhao X, Sun J, Zou K, Huang X, Yu L, Wu M, Wang Y, Li X, Yi W. Mina53 demethylates histone H4 arginine 3 asymmetric dimethylation to regulate neural stem/progenitor cell identity. Nat Commun 2024; 15:10227. [PMID: 39587091 PMCID: PMC11589143 DOI: 10.1038/s41467-024-54680-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/18/2024] [Indexed: 11/27/2024] Open
Abstract
Arginine methylation of histones plays a critical role in regulating gene expression. The writers (methyltransferases) and readers of methylarginine marks are well-known, but the erasers-arginine demethylases-remain mysterious. Here we identify Myc-induced nuclear antigen 53 (Mina53), a jumonji C domain containing protein, as an arginine demethylase for removing asymmetric di-methylation at arginine 3 of histone H4 (H4R3me2a). Using a photoaffinity capture method, we first identify Mina53 as an interactor of H4R3me2a. Biochemical assays in vitro and in cells characterize the arginine demethylation activity of Mina53. Molecular dynamics simulations provide further atomic-level evidence that Mina53 acts on H4R3me2a. In a transgenic mouse model, specific Mina53 deletion in neural stem/progenitor cells prevents H4R3me2a demethylation at distinct genes clusters, dysregulating genes important for neural stem/progenitor cell proliferation and differentiation, and consequently impairing the cognitive function of mice. Collectively, we identify Mina53 as a bona fide H4R3me2a eraser, expanding the understanding of epigenetic gene regulation.
Collapse
Affiliation(s)
- Lixiao Zhou
- Departments of Biochemistry and Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Xingsen Zhao
- Institute of Biotechnology, Xianghu Laboratory, Hangzhou, China
| | - Jie Sun
- Departments of Biochemistry and Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Kun Zou
- Department of Chemistry, School of Science, Westlake University, Hangzhou, China
| | - Xiaoli Huang
- The Children's Hospital, National Clinical Research Center for Children Health, The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Liyang Yu
- Departments of Biochemistry and Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Mingxuan Wu
- Department of Chemistry, School of Science, Westlake University, Hangzhou, China
| | - Yong Wang
- Departments of Biochemistry and Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Xuekun Li
- The Children's Hospital, National Clinical Research Center for Children Health, The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
| | - Wen Yi
- Departments of Biochemistry and Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
42
|
Veglia Tranchese R, Battista S, Cerchia L, Fedele M. Ferroptosis in Cancer: Epigenetic Control and Therapeutic Opportunities. Biomolecules 2024; 14:1443. [PMID: 39595619 PMCID: PMC11592303 DOI: 10.3390/biom14111443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/06/2024] [Accepted: 11/10/2024] [Indexed: 11/28/2024] Open
Abstract
Ferroptosis, an iron-dependent form of regulated cell death driven by lipid peroxidation, has emerged as a critical pathway in cancer biology. This review delves into the epigenetic mechanisms that modulate ferroptosis in cancer cells, focusing on how DNA methylation, histone modifications, and non-coding RNAs influence the expression and function of essential genes involved in this process. By unraveling the complex interplay between these epigenetic mechanisms and ferroptosis, the article sheds light on novel gene targets and functional insights that could pave the way for innovative cancer treatments to enhance therapeutic efficacy and overcome resistance in cancer therapy.
Collapse
Affiliation(s)
| | | | | | - Monica Fedele
- Institute of Experimental Endocrinology and Oncology “G. Salvatore” (IEOS), National Research Council—CNR, 80131 Naples, Italy; (R.V.T.); (S.B.); (L.C.)
