1
|
Chandra P, Philips JA. USP8 promotes intracellular infection by enhancing ESCRT-mediated membrane repair, limiting xenophagy, and reducing oxidative stress. Autophagy 2025; 21:298-314. [PMID: 39178916 PMCID: PMC11759523 DOI: 10.1080/15548627.2024.2395134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 08/13/2024] [Accepted: 08/18/2024] [Indexed: 08/26/2024] Open
Abstract
The host ESCRT-machinery repairs damaged endolysosomal membranes. If damage persists, selective macroautophagy/autophagy clears the damaged compartment. Mycobacterium tuberculosis (Mtb) is an intracellular pathogen that damages the phagosomal membrane and targets ESCRT-mediated repair as part of its virulence program. The E3 ubiquitin ligases PRKN and SMURF1 promote autophagic capture of damaged, Mtb-containing phagosomes. Because ubiquitination is a reversible process, we anticipated that host deubiquitinases (DUBs) would also be involved. Here, we screened all predicted mouse DUBs for their role in ubiquitin targeting and control of intracellular Mtb. We show that USP8 (ubiquitin specific peptidase 8) colocalizes with intracellular Mtb, recognizes phagosomal membrane damage, and is required for ESCRT-dependent membrane repair. Furthermore, we show that USP8 regulates the NFE2L2/NRF2-dependent antioxidant signature. Taken together, our study demonstrates a central role of USP8 in promoting Mtb intracellular growth by promoting phagosomal membrane repair, limiting ubiquitin-driven selective autophagy, and reducing oxidative stress.Abbreviation: BMDMs: bone marrow-derived macrophages; CFUs: colony-forming units; DUB: deubiquitinase; ESCRT: endosomal sorting complexes required for transport; LLOMe: L-leucyl-L-leucine methyl ester; MFI: mean fluorescence intensity; MOI: multiplicity of infection; Mtb: Mycobacterium tuberculosis; NFE2L2/NRF2: nuclear factor, erythroid derived 2, like 2; PMA: phorbol 12-myristate 13-acetate; ROS: reactive oxygen species; USP8: ubiquitin specific peptidase 8.
Collapse
Affiliation(s)
- Pallavi Chandra
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jennifer A. Philips
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
2
|
Kaur S, Angrish N, Vasudevan M, Khare G. Global proteomics reveals pathways of mesenchymal stem cells altered by Mycobacterium tuberculosis. Sci Rep 2024; 14:30677. [PMID: 39730375 DOI: 10.1038/s41598-024-75722-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 10/08/2024] [Indexed: 12/29/2024] Open
Abstract
Mycobacterium tuberculosis (M. tb) has a remarkable ability to persist inside host cells. Several studies showed that M. tb infects and survives inside bone marrow mesenchymal stem cells (BM-MSCs) escaping the host immune system. Here, we have identified various cellular pathways that are modulated in human BM-MSCs upon infection with virulent M. tb and the proteomic profile of these cells varies from that of avirulent M. tb infected cells. We found that virulent M. tb infection reshapes host pathways such as stem cell differentiation, alternative splicing, cytokine production, mitochondrial function etc., which might be modulated by M. tb to persist inside this unconventional niche of human BM-MSCs. Additionally, we observed that virulent M. tb infection suppresses various cellular processes. This study uncovers the differences in the host proteomic profiles resulting from the virulent versus avirulent M. tb infection that can pave the way to identify host-directed therapeutic targets for the treatment of tuberculosis.
Collapse
Affiliation(s)
- Simran Kaur
- Department of Biochemistry, University of Delhi South Campus, New Delhi, 110021, India
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada
| | - Nupur Angrish
- Department of Biochemistry, University of Delhi South Campus, New Delhi, 110021, India
| | - Madavan Vasudevan
- Genomics and Data Science Unit, Theomics International Pvt. Ltd, Bangalore, 560038, India
| | - Garima Khare
- Department of Biochemistry, University of Delhi South Campus, New Delhi, 110021, India.
| |
Collapse
|
3
|
Birk MS, Walch P, Baykara T, Sefried S, Amelang J, Buerova E, Breuer I, Vervoots J, Typas A, Savitski MM, Mateus A, Selkrig J. Salmonella infection impacts host proteome thermal stability. Eur J Cell Biol 2024; 103:151448. [PMID: 39128247 DOI: 10.1016/j.ejcb.2024.151448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 07/31/2024] [Accepted: 08/03/2024] [Indexed: 08/13/2024] Open
Abstract
Intracellular bacterial pathogens hijack the protein machinery of infected host cells to evade their defenses and cultivate a favorable intracellular niche. The intracellular pathogen Salmonella enterica subsp. Typhimurium (STm) achieves this by injecting a cocktail of effector proteins into host cells that modify the activity of target host proteins. Yet, proteome-wide approaches to systematically map changes in host protein function during infection have remained challenging. Here we adapted a functional proteomics approach - Thermal-Proteome Profiling (TPP) - to systematically assess proteome-wide changes in host protein abundance and thermal stability throughout an STm infection cycle. By comparing macrophages treated with live or heat-killed STm, we observed that most host protein abundance changes occur independently of STm viability. In contrast, a large portion of host protein thermal stability changes were specific to infection with live STm. This included pronounced thermal stability changes in proteins linked to mitochondrial function (Acod1/Irg1, Cox6c, Samm50, Vdac1, and mitochondrial respiratory chain complex proteins), as well as the interferon-inducible protein with tetratricopeptide repeats, Ifit1. Integration of our TPP data with a publicly available STm-host protein-protein interaction database led us to discover that the secreted STm effector kinase, SteC, thermally destabilizes and phosphorylates the ribosomal preservation factor Serbp1. In summary, this work emphasizes the utility of measuring protein thermal stability during infection to accelerate the discovery of novel molecular interactions at the host-pathogen interface.
Collapse
Affiliation(s)
- Marlène S Birk
- Institute of Medical Microbiology, RWTH University Hospital, Aachen 52074, Germany
| | - Philipp Walch
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstrasse 1, Heidelberg 69117, Germany
| | - Tarik Baykara
- Institute of Medical Microbiology, RWTH University Hospital, Aachen 52074, Germany
| | - Stephanie Sefried
- Institute of Medical Microbiology, RWTH University Hospital, Aachen 52074, Germany
| | - Jan Amelang
- Institute of Biochemistry and Molecular Biology, RWTH University Hospital, Aachen 52074, Germany
| | - Elena Buerova
- Institute of Biochemistry and Molecular Biology, RWTH University Hospital, Aachen 52074, Germany
| | - Ingrid Breuer
- Institute of Medical Microbiology, RWTH University Hospital, Aachen 52074, Germany
| | - Jörg Vervoots
- Institute of Biochemistry and Molecular Biology, RWTH University Hospital, Aachen 52074, Germany
| | - Athanasios Typas
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstrasse 1, Heidelberg 69117, Germany
| | - Mikhail M Savitski
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstrasse 1, Heidelberg 69117, Germany
| | - André Mateus
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstrasse 1, Heidelberg 69117, Germany; Department of Chemistry, Umeå University, Umeå 907 36, Sweden; The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå 907 36, Sweden.
| | - Joel Selkrig
- Institute of Medical Microbiology, RWTH University Hospital, Aachen 52074, Germany; European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstrasse 1, Heidelberg 69117, Germany.
| |
Collapse
|
4
|
Sharma J, Mudalagiriyappa S, Abdelaal HFM, Kelly TC, Choi W, Ponnuraj N, Vieson MD, Talaat AM, Nanjappa SG. E3 ubiquitin ligase CBLB regulates innate immune responses and bacterial dissemination during nontuberculous mycobacteria infection. J Leukoc Biol 2024; 115:1118-1130. [PMID: 38271280 PMCID: PMC11135617 DOI: 10.1093/jleuko/qiae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/27/2023] [Accepted: 12/20/2023] [Indexed: 01/27/2024] Open
Abstract
Nontuberculous mycobacteria (NTM) are emerging opportunistic pathogens causing pulmonary infection to fatal disseminated disease. NTM infections are steadily increasing in children and adults, and immune-compromised individuals are at a greater risk of fatal infections. The NTM disease's adverse pathology and resistance to antibiotics have further worsened the therapeutic measures. Innate immune regulators are potential targets for therapeutics to NTM, especially in a T cell-suppressed population, and many ubiquitin ligases modulate pathogenesis and innate immunity during infections, including mycobacterial infections. Here, we investigated the role of an E3 ubiquitin ligase, Casitas B-lineage lymphoma proto-oncogene B (CBLB), in immunocompromised mouse models of NTM infection. We found that CBLB is essential to prevent bacterial growth and dissemination. Cblb deficiency debilitated natural killer cells, inflammatory monocytes, and macrophages in vivo. However, Cblb deficiency in macrophages did not wane its ability to inhibit bacterial growth or production of reactive oxygen species or interferon γ production by natural killer cells in vitro. CBLB restricted NTM growth and dissemination by promoting early granuloma formation in vivo. Our study shows that CBLB bolsters innate immune responses and helps prevent the dissemination of NTM during compromised T cell immunity.
Collapse
Affiliation(s)
- Jaishree Sharma
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL 61802, United States
| | - Srinivasu Mudalagiriyappa
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL 61802, United States
| | - Hazem F M Abdelaal
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin–Madison, Madison, WI 53706, United States
| | - Thomas C Kelly
- Integrative Biology Honors Program, University Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Woosuk Choi
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL 61802, United States
| | - Nagendraprabhu Ponnuraj
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL 61802, United States
| | - Miranda D Vieson
- Veterinary Diagnostic Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61802, United States
| | - Adel M Talaat
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin–Madison, Madison, WI 53706, United States
| | - Som Gowda Nanjappa
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL 61802, United States
| |
Collapse
|
5
|
Chen H, He X, Jiang HW, Zheng YX, Zhang HN, Wu FL, Xu ZW, Guo SJ, Tao SC. Elucidating the network interactions between 21 secreted Mycobacterium tuberculosis proteins and host proteins: the role of DnaK in enhancing Mtb survival via LDHB. Acta Biochim Biophys Sin (Shanghai) 2024; 56:819-823. [PMID: 38545657 PMCID: PMC11177104 DOI: 10.3724/abbs.2024041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 03/12/2024] [Indexed: 05/31/2024] Open
Affiliation(s)
- Hong Chen
- Shanghai Center for Systems BiomedicineKey Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Jiao Tong UniversityShanghai200240China
| | - Xiang He
- College of Basic Medical Science in Shanghai Jiao Tong UniversityShanghai Jiao Tong UniversityShanghai200025China
| | | | - Yun-Xiao Zheng
- Shanghai Center for Systems BiomedicineKey Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Jiao Tong UniversityShanghai200240China
| | - Hai-Nan Zhang
- Institute of NeuroscienceChinese Academy of SciencesShanghai200031China
| | - Fan-Lin Wu
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of ShandongSchool of AgricultureLudong UniversityYantai264025China
| | - Zhao-Wei Xu
- School of Basic Medical Sciences in Fujian Medical UniversityFujian Medical UniversityFuzhou350112China
| | - Shu-Juan Guo
- Shanghai Center for Systems BiomedicineKey Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Jiao Tong UniversityShanghai200240China
| | - Sheng-Ce Tao
- Shanghai Center for Systems BiomedicineKey Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Jiao Tong UniversityShanghai200240China
| |
Collapse
|
6
|
Truong T, Martin K, Salemi M, Ray A, Phinney BS, Penn BH. The balance between antiviral and antibacterial responses during M. tuberculosis infection is regulated by the ubiquitin ligase CBL. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.15.594178. [PMID: 38798543 PMCID: PMC11118416 DOI: 10.1101/2024.05.15.594178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
As a first line of host defense, macrophages must be able to effectively sense and respond to diverse types of pathogens, and while a particular type of immune response may be beneficial in some circumstances, it can be detrimental in others. Upon infecting a macrophage, M. tuberculosis (Mtb) induces proinflammatory cytokines that activate antibacterial responses. Surprisingly, Mtb also triggers antiviral responses that actually hinder the ability of macrophages to control Mtb infection. The ubiquitin ligase CBL suppresses these antiviral responses and shifts macrophages toward a more antibacterial state during Mtb infection, however, the mechanisms by which CBL regulates immune signaling are unknown. We found that CBL controls responses to multiple stimuli and broadly suppresses the expression of antiviral effector genes. We then used mass-spectrometry to investigate potential CBL substrates and identified over 46,000 ubiquitylated peptides in Mtb-infected macrophages, as well as roughly 400 peptides with CBL-dependent ubiquitylation. We then performed genetic interaction analysis of CBL and its putative substrates, and identified the Fas associated factor 2 (FAF2) adapter protein as a key signaling molecule protein downstream of CBL. Together, these analyses identify thousands of new ubiquitin-mediated signaling events during the innate immune response and reveal an important new regulatory hub in this response.
Collapse
Affiliation(s)
- Tina Truong
- Department of Internal Medicine, University of California, Davis, Davis, California, United States of America
- Graduate Group in Immunology, University of California, Davis, Davis, California, United States of America
| | - Kelsey Martin
- Department of Internal Medicine, University of California, Davis, Davis, California, United States of America
| | - Michelle Salemi
- Proteomics Core Facility, University of California, Davis, Davis, California, United States of America
| | - Abigail Ray
- Department of Internal Medicine, University of California, Davis, Davis, California, United States of America
- Microbiology Graduate Group, University of California, Davis, Davis, California, United States of America
| | - Brett S. Phinney
- Proteomics Core Facility, University of California, Davis, Davis, California, United States of America
| | - Bennett H. Penn
- Department of Internal Medicine, University of California, Davis, Davis, California, United States of America
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, California, United States of America
| |
Collapse
|
7
|
Liu X, Abad L, Chatterjee L, Cristea IM, Varjosalo M. Mapping protein-protein interactions by mass spectrometry. MASS SPECTROMETRY REVIEWS 2024:10.1002/mas.21887. [PMID: 38742660 PMCID: PMC11561166 DOI: 10.1002/mas.21887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 04/22/2024] [Indexed: 05/16/2024]
Abstract
Protein-protein interactions (PPIs) are essential for numerous biological activities, including signal transduction, transcription control, and metabolism. They play a pivotal role in the organization and function of the proteome, and their perturbation is associated with various diseases, such as cancer, neurodegeneration, and infectious diseases. Recent advances in mass spectrometry (MS)-based protein interactomics have significantly expanded our understanding of the PPIs in cells, with techniques that continue to improve in terms of sensitivity, and specificity providing new opportunities for the study of PPIs in diverse biological systems. These techniques differ depending on the type of interaction being studied, with each approach having its set of advantages, disadvantages, and applicability. This review highlights recent advances in enrichment methodologies for interactomes before MS analysis and compares their unique features and specifications. It emphasizes prospects for further improvement and their potential applications in advancing our knowledge of PPIs in various biological contexts.
