1
|
Snoeck HW. Direct megakaryopoiesis. Curr Opin Hematol 2025; 32:213-220. [PMID: 40197720 DOI: 10.1097/moh.0000000000000871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
PURPOSE OF REVIEW Megakaryocytes are large, polyploid cells that produce platelets and originate from hematopoietic stem cells (HSCs) in the bone marrow. While in the classical paradigm, megakaryocytes are generated in a stepwise fashion through increasingly committed progenitor stages, studies using in-vivo barcoding, transplantation, and in-vitro culture have suggested that, in addition, a more direct pathway existed. The relevance of this direct pathway and its functional and phenotypic characteristics were unclear, however. RECENT FINDINGS Recent publications using fate-mapping and single-cell transplantation now unequivocally demonstrate the existence of a direct megakaryocyte differentiation pathway, provide molecular characterization, and indicate distinct roles and regulation of both pathways. The direct pathway originates from a separate subset of 'top' HSCs, is enhanced by hematopoietic stress, inflammation and aging, bypasses multipotential progenitors, may be more active in myeloproliferative neoplasms, and generates phenotypically distinct megakaryocyte progenitors and more reactive platelets. SUMMARY Novel insights into the direct megakaryocyte differentiation pathway provide a deeper understanding of HSC biology, hematological recovery after myeloablation, and aging of the hematopoietic system, and suggest that this pathway may contribute to the increase in thrombotic incidents with age and in myeloproliferative neoplasms.
Collapse
Affiliation(s)
- Hans-Willem Snoeck
- Columbia Center for Stem Cell Therapies/Columbia Center for Human Development, Department of Medicine
- Department of Microbiology and Immunology, Columbia University Vagelos College of Physicians and Surgeons
- Division of Pulmonary Medicine, Allergy and Critical Care, Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
2
|
Brierley CK, Yip BH, Orlando G, Wen J, Wen S, Goyal H, Levine M, Jakobsdottir GM, Tapinos A, Cornish AJ, Rodriguez-Romera A, Rodriguez-Meira A, Bashton M, Hamblin A, Clark SA, Hamley JC, Fox O, Giurgiu M, O'Sullivan J, Murphy L, Adamo A, Olijnik AA, Cotton A, Hendrix E, Narina S, Pruett-Miller SM, Enshaei A, Harrison C, Drummond M, Knapper S, Tefferi A, Antony-Debré I, Davies J, Henssen AG, Thongjuea S, Wedge DC, Constantinescu SN, Papaemmanuil E, Psaila B, Crispino JD, Mead AJ. Chromothripsis-associated chromosome 21 amplification orchestrates transformation to blast-phase MPN through targetable overexpression of DYRK1A. Nat Genet 2025; 57:1478-1492. [PMID: 40490510 PMCID: PMC12165854 DOI: 10.1038/s41588-025-02190-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 04/08/2025] [Indexed: 06/11/2025]
Abstract
Chromothripsis, the chaotic shattering and repair of chromosomes, is common in cancer. Whether chromothripsis generates actionable therapeutic targets remains an open question. In a cohort of 64 patients in blast phase of a myeloproliferative neoplasm (BP-MPN), we describe recurrent amplification of a region of chromosome 21q ('chr. 21amp') in 25%, driven by chromothripsis in a third of these cases. We report that chr. 21amp BP-MPN has a particularly aggressive and treatment-resistant phenotype. DYRK1A, a serine threonine kinase, is the only gene in the 2.7-megabase minimally amplified region that showed both increased expression and chromatin accessibility compared with non-chr. 21amp BP-MPN controls. DYRK1A is a central node at the nexus of multiple cellular functions critical for BP-MPN development and is essential for BP-MPN cell proliferation in vitro and in vivo, and represents a druggable axis. Collectively, these findings define chr. 21amp as a prognostic biomarker in BP-MPN, and link chromothripsis to a therapeutic target.
Collapse
Affiliation(s)
- Charlotte K Brierley
- Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM) and NIHR Biomedical Research Centre, University of Oxford, Oxford, UK.
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Haematology, OUH NHS Foundation Trust, Oxford, UK.
| | - Bon Ham Yip
- Division of Experimental Haematology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Giulia Orlando
- Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM) and NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Jeremy Wen
- Division of Experimental Haematology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Sean Wen
- Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM) and NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Harsh Goyal
- Ludwig Institute for Cancer Research Brussels, Brussels, Belgium
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO) Department, WEL Research Institute, Wavre, Belgium
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, Oxford University, Oxford, UK
| | | | - G Maria Jakobsdottir
- Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Christie Hospital, The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Avraam Tapinos
- Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Christie Hospital, The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Alex J Cornish
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - Antonio Rodriguez-Romera
- Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM) and NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Alba Rodriguez-Meira
- Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM) and NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Matthew Bashton
- The Hub for Biotechnology in the Built Environment, Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Angela Hamblin
- Department of Haematology, OUH NHS Foundation Trust, Oxford, UK
| | - Sally Ann Clark
- Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM) and NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Joseph C Hamley
- Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM) and NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Olivia Fox
- Oxford Regional Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Madalina Giurgiu
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Experimental and Clinical Research Center (ECRC) of the MDC and Charité Berlin, Berlin, Germany
| | - Jennifer O'Sullivan
- Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM) and NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
- Department of Haematology, Guys and St Thomas' NHS Foundation Trust, London, UK
| | - Lauren Murphy
- Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM) and NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Assunta Adamo
- Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM) and NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Aude Anais Olijnik
- Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM) and NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Anitria Cotton
- Division of Experimental Haematology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Emily Hendrix
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shilpa Narina
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shondra M Pruett-Miller
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Amir Enshaei
- Wolfson Childhood Cancer Research Centre, Newcastle University, Newcastle upon Tyne, UK
| | - Claire Harrison
- Department of Haematology, Guys and St Thomas' NHS Foundation Trust, London, UK
| | - Mark Drummond
- Department of Haematology, Beatson West of Scotland Cancer Centre, Glasgow, UK
| | - Steven Knapper
- Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | | | - Iléana Antony-Debré
- INSERM, UMR 1287, Villejuif, France
- Gustave Roussy, Villejuif, France
- Université Paris Saclay, Gif-sur-Yvette, France
| | - James Davies
- Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM) and NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Anton G Henssen
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Experimental and Clinical Research Center (ECRC) of the MDC and Charité Berlin, Berlin, Germany
| | - Supat Thongjuea
- Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM) and NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| | - David C Wedge
- Division of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Christie Hospital, The Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Stefan N Constantinescu
- Ludwig Institute for Cancer Research Brussels, Brussels, Belgium
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO) Department, WEL Research Institute, Wavre, Belgium
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, Oxford University, Oxford, UK
| | - Elli Papaemmanuil
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Isabl Inc., New York, NY, USA
| | - Bethan Psaila
- Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM) and NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
- Department of Haematology, OUH NHS Foundation Trust, Oxford, UK
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, Oxford University, Oxford, UK
| | - John D Crispino
- Division of Experimental Haematology, St Jude Children's Research Hospital, Memphis, TN, USA.
| | - Adam J Mead
- Medical Research Council (MRC) Weatherall Institute of Molecular Medicine (WIMM) and NIHR Biomedical Research Centre, University of Oxford, Oxford, UK.
