1
|
Davidson BA, Miranda AX, Reed SC, Bergman RE, Kemp JDJ, Reddy AP, Pantone MV, Fox EK, Dorand RD, Hurley PJ, Croessmann S, Park BH. An in vitro CRISPR screen of cell-free DNA identifies apoptosis as the primary mediator of cell-free DNA release. Commun Biol 2024; 7:441. [PMID: 38600351 PMCID: PMC11006667 DOI: 10.1038/s42003-024-06129-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 03/29/2024] [Indexed: 04/12/2024] Open
Abstract
ABTRACT Clinical circulating cell-free DNA (cfDNA) testing is now routine, however test accuracy remains limited. By understanding the life-cycle of cfDNA, we might identify opportunities to increase test performance. Here, we profile cfDNA release across a 24-cell line panel and utilize a cell-free CRISPR screen (cfCRISPR) to identify mediators of cfDNA release. Our panel outlines two distinct groups of cell lines: one which releases cfDNA fragmented similarly to clinical samples and purported as characteristic of apoptosis, and another which releases larger fragments associated with vesicular or necrotic DNA. Our cfCRISPR screens reveal that genes mediating cfDNA release are primarily involved with apoptosis, but also identify other subsets of genes such as RNA binding proteins as potential regulators of cfDNA release. We observe that both groups of cells lines identified primarily produce cfDNA through apoptosis. These results establish the utility of cfCRISPR, genetically validate apoptosis as a major mediator of DNA release in vitro, and implicate ways to improve cfDNA assays.
Collapse
Affiliation(s)
- Brad A Davidson
- Division of Hematology, Oncology, Department of Medicine, Vanderbilt University Medical Center and the Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | - Adam X Miranda
- Division of Hematology, Oncology, Department of Medicine, Vanderbilt University Medical Center and the Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | - Sarah C Reed
- Division of Hematology, Oncology, Department of Medicine, Vanderbilt University Medical Center and the Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
- Medical Scientist Training Program, Vanderbilt University, Nashville, TN, USA
| | - Riley E Bergman
- Division of Hematology, Oncology, Department of Medicine, Vanderbilt University Medical Center and the Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
- Medical Scientist Training Program, Vanderbilt University, Nashville, TN, USA
| | - Justin D J Kemp
- Division of Hematology, Oncology, Department of Medicine, Vanderbilt University Medical Center and the Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | - Anvith P Reddy
- Division of Hematology, Oncology, Department of Medicine, Vanderbilt University Medical Center and the Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
- Medical Scientist Training Program, Vanderbilt University, Nashville, TN, USA
| | - Morgan V Pantone
- Division of Hematology, Oncology, Department of Medicine, Vanderbilt University Medical Center and the Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | - Ethan K Fox
- Division of Hematology, Oncology, Department of Medicine, Vanderbilt University Medical Center and the Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | - R Dixon Dorand
- Division of Hematology, Oncology, Department of Medicine, Vanderbilt University Medical Center and the Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | - Paula J Hurley
- Division of Hematology, Oncology, Department of Medicine, Vanderbilt University Medical Center and the Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | - Sarah Croessmann
- Division of Hematology, Oncology, Department of Medicine, Vanderbilt University Medical Center and the Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | - Ben Ho Park
- Division of Hematology, Oncology, Department of Medicine, Vanderbilt University Medical Center and the Vanderbilt-Ingram Cancer Center, Nashville, TN, USA.
| |
Collapse
|
2
|
Schauner R, Cress J, Hong C, Wald D, Ramakrishnan P. Single cell and bulk RNA expression analyses identify enhanced hexosamine biosynthetic pathway and O-GlcNAcylation in acute myeloid leukemia blasts and stem cells. Front Immunol 2024; 15:1327405. [PMID: 38601153 PMCID: PMC11004450 DOI: 10.3389/fimmu.2024.1327405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/13/2024] [Indexed: 04/12/2024] Open
Abstract
Introduction Acute myeloid leukemia (AML) is the most common acute leukemia in adults with an overall poor prognosis and high relapse rate. Multiple factors including genetic abnormalities, differentiation defects and altered cellular metabolism contribute to AML development and progression. Though the roles of oxidative phosphorylation and glycolysis are defined in AML, the role of the hexosamine biosynthetic pathway (HBP), which regulates the O-GlcNAcylation of cytoplasmic and nuclear proteins, remains poorly defined. Methods We studied the expression of the key enzymes involved in the HBP in AML blasts and stem cells by RNA sequencing at the single-cell and bulk level. We performed flow cytometry to study OGT protein expression and global O-GlcNAcylation. We studied the functional effects of inhibiting O-GlcNAcylation on transcriptional activation in AML cells by Western blotting and real time PCR and on cell cycle by flow cytometry. Results We found higher expression levels of the key enzymes in the HBP in AML as compared to healthy donors in whole blood. We observed elevated O-GlcNAc Transferase (OGT) and O-GlcNAcase (OGA) expression in AML stem and bulk cells as compared to normal hematopoietic stem and progenitor cells (HSPCs). We also found that both AML bulk cells and stem cells show significantly enhanced OGT protein expression and global O-GlcNAcylation as compared to normal HSPCs, validating our in silico findings. Gene set analysis showed substantial enrichment of the NF-κB pathway in AML cells expressing high OGT levels. Inhibition of O-GlcNAcylation decreased NF-κB nuclear translocation and the expression of selected NF-κB-dependent genes controlling cell cycle. It also blocked cell cycle progression suggesting a link between enhanced O-GlcNAcylation and NF-κB activation in AML cell survival and proliferation. Discussion Our study suggests the HBP may prove a potential target, alone or in combination with other therapeutic approaches, to impact both AML blasts and stem cells. Moreover, as insufficient targeting of AML stem cells by traditional chemotherapy is thought to lead to relapse, blocking HBP and O-GlcNAcylation in AML stem cells may represent a novel promising target to control relapse.
Collapse
Affiliation(s)
- Robert Schauner
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
- Department of Artificial Intelligence and Informatics, Mayo Clinic, Jacksonville, FL, United States
| | - Jordan Cress
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
| | - Changjin Hong
- Department of Artificial Intelligence and Informatics, Mayo Clinic, Jacksonville, FL, United States
| | - David Wald
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
- The Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, United States
- Department of Pathology, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Parameswaran Ramakrishnan
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
- The Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, United States
- Department of Pathology, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, United States
| |
Collapse
|
3
|
van der Horst D, Kurmasheva N, Marqvorsen MHS, Assil S, Rahimic AHF, Kollmann CF, Silva da Costa L, Wu Q, Zhao J, Cesari E, Iversen MB, Ren F, Jensen TI, Narita R, Schack VR, Zhang BC, Bak RO, Sette C, Fenton RA, Mikkelsen JG, Paludan SR, Olagnier D. SAM68 directs STING signaling to apoptosis in macrophages. Commun Biol 2024; 7:283. [PMID: 38454028 PMCID: PMC10920828 DOI: 10.1038/s42003-024-05969-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 02/23/2024] [Indexed: 03/09/2024] Open
Abstract
DNA is a danger signal sensed by cGAS to engage signaling through STING to activate innate immune functions. The best-studied downstream responses to STING activation include expression of type I interferon and inflammatory genes, but STING also activates other pathways, including apoptosis. Here, we report that STING-dependent induction of apoptosis in macrophages occurs through the intrinsic mitochondrial pathway and is mediated via IRF3 but acts independently of gene transcription. By intersecting four mass spectrometry datasets, we identify SAM68 as crucial for the induction of apoptosis downstream of STING activation. SAM68 is essential for the full activation of apoptosis. Still, it is not required for STING-mediated activation of IFN expression or activation of NF-κB. Mechanistic studies reveal that protein trafficking is required and involves SAM68 recruitment to STING upon activation, with the two proteins associating at the Golgi or a post-Golgi compartment. Collectively, our work identifies SAM68 as a STING-interacting protein enabling induction of apoptosis through this DNA-activated innate immune pathway.
Collapse
Affiliation(s)
- Demi van der Horst
- Department of Biomedicine, Aarhus University, Høegh Guldbergsgade 10, 8000, Aarhus C, Denmark
| | - Naziia Kurmasheva
- Department of Biomedicine, Aarhus University, Høegh Guldbergsgade 10, 8000, Aarhus C, Denmark
| | - Mikkel H S Marqvorsen
- Department of Biomedicine, Aarhus University, Høegh Guldbergsgade 10, 8000, Aarhus C, Denmark
| | - Sonia Assil
- Department of Biomedicine, Aarhus University, Høegh Guldbergsgade 10, 8000, Aarhus C, Denmark
| | - Anna H F Rahimic
- Department of Biomedicine, Aarhus University, Høegh Guldbergsgade 10, 8000, Aarhus C, Denmark
| | - Christoph F Kollmann
- Department of Biomedicine, Aarhus University, Høegh Guldbergsgade 10, 8000, Aarhus C, Denmark
| | - Leandro Silva da Costa
- Department of Biomedicine, Aarhus University, Høegh Guldbergsgade 10, 8000, Aarhus C, Denmark
| | - Qi Wu
- Department of Biomedicine, Aarhus University, Høegh Guldbergsgade 10, 8000, Aarhus C, Denmark
| | - Jian Zhao
- Department of Biomedicine, Aarhus University, Høegh Guldbergsgade 10, 8000, Aarhus C, Denmark
| | - Eleonora Cesari
- GSTEP-Organoids Core Facility, IRCCS Fondazione Policlinico Agostino Gemelli, 00168, Rome, Italy
| | - Marie B Iversen
- Department of Biomedicine, Aarhus University, Høegh Guldbergsgade 10, 8000, Aarhus C, Denmark
| | - Fanghui Ren
- Department of Biomedicine, Aarhus University, Høegh Guldbergsgade 10, 8000, Aarhus C, Denmark
| | - Trine I Jensen
- Department of Biomedicine, Aarhus University, Høegh Guldbergsgade 10, 8000, Aarhus C, Denmark
| | - Ryo Narita
- Department of Biomedicine, Aarhus University, Høegh Guldbergsgade 10, 8000, Aarhus C, Denmark
| | - Vivien R Schack
- Department of Biomedicine, Aarhus University, Høegh Guldbergsgade 10, 8000, Aarhus C, Denmark
| | - Bao-Cun Zhang
- Department of Biomedicine, Aarhus University, Høegh Guldbergsgade 10, 8000, Aarhus C, Denmark
| | - Rasmus O Bak
- Department of Biomedicine, Aarhus University, Høegh Guldbergsgade 10, 8000, Aarhus C, Denmark
| | - Claudio Sette
- GSTEP-Organoids Core Facility, IRCCS Fondazione Policlinico Agostino Gemelli, 00168, Rome, Italy
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Hearth, 00168, Rome, Italy
| | - Robert A Fenton
- Department of Biomedicine, Aarhus University, Høegh Guldbergsgade 10, 8000, Aarhus C, Denmark
| | - Jacob G Mikkelsen
- Department of Biomedicine, Aarhus University, Høegh Guldbergsgade 10, 8000, Aarhus C, Denmark
| | - Søren R Paludan
- Department of Biomedicine, Aarhus University, Høegh Guldbergsgade 10, 8000, Aarhus C, Denmark.
| | - David Olagnier
- Department of Biomedicine, Aarhus University, Høegh Guldbergsgade 10, 8000, Aarhus C, Denmark.
| |
Collapse
|
4
|
da Silva AM, Yevdokimova V, Benoit YD. Sam68 is a druggable vulnerability point in cancer stem cells. Cancer Metastasis Rev 2024; 43:441-456. [PMID: 37792222 PMCID: PMC11016129 DOI: 10.1007/s10555-023-10145-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 09/27/2023] [Indexed: 10/05/2023]
Abstract
Sam68 (Src associated in mitosis of 68 kDa) is an RNA-binding and multifunctional protein extensively characterized in numerous cellular functions, such as RNA processing, cell cycle regulation, kinase- and growth factor signaling. Recent investigations highlighted Sam68 as a primary target of a class of reverse-turn peptidomimetic drugs, initially developed as inhibitors of Wnt/β-catenin mediated transcription. Further investigations on such compounds revealed their capacity to selectively eliminate cancer stem cell (CSC) activity upon engaging Sam68. This work highlighted previously unappreciated roles for Sam68 in the maintenance of neoplastic self-renewal and tumor-initiating functions. Here, we discuss the implication of Sam68 in tumorigenesis, where central findings support its contribution to chromatin regulation processes essential to CSCs. We also review advances in CSC-targeting drug discovery aiming to modulate Sam68 cellular distribution and protein-protein interactions. Ultimately, Sam68 constitutes a vulnerability point of CSCs and an attractive therapeutic target to impede neoplastic stemness in human tumors.
Collapse
Affiliation(s)
- Amanda Mendes da Silva
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Veronika Yevdokimova
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Yannick D Benoit
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
5
|
Gowd V, Kass JD, Sarkar N, Ramakrishnan P. Role of Sam68 as an adaptor protein in inflammatory signaling. Cell Mol Life Sci 2024; 81:89. [PMID: 38351330 PMCID: PMC10864426 DOI: 10.1007/s00018-023-05108-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/25/2023] [Accepted: 12/25/2023] [Indexed: 02/16/2024]
Abstract
Sam68 is a ubiquitously expressed KH-domain containing RNA-binding protein highly studied for its involvement in regulating multiple steps of RNA metabolism. Sam68 also contains multiple protein-protein interaction regions such as proline-rich regions, tyrosine phosphorylation sites, and arginine methylation sites, all of which facilitate its participation as an adaptor protein in multiple signaling pathways, likely independent of its RNA-binding role. This review focuses on providing a comprehensive report on the adaptor roles of Sam68 in inflammatory signaling and inflammatory diseases. The insights presented here have the potential to open new avenues in inflammation research and justify targeting Sam68 to control aberrant inflammatory responses.
Collapse
Affiliation(s)
- Vemana Gowd
- Department of Pathology, School of Medicine, Case Western Reserve University and University Hospitals Cleveland Medical Center, 6526, Wolstein Research Building, 2103 Cornell Road, Cleveland, OH, 44106, USA
| | - Joseph D'Amato Kass
- Department of Pathology, School of Medicine, Case Western Reserve University and University Hospitals Cleveland Medical Center, 6526, Wolstein Research Building, 2103 Cornell Road, Cleveland, OH, 44106, USA
| | - Nandini Sarkar
- Department of Pathology, School of Medicine, Case Western Reserve University and University Hospitals Cleveland Medical Center, 6526, Wolstein Research Building, 2103 Cornell Road, Cleveland, OH, 44106, USA
| | - Parameswaran Ramakrishnan
- Department of Pathology, School of Medicine, Case Western Reserve University and University Hospitals Cleveland Medical Center, 6526, Wolstein Research Building, 2103 Cornell Road, Cleveland, OH, 44106, USA.
- The Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
6
|
Liu X, Zheng Q, Wang K, Luo J, Wang Z, Li H, Liu Z, Dong N, Shi J. Sam68 promotes osteogenic differentiation of aortic valvular interstitial cells by TNF-α/STAT3/autophagy axis. J Cell Commun Signal 2023; 17:863-879. [PMID: 36847917 PMCID: PMC10409708 DOI: 10.1007/s12079-023-00733-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 02/10/2023] [Indexed: 03/01/2023] Open
Abstract
Calcified aortic valve disease (CAVD) is a major non-rheumatic heart valve disease in the world, with a high mortality rate and without suitable pharmaceutical therapy due to its complex mechanisms. Src-associated in mitosis 68-KD (Sam68), an RNA binding protein, has been reported as a signaling adaptor in numerous signaling pathways (Huot in Mol Cell Biol, 29(7), 1933-1943, 2009), particularly in inflammatory signaling pathways. The effects of Sam68 on the osteogenic differentiation process of hVICs and its regulation on signal transducer and activator of transcription 3 (STAT3) signaling pathway have been investigated in this study. Human aortic valve samples detection found that Sam68 expression was up-regulated in human calcific aortic valves. We used tumor necrosis factor α (TNF-α) as an activator for osteogenic differentiation in vitro and the result indicated that Sam68 was highly expressed after TNF-α stimulation. Overexpression of Sam68 promoted osteogenic differentiation of hVICs while Sam68 knockdown reversed this effect. Sam68 interaction with STAT3 was predicted by using String database and was verified in this study. Sam68 knockdown reduced phosphorylation of STAT3 activated by TNF-α and the downstream gene expression, which further influenced autophagy flux in hVICs. STAT3 knockdown alleviated the osteogenic differentiation and calcium deposition promoted by Sam68 overexpression. In conclusion, Sam68 interacts with STAT3 and participates in its phosphorylation to promote osteogenic differentiation of hVICs to induce valve calcification. Thus, Sam68 may be a new therapeutic target for CAVD. Regulatory of Sam68 in TNF-α/STAT3/Autophagy Axis in promoting osteogenesis of hVICs.