Collapse
Affiliation(s)
- Xiaonan Liu
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland
- Institute of Biotechnology, HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Lawrence Abad
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Lopamudra Chatterjee
- Institute of Biotechnology, HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Ileana M. Cristea
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Markku Varjosalo
- Institute of Biotechnology, HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| |
Collapse
|
8
|
Steiert B, Andersen SE, McCaslin PN, Elwell CA, Faris R, Tijerina X, Smith P, Eldridge Q, Imai BS, Arrington JV, Yau PM, Mirrashidi KM, Johnson JR, Verschueren E, Von Dollen J, Jang GM, Krogan NJ, Engel JN, Weber MM. Global mapping of the Chlamydia trachomatis conventional secreted effector - host interactome reveals CebN interacts with nucleoporins and Rae1 to impede STAT1 nuclear translocation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.25.587017. [PMID: 38712050 PMCID: PMC11071493 DOI: 10.1101/2024.04.25.587017] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Chlamydia trachomatis (C.t.), the leading cause of bacterial sexually transmitted infections, employs a type III secretion system (T3SS) to translocate two classes of effectors, inclusion membrane proteins and conventional T3SS (cT3SS) effectors, into the host cell to counter host defense mechanisms. Here we employed three assays to directly evaluate secretion during infection, validating secretion for 23 cT3SS effectors. As bioinformatic analyses have been largely unrevealing, we conducted affinity purification-mass spectrometry to identify host targets and gain insights into the functions of these effectors, identifying high confidence interacting partners for 21 cT3SS effectors. We demonstrate that CebN localizes to the nuclear envelope in infected and bystander cells where it interacts with multiple nucleoporins and Rae1, blocking STAT1 nuclear import following IFN-γ stimulation. By building a cT3SS effector-host interactome, we have identified novel pathways that are targeted during bacterial infection and have begun to address how C.t. effectors combat cell autonomous immunity.
Collapse
Affiliation(s)
- Brianna Steiert
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Shelby E. Andersen
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
- Present address: Department of Immunology and Microbiology, University of Colorado - Anschutz Medical Campus, Aurora, CO, USA
| | - Paige N. McCaslin
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Cherilyn A. Elwell
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Robert Faris
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Xavier Tijerina
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Parker Smith
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Quinn Eldridge
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Brian S. Imai
- Protein Sciences Facility, Roy J. Carver Biotechnology Center, University of Illinois Urbana–Champaign, Urbana, IL, USA
| | - Justine V. Arrington
- Protein Sciences Facility, Roy J. Carver Biotechnology Center, University of Illinois Urbana–Champaign, Urbana, IL, USA
| | - Peter M. Yau
- Protein Sciences Facility, Roy J. Carver Biotechnology Center, University of Illinois Urbana–Champaign, Urbana, IL, USA
| | | | - Jeffrey R. Johnson
- QB3, California Institute for Quantitative Biosciences, San Francisco, CA 94148, USA
| | - Erik Verschueren
- QB3, California Institute for Quantitative Biosciences, San Francisco, CA 94148, USA
| | - John Von Dollen
- QB3, California Institute for Quantitative Biosciences, San Francisco, CA 94148, USA
| | - Gwendolyn M. Jang
- QB3, California Institute for Quantitative Biosciences, San Francisco, CA 94148, USA
| | - Nevan J. Krogan
- QB3, California Institute for Quantitative Biosciences, San Francisco, CA 94148, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
- Gladstone Institutes, San Francisco, CA 94158, USA
| | - Joanne N. Engel
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Mary M. Weber
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| |
Collapse
|
9
|
Sonnert ND, Rosen CE, Ghazi AR, Franzosa EA, Duncan-Lowey B, González-Hernández JA, Huck JD, Yang Y, Dai Y, Rice TA, Nguyen MT, Song D, Cao Y, Martin AL, Bielecka AA, Fischer S, Guan C, Oh J, Huttenhower C, Ring AM, Palm NW. A host-microbiota interactome reveals extensive transkingdom connectivity. Nature 2024; 628:171-179. [PMID: 38509360 DOI: 10.1038/s41586-024-07162-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 02/05/2024] [Indexed: 03/22/2024]
Abstract
The myriad microorganisms that live in close association with humans have diverse effects on physiology, yet the molecular bases for these impacts remain mostly unknown1-3. Classical pathogens often invade host tissues and modulate immune responses through interactions with human extracellular and secreted proteins (the 'exoproteome'). Commensal microorganisms may also facilitate niche colonization and shape host biology by engaging host exoproteins; however, direct exoproteome-microbiota interactions remain largely unexplored. Here we developed and validated a novel technology, BASEHIT, that enables proteome-scale assessment of human exoproteome-microbiome interactions. Using BASEHIT, we interrogated more than 1.7 million potential interactions between 519 human-associated bacterial strains from diverse phylogenies and tissues of origin and 3,324 human exoproteins. The resulting interactome revealed an extensive network of transkingdom connectivity consisting of thousands of previously undescribed host-microorganism interactions involving 383 strains and 651 host proteins. Specific binding patterns within this network implied underlying biological logic; for example, conspecific strains exhibited shared exoprotein-binding patterns, and individual tissue isolates uniquely bound tissue-specific exoproteins. Furthermore, we observed dozens of unique and often strain-specific interactions with potential roles in niche colonization, tissue remodelling and immunomodulation, and found that strains with differing host interaction profiles had divergent interactions with host cells in vitro and effects on the host immune system in vivo. Overall, these studies expose a previously unexplored landscape of molecular-level host-microbiota interactions that may underlie causal effects of indigenous microorganisms on human health and disease.
Collapse
Affiliation(s)
- Nicole D Sonnert
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT, USA
| | - Connor E Rosen
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Andrew R Ghazi
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Eric A Franzosa
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | | | | | - John D Huck
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Yi Yang
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Yile Dai
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Tyler A Rice
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Mytien T Nguyen
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Deguang Song
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Yiyun Cao
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Anjelica L Martin
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Agata A Bielecka
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Suzanne Fischer
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Changhui Guan
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Julia Oh
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Curtis Huttenhower
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Aaron M Ring
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA.
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA.
| | - Noah W Palm
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
10
|
Balint D, Brito IL. Human-gut bacterial protein-protein interactions: understudied but impactful to human health. Trends Microbiol 2024; 32:325-332. [PMID: 37805334 PMCID: PMC10990813 DOI: 10.1016/j.tim.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 10/09/2023]
Abstract
The human gut microbiome is associated with a wide range of diseases; yet, the mechanisms these microbes use to influence human health are not fully understood. Protein-protein interactions (PPIs) are increasingly identified as a potential mechanism by which gut microbiota influence their human hosts. Similar to some PPIs observed in pathogens, many disease-relevant human-gut bacterial PPIs function by interacting with components of the immune system or the gut barrier. Here, we highlight recent advances in these two areas. It is our opinion that there is a vastly unexplored network of human-gut bacterial PPIs that contribute to the prevention or pathogenesis of various diseases and that future research is warranted to expand PPI discovery.
Collapse
Affiliation(s)
- Diana Balint
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Ilana L Brito
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
11
|
Zheng J, Dong C, Xiong S. Mycobacterial Rv1804c binds to the PEST domain of IκBα and activates macrophage-mediated proinflammatory responses. iScience 2024; 27:109101. [PMID: 38384838 PMCID: PMC10879709 DOI: 10.1016/j.isci.2024.109101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/18/2023] [Accepted: 01/30/2024] [Indexed: 02/23/2024] Open
Abstract
Recognition of the components of Mycobacterium tuberculosis (Mtb) by macrophages is vital for initiating a cascade of host immune responses. However, the recognition of Mtb-secretory proteins by the receptor-independent pathways of the host remains unclear. Rv1804c is a highly conserved secretory protein in Mtb. However, its exact function and underlying mechanism in Mtb infection remain poorly understood. In the present study, we observed that Rv1804c activates macrophage-mediated proinflammatory responses in an IKKα-independent manner. Furthermore, we noted that Rv1804c inhibits mycobacterial survival. By elucidating the underlying mechanisms, we observed that Rv1804c activates IκBα by directly interacting with its PEST domain. Moreover, Rv1804c was enriched in attenuated but not in virulent mycobacteria and associated with the disease process of tuberculosis. Our findings provide an alternative pathway via which a mycobacterial secretory protein activates macrophage-mediated proinflammatory responses. Our study findings may shed light on the prevention and treatment of tuberculosis.
Collapse
Affiliation(s)
- Jianjian Zheng
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Chunsheng Dong
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Sidong Xiong
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| |
Collapse
|
12
|
Wang B, Vartak R, Zaltsman Y, Naing ZZC, Hennick KM, Polacco BJ, Bashir A, Eckhardt M, Bouhaddou M, Xu J, Sun N, Lasser MC, Zhou Y, McKetney J, Guiley KZ, Chan U, Kaye JA, Chadha N, Cakir M, Gordon M, Khare P, Drake S, Drury V, Burke DF, Gonzalez S, Alkhairy S, Thomas R, Lam S, Morris M, Bader E, Seyler M, Baum T, Krasnoff R, Wang S, Pham P, Arbalaez J, Pratt D, Chag S, Mahmood N, Rolland T, Bourgeron T, Finkbeiner S, Swaney DL, Bandyopadhay S, Ideker T, Beltrao P, Willsey HR, Obernier K, Nowakowski TJ, Hüttenhain R, State MW, Willsey AJ, Krogan NJ. A foundational atlas of autism protein interactions reveals molecular convergence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.03.569805. [PMID: 38076945 PMCID: PMC10705567 DOI: 10.1101/2023.12.03.569805] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Translating high-confidence (hc) autism spectrum disorder (ASD) genes into viable treatment targets remains elusive. We constructed a foundational protein-protein interaction (PPI) network in HEK293T cells involving 100 hcASD risk genes, revealing over 1,800 PPIs (87% novel). Interactors, expressed in the human brain and enriched for ASD but not schizophrenia genetic risk, converged on protein complexes involved in neurogenesis, tubulin biology, transcriptional regulation, and chromatin modification. A PPI map of 54 patient-derived missense variants identified differential physical interactions, and we leveraged AlphaFold-Multimer predictions to prioritize direct PPIs and specific variants for interrogation in Xenopus tropicalis and human forebrain organoids. A mutation in the transcription factor FOXP1 led to reconfiguration of DNA binding sites and altered development of deep cortical layer neurons in forebrain organoids. This work offers new insights into molecular mechanisms underlying ASD and describes a powerful platform to develop and test therapeutic strategies for many genetically-defined conditions.
Collapse
|
13
|
Wen D, Meng C, Feng Y, Shen L, Liu Y, Sun W, Chen G, Wu C. Syringaldehyde Exhibits Antibacterial and Antioxidant Activities against Mycobacterium marinum Infection. Microorganisms 2024; 12:348. [PMID: 38399751 PMCID: PMC10893232 DOI: 10.3390/microorganisms12020348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/27/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Tuberculosis (TB) is caused by infection with Mycobacterium tuberculosis (Mtb), which has a unique resistance to many antimicrobial agents. TB has emerged as a significant worldwide health issue because of the rise of multidrug-resistant strains causing drug-resistant TB (DR-TB). As a result, the development of new drugs or effective strategies is crucial for patients with TB. Mycobacterium marinum (Mm) and Mtb are both species of mycobacteria. In zebrafish, Mm proliferates and forms chronic granulomatous infections, which are similar to Mtb infections in lung tissue. Syringaldehyde (SA) is a member of the phenolic aldehyde family found in various plants. Here, we investigated its antioxidative and antibacterial properties in Mm-infected cells and zebrafish. Our results demonstrated that SA inhibits Mm-infected pulmonary epithelial cells and inhibits the proliferation of Mm in Mm-infected zebrafish, suggesting that SA provides an antibacterial effect during Mm infection. Further study demonstrated that supplementation with SA inhibits the production of malondialdehyde (MDA) and reactive oxygen species (ROS) and increases the levels of reduced glutathione (GSH) in Mm-infection-induced macrophages. SA inhibits the levels of MDA in Mm-infected zebrafish, suggesting that SA exerts antioxidative effects in vivo. Additionally, we found that SA promotes the expression of NRF2/HO-1/NQO-1 and the activation of the AMPK-α1/AKT/GSK-3β signaling pathway. In summary, our data demonstrated that SA exerts antioxidative and antibacterial effects during Mm infection both in vivo and in vitro and that the antioxidative effects of SA may be due to the regulation of NRF2/HO-1/NQO-1 and the AMPK-α1/AKT/GSK-3β signaling pathway.
Collapse
Affiliation(s)
- Da Wen
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, Taiyuan 030006, China
| | - Chaoqun Meng
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, Taiyuan 030006, China
| | - Yazhi Feng
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, Taiyuan 030006, China
| | - Lin Shen
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, Taiyuan 030006, China
| | - Yiyao Liu
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, Taiyuan 030006, China
| | - Wei Sun
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, Taiyuan 030006, China
| | - Guangxin Chen
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, Taiyuan 030006, China
| | - Changxin Wu
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, Taiyuan 030006, China
- Shanxi Provincial Key Laboratory for Prevention and Treatment of Major Infectious Diseases, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
14
|
Hkimi C, Kamoun S, Khamessi O, Ghedira K. Mycobacterium tuberculosis-THP-1 like macrophages protein-protein interaction map revealed through dual RNA-seq analysis and a computational approach. J Med Microbiol 2024; 73. [PMID: 38314675 DOI: 10.1099/jmm.0.001803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024] Open
Abstract
Introduction. Infection caused by Mycobacterium tuberculosis (M. tb) is still a leading cause of mortality worldwide with estimated 1.4 million deaths annually.Hypothesis/Gap statement. Despite macrophages' ability to kill bacterium, M. tb can grow inside these innate immune cells and the exploration of the infection has traditionally been characterized by a one-sided relationship, concentrating solely on the host or examining the pathogen in isolation.Aim. Because of only a handful of M. tb-host interactions have been experimentally characterized, our main goal is to predict protein-protein interactions during the early phases of the infection.Methodology. In this work, we performed an integrative computational approach that exploits differentially expressed genes obtained from Dual RNA-seq analysis combined with known domain-domain interactions.Results. A total of 2381 and 7214 genes were identified as differentially expressed in M. tb and in THP-1-like macrophages, respectively, revealing different transcriptional profiles in response to infection. Over 48 h of infection, the host-pathogen network revealed 25 016 PPIs. Analysis of the resulting predicted network based on cellular localization information of M. tb proteins, indicated the implication of interacting nodes including the bacterial PE/PPE/PE_PGRS family. In addition, M. tb proteins interacted with host proteins involved in NF-kB signalling pathway as well as interfering with the host apoptosis ability via the potential interaction of M. tb TB16.3 with human TAB1 and M. tb GroEL2 with host protein kinase C delta, respectively.Conclusion. The prediction of the full range of interactions between M. tb and host will contribute to better understanding of the pathogenesis of this bacterium and may provide advanced approaches to explore new therapeutic targets against tuberculosis.