| |
Collapse
|
43
|
Dang T, EswarKumar N, Tripathi SK, Yan C, Wang CH, Cao M, Paul TK, Agboluaje EO, Xiong MP, Ivanov I, Ho MC, Zheng YG. Oligomerization of protein arginine methyltransferase 1 and its functional impact on substrate arginine methylation. J Biol Chem 2024; 300:107947. [PMID: 39491649 DOI: 10.1016/j.jbc.2024.107947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 10/20/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024] Open
Abstract
Protein arginine methyltransferases (PRMTs) are important posttranslational modifying enzymes in eukaryotic proteins and regulate diverse pathways from gene transcription, RNA splicing, and signal transduction to metabolism. Increasing evidence supports that PRMTs exhibit the capacity to form higher-order oligomeric structures, but the structural basis of PRMT oligomerization and its functional consequence are elusive. Herein, we revealed for the first time different oligomeric structural forms of the predominant arginine methyltransferase PRMT1 using cryo-EM, which included tetramer (dimer of dimers), hexamer (trimer of dimers), octamer (tetramer of dimers), decamer (pentamer of dimers), and also helical filaments. Through a host of biochemical assays, we showed that PRMT1 methyltransferase activity was substantially enhanced as a result of the high-ordered oligomerization. High-ordered oligomerization increased the catalytic turnover and the multimethylation processivity of PRMT1. Presence of a catalytically dead PRMT1 mutant also enhanced the activity of WT PRMT1, pointing out a noncatalytic role of oligomerization. Structural modeling demonstrates that oligomerization enhances substrate retention at the PRMT1 surface through electrostatic force. Our studies offered key insights into PRMT1 oligomerization and established that oligomerization constitutes a novel molecular mechanism that positively regulates the enzymatic activity of PRMTs in biology.
Collapse
Affiliation(s)
- Tran Dang
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia, United States
| | | | - Sunil Kumar Tripathi
- Department of Chemistry, Georgia State University, Atlanta, Georgia, USA; Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Chunli Yan
- Department of Chemistry, Georgia State University, Atlanta, Georgia, USA; Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Chun-Hsiung Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Mengtong Cao
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia, United States
| | - Tanmoy Kumar Paul
- Department of Chemistry, Georgia State University, Atlanta, Georgia, USA; Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Elizabeth Oladoyin Agboluaje
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia, United States
| | - May P Xiong
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia, United States
| | - Ivaylo Ivanov
- Department of Chemistry, Georgia State University, Atlanta, Georgia, USA; Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Meng-Chiao Ho
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan; Graduate Institute of Biochemistry and Molecular Biology, National Taiwan University, Taipei, Taiwan.
| | - Y George Zheng
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia, United States.
| |
Collapse
|
44
|
Zhao Y, Qin C, Lin C, Li Z, Zhao B, Li T, Zhang X, Wang W. Pancreatic ductal adenocarcinoma cells reshape the immune microenvironment: Molecular mechanisms and therapeutic targets. Biochim Biophys Acta Rev Cancer 2024; 1879:189183. [PMID: 39303859 DOI: 10.1016/j.bbcan.2024.189183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/23/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a digestive system malignancy characterized by challenging early detection, limited treatment alternatives, and generally poor prognosis. Although there have been significant advancements in immunotherapy for hematological malignancies and various solid tumors in recent decades, with impressive outcomes in recent preclinical and clinical trials, the effectiveness of these therapies in treating PDAC continues to be modest. The unique immunological microenvironment of PDAC, especially the abnormal distribution, complex composition, and variable activation states of tumor-infiltrating immune cells, greatly restricts the effectiveness of immunotherapy. Undoubtedly, integrating data from both preclinical models and human studies helps accelerate the identification of reliable molecules and pathways responsive to targeted biological therapies and immunotherapies, thereby continuously optimizing therapeutic combinations. In this review, we delve deeply into how PDAC cells regulate the immune microenvironment through complex signaling networks, affecting the quantity and functional status of immune cells to promote immune escape and tumor progression. Furthermore, we explore the multi-modal immunotherapeutic strategies currently under development, emphasizing the transformation of the immunosuppressive environment into an anti-tumor milieu by targeting specific molecular and cellular pathways, providing insights for the development of novel treatment strategies.
