1
|
Parashar S, Kaushik A, Ambasta RK, Kumar P. E2 conjugating enzymes: A silent but crucial player in ubiquitin biology. Ageing Res Rev 2025; 108:102740. [PMID: 40194666 DOI: 10.1016/j.arr.2025.102740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/14/2025] [Accepted: 03/19/2025] [Indexed: 04/09/2025]
Abstract
E2 conjugating enzymes serve as the linchpin of the Ubiquitin-Proteasome System (UPS), facilitating ubiquitin (Ub) transfer to substrate proteins and regulating diverse processes critical to cellular homeostasis. The interaction of E2s with E1 activating enzymes and E3 ligases singularly positions them as middlemen of the ubiquitin machinery that guides protein turnover. Structural determinants of E2 enzymes play a pivotal role in these interactions, enabling precise ubiquitin transfer and substrate specificity. Regulation of E2 enzymes is tightly controlled through mechanisms such as post-translational modifications (PTMs), allosteric control, and gene expression modulation. Specific residues that undergo PTMs highlight their impact on E2 function and their role in ubiquitin dynamics. E2 enzymes also cooperate with deubiquitinases (DUBs) to maintain proteostasis. Design of small molecule inhibitors to modulate E2 activity is emerging as promising avenue to restrict ubiquitination as a potential therapeutic intervention. Additionally, E2 enzymes have been implicated in the pathogenesis and progression of neurodegenerative disorders (NDDs), where their dysfunction contributes to disease mechanisms. In summary, examining E2 enzymes from structural and functional perspectives offers potential to advance our understanding of cellular processes and assist in discovery of new therapeutic targets.
Collapse
Affiliation(s)
- Somya Parashar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Bawana Road, Delhi 110042, India
| | - Aastha Kaushik
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Bawana Road, Delhi 110042, India
| | - Rashmi K Ambasta
- Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Bawana Road, Delhi 110042, India.
| |
Collapse
|
2
|
Zhang Q, Gu R, Dai Y, Chen J, Ye P, Zhu H, He W, Nie X. Molecular mechanisms of ubiquitination in wound healing. Biochem Pharmacol 2025; 231:116670. [PMID: 39613112 DOI: 10.1016/j.bcp.2024.116670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/02/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024]
Abstract
Wound healing is a complex biological process involving multiple cellular and molecular mechanisms. Ubiquitination, a crucial post-translational modification, plays a vital role in regulating various aspects of wound healing through protein modification and degradation. This review comprehensively examines the molecular mechanisms of ubiquitination in wound healing, focusing on its regulation of inflammatory responses, macrophage polarization, angiogenesis, and the activities of fibroblasts and keratinocytes. We discuss how ubiquitination modifies key signaling pathways, including TGF-β/Smad3, NF-κB, and HIF-α, which are essential for proper wound healing. Understanding these mechanisms provides insights into potential therapeutic strategies for treating impaired wound healing, particularly in conditions such as diabetes. The review highlights recent advances in understanding ubiquitination's role in wound healing and discusses future research directions for developing targeted therapeutic approaches.
Collapse
Affiliation(s)
- Qianbo Zhang
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, PR China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, PR China.
| | - Rifang Gu
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, PR China; School Medical Office, Zunyi Medical University, Zunyi 563006, PR China.
| | - Yuhe Dai
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, PR China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, PR China.
| | - Jitao Chen
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, PR China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, PR China.
| | - Penghui Ye
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, PR China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, PR China.
| | - Huan Zhu
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, PR China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, PR China.
| | - Wenping He
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, PR China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, PR China.
| | - Xuqiang Nie
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, PR China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, PR China.
| |
Collapse
|
3
|
Zhang W, Li W, Yang Y, Cao W, Shao W, Huang M, Wang J, Chen Z, Cai J, Liu H, Zhao X, Dong X, Zhou T, Tian H, Zhu Z, Yang F, Zheng H. RING finger protein 5 is a key anti-FMDV host factor through inhibition of virion assembly. PLoS Pathog 2025; 21:e1012848. [PMID: 39823440 PMCID: PMC11741381 DOI: 10.1371/journal.ppat.1012848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 12/19/2024] [Indexed: 01/19/2025] Open
Abstract
Foot-and-mouth disease virus (FMDV) are small, icosahedral viruses that cause serious clinical symptoms in livestock. The FMDV VP1 protein is a key structural component, facilitating virus entry. Here, we find that the E3 ligase RNF5 interacts with VP1 and targets it for degradation through ubiquitination at the lys200 of VP1, ultimately inhibiting virus replication. Mutations at this lysine site have been found to increase the replication of FMDV in mice. Importantly, the RNF5 pharmacological activator Analog-1 alleviates disease development in a mouse infection model. Furthermore, RNF5 recognizes the VP1 protein from several picornaviruses, suggesting that targeting RNF5 may be a broad-spectrum antiviral strategy. These findings shed light on the role of the ubiquitin-proteasome system in controlling virus replication, offering potential new strategies for treating viral infections.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Weiwei Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Yang Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Weijun Cao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Wenhua Shao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Mengyao Huang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Jiali Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Zhitong Chen
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Jiantao Cai
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Hongyi Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Xiaoyi Zhao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Xingyan Dong
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Tingting Zhou
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Hong Tian
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Zixiang Zhu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Fan Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Haixue Zheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| |
Collapse
|
4
|
Su W, Ahmad I, Wu Y, Tang L, Khan I, Ye B, Liang J, Li S, Zheng YH. Furin Egress from the TGN is Regulated by Membrane-Associated RING-CH Finger (MARCHF) Proteins and Ubiquitin-Specific Protease 32 (USP32) via Nondegradable K33-Polyubiquitination. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403732. [PMID: 39031635 PMCID: PMC11425283 DOI: 10.1002/advs.202403732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/05/2024] [Indexed: 07/22/2024]
Abstract
Furin primarily localizes to the trans-Golgi network (TGN), where it cleaves and activates a broad range of immature proproteins that play critical roles in cellular homeostasis, disease progression, and infection. Furin is retrieved from endosomes to the TGN after being phosphorylated, but it is still unclear how furin exits the TGN to initiate the post-Golgi trafficking and how its activity is regulated in the TGN. Here three membrane-associated RING-CH finger (MARCHF) proteins (2, 8, 9) are identified as furin E3 ubiquitin ligases, which catalyze furin K33-polyubiquitination. Polyubiquitination prevents furin from maturation by blocking its ectodomain cleavage inside cells but promotes its egress from the TGN and shedding. Further ubiquitin-specific protease 32 (USP32) is identified as the furin deubiquitinase in the TGN that counteracts the MARCHF inhibitory activity on furin. Thus, the furin post-Golgi trafficking is regulated by an interplay between polyubiquitination and phosphorylation. Polyubiquitination is required for furin anterograde transport but inhibits its proprotein convertase activity, and phosphorylation is required for furin retrograde transport to produce fully active furin inside cells.
Collapse
Affiliation(s)
- Wenqiang Su
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Iqbal Ahmad
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - You Wu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Lijie Tang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Ilyas Khan
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Bowei Ye
- Center for Bioinformatics and Quantitative Biology, Richard and Loan Hill Department of Biomedical Engineering, The University of Illinois Chicago, Chicago, IL, 60607, USA
| | - Jie Liang
- Center for Bioinformatics and Quantitative Biology, Richard and Loan Hill Department of Biomedical Engineering, The University of Illinois Chicago, Chicago, IL, 60607, USA
| | - Sunan Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yong-Hui Zheng
- Department of Microbiology and Immunology, The University of Illinois Chicago, Chicago, IL, 60612, USA
| |
Collapse
|
5
|
Cannea FB, Diana D, Rossino R, Padiglia A. ECPUB5 Polyubiquitin Gene in Euphorbia characias: Molecular Characterization and Seasonal Expression Analysis. Genes (Basel) 2024; 15:957. [PMID: 39062736 PMCID: PMC11275293 DOI: 10.3390/genes15070957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
The spurge Euphorbia characias is known for its latex, which is rich in antioxidant enzymes and anti-phytopathogen molecules. In this study, we identified a novel polyubiquitin protein in the latex and leaves, leading to the first molecular characterization of its coding gene and expressed protein in E. characias. Using consensus-degenerate hybrid oligonucleotide primers (CODEHOP) and rapid amplification of cDNA ends (5'/3'-RACE), we reconstructed the entire open reading frame (ORF) and noncoding regions. Our analysis revealed that the polyubiquitin gene encodes five tandemly repeated sequences, each coding for a ubiquitin monomer with amino acid variations in four of the five repeats. In silico studies have suggested functional differences among monomers. Gene expression peaked during the summer, correlating with high temperatures and suggesting a role in heat stress response. Western blotting confirmed the presence of polyubiquitin in the latex and leaf tissues, indicating active ubiquitination processes. These findings enhance our understanding of polyubiquitin's regulatory mechanisms and functions in E. characias, highlighting its unique structural and functional features.
Collapse
Affiliation(s)
- Faustina Barbara Cannea
- Biomedical Section, Department of Life and Environmental Sciences (DiSVA), Cittadella Universitaria di Monserrato, University of Cagliari, 09042 Cagliari, Italy;
| | - Daniela Diana
- Department of Medical Sciences and Public Health (DSMSP), AOU Presidio Microcitemico, University of Cagliari, 09121 Cagliari, Italy; (D.D.); (R.R.)
| | - Rossano Rossino
- Department of Medical Sciences and Public Health (DSMSP), AOU Presidio Microcitemico, University of Cagliari, 09121 Cagliari, Italy; (D.D.); (R.R.)
| | - Alessandra Padiglia
- Biomedical Section, Department of Life and Environmental Sciences (DiSVA), Cittadella Universitaria di Monserrato, University of Cagliari, 09042 Cagliari, Italy;
| |
Collapse
|
6
|
Velez-Brochero M, Behera P, Afreen KS, Odle A, Rajsbaum R. Ubiquitination in viral entry and replication: Mechanisms and implications. Adv Virus Res 2024; 119:1-38. [PMID: 38897707 DOI: 10.1016/bs.aivir.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The ubiquitination process is a reversible posttranslational modification involved in many essential cellular functions, such as innate immunity, cell signaling, trafficking, protein stability, and protein degradation. Viruses can use the ubiquitin system to efficiently enter host cells, replicate and evade host immunity, ultimately enhancing viral pathogenesis. Emerging evidence indicates that enveloped viruses can carry free (unanchored) ubiquitin or covalently ubiquitinated viral structural proteins that can increase the efficiency of viral entry into host cells. Furthermore, viruses continuously evolve and adapt to take advantage of the host ubiquitin machinery, highlighting its importance during virus infection. This review discusses the battle between viruses and hosts, focusing on how viruses hijack the ubiquitination process at different steps of the replication cycle, with a specific emphasis on viral entry. We discuss how ubiquitination of viral proteins may affect tropism and explore emerging therapeutics strategies targeting the ubiquitin system for antiviral drug discovery.