Collapse
Affiliation(s)
- Xing Liu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022 People’s Republic of China
| | - Qiang Zheng
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022 People’s Republic of China
| | - Kan Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022 People’s Republic of China
| | - Jinjing Luo
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022 People’s Republic of China
| | - Zhijie Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022 People’s Republic of China
| | - Huadong Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022 People’s Republic of China
| | - Zongtao Liu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022 People’s Republic of China
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022 People’s Republic of China
| | - Jiawei Shi
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022 People’s Republic of China
| |
Collapse
|
7
|
Rekad Z, Ruff M, Radwanska A, Grall D, Ciais D, Van Obberghen-Schilling E. Coalescent RNA-localizing and transcriptional activities of SAM68 modulate adhesion and subendothelial basement membrane assembly. eLife 2023; 12:e85165. [PMID: 37585334 PMCID: PMC10431919 DOI: 10.7554/elife.85165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 07/25/2023] [Indexed: 08/18/2023] Open
Abstract
Endothelial cell interactions with their extracellular matrix are essential for vascular homeostasis and expansion. Large-scale proteomic analyses aimed at identifying components of integrin adhesion complexes have revealed the presence of several RNA binding proteins (RBPs) of which the functions at these sites remain poorly understood. Here, we explored the role of the RBP SAM68 (Src associated in mitosis, of 68 kDa) in endothelial cells. We found that SAM68 is transiently localized at the edge of spreading cells where it participates in membrane protrusive activity and the conversion of nascent adhesions to mechanically loaded focal adhesions by modulation of integrin signaling and local delivery of β-actin mRNA. Furthermore, SAM68 depletion impacts cell-matrix interactions and motility through induction of key matrix genes involved in vascular matrix assembly. In a 3D environment SAM68-dependent functions in both tip and stalk cells contribute to the process of sprouting angiogenesis. Altogether, our results identify the RBP SAM68 as a novel actor in the dynamic regulation of blood vessel networks.
Collapse
Affiliation(s)
- Zeinab Rekad
- Université Côte d'Azur, CNRS, INSERM, iBVNiceFrance
| | - Michaël Ruff
- Université Côte d'Azur, CNRS, INSERM, iBVNiceFrance
| | | | | | | | | |
Collapse
|
8
|
Qiao A, Ma W, Jiang Y, Han C, Yan B, Zhou J, Qin G. Hepatic Sam68 Regulates Systemic Glucose Homeostasis and Insulin Sensitivity. Int J Mol Sci 2022; 23:ijms231911469. [PMID: 36232770 PMCID: PMC9569775 DOI: 10.3390/ijms231911469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/21/2022] Open
Abstract
Hepatic glucose production (HGP) is an important component of glucose homeostasis, and deregulated HGP, particularly through gluconeogenesis, contributes to hyperglycemia and pathology of type-2 diabetes (T2D). It has been shown that the gluconeogenic gene expression is governed primarily by the transcription factor cAMP-response element (CRE)-binding protein (CREB) and its coactivator, CREB-regulated transcriptional coactivator 2 (CRTC2). Recently, we have discovered that Sam68, an adaptor protein and Src kinase substrate, potently promotes hepatic gluconeogenesis by promoting CRTC2 stability; however, the detailed mechanisms remain unclear. Here we show that in response to glucagon, Sam68 increases CREB/CRTC2 transactivity by interacting with CRTC2 in the CREB/CRTC2 complex and occupying the CRE motif of promoters, leading to gluconeogenic gene expression and glucose production. In hepatocytes, glucagon promotes Sam68 nuclear import, whereas insulin elicits its nuclear export. Furthermore, ablation of Sam68 in hepatocytes protects mice from high-fat diet (HFD)-induced hyperglycemia and significantly increased hepatic and peripheral insulin sensitivities. Thus, hepatic Sam68 potentiates CREB/CRTC2-mediated glucose production, contributes to the pathogenesis of insulin resistance, and may serve as a therapeutic target for T2D.
Collapse
Affiliation(s)
- Aijun Qiao
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- Correspondence: (A.Q.); (G.Q.); Tel.: +205-934-6690 (G.Q.); Fax: +205-934-9101 (G.Q.)
| | - Wenxia Ma
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ying Jiang
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Chaoshan Han
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Baolong Yan
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Junlan Zhou
- Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Gangjian Qin
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Correspondence: (A.Q.); (G.Q.); Tel.: +205-934-6690 (G.Q.); Fax: +205-934-9101 (G.Q.)
| |
Collapse
|
9
|
Fan Z, Ma H, Li Y, Wu Y, Wang J, Xiong L, Fang Z, Zhang X. Neuronal MD2 induces long-term mental impairments in septic mice by facilitating necroptosis and apoptosis. Front Pharmacol 2022; 13:884821. [PMID: 36016572 PMCID: PMC9396348 DOI: 10.3389/fphar.2022.884821] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
Sepsis-associated encephalopathy (SAE) is a complication of sepsis with high morbidity rates. Long-lasting mental health issues in patients with SAE result in a substantial decrease in quality of life. However, its underlying mechanism is unclear, and effective treatments are not available. In the current study, we explored the role of apoptosis and necroptosis related to mental dysfunction in sepsis. In a mouse model of sepsis constructed by cecal ligation and puncture (CLP), altered behavior was detected by the open field, elevated-plus maze and forced swimming tests on the fourteenth day. Moreover, apoptosis- and necroptosis-associated proteins and morphological changes were examined in the hippocampus of septic mice. Long-lasting depression-like behaviors were detected in the CLP mice, as well as significant increases in neuronal apoptosis and necroptosis. Importantly, we found that apoptosis and necroptosis were related according to Ramsay’s rule in the brains of the septic mice. Inhibiting myeloid differentiation factor 2 (MD2), the crosstalk mediator of apoptosis and necroptosis, in neurons effectively reduced neuronal loss and alleviated depression-like behaviors in the septic mice. These results suggest that neuronal death in the hippocampus contributes to the mental impairments in SAE and that inhibiting neuronal MD2 is a new strategy for treating mental health issues in sepsis by inhibiting necroptosis and apoptosis.
Collapse
Affiliation(s)
- Zhongmin Fan
- Department of Critical Care Medicine and Department of Anesthesiology and Perioprative Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Hongwei Ma
- Department of Critical Care Medicine and Department of Anesthesiology and Perioprative Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yi Li
- Department of Critical Care Medicine and Department of Anesthesiology and Perioprative Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - You Wu
- Department of Critical Care Medicine and Department of Anesthesiology and Perioprative Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Jiajia Wang
- Department of Critical Care Medicine and Department of Anesthesiology and Perioprative Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Lize Xiong
- Department of Critical Care Medicine and Department of Anesthesiology and Perioprative Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- Translational Research Institute of Brain and Brain-Like Intelligence and Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Zongping Fang
- Department of Critical Care Medicine and Department of Anesthesiology and Perioprative Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- *Correspondence: Zongping Fang, ; Xijing Zhang,
| | - Xijing Zhang
- Department of Critical Care Medicine and Department of Anesthesiology and Perioprative Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- *Correspondence: Zongping Fang, ; Xijing Zhang,
| |
Collapse
|
10
|
Goodman WA, Basavarajappa SC, Liu AR, Rodriguez FDS, Mathes T, Ramakrishnan P. Sam68 contributes to intestinal inflammation in experimental and human colitis. Cell Mol Life Sci 2021; 78:7635-7648. [PMID: 34693458 PMCID: PMC8817240 DOI: 10.1007/s00018-021-03976-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 09/29/2021] [Accepted: 10/09/2021] [Indexed: 12/25/2022]
Abstract
Sam68 is an RNA-binding protein with an adaptor role in signal transduction. Our previous work identified critical proinflammatory and apoptotic functions for Sam68, downstream of the TNF/TNFR1 and TLR2/3/4 pathways. Recent studies have shown elevated Sam68 in inflamed tissues from rheumatoid arthritis and ulcerative colitis (UC) patients, suggesting that Sam68 contributes to chronic inflammatory diseases. Here, we hypothesized that deletion of Sam68 is protective against experimental colitis in vivo, via reductions in TNF-associated inflammatory signaling. We used Sam68 knockout (KO) mice to study the role of Sam68 in experimental colitis, including its contributions to TNF-induced inflammatory gene expression in three-dimensional intestinal organoid cultures. We also studied the expression of Sam68 and inflammatory genes in colon tissues of UC patients. Sam68 KO mice treated with an acute course of DSS exhibited significantly less weight loss and histopathological inflammation compared to wild-type controls, suggesting that Sam68 contributes to experimental colitis. Bone marrow transplants showed no pathologic role for hematopoietic cell-specific Sam68, suggesting that non-hematopoietic Sam68 drives intestinal inflammation. Gene expression analyses showed that Sam68 deficiency reduced the expression of proinflammatory genes in colon tissues from DSS-treated mice, as well as TNF-treated three-dimensional colonic organoids. We also found that inflammatory genes, such as TNF, CCR2, CSF2, IL33 and CXCL10, as well as Sam68 protein, were upregulated in inflamed colon tissues of UC patients. This report identifies Sam68 as an important inflammatory driver in response to intestinal epithelial damage, suggesting that targeting Sam68 may hold promise to treat UC patients.
Collapse
Affiliation(s)
- Wendy A Goodman
- Department of Pathology, School of Medicine, Case Western Reserve University and University Hospitals Cleveland Medical Center, 2103 Cornell Road, Room 6526, Wolstein Research Building, Cleveland, OH, 44106, USA
| | - Shrikanth C Basavarajappa
- Department of Pathology, School of Medicine, Case Western Reserve University and University Hospitals Cleveland Medical Center, 2103 Cornell Road, Room 6526, Wolstein Research Building, Cleveland, OH, 44106, USA
| | - Angela R Liu
- Department of Pathology, School of Medicine, Case Western Reserve University and University Hospitals Cleveland Medical Center, 2103 Cornell Road, Room 6526, Wolstein Research Building, Cleveland, OH, 44106, USA
| | - Franklin D Staback Rodriguez
- Department of Pathology, School of Medicine, Case Western Reserve University and University Hospitals Cleveland Medical Center, 2103 Cornell Road, Room 6526, Wolstein Research Building, Cleveland, OH, 44106, USA
| | - Tailor Mathes
- Department of Pathology, School of Medicine, Case Western Reserve University and University Hospitals Cleveland Medical Center, 2103 Cornell Road, Room 6526, Wolstein Research Building, Cleveland, OH, 44106, USA
| | - Parameswaran Ramakrishnan
- Department of Pathology, School of Medicine, Case Western Reserve University and University Hospitals Cleveland Medical Center, 2103 Cornell Road, Room 6526, Wolstein Research Building, Cleveland, OH, 44106, USA.
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.
- The Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
11
|
Qiao A, Ma W, Deng J, Zhou J, Han C, Zhang E, Boriboun C, Xu S, Zhang C, Jie C, Kim JA, Habegger KM, Qiu H, Zhao TC, Zhang J, Qin G. Ablation of Sam68 in adult mice increases thermogenesis and energy expenditure. FASEB J 2021; 35:e21772. [PMID: 34252225 DOI: 10.1096/fj.202100021r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/27/2021] [Accepted: 06/17/2021] [Indexed: 12/18/2022]
Abstract
Genetic deletion of Src associated in mitosis of 68kDa (Sam68), a pleiotropic adaptor protein prevents high-fat diet-induced weight gain and insulin resistance. To clarify the role of Sam68 in energy metabolism in the adult stage, we generated an inducible Sam68 knockout mice. Knockout of Sam68 was induced at the age of 7-10 weeks, and then we examined the metabolic profiles of the mice. Sam68 knockout mice gained less body weight over time and at 34 or 36 weeks old, had smaller fat mass without changes in food intake and absorption efficiency. Deletion of Sam68 in mice elevated thermogenesis, increased energy expenditure, and attenuated core-temperature drop during acute cold exposure. Furthermore, we examined younger Sam68 knockout mice at 11 weeks old before their body weights deviate, and confirmed increased energy expenditure and thermogenic gene program. Thus, Sam68 is essential for the control of adipose thermogenesis and energy homeostasis in the adult.
Collapse
Affiliation(s)
- Aijun Qiao
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Wenxia Ma
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jianxin Deng
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Junlan Zhou
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Chaoshan Han
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Eric Zhang
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Chan Boriboun
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shiyue Xu
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Chunxiang Zhang
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Chunfa Jie
- Department of Biochemistry and Nutrition, Des Moines University College of Osteopathic Medicine, Des Moines, IA, USA
| | - Jeong-A Kim
- Department of Medicine-Endocrinology, Diabetes & Metabolism, Comprehensive Diabetes Center, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kirk M Habegger
- Department of Medicine-Endocrinology, Diabetes & Metabolism, Comprehensive Diabetes Center, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hongyu Qiu
- Center for Molecular and Translational Medicine, Institute of Biomedical Science, Georgia State University, Atlanta, GA, USA
| | - Ting C Zhao
- Department of Surgery, Boston University Medical School, Roger Williams Medical Center, Providence, RI, USA
| | - Jianyi Zhang
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gangjian Qin
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, USA.,Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
12
|
Fang Z, Wu D, Deng J, Yang Q, Zhang X, Chen J, Wang S, Hu S, Hou W, Ning S, Ding Y, Fan Z, Jiang Z, Kang J, Liu Y, Miao J, Ji X, Dong H, Xiong L. An MD2-perturbing peptide has therapeutic effects in rodent and rhesus monkey models of stroke. Sci Transl Med 2021; 13:13/597/eabb6716. [PMID: 34108252 DOI: 10.1126/scitranslmed.abb6716] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 12/08/2020] [Accepted: 03/26/2021] [Indexed: 12/21/2022]
Abstract
Studies have failed to translate more than 1000 experimental treatments from bench to bedside, leaving stroke as the second leading cause of death in the world. Thrombolysis within 4.5 hours is the recommended therapy for stroke and cannot be performed until neuroimaging is used to distinguish ischemic stroke from hemorrhagic stroke. Therefore, finding a common and critical therapeutic target for both ischemic and hemorrhagic stroke is appealing. Here, we report that the expression of myeloid differentiation protein 2 (MD2), which is traditionally regarded to be expressed only in microglia in the normal brain, was markedly increased in cortical neurons after stroke. We synthesized a small peptide, Trans-trans-activating (Tat)-cold-inducible RNA binding protein (Tat-CIRP), which perturbed the function of MD2 and strongly protected neurons against excitotoxic injury in vitro. In addition, systemic administration of Tat-CIRP or genetic deletion of MD2 induced robust neuroprotection against ischemic and hemorrhagic stroke in mice. Tat-CIRP reduced the brain infarct volume and preserved neurological function in rhesus monkeys 30 days after ischemic stroke. Tat-CIRP efficiently crossed the blood-brain barrier and showed a wide therapeutic index for stroke because no toxicity was detected when high doses were administered to the mice. Furthermore, we demonstrated that MD2 elicited neuronal apoptosis and necroptosis via a TLR4-independent, Sam68-related cascade. In summary, Tat-CIRP provides robust neuroprotection against stroke in rodents and gyrencephalic nonhuman primates. Further efforts should be made to translate these findings to treat both ischemic and hemorrhagic stroke in patients.