Collapse
Affiliation(s)
- Chaima Hkimi
- Laboratory of Bioinformatics, Biomathematics and Biostatistics (LR20IPT09), Pasteur Institute of Tunis, Tunis 1002, Tunisia
- Higher Institute of Biotechnology of Sidi Thabet, University of Manouba, Ariana BP-66, Manouba 2010, Tunisia
| | - Selim Kamoun
- Laboratory of Bioinformatics, Biomathematics and Biostatistics (LR20IPT09), Pasteur Institute of Tunis, Tunis 1002, Tunisia
- Higher Institute of Biotechnology of Sidi Thabet, University of Manouba, Ariana BP-66, Manouba 2010, Tunisia
| | - Oussema Khamessi
- Laboratory of Bioinformatics, Biomathematics and Biostatistics (LR20IPT09), Pasteur Institute of Tunis, Tunis 1002, Tunisia
- Higher Institute of Biotechnology of Sidi Thabet, University of Manouba, Ariana BP-66, Manouba 2010, Tunisia
| | - Kais Ghedira
- Laboratory of Bioinformatics, Biomathematics and Biostatistics (LR20IPT09), Pasteur Institute of Tunis, Tunis 1002, Tunisia
| |
Collapse
|
15
|
Xie JQ, Zhou X, Jia ZC, Su CF, Zhang Y, Fernie AR, Zhang J, Du ZY, Chen MX. Alternative Splicing, An Overlooked Defense Frontier of Plants with Respect to Bacterial Infection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37916838 DOI: 10.1021/acs.jafc.3c04163] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Disease represents a major problem in sustainable agricultural development. Plants interact closely with various microorganisms during their development and in response to the prevailing environment. In particular, pathogenic microorganisms can cause plant diseases, affecting the fertility, yield, and longevity of plants. During the long coevolution of plants and their pathogens, plants have evolved both molecular pattern-triggered immunity (PTI) and effector-triggered immunity (ETI) signaling networks in order to regulate host cells in response to pathogen infestation. Additionally, in the postgenomic era, alternative splicing (AS) has become uncovered as one of the major drivers of proteome diversity, and abnormal RNA splicing is closely associated with bacterial infections. Currently, the complexity of host-bacteria interactions is a much studied area of research that has shown steady progress over the past decade. Although the development of high-throughput sequencing technologies and their application in transcriptomes have revolutionized our understanding of AS, many mechanisms related to host-bacteria interactions remain still unclear. To this end, this review summarizes the changes observed in AS during host-bacteria interactions and outlines potential therapeutics for bacterial diseases based on existing studies. In doing so, we hope to provide guidelines for plant disease management in agriculture.
Collapse
Affiliation(s)
- Ji-Qin Xie
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou 550025, China
| | - Xiang Zhou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Zi-Chang Jia
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Chang-Feng Su
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou 550025, China
| | - Youjun Zhang
- Center of Plant System Biology and Biotechnology, 4000 Plovdiv, Bulgaria
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Golm, Germany
| | - Alisdair R Fernie
- Center of Plant System Biology and Biotechnology, 4000 Plovdiv, Bulgaria
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Golm, Germany
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University, and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Zhi-Yan Du
- Department of Molecular Biosciences & Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Mo-Xian Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
16
|
Gracy J, Vallejos-Sanchez K, Cohen-Gonsaud M. SecretoMyc, a web-based database on mycobacteria secreted proteins and structure-based homology identification using bio-informatics tools. Tuberculosis (Edinb) 2023; 141:102375. [PMID: 37429152 DOI: 10.1016/j.tube.2023.102375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/12/2023]
Abstract
To better understand the interaction between the host and the Mycobacterium tuberculosis pathogen, it is critical to identify its potential secreted proteins. While various experimental methods have been successful in identifying proteins under specific culture conditions, they have not provided a comprehensive characterisation of the secreted proteome. We utilized a combination of bioinformatics servers and in-house software to identify all potentially secreted proteins from six mycobacterial genomes through the three secretion systems: SEC, TAT, and T7SS. The results are presented in a database that can be crossed referenced to selected proteomics and transcriptomics studies (https://secretomyc.cbs.cnrs.fr). In addition, thanks to the recent availability of Alphafold models, we developed a tool in order to identify the structural homologues among the mycobacterial genomes.
Collapse
Affiliation(s)
- Jérôme Gracy
- Centre de Biologie Structurale, CNRS, INSERM, Université de Montpellier, France
| | - Katherine Vallejos-Sanchez
- Centre de Biologie Structurale, CNRS, INSERM, Université de Montpellier, France; Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Martin Cohen-Gonsaud
- Centre de Biologie Structurale, CNRS, INSERM, Université de Montpellier, France.
| |
Collapse
|
17
|
Martin M, deVisch A, Boudehen YM, Barthe P, Gutierrez C, Turapov O, Aydogan T, Heriaud L, Gracy J, Neyrolles O, Mukamolova GV, Letourneur F, Cohen-Gonsaud M. A Mycobacterium tuberculosis Effector Targets Mitochondrion, Controls Energy Metabolism, and Limits Cytochrome c Exit. Microbiol Spectr 2023; 11:e0106623. [PMID: 37036353 PMCID: PMC10269737 DOI: 10.1128/spectrum.01066-23] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 03/17/2023] [Indexed: 04/11/2023] Open
Abstract
Host metabolism reprogramming is a key feature of Mycobacterium tuberculosis (Mtb) infection that enables the survival of this pathogen within phagocytic cells and modulates the immune response facilitating the spread of the tuberculosis disease. Here, we demonstrate that a previously uncharacterized secreted protein from Mtb, Rv1813c, manipulates the host metabolism by targeting mitochondria. When expressed in eukaryotic cells, the protein is delivered to the mitochondrial intermembrane space and promotes the enhancement of host ATP production by boosting the oxidative phosphorylation metabolic pathway. Furthermore, the release of cytochrome c from mitochondria, an early apoptotic event in response to short-term oxidative stress, is delayed in Rv1813c-expressing cells. This study reveals a novel class of mitochondria targeting effectors from Mtb that might participate in host cell metabolic reprogramming and apoptosis control during Mtb infections. IMPORTANCE In this article, using a combination of techniques (bioinformatics, structural biology, and cell biology), we identified and characterized a new class of effectors present only in intracellular mycobacteria. These proteins specifically target host cell mitochondria when ectopically expressed in cells. We showed that one member of this family (Rv1813c) affects mitochondria metabolism in a way that might twist the immune response. This effector also inhibits the cytochrome c exit from mitochondria, suggesting that it might alter normal host cell apoptotic capacities, one of the first defenses of immune cells against Mtb infection.
Collapse
Affiliation(s)
- Marianne Martin
- Laboratory of Pathogen Host Interactions, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Angelique deVisch
- Centre de Biochimie Structurale, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Yves-Marie Boudehen
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse CNRS, UPS, Toulouse, France
| | - Philippe Barthe
- Centre de Biochimie Structurale, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Claude Gutierrez
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse CNRS, UPS, Toulouse, France
| | - Obolbek Turapov
- Leicester Tuberculosis Research Group, Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Talip Aydogan
- Laboratory of Pathogen Host Interactions, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Laurène Heriaud
- Centre de Biochimie Structurale, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Jerome Gracy
- Centre de Biochimie Structurale, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Olivier Neyrolles
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse CNRS, UPS, Toulouse, France
| | - Galina V. Mukamolova
- Leicester Tuberculosis Research Group, Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - François Letourneur
- Laboratory of Pathogen Host Interactions, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Martin Cohen-Gonsaud
- Centre de Biochimie Structurale, CNRS, INSERM, Université de Montpellier, Montpellier, France
| |
Collapse
|
18
|
Morrison HM, Craft J, Rivera-Lugo R, Johnson JR, Golovkine GR, Bell SL, Dodd CE, Van Dis E, Beatty WL, Margolis SR, Repasy T, Shaker I, Lee AY, Vance RE, Stanley SA, Watson RO, Krogan NJ, Portnoy DA, Penn BH, Cox JS. Deficiency in Galectin-3, -8, and -9 impairs immunity to chronic Mycobacterium tuberculosis infection but not acute infection with multiple intracellular pathogens. PLoS Pathog 2023; 19:e1011088. [PMID: 37352334 PMCID: PMC10325092 DOI: 10.1371/journal.ppat.1011088] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 07/06/2023] [Accepted: 05/01/2023] [Indexed: 06/25/2023] Open
Abstract
Macrophages employ an array of pattern recognition receptors to detect and eliminate intracellular pathogens that access the cytosol. The cytosolic carbohydrate sensors Galectin-3, -8, and -9 (Gal-3, Gal-8, and Gal-9) recognize damaged pathogen-containing phagosomes, and Gal-3 and Gal-8 are reported to restrict bacterial growth via autophagy in cultured cells. However, the contribution of these galectins to host resistance during bacterial infection in vivo remains unclear. We found that Gal-9 binds directly to Mycobacterium tuberculosis (Mtb) and Salmonella enterica serovar Typhimurium (Stm) and localizes to Mtb in macrophages. To determine the combined contribution of membrane damage-sensing galectins to immunity, we generated Gal-3, -8, and -9 triple knockout (TKO) mice. Mtb infection of primary macrophages from TKO mice resulted in defective autophagic flux but normal bacterial replication. Surprisingly, these mice had no discernable defect in resistance to acute infection with Mtb, Stm or Listeria monocytogenes, and had only modest impairments in bacterial growth restriction and CD4 T cell activation during chronic Mtb infection. Collectively, these findings indicate that while Gal-3, -8, and -9 respond to an array of intracellular pathogens, together these membrane damage-sensing galectins play a limited role in host resistance to bacterial infection.
Collapse
Affiliation(s)
- Huntly M. Morrison
- Department of Molecular and Cell Biology, Division of Immunology and Molecular Medicine, University of California, Berkeley, Berkeley, California, United States of America
| | - Julia Craft
- Department of Internal Medicine, Division of Infectious Diseases, University of California, Davis, Davis, California, United States of America
| | - Rafael Rivera-Lugo
- Department of Molecular and Cell Biology, Division of Immunology and Molecular Medicine, University of California, Berkeley, Berkeley, California, United States of America
| | - Jeffery R. Johnson
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco; Quantitative Biosciences Institute (QBI), University of California, San Francisco; Gladstone Institutes, San Francisco, California, United States of America
| | - Guillaume R. Golovkine
- Department of Molecular and Cell Biology, Division of Immunology and Molecular Medicine, University of California, Berkeley, Berkeley, California, United States of America
| | - Samantha L. Bell
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, School of Medicine, Bryan, Texas, United States of America
| | - Claire E. Dodd
- Department of Molecular and Cell Biology, Division of Immunology and Molecular Medicine, University of California, Berkeley, Berkeley, California, United States of America
| | - Erik Van Dis
- Department of Molecular and Cell Biology, Division of Immunology and Molecular Medicine, University of California, Berkeley, Berkeley, California, United States of America
| | - Wandy L. Beatty
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Shally R. Margolis
- Department of Molecular and Cell Biology, Division of Immunology and Molecular Medicine, University of California, Berkeley, Berkeley, California, United States of America
| | - Teresa Repasy
- Department of Molecular and Cell Biology, Division of Immunology and Molecular Medicine, University of California, Berkeley, Berkeley, California, United States of America
| | - Isaac Shaker
- Department of Internal Medicine, Division of Infectious Diseases, University of California, Davis, Davis, California, United States of America
| | - Angus Y. Lee
- Cancer Research Laboratory, University of California, Berkeley, Berkeley, California, United States of America
| | - Russell E. Vance
- Department of Molecular and Cell Biology, Division of Immunology and Molecular Medicine, University of California, Berkeley, Berkeley, California, United States of America
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, California, United States of America
| | - Sarah A. Stanley
- Department of Molecular and Cell Biology, Division of Immunology and Molecular Medicine, University of California, Berkeley, Berkeley, California, United States of America
- School of Public Health, Division of Infectious Diseases and Vaccinology, University of California, Berkeley, Berkeley, California, United States of America
| | - Robert O. Watson
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, School of Medicine, Bryan, Texas, United States of America
| | - Nevan J. Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco; Quantitative Biosciences Institute (QBI), University of California, San Francisco; Gladstone Institutes, San Francisco, California, United States of America
| | - Daniel A. Portnoy
- Department of Molecular and Cell Biology, Division of Immunology and Molecular Medicine, University of California, Berkeley, Berkeley, California, United States of America
| | - Bennett H. Penn
- Department of Internal Medicine, Division of Infectious Diseases, University of California, Davis, Davis, California, United States of America
| | - Jeffery S. Cox
- Department of Molecular and Cell Biology, Division of Immunology and Molecular Medicine, University of California, Berkeley, Berkeley, California, United States of America
| |
Collapse
|
19
|
Zhang QA, Ma S, Li P, Xie J. The dynamics of Mycobacterium tuberculosis phagosome and the fate of infection. Cell Signal 2023; 108:110715. [PMID: 37192679 DOI: 10.1016/j.cellsig.2023.110715] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/25/2023] [Accepted: 05/12/2023] [Indexed: 05/18/2023]
Abstract
Phagosomes are vesicles produced by phagocytosis of phagocytes, which are crucial in immunity against Mycobacterium tuberculosis (Mtb) infection. After the phagocyte ingests the pathogen, it activates the phagosomes to recruit a series of components and process proteins, to phagocytose, degrade and kill Mtb. Meanwhile, Mtb can resist acid and oxidative stress, block phagosome maturation, and manipulate host immune response. The interaction between Mtb and phagocytes leads to the outcome of infection. The dynamic of this process can affect the cell fate. This article mainly reviews the development and maturation of phagosomes, as well as the dynamics and modifications of Mtb effectors and phagosomes components, and new diagnostic and therapeutic markers involved in phagosomes.