- Department of Haematology, OUH NHS Foundation Trust, Oxford, UK.
| |
Collapse
|
3
|
Kalmer M, Grasshoff M, Maié T, Pannen K, Toledo MA, Vieri M, Olschok K, Lemanzyk R, Lazarevic J, Junge B, Baumeister J, Galauner A, Chapal Ilani N, Bar D, Colin E, Cheng M, Schifflers J, Kricheldorf K, Schemionek M, Brümmendorf TH, Weiskirchen R, Shlush L, Zenke M, Chatain N, Costa IG, Koschmieder S. Deciphering the complex clonal heterogeneity of polycythemia vera and the response to interferon alfa. Blood Adv 2025; 9:1873-1887. [PMID: 39874500 PMCID: PMC12008703 DOI: 10.1182/bloodadvances.2024012600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 12/04/2024] [Accepted: 12/31/2024] [Indexed: 01/30/2025] Open
Abstract
ABSTRACT Interferon alfa (IFN-α) is approved for the therapy of patients with polycythemia vera (PV), a subtype of myeloproliferative neoplasm (MPN). Some patients achieve molecular responses (MRs), but clonal factors sensitizing for MRs remain elusive. We integrated colony formation assays with single-cell RNA sequencing (scRNA-seq) and genotyping in PV-derived cells and healthy controls (HCs) to dissect how IFN-α targets diseased clones during erythroid differentiation. IFN-α significantly decreased colony growth in MPNs and HCs with variable transcriptional responses observed in individual colonies. scRNA-seq of colonies demonstrated more mature erythroid colonies in PV than HCs. JAK2V617F-mutant cells exhibited upregulated STAT5A, heme, and G2M checkpoint pathways compared with JAK2WT cells from the same patients. Subgroup analysis revealed that IFN-α significantly decreased immature erythrocytic cells in PV (basophilic erythroblasts P < .05; polychromatic erythroblasts P < .05) but not in HCs. CD71-/CD235a+ cells from HCs (P < .05) but not PV were inhibited by IFN-α, and the number of reticulocytes was less affected in PV. Robust IFN-α responses persisted throughout differentiation, leading to significant apoptosis in PV. Apoptotic cells displayed downregulation of ribosomal genes. This link between apoptosis and ribosomal genes was corroborated through the analysis of mitochondrial variants, demonstrating IFN-α-induced eradication of specific clones, characterized by elevated expression of ribosomal genes. Our findings indicate that PV-derived clones either undergo apoptosis or pass through differentiation, overall reducing the cycling mutant cells over long-term treatment. Furthermore, the significance of ribosomal genes and clonal prerequisites in IFN-α's therapeutic mechanism is underscored, shedding light on the intricate dynamics of IFN-α treatment in PV.
Collapse
Affiliation(s)
- Milena Kalmer
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Aachen, Germany
| | - Martin Grasshoff
- Institute for Computational Genomics, RWTH Aachen University, Aachen, Germany
| | - Tiago Maié
- Institute for Computational Genomics, RWTH Aachen University, Aachen, Germany
| | - Kristina Pannen
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Aachen, Germany
| | - Marcelo A.S. Toledo
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Aachen, Germany
| | - Margherita Vieri
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Aachen, Germany
| | - Kathrin Olschok
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Aachen, Germany
| | - Rebecca Lemanzyk
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Aachen, Germany
| | - Jelena Lazarevic
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Aachen, Germany
| | - Baerbel Junge
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Aachen, Germany
| | - Julian Baumeister
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Aachen, Germany
| | - Angela Galauner
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Aachen, Germany
| | - Noa Chapal Ilani
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Dror Bar
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Elia Colin
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Mingbo Cheng
- Institute for Computational Genomics, RWTH Aachen University, Aachen, Germany
| | - Joelle Schifflers
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Aachen, Germany
| | - Kim Kricheldorf
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Aachen, Germany
| | - Mirle Schemionek
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Aachen, Germany
| | - Tim H. Brümmendorf
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Liran Shlush
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Martin Zenke
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Aachen, Germany
| | - Nicolas Chatain
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Aachen, Germany
| | - Ivan G. Costa
- Institute for Computational Genomics, RWTH Aachen University, Aachen, Germany
| | - Steffen Koschmieder
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Aachen, Germany
| |
Collapse
|
4
|
Li S, Wu S, Xu M, Li X, Zuo X, Wang Y. Potential application of the bulk RNA sequencing in routine MPN clinics. BMC Cancer 2025; 25:746. [PMID: 40264064 PMCID: PMC12013061 DOI: 10.1186/s12885-025-13947-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/17/2025] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND Philadelphia chromosome-negative myeloproliferative neoplasms (MPNs) are chronic hematological malignancies characterized by driver and nondriver mutations, leading to a deregulated immune system with aberrant cytokines and immune cells. Understanding the gene mutation landscape and immune state at various disease stages is crucial for guiding treatment decisions. While advanced techniques like single-cell RNA sequencing and mass cytometry provide valuable insights, their high costs and complexity limit clinical application. In contrast, bulk RNA sequencing (RNA-Seq) offers a cost-effective complementary approach for evaluating genetic mutations and immune profiles. METHODS Peripheral blood and bone marrow samples from treatment-naïve patients diagnosed with polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF) were analyzed using RNA sequencing. Additionally, data from the microarray datasets [GSE26049, GSE2191] were included in this study. Bioinformatics methods were employed to interpret gene mutations and immune landscapes in MPN patients. RESULTS Our findings demonstrate the potential value of RNA-Seq in identifying gene mutations and characterizing the immune profile, including immune cell infiltration, cytokine profiles, and distinct immune-related pathways involved in the development of MPN. CONCLUSION Bulk RNA-Seq is a feasible tool for routine clinical practice, providing comprehensive insights into the immune and genetic landscape of MPNs. This approach could enhance personalized treatment strategies and improve prognostic accuracy, ultimately contributing to better management of MPN patients.