Collapse
Affiliation(s)
- Maria Velez-Brochero
- Center for Virus-Host-Innate Immunity and Department of Medicine, Rutgers Biomedical and Health Sciences, Institute for Infectious and Inflammatory Diseases, Rutgers University, Newark, NJ, United States
| | - Padmanava Behera
- Center for Virus-Host-Innate Immunity and Department of Medicine, Rutgers Biomedical and Health Sciences, Institute for Infectious and Inflammatory Diseases, Rutgers University, Newark, NJ, United States
| | - Kazi Sabrina Afreen
- Center for Virus-Host-Innate Immunity and Department of Medicine, Rutgers Biomedical and Health Sciences, Institute for Infectious and Inflammatory Diseases, Rutgers University, Newark, NJ, United States
| | - Abby Odle
- Center for Virus-Host-Innate Immunity and Department of Medicine, Rutgers Biomedical and Health Sciences, Institute for Infectious and Inflammatory Diseases, Rutgers University, Newark, NJ, United States
| | - Ricardo Rajsbaum
- Center for Virus-Host-Innate Immunity and Department of Medicine, Rutgers Biomedical and Health Sciences, Institute for Infectious and Inflammatory Diseases, Rutgers University, Newark, NJ, United States.
| |
Collapse
|
7
|
Xu J, Jiang W, Hu T, Long Y, Shen Y. NEDD4 and NEDD4L: Ubiquitin Ligases Closely Related to Digestive Diseases. Biomolecules 2024; 14:577. [PMID: 38785984 PMCID: PMC11117611 DOI: 10.3390/biom14050577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/09/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024] Open
Abstract
Protein ubiquitination is an enzymatic cascade reaction and serves as an important protein post-translational modification (PTM) that is involved in the vast majority of cellular life activities. The key enzyme in the ubiquitination process is E3 ubiquitin ligase (E3), which catalyzes the binding of ubiquitin (Ub) to the protein substrate and influences substrate specificity. In recent years, the relationship between the subfamily of neuron-expressed developmental downregulation 4 (NEDD4), which belongs to the E3 ligase system, and digestive diseases has drawn widespread attention. Numerous studies have shown that NEDD4 and NEDD4L of the NEDD4 family can regulate the digestive function, as well as a series of related physiological and pathological processes, by controlling the subsequent degradation of proteins such as PTEN, c-Myc, and P21, along with substrate ubiquitination. In this article, we reviewed the appropriate functions of NEDD4 and NEDD4L in digestive diseases including cell proliferation, invasion, metastasis, chemotherapeutic drug resistance, and multiple signaling pathways, based on the currently available research evidence for the purpose of providing new ideas for the prevention and treatment of digestive diseases.
Collapse
Affiliation(s)
| | | | | | | | - Yueming Shen
- Department of Digestive Diseases, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, 161 Shaoshan Road, Changsha 410000, China; (J.X.); (W.J.); (T.H.); (Y.L.)
| |
Collapse
|
8
|
Zhou Y, Zhang Q, Zhao Z, Hu X, You Q, Jiang Z. Targeting kelch-like (KLHL) proteins: achievements, challenges and perspectives. Eur J Med Chem 2024; 269:116270. [PMID: 38490062 DOI: 10.1016/j.ejmech.2024.116270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/07/2024] [Accepted: 02/19/2024] [Indexed: 03/17/2024]
Abstract
Kelch-like proteins (KLHLs) are a large family of BTB-containing proteins. KLHLs function as the substrate adaptor of Cullin 3-RING ligases (CRL3) to recognize substrates. KLHLs play pivotal roles in regulating various physiological and pathological processes by modulating the ubiquitination of their respective substrates. Mounting evidence indicates that mutations or abnormal expression of KLHLs are associated with various human diseases. Targeting KLHLs is a viable strategy for deciphering the KLHLs-related pathways and devising therapies for associated diseases. Here, we comprehensively review the known KLHLs inhibitors to date and the brilliant ideas underlying their development.
Collapse
Affiliation(s)
- Yangguo Zhou
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qiong Zhang
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Ziquan Zhao
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiuqi Hu
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qidong You
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Zhengyu Jiang
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
9
|
Li W, Wang Z. Ubiquitination Process Mediates Prostate Cancer Development and Metastasis through Multiple Mechanisms. Cell Biochem Biophys 2024; 82:77-90. [PMID: 37847340 PMCID: PMC10866789 DOI: 10.1007/s12013-023-01156-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 07/30/2023] [Indexed: 10/18/2023]
Abstract
Prostate cancer (PCa) is a common malignant tumor in men, when the disease progresses to the advanced stage, most patients will develop distant metastasis and develop into castration-resistant prostate cancer (CRPC), resulting in increased mortality. Ubiquitination is a widespread protein post-translational modification process in the biological world, and it plays an important role in the development and transfer of PCa. E3 ubiquitin ligase plays an important role in the specific selection and role of substrates in the process of ubiquitination ligase. This review will briefly introduce the ubiquitination process and E3 ubiquitin ligase, focus on the recently discovered multiple mechanisms by which ubiquitination affects PCa development and metastasis, and a summary of the current emerging proteolysis-targeting chimeras (PROTAC) in the treatment of PCa.
Collapse
Affiliation(s)
- Wen Li
- Department of Immuno-Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhiyu Wang
- Department of Immuno-Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
10
|
Gong Y, Dai L. Decoding Ubiquitin Modifications by Mass Spectrometry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1466:1-18. [PMID: 39546132 DOI: 10.1007/978-981-97-7288-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Protein ubiquitination is a critical and widely distributed post-translational modification (PTM) involved in the regulation of almost every cellular process and pathway in cells, such as proteostasis, DNA repair, trafficking, and immunity. Mass spectrometry (MS)-based proteomics is a robust tool to decode the complexity of ubiquitin networks by disclosing the proteome-wide ubiquitination sites, the length, linkage and topology of ubiquitin chains, the chemical modification of ubiquitin chains, and the crosstalk between ubiquitination and other PTMs. In this chapter, we discuss the application of MS in the interpretation of the ubiquitin code.
Collapse
Affiliation(s)
- Yanqiu Gong
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Lunzhi Dai
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
11
|
Frank D, Bergamasco M, Mlodzianoski MJ, Kueh A, Tsui E, Hall C, Kastrappis G, Voss AK, McLean C, Faux M, Rogers KL, Tran B, Vincan E, Komander D, Dewson G, Tran H. Trabid patient mutations impede the axonal trafficking of adenomatous polyposis coli to disrupt neurite growth. eLife 2023; 12:RP90796. [PMID: 38099646 PMCID: PMC10723793 DOI: 10.7554/elife.90796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023] Open
Abstract
ZRANB1 (human Trabid) missense mutations have been identified in children diagnosed with a range of congenital disorders including reduced brain size, but how Trabid regulates neurodevelopment is not understood. We have characterized these patient mutations in cells and mice to identify a key role for Trabid in the regulation of neurite growth. One of the patient mutations flanked the catalytic cysteine of Trabid and its deubiquitylating (DUB) activity was abrogated. The second variant retained DUB activity, but failed to bind STRIPAK, a large multiprotein assembly implicated in cytoskeleton organization and neural development. Zranb1 knock-in mice harboring either of these patient mutations exhibited reduced neuronal and glial cell densities in the brain and a motor deficit consistent with fewer dopaminergic neurons and projections. Mechanistically, both DUB-impaired and STRIPAK-binding-deficient Trabid variants impeded the trafficking of adenomatous polyposis coli (APC) to microtubule plus-ends. Consequently, the formation of neuronal growth cones and the trajectory of neurite outgrowth from mutant midbrain progenitors were severely compromised. We propose that STRIPAK recruits Trabid to deubiquitylate APC, and that in cells with mutant Trabid, APC becomes hyperubiquitylated and mislocalized causing impaired organization of the cytoskeleton that underlie the neuronal and developmental phenotypes.
Collapse
Affiliation(s)
- Daniel Frank
- Ubiquitin Signalling Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Maria Bergamasco
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
- Epigenetics and Development Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Michael J Mlodzianoski
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
- Centre for Dynamic Imaging, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Andrew Kueh
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
- Melbourne Advanced Genome Editing Centre, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, Australia
- School of Cancer Medicine, La Trobe University, Heidelberg, Australia
| | - Ellen Tsui
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
- Histology Facility, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Cathrine Hall
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Georgios Kastrappis
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Anne Kathrin Voss
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
- Epigenetics and Development Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Catriona McLean
- Department of Anatomical Pathology, The Alfred Hospital, Melbourne, Australia
| | - Maree Faux
- Neuro-Oncology Group, Murdoch Children's Research Institute, Parkville, Australia
| | - Kelly L Rogers
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
- Centre for Dynamic Imaging, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Bang Tran
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Elizabeth Vincan
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- The Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - David Komander
- Ubiquitin Signalling Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Grant Dewson
- Ubiquitin Signalling Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Hoanh Tran
- Ubiquitin Signalling Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| |
Collapse
|
12
|
Dagar G, Kumar R, Yadav KK, Singh M, Pandita TK. Ubiquitination and deubiquitination: Implications on cancer therapy. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194979. [PMID: 37633647 DOI: 10.1016/j.bbagrm.2023.194979] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/28/2023] [Accepted: 08/21/2023] [Indexed: 08/28/2023]
Abstract
The ubiquitin proteasomal system (UPS) represents a highly regulated protein degradation pathway essential for maintaining cellular homeostasis. This system plays a critical role in several cellular processes, which include DNA damage repair, cell cycle checkpoint control, and immune response regulation. Recently, the UPS has emerged as a promising target for cancer therapeutics due to its involvement in oncogenesis and tumor progression. Here we aim to summarize the key aspects of the UPS and its significance in cancer therapeutics. We begin by elucidating the fundamental components of the UPS, highlighting the role of ubiquitin, E1-E3 ligases, and the proteasome in protein degradation. Furthermore, we discuss the intricate process of ubiquitination and proteasomal degradation, emphasizing the specificity and selectivity achieved through various signaling pathways. The dysregulation of the UPS has been implicated in cancer development and progression. Aberrant ubiquitin-mediated degradation of key regulatory proteins, such as tumor suppressors and oncoproteins, can lead to uncontrolled cell proliferation, evasion of apoptosis, and metastasis. We outline the pivotal role of the UPS in modulating crucial oncogenic pathways, including the regulation of cyclins, transcription factors, Replication stress components and DNA damage response. The increasing recognition of the UPS as a target for cancer therapeutics has spurred the development of small molecules, peptides, and proteasome inhibitors with the potential to restore cellular balance and disrupt tumor growth. We provide an overview of current therapeutic strategies aimed at exploiting the UPS, including the use of proteasome inhibitors, deubiquitinating enzyme inhibitors, and novel E3 ligase modulators. We further discuss novel emerging strategies for the development of next-generation drugs that target proteasome inhibitors. Exploiting the UPS for cancer therapeutics offers promising avenues for developing innovative and effective treatment strategies, providing hope for improved patient outcomes in the fight against cancer.
Collapse
Affiliation(s)
- Gunjan Dagar
- Department of Medical Oncology, Dr BRAIRCH, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Rakesh Kumar
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir 182320, India.
| | - Kamlesh K Yadav
- Center for Genomics and Precision Medicine, Texas A&M College of Medicine, Houston, TX 77030, USA; School of Engineering Medicine, Texas A&M University, School of Medicine, Houston, TX 77030, USA.
| | - Mayank Singh
- Department of Medical Oncology, Dr BRAIRCH, All India Institute of Medical Sciences, New Delhi 110029, India.
| | - Tej K Pandita
- Center for Genomics and Precision Medicine, Texas A&M College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
13
|
Hu S, Wang L. The potential role of ubiquitination and deubiquitination in melanogenesis. Exp Dermatol 2023; 32:2062-2071. [PMID: 37846904 DOI: 10.1111/exd.14953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/31/2023] [Accepted: 10/03/2023] [Indexed: 10/18/2023]
Abstract
Melanogenesis is a critical biochemical process in which melanocytes produce melanin, a crucial element involved in the formation of coat colour in mammals. According to several earlier studies, melanocytes' post-translational modifications of proteins primarily control melanogenesis. Among the many post-translational changes that can affect melanin production, ubiquitination and deubiquitination can keep melanin production going by changing how proteins that are related to melanin are broken down or kept stable. Ubiquitination and deubiquitination maintain ubiquitin homeostasis, which is a highly dynamic process in balance under the action of E3 ubiquitin ligase and deubiquitinating enzymes. However, the regulatory mechanisms underlying ubiquitination and deubiquitination in melanogenesis are yet to be thoroughly investigated. As a result, there has been a growing focus on exploring the potential correlation between melanogenesis, ubiquitination and deubiquitination. This study discusses the mechanisms of ubiquitination and deubiquitination in the context of melanogenesis, a crucial process for enhancing mammalian coat coloration and addressing pigment-related diseases.