Collapse
Affiliation(s)
- Qi-Ao Zhang
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Chongqing, China
| | - Shaying Ma
- Chongqing Emergency Medical Center, Chongqing the Fourth Hospital, Jiankang Road, Yuzhong, Chongqing 400014, China
| | - Peibo Li
- Chongqing Public Health Medical Center, Chongqing, China
| | - Jianping Xie
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Chongqing, China; Chongqing Public Health Medical Center, Chongqing, China.
| |
Collapse
|
20
|
Golovkine GR, Roberts AW, Morrison HM, Rivera-Lugo R, McCall RM, Nilsson H, Garelis NE, Repasy T, Cronce M, Budzik J, Van Dis E, Popov LM, Mitchell G, Zalpuri R, Jorgens D, Cox JS. Autophagy restricts Mycobacterium tuberculosis during acute infection in mice. Nat Microbiol 2023; 8:819-832. [PMID: 37037941 PMCID: PMC11027733 DOI: 10.1038/s41564-023-01354-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 03/03/2023] [Indexed: 04/12/2023]
Abstract
Whether or not autophagy has a role in defence against Mycobacterium tuberculosis infection remains unresolved. Previously, conditional knockdown of the core autophagy component ATG5 in myeloid cells was reported to confer extreme susceptibility to M. tuberculosis in mice, whereas depletion of other autophagy factors had no effect on infection. We show that doubling cre gene dosage to more robustly deplete ATG16L1 or ATG7 resulted in increased M. tuberculosis growth and host susceptibility in mice, although ATG5-depleted mice are more sensitive than ATG16L1- or ATG7-depleted mice. We imaged individual macrophages infected with M. tuberculosis and identified a shift from apoptosis to rapid necrosis in autophagy-depleted cells. This effect was dependent on phagosome permeabilization by M. tuberculosis. We monitored infected cells by electron microscopy, showing that autophagy protects the host macrophage by partially reducing mycobacterial access to the cytosol. We conclude that autophagy has an important role in defence against M. tuberculosis in mammals.
Collapse
Affiliation(s)
- Guillaume R Golovkine
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Evotec, Toulouse, France
| | - Allison W Roberts
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Huntly M Morrison
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Rafael Rivera-Lugo
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Rita M McCall
- Department of Plant & Microbial Biology, University of California, Berkeley, CA, USA
| | - Hannah Nilsson
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Nicholas E Garelis
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Teresa Repasy
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Bio-Rad Laboratories, Seattle, WA, USA
| | - Michael Cronce
- Department of Bioengineering, University of California, Berkeley, CA, USA
- UC Berkeley-UCSF Graduate program in Bioengineering, Berkeley, CA, USA
| | - Jonathan Budzik
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Department of Medicine, University of California, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Erik Van Dis
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
| | - Lauren M Popov
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Novome Biotechnologies, San Francisco, CA, USA
| | - Gabriel Mitchell
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Open Innovation @ NITD, Novartis Institute for Tropical Diseases, Emeryville, CA, USA
| | - Reena Zalpuri
- Electron Microscope Laboratory, University of California, Berkeley, CA, USA
| | - Danielle Jorgens
- Electron Microscope Laboratory, University of California, Berkeley, CA, USA
| | - Jeffery S Cox
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
| |
Collapse
|
21
|
Witt KD. Role of MHC class I pathways in Mycobacterium tuberculosis antigen presentation. Front Cell Infect Microbiol 2023; 13:1107884. [PMID: 37009503 PMCID: PMC10050577 DOI: 10.3389/fcimb.2023.1107884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/23/2023] [Indexed: 03/17/2023] Open
Abstract
MHC class I antigen processing is an underappreciated area of nonviral host–pathogen interactions, bridging both immunology and cell biology, where the pathogen’s natural life cycle involves little presence in the cytoplasm. The effective response to MHC-I foreign antigen presentation is not only cell death but also phenotypic changes in other cells and stimulation of the memory cells ready for the next antigen reoccurrence. This review looks at the MHC-I antigen processing pathway and potential alternative sources of the antigens, focusing on Mycobacterium tuberculosis (Mtb) as an intracellular pathogen that co-evolved with humans and developed an array of decoy strategies to survive in a hostile environment by manipulating host immunity to its own advantage. As that happens via the selective antigen presentation process, reinforcement of the effective antigen recognition on MHC-I molecules may stimulate subsets of effector cells that act earlier and more locally. Vaccines against tuberculosis (TB) could potentially eliminate this disease, yet their development has been slow, and success is limited in the context of this global disease’s spread. This review’s conclusions set out potential directions for MHC-I-focused approaches for the next generation of vaccines.
Collapse
Affiliation(s)
- Karolina D. Witt
- Pandemic Sciences Institute, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- *Correspondence: Karolina D. Witt,
| |
Collapse
|
22
|
Happonen LJ. Affinity-Purification Combined with Crosslinking Mass Spectrometry for Identification and Structural Modeling of Host-Pathogen Protein-Protein Complexes. Methods Mol Biol 2023; 2674:181-200. [PMID: 37258968 DOI: 10.1007/978-1-0716-3243-7_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Host-pathogen protein-protein interactions are highly complex and dynamic and mediate key steps in pathogen adhesion to host, host invasion, and colonization as well as immune evasion. In bacteria, these interactions most often involve specialized virulence factors or effector proteins that specifically target central host proteins. Here, I present a mass spectrometry-based proteomics approach starting with the identification of host-pathogen interactions by affinity-purification followed by mapping the specific host-pathogen protein-protein interaction interfaces by crosslinking mass spectrometry and structural modeling of the complexes.
Collapse
Affiliation(s)
- Lotta J Happonen
- Department of Clinical Sciences Lund, Division of Infection Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
23
|
Ponnusamy N, Arumugam M. Meta-analysis of active tuberculosis gene expression ascertains host directed drug targets. Front Cell Infect Microbiol 2022; 12:1010771. [PMID: 36275035 PMCID: PMC9581169 DOI: 10.3389/fcimb.2022.1010771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/21/2022] [Indexed: 12/01/2022] Open
Abstract
Multi-drug resistant tuberculosis still remains a major public health crisis globally. With the emergence of newer active tuberculosis disease, the requirement of prolonged treatment time and adherence to therapy till its completion necessitates the search of newer therapeutics, targeting human host factors. The current work utilized statistical meta-analysis of human gene transcriptomes of active pulmonary tuberculosis disease obtained from six public datasets. The meta-analysis resulted in the identification of 2038 significantly differentially expressed genes (DEGs) in the active tuberculosis disease. The gene ontology (GO) analysis revealed that these genes were major contributors in immune responses. The pathway enrichment analyses identified from various human canonical pathways are related to other infectious diseases. In addition, the comparison of the DEGs with the tuberculosis genome wide association study (GWAS) datasets revealed the presence of few genetic variants in their proximity. The analysis of protein interaction networks (human and Mycobacterium tuberculosis) and host directed drug-target interaction network led to new candidate drug targets for drug repurposing studies. The current work sheds light on host genes and pathways enriched in active tuberculosis disease and suggest potential drug repurposing targets for host-directed therapies.
Collapse
|
24
|
Fu M, Liu Y, Wang G, Wang P, Zhang J, Chen C, Zhao M, Zhang S, Jiao J, Ouyang X, Yu Y, Wen B, He C, Wang J, Zhou D, Xiong X. A protein–protein interaction map reveals that the Coxiella burnetii effector CirB inhibits host proteasome activity. PLoS Pathog 2022; 18:e1010660. [PMID: 35816513 PMCID: PMC9273094 DOI: 10.1371/journal.ppat.1010660] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/09/2022] [Indexed: 12/19/2022] Open
Abstract
Coxiella burnetii is the etiological agent of the zoonotic disease Q fever, which is featured by its ability to replicate in acid vacuoles resembling the lysosomal network. One key virulence determinant of C. burnetii is the Dot/Icm system that transfers more than 150 effector proteins into host cells. These effectors function to construct the lysosome-like compartment permissive for bacterial replication, but the functions of most of these effectors remain elusive. In this study, we used an affinity tag purification mass spectrometry (AP-MS) approach to generate a C. burnetii-human protein-protein interaction (PPI) map involving 53 C. burnetii effectors and 3480 host proteins. This PPI map revealed that the C. burnetii effector CBU0425 (designated CirB) interacts with most subunits of the 20S core proteasome. We found that ectopically expressed CirB inhibits hydrolytic activity of the proteasome. In addition, overexpression of CirB in C. burnetii caused dramatic inhibition of proteasome activity in host cells, while knocking down CirB expression alleviated such inhibitory effects. Moreover, we showed that a region of CirB that spans residues 91–120 binds to the proteasome subunit PSMB5 (beta 5). Finally, PSMB5 knockdown promotes C. burnetii virulence, highlighting the importance of proteasome activity modulation during the course of C. burnetii infection. As the causative agent of Q fever, C. burnetii colonizes host cells by transferring effector proteins into the host cytoplasm through its Dot/Icm secretion system to construct a replicative vacuole. The function of effectors remains largely unknown. Here, we performed a large-scale AP-MS screen to analyze the interactions among C. burnetii effectors and human proteins. These analyses found that CirB functions as an inhibitor of host proteasome activity, revealing that proteasome activity is important for intracellular survival of C. burnetii. Our data have laid the foundation for future exploring the molecular mechanisms underlying the roles of C. burnetii effectors in its virulence and for the identification of novel potential drug targets for the development of novel therapeutic treatment for C. burnetii infection.
Collapse
Affiliation(s)
- Mengjiao Fu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medicine Sciences, Fengtai, Beijing,China
| | - Yuchen Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing, China
| | - Guannan Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Peng Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medicine Sciences, Fengtai, Beijing,China
| | - Jianing Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medicine Sciences, Fengtai, Beijing,China
| | - Chen Chen
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Mingliang Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medicine Sciences, Fengtai, Beijing,China
| | - Shan Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medicine Sciences, Fengtai, Beijing,China
| | - Jun Jiao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medicine Sciences, Fengtai, Beijing,China
| | - Xuan Ouyang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medicine Sciences, Fengtai, Beijing,China
| | - Yonghui Yu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medicine Sciences, Fengtai, Beijing,China
| | - Bohai Wen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medicine Sciences, Fengtai, Beijing,China
| | - Chengzhi He
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Jian Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medicine Sciences, Fengtai, Beijing,China
- * E-mail: , (DZ); (XX)
| | - Xiaolu Xiong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medicine Sciences, Fengtai, Beijing,China
- * E-mail: , (DZ); (XX)
| |
Collapse
|
25
|
Wang X, Liu Y. Offense and Defense in Granulomatous Inflammation Disease. Front Cell Infect Microbiol 2022; 12:797749. [PMID: 35846773 PMCID: PMC9277142 DOI: 10.3389/fcimb.2022.797749] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Granulomatous inflammation (GI) diseases are a group of chronic inflammation disorders characterized by focal collections of multinucleated giant cells, epithelioid cells and macrophages, with or without necrosis. GI diseases are closely related to microbes, especially virulent intracellular bacterial infections are important factors in the progression of these diseases. They employ a range of strategies to survive the stresses imposed upon them and persist in host cells, becoming the initiator of the fighting. Microbe-host communication is essential to maintain functions of a healthy host, so defense capacity of hosts is another influence factor, which is thought to combine to determine the result of the fighting. With the development of gene research technology, many human genetic loci were identified to be involved in GI diseases susceptibility, providing more insights into and knowledge about GI diseases. The current review aims to provide an update on the most recent progress in the identification and characterization of bacteria in GI diseases in a variety of organ systems and clinical conditions, and examine the invasion and escape mechanisms of pathogens that have been demonstrated in previous studies, we also review the existing data on the predictive factors of the host, mainly on genetic findings. These strategies may improve our understanding of the mechanisms underlying GI diseases, and open new avenues for the study of the associated conditions in the future.
Collapse
Affiliation(s)
- Xinwen Wang
- Shaanxi Clinical Research Center for Oral Diseases, National Clinical Research Center for Oral Diseases, State Key Laboratory of Military Stomatology, Department of Oral Medicine, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| | - Yuan Liu
- Shaanxi International Joint Research Center for Oral Diseases, State Key Laboratory of Military Stomatology, Department of Histology and Pathology, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| |
Collapse
|
26
|
Hill NS, Welch MD. A glycine-rich PE_PGRS protein governs mycobacterial actin-based motility. Nat Commun 2022; 13:3608. [PMID: 35750685 PMCID: PMC9232537 DOI: 10.1038/s41467-022-31333-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 06/14/2022] [Indexed: 11/09/2022] Open
Abstract
Many key insights into actin regulation have been derived through examining how microbial pathogens intercept the actin cytoskeleton during infection. Mycobacterium marinum, a close relative of the human pathogen Mycobacterium tuberculosis, polymerizes host actin at the bacterial surface to drive intracellular movement and cell-to-cell spread during infection. However, the mycobacterial factor that commandeers actin polymerization has remained elusive. Here, we report the identification and characterization of the M. marinum actin-based motility factor designated mycobacterial intracellular rockets A (MirA), which is a member of the glycine-rich PE_PGRS protein family. MirA contains an amphipathic helix to anchor into the mycobacterial outer membrane and, surprisingly, also the surface of host lipid droplet organelles. MirA directly binds to and activates the host protein N-WASP to stimulate actin polymerization through the Arp2/3 complex, directing both bacterial and lipid droplet actin-based motility. MirA is dissimilar to known N-WASP activating ligands and may represent a new class of microbial and host actin regulator. Additionally, the MirA-N-WASP interaction represents a model to understand how the enigmatic PE_PGRS proteins contribute to mycobacterial pathogenesis.
Collapse
Affiliation(s)
- Norbert S Hill
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
| | - Matthew D Welch
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
| |
Collapse
|
27
|
Rahmatbakhsh M, Moutaoufik MT, Gagarinova A, Babu M. HPiP: an R/Bioconductor package for predicting host-pathogen protein-protein interactions from protein sequences using ensemble machine learning approach. BIOINFORMATICS ADVANCES 2022; 2:vbac038. [PMID: 35669347 PMCID: PMC9154073 DOI: 10.1093/bioadv/vbac038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 04/27/2022] [Accepted: 05/17/2022] [Indexed: 01/26/2023]
Abstract
Motivation Despite arduous and time-consuming experimental efforts, protein-protein interactions (PPIs) for many pathogenic microbes with their human host are still unknown, limiting our understanding of the intricate interactions during infection and the identification of therapeutic targets. Since computational tools offer a promising alternative, we developed an R/Bioconductor package, HPiP (Host-Pathogen Interaction Prediction) software with a series of amino acid sequence property descriptors and an ensemble machine learning classifiers to predict the yet unmapped interactions between pathogen and host proteins. Results Using severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1) or the novel SARS-CoV-2 coronavirus-human PPI training sets as a case study, we show that HPiP achieves a good performance with PPI predictions between SARS-CoV-2 and human proteins, which we confirmed experimentally in human monocyte THP-1 cells, and with several quality control metrics. HPiP also exhibited strong performance in accurately predicting the previously reported PPIs when tested against the sequences of pathogenic bacteria, Mycobacterium tuberculosis and human proteins. Collectively, our fully documented HPiP software will hasten the exploration of PPIs for a systems-level understanding of many understudied pathogens and uncover molecular targets for repurposing existing drugs. Availability and implementation HPiP is released as an open-source code under the MIT license that is freely available on GitHub (https://github.com/BabuLab-UofR/HPiP) as well as on Bioconductor (http://bioconductor.org/packages/devel/bioc/html/HPiP.html). Supplementary information Supplementary data are available at Bioinformatics Advances online.