Collapse
Affiliation(s)
- Shenglong Li
- Department of Bioinformatics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Sanyun Wu
- Department of Hematology, Zhongnan Hospital of Wuhan University, Donghu Road, No. 169, Wuhan, 430062, China
| | - Mingli Xu
- Department of Immunology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400010, China
- Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, 400010, China
| | - Xuedong Li
- Department of Immunology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400010, China
- Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, 400010, China
| | - Xuelan Zuo
- Department of Hematology, Zhongnan Hospital of Wuhan University, Donghu Road, No. 169, Wuhan, 430062, China.
| | - Yingying Wang
- Department of Immunology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400010, China.
- Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
5
|
Wadley L, Fleischman A. Primary myelofibrosis progression: a game of cellular telephone. Haematologica 2025; 110:822-824. [PMID: 39744819 PMCID: PMC11959259 DOI: 10.3324/haematol.2024.286665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 12/18/2024] [Indexed: 04/02/2025] Open
Affiliation(s)
| | - Angela Fleischman
- Department of Biological Chemistry; Division of Hematology/Oncology, Department of Medicine, University of California, Irvine, Irvine, CA.
| |
Collapse
|
6
|
Jung SH, Lee SE, Yun S, Min DE, Shin Y, Chung YJ, Lee SH. Different inflammatory, fibrotic, and immunological signatures between pre-fibrotic and overt primary myelofibrosis. Haematologica 2025; 110:938-951. [PMID: 39385733 PMCID: PMC11959246 DOI: 10.3324/haematol.2024.285598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 09/27/2024] [Indexed: 10/12/2024] Open
Abstract
Primary myelofibrosis (PMF) is a myeloid proliferative neoplasm (MPN) characterized by bone marrow fibrosis. Pre-fibrotic PMF (pre-PMF) progresses to overt PMF. Megakaryocytes play a primary role in PMF; however, the functions of megakaryocyte subsets and those of other hematopoietic cells during PMF progression remain unclear. We, therefore, analyzed bone marrow aspirates in cases of pre-PMF, overt PMF, and other MPN using single-cell RNA sequencing. We identified 14 cell types with subsets, including hematopoietic stem and progenitor cells (HSPC) and megakaryocytes. HSPC in overt PMF were megakaryocyte-biased and inflammation/fibrosis-enriched. Among megakaryocytes, the epithelial-mesenchymal transition (EMT)-enriched subset was abruptly increased in overt PMF. Megakaryocytes in non-fibrotic/non-PMF MPN were megakaryocyte differentiation-enriched, whereas those in fibrotic/non-PMF MPN were inflammation/fibrosis-enriched. Overall, the inflammation/fibrosis signatures of the HSPC, megakaryocyte, and CD14+ monocyte subsets increased from pre-PMF to overt PMF. Cytotoxic and dysfunctional scores also increased in T and NK cells. Clinically, megakaryocyte and HSPC subsets with high inflammation/fibrosis signatures were frequent in the patients with peripheral blood blasts ≥1%. Single-cell RNA-sequencing predicted higher cellular communication of megakaryocyte differentiation, inflammation/fibrosis, immunological effector/dysfunction, and tumor-associated signaling in overt PMF than in pre-PMF. However, no decisive subset emerged during PMF progression. Our study demonstrated that HSPC, monocytes, and lymphoid cells contribute to the progression of PMF, and subset specificity existed regarding inflammation/fibrosis and immunological dysfunction. PMF progression may depend on alterations of multiple cell types, and EMT-enriched megakaryocytes may be potential targets for diagnosing and treating the progression.
Collapse
Affiliation(s)
- Seung-Hyun Jung
- Departments of Biochemistry; Departments of Precision Medicine Research Center/Integrated Research Center for Genome Polymorphism; Departments of Medical Sciences.
| | | | | | | | - Youngjin Shin
- Departments of Basic Medical Science Facilitation Program
| | - Yeun-Jun Chung
- Departments of Precision Medicine Research Center/Integrated Research Center for Genome Polymorphism; Departments of Medical Sciences; Departments of Basic Medical Science Facilitation Program; Departments of Microbiology.
| | - Sug Hyung Lee
- Departments of Medical Sciences; Departments of Cancer Evolution Research Center; Departments of Pathology, College of Medicine, The Catholic University of Korea, Seoul.
| |
Collapse
|
7
|
Singh A, Chia JJ, Rao DS, Hoffmann A. Population dynamics modeling reveals that myeloid bias involves both HSC differentiation and progenitor proliferation biases. Blood 2025; 145:1293-1308. [PMID: 39791596 PMCID: PMC11952015 DOI: 10.1182/blood.2024025598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 11/01/2024] [Accepted: 11/20/2024] [Indexed: 01/12/2025] Open
Abstract
ABSTRACT Aging and chronic inflammation are associated with overabundant myeloid-primed multipotent progenitors (MPPs) among hematopoietic stem and progenitor cells (HSPCs). Although hematopoietic stem cell (HSC) differentiation bias has been considered a primary cause of myeloid bias, whether it is sufficient has not been quantitatively evaluated. Here, we analyzed bone marrow data from the IκB- (Nfkbia+/-Nfkbib-/-Nfkbie-/-) mouse model of inflammation with elevated NFκB activity, which reveals increased myeloid-biased MPPs. We interpreted these data with differential equation models of population dynamics to identify alterations of HSPC proliferation and differentiation rates. This analysis revealed that short-term HSC differentiation bias alone is likely insufficient to account for the increase in myeloid-biased MPPs. To explore additional mechanisms, we used single-cell RNA sequencing (scRNA-seq) measurements of IκB- and wild-type HSPCs to track the continuous differentiation trajectories from HSCs to erythrocyte/megakaryocyte, myeloid, and lymphoid primed progenitors. Fitting a partial differential equations model of population dynamics to these data revealed not only less lymphoid-fate specification among HSCs but also increased expansion of early myeloid-primed progenitors. Differentially expressed genes along the differentiation trajectories supported increased proliferation among these progenitors. These findings were conserved when wild-type HSPCs were transplanted into IκB- recipients, indicating that an inflamed bone marrow microenvironment is a sufficient driver. We then applied our analysis pipeline to scRNA-seq measurements of HSPCs isolated from aged mice and human patients with myeloid neoplasms. These analyses identified the same myeloid-primed progenitor expansion as in the IκB- models, suggesting that it is a common feature across different settings of myeloid bias.