Collapse
Affiliation(s)
- Shuaishuai Hu
- College of Life Science, Luoyang Normal University, Luoyang, China
| | - Lu Wang
- College of Life Science, Luoyang Normal University, Luoyang, China
| |
Collapse
|
14
|
Hughes DC, Goodman CA, Baehr LM, Gregorevic P, Bodine SC. A critical discussion on the relationship between E3 ubiquitin ligases, protein degradation, and skeletal muscle wasting: it's not that simple. Am J Physiol Cell Physiol 2023; 325:C1567-C1582. [PMID: 37955121 PMCID: PMC10861180 DOI: 10.1152/ajpcell.00457.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
Ubiquitination is an important post-translational modification (PTM) for protein substrates, whereby ubiquitin is added to proteins through the coordinated activity of activating (E1), ubiquitin-conjugating (E2), and ubiquitin ligase (E3) enzymes. The E3s provide key functions in the recognition of specific protein substrates to be ubiquitinated and aid in determining their proteolytic or nonproteolytic fates, which has led to their study as indicators of altered cellular processes. MuRF1 and MAFbx/Atrogin-1 were two of the first E3 ubiquitin ligases identified as being upregulated in a range of different skeletal muscle atrophy models. Since their discovery, the expression of these E3 ubiquitin ligases has often been studied as a surrogate measure of changes to bulk protein degradation rates. However, emerging evidence has highlighted the dynamic and complex regulation of the ubiquitin proteasome system (UPS) in skeletal muscle and demonstrated that protein ubiquitination is not necessarily equivalent to protein degradation. These observations highlight the potential challenges of quantifying E3 ubiquitin ligases as markers of protein degradation rates or ubiquitin proteasome system (UPS) activation. This perspective examines the usefulness of monitoring E3 ubiquitin ligases for determining specific or bulk protein degradation rates in the settings of skeletal muscle atrophy. Specific questions that remain unanswered within the skeletal muscle atrophy field are also identified, to encourage the pursuit of new research that will be critical in moving forward our understanding of the molecular mechanisms that govern protein function and degradation in muscle.
Collapse
Affiliation(s)
- David C Hughes
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States
| | - Craig A Goodman
- Centre for Muscle Research (CMR), Department of Anatomy and Physiology, The University of Melbourne, Parkville, Victoria, Australia
| | - Leslie M Baehr
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States
| | - Paul Gregorevic
- Centre for Muscle Research (CMR), Department of Anatomy and Physiology, The University of Melbourne, Parkville, Victoria, Australia
- Department of Neurology, The University of Washington School of Medicine, Seattle, Washington, United States
| | - Sue C Bodine
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States
| |
Collapse
|
15
|
Chou MC, Wang YH, Chen FY, Kung CY, Wu KP, Kuo JC, Chan SJ, Cheng ML, Lin CY, Chou YC, Ho MC, Firestine S, Huang JR, Chen RH. PAICS ubiquitination recruits UBAP2 to trigger phase separation for purinosome assembly. Mol Cell 2023; 83:4123-4140.e12. [PMID: 37848033 DOI: 10.1016/j.molcel.2023.09.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 07/10/2023] [Accepted: 09/22/2023] [Indexed: 10/19/2023]
Abstract
Purinosomes serve as metabolons to enhance de novo purine synthesis (DNPS) efficiency through compartmentalizing DNPS enzymes during stressed conditions. However, the mechanism underpinning purinosome assembly and its pathophysiological functions remains elusive. Here, we show that K6-polyubiquitination of the DNPS enzyme phosphoribosylaminoimidazole carboxylase and phosphoribosylaminoimidazolesuccinocarboxamide synthetase (PAICS) by cullin-5/ankyrin repeat and SOCS box containing 11 (Cul5/ASB11)-based ubiquitin ligase plays a driving role in purinosome assembly. Upon several purinosome-inducing cues, ASB11 is upregulated by relieving the H3K9me3/HP1α-mediated transcriptional silencing, thus stimulating PAICS polyubiquitination. The polyubiquitinated PAICS recruits ubiquitin-associated protein 2 (UBAP2), a ubiquitin-binding protein with multiple stretches of intrinsically disordered regions, thereby inducing phase separation to trigger purinosome assembly for enhancing DNPS pathway flux. In human melanoma, ASB11 is highly expressed to facilitate a constitutive purinosome formation to which melanoma cells are addicted for supporting their proliferation, viability, and tumorigenesis in a xenograft model. Our study identifies a driving mechanism for purinosome assembly in response to cellular stresses and uncovers the impact of purinosome formation on human malignancies.
Collapse
Affiliation(s)
- Ming-Chieh Chou
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Yi-Hsuan Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Fei-Yun Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Chun-Ying Kung
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Kuen-Phon Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Jean-Cheng Kuo
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Shu-Jou Chan
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Mei-Ling Cheng
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan
| | - Chih-Yu Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Yu-Chi Chou
- Biomedical Translation Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Meng-Chiao Ho
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Steven Firestine
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Jie-Rong Huang
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Ruey-Hwa Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|
16
|
Wang J, Zheng H, Dong C, Xiong S. Human OTUD6B positively regulates type I IFN antiviral innate immune responses by deubiquitinating and stabilizing IRF3. mBio 2023; 14:e0033223. [PMID: 37650650 PMCID: PMC10653906 DOI: 10.1128/mbio.00332-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/12/2023] [Indexed: 09/01/2023] Open
Abstract
IMPORTANCE Interferon (IFN) regulatory factor (IRF3) is one of the key factors for type I IFN transcription. To sophisticatedly regulate type I IFN antiviral immune response, IRF3 activity is closely controlled by a variety of post-translational modifications. However, the regulatory mechanisms are still not fully elucidated. In the present study, we found that human deubiquitinase OTUD6B positively regulates IRF3-mediated antiviral immune response. OTUD6B can stabilize the IRF3 protein level via hydrolyzing (Lys33)-linked polyubiquitin at Lys315. More importantly, mice with OTUD6B overexpression exhibited more resistance to RNA virus infection. Thus, unlike the previous report that zebrafish OTUD6B negatively regulates the antiviral response by suppressing K63-linked ubiquitination of IRF3 and IRF7, we demonstrate that human OTUD6B actually enhances type I IFN response and has the potential for antiviral therapy.
Collapse
Affiliation(s)
- Jian Wang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Hui Zheng
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Chunsheng Dong
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Sidong Xiong
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
17
|
Park SS, Baek KH. Synergistic effect of YOD1 and USP21 on the Hippo signaling pathway. Cancer Cell Int 2023; 23:209. [PMID: 37743467 PMCID: PMC10518088 DOI: 10.1186/s12935-023-03078-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 09/20/2023] [Indexed: 09/26/2023] Open
Abstract
BACKGROUND Deubiquitinating enzymes (DUBs) comprise a family of proteases responsible for cleaving the peptide or isopeptide bond between ubiquitin and its substrate proteins. Ubiquitin is essential for regulating diverse cellular functions by attaching to target proteins. The Hippo signaling pathway plays a crucial role in controlling tissue size, cell proliferation, and apoptosis. In a previous study, we discovered that YOD1 regulates the Hippo signaling pathway by deubiquitinating the neural precursor cell expressed developmentally down-regulated protein 4 (NEDD4), an E3 ligase of large tumor suppressor kinase 1 (LATS1). Here, our aim was to investigate potential substrates of YOD1 implicated in the Hippo signaling pathway. METHODS We employed various bioinformatics tools (BioGRID, STRING, and Cytoscape) to identify novel potential substrates of YOD1. Furthermore, we used western blotting, co-immunoprecipitation (co-IP), glutathione S-transferase (GST) pull-down, immunocytochemistry (ICC) assays to investigate cellular interactions. To evaluate cell proliferation, we performed cell counting kit-8 (CCK-8), wound healing, colony forming, and flow cytometry assays using A549, HEK293T, and HeLa cells. Additionally, we assessed the expression levels of YAP and p-YAP in A549, HEK293T, and HeLa cells through western blotting. RESULTS Our investigations revealed that YOD1 interacts with ubiquitin-specific proteases 21 (USP21), a DUB involved in the Hippo signaling pathway, and deubiquitinates the microtubule-affinity regulating kinase (MARK). Intriguingly, YOD1 and USP21 mutually deubiquitinate each other; while YOD1 regulates the protein stability of USP21, USP21 does not exert a regulatory effect on YOD1. Moreover, we observed the synergistic effect of YOD1 and USP21 on cell proliferation through the modulation of the Hippo signaling pathway. CONCLUSIONS Our study revealed multiple cellular interactions between YOD1 and USP21. Moreover, our findings suggest that the combined activities of YOD1 and USP21 synergistically influence cell proliferation in A549 cells by regulating the Hippo signaling pathway.
Collapse
Affiliation(s)
- Sang-Soo Park
- Department of Biomedical Science, CHA University, 335 Pangyo-Ro, Bundang-Gu, Seongnam-Si, Gyeonggi-Do, 13488, Republic of Korea
| | - Kwang-Hyun Baek
- Department of Biomedical Science, CHA University, 335 Pangyo-Ro, Bundang-Gu, Seongnam-Si, Gyeonggi-Do, 13488, Republic of Korea.
- Department of Bioconvergence, CHA University, 335 Pangyo-Ro, Bundang-Gu, Seoungnam-Si, Gyeonggi-Do, 13488, Republic of Korea.
| |
Collapse
|
18
|
Ghosh A, Chakraborty P, Biswas D. Fine tuning of the transcription juggernaut: A sweet and sour saga of acetylation and ubiquitination. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194944. [PMID: 37236503 DOI: 10.1016/j.bbagrm.2023.194944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/26/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023]
Abstract
Among post-translational modifications of proteins, acetylation, phosphorylation, and ubiquitination are most extensively studied over the last several decades. Owing to their different target residues for modifications, cross-talk between phosphorylation with that of acetylation and ubiquitination is relatively less pronounced. However, since canonical acetylation and ubiquitination happen only on the lysine residues, an overlap of the same lysine residue being targeted for both acetylation and ubiquitination happens quite frequently and thus plays key roles in overall functional regulation predominantly through modulation of protein stability. In this review, we discuss the cross-talk of acetylation and ubiquitination in the regulation of protein stability for the functional regulation of cellular processes with an emphasis on transcriptional regulation. Further, we emphasize our understanding of the functional regulation of Super Elongation Complex (SEC)-mediated transcription, through regulation of stabilization by acetylation, deacetylation and ubiquitination and associated enzymes and its implication in human diseases.