Collapse
Affiliation(s)
- Zongping Fang
- Department of Anesthesiology and Perioperative Medicine and Department of Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Di Wu
- Department of neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 10053, China
| | - Jiao Deng
- Department of Anesthesiology and Perioperative Medicine and Department of Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Qianzi Yang
- Department of Anesthesiology and Perioperative Medicine and Department of Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xijing Zhang
- Department of Anesthesiology and Perioperative Medicine and Department of Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jian Chen
- Department of neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 10053, China
| | - Shiquan Wang
- Department of Anesthesiology and Perioperative Medicine and Department of Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Sijun Hu
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Wugang Hou
- Department of Anesthesiology and Perioperative Medicine and Department of Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Siming Ning
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yi Ding
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Zhongmin Fan
- Department of Anesthesiology and Perioperative Medicine and Department of Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Zhenhua Jiang
- Department of Anesthesiology and Perioperative Medicine and Department of Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Junjun Kang
- Department of Neurobiology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yingying Liu
- Department of Neurobiology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jinlin Miao
- National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xunming Ji
- Department of neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 10053, China.
| | - Hailong Dong
- Department of Anesthesiology and Perioperative Medicine and Department of Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| | - Lize Xiong
- Translational Research Institute of Brain and Brain-Like Intelligence and Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, Tongji University School of Medicine, Shanghai 200434, China. .,Department of Anesthesiology and Perioperative Medicine and Department of Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| |
Collapse
|
13
|
Qiao A, Zhou J, Xu S, Ma W, Boriboun C, Kim T, Yan B, Deng J, Yang L, Zhang E, Song Y, Ma YC, Richard S, Zhang C, Qiu H, Habegger KM, Zhang J, Qin G. Sam68 promotes hepatic gluconeogenesis via CRTC2. Nat Commun 2021; 12:3340. [PMID: 34099657 PMCID: PMC8185084 DOI: 10.1038/s41467-021-23624-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 05/05/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatic gluconeogenesis is essential for glucose homeostasis and also a therapeutic target for type 2 diabetes, but its mechanism is incompletely understood. Here, we report that Sam68, an RNA-binding adaptor protein and Src kinase substrate, is a novel regulator of hepatic gluconeogenesis. Both global and hepatic deletions of Sam68 significantly reduce blood glucose levels and the glucagon-induced expression of gluconeogenic genes. Protein, but not mRNA, levels of CRTC2, a crucial transcriptional regulator of gluconeogenesis, are >50% lower in Sam68-deficient hepatocytes than in wild-type hepatocytes. Sam68 interacts with CRTC2 and reduces CRTC2 ubiquitination. However, truncated mutants of Sam68 that lack the C- (Sam68ΔC) or N-terminal (Sam68ΔN) domains fails to bind CRTC2 or to stabilize CRTC2 protein, respectively, and transgenic Sam68ΔN mice recapitulate the blood-glucose and gluconeogenesis profile of Sam68-deficient mice. Hepatic Sam68 expression is also upregulated in patients with diabetes and in two diabetic mouse models, while hepatocyte-specific Sam68 deficiencies alleviate diabetic hyperglycemia and improves insulin sensitivity in mice. Thus, our results identify a role for Sam68 in hepatic gluconeogenesis, and Sam68 may represent a therapeutic target for diabetes. Hepatic gluconeogenesis is important for glucose homeostasis and a therapeutic target for type 2 diabetes. Here, the authors show that the RNA-binding adaptor protein Sam68 promotes the expression level of gluconeogenic genes and increases blood glucose levels by stabilizing the transcriptional coactivator CRTC2, while hepatic Sam68 deletion alleviates hyperglycemia in mice.
Collapse
Affiliation(s)
- Aijun Qiao
- Department of Biomedical Engineering, University of Alabama at Birmingham, School of Medicine and School of Engineering, Birmingham, AL, USA
| | - Junlan Zhou
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Shiyue Xu
- Department of Biomedical Engineering, University of Alabama at Birmingham, School of Medicine and School of Engineering, Birmingham, AL, USA
| | - Wenxia Ma
- Department of Biomedical Engineering, University of Alabama at Birmingham, School of Medicine and School of Engineering, Birmingham, AL, USA
| | - Chan Boriboun
- Department of Biomedical Engineering, University of Alabama at Birmingham, School of Medicine and School of Engineering, Birmingham, AL, USA
| | - Teayoun Kim
- Department of Medicine - Endocrinology, Diabetes & Metabolism, University of Alabama at Birmingham, School of Medicine, Birmingham, AL, USA
| | - Baolong Yan
- Department of Biomedical Engineering, University of Alabama at Birmingham, School of Medicine and School of Engineering, Birmingham, AL, USA
| | - Jianxin Deng
- Department of Biomedical Engineering, University of Alabama at Birmingham, School of Medicine and School of Engineering, Birmingham, AL, USA
| | - Liu Yang
- Department of Biomedical Engineering, University of Alabama at Birmingham, School of Medicine and School of Engineering, Birmingham, AL, USA
| | - Eric Zhang
- Department of Biomedical Engineering, University of Alabama at Birmingham, School of Medicine and School of Engineering, Birmingham, AL, USA
| | - Yuhua Song
- Department of Biomedical Engineering, University of Alabama at Birmingham, School of Medicine and School of Engineering, Birmingham, AL, USA
| | - Yongchao C Ma
- Departments of Pediatrics, Neurology and Physiology, Northwestern University Feinberg School of Medicine, Anne & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Stephane Richard
- Lady Davis Institute for Medical Research, McGill University, Montreal, QC, Canada
| | - Chunxiang Zhang
- Department of Biomedical Engineering, University of Alabama at Birmingham, School of Medicine and School of Engineering, Birmingham, AL, USA
| | - Hongyu Qiu
- Center for Molecular and Translational Medicine, Institute of Biomedical Science Georgia State University, Atlanta, GA, USA
| | - Kirk M Habegger
- Department of Medicine - Endocrinology, Diabetes & Metabolism, University of Alabama at Birmingham, School of Medicine, Birmingham, AL, USA
| | - Jianyi Zhang
- Department of Biomedical Engineering, University of Alabama at Birmingham, School of Medicine and School of Engineering, Birmingham, AL, USA
| | - Gangjian Qin
- Department of Biomedical Engineering, University of Alabama at Birmingham, School of Medicine and School of Engineering, Birmingham, AL, USA. .,Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
14
|
Donkel SJ, Portilla Fernández E, Ahmad S, Rivadeneira F, van Rooij FJA, Ikram MA, Leebeek FWG, de Maat MPM, Ghanbari M. Common and Rare Variants Genetic Association Analysis of Circulating Neutrophil Extracellular Traps. Front Immunol 2021; 12:615527. [PMID: 33717105 PMCID: PMC7944992 DOI: 10.3389/fimmu.2021.615527] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/04/2021] [Indexed: 12/27/2022] Open
Abstract
Introduction Neutrophils contribute to host defense through different mechanisms, including the formation of neutrophil extracellular traps (NETs). The genetic background and underlying mechanisms contributing to NET formation remain unclear. Materials and Methods We performed a genome-wide association study (GWAS) and exome-sequencing analysis to identify common and rare genetic variants associated with plasma myeloperoxidase (MPO)-DNA complex levels, a biomarker for NETs, in the population-based Rotterdam Study cohort. GWAS was performed using haplotype reference consortium(HRC)-imputed genotypes of common variants in 3,514 individuals from the first and 2,076 individuals from the second cohort of the Rotterdam Study. We additionally performed exome-sequencing analysis in 960 individuals to investigate rare variants in candidate genes. Results The GWAS yielded suggestive associations (p-value < 5.0 × 10-6) of SNPs annotated to four genes. In the exome-sequencing analysis, a variant in TMPRSS13 gene was significantly associated with MPO-DNA complex levels (p-value < 3.06×10-8). Moreover, gene-based analysis showed ten genes (OR10H1, RP11-461L13.5, RP11-24B19.4, RP11-461L13.3, KHDRBS1, ZNF200, RP11-395I6.1, RP11-696P8.2, RGPD1, AC007036.5) to be associated with MPO-DNA complex levels (p-value between 4.48 × 10-9 and 1.05 × 10-6). Pathway analysis of the identified genes showed their involvement in cellular development, molecular transport, RNA trafficking, cell-to-cell signaling and interaction, cellular growth and proliferation. Cancer was the top disease linked to the NET-associated genes. Conclusion In this first GWAS and exome-sequencing analysis of NETs levels, we found several genes that were associated with NETs. The precise mechanism of how these genes may contribute to neutrophil function or the formation of NETs remains unclear and should be further investigated in experimental studies.
Collapse
Affiliation(s)
- Samantha J Donkel
- Department of Hematology, Erasmus University Medical Center, Rotterdam, Netherlands
| | | | - Shahzad Ahmad
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, Netherlands.,Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Fernando Rivadeneira
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Frank J A van Rooij
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Frank W G Leebeek
- Department of Hematology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Moniek P M de Maat
- Department of Hematology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
15
|
Han S, Xu S, Zhou J, Qiao A, Boriboun C, Ma W, Li H, Biyashev D, Yang L, Zhang E, Liu Q, Jiang S, Zhao TC, Krishnamurthy P, Zhang C, Richard S, Qiu H, Zhang J, Qin G. Sam68 impedes the recovery of arterial injury by augmenting inflammatory response. J Mol Cell Cardiol 2019; 137:82-92. [PMID: 31639388 DOI: 10.1016/j.yjmcc.2019.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 09/23/2019] [Accepted: 10/14/2019] [Indexed: 12/15/2022]
Abstract
OBJECTIVE The role of Src-associated-in-mitosis-68-kDa (Sam68) in cardiovascular biology has not been studied. A recent report suggests that Sam68 promotes TNF-α-induced NF-κB activation in fibroblasts. Here we sought to dissect the molecular mechanism by which Sam68 regulates NF-κB signaling and its functional significance in vascular injury. APPROACH AND RESULTS The endothelial denudation injury was induced in the carotid artery of Sam68-null (Sam68-/-) and WT mice. Sam68-/- mice displayed an accelerated re-endothelialization and attenuated neointima hyperplasia, which was associated with a reduced macrophage infiltration and lowered expression of pro-inflammatory cytokines in the injured vessels. Remarkably, the ameliorated vascular remodeling was recapitulated in WT mice after receiving transplantation of bone marrow (BM) from Sam68-/- mice, suggesting the effect was attributable to BM-derived inflammatory cells. In cultured Raw264.7 macrophages, knockdown of Sam68 resulted in a significant reduction in the TNF-α-induced expression of TNF-α, IL-1β, and IL-6 and in the level of nuclear phospho-p65, indicating attenuated NF-κB activation; and these results were confirmed in peritoneal and BM-derived macrophages of Sam68-/- vs. WT mice. Furthermore, co-immunoprecipitation and mass-spectrometry identified Filamin A (FLNA) as a novel Sam68-interacting protein upon TNF-α treatment. Loss- and gain-of-function experiments suggest that Sam68 and FLNA are mutually dependent for NF-κB activation and pro-inflammatory cytokine expression, and that the N-terminus of Sam68 is required for TRAF2-FLNA interaction. CONCLUSIONS Sam68 promotes pro-inflammatory response in injured arteries and impedes recovery by interacting with FLNA to stabilize TRAF2 on the cytoskeleton and consequently potentiate NF-κB signaling.
Collapse
Affiliation(s)
- Shuling Han
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Shiyue Xu
- Molecular Cardiology Program, Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Junlan Zhou
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Aijun Qiao
- Molecular Cardiology Program, Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Chan Boriboun
- Molecular Cardiology Program, Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Wenxia Ma
- Molecular Cardiology Program, Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Huadong Li
- Molecular Cardiology Program, Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Dauren Biyashev
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Liu Yang
- Molecular Cardiology Program, Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Eric Zhang
- Molecular Cardiology Program, Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Qinghua Liu
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, Hubei, China
| | - Shayi Jiang
- Department of Hematology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 20062, China
| | - Ting C Zhao
- Department of Surgery, Roger Williams Medical Center, Boston University Medical School, Providence, RI 02908, USA
| | - Prasanna Krishnamurthy
- Molecular Cardiology Program, Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Chunxiang Zhang
- Molecular Cardiology Program, Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Stéphane Richard
- Lady Davis Institute for Medical Research, McGill University, Montreal, Quebec, Canada
| | - Hongyu Qiu
- Center of Molecular and Translational Medicine, Institution of Biomedical Science, Georgia State University, Atlanta, GA 30303, USA
| | - Jianyi Zhang
- Molecular Cardiology Program, Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Gangjian Qin
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Molecular Cardiology Program, Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
16
|
Chen Y, Zhang L, Liu S, Yao B, Zhang H, Liang S, Ma J, Liang X, Shi W. Sam68 mediates high glucose‑induced podocyte apoptosis through modulation of Bax/Bcl‑2. Mol Med Rep 2019; 20:3728-3734. [PMID: 31485651 PMCID: PMC6755155 DOI: 10.3892/mmr.2019.10601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 03/20/2019] [Indexed: 02/06/2023] Open
Abstract
Hyperglycemia promotes podocyte apoptosis and contributes to the pathogenesis of diabetic nephropathy (DN). However, the mechanisms of hyperglycemia-induced podocyte apoptosis remain unknown. Recent studies have implicated Src-associated substrate during mitosis of 68 kDa (Sam68) in various cellular processes including RNA metabolism, apoptosis, signal transduction. This study sought to examine the effect of Sam68 on high glucose (HG)-induced podocytes apoptosis, and the mechanism underlying this effect. Immortalized mouse podocytes were exposed to medium containing normal glucose, or HG and Sam68 siRNA, respectively. The expression of Sam68 in podocytes was determined by fluorescence quantitative PCR (qPCR), immunofluorescence and immunoblotting. The role of Sam68 in HG-induced podocyte apoptosis was further evaluated by inhibiting Sam68 expression by Sam68 siRNA and performing flow cytometry. The mRNA and protein expression of pro-apoptosis gene Bax and anti-apoptotic gene Bcl-2 were assessed by qRCR and immunoblotting. In the present study, it was first demonstrated that Sam68 was upregulated in a time and dose-dependent manner in in vitro HG-treated podocytes. Pretreatment with Sam68 siRNA markedly decreased nuclear Sam68 expression. Moreover, the effects of HG-induced apoptosis were also abrogated by Sam68 knockdown in cultured podocytes. Furthermore, HG increased Bax and decreased Bcl-2 protein expression in cultured podocytes, and this effect was blocked by Sam68 knockdown. The results of the present study revealed that Sam68 mediated HG-induced podocyte apoptosis, probably through the Bax/Bcl-2 signaling pathway, and thus may be a potential therapeutic target for DN.
Collapse
Affiliation(s)
- Yuyu Chen
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Li Zhang
- Division of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatrics Institute, Guangzhou, Guangdong 510080, P.R. China
| | - Shuangxin Liu
- Division of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatrics Institute, Guangzhou, Guangdong 510080, P.R. China
| | - Binfeng Yao
- Division of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatrics Institute, Guangzhou, Guangdong 510080, P.R. China
| | - Hong Zhang
- Division of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatrics Institute, Guangzhou, Guangdong 510080, P.R. China
| | - Shun Liang
- Division of Nephrology, Yue Bei People's Hospital, Shaoguan, Guangdong 512025, P.R. China
| | - Jianchao Ma
- Division of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatrics Institute, Guangzhou, Guangdong 510080, P.R. China
| | - Xinling Liang
- Division of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatrics Institute, Guangzhou, Guangdong 510080, P.R. China
| | - Wei Shi
- Division of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatrics Institute, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
17
|
Choi MC, Jo J, Park J, Kang HK, Park Y. NF-κB Signaling Pathways in Osteoarthritic Cartilage Destruction. Cells 2019; 8:cells8070734. [PMID: 31319599 PMCID: PMC6678954 DOI: 10.3390/cells8070734] [Citation(s) in RCA: 356] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/15/2019] [Accepted: 07/15/2019] [Indexed: 12/21/2022] Open
Abstract
Osteoarthritis (OA) is a type of joint disease associated with wear and tear, inflammation, and aging. Mechanical stress along with synovial inflammation promotes the degradation of the extracellular matrix in the cartilage, leading to the breakdown of joint cartilage. The nuclear factor-kappaB (NF-κB) transcription factor has long been recognized as a disease-contributing factor and, thus, has become a therapeutic target for OA. Because NF-κB is a versatile and multi-functional transcription factor involved in various biological processes, a comprehensive understanding of the functions or regulation of NF-κB in the OA pathology will aid in the development of targeted therapeutic strategies to protect the cartilage from OA damage and reduce the risk of potential side-effects. In this review, we discuss the roles of NF-κB in OA chondrocytes and related signaling pathways, including recent findings, to better understand pathological cartilage remodeling and provide potential therapeutic targets that can interfere with NF-κB signaling for OA treatment.