Collapse
Affiliation(s)
- Apeksha Singh
- Signaling Systems Laboratory, Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA
| | - Jennifer J. Chia
- Signaling Systems Laboratory, Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA
- Broad Stem Cell Research Center, University of California, Los Angeles, CA
| | - Dinesh S. Rao
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA
- Broad Stem Cell Research Center, University of California, Los Angeles, CA
| | - Alexander Hoffmann
- Signaling Systems Laboratory, Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA
- Broad Stem Cell Research Center, University of California, Los Angeles, CA
| |
Collapse
|
8
|
Handa S, Schaniel C, Tripodi J, Ahire D, Mia MB, Klingborg S, Tremblay D, Marcellino BK, Hoffman R, Najfeld V. HMGA2 overexpression with specific chromosomal abnormalities predominate in CALR and ASXL1 mutated myelofibrosis. Leukemia 2025; 39:663-674. [PMID: 39715853 PMCID: PMC11879852 DOI: 10.1038/s41375-024-02496-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/27/2024] [Accepted: 12/03/2024] [Indexed: 12/25/2024]
Abstract
Although multiple genetic events are thought to play a role in promoting progression of the myeloproliferative neoplasms (MPN), the individual events that are associated with the development of more aggressive disease phenotypes remain poorly defined. Here, we report that novel genomic deletions at chromosome 12q14.3, as detected by a high-resolution array comparative genomic hybridization plus single nucleotide polymorphisms platform, occur in 11% of MPN patients with myelofibrosis (MF) and MPN-accelerated/blast phase (AP/BP) but was not detected in patients with polycythemia vera or essential thrombocythemia. These 12q14.3 deletions resulted in the loss of most of the non-coding region of exon 5 and MIRLET7 binding sites in the 3'UTR of the high mobility group AT hook 2 (HMGA2), which negatively regulate HMGA2 expression. These acquired 12q14.3 deletions were predominately detected in MF patients with CALR and ASXL1 co-mutations and led to a greater degree of HMGA2 transcript overexpression, independent of the presence of an ASXL1 mutation. Patients with 12q structural abnormalities involving HMGA2 exhibited a more aggressive clinical course, with a higher frequency of MPN-AP/BP evolution. These findings indicate that HMGA2 overexpression associated with genomic deletion of its 3'UTR region is a newly recognized genetic event that contributes to MPN progression.
Collapse
Affiliation(s)
- Shivani Handa
- Division of Hematology/Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Hematology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Christoph Schaniel
- Division of Hematology/Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joseph Tripodi
- Department of Pathology and Molecular Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daiva Ahire
- Department of Pathology and Molecular Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Md Babu Mia
- Division of Hematology/Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sophie Klingborg
- Division of Hematology/Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Douglas Tremblay
- Division of Hematology/Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bridget K Marcellino
- Division of Hematology/Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ronald Hoffman
- Division of Hematology/Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Vesna Najfeld
- Division of Hematology/Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Pathology and Molecular Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
9
|
Resar LMS, Luo LZ. High Mobility Group A1 Chromatin Keys: Unlocking the Genome During MPN Progression. Int J Mol Sci 2025; 26:2125. [PMID: 40076747 PMCID: PMC11899949 DOI: 10.3390/ijms26052125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/11/2025] [Accepted: 02/18/2025] [Indexed: 03/14/2025] Open
Abstract
Patients with chronic, indolent myeloproliferative neoplasms (MPNs) are at risk for transformation to highly lethal leukemia, although targetable mechanisms driving progression remain elusive. We discovered that the High Mobility Group A1 (HMGA1) gene is up-regulated with MPN progression in patients and required for evolution into myelofibrosis (MF) or acute myeloid leukemia (AML) in preclinical models. HMGA1 encodes the HMGA1 epigenetic regulators that modulate the chromatin state during embryogenesis and tissue regeneration. While HMGA1 is silenced in most differentiated cells, it becomes aberrantly re-expressed in JAK2 mutant (JAK2-V617F) MPN, with the highest levels after transformation to secondary MF or AML. Here, we review recent work highlighting HMGA1 function in MPN progression. Though underlying mechanisms continue to emerge, increasing evidence suggests that HMGA1 functions as a "chromatin key" required to "unlock" regions of the genome involved in clonal expansion and progression in MPN. Together, these findings illuminate HMGA1 as a driver of MPN progression and a promising therapeutic target.
Collapse
Affiliation(s)
- Linda M. S. Resar
- Departments of Medicine (Hematology), Oncology, Pathology and Institute for Cellular Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
| | | |
Collapse
|
10
|
Marchand V, Laplane L, Valensi L, Plo I, Aglave M, Silvin A, Pasquier F, Porteu F, Vainchenker W, Selimoglu-Buet D, Droin N, Raslova H, Marcel V, Diaz JJ, Fontenay M, Solary E. Monocytes generated by interleukin-6-treated human hematopoietic stem and progenitor cells secrete calprotectin that inhibits erythropoiesis. iScience 2025; 28:111522. [PMID: 39811665 PMCID: PMC11732210 DOI: 10.1016/j.isci.2024.111522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/02/2024] [Accepted: 11/29/2024] [Indexed: 01/16/2025] Open
Abstract
Elevated circulating levels of calprotectin (CAL), the S100A8/A9 heterodimer, are biomarkers of severe systemic inflammation. Here, we investigate the effects of CAL on early human hematopoiesis. CAL demonstrates limited impact on gene expression in stem and progenitor cells, in contrast with interleukin-6 (IL6), which promotes the expression of the S100A8 and S100A9 genes in hematopoietic progenitors and the generation of monocytes that release CAL. The main target of CAL is an erythroid-megakaryocyte progenitor (EMP) subset. CAL prevents both erythropoietin-driven differentiation of healthy progenitors and JAK2-V617F-driven erythropoiesis. In the context of JAK2-V617F, CAL also promotes the expression of S100A8 and S100A9 genes in monocytes. The signature of CAL effects is detected in the bone marrow progenitors of patients with myeloid malignancy or severe infection. These results position CAL as a mediator of IL6 effects on triggering anemia during inflammation, an effect that is amplified in the context of JAK2-V617F-driven hematopoiesis.