Collapse
Affiliation(s)
- Avik Ghosh
- Laboratory of Transcription Biology Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 32, India
| | - Poushali Chakraborty
- Laboratory of Transcription Biology Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 32, India
| | - Debabrata Biswas
- Laboratory of Transcription Biology Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 32, India.
| |
Collapse
|
19
|
Buzuk L, Hellerschmied D. Ubiquitin-mediated degradation at the Golgi apparatus. Front Mol Biosci 2023; 10:1197921. [PMID: 37484530 PMCID: PMC10357820 DOI: 10.3389/fmolb.2023.1197921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/26/2023] [Indexed: 07/25/2023] Open
Abstract
The Golgi apparatus is an essential organelle of the secretory pathway in eukaryotic cells. It processes secretory and transmembrane proteins and orchestrates their transport to other endomembrane compartments or the plasma membrane. The Golgi apparatus thereby shapes the cell surface, controlling cell polarity, cell-cell communication, and immune signaling. The cytosolic face of the Golgi hosts and regulates signaling cascades, impacting most notably the DNA damage response and mitosis. These essential functions strongly depend on Golgi protein homeostasis and Golgi integrity. Golgi fragmentation and consequent malfunction is associated with neurodegenerative diseases and certain cancer types. Recent studies provide first insight into the critical role of ubiquitin signaling in maintaining Golgi integrity and in Golgi protein quality control. Similar to well described pathways at the endoplasmic reticulum, ubiquitin-dependent degradation of non-native proteins prevents the accumulation of toxic protein aggregates at the Golgi. Moreover, ubiquitination regulates Golgi structural rearrangements in response to cellular stress. Advances in elucidating ubiquitination and degradation events at the Golgi are starting to paint a picture of the molecular machinery underlying Golgi (protein) homeostasis.
Collapse
|
20
|
Pires CV, Oberstaller J, Wang C, Casandra D, Zhang M, Chawla J, Adapa SR, Otto TD, Ferdig MT, Rayner JC, Jiang RHY, Adams JH. Chemogenomic Profiling of a Plasmodium falciparum Transposon Mutant Library Reveals Shared Effects of Dihydroartemisinin and Bortezomib on Lipid Metabolism and Exported Proteins. Microbiol Spectr 2023; 11:e0501422. [PMID: 37067430 PMCID: PMC10269874 DOI: 10.1128/spectrum.05014-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/21/2023] [Indexed: 04/18/2023] Open
Abstract
The antimalarial activity of the frontline drug artemisinin involves generation of reactive oxygen species (ROS) leading to oxidative damage of parasite proteins. To achieve homeostasis and maintain protein quality control in the overwhelmed parasite, the ubiquitin-proteasome system kicks in. Even though molecular markers for artemisinin resistance like pfkelch13 have been identified, the intricate network of mechanisms driving resistance remains to be elucidated. Here, we report a forward genetic screening strategy that enables a broader identification of genetic factors responsible for altering sensitivity to dihydroartemisinin (DHA) and a proteasome inhibitor, bortezomib (BTZ). Using a library of isogenic piggyBac mutants in P. falciparum, we defined phenotype-genotype associations influencing drug responses and highlighted shared mechanisms between the two processes, which mainly included proteasome-mediated degradation and the lipid metabolism genes. Additional transcriptomic analysis of a DHA/BTZ-sensitive piggyBac mutant showed it is possible to find differences between the two response mechanisms on the specific components for regulation of the exportome. Our results provide further insight into the molecular mechanisms of antimalarial drug resistance. IMPORTANCE Malaria control is seriously threatened by the emergence and spread of Plasmodium falciparum resistance to the leading antimalarial, artemisinin. The potent killing activity of artemisinin results from oxidative damage unleashed by free heme activation released by hemoglobin digestion. Although the ubiquitin-proteasome system is considered critical for parasite survival of this toxicity, the diverse genetic changes linked to artemisinin resistance are complex and, so far, have not included the ubiquitin-proteasome system. In this study, we use a systematic forward genetic approach by screening a library of P. falciparum random piggyBac mutants to decipher the genetic factors driving malaria parasite responses to the oxidative stress caused by antimalarial drugs. This study compares phenotype-genotype associations influencing dihydroartemisinin responses with the proteasome inhibitor bortezomib to delineate the role of ubiquitin-proteasome system. Our study highlights shared and unique pathways from the complex array of molecular processes critical for P. falciparum survival resulting from the oxidative damage of artemisinin.
Collapse
Affiliation(s)
- Camilla Valente Pires
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
- USF Genomics Program, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Jenna Oberstaller
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
- USF Genomics Program, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Chengqi Wang
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
- USF Genomics Program, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Debora Casandra
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
- USF Genomics Program, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Min Zhang
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
- USF Genomics Program, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Jyotsna Chawla
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
- USF Genomics Program, College of Public Health, University of South Florida, Tampa, Florida, USA
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
| | - Swamy Rakesh Adapa
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
- USF Genomics Program, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Thomas D. Otto
- Institute of Infection, Immunity and Inflammation, MVLS, University of Glasgow, Glasgow, United Kingdom
| | - Michael T. Ferdig
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Julian C. Rayner
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, University of Cambridge, Cambridge, United Kingdom
| | - Rays H. Y. Jiang
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
- USF Genomics Program, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - John H. Adams
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
- USF Genomics Program, College of Public Health, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
21
|
Zhong Q, Xiao X, Qiu Y, Xu Z, Chen C, Chong B, Zhao X, Hai S, Li S, An Z, Dai L. Protein posttranslational modifications in health and diseases: Functions, regulatory mechanisms, and therapeutic implications. MedComm (Beijing) 2023; 4:e261. [PMID: 37143582 PMCID: PMC10152985 DOI: 10.1002/mco2.261] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 05/06/2023] Open
Abstract
Protein posttranslational modifications (PTMs) refer to the breaking or generation of covalent bonds on the backbones or amino acid side chains of proteins and expand the diversity of proteins, which provides the basis for the emergence of organismal complexity. To date, more than 650 types of protein modifications, such as the most well-known phosphorylation, ubiquitination, glycosylation, methylation, SUMOylation, short-chain and long-chain acylation modifications, redox modifications, and irreversible modifications, have been described, and the inventory is still increasing. By changing the protein conformation, localization, activity, stability, charges, and interactions with other biomolecules, PTMs ultimately alter the phenotypes and biological processes of cells. The homeostasis of protein modifications is important to human health. Abnormal PTMs may cause changes in protein properties and loss of protein functions, which are closely related to the occurrence and development of various diseases. In this review, we systematically introduce the characteristics, regulatory mechanisms, and functions of various PTMs in health and diseases. In addition, the therapeutic prospects in various diseases by targeting PTMs and associated regulatory enzymes are also summarized. This work will deepen the understanding of protein modifications in health and diseases and promote the discovery of diagnostic and prognostic markers and drug targets for diseases.
Collapse
Affiliation(s)
- Qian Zhong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xina Xiao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Yijie Qiu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhiqiang Xu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Chunyu Chen
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Baochen Chong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xinjun Zhao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shan Hai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shuangqing Li
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhenmei An
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Lunzhi Dai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
22
|
Mi Z, Graham SH. Role of UCHL1 in the pathogenesis of neurodegenerative diseases and brain injury. Ageing Res Rev 2023; 86:101856. [PMID: 36681249 PMCID: PMC9992267 DOI: 10.1016/j.arr.2023.101856] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/15/2023] [Indexed: 01/20/2023]
Abstract
UCHL1 is a multifunctional protein expressed at high concentrations in neurons in the brain and spinal cord. UCHL1 plays important roles in regulating the level of cellular free ubiquitin and redox state as well as the degradation of select proteins. This review focuses on the potential role of UCHL1 in the pathogenesis of neurodegenerative diseases and brain injury and recovery. Subjects addressed in the review include 1) Normal physiological functions of UCHL1. 2) Posttranslational modification sites and splice variants that alter the function of UCHL1 and mouse models with mutations and deletions of UCHL1. 3) The hypothesized role and pathogenic mechanisms of UCHL1 in neurodegenerative diseases and brain injury. 4) Potential therapeutic strategies targeting UCHL1 in these disorders.
Collapse
Affiliation(s)
- Zhiping Mi
- Departments of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, United States; Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA 15213, United States.
| | - Steven H Graham
- Departments of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, United States; Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA 15213, United States.
| |
Collapse
|
23
|
Barpanda A, Tuckley C, Ray A, Banerjee A, Duttagupta SP, Kantharia C, Srivastava S. A protein microarray-based serum proteomic investigation reveals distinct autoantibody signature in colorectal cancer. Proteomics Clin Appl 2023; 17:e2200062. [PMID: 36408811 DOI: 10.1002/prca.202200062] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/18/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022]
Abstract
PURPOSE Colorectal cancer (CRC) has been reported as the second leading cause of cancer death worldwide. The 5-year annual survival is around 50%, mainly due to late diagnosis, striking necessity for early detection. This study aims to identify autoantibody in patients' sera for early screening of cancer. EXPERIMENTAL DESIGN The study used a high-density human proteome array with approximately 17,000 recombinant proteins. Screening of sera from healthy individuals, CRC from Indian origin, and CRC from middle-east Asia origin were performed. Bio-statistical analysis was performed to identify significant autoantibodies altered. Pathway analysis was performed to explore the underlying mechanism of the disease. RESULTS The comprehensive proteomic analysis revealed dysregulation of 15 panels of proteins including CORO7, KCNAB1, WRAP53, NDUFS6, KRT30, and COLGALT2. Further biological pathway analysis for the top dysregulated autoantigenic proteins revealed perturbation in important biological pathways such as ECM degradation and cytoskeletal remodeling etc. CONCLUSIONS AND CLINICAL RELEVANCE: The generation of an autoimmune response against cancer-linked pathways could be linked to the screening of the disease. The process of immune surveillance can be detected at an early stage of cancer. Moreover, AAbs can be easily extracted from blood serum through the least invasive test for disease screening.
Collapse
Affiliation(s)
- Abhilash Barpanda
- Centre for Research in Nanotechnology & Science (CRNTS), Indian Institute of Technology Bombay, Mumbai, India.,Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Chaitanya Tuckley
- Centre for Research in Nanotechnology & Science (CRNTS), Indian Institute of Technology Bombay, Mumbai, India
| | - Arka Ray
- Centre for Research in Nanotechnology & Science (CRNTS), Indian Institute of Technology Bombay, Mumbai, India
| | - Arghya Banerjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Siddhartha P Duttagupta
- Centre for Research in Nanotechnology & Science (CRNTS), Indian Institute of Technology Bombay, Mumbai, India
| | - Chetan Kantharia
- Department of surgical gastroenterology at King Edward Memorial Hospital and Seth G. S. Medical College, Mumbai, India
| | - Sanjeeva Srivastava
- Centre for Research in Nanotechnology & Science (CRNTS), Indian Institute of Technology Bombay, Mumbai, India.,Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
24
|
Wu NN, Wang L, Wang L, Xu X, Lopaschuk GD, Zhang Y, Ren J. Site-specific ubiquitination of VDAC1 restricts its oligomerization and mitochondrial DNA release in liver fibrosis. Exp Mol Med 2023; 55:269-280. [PMID: 36658227 PMCID: PMC9898252 DOI: 10.1038/s12276-022-00923-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 01/20/2023] Open
Abstract
Mitochondrial DNA (mtDNA) released through protein oligomers, such as voltage-dependent anion channel 1 (VDAC1), triggers innate immune activation and thus contributes to liver fibrosis. Here, we investigated the role of Parkin, an important regulator of mitochondria, and its regulation of VDAC1-mediated mtDNA release in liver fibrosis. The circulating mitochondrial DNA (mtDNA) and protein levels of liver Parkin and VDAC1 were upregulated in patients with liver fibrosis. A 4-week CCl4 challenge induced release of mtDNA, activation of STING signaling, a decline in autophagy, and apoptosis in mouse livers, and the knockout of Parkin aggravated these effects. In addition, Parkin reduced mtDNA release and prevented VDAC1 oligomerization in a manner dependent on its E3 activity in hepatocytes. We found that site-specific ubiquitination of VDAC1 at lysine 53 by Parkin interrupted VDAC1 oligomerization and prevented mtDNA release into the cytoplasm under stress. The ubiquitination-defective VDAC1 K53R mutant predominantly formed oligomers that resisted suppression by Parkin. Hepatocytes expressing VDAC1 K53R exhibited mtDNA release and thus activated the STING signaling pathway in hepatic stellate cells, and this effect could not be abolished by Parkin. We propose that the ubiquitination of VDAC1 at a specific site by Parkin confers protection against liver fibrosis by interrupting VDAC1 oligomerization and mtDNA release.