Collapse
Affiliation(s)
- Moon-Chang Choi
- Department of Biomedical Science, Chosun University, Gwangju 61452, Korea.
| | - Jiwon Jo
- Department of Biomedical Science, Chosun University, Gwangju 61452, Korea
| | - Jonggwan Park
- Department of Bioinformatics, Kongju National University, Kongju 38065, Korea
| | - Hee Kyoung Kang
- Department of Biomedical Science, Chosun University, Gwangju 61452, Korea
| | - Yoonkyung Park
- Department of Biomedical Science, Chosun University, Gwangju 61452, Korea.
| |
Collapse
|
18
|
BRCA2 deficiency instigates cGAS-mediated inflammatory signaling and confers sensitivity to tumor necrosis factor-alpha-mediated cytotoxicity. Nat Commun 2019; 10:100. [PMID: 30626869 PMCID: PMC6327059 DOI: 10.1038/s41467-018-07927-y] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 12/03/2018] [Indexed: 11/29/2022] Open
Abstract
Loss of BRCA2 affects genome stability and is deleterious for cellular survival. Using a genome-wide genetic screen in near-haploid KBM-7 cells, we show that tumor necrosis factor-alpha (TNFα) signaling is a determinant of cell survival upon BRCA2 inactivation. Specifically, inactivation of the TNF receptor (TNFR1) or its downstream effector SAM68 rescues cell death induced by BRCA2 inactivation. BRCA2 inactivation leads to pro-inflammatory cytokine production, including TNFα, and increases sensitivity to TNFα. Enhanced TNFα sensitivity is not restricted to BRCA2 inactivation, as BRCA1 or FANCD2 inactivation, or hydroxyurea treatment also sensitizes cells to TNFα. Mechanistically, BRCA2 inactivation leads to cGAS-positive micronuclei and results in a cell-intrinsic interferon response, as assessed by quantitative mass-spectrometry and gene expression profiling, and requires ASK1 and JNK signaling. Combined, our data reveals that micronuclei induced by loss of BRCA2 instigate a cGAS/STING-mediated interferon response, which encompasses re-wired TNFα signaling and enhances TNFα sensitivity. The loss of homologous recombination (HR) genes such as BRCA1 and BRCA2 is deleterious to the survival of normal cells, yet it is tolerated in cancer cells. Here the authors identify TNFα signaling as a determinant of viability in BRCA2- inactivated cancer cells.
Collapse
|
19
|
Li Y, Deng L, Zhao X, Li B, Ren D, Yu L, Pan H, Gong Q, Song L, Zhou X, Dai T. Tripartite motif-containing 37 (TRIM37) promotes the aggressiveness of non-small-cell lung cancer cells by activating the NF-κB pathway. J Pathol 2018; 246:366-378. [PMID: 30043491 DOI: 10.1002/path.5144] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/25/2018] [Accepted: 06/28/2018] [Indexed: 12/15/2022]
Abstract
Non-small-cell lung cancer (NSCLC), in which the NF-κB pathway is constitutively activated, is one of the most common malignancies. Herein, we identify an E3 ubiquitin ligase, tripartite motif-containing 37 (TRIM37), participating in the K63 polyubiquitination of TRAF2, which is a significant step in the activation of NF-κB signaling. Both the mRNA and the protein expression levels of TRIM37 were much higher in NSCLC cell lines and tissues than in normal bronchial epithelial cells and matched adjacent non-tumor tissues. TRIM37 expression correlated closely with clinical stage and poor survival in NSCLC. Overexpression of TRIM37 antagonized cisplatin-induced apoptosis, induced angiogenesis and proliferation, and increased the aggressiveness of NSCLC cells in vitro and in vivo, whereas inhibition of TRIM37 led to the opposite effects. Gene set enrichment analysis (GSEA) showed that TRIM37 expression significantly correlated with NF-κB signaling. Furthermore, we found that TRIM37 bound to TRAF2 and promoted K63-linked ubiquitination of TRAF2, sustaining the eventual activation of the NF-κB pathway. Mutation in the ring finger domain of TRIM37, a hallmark of E3 ubiquitin ligases, led to loss of the ability to promote K63 polyubiquitination of TRAF2 and activate NF-κB signaling. Taken together, our findings provide evidence that TRIM37 plays an important role in constitutive NF-κB pathway activation and could serve as a prognostic factor and therapeutic target in NSCLC. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yun Li
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, PR China.,Department of Immunobiology, Jinan University, Guangzhou, PR China
| | - Liwen Deng
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, PR China
| | - Xiaohui Zhao
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, PR China
| | - Bohan Li
- Department of Microsurgery, Trauma and Hand Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Dong Ren
- State Key Laboratory of Oncology in Southern China, Department of Experimental Research, Cancer Centre, Sun Yat-sen University, Guangzhou, PR China
| | - Lihong Yu
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, PR China
| | - Hehai Pan
- Department of Microsurgery, Trauma and Hand Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Qing Gong
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, PR China
| | - Libing Song
- State Key Laboratory of Oncology in Southern China, Department of Experimental Research, Cancer Centre, Sun Yat-sen University, Guangzhou, PR China.,Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, PR China
| | - Xiang Zhou
- Department of Microsurgery, Trauma and Hand Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Ting Dai
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, PR China
| |
Collapse
|
20
|
The RNA binding protein Sam68 controls T helper 1 differentiation and anti-mycobacterial response through modulation of miR-29. Cell Death Differ 2018; 26:1169-1180. [PMID: 30258098 DOI: 10.1038/s41418-018-0201-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 08/08/2018] [Accepted: 08/27/2018] [Indexed: 12/24/2022] Open
Abstract
Polarization of naive T cells into interferon (IFN)-γ-producing T helper 1 (Th1) cells is an essential event in the inflammatory response to pathogens. Herein, we identify the RNA binding protein Sam68 as a specific modulator of Th1 differentiation. Sam68-knockout (ko) naive T cells are strongly defective in IL-12-mediated Th1 polarization and express low levels of T-bet and Eomes. Consequently, Sam68-ko Th1 cells are significantly impaired in IFN-γ production. Moreover, we found that Sam68 is required for the induction of an inflammatory Th1 response during Mycobacterium bovis Bacillus Calmette-Guerin (BCG) infection, thus limiting bacterial dissemination in the lungs. Mechanistically, Sam68 directly binds to the microRNA miR-29, a negative regulator of Th1 response, and inhibits its expression during BCG infection. These findings uncover a novel post-transcriptional mechanism required for the Th1-mediated defense against intracellular pathogens and identify a new function for Sam68 in the regulation of the immune response.
Collapse
|
21
|
Ravanidis S, Kattan FG, Doxakis E. Unraveling the Pathways to Neuronal Homeostasis and Disease: Mechanistic Insights into the Role of RNA-Binding Proteins and Associated Factors. Int J Mol Sci 2018; 19:ijms19082280. [PMID: 30081499 PMCID: PMC6121432 DOI: 10.3390/ijms19082280] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 07/26/2018] [Accepted: 07/31/2018] [Indexed: 12/13/2022] Open
Abstract
The timing, dosage and location of gene expression are fundamental determinants of brain architectural complexity. In neurons, this is, primarily, achieved by specific sets of trans-acting RNA-binding proteins (RBPs) and their associated factors that bind to specific cis elements throughout the RNA sequence to regulate splicing, polyadenylation, stability, transport and localized translation at both axons and dendrites. Not surprisingly, misregulation of RBP expression or disruption of its function due to mutations or sequestration into nuclear or cytoplasmic inclusions have been linked to the pathogenesis of several neuropsychiatric and neurodegenerative disorders such as fragile-X syndrome, autism spectrum disorders, spinal muscular atrophy, amyotrophic lateral sclerosis and frontotemporal dementia. This review discusses the roles of Pumilio, Staufen, IGF2BP, FMRP, Sam68, CPEB, NOVA, ELAVL, SMN, TDP43, FUS, TAF15, and TIA1/TIAR in RNA metabolism by analyzing their specific molecular and cellular function, the neurological symptoms associated with their perturbation, and their axodendritic transport/localization along with their target mRNAs as part of larger macromolecular complexes termed ribonucleoprotein (RNP) granules.
Collapse
Affiliation(s)
- Stylianos Ravanidis
- Basic Sciences Division I, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece.
| | - Fedon-Giasin Kattan
- Basic Sciences Division I, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece.
| | - Epaminondas Doxakis
- Basic Sciences Division I, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece.
| |
Collapse
|
22
|
Courtois G, Fauvarque MO. The Many Roles of Ubiquitin in NF-κB Signaling. Biomedicines 2018; 6:E43. [PMID: 29642643 PMCID: PMC6027159 DOI: 10.3390/biomedicines6020043] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 03/31/2018] [Accepted: 04/02/2018] [Indexed: 12/24/2022] Open
Abstract
The nuclear factor κB (NF-κB) signaling pathway ubiquitously controls cell growth and survival in basic conditions as well as rapid resetting of cellular functions following environment changes or pathogenic insults. Moreover, its deregulation is frequently observed during cell transformation, chronic inflammation or autoimmunity. Understanding how it is properly regulated therefore is a prerequisite to managing these adverse situations. Over the last years evidence has accumulated showing that ubiquitination is a key process in NF-κB activation and its resolution. Here, we examine the various functions of ubiquitin in NF-κB signaling and more specifically, how it controls signal transduction at the molecular level and impacts in vivo on NF-κB regulated cellular processes.
Collapse
|
23
|
Hu J, Wang Z, Pan Y, Ma J, Miao X, Qi X, Zhou H, Jia L. MiR-26a and miR-26b mediate osteoarthritis progression by targeting FUT4 via NF-κB signaling pathway. Int J Biochem Cell Biol 2017; 94:79-88. [PMID: 29208566 DOI: 10.1016/j.biocel.2017.12.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/24/2017] [Accepted: 12/02/2017] [Indexed: 01/12/2023]
Abstract
Osteoarthritis (OA) is the most common joint disease, characterized by articular cartilage degradation and changes in all other joint tissues. MicroRNAs (miRNAs) play an important role in mediating the main risk factors for OA. This study aimed to investigate the effect of miR-26a/26b on the proliferation and apoptosis of human chondrocytes by targeting fucosyltransferase 4 (FUT4) through NF-κB signaling pathway. We revealed the differential expression profiles of FUT4 and miR-26a/26b in the articular cartilage tissues of OA patients and normal people. The ability of miR-26a/26b to specifically interact with the 3'UTR of FUT4 was demonstrated via a luciferase reporter assay in chondrocytes. Further results showed altered levels of miR-26a/26b and FUT4 could regulate the process of IL-1β-induced extracellular matrix degradation in chondrocytes. Forced miR-26a/26b expression was able to affect chondrocytes proliferation and apoptosis, while altered expression of FUT4 in chondrocytes modulated progression upon transfection with miR-26a/26b mimic or inhibitor. In OA mice, the overexpression of miR-26a/26b by intra-articular injection significantly attenuated OA progression. In addition, regulating FUT4 expression markedly modulated the activity of NF-κB signaling pathway, and this effect could be reversed by miR-26a/26b. In short, miR-26a/-26b/FUT4/NF-κB axis may serve as a predictive biomarker and a potential therapeutic target in OA treatment.
Collapse
Affiliation(s)
- Jialei Hu
- College of Laboratory Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Zi Wang
- College of Laboratory Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China; Department of Sports Medicine, Dalian Municipal Central Hospital, Dalian 116033, Liaoning Province, China
| | - Yue Pan
- College of Laboratory Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Jia Ma
- College of Laboratory Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Xiaoyan Miao
- College of Laboratory Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Xia Qi
- College of Laboratory Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Huimin Zhou
- Department of Microbiology, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Li Jia
- College of Laboratory Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China.
| |
Collapse
|
24
|
Wen H, Li P, Ma H, Zheng J, Yu Y, Lv G. High expression of Sam68 in sacral chordomas is associated with worse clinical outcomes. Onco Targets Ther 2017; 10:4691-4700. [PMID: 29026317 PMCID: PMC5626414 DOI: 10.2147/ott.s147446] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Src-associated in mitosis of 68 kDa (Sam68), also known as KHDRBS1 (KH domain-containing, RNA-binding, signal transduction-associated 1), is a member of the signal transduction and activation of RNA family. Previous studies have demonstrated that the aberrant expression of Sam68 is associated with the progression and prognosis of a variety of cancers, but little is known about its expression and role in chordomas, which are rare and aggressive bone neoplasms. In this study, we analyzed 40 tumor tissues and 20 distant normal tissues obtained from 40 patients with sacral chordoma using immunohistochemistry, and observed the expression of Sam68 was significantly upregulated in sacral chordomas compared with normal tissues (P=0.001). A positive correlation between the expression of Sam68 and the cell proliferation index Ki-67 was determined using Spearman’s rank correlation test (γ =0.599, P<0.001). In addition, high expression of Sam68 was significantly associated with surrounding muscle invasion (P<0.001). Moreover, Kaplan–Meier curves showed that patients with overexpressed Sam68 had shorter local recurrence-free survival time (P<0.001). Lastly, multivariate analysis indicated that Sam68 is an independent prognostic factor for the local recurrence-free survival of sacral chordomas (hazard ratio =5.929, 95% CI: 1.092–32.188, P=0.039). Our findings suggest the use of Sam68 as a predictor for the recurrence of sacral chordomas.
Collapse
Affiliation(s)
- Hai Wen
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Pengzhi Li
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Hong Ma
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jiaoyun Zheng
- Department of Pathology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yipin Yu
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Guohua Lv
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
25
|
Abstract
Infected cells can undergo apoptosis as a protective response to viral infection, thereby limiting viral infection. As viruses require a viable cell for replication, the death of the cell limits cellular functions that are required for virus replication and propagation. Picornaviruses are single-stranded RNA viruses that modify the host cell apoptotic response, probably in order to promote viral replication, largely as a function of the viral proteases 2A, 3C, and 3CD. These proteases are essential for viral polyprotein processing and also cleave cellular proteins. Picornavirus proteases cleave proapoptotic adaptor proteins, resulting in downregulation of apoptosis. Picornavirus proteases also cleave nucleoporins, disrupting the orchestrated manner in which signaling pathways use active nucleocytoplasmic trafficking, including those involved in apoptosis. In addition to viral proteases, the transmembrane 2B protein alters intracellular ion signaling, which may also modulate apoptosis. Overall, picornaviruses, via the action of virally encoded proteins, exercise intricate control over and subvert cell death pathways, specifically apoptosis, thereby allowing viral replication to continue.
Collapse
|
26
|
Wang B, Li L, Zhu Y, Zhang W, Wang X, Chen B, Li T, Pan H, Wang J, Kee K, Cao Y. Sequence variants of KHDRBS1 as high penetrance susceptibility risks for primary ovarian insufficiency by mis-regulating mRNA alternative splicing. Hum Reprod 2017; 32:2138-2146. [DOI: 10.1093/humrep/dex263] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/03/2017] [Indexed: 11/12/2022] Open
|
27
|
Chen X, Liu L, Qian R, Liu J, Yao Y, Jiang Z, Song X, Ren J, Zhang F. Expression of Sam68 Associates with Neuronal Apoptosis and Reactive Astrocytes After Spinal Cord Injury. Cell Mol Neurobiol 2017; 37:487-498. [PMID: 27236696 PMCID: PMC11482139 DOI: 10.1007/s10571-016-0384-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 05/18/2016] [Indexed: 01/15/2023]
Abstract
Src-associated in mitosis (Sam68; 68 kDa) is a novel RNA-binding protein that belongs to the signal transduction and activation of RNA family involved in various biological processes. However, the expression and roles of Sam68 in the central nervous system remain unknown. In the present study, we performed a spinal cord injury (SCI) model in adult rats and found a significant increase of Sam68 protein levels in this model, which reached a peak at day 3 and then gradually returned to normal levels at day 14 after SCI. We use immunohistochemistry analysis revealing a widespread distribution of Sam68 in the spinal cord. In addition, double-immunofluorescence staining showed that Sam68 immunoreactivity was found predominantly in neurons and astrocytes. Moreover, colocalization of Sam68/active caspase-3 has been respectively detected in neuronal nuclei, and colocalization of Sam68/PCNA has been detected in glial fibrillary acidic protein. In vitro, we found that depletion of Sam68 by short interfering RNA inhibits neuronal apoptosis and astrocyte proliferation and decreases cyclin D1 protein levels. In conclusion, this is the first study to find the Sam68 expression in SCI. Our results suggest that Sam68 might be illustrated in the apoptosis of neurons and proliferation of astrocytes after SCI. This research will provide new drug targets for clinical treatment of SCI.