Collapse
Affiliation(s)
- Yutong Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Cheng Qin
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Chen Lin
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Zeru Li
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Bangbo Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Tianyu Li
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Xiangyu Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Weibin Wang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China.
| |
Collapse
|
45
|
Hong J, Li X, Hao Y, Xu H, Yu L, Meng Z, Zhang J, Zhu M. The PRMT6/STAT1/ACSL1 axis promotes ferroptosis in diabetic nephropathy. Cell Death Differ 2024; 31:1561-1575. [PMID: 39134684 PMCID: PMC11519485 DOI: 10.1038/s41418-024-01357-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024] Open
Abstract
Hyperglycaemia-induced ferroptosis is a significant contributor to kidney dysfunction in diabetic nephropathy (DN) patients. In addition, targeting ferroptosis has clinical implications for the treatment of DN. However, effective therapeutic targets for ferroptosis have not been identified. In this study, we aimed to explore the precise role of protein arginine methyltransferase 6 (PRMT6) in regulating ferroptosis in DN. In the present study, we utilized a mouse DN model consisting of both wild-type and PRMT6-knockout (PRMT6-/-) mice. Transcriptomic and lipidomic analyses, along with various molecular biological methodologies, were used to determine the potential mechanism by which PRMT6 regulates ferroptosis in DN. Our results indicate that PRMT6 downregulation participates in kidney dysfunction and renal cell death via the modulation of ferroptosis in DN. Moreover, PRMT6 reduction induced lipid peroxidation by upregulating acyl-CoA synthetase long-chain family member 1 (ACSL1) expression, ultimately contributing to ferroptosis. Furthermore, we investigated the molecular mechanism by which PRMT6 interacts with signal transducer and activator of transcription 1 (STAT1) to jointly regulate ACSL1 transcription. Additionally, treatment with the STAT1-specific inhibitor fludarabine delayed DN progression. Furthermore, we observed that PRMT6 and STAT1 synergistically regulate ACSL1 transcription to mediate ferroptosis in hyperglycaemic cells. Our study demonstrated that PRMT6 and STAT1 comodulate ACSL1 transcription to induce the production of phospholipid-polyunsaturated fatty acids (PL-PUFAs), thus participating in ferroptosis in DN. These findings suggest that the PRMT6/STAT1/ACSL1 axis is a new therapeutic target for the prevention and treatment of DN.
Collapse
Affiliation(s)
- Jia Hong
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xue Li
- Department of Anesthesiology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yingxiang Hao
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongjiao Xu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lang Yu
- Department of Anesthesiology, Huzhou Central Hospital, Affiliated Central Hospital of HuZhou University, No.1558 Sanhuan North Road, Huzhou, Zhejiang, China
| | - Zhipeng Meng
- Department of Anesthesiology, Huzhou Central Hospital, Affiliated Central Hospital of HuZhou University, No.1558 Sanhuan North Road, Huzhou, Zhejiang, China.
| | - Jianhai Zhang
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Minmin Zhu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
46
|
Guo G, Wang W, Tu M, Zhao B, Han J, Li J, Pan Y, Zhou J, Ma W, Liu Y, Sun T, Han X, An Y. Deciphering adipose development: Function, differentiation and regulation. Dev Dyn 2024; 253:956-997. [PMID: 38516819 DOI: 10.1002/dvdy.708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/02/2024] [Accepted: 03/10/2024] [Indexed: 03/23/2024] Open
Abstract
The overdevelopment of adipose tissues, accompanied by excess lipid accumulation and energy storage, leads to adipose deposition and obesity. With the increasing incidence of obesity in recent years, obesity is becoming a major risk factor for human health, causing various relevant diseases (including hypertension, diabetes, osteoarthritis and cancers). Therefore, it is of significance to antagonize obesity to reduce the risk of obesity-related diseases. Excess lipid accumulation in adipose tissues is mediated by adipocyte hypertrophy (expansion of pre-existing adipocytes) or hyperplasia (increase of newly-formed adipocytes). It is necessary to prevent excessive accumulation of adipose tissues by controlling adipose development. Adipogenesis is exquisitely regulated by many factors in vivo and in vitro, including hormones, cytokines, gender and dietary components. The present review has concluded a comprehensive understanding of adipose development including its origin, classification, distribution, function, differentiation and molecular mechanisms underlying adipogenesis, which may provide potential therapeutic strategies for harnessing obesity without impairing adipose tissue function.