Collapse
Affiliation(s)
- Ne N. Wu
- grid.413087.90000 0004 1755 3939Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, 200032 China ,National Clinical Research Center for Interventional Medicine, Shanghai, 200032 China
| | - Lifeng Wang
- grid.13394.3c0000 0004 1799 3993Department of Physiology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang 830000 China
| | - Lu Wang
- grid.233520.50000 0004 1761 4404Institute of Digestive Diseases, Xijing Hospital, Air Force Medical University, Xi’an, 710032 China ,grid.233520.50000 0004 1761 4404State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Air Force Medical University, Xi’an, 710032 China
| | - Xihui Xu
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032 China
| | - Gary D. Lopaschuk
- grid.17089.370000 0001 2190 316XCardiovascular Research Centre, University of Alberta, Edmonton, Alberta T6G 2S2 Canada
| | - Yingmei Zhang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, 200032, China. .,National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China.
| | - Jun Ren
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, 200032, China. .,National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China. .,Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
25
|
Inserra A, Campanale A, Cheishvili D, Dymov S, Wong A, Marcal N, Syme RA, Taylor L, De Gregorio D, Kennedy TE, Szyf M, Gobbi G. Modulation of DNA methylation and protein expression in the prefrontal cortex by repeated administration of D-lysergic acid diethylamide (LSD): Impact on neurotropic, neurotrophic, and neuroplasticity signaling. Prog Neuropsychopharmacol Biol Psychiatry 2022; 119:110594. [PMID: 35777526 DOI: 10.1016/j.pnpbp.2022.110594] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 11/18/2022]
Abstract
AIM Psychedelic compounds elicit relief from mental disorders. However, the underpinnings of therapeutic improvement remain poorly understood. Here, we investigated the effects of repeated lysergic acid diethylamide (LSD) on whole-genome DNA methylation and protein expression in the mouse prefrontal cortex (PFC). METHODS Whole genome bisulphite sequencing (WGBS) and proteomics profiling of the mouse prefrontal cortex (PFC) were performed to assess DNA methylation and protein expression changes following 7 days of repeated LSD administration (30 μg/kg/day); a treatment we previously found to potentiate excitatory neurotransmission and to increase dendritic spine density in the PFC in mice. qRT-PCR was employed to validate candidate genes detected in both analyses. RESULTS LSD significantly modulated DNA methylation in 635 CpG sites of the mouse PFC, and in an independent cohort the expression level of 178 proteins. Gene signaling pathways affected are involved in nervous system development, axon guidance, synaptic plasticity, quantity and cell viability of neurons and protein translation. Four genes and their protein product were detected as differentially methylated and expressed, and their transcription was increased. Specifically, Coronin 7 (Coro7), an axon guidance cue; Penta-EF-Hand Domain Containing 1 (Pef1), an mTORC1 and cell cycle modulator; Ribosomal Protein S24 (Rps24), required for pre-rRNA maturation and biogenesis of proteins involved with cell proliferation and migration, and Abhydrolase Domain Containing 6, Acylglycerol Lipase (Abhd6), a post-synaptic lipase. CONCLUSIONS LSD affects DNA methylation, altering gene expression and protein expression related to neurotropic-, neurotrophic- and neuroplasticity signaling. This could represent a core mechanism mediating the effects of psychedelics.
Collapse
Affiliation(s)
- Antonio Inserra
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Antonella Campanale
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - David Cheishvili
- Department of Oncology, McGill University, Montreal, QC, Canada; HKG Epitherapeutics, Hong Kong
| | - Sergiy Dymov
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Amy Wong
- Proteomics Platform, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Nathalie Marcal
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | | | - Lorne Taylor
- Proteomics Platform, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Danilo De Gregorio
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Timothy E Kennedy
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Moshe Szyf
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Gabriella Gobbi
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, QC, Canada.
| |
Collapse
|
26
|
Gonzalez-Santamarta M, Bouvier C, Rodriguez MS, Xolalpa W. Ubiquitin-chains dynamics and its role regulating crucial cellular processes. Semin Cell Dev Biol 2022; 132:155-170. [PMID: 34895814 DOI: 10.1016/j.semcdb.2021.11.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 12/15/2022]
Abstract
The proteome adapts to multiple situations occurring along the life of the cell. To face these continuous changes, the cell uses posttranslational modifications (PTMs) to control the localization, association with multiple partners, stability, and activity of protein targets. One of the most dynamic protein involved in PTMs is Ubiquitin (Ub). Together with other members of the same family, known as Ubiquitin-like (UbL) proteins, Ub rebuilds the architecture of a protein in a few minutes to change its properties in a very efficient way. This capacity of Ub and UbL is in part due to their potential to form complex architectures when attached to target proteins or when forming Ub chains. The highly dynamic formation and remodeling of Ub chains is regulated by the action of conjugating and deconjugating enzymes that determine, in due time, the correct chain architecture for a particular cellular function. Chain remodeling occurs in response to physiologic stimuli but also in pathologic situations. Here, we illustrate well-documented cases of chain remodeling during DNA repair, activation of the NF-κB pathway and autophagy, as examples of this dynamic regulation. The crucial role of enzymes and cofactors regulating chain remodeling is discussed.
Collapse
Affiliation(s)
- Maria Gonzalez-Santamarta
- Laboratoire de Chimie de Coordination (LCC) - UPR 8241 CNRS, and UMR 152 Pharma-Dev, Université de Toulouse, IRD, UPS, 31400 Toulouse, France.
| | - Corentin Bouvier
- Laboratoire de Chimie de Coordination (LCC) - UPR 8241 CNRS, and UMR 152 Pharma-Dev, Université de Toulouse, IRD, UPS, 31400 Toulouse, France.
| | - Manuel S Rodriguez
- Laboratoire de Chimie de Coordination (LCC) - UPR 8241 CNRS, and UMR 152 Pharma-Dev, Université de Toulouse, IRD, UPS, 31400 Toulouse, France.
| | - Wendy Xolalpa
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62250 Cuernavaca, Morelos, Mexico.
| |
Collapse
|
27
|
Saad M, El-Menyar A, Kunji K, Ullah E, Al Suwaidi J, Kullo IJ. Validation of Polygenic Risk Scores for Coronary Heart Disease in a Middle Eastern Cohort Using Whole Genome Sequencing. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2022; 15:e003712. [PMID: 36252120 PMCID: PMC9770120 DOI: 10.1161/circgen.122.003712] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 08/04/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Enthusiasm for using polygenic risk scores (PRSs) in clinical practice is tempered by concerns about their portability to diverse ancestry groups, thus motivating genome-wide association studies in non-European ancestry cohorts. METHODS We conducted a genome-wide association study for coronary heart disease in a Middle Eastern cohort using whole genome sequencing and assessed the performance of 6 PRSs developed with methods including LDpred (PGS000296), metaGRS (PGS000018), Pruning and Thresholding (PGS000337), and an EnsemblePRS we developed. Additionally, we evaluated the burden of rare variants in lipid genes in cases and controls. Whole genome sequencing at 30× coverage was performed in 1067 coronary heart disease cases (mean age=59 years; 70.3% males) and 6170 controls (mean age=40 years; 43.5% males). RESULTS The majority of PRSs performed well; odds ratio (OR) per 1 SD increase (OR1sd) was highest for PGS000337 (OR1sd=1.81, 95% CI [1.66-1.98], P=3.07×10-41). EnsemblePRS performed better than individual PRSs (OR1sd=1.8, 95% CI [1.66-1.96], P=5.89×10-44). The OR for the 10th decile versus the remaining deciles was >3.2 for PGS000337, PGS000296, PGS000018, and reached 4.58 for EnsemblePRS. Of 400 known genome-wide significant loci, 33 replicated at P<10-4. However, the 9p21 locus did not replicate. Six suggestive (P<10-5) new loci/genes with plausible biological function were identified (eg, CORO7, RBM47, PDE4D). The burden of rare functional variants in LDLR, APOB, PCSK9, and ANGPTL4 was greater in cases than controls. CONCLUSIONS Overall, we demonstrate that PRSs derived from European ancestry genome-wide association studies performed well in a Middle Eastern cohort, suggesting these could be used in the clinical setting while ancestry-specific PRSs are developed.
Collapse
Affiliation(s)
- Mohamad Saad
- Qatar Computing Research Institute, Hamad Bin Khalifa University, Doha, Qatar (M.S., K.K., E.U.)
| | | | - Khalid Kunji
- Qatar Computing Research Institute, Hamad Bin Khalifa University, Doha, Qatar (M.S., K.K., E.U.)
| | - Ehsan Ullah
- Qatar Computing Research Institute, Hamad Bin Khalifa University, Doha, Qatar (M.S., K.K., E.U.)
| | | | - Iftikhar J. Kullo
- Department of Cardiovascular Medicine, and the Gonda Vascular Center, Mayo Clinic, Rochester, MN (I.J.K.)
| |
Collapse
|
28
|
Selective macrocyclic peptide modulators of Lys63-linked ubiquitin chains disrupt DNA damage repair. Nat Commun 2022; 13:6174. [PMID: 36257952 PMCID: PMC9579194 DOI: 10.1038/s41467-022-33808-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 09/30/2022] [Indexed: 12/24/2022] Open
Abstract
Developing an effective binder for a specific ubiquitin (Ub) chain is a promising approach for modulating various biological processes with potential applications in drug discovery. Here, we combine the Random Non-standard Peptides Integrated Discovery (RaPID) method and chemical protein synthesis to screen an extended library of macrocyclic peptides against synthetic Lys63-linked Di-Ub to discover a specific binder for this Ub chain. Furthermore, next-generation binders are generated by chemical modifications. We show that our potent cyclic peptide is cell-permeable, and inhibits DNA damage repair, leading to apoptotic cell death. Concordantly, a pulldown experiment with the biotinylated analog of our lead cyclic peptide supports our findings. Collectively, we establish a powerful strategy for selective inhibition of protein-protein interactions associated with Lys63-linked Di-Ub using cyclic peptides. This study offers an advancement in modulating central Ub pathways and provides opportunities in drug discovery areas associated with Ub signaling.