Collapse
Affiliation(s)
| | | | - Alla Gagarinova
- Department of Biochemistry, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Mohan Babu
- Department of Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
- To whom correspondence should be addressed.
| |
Collapse
|
28
|
Zhou H, Beltrán JF, Brito IL. Host-microbiome protein-protein interactions capture disease-relevant pathways. Genome Biol 2022; 23:72. [PMID: 35246229 PMCID: PMC8895870 DOI: 10.1186/s13059-022-02643-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 02/22/2022] [Indexed: 01/02/2023] Open
Abstract
Background Host-microbe interactions are crucial for normal physiological and immune system development and are implicated in a variety of diseases, including inflammatory bowel disease (IBD), colorectal cancer (CRC), obesity, and type 2 diabetes (T2D). Despite large-scale case-control studies aimed at identifying microbial taxa or genes involved in pathogeneses, the mechanisms linking them to disease have thus far remained elusive. Results To identify potential pathways through which human-associated bacteria impact host health, we leverage publicly-available interspecies protein-protein interaction (PPI) data to find clusters of microbiome-derived proteins with high sequence identity to known human-protein interactors. We observe differential targeting of putative human-interacting bacterial genes in nine independent metagenomic studies, finding evidence that the microbiome broadly targets human proteins involved in immune, oncogenic, apoptotic, and endocrine signaling pathways in relation to IBD, CRC, obesity, and T2D diagnoses. Conclusions This host-centric analysis provides a mechanistic hypothesis-generating platform and extensively adds human functional annotation to commensal bacterial proteins. Supplementary Information The online version contains supplementary material available at 10.1186/s13059-022-02643-9.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Microbiology, Cornell University, Ithaca, NY, USA
| | - Juan Felipe Beltrán
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Ilana Lauren Brito
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
29
|
Machine Learning Approaches for Discriminating Bacterial and Viral Targeted Human Proteins. Processes (Basel) 2022. [DOI: 10.3390/pr10020291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Infectious diseases are one of the core biological complications for public health. It is important to recognize the pathogen-specific mechanisms to improve our understanding of infectious diseases. Differentiations between bacterial- and viral-targeted human proteins are important for improving both prognosis and treatment for the patient. Here, we introduce machine learning-based classifiers to discriminate between the two groups of human proteins. We used the sequence, network, and gene ontology features of human proteins. Among different classifiers and features, the deep neural network (DNN) classifier with amino acid composition (AAC), dipeptide composition (DC), and pseudo-amino acid composition (PAAC) (445 features) achieved the best area under the curve (AUC) value (0.939), F1-score (94.9%), and Matthews correlation coefficient (MCC) value (0.81). We found that each of the selected top 100 of the bacteria- and virus-targeted human proteins from a candidate pool of 1618 and 3916 proteins, respectively, were part of distinct enriched biological processes and pathways. Our proposed method will help to differentiate between the bacterial and viral infections based on the targeted human proteins on a global scale. Furthermore, identification of the crucial pathogen targets in the human proteome would help us to better understand the pathogen-specific infection strategies and develop novel therapeutics.
Collapse
|
30
|
Borah K, Xu Y, McFadden J. Dissecting Host-Pathogen Interactions in TB Using Systems-Based Omic Approaches. Front Immunol 2021; 12:762315. [PMID: 34795672 PMCID: PMC8593131 DOI: 10.3389/fimmu.2021.762315] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 10/18/2021] [Indexed: 01/10/2023] Open
Abstract
Tuberculosis (TB) is a devastating infectious disease that kills over a million people every year. There is an increasing burden of multi drug resistance (MDR) and extensively drug resistance (XDR) TB. New and improved therapies are urgently needed to overcome the limitations of current treatment. The causative agent, Mycobacterium tuberculosis (Mtb) is one of the most successful pathogens that can manipulate host cell environment for adaptation, evading immune defences, virulence, and pathogenesis of TB infection. Host-pathogen interaction is important to establish infection and it involves a complex set of processes. Metabolic cross talk between the host and pathogen is a facet of TB infection and has been an important topic of research where there is growing interest in developing therapies and drugs that target these interactions and metabolism of the pathogen in the host. Mtb scavenges multiple nutrient sources from the host and has adapted its metabolism to survive in the intracellular niche. Advancements in systems-based omic technologies have been successful to unravel host-pathogen interactions in TB. In this review we discuss the application and usefulness of omics in TB research that provides promising interventions for developing anti-TB therapies.
Collapse
Affiliation(s)
- Khushboo Borah
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | | | - Johnjoe McFadden
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
31
|
Sullivan JR, Lupien A, Kalthoff E, Hamela C, Taylor L, Munro KA, Schmeing TM, Kremer L, Behr MA. Efficacy of epetraborole against Mycobacterium abscessus is increased with norvaline. PLoS Pathog 2021; 17:e1009965. [PMID: 34637487 PMCID: PMC8535176 DOI: 10.1371/journal.ppat.1009965] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/22/2021] [Accepted: 09/23/2021] [Indexed: 12/16/2022] Open
Abstract
Mycobacterium abscessus is the most common rapidly growing non-tuberculous mycobacteria to cause pulmonary disease in patients with impaired lung function such as cystic fibrosis. M. abscessus displays high intrinsic resistance to common antibiotics and inducible resistance to macrolides like clarithromycin. As such, M. abscessus is clinically resistant to the entire regimen of front-line M. tuberculosis drugs, and treatment with antibiotics that do inhibit M. abscessus in the lab results in cure rates of 50% or less. Here, we identified epetraborole (EPT) from the MMV pandemic response box as an inhibitor against the essential protein leucyl-tRNA synthetase (LeuRS) in M. abscessus. EPT protected zebrafish from lethal M. abscessus infection and did not induce self-resistance nor against clarithromycin. Contrary to most antimycobacterials, the whole-cell activity of EPT was greater against M. abscessus than M. tuberculosis, but crystallographic and equilibrium binding data showed that EPT binds LeuRSMabs and LeuRSMtb with similar residues and dissociation constants. Since EPT-resistant M. abscessus mutants lost LeuRS editing activity, these mutants became susceptible to misaminoacylation with leucine mimics like the non-proteinogenic amino acid norvaline. Proteomic analysis revealed that when M. abscessus LeuRS mutants were fed norvaline, leucine residues in proteins were replaced by norvaline, inducing the unfolded protein response with temporal changes in expression of GroEL chaperonins and Clp proteases. This supports our in vitro data that supplementation of media with norvaline reduced the emergence of EPT mutants in both M. abscessus and M. tuberculosis. Furthermore, the combination of EPT and norvaline had improved in vivo efficacy compared to EPT in a murine model of M. abscessus infection. Our results emphasize the effectiveness of EPT against the clinically relevant cystic fibrosis pathogen M. abscessus, and these findings also suggest norvaline adjunct therapy with EPT could be beneficial for M. abscessus and other mycobacterial infections like tuberculosis. Current antimycobacterial drugs are inadequate to handle the increasing number of non-tuberculous mycobacteria infections that eclipse tuberculosis infections in many developed countries. Of particular importance for cystic fibrosis patients, Mycobacterium abscessus is notoriously difficult to treat where patients spend extended time on antibiotics with cure rates comparable to extreme drug resistant M. tuberculosis. Here, we identified epetraborole (EPT) with in vitro and in vivo activities against M. abscessus. We showed that EPT targets the editing domain of the leucyl-tRNA synthetase (LeuRS) and that escape mutants lost LeuRS editing activity, making these mutants susceptible to misaminoacylation with leucine mimics. Most importantly, combination therapy of EPT and norvaline limited the rate of EPT resistance in both M. abscessus and M. tuberculosis, and this was the first study to demonstrate improved in vivo efficacy of EPT and norvaline compared to EPT in a murine model of M. abscessus pulmonary infection. The demonstration of norvaline adjunct therapy with EPT for M. abscessus infections is promising for cystic fibrosis patients and could translate to other mycobacterial infections, such as tuberculosis.
Collapse
Affiliation(s)
- Jaryd R. Sullivan
- Department of Microbiology & Immunology, McGill University, Montréal, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, Canada
- McGill International TB Centre, Montréal, Canada
| | - Andréanne Lupien
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, Canada
- McGill International TB Centre, Montréal, Canada
| | - Elias Kalthoff
- Department of Biochemistry, McGill University, Montréal, Canada
- Centre de Recherche en Biologie Structural, McGill University, Montréal, Canada
| | - Claire Hamela
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
| | - Lorne Taylor
- Clinical Proteomics Platform, Research Institute of the McGill University Health Centre, Montréal, Canada
| | - Kim A. Munro
- Department of Biochemistry, McGill University, Montréal, Canada
- Centre de Recherche en Biologie Structural, McGill University, Montréal, Canada
| | - T. Martin Schmeing
- Department of Biochemistry, McGill University, Montréal, Canada
- Centre de Recherche en Biologie Structural, McGill University, Montréal, Canada
| | - Laurent Kremer
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
- INSERM, IRIM, Montpellier, France
| | - Marcel A. Behr
- Department of Microbiology & Immunology, McGill University, Montréal, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, Canada
- McGill International TB Centre, Montréal, Canada
- Department of Medicine, McGill University Health Centre, Montréal, Canada
- * E-mail:
| |
Collapse
|
32
|
Blanchard AM, Staley CE, Shaw L, Wattegedera SR, Baumbach CM, Michler JK, Rutland C, Back C, Newbold N, Entrican G, Tötemeyer S. A Trifecta of New Insights into Ovine Footrot for Infection Drivers, Immune Response, and Host-Pathogen Interactions. Infect Immun 2021; 89:e0027021. [PMID: 34227837 PMCID: PMC8445190 DOI: 10.1128/iai.00270-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 06/16/2021] [Indexed: 12/02/2022] Open
Abstract
Footrot is a polymicrobial infectious disease in sheep causing severe lameness, leading to one of the industry's largest welfare problems. The complex etiology of footrot makes in situ or in vitro investigations difficult. Computational methods offer a solution to understanding the bacteria involved and how they may interact with the host, ultimately providing a way to identify targets for future hypothesis-driven investigative work. Here, we present the first combined global analysis of bacterial community transcripts together with the host immune response in healthy and diseased ovine feet during a natural polymicrobial infection state using metatranscriptomics. The intratissue and surface bacterial populations and the most abundant bacterial transcriptomes were analyzed, demonstrating that footrot-affected skin has reduced diversity and increased abundances of not only the causative bacterium Dichelobacter nodosus but also other species such as Mycoplasma fermentans and Porphyromonas asaccharolytica. Host transcriptomics reveals the suppression of biological processes related to skin barrier function, vascular functions, and immunosurveillance in unhealthy interdigital skin, supported by histological findings that type I collagen (associated with scar tissue formation) is significantly increased in footrot-affected interdigital skin compared to outwardly healthy skin. Finally, we provide some interesting indications of host and pathogen interactions associated with virulence genes and the host spliceosome, which could lead to the identification of future therapeutic targets.
Collapse
Affiliation(s)
- Adam M. Blanchard
- School of Veterinary Medicine and Science, University of Nottingham, Loughborough, Leicestershire, United Kingdom
| | - Ceri E. Staley
- School of Veterinary Medicine and Science, University of Nottingham, Loughborough, Leicestershire, United Kingdom
| | - Laurence Shaw
- School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Sean R. Wattegedera
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian, Scotland
| | - Christina-Marie Baumbach
- Institute of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Jule K. Michler
- Institute of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Catrin Rutland
- School of Veterinary Medicine and Science, University of Nottingham, Loughborough, Leicestershire, United Kingdom
| | - Charlotte Back
- School of Veterinary Medicine and Science, University of Nottingham, Loughborough, Leicestershire, United Kingdom
| | - Nerissa Newbold
- School of Veterinary Medicine and Science, University of Nottingham, Loughborough, Leicestershire, United Kingdom
| | - Gary Entrican
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian, Scotland
| | - Sabine Tötemeyer
- School of Veterinary Medicine and Science, University of Nottingham, Loughborough, Leicestershire, United Kingdom
| |
Collapse
|
33
|
Bell SL, Lopez KL, Cox JS, Patrick KL, Watson RO. Galectin-8 Senses Phagosomal Damage and Recruits Selective Autophagy Adapter TAX1BP1 To Control Mycobacterium tuberculosis Infection in Macrophages. mBio 2021; 12:e0187120. [PMID: 34225486 PMCID: PMC8406326 DOI: 10.1128/mbio.01871-20] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 06/03/2021] [Indexed: 12/26/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) causes one of the deadliest infectious diseases worldwide. Upon infection, Mtb is phagocytosed by macrophages and uses its virulence-associated ESX-1 secretion system to modulate the host cell. We showed previously that the ESX-1 secretion system perturbs the Mtb-containing phagosome, and a population (∼30%) of intracellular Mtb is tagged with ubiquitin and targeted to selective autophagy. However, our understanding of how macrophages sense and respond to damaged Mtb-containing phagosomes remains incomplete. Here, we demonstrate that several cytosolic glycan-binding proteins called galectins recognize Mtb-containing phagosomes; in macrophage cell lines and in primary macrophages, galectin-3, -8, and -9 are all recruited to the same Mtb population that colocalizes with selective autophagy markers (ubiquitin, p62, and LC3). To test whether galectins are required for controlling Mtb replication in macrophages, we generated CRISPR/Cas9 knockouts and found that galectin-8-/- and galectin-3/8/9-/- macrophages were similarly defective in targeting Mtb to selective autophagy and controlling replication. This suggests galectin-8 plays a unique role in anti-Mtb autophagy. In investigating galectin-8's role, we identified a novel and specific interaction between galectin-8 and the selective autophagy adapter TAX1BP1 and found that this galectin-8/TAX1BP1 interaction was necessary for macrophages to efficiently target Mtb to selective autophagy. Remarkably, overexpressing galectin-8 increased targeting of Mtb to autophagy and limited Mtb replication. Taken together, these data demonstrate that while several galectins are capable of recognizing damaged Mtb-containing phagosomes, galectin-8 plays a privileged role in recruiting downstream autophagy machinery and may represent a promising target for host-directed tuberculosis therapies. IMPORTANCE Mycobacterium tuberculosis (Mtb) infects one-quarter of the global population and causes one of the deadliest infectious diseases worldwide. Macrophages are the first line of defense against Mtb infection and are typically incredibly efficient at destroying intracellular pathogens, but Mtb has evolved to survive and replicate in this harsh environment. Previous work has found that a portion of intracellular Mtb bacilli damage their phagosomes, leaving them vulnerable to detection by the host and delivery to an antibacterial pathway called selective autophagy. Here, we show that in macrophages, galectin-8 recognizes damaged Mtb-containing phagosomes and targets Mtb to selective autophagy; we found that galectin-8, unlike other highly similar and closely related galectins, is required for targeting and controlling Mtb in macrophages. The specific role for galectin-8 appears to stem from its interaction with TAX1BP1, a selective autophagy adapter protein. Interestingly, overexpressing galectin-8 helps macrophages target and control Mtb, highlighting the importance of galectin-8 in the innate immune response to Mtb.