Collapse
Affiliation(s)
- Ge Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Wanli Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Mengjie Tu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Binbin Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Jiayang Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Jiali Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Yanbing Pan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Jie Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Wen Ma
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Yi Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Tiantian Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Xu Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Yang An
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| |
Collapse
|
47
|
Bae AA, Zheng YG. Hetero-oligomeric interaction as a new regulatory mechanism for protein arginine methyltransferases. Biochem Soc Trans 2024; 52:2193-2201. [PMID: 39324605 PMCID: PMC11624628 DOI: 10.1042/bst20240242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/27/2024]
Abstract
Protein arginine methylation is a versatile post-translational protein modification that has notable cellular roles such as transcriptional activation or repression, cell signaling, cell cycle regulation, and DNA damage response. However, in spite of their extensive significance in the biological system, there is still a significant gap in understanding of the entire function of the protein arginine methyltransferases (PRMTs). It has been well-established that PRMTs form homo-oligomeric complexes to be catalytically active, but in recent years, several studies have showcased evidence that different members of PRMTs can have cross-talk with one another to form hetero-oligomeric complexes. Additionally, these heteromeric complexes have distinct roles separate from their homomeric counterparts. Here, we review and highlight the discovery of the heterodimerization of PRMTs and discuss the biological implications of these hetero-oligomeric interactions.
Collapse
Affiliation(s)
- Angela A Bae
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, U.S.A
| | - Y George Zheng
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, U.S.A
| |
Collapse
|
48
|
Deng Y, Kim EJ, Song X, Kulkarni AS, Zhu RX, Wang Y, Bush M, Dong A, Noinaj N, Min J, Xu W, Huang R. An Adenosine Analogue Library Reveals Insights into Active Sites of Protein Arginine Methyltransferases and Enables the Discovery of a Selective PRMT4 Inhibitor. J Med Chem 2024; 67:18053-18069. [PMID: 39361813 DOI: 10.1021/acs.jmedchem.4c01041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Protein arginine methyltransferases (PRMTs) represent promising drug targets. However, the lack of isoform-selective chemical probes poses a significant hurdle in deciphering their biological roles. To address this issue, we devised a library of 100 diverse adenosine analogues, enabling a detailed exploration of the active site of PRMTs. Despite their close homology, our analysis unveiled specific chemical trends unique to the individual members. Notably, compound YD1130 demonstrated over 1000-fold selectivity for PRMT4 (IC50 < 0.5 nM) over a panel of 38 methyltransferases, including the other PRMTs. Its prodrug YD1342 exhibited potent inhibition on cellular substrate methylation, breast cancer cell colony formation, and tumor growth in the animal model, surpassing or matching known PRMT4-specific inhibitors. In summary, our focused library not only illuminates the intricate active sites of PRMTs to facilitate the discovery of highly potent and isoform-selective probes but also offers a versatile blueprint for identifying chemical probes for other methyltransferases.
Collapse
Affiliation(s)
- Youchao Deng
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Eui-Jun Kim
- McArdle Laboratory for Cancer Research, UW Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Xiaosheng Song
- Structural Genomics Consortium and Department of Physiology, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Akshay S Kulkarni
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ryan X Zhu
- McArdle Laboratory for Cancer Research, UW Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Yidan Wang
- McArdle Laboratory for Cancer Research, UW Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Michelle Bush
- Department of Biological Sciences, Markey Center for Structural Biology, and the Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, Indiana 47907, United States
| | - Aiping Dong
- Structural Genomics Consortium and Department of Physiology, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Nicholas Noinaj
- Department of Biological Sciences, Markey Center for Structural Biology, and the Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jinrong Min
- Structural Genomics Consortium and Department of Physiology, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, PR China
| | - Wei Xu
- McArdle Laboratory for Cancer Research, UW Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Rong Huang
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
49
|
Farrokhi Yekta R, Farahani M, Koushki M, Amiri-Dashatan N. Deciphering the potential role of post-translational modifications of histones in gastrointestinal cancers: a proteomics-based review with therapeutic challenges and opportunities. Front Oncol 2024; 14:1481426. [PMID: 39497715 PMCID: PMC11532047 DOI: 10.3389/fonc.2024.1481426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 09/30/2024] [Indexed: 11/07/2024] Open
Abstract
Oncogenesis is a complex and multi-step process, controlled by several factors including epigenetic modifications. It is considered that histone modifications are critical components in the regulation of gene expression, protein functions, and molecular interactions. Dysregulated post-translationally modified histones and the related enzymatic systems are key players in the control of cell proliferation and differentiation, which are associated with the onset and progression of cancers. The most of traditional investigations on cancer have focused on mutations of oncogenes and tumor suppressor genes. However, increasing evidence indicates that epigenetics, especially histone post-translational modifications (PTMs) play important roles in various cancer types. Mass spectrometry-based proteomic approaches have demonstrated tremendous potential in PTMs profiling and quantitation in different biological systems. In this paper, we have made a proteomics-based review on the role of histone modifications involved in gastrointestinal cancers (GCs) tumorigenesis processes. These alterations function not only as diagnostic or prognostic biomarkers for GCs, but a deeper comprehension of the epigenetic regulation of GCs could facilitate the treatment of this prevalent malignancy through the creation of more effective targeted therapies.