Collapse
Affiliation(s)
- Valentine Marchand
- INSERM U1287, Université Paris-Saclay, Gustave Roussy Cancer Center, Villejuif, France
| | - Lucie Laplane
- INSERM U1287, Université Paris-Saclay, Gustave Roussy Cancer Center, Villejuif, France
- CNRS 8590, Université Paris 1 Panthéon-Sorbonne, Paris, France
| | - Louis Valensi
- INSERM U1287, Université Paris-Saclay, Gustave Roussy Cancer Center, Villejuif, France
| | - Isabelle Plo
- INSERM U1287, Université Paris-Saclay, Gustave Roussy Cancer Center, Villejuif, France
| | - Marine Aglave
- AMMICa, INSERM US 23, CNRS UMS 3655, Gustave Roussy Cancer Center, Villejuif, France
| | - Aymeric Silvin
- INSERM U1108, Gustave Roussy Cancer Center, Villejuif, France
| | - Florence Pasquier
- Department of Hematology, Gustave Roussy Cancer Center, Villejuif, France
| | - Françoise Porteu
- INSERM U1287, Université Paris-Saclay, Gustave Roussy Cancer Center, Villejuif, France
| | - William Vainchenker
- INSERM U1287, Université Paris-Saclay, Gustave Roussy Cancer Center, Villejuif, France
| | | | - Nathalie Droin
- INSERM U1287, Université Paris-Saclay, Gustave Roussy Cancer Center, Villejuif, France
- AMMICa, INSERM US 23, CNRS UMS 3655, Gustave Roussy Cancer Center, Villejuif, France
| | - Hana Raslova
- INSERM U1287, Université Paris-Saclay, Gustave Roussy Cancer Center, Villejuif, France
| | - Virginie Marcel
- Inserm U1052, CNRS UMR5286 Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Jean-Jacques Diaz
- Inserm U1052, CNRS UMR5286 Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Michaela Fontenay
- Université Paris Cité, Institut Cochin, CNRS UMR 8104, INSERM U1016, Paris, France
- Laboratory of Excellence for Red Blood Cells, GR-Ex, Paris, France
| | - Eric Solary
- INSERM U1287, Université Paris-Saclay, Gustave Roussy Cancer Center, Villejuif, France
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
| |
Collapse
|
11
|
Sato K, Toh S, Murakami T, Nakano T, Hongo T, Matsuo M, Hashimoto K, Sugasawa M, Yamazaki K, Ueki Y, Nakashima T, Uryu H, Ono T, Umeno H, Ueda T, Kano S, Tsukahara K, Watanabe A, Ota I, Monden N, Iwae S, Maruo T, Asada Y, Hanai N, Sano D, Ozawa H, Asakage T, Fukusumi T, Masuda M. Nationwide multi-centric prospective study for the identification of biomarkers to predict the treatment responses of nivolumab through comprehensive analyses of pretreatment plasma exosome mRNAs from head and neck cancer patients (BIONEXT study). Front Immunol 2025; 15:1464419. [PMID: 39867897 PMCID: PMC11758179 DOI: 10.3389/fimmu.2024.1464419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 12/13/2024] [Indexed: 01/28/2025] Open
Abstract
Background Nivolumab paved a new way in the treatment of patients with recurrent or metastatic (RM) head and neck squamous cell carcinoma (RM-HNSCC). However, the limited rates of long-term survivors (< 20%) demand a robust prognostic biomarker. This nationwide multi-centric prospective study aimed to identify a plasma exosome (PEX) mRNA signature, which serves as a companion diagnostic of nivolumab and provides a biological clue to develop effective therapies for a majority of non-survivors. Methods Pre-treatment plasmas (N = 104) of RM-HNSCC patients were subjected to comprehensive PEX mRNA analyses for prognostic marker discovery and validation. In parallel, paired treatment-naïve tumor and plasma samples (N = 20) were assayed to elucidate biological implications of the PEX mRNA signature. Results Assays for pre-treatment blood samples (N = 104) demonstrated that a combination of 6 candidate PEX mRNAs plus neutrophil-to-lymphocyte ratio precisely distinguished non-survivors from >2-year survivors (2-year OS; 0% vs 57.7%; P = 0.000124) with a high hazard ratio of 2.878 (95% CI 1.639-5.055; P = 0.0002348). Parallel biological assays demonstrated that in the paired treatment-naïve HNSCC tumor and plasma samples (N = 20), PEX HLA-E mRNA (a non-survivor-predicting marker) was positively corelated with overexpression of HLA-E protein (P = 0.0191) and the dense population of tumor-infiltrating NK cells (P = 0.024) in the corresponding tumor, suggesting that the HLA-E-NKG2A immune checkpoint may inhibit the antitumor effect of PD-1blockade. Conclusion The PEX mRNA signature could be useful as a companion diagnostic of nivolumab. The combination of an anti-NKG2A antibody (i.e., monalizumab) and nivolumab may serve as a treatment option for non-survivors predicted by a RT-qPCR-based pre-treatment measurement of PEX mRNAs.
Collapse
Affiliation(s)
- Kuniaki Sato
- Department of Head and Neck Surgery, National Hospital Organization Kyushu Cancer Center, Fukuoka, Fukuoka, Japan
| | - Satoshi Toh
- Department of Head and Neck Surgery, National Hospital Organization Kyushu Cancer Center, Fukuoka, Fukuoka, Japan
| | - Taku Murakami
- Showa Denko Materials America, R&D Center, Irvine, CA, United States
| | - Takafumi Nakano
- Department of Head and Neck Surgery, National Hospital Organization Kyushu Cancer Center, Fukuoka, Fukuoka, Japan
| | - Takahiro Hongo
- Department of Head and Neck Surgery, National Hospital Organization Kyushu Cancer Center, Fukuoka, Fukuoka, Japan
| | - Mioko Matsuo
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medical Science, Kyushu University, Fukuoka, Fukuoka, Japan
| | - Kazuki Hashimoto
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medical Science, Kyushu University, Fukuoka, Fukuoka, Japan
| | - Masashi Sugasawa
- Department of Head & Neck Surgery, International Medical Center, Saitama Medical University, Hidaka, Saitama, Japan
| | - Keisuke Yamazaki
- Department of Otolaryngology, Head and Neck Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Niigata, Japan
| | - Yushi Ueki
- Department of Otolaryngology, Head and Neck Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Niigata, Japan
| | - Torahiko Nakashima
- Department of Otorhinolaryngology, National Hospital Organization Kyushu Medical Center, Fukuoka, Fukuoka, Japan
| | - Hideoki Uryu
- Department of Otorhinolaryngology, National Hospital Organization Kyushu Medical Center, Fukuoka, Fukuoka, Japan
| | - Takeharu Ono
- Department of Otolaryngology, Head and Neck Surgery, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Hirohito Umeno
- Department of Otolaryngology, Head and Neck Surgery, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Tsutomu Ueda
- Department of Otorhinolaryngology, Head and Neck Surgery Graduate School of Biomedical and Health Sciences Hiroshima University, Hiroshima, Hiroshima, Japan
| | - Satoshi Kano
- Department of Otolaryngology, Head and Neck Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kiyoaki Tsukahara
- Department of Otorhinolaryngology, Head and Neck Surgery, Tokyo Medical University, Tokyo, Japan
| | - Akihito Watanabe
- Department of Otolaryngology, Head and Neck Surgery, Keiyukai Sapporo Hospital, Sapporo, Hokkaido, Japan
| | - Ichiro Ota
- Department of Otolaryngology-Head and Neck Surgery, Nara Medical University, Kashiwara, Nara, Japan
| | - Nobuya Monden
- Department of Head and Neck Surgery, National Hospital Organization Shikoku Cancer Center, Matsuyama, Ehime, Japan
| | - Shigemichi Iwae
- Department of Head and Neck Surgery, Hyogo Cancer Center, Akashi, Hyogo, Japan
| | - Takashi Maruo
- Department of Otorhinolaryngology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Yukinori Asada
- Department of Head and Neck Surgery, Miyagi Cancer Center, Natori, Miyagi, Japan
| | - Nobuhiro Hanai
- Department of Head and Neck Surgery, Aichi Cancer Center Hospital, Nagoya, Aichi, Japan