Collapse
Affiliation(s)
- Samantha L. Bell
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science Center, Bryan, Texas, USA
| | - Kayla L. Lopez
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science Center, Bryan, Texas, USA
| | - Jeffery S. Cox
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
| | - Kristin L. Patrick
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science Center, Bryan, Texas, USA
| | - Robert O. Watson
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science Center, Bryan, Texas, USA
| |
Collapse
|
34
|
Walch P, Selkrig J, Knodler LA, Rettel M, Stein F, Fernandez K, Viéitez C, Potel CM, Scholzen K, Geyer M, Rottner K, Steele-Mortimer O, Savitski MM, Holden DW, Typas A. Global mapping of Salmonella enterica-host protein-protein interactions during infection. Cell Host Microbe 2021; 29:1316-1332.e12. [PMID: 34237247 PMCID: PMC8561747 DOI: 10.1016/j.chom.2021.06.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 02/24/2021] [Accepted: 05/21/2021] [Indexed: 11/16/2022]
Abstract
Intracellular bacterial pathogens inject effector proteins to hijack host cellular processes and promote their survival and proliferation. To systematically map effector-host protein-protein interactions (PPIs) during infection, we generated a library of 32 Salmonella enterica serovar Typhimurium (STm) strains expressing chromosomally encoded affinity-tagged effectors and quantified PPIs in macrophages and epithelial cells. We identified 446 effector-host PPIs, 25 of which were previously described, and validated 13 by reciprocal co-immunoprecipitation. While effectors converged on the same host cellular processes, most had multiple targets, which often differed between cell types. We demonstrate that SseJ, SseL, and SifA modulate cholesterol accumulation at the Salmonella-containing vacuole (SCV) partially via the cholesterol transporter Niemann-Pick C1 protein. PipB recruits the organelle contact site protein PDZD8 to the SCV, and SteC promotes actin bundling by phosphorylating formin-like proteins. This study provides a method for probing host-pathogen PPIs during infection and a resource for interrogating STm effector mechanisms.
Collapse
Affiliation(s)
- Philipp Walch
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany; Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Joel Selkrig
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Leigh A Knodler
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, USA; Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Mandy Rettel
- EMBL, Proteomics Core Facility, Heidelberg, Germany
| | - Frank Stein
- EMBL, Proteomics Core Facility, Heidelberg, Germany
| | - Keith Fernandez
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Cristina Viéitez
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany; EMBL European Bioinformatics Institute, (EMBL-EBI), Hinxton, UK
| | - Clément M Potel
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Karoline Scholzen
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Matthias Geyer
- Institute of Structural Biology, University of Bonn, Bonn, Germany
| | - Klemens Rottner
- Division of Molecular Cell Biology, Zoological Institute, TU Braunschweig, Braunschweig, Germany; Molecular Cell Biology Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Olivia Steele-Mortimer
- Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Mikhail M Savitski
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany; EMBL, Proteomics Core Facility, Heidelberg, Germany
| | - David W Holden
- MRC Centre for Molecular Bacteriology and Infection, Imperial College, London, UK
| | - Athanasios Typas
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany.
| |
Collapse
|
35
|
Wagner AR, Scott HM, West KO, Vail KJ, Fitzsimons TC, Coleman AK, Carter KE, Watson RO, Patrick KL. Global Transcriptomics Uncovers Distinct Contributions From Splicing Regulatory Proteins to the Macrophage Innate Immune Response. Front Immunol 2021; 12:656885. [PMID: 34305890 PMCID: PMC8299563 DOI: 10.3389/fimmu.2021.656885] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 06/01/2021] [Indexed: 12/12/2022] Open
Abstract
Pathogen sensing via pattern recognition receptors triggers massive reprogramming of macrophage gene expression. While the signaling cascades and transcription factors that activate these responses are well-known, the role of post-transcriptional RNA processing in modulating innate immune gene expression remains understudied. Given their crucial role in regulating pre-mRNA splicing and other RNA processing steps, we hypothesized that members of the SR/hnRNP protein families regulate innate immune gene expression in distinct ways. We analyzed steady state gene expression and alternatively spliced isoform production in ten SR/hnRNP knockdown RAW 264.7 macrophage-like cell lines following infection with the bacterial pathogen Salmonella enterica serovar Typhimurium (Salmonella). We identified thousands of transcripts whose abundance is increased or decreased by SR/hnRNP knockdown in macrophages. Notably, we observed that SR and hnRNP proteins influence expression of different genes in uninfected versus Salmonella-infected macrophages, suggesting functionalization of these proteins upon pathogen sensing. Likewise, we found that knockdown of SR/hnRNPs promoted differential isoform usage (DIU) for thousands of macrophage transcripts and that these alternative splicing changes were distinct in uninfected and Salmonella-infected macrophages. Finally, having observed a surprising degree of similarity between the differentially expressed genes (DEGs) and DIUs in hnRNP K and U knockdown macrophages, we found that hnRNP K and U knockdown macrophages are both more restrictive to Vesicular Stomatitis Virus (VSV), while hnRNP K knockdown macrophages are more permissive to Salmonella Typhimurium. Based on these findings, we conclude that many innate immune genes evolved to rely on one or more SR/hnRNPs to ensure the proper magnitude of their induction, supporting a model wherein pre-mRNA splicing is critical for regulating innate immune gene expression and controlling infection outcomes in macrophages ex vivo.
Collapse
Affiliation(s)
- Allison R Wagner
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health, Bryan, TX, United States
| | - Haley M Scott
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health, Bryan, TX, United States
| | - Kelsi O West
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health, Bryan, TX, United States
| | - Krystal J Vail
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health, Bryan, TX, United States.,Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, United States
| | - Timothy C Fitzsimons
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health, Bryan, TX, United States
| | - Aja K Coleman
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health, Bryan, TX, United States
| | - Kaitlyn E Carter
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health, Bryan, TX, United States
| | - Robert O Watson
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health, Bryan, TX, United States
| | - Kristin L Patrick
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health, Bryan, TX, United States
| |
Collapse
|
36
|
Schaffer LV, Ideker T. Mapping the multiscale structure of biological systems. Cell Syst 2021; 12:622-635. [PMID: 34139169 PMCID: PMC8245186 DOI: 10.1016/j.cels.2021.05.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/04/2021] [Accepted: 05/14/2021] [Indexed: 01/14/2023]
Abstract
Biological systems are by nature multiscale, consisting of subsystems that factor into progressively smaller units in a deeply hierarchical structure. At any level of the hierarchy, an ever-increasing diversity of technologies can be applied to characterize the corresponding biological units and their relations, resulting in large networks of physical or functional proximities-e.g., proximities of amino acids within a protein, of proteins within a complex, or of cell types within a tissue. Here, we review general concepts and progress in using network proximity measures as a basis for creation of multiscale hierarchical maps of biological systems. We discuss the functionalization of these maps to create predictive models, including those useful in translation of genotype to phenotype, along with strategies for model visualization and challenges faced by multiscale modeling in the near future. Collectively, these approaches enable a unified hierarchical approach to biological data, with application from the molecular to the macroscopic.
Collapse
Affiliation(s)
- Leah V Schaffer
- Division of Genetics, Department of Medicine, University of California San Diego, San Diego, La Jolla, CA 92093, USA
| | - Trey Ideker
- Division of Genetics, Department of Medicine, University of California San Diego, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
37
|
Sun YF, Pi J, Xu JF. Emerging Role of Exosomes in Tuberculosis: From Immunity Regulations to Vaccine and Immunotherapy. Front Immunol 2021; 12:628973. [PMID: 33868247 PMCID: PMC8047325 DOI: 10.3389/fimmu.2021.628973] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/05/2021] [Indexed: 01/08/2023] Open
Abstract
Exosomes are cell-derived nanovesicles carrying protein, lipid, and nucleic acid for secreting cells, and act as significant signal transport vectors for cell-cell communication and immune modulation. Immune-cell-derived exosomes have been found to contain molecules involved in immunological pathways, such as MHCII, cytokines, and pathogenic antigens. Tuberculosis (TB), caused by Mycobacterium tuberculosis (MTB), remains one of the most fatal infectious diseases. The pathogen for tuberculosis escapes the immune defense and continues to replicate despite rigorous and complicate host cell mechanisms. The infected-cell-derived exosomes under this circumstance are found to trigger different immune responses, such as inflammation, antigen presentation, and activate subsequent pathways, highlighting the critical role of exosomes in anti-MTB immune response. Additionally, as a novel kind of delivery system, exosomes show potential in developing new vaccination and treatment of tuberculosis. We here summarize recent research progress regarding exosomes in the immune environment during MTB infection, and further discuss the potential of exosomes as delivery system for novel anti-MTB vaccines and therapies.
Collapse
Affiliation(s)
- Yin-Fu Sun
- Department of Clinical Immunology, Institute of Clinical Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| | - Jiang Pi
- Department of Clinical Immunology, Institute of Clinical Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| | - Jun-Fa Xu
- Department of Clinical Immunology, Institute of Clinical Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| |
Collapse
|
38
|
Udhaya Kumar S, Saleem A, Thirumal Kumar D, Anu Preethi V, Younes S, Zayed H, Tayubi IA, George Priya Doss C. A systemic approach to explore the mechanisms of drug resistance and altered signaling cascades in extensively drug-resistant tuberculosis. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 127:343-364. [PMID: 34340773 DOI: 10.1016/bs.apcsb.2021.02.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIM The persistence of extensively drug-resistant (XDR) strains of Mycobacterium tuberculosis (MTB) continue to pose a significant challenge to the treatment and control of tuberculosis infections worldwide. XDR-MTB strains exhibit resistance against first-line anti-TB drugs, fluoroquinolones, and second-line injectable drugs. The mechanisms of drug resistance of MTB remains poorly understood. Our study aims at identifying the differentially expressed genes (DEGs), associated gene networks, and signaling cascades involved in rendering this pathogen resistant to multiple drugs, namely, isoniazid, rifampicin, and capreomycin. METHODS We used the microarray dataset GSE53843. The GEO2R tool was used to prioritize the most significant DEGs (top 250) of each drug exposure sample between XDR strains and non-resistant strains. The validation of the 250 DEGs was performed using volcano plots. Protein-protein interaction networks of the DEGs were created using STRING and Cytoscape tools, which helped decipher the relationship between these genes. The significant DEGs were functionally annotated using DAVID and ClueGO. The concomitant biological processes (BP) and molecular functions (MF) were represented as dot plots. RESULTS AND CONCLUSION We identified relevant molecular pathways and biological processes, such as cell wall biogenesis, lipid metabolic process, ion transport, phosphopantetheine binding, and triglyceride lipase activity. These processes indicated the involvement of multiple interconnected mechanisms in drug resistance. Our study highlighted the impact of cell wall permeability, with the dysregulation of the mur family of proteins, as essential factors in the inference of resistance. Additionally, upregulation of genes responsible for ion transport such as ctpF, arsC, and nark3, emphasizes the importance of transport channels and efflux pumps in potentially driving out stress-inducing compounds. This study investigated the upregulation of the Lip family of proteins, which play a crucial role in triglyceride lipase activity. Thereby illuminating the potential role of drug-induced dormancy and subsequent resistance in the mycobacterial strains. Multiple mechanisms such as carboxylic acid metabolic process, NAD biosynthetic process, triglyceride lipase activity, phosphopantetheine binding, organic acid biosynthetic process, and growth of symbiont in host cell were observed to partake in resistance of XDR-MTB. This study ultimately provides a platform for important mapping targets for potential therapeutics against XDR-MTB.
Collapse
Affiliation(s)
- S Udhaya Kumar
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Aisha Saleem
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - D Thirumal Kumar
- Department of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - V Anu Preethi
- School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Salma Younes
- Translational Research Institute, Women's Wellness and Research Center, Hamad Medical Corporation, Doha, Qatar
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health and Sciences, QU Health, Qatar University, Doha, Qatar
| | - Iftikhar Aslam Tayubi
- Faculty of Computing and Information Technology, King Abdul-Aziz University, Rabigh, Saudi Arabia
| | - C George Priya Doss
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| |
Collapse
|
39
|
Patrick KL, Watson RO. Mitochondria: Powering the Innate Immune Response to Mycobacterium tuberculosis Infection. Infect Immun 2021; 89:e00687-20. [PMID: 33558322 PMCID: PMC8090963 DOI: 10.1128/iai.00687-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Within the last decade, we have learned that damaged mitochondria activate many of the same innate immune pathways that evolved to sense and respond to intracellular pathogens. These shared responses include cytosolic nucleic acid sensing and type I interferon (IFN) expression, inflammasome activation that leads to pyroptosis, and selective autophagy (called mitophagy when mitochondria are the cargo). Because mitochondria were once bacteria, parallels between how cells respond to mitochondrial and bacterial ligands are not altogether surprising. However, the potential for cross talk or synergy between bacterium- and mitochondrion-driven innate immune responses during infection remains poorly understood. This interplay is particularly striking, and intriguing, in the context of infection with the intracellular bacterial pathogen Mycobacterium tuberculosis (Mtb). Multiple studies point to a role for Mtb infection and/or specific Mtb virulence factors in disrupting the mitochondrial network in macrophages, leading to metabolic changes and triggering potent innate immune responses. Research from our laboratories and others argues that mutations in mitochondrial genes can exacerbate mycobacterial disease severity by hyperactivating innate responses or activating them at the wrong time. Indeed, growing evidence supports a model whereby different mitochondrial defects or mutations alter Mtb infection outcomes in distinct ways. By synthesizing the current literature in this minireview, we hope to gain insight into the molecular mechanisms driving, and consequences of, mitochondrion-dependent immune polarization so that we might better predict tuberculosis patient outcomes and develop host-directed therapeutics designed to correct these imbalances.