Collapse
Affiliation(s)
- Xinlei Chen
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Jiangsu Province Key Laboratory for Information and Molecular Drug Target, Nantong University, 20. Xisi Road, Nantong, 226001, Jiangsu, China
| | - Lei Liu
- Department of Orthopaedics, People's Hospital of Yixing City, Yixing, 214200, Jiangsu, China
| | - Rong Qian
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Jiangsu Province Key Laboratory for Information and Molecular Drug Target, Nantong University, 20. Xisi Road, Nantong, 226001, Jiangsu, China
| | - Jie Liu
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Jiangsu Province Key Laboratory for Information and Molecular Drug Target, Nantong University, 20. Xisi Road, Nantong, 226001, Jiangsu, China
| | - Yu Yao
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Jiangsu Province Key Laboratory for Information and Molecular Drug Target, Nantong University, 20. Xisi Road, Nantong, 226001, Jiangsu, China
| | - Zhenhuan Jiang
- Department of Orthopaedics, People's Hospital of Yixing City, Yixing, 214200, Jiangsu, China
| | - Xinjian Song
- Department of Rehabilitation, Nantong Second People's Hospital, Nantong, 226001, Jiangsu, China
| | - Jianbing Ren
- Department of Rehabilitation, Nantong Second People's Hospital, Nantong, 226001, Jiangsu, China
| | - Feng Zhang
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Jiangsu Province Key Laboratory for Information and Molecular Drug Target, Nantong University, 20. Xisi Road, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
28
|
Ramakrishnan P, Yui MA, Tomalka JA, Majumdar D, Parameswaran R, Baltimore D. Deficiency of Nuclear Factor-κB c-Rel Accelerates the Development of Autoimmune Diabetes in NOD Mice. Diabetes 2016; 65:2367-79. [PMID: 27217485 PMCID: PMC4955991 DOI: 10.2337/db15-1607] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 05/15/2016] [Indexed: 12/18/2022]
Abstract
The nuclear factor-κB protein c-Rel plays a critical role in controlling autoimmunity. c-Rel-deficient mice are resistant to streptozotocin-induced diabetes, a drug-induced model of autoimmune diabetes. We generated c-Rel-deficient NOD mice to examine the role of c-Rel in the development of spontaneous autoimmune diabetes. We found that both CD4(+) and CD8(+) T cells from c-Rel-deficient NOD mice showed significantly decreased T-cell receptor-induced IL-2, IFN-γ, and GM-CSF expression. Despite compromised T-cell function, c-Rel deficiency dramatically accelerated insulitis and hyperglycemia in NOD mice along with a substantial reduction in T-regulatory (Treg) cell numbers. Supplementation of isogenic c-Rel-competent Treg cells from prediabetic NOD mice reversed the accelerated diabetes development in c-Rel-deficient NOD mice. The results suggest that c-Rel-dependent Treg cell function is critical in suppressing early-onset autoimmune diabetogenesis in NOD mice. This study provides a novel natural system to study autoimmune diabetes pathogenesis and reveals a previously unknown c-Rel-dependent mechanistic difference between chemically induced and spontaneous diabetogenesis. The study also reveals a unique protective role of c-Rel in autoimmune diabetes, which is distinct from other T-cell-dependent autoimmune diseases such as arthritis and experimental autoimmune encephalomyelitis, where c-Rel promotes autoimmunity.
Collapse
Affiliation(s)
- Parameswaran Ramakrishnan
- Department of Pathology, School of Medicine, Case Western Reserve University, and University Hospitals Case Medical Center, Cleveland, OH
| | - Mary A Yui
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA
| | - Jeffrey A Tomalka
- Department of Pathology, School of Medicine, Case Western Reserve University, and University Hospitals Case Medical Center, Cleveland, OH
| | - Devdoot Majumdar
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA
| | - Reshmi Parameswaran
- Department of Pathology, School of Medicine, Case Western Reserve University, and University Hospitals Case Medical Center, Cleveland, OH
| | - David Baltimore
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA
| |
Collapse
|
29
|
Chen S, Li H, Zhuang S, Zhang J, Gao F, Wang X, Chen W, Song M. Sam68 reduces cisplatin-induced apoptosis in tongue carcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:123. [PMID: 27473117 PMCID: PMC4966777 DOI: 10.1186/s13046-016-0390-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 07/06/2016] [Indexed: 01/01/2023]
Abstract
Background Resistance to anticancer agents is a major obstacle for successful chemotherapy in tongue squamous cancer. Sam68 is an oncogenic-related protein in oral tongue squamous cell carcinoma functions as a signaling molecule mediating apoptosis, whose over-expression is associated with the clinicopathologic characteristics and prognosis of patients. The present study was to examine the effect of Sam68 on chemotherapeutics-induced apoptosis in oral tongue squamous cell carcinoma, and its clinical significance in oral tongue squamous cell carcinoma progression. Methods The effect of Sam68 on apoptosis induced by cisplatin was examined both in vitro and in vivo, using Annexin V staining and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assays. Real-time PCR and Western blotting analysis were used to detect mRNA and protein expression levels. Results Upregulation of Sam68 significantly inhibited cisplatin-induced apoptosis in oral tongue squamous cell carcinoma cells, associated with induction of anti-apoptotic proteins caspase-9, caspase-3, and PARP. In contrast, Silencing Sam68 expression significantly enhanced the sensitivity of oral tongue squamous cell carcinoma cells to apoptosis induced by cisplatin both in vitro and in vivo. Conclusions The current study suggests that Sam68 could enhance the anti-apoptosis activity of oral tongue squamous cell carcinoma cells. Sam68 is a potential pharmacologic target for the treatment of oral tongue squamous cell carcinoma and inhibition of Sam68 expression might represent a novel strategy to sensitize oral tongue squamous cell carcinoma to chemotherapy.
Collapse
Affiliation(s)
- Shuwei Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China.,Department of Head and Neck Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Huan Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China.,Department of Intensive Care Unit, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Shimin Zhuang
- Department of Otolaryngology-Head and Neck Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Ji Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China.,Department of Head and Neck Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Fan Gao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China.,Department of Head and Neck Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Xidi Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China.,Department of Head and Neck Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - WenKuan Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China. .,Department of Head and Neck Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| | - Ming Song
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China. .,Department of Head and Neck Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
30
|
Fu K, Sun X, Wier EM, Hodgson A, Liu Y, Sears CL, Wan F. Sam68/KHDRBS1 is critical for colon tumorigenesis by regulating genotoxic stress-induced NF-κB activation. eLife 2016; 5. [PMID: 27458801 PMCID: PMC4959885 DOI: 10.7554/elife.15018] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 06/29/2016] [Indexed: 12/19/2022] Open
Abstract
Nuclear factor kappa B (NF-κB)-mediated transcription is an important mediator for cellular responses to DNA damage. Genotoxic agents trigger a 'nuclear-to-cytoplasmic' NF-κB activation signaling pathway; however, the early nuclear signaling cascade linking DNA damage and NF-κB activation is poorly understood. Here we report that Src-associated-substrate-during-mitosis-of-68kDa/KH domain containing, RNA binding, signal transduction associated 1 (Sam68/KHDRBS1) is a key NF-κB regulator in genotoxic stress-initiated signaling pathway. Sam68 deficiency abolishes DNA damage-stimulated polymers of ADP-ribose (PAR) production and the PAR-dependent NF-κB transactivation of anti-apoptotic genes. Sam68 deleted cells are hypersensitive to genotoxicity caused by DNA damaging agents. Upregulated Sam68 coincides with elevated PAR production and NF-κB-mediated anti-apoptotic transcription in human and mouse colon cancer. Knockdown of Sam68 sensitizes human colon cancer cells to genotoxic stress-induced apoptosis and genetic deletion of Sam68 dampens colon tumor burden in mice. Together our data reveal a novel function of Sam68 in the genotoxic stress-initiated nuclear signaling, which is crucial for colon tumorigenesis. DOI:http://dx.doi.org/10.7554/eLife.15018.001 Cells use signaling pathways to detect and respond to harmful conditions by switching on genes that keep the cell healthy. One important pathway is the nuclear factor kappa B (NF-κB) signaling pathway, which is activated by many stimuli. These stimuli may come from infections from outside the cell or may originate inside the cell, as seen for DNA damage caused by irradiation, chemicals or rapid DNA replication in cancer cells. Most of a cell’s DNA is located in the cell nucleus. However, NF-κB proteins are normally located outside the nucleus, in the cell’s cytoplasm. Damage to DNA triggers a signal from the nucleus to the cytoplasm. This signal activates the NF-κB proteins, which move into the nucleus and turn on genes that help the cell to recover from the damage. These genes include those that prevent the cell from self-destructing. In one step of the NF-κB activation process, chain-like molecules called polymers are made from a compound called poly(ADP-ribose), or PAR for short. However, few other details are known about how the damaged DNA in the nucleus signals to the cytoplasm. A protein called Sam68, which is found in the cell nucleus, has been linked to DNA damage signaling. Fu, Sun et al. now present evidence that suggests that if mouse cells lack Sam68, they do not produce PAR polymers in response to DNA damage. In addition, these cells could not trigger the PAR-dependent signaling cascade that is essential for activating NF-κB and for turning on the protective genes. Consequently, cells that lacked Sam68 were extremely sensitive to agents that cause DNA damage, such as chemicals and irradiation. The NF-κB pathway is regulated incorrectly in some cancers, but is also activated by DNA damage caused by cancer treatments. Therefore, Fu, Sun et al. also explored the role of Sam68 in cancer. Reducing the levels of Sam68 made human colon cancer cells more likely to self-destruct when they were exposed to DNA-damaging agents. Furthermore, removing Sam68 from mice that spontaneously grow colon cancer caused their tumors to develop more slowly than mice that retained Sam68 in their cells. Overall, the findings presented by Fu, Sun et al. suggest that Sam68 regulates the signal from the nucleus to the cytoplasm that activates NF-κB proteins in response to DNA damage. Sam68 also appears to be important for helping colon cancer cells grow and survive. Future challenges will be to understand how Sam68 regulates the production of the PAR polymer in this response and to explore whether Sam68 can be targeted for treating cancer. DOI:http://dx.doi.org/10.7554/eLife.15018.002
Collapse
Affiliation(s)
- Kai Fu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, United States
| | - Xin Sun
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, United States
| | - Eric M Wier
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, United States
| | - Andrea Hodgson
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, United States.,W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, John Hopkins University, Baltimore, United States
| | - Yue Liu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, United States
| | - Cynthia L Sears
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, John Hopkins University, Baltimore, United States.,Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, United States.,Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, United States
| | - Fengyi Wan
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, United States.,Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, United States
| |
Collapse
|
31
|
Sam68 is a regulator of Toll-like receptor signaling. Cell Mol Immunol 2016; 14:107-117. [PMID: 27374795 PMCID: PMC5214940 DOI: 10.1038/cmi.2016.32] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 05/14/2016] [Accepted: 05/15/2016] [Indexed: 12/17/2022] Open
Abstract
Recognition of pathogens by Toll-like receptors (TLR) activate multiple signaling cascades and expression of genes tailored to mount a primary immune response, inflammation, cell survival and apoptosis. Although TLR-induced activation of pathways, such as nuclear factor kappaB (NF-κB) and mitogen-activated protein kinases (MAPK), has been well studied, molecular entities controlling quantitative regulation of these pathways during an immune response remain poorly defined. We identified Sam68 as a novel regulator of TLR-induced NF-κB and MAPK activation. We found that TLR2 and TLR3 are totally dependent, whereas TLR4 is only partially dependent on Sam68 to induce the activation of NF-κB c-Rel. Absence of Sam68 greatly decreased TLR2- and TLR3-induced NF-κB p65 activation, whereas TLR4-induced p65 activation in a Sam68-independent manner. In contrast, Sam68 appeared to be a negative regulator of MAPK pathways because absence of Sam68 enhanced TLR2-induced activation of extracellular signal-regulated kinases (ERK) and c-Jun N-terminal kinases (JNK). Interestingly, TLR2- and TLR3-induced gene expression showed a differential requirement of Sam68. Absence of Sam68 impaired TLR2-induced gene expression, suggesting that Sam68 has a critical role in myeloid differentiation primary response gene 88-dependent TLR2 signaling. TLR3-induced gene expression that utilize Toll/Interleukin-1 receptor-domain-containing adapter-inducing beta interferon pathway, depend only partially on Sam68. Our findings suggest that Sam68 may function as an immune rheostat that balances the activation of NF-κB p65 and c-Rel, as well as MAPK, revealing a potential novel target to manipulate TLR signaling.
Collapse
|
32
|
Qian J, Zhao W, Miao X, Li L, Zhang D. Sam68 modulates apoptosis of intestinal epithelial cells via mediating NF-κB activation in ulcerative colitis. Mol Immunol 2016; 75:48-59. [PMID: 27235792 DOI: 10.1016/j.molimm.2016.05.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/11/2016] [Accepted: 05/13/2016] [Indexed: 12/19/2022]
Abstract
Sam68 (Src-associated substrate during mitosis of 68 KDa), also known as KHDRBS1 (KH domain containing, RNA binding, signal transduction associated 1), belongs to the prototypic member of the signal transduction activator of RNA (STAR) family of RNA-binding proteins. Sam68 is implicated in various cellular processes including RNA metabolism, apoptosis, signal transduction. Previous researches demonstrated that Sam68 regulated nuclear transcription factor kappa B (NF-κB) to induce inflammation. However, the expression and biological functions of Sam68 in ulcerative colitis (UC) are not clear. In this study, we reported for the first time that Sam68 was up-regulated in intestinal epithelial cells (IECs) of patients with UC. In DSS-induced mouse colitis model, we observed the overexpression of Sam68 accompanied with increased levels of IEC apoptotic markers (active caspase-3 and cleaved PARP) and NF-κB activation indicators (p-p65 and p-IκB) in colitis IECs. Co-localization of Sam68 with active caspase-3 (and p-p65) in IECs of the DSS-induced colitis group further indicated the possible involvement of NF-κB-mediated IEC apoptosis. Applying TNF-α-treated HT-29 cells as an in vitro IEC inflammation model, we confirmed the positive correlation amomg Sam68, NF-κB activation and caspase-dependent apoptosis. Immunofluorescence and immunoprecipitation assay identified nuclear translocation and physical interaction of Sam68 and NF-κB subunits in TNF-α-treated HT-29 cells. Besides, depletion of Sam68 by RNA interference greatly alleviated NF-κB activation and apoptosis in TNF-α-treated HT-29 cells. Taken together, our results indicated that Sam68 modulates apoptosis of intestinal epithelial cells via mediating NF-κB activation in UC.