| | - Daisuke Sano
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Hiroyuki Ozawa
- Keio University School of Medicine, Otolaryngology, Head and Neck Surgery, Tokyo, Japan
| | - Takahiro Asakage
- Department of Head and Neck Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takahito Fukusumi
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Muneyuki Masuda
- Department of Head and Neck Surgery, National Hospital Organization Kyushu Cancer Center, Fukuoka, Fukuoka, Japan
| |
Collapse
|
12
|
Hua T, Yao F, Wang H, Liu W, Zhu X, Yao Y. Megakaryocyte in sepsis: the trinity of coagulation, inflammation and immunity. Crit Care 2024; 28:442. [PMID: 39741325 DOI: 10.1186/s13054-024-05221-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/18/2024] [Indexed: 01/02/2025] Open
Abstract
BACKGROUND Megakaryocytes are traditionally recognized as cells responsible for platelet production. However, beyond their role in thrombopoiesis, megakaryocytes also participate in inflammatory responses and regulate immune system functions. Sepsis, characterized by life-threatening organ dysfunction due to a dysregulated response to infection, prominently features coagulopathy, severe inflammation, and immune dysfunction as key pathophysiological aspects. AIM OF REVIEW Given the diverse functions of megakaryocytes, we explore their roles in coagulation in the context of sepsis, and also in inflammatory and immune regulation. We try to infer future research directions and potential strategies for sepsis prevention and treatment based on the properties of megakaryocytes. KEY SCIENTIFIC CONCEPTS OF REVIEW The purpose of this review is to both highlight and provide an update on the functions of megakaryocytes and pathophysiological changes in sepsis. Specific emphasis is given to the role of megakaryocytes in sepsis, which suggests value of future research and clinical application.
Collapse
Affiliation(s)
- Tianzhen Hua
- Department of Burns and Plastic Surgery, The Fourth Medical Center, Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, China
- Chinese PLA Medical School, Beijing, 100853, China
| | - Fenghua Yao
- Department of Nephrology, First Medical Center of Chinese, PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Haitao Wang
- Medical Innovation Research Division and Fourth Medical Center of Chinese, PLA General Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Beijing, 100853, China
- Department of Hematology, The Fifth Medical Center of Chinese, PLA General Hospital, Beijing, 100071, China
| | - Wei Liu
- Department of Burns and Plastic Surgery, The Fourth Medical Center, Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, China.
- Chinese PLA Medical School, Beijing, 100853, China.
| | - Xiaomei Zhu
- Medical Innovation Research Division and Fourth Medical Center of Chinese, PLA General Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Beijing, 100853, China.
| | - Yongming Yao
- Medical Innovation Research Division and Fourth Medical Center of Chinese, PLA General Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Beijing, 100853, China.
| |
Collapse
|
13
|
Carturan A, Morè S, Poloni A, Rupoli S, Morsia E. Shaping the Future of Myeloproliferative Neoplasm Therapy: Immune-Based Strategies and Targeted Innovations. Cancers (Basel) 2024; 16:4113. [PMID: 39682299 DOI: 10.3390/cancers16234113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Numerous cutting-edge immunotherapy approaches have been developed for hematological malignancies, such as immune-checkpoint inhibitors for lymphomas, chimeric antigen receptor (CAR)-T-cell treatments for B-cell cancers, and monoclonal antibody therapies for acute myeloid leukemia (AML). However, achieving similar breakthroughs in MPNs has proven challenging. The key obstacles include the absence of universally expressed and MPN-specific surface markers, significant cellular and molecular variability among both individual patients and across different MPN subtypes, and the failure of treatments to stimulate an anti-tumor immune response due to the immune system disruptions caused by the myeloid neoplasm. Currently, there are several innovative therapies in clinical trials for MPNs. These include new JAK inhibitors with greater specificity for JAK2, as well as "add-on" medications designed to enhance the effectiveness of ruxolitinib, in both patients who are new to the drug and in those who have shown suboptimal responses. Additionally, there is ongoing exploration of novel therapeutic targets. In this review, we will explore the immunotherapy approaches that are currently used in clinical practice for MPNs, as well as emerging strategies that are likely to change the treatment of these diseases in the coming years.
Collapse
Affiliation(s)
- Alberto Carturan
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Hematology and Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sonia Morè
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, 60126 Ancona, Italy
- Hematology Clinic, Azienda Ospedaliero Universitaria delle Marche, 60126 Ancona, Italy
| | - Antonella Poloni
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, 60126 Ancona, Italy
- Hematology Clinic, Azienda Ospedaliero Universitaria delle Marche, 60126 Ancona, Italy
| | - Serena Rupoli
- Hematology Clinic, Azienda Ospedaliero Universitaria delle Marche, 60126 Ancona, Italy
| | - Erika Morsia
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, 60126 Ancona, Italy
- Hematology Clinic, Azienda Ospedaliero Universitaria delle Marche, 60126 Ancona, Italy
| |
Collapse
|
14
|
Della Volpe L, Midena F, Vacca R, Tavella T, Alessandrini L, Farina G, Brandas C, Lo Furno E, Giannetti K, Carsana E, Naldini MM, Barcella M, Ferrari S, Beretta S, Santoro A, Porcellini S, Varesi A, Gilioli D, Conti A, Merelli I, Gentner B, Villa A, Naldini L, Di Micco R. A p38 MAPK-ROS axis fuels proliferation stress and DNA damage during CRISPR-Cas9 gene editing in hematopoietic stem and progenitor cells. Cell Rep Med 2024; 5:101823. [PMID: 39536752 PMCID: PMC11604517 DOI: 10.1016/j.xcrm.2024.101823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/26/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
Ex vivo activation is a prerequisite to reaching adequate levels of gene editing by homology-directed repair (HDR) for hematopoietic stem and progenitor cell (HSPC)-based clinical applications. Here, we show that shortening culture time mitigates the p53-mediated DNA damage response to CRISPR-Cas9-induced DNA double-strand breaks, enhancing the reconstitution capacity of edited HSPCs. However, this results in lower HDR efficiency, rendering ex vivo culture necessary yet detrimental. Mechanistically, ex vivo activation triggers a multi-step process initiated by p38 mitogen-activated protein kinase (MAPK) phosphorylation, which generates mitogenic reactive oxygen species (ROS), promoting fast cell-cycle progression and subsequent proliferation-induced DNA damage. Thus, p38 inhibition before gene editing delays G1/S transition and expands transcriptionally defined HSCs, ultimately endowing edited cells with superior multi-lineage differentiation, persistence throughout serial transplantation, enhanced polyclonal repertoire, and better-preserved genome integrity. Our data identify proliferative stress as a driver of HSPC dysfunction with fundamental implications for designing more effective and safer gene correction strategies for clinical applications.