Collapse
|
29
|
Yang K, Xiao W. Functions and mechanisms of the Ubc13-UEV complex and lysine 63-linked polyubiquitination in plants. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5372-5387. [PMID: 35640002 DOI: 10.1093/jxb/erac239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Ubiquitination is one of the best-known post-translational modifications in eukaryotes, in which different linkage types of polyubiquitination result in different outputs of the target proteins. Distinct from the well-characterized K48-linked polyubiquitination that usually serves as a signal for degradation of the target protein, K63-linked polyubiquitination often requires a unique E2 heterodimer Ubc13-UEV and alters the target protein activity instead of marking it for degradation. This review focuses on recent advances on the roles of Ubc13-UEV-mediated K63-linked polyubiquitination in plant growth, development, and response to environmental stresses.
Collapse
Affiliation(s)
- Kun Yang
- Beijing Key Laboratory of DNA Damage Responses and College of Life Sciences, Capital Normal University, Beijing, China
| | - Wei Xiao
- Beijing Key Laboratory of DNA Damage Responses and College of Life Sciences, Capital Normal University, Beijing, China
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
30
|
TRAF4 Promotes the Proliferation of Glioblastoma by Stabilizing SETDB1 to Activate the AKT Pathway. Int J Mol Sci 2022; 23:ijms231710161. [PMID: 36077559 PMCID: PMC9456363 DOI: 10.3390/ijms231710161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/21/2022] [Accepted: 08/26/2022] [Indexed: 11/24/2022] Open
Abstract
The process of ubiquitination regulates the degradation, transport, interaction, and stabilization of substrate proteins, and is crucial for cell signal transduction and function. TNF receptor-associated factor 4, TRAF4, is a member of the TRAF family and is involved in the process of ubiquitination as an E3 ubiquitin protein ligase. Here, we found that TRAF4 expression correlates with glioma subtype and grade, and that TRAF4 is significantly overexpressed in glioblastoma and predicts poor prognosis. Knockdown of TRAF4 significantly inhibited the growth, proliferation, migration, and invasion of glioblastoma cells. Mechanistically, we found that TRAF4 only interacts with the Tudor domain of the AKT pathway activator SETDB1. TRAF4 mediates the atypical ubiquitination of SETDB1 to maintain its stability and function, thereby promoting the activation of the AKT pathway. Restoring SETDB1 expression in TRAF4 knockdown glioblastoma cells partially restored cell growth and proliferation. Collectively, our findings reveal a novel mechanism by which TRAF4 mediates AKT pathway activation, suggesting that TRAF4 may serve as a biomarker and promising therapeutic target for glioblastoma.
Collapse
|
31
|
Zhai F, Li J, Ye M, Jin X. The functions and effects of CUL3-E3 ligases mediated non-degradative ubiquitination. Gene X 2022; 832:146562. [PMID: 35580799 DOI: 10.1016/j.gene.2022.146562] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/30/2022] [Accepted: 05/06/2022] [Indexed: 02/09/2023] Open
Abstract
Ubiquitination of substrates usually have two fates: one is degraded by 26S proteasome, and the other is non-degradative ubiquitination modification which is associated with cell cycle regulation, chromosome inactivation, protein transportation, tumorigenesis, achondroplasia, and neurological diseases. Cullin3 (CUL3), a scaffold protein, binding with the Bric-a-Brac-Tramtrack-Broad-complex (BTB) domain of substrates recognition adaptor and RING-finger protein 1 (RBX1) form ubiquitin ligases (E3). Based on the current researches, this review has summarized the functions and effects of CUL3-E3 ligases mediated non-degradative ubiquitination.
Collapse
Affiliation(s)
- Fengguang Zhai
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Jingyun Li
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Meng Ye
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo 315211, China.
| | - Xiaofeng Jin
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo 315211, China.
| |
Collapse
|
32
|
E2 ubiquitin-conjugating enzymes (UBCs): drivers of ubiquitin signalling in plants. Essays Biochem 2022; 66:99-110. [PMID: 35766526 DOI: 10.1042/ebc20210093] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 12/22/2022]
Abstract
Most research in the field of ubiquitination has focused on E3 ubiquitin ligases because they are the specificity determinants of the ubiquitination process. Nevertheless, E2s are responsible for the catalysis during ubiquitin transfer, and are therefore, at the heart of the ubiquitination process. Arabidopsis has 37 ubiquitin E2s with additional ones mediating the attachment of ubiquitin-like proteins (e.g. SUMO, Nedd8 and ATG8). Importantly, E2s largely determine the type of ubiquitin chain built, and therefore, the type of signal that decides over the fate of the modified protein, such as degradation by the proteasome (Lys48-linked ubiquitin chains) or relocalization (Lys63-linked ubiquitin chains). Moreover, new regulatory layers impinging on E2s activity, including post-translational modifications or cofactors, are emerging that highlight the importance of E2s.
Collapse
|
33
|
Yu B, Wang F, Wang Y. Advances in the Structural and Physiological Functions of SHARPIN. Front Immunol 2022; 13:858505. [PMID: 35547743 PMCID: PMC9084887 DOI: 10.3389/fimmu.2022.858505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/28/2022] [Indexed: 11/29/2022] Open
Abstract
SHARPIN was initially found as a SHANK-associated protein. SHARPIN can be used as an important component to form the linear ubiquitin chain assembly complex (LUBAC) with HOIL-1L, HOIP to produce a linear ubiquitin chain connected N-terminal Met1, playing a critical role in various cellular processes including NF-κB signaling, inflammation, embryogenesis and apoptosis. SHARPIN alone can also participate in many critical physiological activities and cause various disorders such as chronic dermatitis, tumor, and Alzheimer’s disease. Mice with spontaneous autosomal recessive mutations in the SHARPIN protein mainly exhibit chronic dermatitis and immunodeficiency with elevated IgM. Additionally, SHARPIN alone also plays a key role in various cellular events, such as B cells activation and platelet aggregation. Structural studies of the SHARPIN or LUBAC have been reported continuously, advancing our understanding of it at the molecular level. However, the full-length structure of the SHARPIN or LUBAC was lagging, and the molecular mechanism underlying these physiological processes is also unclear. Herein, we summarized the currently resolved structure of SHARPIN as well as the emerging physiological role of SHARPIN alone or in LUBAC. Further structural and functional study of SHARPIN will provide insight into the role and underlying mechanism of SHARPIN in disease, as well as its potential application in therapeutic.
Collapse
Affiliation(s)
- Beiming Yu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Feng Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yanfeng Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
34
|
The role of K63-linked polyubiquitin in several types of autophagy. Biol Futur 2022; 73:137-148. [DOI: 10.1007/s42977-022-00117-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 04/05/2022] [Indexed: 01/08/2023]
Abstract
AbstractLysosomal-dependent self-degradative (autophagic) mechanisms are essential for the maintenance of normal homeostasis in all eukaryotic cells. Several types of such self-degradative and recycling pathways have been identified, based on how the cellular self material can incorporate into the lysosomal lumen. Ubiquitination, a well-known and frequently occurred posttranslational modification has essential role in all cell biological processes, thus in autophagy too. The second most common type of polyubiquitin chain is the K63-linked polyubiquitin, which strongly connects to some self-degradative mechanisms in the cells. In this review, we discuss the role of this type of polyubiquitin pattern in numerous autophagic processes.
Collapse
|
35
|
Park HB, Baek KH. E3 ligases and deubiquitinating enzymes regulating the MAPK signaling pathway in cancers. Biochim Biophys Acta Rev Cancer 2022; 1877:188736. [DOI: 10.1016/j.bbcan.2022.188736] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/30/2022] [Accepted: 05/11/2022] [Indexed: 12/13/2022]
|
36
|
Li S, Li R, Ahmad I, Liu X, Johnson SF, Sun L, Zheng YH. Cul3-KLHL20 E3 ubiquitin ligase plays a key role in the arms race between HIV-1 Nef and host SERINC5 restriction. Nat Commun 2022; 13:2242. [PMID: 35474067 PMCID: PMC9042822 DOI: 10.1038/s41467-022-30026-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 04/11/2022] [Indexed: 11/17/2022] Open
Abstract
HIV-1 must counteract various host restrictions to establish productive infection. SERINC5 is a potent restriction factor that blocks HIV-1 entry from virions, but its activity is counteracted by Nef. The SERINC5 and Nef activities are both initiated from the plasma membrane, where SERINC5 is packaged into virions for viral inhibition or downregulated by Nef via lysosomal degradation. However, it is still unclear how SERINC5 is localized to and how its expression is regulated on the plasma membrane. We now report that Cullin 3-KLHL20, a trans-Golgi network (TGN)-localized E3 ubiquitin ligase, polyubiquitinates SERINC5 at lysine 130 via K33/K48-linked ubiquitination. The K33-linked polyubiquitination determines SERINC5 expression on the plasma membrane, and the K48-linked polyubiquitination contributes to SERINC5 downregulation from the cell surface. Our study reveals an important role of K130 polyubiquitination and K33/K48-linked ubiquitin chains in HIV-1 infection by regulating SERINC5 post-Golgi trafficking and degradation. SERINC5 is a host-restriction factor preventing HIV progeny entry, which is counteracted by interactions with HIV Nef. Here, Li et al. show that E3 ubiquitin ligase Cullin 3 polyubiquitinates SERINC5 at Lys 130 via K48- and K33-linked ubiquitin chains and provide evidence that this modification is not only required for its membrane localization and anti-viral activity but also relevant for Nef counteractive activity.
Collapse
Affiliation(s)
- Sunan Li
- Harbin Veterinary Research Institute, CAAS-Michigan State University Joint Laboratory of Innate Immunity, State Key Laboratory of Veterinary Biotechnology, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Rongrong Li
- Harbin Veterinary Research Institute, CAAS-Michigan State University Joint Laboratory of Innate Immunity, State Key Laboratory of Veterinary Biotechnology, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Iqbal Ahmad
- Harbin Veterinary Research Institute, CAAS-Michigan State University Joint Laboratory of Innate Immunity, State Key Laboratory of Veterinary Biotechnology, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xiaomeng Liu
- Harbin Veterinary Research Institute, CAAS-Michigan State University Joint Laboratory of Innate Immunity, State Key Laboratory of Veterinary Biotechnology, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Silas F Johnson
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Liangliang Sun
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Yong-Hui Zheng
- Harbin Veterinary Research Institute, CAAS-Michigan State University Joint Laboratory of Innate Immunity, State Key Laboratory of Veterinary Biotechnology, Chinese Academy of Agricultural Sciences, Harbin, China. .,Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
37
|
UBR4/POE facilitates secretory trafficking to maintain circadian clock synchrony. Nat Commun 2022; 13:1594. [PMID: 35332162 PMCID: PMC8948264 DOI: 10.1038/s41467-022-29244-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 03/02/2022] [Indexed: 11/08/2022] Open
Abstract
Ubiquitin ligases control the degradation of core clock proteins to govern the speed and resetting properties of the circadian pacemaker. However, few studies have addressed their potential to regulate other cellular events within clock neurons beyond clock protein turnover. Here, we report that the ubiquitin ligase, UBR4/POE, strengthens the central pacemaker by facilitating neuropeptide trafficking in clock neurons and promoting network synchrony. Ubr4-deficient mice are resistant to jetlag, whereas poe knockdown flies are prone to arrhythmicity, behaviors reflective of the reduced axonal trafficking of circadian neuropeptides. At the cellular level, Ubr4 ablation impairs the export of secreted proteins from the Golgi apparatus by reducing the expression of Coronin 7, which is required for budding of Golgi-derived transport vesicles. In summary, UBR4/POE fulfills a conserved and unexpected role in the vesicular trafficking of neuropeptides, a function that has important implications for circadian clock synchrony and circuit-level signal processing. Although ubiquitin ligases are known to control clock protein degradation, their other roles in clock neurons are unclear. Here the authors report that UBR4 promotes export of neuropeptides from the Golgi for axonal trafficking, which is important for circadian clock synchrony in mice and flies.