Collapse
Affiliation(s)
- Ji Qian
- Department of Digestion Medicine, Affiliated Yixing Hospital of Jiangsu University, 75 Tongzhenguan Road, Yixing 214200, Jiangsu, People's Republic of China
| | - Weijuan Zhao
- Department of Gastroenterology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong 226001, Jiangsu, People's Republic of China
| | - Xianjing Miao
- Department of Gastroenterology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong 226001, Jiangsu, People's Republic of China
| | - Liren Li
- Department of Gastroenterology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong 226001, Jiangsu, People's Republic of China.
| | - Dongmei Zhang
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, People's Republic of China
| |
Collapse
|
33
|
Rai DK, Lawrence P, Kloc A, Schafer E, Rieder E. Analysis of the interaction between host factor Sam68 and viral elements during foot-and-mouth disease virus infections. Virol J 2015; 12:224. [PMID: 26695943 PMCID: PMC4689063 DOI: 10.1186/s12985-015-0452-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 12/10/2015] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The nuclear protein Src-associated protein of 68 kDa in mitosis (Sam68) is known to bind RNA and be involved in cellular processes triggered in response to environmental stresses, including virus infection. Interestingly, Sam68 is a multi-functional protein implicated in the life cycle of retroviruses and picornaviruses and is also considered a marker of virus-induced stress granules (SGs). Recently, we demonstrated the partial redistribution of Sam68 to the cytoplasm in FMDV infected cells, its interaction with viral protease 3C(pro), and found a significant reduction in viral titers as consequence of Sam68-specific siRNA knockdowns. Despite of that, details of how it benefits FMDV remains to be elucidated. METHODS Sam68 cytoplasmic localization was examined by immunofluorescent microscopy, counterstaining with antibodies against Sam68, a viral capsid protein and markers of SGs. The relevance of RAAA motifs in the IRES was investigated using electromobility shift assays with Sam68 protein and parental and mutant FMDV RNAs. In addition, full genome WT and mutant or G-luc replicon RNAs were tested following transfection in mammalian cells. The impact of Sam68 depletion to virus protein and RNA synthesis was investigated in a cell-free system. Lastly, through co-immunoprecipitation, structural modeling, and subcellular fractionation, viral protein interactions with Sam68 were explored. RESULTS FMDV-induced cytoplasmic redistribution of Sam68 resulted in it temporarily co-localizing with SG marker: TIA-1. Mutations that disrupted FMDV IRES RAAA motifs, with putative affinity to Sam68 in domain 3 and 4 cause a reduction on the formation of ribonucleoprotein complexes with this protein and resulted in non-viable progeny viruses and replication-impaired replicons. Furthermore, depletion of Sam68 in cell-free extracts greatly diminished FMDV RNA replication, which was restored by addition of recombinant Sam68. The results here demonstrated that Sam68 specifically co-precipitates with both FMDV 3D(pol) and 3C(pro) consistent with early observations of FMDV 3C(pro)-induced cleavage of Sam68. CONCLUSION We have found that Sam68 is a specific binding partner for FMDV non-structural proteins 3C(pro) and 3D(pol) and showed that mutations at RAAA motifs in IRES domains 3 and 4 cause a decrease in Sam68 affinity to these RNA elements and rendered the mutant RNA non-viable. Interestingly, in FMDV infected cells re-localized Sam68 was transiently detected along with SG markers in the cytoplasm. These results support the importance of Sam68 as a host factor co-opted by FMDV during infection and demonstrate that Sam68 interact with both, FMDV RNA motifs in the IRES and viral non-structural proteins 3C(pro) and 3D(pol).
Collapse
Affiliation(s)
- Devendra K Rai
- Foreign Animal Disease Research Unit, United States Department of Agriculture, Agricultural Research Service, Plum Island Animal Disease Center, USDA/ARS/NAA, P.O. Box 848, Greenport, NY, 11944, USA.
| | - Paul Lawrence
- Foreign Animal Disease Research Unit, United States Department of Agriculture, Agricultural Research Service, Plum Island Animal Disease Center, USDA/ARS/NAA, P.O. Box 848, Greenport, NY, 11944, USA.
| | - Anna Kloc
- Foreign Animal Disease Research Unit, United States Department of Agriculture, Agricultural Research Service, Plum Island Animal Disease Center, USDA/ARS/NAA, P.O. Box 848, Greenport, NY, 11944, USA.
| | - Elizabeth Schafer
- Foreign Animal Disease Research Unit, United States Department of Agriculture, Agricultural Research Service, Plum Island Animal Disease Center, USDA/ARS/NAA, P.O. Box 848, Greenport, NY, 11944, USA.
| | - Elizabeth Rieder
- Foreign Animal Disease Research Unit, United States Department of Agriculture, Agricultural Research Service, Plum Island Animal Disease Center, USDA/ARS/NAA, P.O. Box 848, Greenport, NY, 11944, USA.
| |
Collapse
|
34
|
Wang L, Tian H, Yuan J, Wu H, Wu J, Zhu X. CONSORT: Sam68 Is Directly Regulated by MiR-204 and Promotes the Self-Renewal Potential of Breast Cancer Cells by Activating the Wnt/Beta-Catenin Signaling Pathway. Medicine (Baltimore) 2015; 94:e2228. [PMID: 26656364 PMCID: PMC5008509 DOI: 10.1097/md.0000000000002228] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Breast cancer stem cells (BCSCs) are considered to be responsible for recurrence in breast cancer. The 68 kDa Src-associated protein in mitosis (Sam68) has been linked to the development and progression of breast cancer; however, the posttranscriptional regulation and role of Sam68 in BCSC self-renewal remain unclear.Sam68 was ectopically overexpressed or knocked down using a siRNA; the self-renewal potential of breast cancer cell lines was assessed using flow cytometry, in vitro mammosphere culture and a xenograft model in NOD/SCID mice. Activation of beta-catenin was assessed by immunohistochemical staining, Western blotting, and luciferase reporter gene assays. The ArrayExpress dataset GSE45666 was used to identify conserved microRNAs downregulated in breast cancer; real-time PCR, Western blotting, luciferase reporter assay, and xenografted tumor model were used to confirm miR-204 regulated Sam68.We found that endogenous Sam68 expression correlated positively with the self-renewal potential of breast cancer cell lines. Overexpression of Sam68 promoted, whereas knockdown reduced, breast cancer cell self-renewal potential in vitro and tumorigenicity in vivo. The Wnt/beta-catenin pathway was identified as a functional mediator of Sam68-induced self-renewal in SKBR-3 and MCF-7 cells. Furthermore, miR-204 was found to be frequently downregulated in human breast cancer and confirmed to directly target Sam68; miR-204 inhibited the self-renewal of breast cancer cell lines by targeting and suppressing Sam68.Our study reveals that Sam68 is regulated by miR-204 and may play an important role in the self-renewal of BCSCs via activating the Wnt/beta-catenin pathway. Sam68 may represent a novel therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Lan Wang
- From the Department of Pathogen Biology and Immunology, School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou, China (LW, HW); Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China (HT, XZ); and Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, China (HT, JY, JW, XZ)
| | | | | | | | | | | |
Collapse
|
35
|
Sam68 Promotes NF-κB Activation and Apoptosis Signaling in Articular Chondrocytes during Osteoarthritis. Inflamm Res 2015; 64:895-902. [PMID: 26350037 DOI: 10.1007/s00011-015-0872-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 08/18/2015] [Accepted: 08/19/2015] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES To investigate the expression of Sam68 in articular cartilage of knee osteoarthritis (OA) and the relationship between Sam68 and NF-κB activation and apoptosis signaling in OA articular chondrocytes. METHODS Sam68 expression in normal and osteoarthritic cartilage was assessed by immunohistochemistry and RT-PCR on both meniscal/ligamentous injury (MLI)-induced OA rat model and the clinical human OA cartilage tissues. Sam68 expression in chondrocytes under tumor necrosis factor-alpha (TNF-α) stimuli was also assessed by immunoblot. Inhibiting Sam68 in chondrocytes under TNF-α stimuli was conducted using small interfering RNA (siRNA) and its influence on the expression of apoptotic marker and catabolic genes was examined by immunoblot. The mechanism of how Sam68 stimulates NF-κB activity was determined by co-immunoprecipitation and immunoblot analysis of nuclear and cytoplasmic fractions of TNF-α-treated chondrocytes for p65 and Sam68. RESULTS Sam68 expression was increased in OA cartilage tissues and chondrocytes under TNF-α stimuli. Inhibition of Sam68 by siRNA significantly decreased the expression of apoptotic markers (cleaved caspase-3 and cleaved PARP) in chondrocytes following TNF-α-stimulation. Sam68 knockdown suppressed Iκ-B degradation and p65 nuclear transportation in TNF-α-treated chondrocytes, indicating a suppressed NF-κB activation. Upon TNF-α exposure, the nuclear transportation of Sam68 and its interaction with p65 was detected in chondrocytes. Furthermore, Sam68 knockdown also alleviated the TNF-α-induced catabolic marker (MMP13, ADAMTS5, iNOS and IL-6) expression. CONCLUSIONS The highly expressed Sam68 promotes NF-κB signaling activation, catabolic gene expression and cellular apoptosis in TNF-α-treated chondrocytes, which may provide better insights into the pathophysiology of OA and a potential target for its treatment.
Collapse
|
36
|
EMT-Inducing Molecular Factors in Gynecological Cancers. BIOMED RESEARCH INTERNATIONAL 2015; 2015:420891. [PMID: 26356073 PMCID: PMC4556818 DOI: 10.1155/2015/420891] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 01/14/2015] [Indexed: 12/27/2022]
Abstract
Gynecologic cancers are the unregulated growth of neoplastic cells that arise in the cervix, ovaries, fallopian tubes, uterus, vagina, and vulva. Although gynecologic cancers are characterized by different signs and symptoms, studies have shown that they share common risk factors, such as smoking, obesity, age, exposure to certain chemicals, infection with human immunodeficiency virus (HIV), and infection with human papilloma virus (HPV). Despite recent advancements in the preventative, diagnostic, and therapeutic interventions for gynecologic cancers, many patients still die as a result of metastasis and recurrence. Since mounting evidence indicates that the epithelial-mesenchymal transition (EMT) process plays an essential role in metastatic relapse of cancer, understanding the molecular aberrations responsible for the EMT and its underlying signaling should be given high priority in order to reduce cancer morbidity and mortality.
Collapse
|
37
|
Zhou J, Cheng M, Boriboun C, Ardehali MM, Jiang C, Liu Q, Han S, Goukassian DA, Tang YL, Zhao TC, Zhao M, Cai L, Richard S, Kishore R, Qin G. Inhibition of Sam68 triggers adipose tissue browning. J Endocrinol 2015; 225:181-9. [PMID: 25934704 PMCID: PMC4482239 DOI: 10.1530/joe-14-0727] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/22/2015] [Indexed: 12/12/2022]
Abstract
Obesity is associated with insulin resistance and type 2 diabetes; molecular mechanisms that promote energy expenditure can be utilized for effective therapy. Src-associated in mitosis of 68 kDa (Sam68) is potentially significant, because knockout (KO) of Sam68 leads to markedly reduced adiposity. In the present study, we sought to determine the mechanism by which Sam68 regulates adiposity and energy homeostasis. We first found that Sam68 KO mice have a significantly reduced body weight as compared to controls, and the difference is explained entirely by decreased adiposity. Interestingly, these effects were not mediated by a difference in food intake; rather, they were associated with enhanced physical activity. When they were fed a high-fat diet, Sam68 KO mice gained much less body weight and fat mass than their WT littermates did, and they displayed an improved glucose and insulin tolerance. In Sam68 KO mice, the brown adipose tissue (BAT), inguinal, and epididymal depots were smaller, and their adipocytes were less hypertrophied as compared to their WT littermates. The BAT of Sam68 KO mice exhibited reduced lipid stores and expressed higher levels of Ucp1 and key thermogenic and fatty acid oxidation genes. Similarly, depots of inguinal and epididymal white adipose tissue (WAT) in Sam68 KO mice appeared browner, their multilocular Ucp1-positive cells were much more abundant, and the expression of Ucp1, Cidea, Prdm16, and Ppargc1a genes was greater as compared to WT controls, which suggests that the loss of Sam68 also promotes WAT browning. Furthermore, in all of the fat depots of the Sam68 KO mice, the expression of M2 macrophage markers was up-regulated, and that of M1 markers was down-regulated. Thus, Sam68 plays a crucial role in controlling thermogenesis and may be targeted to combat obesity and associated disorders.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Adipogenesis
- Adipose Tissue, Brown/cytology
- Adipose Tissue, Brown/immunology
- Adipose Tissue, Brown/metabolism
- Adipose Tissue, Brown/pathology
- Adipose Tissue, White/cytology
- Adipose Tissue, White/immunology
- Adipose Tissue, White/metabolism
- Adipose Tissue, White/pathology
- Adiposity
- Animals
- Behavior, Animal
- Cell Size
- Disease Resistance
- Energy Intake
- Energy Metabolism
- Gene Expression Regulation
- Heterozygote
- Insulin Resistance
- Ion Channels/biosynthesis
- Macrophages/immunology
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Mitochondrial Proteins/biosynthesis
- Motor Activity
- Obesity/immunology
- Obesity/metabolism
- Obesity/pathology
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Thermogenesis
- Uncoupling Protein 1
Collapse
Affiliation(s)
- Junlan Zhou
- Department of Medicine-Cardiology Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, 303 E Chicago Avenue, Tarry 14-721, Chicago, Illinois 60611, USA Department of Cardiology Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China Department of Biochemistry University of Ottawa, Ottawa, Ontario, Canada Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China College of Life Sciences, South-Central University for Nationalities, Wuhan, Hubei, China GeneSys Research Institute CardioVascular Research Center, Tufts University School of Medicine, Boston, Massachusetts, USA Department of Medicine Medical College of Georgia, Vascular Biology Center, Georgia Regents University, Augusta, Georgia, USA Department of Surgery Roger Williams Medical Center, Boston University Medical School, Providence, Rhode Island, USA Kosair Children Hospital Research Institute Departments of Pediatrics, Radiation Oncology, Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA Lady Davis Institute for Medical Research McGill University, Montreal, Quebec, Canada Center for Translational Medicine Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Min Cheng
- Department of Medicine-Cardiology Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, 303 E Chicago Avenue, Tarry 14-721, Chicago, Illinois 60611, USA Department of Cardiology Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China Department of Biochemistry University of Ottawa, Ottawa, Ontario, Canada Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China College of Life Sciences, South-Central University for Nationalities, Wuhan, Hubei, China GeneSys Research Institute CardioVascular Research Center, Tufts University School of Medicine, Boston, Massachusetts, USA Department of Medicine Medical College of Georgia, Vascular Biology Center, Georgia Regents University, Augusta, Georgia, USA Department of Surgery Roger Williams Medical Center, Boston University Medical School, Providence, Rhode Island, USA Kosair Children Hospital Research Institute Departments of Pediatrics, Radiation Oncology, Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA Lady Davis Institute for Medical Research McGill University, Montreal, Quebec, Canada Center for Translational Medicine Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Chan Boriboun
- Department of Medicine-Cardiology Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, 303 E Chicago Avenue, Tarry 14-721, Chicago, Illinois 60611, USA Department of Cardiology Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China Department of Biochemistry University of Ottawa, Ottawa, Ontario, Canada Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China College of Life Sciences, South-Central University for Nationalities, Wuhan, Hubei, China GeneSys Research Institute CardioVascular Research Center, Tufts University School of Medicine, Boston, Massachusetts, USA Department of Medicine Medical College of Georgia, Vascular Biology Center, Georgia Regents University, Augusta, Georgia, USA Department of Surgery Roger Williams Medical Center, Boston University Medical School, Providence, Rhode Island, USA Kosair Children Hospital Research Institute Departments of Pediatrics, Radiation Oncology, Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA Lady Davis Institute for Medical Research McGill University, Montreal, Quebec, Canada Center for Translational Medicine Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Mariam M Ardehali
- Department of Medicine-Cardiology Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, 303 E Chicago Avenue, Tarry 14-721, Chicago, Illinois 60611, USA Department of Cardiology Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China Department of Biochemistry University of Ottawa, Ottawa, Ontario, Canada Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China College of Life Sciences, South-Central University for Nationalities, Wuhan, Hubei, China GeneSys Research Institute CardioVascular Research Center, Tufts University School of Medicine, Boston, Massachusetts, USA Department of Medicine Medical College of Georgia, Vascular Biology Center, Georgia Regents University, Augusta, Georgia, USA Department of Surgery Roger Williams Medical Center, Boston University Medical School, Providence, Rhode Island, USA Kosair Children Hospital Research Institute Departments of Pediatrics, Radiation Oncology, Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA Lady Davis Institute for Medical Research McGill University, Montreal, Quebec, Canada Center for Translational Medicine Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Changfei Jiang
- Department of Medicine-Cardiology Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, 303 E Chicago Avenue, Tarry 14-721, Chicago, Illinois 60611, USA Department of Cardiology Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China Department of Biochemistry University of Ottawa, Ottawa, Ontario, Canada Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China College of Life Sciences, South-Central University for Nationalities, Wuhan, Hubei, China GeneSys Research Institute CardioVascular Research Center, Tufts University School of Medicine, Boston, Massachusetts, USA Department of Medicine Medical College of Georgia, Vascular Biology Center, Georgia Regents University, Augusta, Georgia, USA Department of Surgery Roger Williams Medical Center, Boston University Medical School, Providence, Rhode Island, USA Kosair Children Hospital Research Institute Departments of Pediatrics, Radiation Oncology, Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA Lady Davis Institute for Medical Research McGill University, Montreal, Quebec, Canada Center for Translational Medicine Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Qinghua Liu