Collapse
Affiliation(s)
- Lucrezia Della Volpe
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Federico Midena
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Roberta Vacca
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Teresa Tavella
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Laura Alessandrini
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Giacomo Farina
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; University of Milan-Bicocca, 20126 Milan, Italy
| | - Chiara Brandas
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Elena Lo Furno
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Kety Giannetti
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Edoardo Carsana
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Matteo M Naldini
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Matteo Barcella
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Samuele Ferrari
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Stefano Beretta
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Antonella Santoro
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Simona Porcellini
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Angelica Varesi
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Diego Gilioli
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Anastasia Conti
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Ivan Merelli
- National Research Council, Institute for Biomedical Technologies, 20054 Segrate, Italy
| | - Bernhard Gentner
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Ludwig Institute for Cancer Research and Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), 1066 Lausanne, Switzerland
| | - Anna Villa
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; National Research Council, Institute for Biomedical Technologies, 20054 Segrate, Italy
| | - Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Raffaella Di Micco
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; University School of Advanced Studies IUSS, 27100 Pavia, Italy.
| |
Collapse
|
15
|
Odell ID. Cross-tissue organization of myeloid cells in scleroderma and related fibrotic diseases. Curr Opin Rheumatol 2024; 36:379-386. [PMID: 39171604 PMCID: PMC11451931 DOI: 10.1097/bor.0000000000001047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
PURPOSE OF REVIEW Scleroderma and other fibrotic diseases have been investigated using single-cell RNA sequencing (scRNA-Seq), which has demonstrated enrichment in myeloid cell populations in multiple tissues. However, scRNA-Seq studies are inconsistent in their nomenclature of myeloid cell types, including dendritic cells, monocytes, and macrophages. Using cell type-defining gene signatures, I propose a unified nomenclature through analysis of myeloid cell enrichment across fibrotic tissues. RECENT FINDINGS scRNA-Seq of human blood and skin identified a new subset of dendritic cells called DC3. DC3 express similar inflammatory genes to monocytes, including FCN1 , IL1B, VCAN, S100A8, S100A9 , and S100A12 . DC3 can be distinguished from monocytes by expression of EREG and Fc receptor genes such as FCER1A and FCGR2B . scRNA-Seq analyses of scleroderma skin and lung, idiopathic pulmonary fibrosis (IPF), COVID-19 lung fibrosis, myelofibrosis, and liver, kidney, and cardiac fibrosis all showed enrichment in myeloid cell types. Although they were called different names, studies of scleroderma skin and lung as well as liver cirrhosis datasets demonstrated enrichment in DC3. By contrast, lung, heart, and kidney fibrosis were enriched in SPP1 macrophages. High numbers of DC3 in the skin was associated with worse SSc skin and lung fibrosis severity. SUMMARY scRNA-Seq of multiple diseases showed enrichment of DC3 in fibrotic skin, lung, and liver, whereas SPP1 macrophages occurred in fibrotic lung, heart, and kidney. Because DC3 and SPP1 macrophages showed organ-specific enrichment, understanding their signaling mechanisms across tissues will be important for future investigation.
Collapse
Affiliation(s)
- Ian D. Odell
- Department of Dermatology
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
16
|
Li R, Colombo M, Wang G, Rodriguez-Romera A, Benlabiod C, Jooss NJ, O’Sullivan J, Brierley CK, Clark SA, Pérez Sáez JM, Aragón Fernández P, Schoof EM, Porse B, Meng Y, Khan AO, Wen S, Dong P, Zhou W, Sousos N, Murphy L, Clarke M, Olijnik AA, C. Wong Z, Karali CS, Sirinukunwattana K, Ryou H, Norfo R, Cheng Q, Carrelha J, Ren Z, Thongjuea S, Rathinam VA, Krishnan A, Royston D, Rabinovich GA, Mead AJ, Psaila B. A proinflammatory stem cell niche drives myelofibrosis through a targetable galectin-1 axis. Sci Transl Med 2024; 16:eadj7552. [PMID: 39383242 PMCID: PMC7616771 DOI: 10.1126/scitranslmed.adj7552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 07/01/2024] [Accepted: 09/16/2024] [Indexed: 10/11/2024]
Abstract
Myeloproliferative neoplasms are stem cell-driven cancers associated with a large burden of morbidity and mortality. Most patients present with early-stage disease, but a substantial proportion progress to myelofibrosis or secondary leukemia, advanced cancers with a poor prognosis and high symptom burden. Currently, it remains difficult to predict progression, and therapies that reliably prevent or reverse fibrosis are lacking. A major bottleneck to the discovery of disease-modifying therapies has been an incomplete understanding of the interplay between perturbed cellular and molecular states. Several cell types have individually been implicated, but a comprehensive analysis of myelofibrotic bone marrow is lacking. We therefore mapped the cross-talk between bone marrow cell types in myelofibrotic bone marrow. We found that inflammation and fibrosis are orchestrated by a "quartet" of immune and stromal cell lineages, with basophils and mast cells creating a TNF signaling hub, communicating with megakaryocytes, mesenchymal stromal cells, and proinflammatory fibroblasts. We identified the β-galactoside-binding protein galectin-1 as a biomarker of progression to myelofibrosis and poor survival in multiple patient cohorts and as a promising therapeutic target, with reduced myeloproliferation and fibrosis in vitro and in vivo and improved survival after galectin-1 inhibition. In human bone marrow organoids, TNF increased galectin-1 expression, suggesting a feedback loop wherein the proinflammatory myeloproliferative neoplasm clone creates a self-reinforcing niche, fueling progression to advanced disease. This study provides a resource for studying hematopoietic cell-niche interactions, with relevance for cancer-associated inflammation and disorders of tissue fibrosis.