Collapse
Affiliation(s)
- Kristin L Patrick
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, College of Medicine, Bryan, Texas, USA
| | - Robert O Watson
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health, College of Medicine, Bryan, Texas, USA
| |
Collapse
|
40
|
Lei Y, Cao X, Xu W, Yang B, Xu Y, Zhou W, Dong S, Wu Q, Rahman K, Tyagi R, Zhao S, Chen X, Cao G. Rv3722c Promotes Mycobacterium tuberculosis Survival in Macrophages by Interacting With TRAF3. Front Cell Infect Microbiol 2021; 11:627798. [PMID: 33718275 PMCID: PMC7947218 DOI: 10.3389/fcimb.2021.627798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/19/2021] [Indexed: 01/08/2023] Open
Abstract
Mycobacterium tuberculosis (M.tb) secretes numerous proteins to interfere with host immune response for its long-term survival. As one of the top abundant M.tb secreted proteins, Rv3722c was found to be essential for bacilli growth. However, it remains elusive how this protein interferes with the host immune response and regulates M.tb survival. Here, we confirmed that Rv3722c interacted with host TRAF3 to promote M.tb replication in macrophages. Knock-down of TRAF3 attenuated the effect of Rv3722c on the intracellular M.tb survival. The interaction between Rv3722c and TRAF3 hampered MAPK and NF-κB pathways, resulting in a significant increase of IFN-β expression and decrease of IL-1β, IL-6, IL-12p40, and TNF-α expression. Our study revealed that Rv3722c interacted with TRAF3 and interrupted its downstream pathways to promote M.tb survival in macrophages. These findings facilitate further understanding of the mechanism of M.tb secreted proteins in regulating the host cell immune response and promoting its intracellular survival.
Collapse
Affiliation(s)
- Yingying Lei
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiaojian Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Weize Xu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Bing Yang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yangyang Xu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Wei Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Shuang Dong
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Qijun Wu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Khaista Rahman
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Rohit Tyagi
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Shuhong Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding, Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China.,College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xi Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Gang Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Bio-Medical Center, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
41
|
Chen Z, Chen J. Mass spectrometry-based protein‒protein interaction techniques and their applications in studies of DNA damage repair. J Zhejiang Univ Sci B 2021; 22:1-20. [PMID: 33448183 PMCID: PMC7818012 DOI: 10.1631/jzus.b2000356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023]
Abstract
Proteins are major functional units that are tightly connected to form complex and dynamic networks. These networks enable cells and organisms to operate properly and respond efficiently to environmental cues. Over the past decades, many biochemical methods have been developed to search for protein-binding partners in order to understand how protein networks are constructed and connected. At the same time, rapid development in proteomics and mass spectrometry (MS) techniques makes it possible to identify interacting proteins and build comprehensive protein‒protein interaction networks. The resulting interactomes and networks have proven informative in the investigation of biological functions, such as in the field of DNA damage repair. In recent years, a number of proteins involved in DNA damage response and DNA repair pathways have been uncovered with MS-based protein‒protein interaction studies. As the technologies for enriching associated proteins and MS become more sophisticated, the studies of protein‒protein interactions are entering a new era. In this review, we summarize the strategies and recent developments for exploring protein‒protein interaction. In addition, we discuss the application of these tools in the investigation of protein‒protein interaction networks involved in DNA damage response and DNA repair.
Collapse
Affiliation(s)
- Zhen Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Junjie Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
42
|
Richards AL, Eckhardt M, Krogan NJ. Mass spectrometry-based protein-protein interaction networks for the study of human diseases. Mol Syst Biol 2021; 17:e8792. [PMID: 33434350 PMCID: PMC7803364 DOI: 10.15252/msb.20188792] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/23/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
A better understanding of the molecular mechanisms underlying disease is key for expediting the development of novel therapeutic interventions. Disease mechanisms are often mediated by interactions between proteins. Insights into the physical rewiring of protein-protein interactions in response to mutations, pathological conditions, or pathogen infection can advance our understanding of disease etiology, progression, and pathogenesis and can lead to the identification of potential druggable targets. Advances in quantitative mass spectrometry (MS)-based approaches have allowed unbiased mapping of these disease-mediated changes in protein-protein interactions on a global scale. Here, we review MS techniques that have been instrumental for the identification of protein-protein interactions at a system-level, and we discuss the challenges associated with these methodologies as well as novel MS advancements that aim to address these challenges. An overview of examples from diverse disease contexts illustrates the potential of MS-based protein-protein interaction mapping approaches for revealing disease mechanisms, pinpointing new therapeutic targets, and eventually moving toward personalized applications.
Collapse
Affiliation(s)
- Alicia L Richards
- Quantitative Biosciences Institute (QBI)University of California San FranciscoSan FranciscoCAUSA
- J. David Gladstone InstitutesSan FranciscoCAUSA
- Department of Cellular and Molecular PharmacologyUniversity of California San FranciscoSan FranciscoCAUSA
| | - Manon Eckhardt
- Quantitative Biosciences Institute (QBI)University of California San FranciscoSan FranciscoCAUSA
- J. David Gladstone InstitutesSan FranciscoCAUSA
- Department of Cellular and Molecular PharmacologyUniversity of California San FranciscoSan FranciscoCAUSA
| | - Nevan J Krogan
- Quantitative Biosciences Institute (QBI)University of California San FranciscoSan FranciscoCAUSA
- J. David Gladstone InstitutesSan FranciscoCAUSA
- Department of Cellular and Molecular PharmacologyUniversity of California San FranciscoSan FranciscoCAUSA
| |
Collapse
|
43
|
Ahluwalia P, Ahluwalia M, Vaibhav K, Mondal A, Sahajpal N, Islam S, Fulzele S, Kota V, Dhandapani K, Baban B, Rojiani AM, Kolhe R. Infections of the lung: a predictive, preventive and personalized perspective through the lens of evolution, the emergence of SARS-CoV-2 and its pathogenesis. EPMA J 2020; 11:581-601. [PMID: 33204369 PMCID: PMC7661834 DOI: 10.1007/s13167-020-00230-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 11/02/2020] [Indexed: 12/13/2022]
Abstract
The long evolutionary battle between humans and pathogens has played an important role in shaping the current network of host-pathogen interactions. Each organ brings new challenges from the perspective of a pathogen to establish a suitable niche for survival while subverting the protective mechanisms of the host. Lungs, the organ for oxygen exchange, have been an easy target for pathogens due to its accessibility. The organ has evolved diverse capabilities to provide the flexibility required for an organism's health and at the same time maintain protective functionality to prevent and resolve assault by pathogens. The pathogenic invasions are strongly challenged by healthy lung architecture which includes the presence and activity of the epithelium, mucous, antimicrobial proteins, surfactants, and immune cells. Competitively, the pathogens in the form of viruses, bacteria, and fungi have evolved an arsenal of strategies that can over-ride the host's protective mechanisms. While bacteria such as Mycobacterium tuberculosis (M. tuberculosis) can survive in dormant form for years before getting active in humans, novel pathogens can wreak havoc as they pose a high risk of morbidity and mortality in a very short duration of time. Recently, a coronavirus strain SARS-CoV-2 has caused a pandemic which provides us an opportunity to look at the host manipulative strategies used by respiratory pathogens. Their ability to hide, modify, evade, and exploit cell's processes are key to their survival. While pathogens like M. tuberculosis have been infecting humans for thousands of years, SARS-CoV-2 has been the cause of the recent pandemic. Molecular understanding of the strategies used by these pathogens could greatly serve in design of predictive, preventive, personalized medicine (PPPM). In this article, we have emphasized on the clinically relevant evasive strategies of the pathogens in the lungs with emphasis on M. tuberculosis and SARS-CoV-2. The molecular basis of these evasive strategies illuminated through advances in genomics, cell, and structural biology can assist in the mapping of vulnerable molecular networks which can be exploited translationally. These evolutionary approaches can further assist in generating screening and therapeutic options for susceptible populations and could be a promising approach for the prediction, prevention of disease, and the development of personalized medicines. Further, tailoring the clinical data of COVID-19 patients with their physiological responses in light of known host-respiratory pathogen interactions can provide opportunities to improve patient profiling and stratification according to identified therapeutic targets.
Collapse
Affiliation(s)
- Pankaj Ahluwalia
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA USA
| | - Meenakshi Ahluwalia
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA USA
| | - Kumar Vaibhav
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA USA
- Department of Oral Biology, Medical College of Georgia, Augusta University, Augusta, GA USA
| | - Ashis Mondal
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA USA
| | - Nikhil Sahajpal
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA USA
| | - Shaheen Islam
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA USA
| | - Sadanand Fulzele
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA USA
| | - Vamsi Kota
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA USA
| | - Krishnan Dhandapani
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA USA
| | - Babak Baban
- Department of Oral Biology, Medical College of Georgia, Augusta University, Augusta, GA USA
| | - Amyn M. Rojiani
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA USA
| | - Ravindra Kolhe
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA USA
| |
Collapse
|
44
|
Hermann C, Karamchand L, Blackburn JM, Soares NC. Cell Envelope Proteomics of Mycobacteria. J Proteome Res 2020; 20:94-109. [PMID: 33140963 DOI: 10.1021/acs.jproteome.0c00650] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The World Health Organization (WHO) estimates that Mycobacterium tuberculosis, the most pathogenic mycobacterium species to humans, has infected up to a quarter of the world's population, with the occurrence of multidrug-resistant strains on the rise. Research into the detailed composition of the cell envelope proteome in mycobacteria over the last 20 years has formed a key part of the efforts to understand host-pathogen interactions and to control the current tuberculosis epidemic. This is due to the great importance of the cell envelope proteome during infection and during the development of antibiotic resistance as well as the search of surface-exposed proteins that could be targeted by therapeutics and vaccines. A variety of experimental approaches and mycobacterial species have been used in proteomic studies thus far. Here we provide for the first time an extensive summary of the different approaches to isolate the mycobacterial cell envelope, highlight some of the limitations of the studies performed thus far, and comment on how the recent advances in membrane proteomics in other fields might be translated into the field of mycobacteria to provide deeper coverage.
Collapse
Affiliation(s)
- Clemens Hermann
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease & Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Leshern Karamchand
- National Research Council Canada, Nanotechnology Research Centre, Biomedical Nanotechnologies, 11421 Saskatchewan Drive NW, Edmonton, Alberta T6G 2M9, Canada
| | - Jonathan M Blackburn
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease & Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Nelson C Soares
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates.,College of Pharmacy, Department of Medicinal Chemistry, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
45
|
Augenstreich J, Briken V. Host Cell Targets of Released Lipid and Secreted Protein Effectors of Mycobacterium tuberculosis. Front Cell Infect Microbiol 2020; 10:595029. [PMID: 33194845 PMCID: PMC7644814 DOI: 10.3389/fcimb.2020.595029] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) is a very successful pathogen, strictly adapted to humans and the cause of tuberculosis. Its success is associated with its ability to inhibit host cell intrinsic immune responses by using an arsenal of virulence factors of different nature. It has evolved to synthesize a series of complex lipids which form an outer membrane and may also be released to enter host cell membranes. In addition, secreted protein effectors of Mtb are entering the host cell cytosol to interact with host cell proteins. We briefly discuss the current model, involving the ESX-1 type seven secretion system and the Mtb lipid phthiocerol dimycoserosate (PDIM), of how Mtb creates pores in the phagosomal membrane to allow Mtb proteins to access to the host cell cytosol. We provide an exhaustive list of Mtb secreted proteins that have effector functions. They modify (mostly inhibit but sometimes activate) host cell pathways such as: phagosome maturation, cell death, cytokine response, xenophagy, reactive oxygen species (ROS) response via NADPH oxidase 2 (NOX2), nitric oxide (NO) response via NO Synthase 2 (NOS2) and antigen presentation via MHC class I and class II molecules. We discuss the host cell targets for each lipid and protein effector and the importance of the Mtb effector for virulence of the bacterium.
Collapse
Affiliation(s)
| | - Volker Briken
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States
| |
Collapse
|
46
|
Chai Q, Wang L, Liu CH, Ge B. New insights into the evasion of host innate immunity by Mycobacterium tuberculosis. Cell Mol Immunol 2020; 17:901-913. [PMID: 32728204 PMCID: PMC7608469 DOI: 10.1038/s41423-020-0502-z] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 06/22/2020] [Indexed: 12/26/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) is an extremely successful intracellular pathogen that causes tuberculosis (TB), which remains the leading infectious cause of human death. The early interactions between Mtb and the host innate immune system largely determine the establishment of TB infection and disease development. Upon infection, host cells detect Mtb through a set of innate immune receptors and launch a range of cellular innate immune events. However, these innate defense mechanisms are extensively modulated by Mtb to avoid host immune clearance. In this review, we describe the emerging role of cytosolic nucleic acid-sensing pathways at the host-Mtb interface and summarize recently revealed mechanisms by which Mtb circumvents host cellular innate immune strategies such as membrane trafficking and integrity, cell death and autophagy. In addition, we discuss the newly elucidated strategies by which Mtb manipulates the host molecular regulatory machinery of innate immunity, including the intranuclear regulatory machinery, the ubiquitin system, and cellular intrinsic immune components. A better understanding of innate immune evasion mechanisms adopted by Mtb will provide new insights into TB pathogenesis and contribute to the development of more effective TB vaccines and therapies.