- Department of Medicine-Cardiology Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, 303 E Chicago Avenue, Tarry 14-721, Chicago, Illinois 60611, USA Department of Cardiology Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China Department of Biochemistry University of Ottawa, Ottawa, Ontario, Canada Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China College of Life Sciences, South-Central University for Nationalities, Wuhan, Hubei, China GeneSys Research Institute CardioVascular Research Center, Tufts University School of Medicine, Boston, Massachusetts, USA Department of Medicine Medical College of Georgia, Vascular Biology Center, Georgia Regents University, Augusta, Georgia, USA Department of Surgery Roger Williams Medical Center, Boston University Medical School, Providence, Rhode Island, USA Kosair Children Hospital Research Institute Departments of Pediatrics, Radiation Oncology, Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA Lady Davis Institute for Medical Research McGill University, Montreal, Quebec, Canada Center for Translational Medicine Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Shuling Han
- Department of Medicine-Cardiology Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, 303 E Chicago Avenue, Tarry 14-721, Chicago, Illinois 60611, USA Department of Cardiology Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China Department of Biochemistry University of Ottawa, Ottawa, Ontario, Canada Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China College of Life Sciences, South-Central University for Nationalities, Wuhan, Hubei, China GeneSys Research Institute CardioVascular Research Center, Tufts University School of Medicine, Boston, Massachusetts, USA Department of Medicine Medical College of Georgia, Vascular Biology Center, Georgia Regents University, Augusta, Georgia, USA Department of Surgery Roger Williams Medical Center, Boston University Medical School, Providence, Rhode Island, USA Kosair Children Hospital Research Institute Departments of Pediatrics, Radiation Oncology, Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA Lady Davis Institute for Medical Research McGill University, Montreal, Quebec, Canada Center for Translational Medicine Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - David A Goukassian
- Department of Medicine-Cardiology Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, 303 E Chicago Avenue, Tarry 14-721, Chicago, Illinois 60611, USA Department of Cardiology Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China Department of Biochemistry University of Ottawa, Ottawa, Ontario, Canada Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China College of Life Sciences, South-Central University for Nationalities, Wuhan, Hubei, China GeneSys Research Institute CardioVascular Research Center, Tufts University School of Medicine, Boston, Massachusetts, USA Department of Medicine Medical College of Georgia, Vascular Biology Center, Georgia Regents University, Augusta, Georgia, USA Department of Surgery Roger Williams Medical Center, Boston University Medical School, Providence, Rhode Island, USA Kosair Children Hospital Research Institute Departments of Pediatrics, Radiation Oncology, Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA Lady Davis Institute for Medical Research McGill University, Montreal, Quebec, Canada Center for Translational Medicine Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Yao-Liang Tang
- Department of Medicine-Cardiology Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, 303 E Chicago Avenue, Tarry 14-721, Chicago, Illinois 60611, USA Department of Cardiology Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China Department of Biochemistry University of Ottawa, Ottawa, Ontario, Canada Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China College of Life Sciences, South-Central University for Nationalities, Wuhan, Hubei, China GeneSys Research Institute CardioVascular Research Center, Tufts University School of Medicine, Boston, Massachusetts, USA Department of Medicine Medical College of Georgia, Vascular Biology Center, Georgia Regents University, Augusta, Georgia, USA Department of Surgery Roger Williams Medical Center, Boston University Medical School, Providence, Rhode Island, USA Kosair Children Hospital Research Institute Departments of Pediatrics, Radiation Oncology, Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA Lady Davis Institute for Medical Research McGill University, Montreal, Quebec, Canada Center for Translational Medicine Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Ting C Zhao
- Department of Medicine-Cardiology Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, 303 E Chicago Avenue, Tarry 14-721, Chicago, Illinois 60611, USA Department of Cardiology Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China Department of Biochemistry University of Ottawa, Ottawa, Ontario, Canada Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China College of Life Sciences, South-Central University for Nationalities, Wuhan, Hubei, China GeneSys Research Institute CardioVascular Research Center, Tufts University School of Medicine, Boston, Massachusetts, USA Department of Medicine Medical College of Georgia, Vascular Biology Center, Georgia Regents University, Augusta, Georgia, USA Department of Surgery Roger Williams Medical Center, Boston University Medical School, Providence, Rhode Island, USA Kosair Children Hospital Research Institute Departments of Pediatrics, Radiation Oncology, Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA Lady Davis Institute for Medical Research McGill University, Montreal, Quebec, Canada Center for Translational Medicine Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Ming Zhao
- Department of Medicine-Cardiology Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, 303 E Chicago Avenue, Tarry 14-721, Chicago, Illinois 60611, USA Department of Cardiology Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China Department of Biochemistry University of Ottawa, Ottawa, Ontario, Canada Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China College of Life Sciences, South-Central University for Nationalities, Wuhan, Hubei, China GeneSys Research Institute CardioVascular Research Center, Tufts University School of Medicine, Boston, Massachusetts, USA Department of Medicine Medical College of Georgia, Vascular Biology Center, Georgia Regents University, Augusta, Georgia, USA Department of Surgery Roger Williams Medical Center, Boston University Medical School, Providence, Rhode Island, USA Kosair Children Hospital Research Institute Departments of Pediatrics, Radiation Oncology, Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA Lady Davis Institute for Medical Research McGill University, Montreal, Quebec, Canada Center for Translational Medicine Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Lu Cai
- Department of Medicine-Cardiology Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, 303 E Chicago Avenue, Tarry 14-721, Chicago, Illinois 60611, USA Department of Cardiology Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China Department of Biochemistry University of Ottawa, Ottawa, Ontario, Canada Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China College of Life Sciences, South-Central University for Nationalities, Wuhan, Hubei, China GeneSys Research Institute CardioVascular Research Center, Tufts University School of Medicine, Boston, Massachusetts, USA Department of Medicine Medical College of Georgia, Vascular Biology Center, Georgia Regents University, Augusta, Georgia, USA Department of Surgery Roger Williams Medical Center, Boston University Medical School, Providence, Rhode Island, USA Kosair Children Hospital Research Institute Departments of Pediatrics, Radiation Oncology, Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA Lady Davis Institute for Medical Research McGill University, Montreal, Quebec, Canada Center for Translational Medicine Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Stéphane Richard
- Department of Medicine-Cardiology Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, 303 E Chicago Avenue, Tarry 14-721, Chicago, Illinois 60611, USA Department of Cardiology Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China Department of Biochemistry University of Ottawa, Ottawa, Ontario, Canada Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China College of Life Sciences, South-Central University for Nationalities, Wuhan, Hubei, China GeneSys Research Institute CardioVascular Research Center, Tufts University School of Medicine, Boston, Massachusetts, USA Department of Medicine Medical College of Georgia, Vascular Biology Center, Georgia Regents University, Augusta, Georgia, USA Department of Surgery Roger Williams Medical Center, Boston University Medical School, Providence, Rhode Island, USA Kosair Children Hospital Research Institute Departments of Pediatrics, Radiation Oncology, Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA Lady Davis Institute for Medical Research McGill University, Montreal, Quebec, Canada Center for Translational Medicine Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Raj Kishore
- Department of Medicine-Cardiology Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, 303 E Chicago Avenue, Tarry 14-721, Chicago, Illinois 60611, USA Department of Cardiology Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China Department of Biochemistry University of Ottawa, Ottawa, Ontario, Canada Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China College of Life Sciences, South-Central University for Nationalities, Wuhan, Hubei, China GeneSys Research Institute CardioVascular Research Center, Tufts University School of Medicine, Boston, Massachusetts, USA Department of Medicine Medical College of Georgia, Vascular Biology Center, Georgia Regents University, Augusta, Georgia, USA Department of Surgery Roger Williams Medical Center, Boston University Medical School, Providence, Rhode Island, USA Kosair Children Hospital Research Institute Departments of Pediatrics, Radiation Oncology, Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA Lady Davis Institute for Medical Research McGill University, Montreal, Quebec, Canada Center for Translational Medicine Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Gangjian Qin
- Department of Medicine-Cardiology Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, 303 E Chicago Avenue, Tarry 14-721, Chicago, Illinois 60611, USA Department of Cardiology Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China Department of Biochemistry University of Ottawa, Ottawa, Ontario, Canada Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China College of Life Sciences, South-Central University for Nationalities, Wuhan, Hubei, China GeneSys Research Institute CardioVascular Research Center, Tufts University School of Medicine, Boston, Massachusetts, USA Department of Medicine Medical College of Georgia, Vascular Biology Center, Georgia Regents University, Augusta, Georgia, USA Department of Surgery Roger Williams Medical Center, Boston University Medical School, Providence, Rhode Island, USA Kosair Children Hospital Research Institute Departments of Pediatrics, Radiation Oncology, Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA Lady Davis Institute for Medical Research McGill University, Montreal, Quebec, Canada Center for Translational Medicine Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
38
|
Wilson BT, Omer M, Hellens SW, Zwolinski SA, Yates LM, Lynch SA. Microdeletion 1p35.2: a recognizable facial phenotype with developmental delay. Am J Med Genet A 2015; 167A:1916-20. [PMID: 25900906 DOI: 10.1002/ajmg.a.37114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 04/02/2015] [Indexed: 11/08/2022]
Abstract
We describe two patients with microdeletion 1p35.2, intrauterine growth retardation, small stature, hypermetropia, hearing impairment and developmental delay. Both patients have long, myopathic facies, with fine eyebrows, small mouths and micrognathia. We postulate a role for the histone deacetylase HDAC1 in the facial phenotype and suggest that deletion of KPNA6 may prevent transmission of the 1p35.2 deletion from affected girls to any offspring through impaired zygotic genome activation.
Collapse
Affiliation(s)
- Brian T Wilson
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Newcastle upon Tyne, UK.,Northern Genetics Service, Newcastle upon Tyne Hospitals NHS Foundation Trust, International Centre for Life, Newcastle upon Tyne, UK
| | - Murwan Omer
- National Centre for Medical Genetics, Our Lady's Children's Hospital, Crumlin, Ireland
| | - Stephen W Hellens
- Northern Genetics Service, Newcastle upon Tyne Hospitals NHS Foundation Trust, International Centre for Life, Newcastle upon Tyne, UK
| | - Simon A Zwolinski
- Northern Genetics Service, Newcastle upon Tyne Hospitals NHS Foundation Trust, International Centre for Life, Newcastle upon Tyne, UK
| | - Laura M Yates
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Newcastle upon Tyne, UK.,Northern Genetics Service, Newcastle upon Tyne Hospitals NHS Foundation Trust, International Centre for Life, Newcastle upon Tyne, UK
| | - Sally Ann Lynch
- National Centre for Medical Genetics, Our Lady's Children's Hospital, Crumlin, Ireland
| |
Collapse
|
39
|
Investigating the protective role of death receptor 3 (DR3) in renal injury using an organ culture model. Methods Mol Biol 2014; 1155:69-79. [PMID: 24788174 DOI: 10.1007/978-1-4939-0669-7_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Death receptor 3 (DR3; also designated as Wsl-1, Apo3, LARD, TRAMP, TNFRSF25, and TR3) is a member of the tumor necrosis factor (TNF) receptor superfamily that has emerged as a major regulator of inflammation and autoimmune diseases. DR3 contains a homologous intracellular region called the death domain (DD) that can bind adaptor proteins, which also contain a DD, initiating cellular responses such as caspase activation and apoptotic cell death. However, in other circumstances DR3 can initiate induction of transcription genes and gene products that can prevent cell death from occurring. Our laboratory has reported an inducible expression of DR3 in human and mouse tubular epithelial cells in renal injury, but its function in these setting still remains unclear. To directly manipulate and evaluate the role of DR3 in vivo, I have used an in vitro organ culture (OC) model, which I have developed in our laboratory. In this chapter, I will describe in detail the OC model used to study the role of DR3 in renal injury and discuss its advantages and limitations. In my hands, the OC model has proven to be an efficient tool for studying human cell heterogeneity, basal and regulated receptor expression, signalling pathways, and various biological responses not readily achievable in traditional cell culture models. Various assays can be carried out on organ cultures including histology, biochemistry, cell biology, and molecular biology, which will not be described in detail in this chapter.
Collapse
|
40
|
Kenneth NS, Hucks GE, Kocab AJ, McCollom AL, Duckett CS. Copper is a potent inhibitor of both the canonical and non-canonical NFκB pathways. Cell Cycle 2014; 13:1006-14. [PMID: 24552822 DOI: 10.4161/cc.27922] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Copper is an essential trace element that plays key roles in many metabolic processes. Homeostatic regulation of intracellular copper is normally tightly controlled, but deregulated copper levels are found in numerous metabolic and neurodegenerative diseases, as well as in a range of neoplasms. There are conflicting reports regarding the exact role of copper in the regulation of NFκB-responsive genes, specifically whether copper leads to increased activation of the NFκB pathways, or downregulation. Here we show that increased intracellular levels of copper, using the ionophore clioquinol, leads to a potent inhibition of NFκB pathways, induced by multiple distinct stimuli. Addition of copper to cells inhibits ubiquitin-mediated degradation of IκBα by preventing its phoshorylation by the upstream IKK complex. Intriguingly, copper-dependent inhibition of NFκB can be reversed by the addition of the reducing agent, N-acetylcysteine (NAC). These results suggest that the oxidative properties of excess copper prevent NFκB activation by blocking IκBα destruction, and that NFκB activity should be assessed in diseases associated with copper excess.
Collapse
Affiliation(s)
- Niall S Kenneth
- Department of Pathology; The University of Michigan Medical School; Ann Arbor, MI USA; Translational Oncology Program; The University of Michigan Medical School; Ann Arbor, MI USA
| | - George E Hucks
- Translational Oncology Program; The University of Michigan Medical School; Ann Arbor, MI USA; Department of Pediatrics; The University of Michigan Medical School; Ann Arbor, MI USA
| | - Andrew J Kocab
- Department of Pathology; The University of Michigan Medical School; Ann Arbor, MI USA; Translational Oncology Program; The University of Michigan Medical School; Ann Arbor, MI USA; Graduate Program in Immunology; The University of Michigan Medical School; Ann Arbor, MI USA
| | - Annie L McCollom
- Department of Pathology; The University of Michigan Medical School; Ann Arbor, MI USA; Translational Oncology Program; The University of Michigan Medical School; Ann Arbor, MI USA
| | - Colin S Duckett
- Department of Pathology; The University of Michigan Medical School; Ann Arbor, MI USA; Translational Oncology Program; The University of Michigan Medical School; Ann Arbor, MI USA; Department of Internal Medicine; The University of Michigan Medical School; Ann Arbor, MI USA
| |
Collapse
|
41
|
Goodwin M, Swanson MS. RNA-binding protein misregulation in microsatellite expansion disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 825:353-88. [PMID: 25201111 PMCID: PMC4483269 DOI: 10.1007/978-1-4939-1221-6_10] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
RNA-binding proteins (RBPs) play pivotal roles in multiple cellular pathways from transcription to RNA turnover by interacting with RNA sequence and/or structural elements to form distinct RNA-protein complexes. Since these complexes are required for the normal regulation of gene expression, mutations that alter RBP functions may result in a cascade of deleterious events that lead to severe disease. Here, we focus on a group of hereditary disorders, the microsatellite expansion diseases, which alter RBP activities and result in abnormal neurological and neuromuscular phenotypes. While many of these diseases are classified as adult-onset disorders, mounting evidence indicates that disruption of normal RNA-protein interaction networks during embryogenesis modifies developmental pathways, which ultimately leads to disease manifestations later in life. Efforts to understand the molecular basis of these disorders has already uncovered novel pathogenic mechanisms, including RNA toxicity and repeat-associated non-ATG (RAN) translation, and current studies suggest that additional surprising insights into cellular regulatory pathways will emerge in the future.