Collapse
|
38
|
Ning S, Luo L, Yu B, Mai D, Wang F. Structures, functions, and inhibitors of LUBAC and its related diseases. J Leukoc Biol 2022; 112:799-811. [PMID: 35266190 DOI: 10.1002/jlb.3mr0222-508r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/12/2022] [Indexed: 11/09/2022] Open
Abstract
Ubiquitination is a reversible posttranslational modification in which ubiquitin is covalently attached to substrates at catalysis by E1, E2, and E3 enzymes. As the only E3 ligase for assembling linear ubiquitin chains in animals, the LUBAC complex exerts an essential role in the wide variety of cellular activities. Recent advances in the LUBAC complex, including structure, physiology, and correlation with malignant diseases, have enabled the discovery of potent inhibitors to treat immune-related diseases and cancer brought by LUBAC complex dysfunction. In this review, we summarize the current progress on the structures, physiologic functions, inhibitors of LUBAC, and its potential role in immune diseases, tumors, and other diseases, providing the theoretical basis for therapy of related diseases targeting the LUBAC complex.
Collapse
Affiliation(s)
- Shuo Ning
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Lingling Luo
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Beiming Yu
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Dina Mai
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Feng Wang
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
39
|
Non-proteolytic ubiquitylation in cellular signaling and human disease. Commun Biol 2022; 5:114. [PMID: 35136173 PMCID: PMC8826416 DOI: 10.1038/s42003-022-03060-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 01/18/2022] [Indexed: 12/18/2022] Open
Abstract
Ubiquitylation is one of the most common post-translational modifications (PTMs) of proteins that frequently targets substrates for proteasomal degradation. However it can also result in non-proteolytic events which play important functions in cellular processes such as intracellular signaling, membrane trafficking, DNA repair and cell cycle. Emerging evidence demonstrates that dysfunction of non-proteolytic ubiquitylation is associated with the development of multiple human diseases. In this review, we summarize the current knowledge and the latest concepts on how non-proteolytic ubiquitylation pathways are involved in cellular signaling and in disease-mediating processes. Our review, may advance our understanding of the non-degradative ubiquitylation process. Evanthia Pangou and co-authors review recent insights into the important roles of non-proteolytic ubiquitylation in cellular signaling as well as in physiology and disease.
Collapse
|
40
|
Larbret F, Biber P, Dubois N, Ivanov S, Lafanechere L, Tartare-Deckert S, Deckert M. Deubiquitinase Inhibitors Impair Leukemic Cell Migration Through Cofilin Oxidation and Alteration of Actin Reorganization. Front Pharmacol 2022; 12:778216. [PMID: 35069199 PMCID: PMC8782157 DOI: 10.3389/fphar.2021.778216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/14/2021] [Indexed: 11/29/2022] Open
Abstract
Actin networks are dynamically regulated through constant depolymerization and polymerization cycles. Although the fundamental mechanisms that govern these processes have been identified, the nature and role of post-translational modifications (PTMs) of actin and actin regulatory proteins are not completely understood. Here, we employed Actin CytoFRET, a method that we developed for real time detection of fluorescence resonance energy transfer (FRET) signals generated by actin dynamics, to screen a small library of PTM-interfering compounds on a biosensor leukemic T cell line. This strategy led to the identification of small molecule inhibitors of deubiquitinating enzymes (DUBs) as potent inducers of actin polymerization and blockers of chemotactic cell migration. The examination of the underlying mechanism further revealed that the actin depolymerizing protein cofilin represents a major effector of DUB inhibitor (DUBi)-induced actin reorganization. We found that DUB blockade results in the accumulation of polyubiquitinated proteins and ROS production, associated with cofilin oxidation and dephosphorylation on serine 3, which provokes uncontrolled actin polymerization impairing cell migration. Together, our study highlights DUBs as novel regulators of actin dynamics through ROS-dependent cofilin modulation, and shows that DUBi represent attractive novel tools to impede leukemic cell migration.
Collapse
Affiliation(s)
- Frédéric Larbret
- Université Côte d'Azur, INSERM, C3M, Nice, France.,Team MicroCan, Equipe labellisée Ligue Contre le Cancer, Nice, France
| | - Pierric Biber
- Université Côte d'Azur, INSERM, C3M, Nice, France.,Team MicroCan, Equipe labellisée Ligue Contre le Cancer, Nice, France
| | | | | | - Laurence Lafanechere
- Université Grenoble Alpes, INSERM, Institut pour l'Avancée des Biosciences, La Tronche, France
| | - Sophie Tartare-Deckert
- Université Côte d'Azur, INSERM, C3M, Nice, France.,Team MicroCan, Equipe labellisée Ligue Contre le Cancer, Nice, France
| | - Marcel Deckert
- Université Côte d'Azur, INSERM, C3M, Nice, France.,Team MicroCan, Equipe labellisée Ligue Contre le Cancer, Nice, France
| |
Collapse
|
41
|
Wang Y, Dai J, Zeng Y, Guo J, Lan J. E3 Ubiquitin Ligases in Breast Cancer Metastasis: A Systematic Review of Pathogenic Functions and Clinical Implications. Front Oncol 2021; 11:752604. [PMID: 34745984 PMCID: PMC8569917 DOI: 10.3389/fonc.2021.752604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/04/2021] [Indexed: 02/05/2023] Open
Abstract
Female breast cancer has become the most commonly occurring cancer worldwide. Although it has a good prognosis under early diagnosis and appropriate treatment, breast cancer metastasis drastically causes mortality. The process of metastasis, which includes cell epithelial–mesenchymal transition, invasion, migration, and colonization, is a multistep cascade of molecular events directed by gene mutations and altered protein expressions. Ubiquitin modification of proteins plays a common role in most of the biological processes. E3 ubiquitin ligase, the key regulator of protein ubiquitination, determines the fate of ubiquitinated proteins. E3 ubiquitin ligases target a broad spectrum of substrates. The aberrant functions of many E3 ubiquitin ligases can affect the biological behavior of cancer cells, including breast cancer metastasis. In this review, we provide an overview of these ligases, summarize the metastatic processes in which E3s are involved, and comprehensively describe the roles of E3 ubiquitin ligases. Furthermore, we classified E3 ubiquitin ligases based on their structure and analyzed them with the survival of breast cancer patients. Finally, we consider how our knowledge can be used for E3s’ potency in the therapeutic intervention or prognostic assessment of metastatic breast cancer.
Collapse
Affiliation(s)
- Yingshuang Wang
- Key Laboratory of Systematic Research of Distinctive Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiawen Dai
- Key Laboratory of Systematic Research of Distinctive Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Youqin Zeng
- Key Laboratory of Systematic Research of Distinctive Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinlin Guo
- Key Laboratory of Systematic Research of Distinctive Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jie Lan
- Department of Thoracic Oncology, Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
42
|
Gavali S, Liu J, Li X, Paolino M. Ubiquitination in T-Cell Activation and Checkpoint Inhibition: New Avenues for Targeted Cancer Immunotherapy. Int J Mol Sci 2021; 22:10800. [PMID: 34639141 PMCID: PMC8509743 DOI: 10.3390/ijms221910800] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/15/2022] Open
Abstract
The advent of T-cell-based immunotherapy has remarkably transformed cancer patient treatment. Despite their success, the currently approved immunotherapeutic protocols still encounter limitations, cause toxicity, and give disparate patient outcomes. Thus, a deeper understanding of the molecular mechanisms of T-cell activation and inhibition is much needed to rationally expand targets and possibilities to improve immunotherapies. Protein ubiquitination downstream of immune signaling pathways is essential to fine-tune virtually all immune responses, in particular, the positive and negative regulation of T-cell activation. Numerous studies have demonstrated that deregulation of ubiquitin-dependent pathways can significantly alter T-cell activation and enhance antitumor responses. Consequently, researchers in academia and industry are actively developing technologies to selectively exploit ubiquitin-related enzymes for cancer therapeutics. In this review, we discuss the molecular and functional roles of ubiquitination in key T-cell activation and checkpoint inhibitory pathways to highlight the vast possibilities that targeting ubiquitination offers for advancing T-cell-based immunotherapies.
Collapse
Affiliation(s)
| | | | | | - Magdalena Paolino
- Center for Molecular Medicine, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital Solna, 17176 Solna, Sweden; (S.G.); (J.L.); (X.L.)
| |
Collapse
|
43
|
Linthwaite VL, Pawloski W, Pegg HB, Townsend PD, Thomas MJ, So VKH, Brown AP, Hodgson DRW, Lorimer GH, Fushman D, Cann MJ. Ubiquitin is a carbon dioxide-binding protein. SCIENCE ADVANCES 2021; 7:eabi5507. [PMID: 34559559 PMCID: PMC8462908 DOI: 10.1126/sciadv.abi5507] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
The identification of CO2-binding proteins is crucial to understanding CO2-regulated molecular processes. CO2 can form a reversible posttranslational modification through carbamylation of neutral N-terminal α-amino or lysine ε-amino groups. We have previously developed triethyloxonium (TEO) ion as a chemical proteomics tool for covalent trapping of carbamates, and here, we deploy TEO to identify ubiquitin as a mammalian CO2-binding protein. We use 13C-NMR spectroscopy to demonstrate that CO2 forms carbamates on the ubiquitin N terminus and ε-amino groups of lysines 6, 33, 48, and 63. We demonstrate that biologically relevant pCO2 levels reduce ubiquitin conjugation at lysine-48 and down-regulate ubiquitin-dependent NF-κB pathway activation. Our results show that ubiquitin is a CO2-binding protein and demonstrates carbamylation as a viable mechanism by which mammalian cells can respond to fluctuating pCO2.
Collapse
Affiliation(s)
| | - Wes Pawloski
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD 20742, USA
| | - Hamish B. Pegg
- Department of Biosciences, Durham University, Durham DH1 3LE, UK
| | | | | | - Victor K. H. So
- Department of Biosciences, Durham University, Durham DH1 3LE, UK
| | - Adrian P. Brown
- Department of Biosciences, Durham University, Durham DH1 3LE, UK
| | - David R. W. Hodgson
- Department of Chemistry, Durham University, Durham DH1 3LE, UK
- Biophysical Sciences Institute, Durham University, Durham DH1 3LE, UK
| | - George H. Lorimer
- Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA
| | - David Fushman
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD 20742, USA
| | - Martin J. Cann
- Department of Biosciences, Durham University, Durham DH1 3LE, UK
- Biophysical Sciences Institute, Durham University, Durham DH1 3LE, UK
| |
Collapse
|
44
|
Liu B, Ding Y, Sun B, Liu Q, Zhou Z, Zhan M. The Hh pathway promotes cell apoptosis through Ci-Rdx-Diap1 axis. Cell Death Discov 2021; 7:263. [PMID: 34561426 PMCID: PMC8463586 DOI: 10.1038/s41420-021-00653-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/22/2021] [Accepted: 09/09/2021] [Indexed: 11/28/2022] Open
Abstract
Apoptosis is a strictly coordinated process to eliminate superfluous or damaged cells, and its deregulation leads to birth defects and various human diseases. The regulatory mechanism underlying apoptosis still remains incompletely understood. To identify novel components in apoptosis, we carry out a modifier screen and find that the Hh pathway aggravates Hid-induced apoptosis. In addition, we reveal that the Hh pathway triggers apoptosis through its transcriptional target gene rdx, which encodes an E3 ubiquitin ligase. Rdx physically binds Diap1 to promote its K63-linked polyubiquitination, culminating in attenuating Diap1-Dronc interaction without affecting Diap1 stability. Taken together, our findings unexpectedly uncover the oncogenic Hh pathway is able to promote apoptosis through Ci-Rdx-Diap1 module, raising a concern to choose Hh pathway inhibitors as anti-tumor drugs.