Collapse
Affiliation(s)
- Qiyao Chai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, 100101, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, 101408, Beijing, China
| | - Lin Wang
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 200433, Shanghai, China
| | - Cui Hua Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, 100101, Beijing, China. .,Savaid Medical School, University of Chinese Academy of Sciences, 101408, Beijing, China.
| | - Baoxue Ge
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 200433, Shanghai, China.
| |
Collapse
|
47
|
Gordon DE, Jang GM, Bouhaddou M, Xu J, Obernier K, White KM, O'Meara MJ, Rezelj VV, Guo JZ, Swaney DL, Tummino TA, Hüttenhain R, Kaake RM, Richards AL, Tutuncuoglu B, Foussard H, Batra J, Haas K, Modak M, Kim M, Haas P, Polacco BJ, Braberg H, Fabius JM, Eckhardt M, Soucheray M, Bennett MJ, Cakir M, McGregor MJ, Li Q, Meyer B, Roesch F, Vallet T, Mac Kain A, Miorin L, Moreno E, Naing ZZC, Zhou Y, Peng S, Shi Y, Zhang Z, Shen W, Kirby IT, Melnyk JE, Chorba JS, Lou K, Dai SA, Barrio-Hernandez I, Memon D, Hernandez-Armenta C, Lyu J, Mathy CJP, Perica T, Pilla KB, Ganesan SJ, Saltzberg DJ, Rakesh R, Liu X, Rosenthal SB, Calviello L, Venkataramanan S, Liboy-Lugo J, Lin Y, Huang XP, Liu Y, Wankowicz SA, Bohn M, Safari M, Ugur FS, Koh C, Savar NS, Tran QD, Shengjuler D, Fletcher SJ, O'Neal MC, Cai Y, Chang JCJ, Broadhurst DJ, Klippsten S, Sharp PP, Wenzell NA, Kuzuoglu-Ozturk D, Wang HY, Trenker R, Young JM, Cavero DA, Hiatt J, Roth TL, Rathore U, Subramanian A, Noack J, Hubert M, Stroud RM, Frankel AD, Rosenberg OS, Verba KA, Agard DA, Ott M, Emerman M, Jura N, et alGordon DE, Jang GM, Bouhaddou M, Xu J, Obernier K, White KM, O'Meara MJ, Rezelj VV, Guo JZ, Swaney DL, Tummino TA, Hüttenhain R, Kaake RM, Richards AL, Tutuncuoglu B, Foussard H, Batra J, Haas K, Modak M, Kim M, Haas P, Polacco BJ, Braberg H, Fabius JM, Eckhardt M, Soucheray M, Bennett MJ, Cakir M, McGregor MJ, Li Q, Meyer B, Roesch F, Vallet T, Mac Kain A, Miorin L, Moreno E, Naing ZZC, Zhou Y, Peng S, Shi Y, Zhang Z, Shen W, Kirby IT, Melnyk JE, Chorba JS, Lou K, Dai SA, Barrio-Hernandez I, Memon D, Hernandez-Armenta C, Lyu J, Mathy CJP, Perica T, Pilla KB, Ganesan SJ, Saltzberg DJ, Rakesh R, Liu X, Rosenthal SB, Calviello L, Venkataramanan S, Liboy-Lugo J, Lin Y, Huang XP, Liu Y, Wankowicz SA, Bohn M, Safari M, Ugur FS, Koh C, Savar NS, Tran QD, Shengjuler D, Fletcher SJ, O'Neal MC, Cai Y, Chang JCJ, Broadhurst DJ, Klippsten S, Sharp PP, Wenzell NA, Kuzuoglu-Ozturk D, Wang HY, Trenker R, Young JM, Cavero DA, Hiatt J, Roth TL, Rathore U, Subramanian A, Noack J, Hubert M, Stroud RM, Frankel AD, Rosenberg OS, Verba KA, Agard DA, Ott M, Emerman M, Jura N, von Zastrow M, Verdin E, Ashworth A, Schwartz O, d'Enfert C, Mukherjee S, Jacobson M, Malik HS, Fujimori DG, Ideker T, Craik CS, Floor SN, Fraser JS, Gross JD, Sali A, Roth BL, Ruggero D, Taunton J, Kortemme T, Beltrao P, Vignuzzi M, García-Sastre A, Shokat KM, Shoichet BK, Krogan NJ. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature 2020; 583:459-468. [PMID: 32353859 PMCID: PMC7431030 DOI: 10.1038/s41586-020-2286-9] [Show More Authors] [Citation(s) in RCA: 3143] [Impact Index Per Article: 628.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 04/22/2020] [Indexed: 02/07/2023]
Abstract
A newly described coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is the causative agent of coronavirus disease 2019 (COVID-19), has infected over 2.3 million people, led to the death of more than 160,000 individuals and caused worldwide social and economic disruption1,2. There are no antiviral drugs with proven clinical efficacy for the treatment of COVID-19, nor are there any vaccines that prevent infection with SARS-CoV-2, and efforts to develop drugs and vaccines are hampered by the limited knowledge of the molecular details of how SARS-CoV-2 infects cells. Here we cloned, tagged and expressed 26 of the 29 SARS-CoV-2 proteins in human cells and identified the human proteins that physically associated with each of the SARS-CoV-2 proteins using affinity-purification mass spectrometry, identifying 332 high-confidence protein-protein interactions between SARS-CoV-2 and human proteins. Among these, we identify 66 druggable human proteins or host factors targeted by 69 compounds (of which, 29 drugs are approved by the US Food and Drug Administration, 12 are in clinical trials and 28 are preclinical compounds). We screened a subset of these in multiple viral assays and found two sets of pharmacological agents that displayed antiviral activity: inhibitors of mRNA translation and predicted regulators of the sigma-1 and sigma-2 receptors. Further studies of these host-factor-targeting agents, including their combination with drugs that directly target viral enzymes, could lead to a therapeutic regimen to treat COVID-19.
Collapse
Affiliation(s)
- David E Gordon
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Gwendolyn M Jang
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Mehdi Bouhaddou
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Jiewei Xu
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Kirsten Obernier
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Kris M White
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew J O'Meara
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Veronica V Rezelj
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, Paris, France
| | - Jeffrey Z Guo
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Danielle L Swaney
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Tia A Tummino
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Ruth Hüttenhain
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Robyn M Kaake
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Alicia L Richards
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Beril Tutuncuoglu
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Helene Foussard
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Jyoti Batra
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Kelsey Haas
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Maya Modak
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Minkyu Kim
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Paige Haas
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Benjamin J Polacco
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Hannes Braberg
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Jacqueline M Fabius
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Manon Eckhardt
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Margaret Soucheray
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Melanie J Bennett
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Merve Cakir
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Michael J McGregor
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Qiongyu Li
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Bjoern Meyer
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, Paris, France
| | - Ferdinand Roesch
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, Paris, France
| | - Thomas Vallet
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, Paris, France
| | - Alice Mac Kain
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, Paris, France
| | - Lisa Miorin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elena Moreno
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zun Zar Chi Naing
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Yuan Zhou
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Shiming Peng
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Ying Shi
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA, USA
| | - Ziyang Zhang
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA, USA
| | - Wenqi Shen
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA, USA
| | - Ilsa T Kirby
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA, USA
| | - James E Melnyk
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA, USA
| | - John S Chorba
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA, USA
| | - Kevin Lou
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA, USA
| | - Shizhong A Dai
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA, USA
| | - Inigo Barrio-Hernandez
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, UK
| | - Danish Memon
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, UK
| | - Claudia Hernandez-Armenta
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, UK
| | - Jiankun Lyu
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Christopher J P Mathy
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- The UC Berkeley-UCSF Graduate Program in Bioengineering, University of California San Francisco, San Francisco, CA, USA
| | - Tina Perica
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Kala Bharath Pilla
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Sai J Ganesan
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Daniel J Saltzberg
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Ramachandran Rakesh
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Xi Liu
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Sara B Rosenthal
- Center for Computational Biology and Bioinformatics, Department of Medicine, University of California San Diego, San Diego, CA, USA
| | - Lorenzo Calviello
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, USA
| | - Srivats Venkataramanan
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, USA
| | - Jose Liboy-Lugo
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, USA
| | - Yizhu Lin
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, USA
| | - Xi-Ping Huang
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - YongFeng Liu
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Stephanie A Wankowicz
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Biophysics Graduate Program, University of California San Francisco, San Francisco, CA, USA
| | - Markus Bohn
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Maliheh Safari
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Fatima S Ugur
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Cassandra Koh
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, Paris, France
| | - Nastaran Sadat Savar
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, Paris, France
| | - Quang Dinh Tran
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, Paris, France
| | - Djoshkun Shengjuler
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, Paris, France
| | - Sabrina J Fletcher
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, Paris, France
| | | | | | | | | | | | - Phillip P Sharp
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Nicole A Wenzell
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Duygu Kuzuoglu-Ozturk
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Department of Urology, University of California San Francisco, San Francisco, CA, USA
| | - Hao-Yuan Wang
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Raphael Trenker
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Janet M Young
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Devin A Cavero
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
- George William Hooper Foundation, Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Joseph Hiatt
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
- Medical Scientist Training Program, University of California San Francisco, San Francisco, CA, USA
| | - Theodore L Roth
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
- George William Hooper Foundation, Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
- Medical Scientist Training Program, University of California San Francisco, San Francisco, CA, USA
| | - Ujjwal Rathore
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
- George William Hooper Foundation, Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Advait Subramanian
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- George William Hooper Foundation, Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Julia Noack
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- George William Hooper Foundation, Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Mathieu Hubert
- Virus and Immunity Unit, Institut Pasteur, Paris, France
| | - Robert M Stroud
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Alan D Frankel
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Oren S Rosenberg
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Kliment A Verba
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - David A Agard
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Melanie Ott
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Michael Emerman
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Natalia Jura
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Mark von Zastrow
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
- Department of Psychiatry, University of California San Francisco, San Francisco, CA, USA
| | - Eric Verdin
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Alan Ashworth
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | | | | | - Shaeri Mukherjee
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- George William Hooper Foundation, Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Matt Jacobson
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Harmit S Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Danica G Fujimori
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Trey Ideker
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Division of Genetics, Department of Medicine, University of California San Diego, San Diego, CA, USA
| | - Charles S Craik
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Stephen N Floor
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - James S Fraser
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - John D Gross
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Andrej Sali
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Bryan L Roth
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Davide Ruggero
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Department of Urology, University of California San Francisco, San Francisco, CA, USA
| | - Jack Taunton
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Tanja Kortemme
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- The UC Berkeley-UCSF Graduate Program in Bioengineering, University of California San Francisco, San Francisco, CA, USA
| | - Pedro Beltrao
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, UK
| | - Marco Vignuzzi
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, Paris, France.
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Kevan M Shokat
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA.
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA.
- Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA, USA.
| | - Brian K Shoichet
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA.
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA.
| | - Nevan J Krogan
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA.
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.
- J. David Gladstone Institutes, San Francisco, CA, USA.
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA.
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
48
|
Fighting Persistence: How Chronic Infections with Mycobacterium tuberculosis Evade T Cell-Mediated Clearance and New Strategies To Defeat Them. Infect Immun 2020; 88:IAI.00916-19. [PMID: 32094248 DOI: 10.1128/iai.00916-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Chronic bacterial infections are caused by pathogens that persist within their hosts and avoid clearance by the immune system. Treatment and/or detection of such pathogens is difficult, and the resulting pathologies are often deleterious or fatal. There is an urgent need to develop protective vaccines and host-directed therapies that synergize with antibiotics to prevent pathogen persistence and infection-associated pathologies. However, many persistent pathogens, such as Mycobacterium tuberculosis, actively target the very host pathways activated by vaccination. These immune evasion tactics blunt the effectiveness of immunization strategies and are impeding progress to control these infections throughout the world. Therefore, it is essential that M. tuberculosis immune evasion-related pathogen virulence strategies are considered to maximize the effectiveness of potential new treatments. In this review, we focus on how Mycobacterium tuberculosis infects antigen-presenting cells and evades effective immune clearance by the adaptive response through (i) manipulating antigen presentation, (ii) repressing T cell-activating costimulatory molecules, and (iii) inducing ligands that drive T cell exhaustion. In this context, we will examine the challenges that bacterial virulence strategies pose to developing new vaccines. We will then discuss new approaches that will help dissect M. tuberculosis immune evasion mechanisms and devise strategies to bypass them to promote long-term protection and prevent disease progression.
Collapse
|
49
|
Eckhardt M, Hultquist JF, Kaake RM, Hüttenhain R, Krogan NJ. A systems approach to infectious disease. Nat Rev Genet 2020; 21:339-354. [PMID: 32060427 PMCID: PMC7839161 DOI: 10.1038/s41576-020-0212-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2020] [Indexed: 01/01/2023]
Abstract
Ongoing social, political and ecological changes in the 21st century have placed more people at risk of life-threatening acute and chronic infections than ever before. The development of new diagnostic, prophylactic, therapeutic and curative strategies is critical to address this burden but is predicated on a detailed understanding of the immensely complex relationship between pathogens and their hosts. Traditional, reductionist approaches to investigate this dynamic often lack the scale and/or scope to faithfully model the dual and co-dependent nature of this relationship, limiting the success of translational efforts. With recent advances in large-scale, quantitative omics methods as well as in integrative analytical strategies, systems biology approaches for the study of infectious disease are quickly forming a new paradigm for how we understand and model host-pathogen relationships for translational applications. Here, we delineate a framework for a systems biology approach to infectious disease in three parts: discovery - the design, collection and analysis of omics data; representation - the iterative modelling, integration and visualization of complex data sets; and application - the interpretation and hypothesis-based inquiry towards translational outcomes.
Collapse
Affiliation(s)
- Manon Eckhardt
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
| | - Judd F Hultquist
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA.
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA, USA.
- J. David Gladstone Institutes, San Francisco, CA, USA.
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Robyn M Kaake
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
| | - Ruth Hüttenhain
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA.
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA, USA.
- J. David Gladstone Institutes, San Francisco, CA, USA.
| |
Collapse
|
50
|
Denzer L, Schroten H, Schwerk C. From Gene to Protein-How Bacterial Virulence Factors Manipulate Host Gene Expression During Infection. Int J Mol Sci 2020; 21:ijms21103730. [PMID: 32466312 PMCID: PMC7279228 DOI: 10.3390/ijms21103730] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 02/06/2023] Open
Abstract
Bacteria evolved many strategies to survive and persist within host cells. Secretion of bacterial effectors enables bacteria not only to enter the host cell but also to manipulate host gene expression to circumvent clearance by the host immune response. Some effectors were also shown to evade the nucleus to manipulate epigenetic processes as well as transcription and mRNA procession and are therefore classified as nucleomodulins. Others were shown to interfere downstream with gene expression at the level of mRNA stability, favoring either mRNA stabilization or mRNA degradation, translation or protein stability, including mechanisms of protein activation and degradation. Finally, manipulation of innate immune signaling and nutrient supply creates a replicative niche that enables bacterial intracellular persistence and survival. In this review, we want to highlight the divergent strategies applied by intracellular bacteria to evade host immune responses through subversion of host gene expression via bacterial effectors. Since these virulence proteins mimic host cell enzymes or own novel enzymatic functions, characterizing their properties could help to understand the complex interactions between host and pathogen during infections. Additionally, these insights could propose potential targets for medical therapy.
Collapse
|