Collapse
Affiliation(s)
- Reyhaneh Farrokhi Yekta
- Proteomics Research Center, System Biology Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Farahani
- Proteomics Research Center, System Biology Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Koushki
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Nasrin Amiri-Dashatan
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
50
|
Seabrook LJ, Franco CN, Loy CA, Osman J, Fredlender C, Zimak J, Campos M, Nguyen ST, Watson RL, Levine SR, Khalil MF, Sumigray K, Trader DJ, Albrecht LV. Methylarginine targeting chimeras for lysosomal degradation of intracellular proteins. Nat Chem Biol 2024:10.1038/s41589-024-01741-y. [PMID: 39414979 DOI: 10.1038/s41589-024-01741-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 09/05/2024] [Indexed: 10/18/2024]
Abstract
A paradigm shift in drug development is the discovery of small molecules that harness the ubiquitin-proteasomal pathway to eliminate pathogenic proteins. Here we provide a modality for targeted protein degradation in lysosomes. We exploit an endogenous lysosomal pathway whereby protein arginine methyltransferases (PRMTs) initiate substrate degradation via arginine methylation. We developed a heterobifunctional small molecule, methylarginine targeting chimera (MrTAC), that recruits PRMT1 to a target protein for induced degradation in lysosomes. MrTAC compounds degraded substrates across cell lines, timescales and doses. MrTAC degradation required target protein methylation for subsequent lysosomal delivery via microautophagy. A library of MrTAC molecules exemplified the generality of MrTAC to degrade known targets and neo-substrates-glycogen synthase kinase 3β, MYC, bromodomain-containing protein 4 and histone deacetylase 6. MrTAC selectively degraded target proteins and drove biological loss-of-function phenotypes in survival, transcription and proliferation. Collectively, MrTAC demonstrates the utility of endogenous lysosomal proteolysis in the generation of a new class of small molecule degraders.
Collapse
Affiliation(s)
- Laurence J Seabrook
- Department of Developmental & Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA, USA
| | - Carolina N Franco
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA
| | - Cody A Loy
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA
| | - Jaida Osman
- Department of Chemistry, School of Physical Sciences, University of California, Irvine, Irvine, CA, USA
| | - Callie Fredlender
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA
| | - Jan Zimak
- Center for Neurotherapeutics, University of California, Irvine, Irvine, CA, USA
| | - Melissa Campos
- Department of Developmental & Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA, USA
| | - Steven T Nguyen
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA
| | - Richard L Watson
- Department of Medicine, Division of Pulmonary & Critical Care, University of California, Los Angeles, Los Angeles, CA, USA
| | - Samantha R Levine
- Center for Neurotherapeutics, University of California, Irvine, Irvine, CA, USA
| | - Marian F Khalil
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA
| | - Kaelyn Sumigray
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Darci J Trader
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA
- Department of Chemistry, School of Physical Sciences, University of California, Irvine, Irvine, CA, USA
| | - Lauren V Albrecht
- Department of Developmental & Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA, USA.
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|