Collapse
Affiliation(s)
- Bin Liu
- College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Yan Ding
- College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Bing Sun
- Department of Anorectum, the First affiliated Hospital of Shandong First Medical University, Ji'nan, China
| | - Qingxin Liu
- College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Zizhang Zhou
- College of Life Sciences, Shandong Agricultural University, Tai'an, China.
| | - Meixiao Zhan
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China.
| |
Collapse
|
45
|
Yu Y, Zheng Q, Erramilli SK, Pan M, Park S, Xie Y, Li J, Fei J, Kossiakoff AA, Liu L, Zhao M. K29-linked ubiquitin signaling regulates proteotoxic stress response and cell cycle. Nat Chem Biol 2021; 17:896-905. [PMID: 34239127 PMCID: PMC8717942 DOI: 10.1038/s41589-021-00823-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 05/21/2021] [Indexed: 02/06/2023]
Abstract
Protein ubiquitination shows remarkable topological and functional diversity through the polymerization of ubiquitin via different linkages. Deciphering the cellular ubiquitin code is of central importance to understand the physiology of the cell. However, our understanding of its function is rather limited due to the lack of specific binders as tools to detect K29-linked polyubiquitin. In this study, we screened and characterized a synthetic antigen-binding fragment, termed sAB-K29, that can specifically recognize K29-linked polyubiquitin using chemically synthesized K29-linked diubiquitin. We further determined the crystal structure of this fragment bound to the K29-linked diubiquitin, which revealed the molecular basis of specificity. Using sAB-K29 as a tool, we uncovered that K29-linked ubiquitination is involved in different kinds of cellular proteotoxic stress response as well as cell cycle regulation. In particular, we showed that K29-linked ubiquitination is enriched in the midbody and downregulation of the K29-linked ubiquitination signal arrests cells in G1/S phase.
Collapse
Affiliation(s)
- Yuanyuan Yu
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
| | - Qingyun Zheng
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Satchal K. Erramilli
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
| | - Man Pan
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA,To whom correspondence should be addressed: (M. Z.), (L. L.), Anthony Kossiakoff: (A. K.), (M. P.)
| | - Seongjin Park
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
| | - Yuan Xie
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
| | - Jingxian Li
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
| | - Jingyi Fei
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
| | - Anthony A. Kossiakoff
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA,To whom correspondence should be addressed: (M. Z.), (L. L.), Anthony Kossiakoff: (A. K.), (M. P.)
| | - Lei Liu
- Department of Chemistry, Tsinghua University, Beijing, 100084, China,To whom correspondence should be addressed: (M. Z.), (L. L.), Anthony Kossiakoff: (A. K.), (M. P.)
| | - Minglei Zhao
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA,To whom correspondence should be addressed: (M. Z.), (L. L.), Anthony Kossiakoff: (A. K.), (M. P.)
| |
Collapse
|
46
|
Yang Q, Zhao J, Chen D, Wang Y. E3 ubiquitin ligases: styles, structures and functions. MOLECULAR BIOMEDICINE 2021; 2:23. [PMID: 35006464 PMCID: PMC8607428 DOI: 10.1186/s43556-021-00043-2] [Citation(s) in RCA: 178] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 04/30/2021] [Indexed: 01/10/2023] Open
Abstract
E3 ubiquitin ligases are a large family of enzymes that join in a three-enzyme ubiquitination cascade together with ubiquitin activating enzyme E1 and ubiquitin conjugating enzyme E2. E3 ubiquitin ligases play an essential role in catalyzing the ubiquitination process and transferring ubiquitin protein to attach the lysine site of targeted substrates. Importantly, ubiquitination modification is involved in almost all life activities of eukaryotes. Thus, E3 ligases might be involved in regulating various biological processes and cellular responses to stress signal associated with cancer development. Thanks to their multi-functions, E3 ligases can be a promising target of cancer therapy. A deeper understanding of the regulatory mechanisms of E3 ligases in tumorigenesis will help to find new prognostic markers and accelerate the growth of anticancer therapeutic approaches. In general, we mainly introduce the classifications of E3 ligases and their important roles in cancer progression and therapeutic functions.
Collapse
Affiliation(s)
- Quan Yang
- Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China
| | - Jinyao Zhao
- Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China
| | - Dan Chen
- Department of Pathology, First Affiliated Hospital, Dalian Medical University, Dalian, 116044, China.
| | - Yang Wang
- Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
47
|
Harper JW, Schulman BA. Cullin-RING Ubiquitin Ligase Regulatory Circuits: A Quarter Century Beyond the F-Box Hypothesis. Annu Rev Biochem 2021; 90:403-429. [PMID: 33823649 PMCID: PMC8217159 DOI: 10.1146/annurev-biochem-090120-013613] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cullin-RING ubiquitin ligases (CRLs) are dynamic modular platforms that regulate myriad biological processes through target-specific ubiquitylation. Our knowledge of this system emerged from the F-box hypothesis, posited a quarter century ago: Numerous interchangeable F-box proteins confer specific substrate recognition for a core CUL1-based RING E3 ubiquitin ligase. This paradigm has been expanded through the evolution of a superfamily of analogous modular CRLs, with five major families and over 200 different substrate-binding receptors in humans. Regulation is achieved by numerous factors organized in circuits that dynamically control CRL activation and substrate ubiquitylation. CRLs also serve as a vast landscape for developing small molecules that reshape interactions and promote targeted ubiquitylation-dependent turnover of proteins of interest. Here, we review molecular principles underlying CRL function, the role of allosteric and conformational mechanisms in controlling substrate timing and ubiquitylation, and how the dynamics of substrate receptor interchange drives the turnover of selected target proteins to promote cellular decision-making.
Collapse
Affiliation(s)
- J Wade Harper
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA;
| | - Brenda A Schulman
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried 82152, Germany;
| |
Collapse
|
48
|
Morgan JJ, Crawford LJ. The Ubiquitin Proteasome System in Genome Stability and Cancer. Cancers (Basel) 2021; 13:2235. [PMID: 34066546 PMCID: PMC8125356 DOI: 10.3390/cancers13092235] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 01/18/2023] Open
Abstract
Faithful DNA replication during cellular division is essential to maintain genome stability and cells have developed a sophisticated network of regulatory systems to ensure its integrity. Disruption of these control mechanisms can lead to loss of genomic stability, a key hallmark of cancer. Ubiquitination is one of the most abundant regulatory post-translational modifications and plays a pivotal role in controlling replication progression, repair of DNA and genome stability. Dysregulation of the ubiquitin proteasome system (UPS) can contribute to the initiation and progression of neoplastic transformation. In this review we provide an overview of the UPS and summarize its involvement in replication and replicative stress, along with DNA damage repair. Finally, we discuss how the UPS presents as an emerging source for novel therapeutic interventions aimed at targeting genomic instability, which could be utilized in the treatment and management of cancer.
Collapse
Affiliation(s)
| | - Lisa J. Crawford
- Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast BT9 7BL, UK;
| |
Collapse
|
49
|
Chakrabarti R, Lee M, Higgs HN. Multiple roles for actin in secretory and endocytic pathways. Curr Biol 2021; 31:R603-R618. [PMID: 34033793 DOI: 10.1016/j.cub.2021.03.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Actin filaments play multiple roles in the secretory pathway and in endosome dynamics in mammals, including maintenance of Golgi structure, release of membrane cargo from the trans-Golgi network (TGN), endocytosis, and endosomal sorting dynamics. In addition, TGN carrier transport and endocytosis both occur by multiple mechanisms in mammals. Actin likely plays a role in at least four mammalian endocytic pathways, five pathways for membrane release from the TGN, and three processes involving endosomes. Also, the mammalian Golgi structure is highly dynamic, and actin is likely important for these dynamics. One challenge for many of these processes is the need to deal with other membrane-associated structures, such as the cortical actin network at the plasma membrane or the matrix that surrounds the Golgi. Arp2/3 complex is a major actin assembly factor in most of the processes mentioned, but roles for formins and tandem WH2-motif-containing assembly factors are being elucidated and are anticipated to grow with further study. The specific role for actin has not been defined for most of these processes, but is likely to involve the generation of force for membrane dynamics, either by actin polymerization itself or by myosin motor activity. Defining these processes mechanistically is necessary for understanding membrane dynamics in general, as well as pathways that utilize these processes, such as autophagy.
Collapse
Affiliation(s)
- Rajarshi Chakrabarti
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Miriam Lee
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Henry N Higgs
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA.
| |
Collapse
|
50
|
Vozandychova V, Stojkova P, Hercik K, Rehulka P, Stulik J. The Ubiquitination System within Bacterial Host-Pathogen Interactions. Microorganisms 2021; 9:638. [PMID: 33808578 PMCID: PMC8003559 DOI: 10.3390/microorganisms9030638] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/17/2022] Open
Abstract
Ubiquitination of proteins, like phosphorylation and acetylation, is an important regulatory aspect influencing numerous and various cell processes, such as immune response signaling and autophagy. The study of ubiquitination has become essential to learning about host-pathogen interactions, and a better understanding of the detailed mechanisms through which pathogens affect ubiquitination processes in host cell will contribute to vaccine development and effective treatment of diseases. Pathogenic bacteria (e.g., Salmonella enterica, Legionella pneumophila and Shigella flexneri) encode many effector proteins, such as deubiquitinating enzymes (DUBs), targeting the host ubiquitin machinery and thus disrupting pertinent ubiquitin-dependent anti-bacterial response. We focus here upon the host ubiquitination system as an integral unit, its interconnection with the regulation of inflammation and autophagy, and primarily while examining pathogens manipulating the host ubiquitination system. Many bacterial effector proteins have already been described as being translocated into the host cell, where they directly regulate host defense processes. Due to their importance in pathogenic bacteria progression within the host, they are regarded as virulence factors essential for bacterial evasion. However, in some cases (e.g., Francisella tularensis) the host ubiquitination system is influenced by bacterial infection, although the responsible bacterial effectors are still unknown.
Collapse
Affiliation(s)
- Vera Vozandychova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 50001 Hradec Kralove, Czech Republic; (V.V.); (P.S.); (K.H.); (P.R.)
| | - Pavla Stojkova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 50001 Hradec Kralove, Czech Republic; (V.V.); (P.S.); (K.H.); (P.R.)
| | - Kamil Hercik
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 50001 Hradec Kralove, Czech Republic; (V.V.); (P.S.); (K.H.); (P.R.)
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 542/2, 16000 Prague, Czech Republic
| | - Pavel Rehulka
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 50001 Hradec Kralove, Czech Republic; (V.V.); (P.S.); (K.H.); (P.R.)
| | - Jiri Stulik
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 50001 Hradec Kralove, Czech Republic; (V.V.); (P.S.); (K.H.); (P.R.)
| |
Collapse
|