Collapse
Affiliation(s)
- Marianne Goodwin
- Department of Molecular Genetics and Microbiology, University of Florida, College of Medicine, Cancer Genetics Research Complex, 2033 Mowry Road, Gainesville, FL, 32610-3610, USA
| | | |
Collapse
|
42
|
Fu K, Sun X, Zheng W, Wier EM, Hodgson A, Tran DQ, Richard S, Wan F. Sam68 modulates the promoter specificity of NF-κB and mediates expression of CD25 in activated T cells. Nat Commun 2013; 4:1909. [PMID: 23715268 PMCID: PMC3684077 DOI: 10.1038/ncomms2916] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 04/19/2013] [Indexed: 12/23/2022] Open
Abstract
CD25, the alpha chain of the interleukin-2 receptor, is expressed in activated T cells and has a significant role in autoimmune disease and tumorigenesis; however, the mechanisms regulating transcription of CD25 remain elusive. Here we identify the Src-associated substrate during mitosis of 68 kDa (Sam68) as a novel non-Rel component in the nuclear factor-kappaB (NF-κB) complex that confers CD25 transcription. Our results demonstrate that Sam68 has an essential role in the induction and maintenance of CD25 in T cells. T-cell receptor engagement triggers translocation of the inhibitor of NF-κB kinase alpha (IKKα) from the cytoplasm to the nucleus, where it phosphorylates Sam68, causing complex formation with NF-κB in the nucleus. These findings reveal the important roles of KH domain-containing components and their spatial interactions with IKKs in determining the binding targets of NF-κB complexes, thus shedding novel insights into the regulatory specificity of NF-κB.
Collapse
Affiliation(s)
- Kai Fu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21025, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
RACK1 modulates NF-κB activation by interfering with the interaction between TRAF2 and the IKK complex. Cell Res 2013; 24:359-71. [PMID: 24323043 DOI: 10.1038/cr.2013.162] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 09/28/2013] [Accepted: 10/22/2013] [Indexed: 01/10/2023] Open
Abstract
The transcription factor NF-κB plays a pivotal role in innate immunity in response to a variety of stimuli, and the coordinated regulation of this pathway determines the proper host responses to extracellular signals. In this study, we identified RACK1 as a novel negative regulator of NF-κB signaling, NF-κB-mediated cytokine induction and inflammatory reactions. RACK1 physically associates with the IKK complex in a TNF-triggered manner. This interaction interferes with the recruitment of the IKK complex to TRAF2, which is a critical step for IKK phosphorylation and subsequent activation triggered by TNF. By modulating the interaction between TRAF2 and IKK, RACK1 regulates the levels of NF-κB activation in response to different intensities of stimuli. Our findings suggest that RACK1 plays an important role in controlling the sensitivity of TNF-triggered NF-κB signaling by regulating IKK activation and provide new insight into the negative regulation of inflammatory reactions.
Collapse
|
44
|
Zhao X, Li Z, He B, Liu J, Li S, Zhou L, Pan C, Yu Z, Xu Z. Sam68 is a novel marker for aggressive neuroblastoma. Onco Targets Ther 2013; 6:1751-60. [PMID: 24324342 PMCID: PMC3855102 DOI: 10.2147/ott.s52643] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Neuroblastoma (NB) is the most common solid extracranial tumor in children. However, the molecular mechanism and progression of NB is largely unknown, and unfortunately, the prognosis is poor. Src-associated in mitosis with a molecular weight of 68 kDa (Sam68) is associated with carcinogenesis and neurogenesis. The present study aimed to investigate the clinical and prognostic significance of Sam68 in NB. Methods The expression of Sam68 in immortalized normal epithelial cells, NB cell lines, and in four cases of paired NB tissue and adjacent normal tissue from the same patient was examined using Western blotting, reverse transcription-polymerase chain reaction (PCR) and real-time reverse transcription-PCR. The proliferation of NB cells was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Furthermore, Sam68 protein expression was analyzed in 90 NB cases characterized as clinicopathological using immunohistochemistry. Statistical analyses were applied to evaluate the diagnostic value and associations of Sam68 with clinical parameters. Results Western blotting and reverse transcription-PCR showed that the expression level of Sam68 was markedly higher in NB cell lines than in the immortalized normal epithelial cells at both messenger RNA and protein levels. The MTT assay revealed that Sam68 expression supported proliferation of NB cells. Sam68 expression levels were significantly up-regulated in tumor tissues in comparison to the matched adjacent normal tissues from the same patient. Sam68 protein level was positively correlated with clinical stage (P<0.001), tumor histology (P<0.001), and distant metastasis (P=0.029). Patients with higher Sam68 expression had shorter overall survival time, whereas those with lower tumor Sam68 expression had longer survival time. Conclusion Our results suggest that Sam68 expression is associated with neuroblastoma progression and may represent a novel and valuable predictor for prognostic evaluation of neuroblastoma patients.
Collapse
Affiliation(s)
- Xiaohong Zhao
- Department of Pediatric Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Sánchez-Jiménez F, Sánchez-Margalet V. Role of Sam68 in post-transcriptional gene regulation. Int J Mol Sci 2013; 14:23402-23419. [PMID: 24287914 PMCID: PMC3876053 DOI: 10.3390/ijms141223402] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 11/11/2013] [Accepted: 11/13/2013] [Indexed: 01/10/2023] Open
Abstract
The STAR family of proteins links signaling pathways to various aspects of post-transcriptional regulation and processing of RNAs. Sam68 belongs to this class of heteronuclear ribonucleoprotein particle K (hnRNP K) homology (KH) single domain-containing family of RNA-binding proteins that also contains some domains predicted to bind critical components in signal transduction pathways. In response to phosphorylation and other post-transcriptional modifications, Sam68 has been shown to have the ability to link signal transduction pathways to downstream effects regulating RNA metabolism, including transcription, alternative splicing or RNA transport. In addition to its function as a docking protein in some signaling pathways, this prototypic STAR protein has been identified to have a nuclear localization and to take part in the formation of both nuclear and cytosolic multi-molecular complexes such as Sam68 nuclear bodies and stress granules. Coupling with other proteins and RNA targets, Sam68 may play a role in the regulation of differential expression and mRNA processing and translation according to internal and external signals, thus mediating important physiological functions, such as cell death, proliferation or cell differentiation.
Collapse
Affiliation(s)
- Flora Sánchez-Jiménez
- Department of Medical Biochemistry and Molecular Biology and Immunology, UGC Clinical Biochemistry, Virgen Macarena University Hospital, Avenue. Sánchez Pizjuan 4, Medical School, University of Seville, Seville 41009; Spain; E-Mail:
| | - Víctor Sánchez-Margalet
- Department of Medical Biochemistry and Molecular Biology and Immunology, UGC Clinical Biochemistry, Virgen Macarena University Hospital, Avenue. Sánchez Pizjuan 4, Medical School, University of Seville, Seville 41009; Spain; E-Mail:
| |
Collapse
|
46
|
Hwang YJ, Lee EW, Song J, Kim HR, Jun YC, Hwang KA. MafK positively regulates NF-κB activity by enhancing CBP-mediated p65 acetylation. Sci Rep 2013; 3:3242. [PMID: 24247732 PMCID: PMC3832860 DOI: 10.1038/srep03242] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 10/31/2013] [Indexed: 12/30/2022] Open
Abstract
Reactive oxygen species, produced by oxidative stress, initiate and promote many metabolic diseases through activation/suppression of redox-sensitive transcription factors. NF-κB and Nrf2 are important regulators of oxidation resistance and contribute to the pathogenesis of many diseases. We identified MafK, a novel transcriptional regulator that modulates NF-κB activity. MafK knockdown reduced NF-κB activation, whereas MafK overexpression enhanced NF-κB function. MafK mediated p65 acetylation by CBP upon LPS stimulation, thereby facilitating recruitment of p65 to NF-κB promoters such as IL-8 and TNFα. Consistent with these results, MafK-depleted mice showed prolonged survival with a reduced hepatic inflammatory response after LPS and D-GalN injection. Thus, our findings reveal a novel mechanism by which MafK controls NF-κB activity via CBP-mediated p65 acetylation.
Collapse
Affiliation(s)
- Yu-Jin Hwang
- 1] Department of Agrofood Resources, National Academy of Agricultural Science, RDA, Suwon, Gyeonggi-do 441-853, Republic of Korea [2] Department of Biotechnology & Bioengineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746, Republic of Korea
| | | | | | | | | | | |
Collapse
|
47
|
Ubiquitination-deubiquitination by the TRIM27-USP7 complex regulates tumor necrosis factor alpha-induced apoptosis. Mol Cell Biol 2013; 33:4971-84. [PMID: 24144979 DOI: 10.1128/mcb.00465-13] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Tumor necrosis factor alpha (TNF-α) plays a role in apoptosis and proliferation in multiple types of cells, and defects in TNF-α-induced apoptosis are associated with various autoimmune diseases. Here, we show that TRIM27, a tripartite motif (TRIM) protein containing RING finger, B-box, and coiled-coil domains, positively regulates TNF-α-induced apoptosis. Trim27-deficient mice are resistant to TNF-α-d-galactosamine-induced hepatocyte apoptosis. Trim27-deficient mouse embryonic fibroblasts (MEFs) are also resistant to TNF-α-cycloheximide-induced apoptosis. TRIM27 forms a complex with and ubiquitinates the ubiquitin-specific protease USP7, which deubiquitinates receptor-interacting protein 1 (RIP1), resulting in the positive regulation of TNF-α-induced apoptosis. Our findings indicate that the ubiquitination-deubiquitination cascade mediated by the TRIM27-USP7 complex plays an important role in TNF-α-induced apoptosis.
Collapse
|
48
|
Ramakrishnan P, Clark PM, Mason DE, Peters EC, Hsieh-Wilson LC, Baltimore D. Activation of the transcriptional function of the NF-κB protein c-Rel by O-GlcNAc glycosylation. Sci Signal 2013; 6:ra75. [PMID: 23982206 DOI: 10.1126/scisignal.2004097] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The transcription factor nuclear factor κB (NF-κB) rapidly reprograms gene expression in response to various stimuli, and its activity is regulated by several posttranslational modifications, including phosphorylation, methylation, and acetylation. The addition of O-linked β-N-acetylglucosamine (a process known as O-GlcNAcylation) is an abundant posttranslational modification that is enhanced in conditions such as hyperglycemia and cellular stress. We report that the NF-κB subunit c-Rel is modified and activated by O-GlcNAcylation. We identified serine 350 as the site of O-GlcNAcylation, which was required for the DNA binding and transactivation functions of c-Rel. Blocking the O-GlcNAcylation of this residue abrogated c-Rel-mediated expression of the cytokine-encoding genes IL2, IFNG, and CSF2 in response to T cell receptor (TCR) activation, whereas increasing the extent of O-GlcNAcylation of cellular proteins enhanced the expression of these genes. TCR- or tumor necrosis factor (TNF)-induced expression of other NF-κB target genes, such as NFKBIA (which encodes IκBα) and TNFAIP3 (which encodes A20), occurred independently of the O-GlcNAcylation of c-Rel. Our findings suggest a stimulus-specific role for hyperglycemia-induced O-GlcNAcylation of c-Rel in promoting T cell-mediated autoimmunity in conditions such as type 1 diabetes by enhancing the production of T helper cell cytokines.
Collapse
|
49
|
Gowthaman R, Deeds EJ, Karanicolas J. Structural properties of non-traditional drug targets present new challenges for virtual screening. J Chem Inf Model 2013; 53:2073-81. [PMID: 23879197 DOI: 10.1021/ci4002316] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Traditional drug targets have historically included signaling proteins that respond to small molecules and enzymes that use small molecules as substrates. Increasing attention is now being directed toward other types of protein targets, in particular those that exert their function by interacting with nucleic acids or other proteins rather than small-molecule ligands. Here, we systematically compare existing examples of inhibitors of protein-protein interactions to inhibitors of traditional drug targets. While both sets of inhibitors bind with similar potency, we find that the inhibitors of protein-protein interactions typically bury a smaller fraction of their surface area upon binding to their protein targets. The fact that an average atom is less buried suggests that more atoms are needed to achieve a given potency, explaining the observation that ligand efficiency is typically poor for inhibitors of protein-protein interactions. We then carried out a series of docking experiments and found a further consequence of these relatively exposed binding modes is that structure-based virtual screening may be more difficult: such binding modes do not provide sufficient clues to pick out active compounds from decoy compounds. Collectively, these results suggest that the challenges associated with such non-traditional drug targets may not lie with identifying compounds that potently bind to the target protein surface, but rather with identifying compounds that bind in a sufficiently buried manner to achieve good ligand efficiency and, thus, good oral bioavailability. While the number of available crystal structures of distinct protein interaction sites bound to small-molecule inhibitors is relatively small at present (only 21 such complexes were included in this study), these are sufficient to draw conclusions based on the current state of the field; as additional data accumulate it will be exciting to refine the viewpoint presented here. Even with this limited perspective however, we anticipate that these insights, together with new methods for exploring protein conformational fluctuations, may prove useful for identifying the "low-hanging fruit" among non-traditional targets for therapeutic intervention.
Collapse
Affiliation(s)
- Ragul Gowthaman
- Center for Bioinformatics, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66045-7534, USA
| | | | | |
Collapse
|
50
|
Sernbo S, Borrebaeck CAK, Uhlén M, Jirström K, Ek S. Nuclear T-STAR protein expression correlates with HER2 status, hormone receptor negativity and prolonged recurrence free survival in primary breast cancer and decreased cancer cell growth in vitro. PLoS One 2013; 8:e70596. [PMID: 23923007 PMCID: PMC3726654 DOI: 10.1371/journal.pone.0070596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 06/24/2013] [Indexed: 01/08/2023] Open
Abstract
T-STAR (testis-signal transduction and activation of RNA) is an RNA binding protein, containing an SH3-binding domain and thus potentially playing a role in integration of cell signaling and RNA metabolism. The specific function of T-STAR is unknown and its implication in cancer is poorly characterized. Expression of T-STAR has been reported in human testis, muscle and brain tissues, and is associated with a growth-inhibitory role in immortalized fibroblasts. The aim of this paper was to investigate the functional role of T-STAR through (i) survival analysis of patients with primary invasive breast cancer and (ii) experimental evaluation of the effect of T-STAR on breast cancer cell growth. T-STAR protein expression was analysed by immunohistochemistry (IHC) in tissue microarrays with tumors from 289 patients with primary invasive breast cancer, and correlations to clinicopathological characteristics, recurrence-free and overall survival (RFS and OS) and established tumor markers such as HER2 and ER status were evaluated. In addition, the function of T-STAR was investigated using siRNA-mediated knock-down and overexpression of the gene in six breast cancer cell lines. Of the tumors analysed, 86% showed nuclear T-STAR expression, which was significantly associated with an improved RFS and strongly associated with positive HER2 status and negative hormone receptor status. Furthermore, experimental data showed that overexpression of T-STAR decreased cellular growth while knock-down increased it, as shown both by thymidine incorporation and metabolic activity. In summary, we demonstrate that T-STAR protein expression correlates with an improved RFS in primary breast cancer. This is supported by functional data, indicating that T-STAR regulation is of importance both for breast cancer biology and clinical outcome but future studies are needed to determine a potential role in patient stratification.
Collapse
Affiliation(s)
- Sandra Sernbo
- Department of Immunotechnology, CREATE Health, Lund University, Lund, Sweden
| | | | - Mathias Uhlén
- Department of Biotechnology, AlbaNova University Center, Royal Institute of Technology, Stockholm, Sweden
| | - Karin Jirström
- Department of Clinical Sciences, Division of Pathology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Sara Ek
- Department of Immunotechnology, CREATE Health, Lund University, Lund, Sweden
- * E-mail:
| |
Collapse
|