Collapse
Affiliation(s)
- Rong Li
- CAMS Oxford Institute; University of Oxford; Oxford, United Kingdom (UK)
- Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM) and NIHR Biomedical Research Centre Hematology Theme; University of Oxford; Oxford, UK
| | - Michela Colombo
- Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM) and NIHR Biomedical Research Centre Hematology Theme; University of Oxford; Oxford, UK
- Human Technopole; Milan, Italy
| | - Guanlin Wang
- Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM) and NIHR Biomedical Research Centre Hematology Theme; University of Oxford; Oxford, UK
- MRC WIMM Centre for Computational Biology, University of Oxford; Oxford, United Kingdom
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology; Fudan University, Shanghai, China
- Qizhi Institute, Shanghai, China
| | - Antonio Rodriguez-Romera
- Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM) and NIHR Biomedical Research Centre Hematology Theme; University of Oxford; Oxford, UK
| | - Camelia Benlabiod
- Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM) and NIHR Biomedical Research Centre Hematology Theme; University of Oxford; Oxford, UK
| | - Natalie J. Jooss
- Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM) and NIHR Biomedical Research Centre Hematology Theme; University of Oxford; Oxford, UK
| | - Jennifer O’Sullivan
- Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM) and NIHR Biomedical Research Centre Hematology Theme; University of Oxford; Oxford, UK
| | - Charlotte K. Brierley
- Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM) and NIHR Biomedical Research Centre Hematology Theme; University of Oxford; Oxford, UK
| | - Sally-Ann Clark
- Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM) and NIHR Biomedical Research Centre Hematology Theme; University of Oxford; Oxford, UK
| | - Juan M. Pérez Sáez
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | | | - Erwin M. Schoof
- Department of Biotechnology and Biomedicine, Technical University of Denmark; Denmark
| | - Bo Porse
- The Finsen Laboratory, Copenhagen University Hospital; Copenhagen, Denmark
- Biotech Research and Innovation Centre, Faculty of Health Sciences, University of Copenhagen; Denmark
- Department of Clinical Medicine, University of Copenhagen; Copenhagen, Denmark
| | - Yiran Meng
- Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM) and NIHR Biomedical Research Centre Hematology Theme; University of Oxford; Oxford, UK
| | - Abdullah O. Khan
- Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM) and NIHR Biomedical Research Centre Hematology Theme; University of Oxford; Oxford, UK
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences; University of Birmingham; Birmingham, UK
| | - Sean Wen
- Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM) and NIHR Biomedical Research Centre Hematology Theme; University of Oxford; Oxford, UK
| | - Pengwei Dong
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology; Fudan University, Shanghai, China
| | - Wenjiang Zhou
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology; Fudan University, Shanghai, China
| | - Nikolaos Sousos
- Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM) and NIHR Biomedical Research Centre Hematology Theme; University of Oxford; Oxford, UK
| | - Lauren Murphy
- Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM) and NIHR Biomedical Research Centre Hematology Theme; University of Oxford; Oxford, UK
| | - Matthew Clarke
- Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM) and NIHR Biomedical Research Centre Hematology Theme; University of Oxford; Oxford, UK
| | - Aude-Anais Olijnik
- Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM) and NIHR Biomedical Research Centre Hematology Theme; University of Oxford; Oxford, UK
| | - Zoë C. Wong
- Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM) and NIHR Biomedical Research Centre Hematology Theme; University of Oxford; Oxford, UK
| | - Christina Simoglou Karali
- Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM) and NIHR Biomedical Research Centre Hematology Theme; University of Oxford; Oxford, UK
| | - Korsuk Sirinukunwattana
- Oxford Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford; Oxford, UK
| | - Hosuk Ryou
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford; Oxford, UK
| | - Ruggiero Norfo
- Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM) and NIHR Biomedical Research Centre Hematology Theme; University of Oxford; Oxford, UK
| | - Qian Cheng
- Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM) and NIHR Biomedical Research Centre Hematology Theme; University of Oxford; Oxford, UK
| | - Joana Carrelha
- Haematopoietic Stem Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford; Oxford, UK
| | - Zemin Ren
- Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM) and NIHR Biomedical Research Centre Hematology Theme; University of Oxford; Oxford, UK
| | - Supat Thongjuea
- Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM) and NIHR Biomedical Research Centre Hematology Theme; University of Oxford; Oxford, UK
| | - Vijay A Rathinam
- Department of Immunology, University of Connecticut Health School of Medicine; Farmington, ConnecticutUSA
| | - Anandi Krishnan
- Stanford Cancer Institute, Stanford University School of Medicine; Stanford, California, USA
| | - Daniel Royston
- Biotech Research and Innovation Centre, Faculty of Health Sciences, University of Copenhagen; Denmark
- Oxford University Hospitals NHS Trust; Oxford, UK
| | - Gabriel A. Rabinovich
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Facultad de Ciencias Exactas, Físicas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Adam J Mead
- Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM) and NIHR Biomedical Research Centre Hematology Theme; University of Oxford; Oxford, UK
- Oxford University Hospitals NHS Trust; Oxford, UK
| | - Bethan Psaila
- Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM) and NIHR Biomedical Research Centre Hematology Theme; University of Oxford; Oxford, UK
- Oxford University Hospitals NHS Trust; Oxford, UK
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| |
Collapse
|
17
|
Jin X, Zhang R, Fu Y, Zhu Q, Hong L, Wu A, Wang H. Unveiling aging dynamics in the hematopoietic system insights from single-cell technologies. Brief Funct Genomics 2024; 23:639-650. [PMID: 38688725 DOI: 10.1093/bfgp/elae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024] Open
Abstract
As the demographic structure shifts towards an aging society, strategies aimed at slowing down or reversing the aging process become increasingly essential. Aging is a major predisposing factor for many chronic diseases in humans. The hematopoietic system, comprising blood cells and their associated bone marrow microenvironment, intricately participates in hematopoiesis, coagulation, immune regulation and other physiological phenomena. The aging process triggers various alterations within the hematopoietic system, serving as a spectrum of risk factors for hematopoietic disorders, including clonal hematopoiesis, immune senescence, myeloproliferative neoplasms and leukemia. The emerging single-cell technologies provide novel insights into age-related changes in the hematopoietic system. In this review, we summarize recent studies dissecting hematopoietic system aging using single-cell technologies. We discuss cellular changes occurring during aging in the hematopoietic system at the levels of the genomics, transcriptomics, epigenomics, proteomics, metabolomics and spatial multi-omics. Finally, we contemplate the future prospects of single-cell technologies, emphasizing the impact they may bring to the field of hematopoietic system aging research.
Collapse
Affiliation(s)
- Xinrong Jin
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People's Hospital of Deqing, Deqing Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Ruohan Zhang
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People's Hospital of Deqing, Deqing Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Yunqi Fu
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People's Hospital of Deqing, Deqing Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Qiunan Zhu
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People's Hospital of Deqing, Deqing Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Liquan Hong
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People's Hospital of Deqing, Deqing Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Aiwei Wu
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People's Hospital of Deqing, Deqing Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Hu Wang
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People's Hospital of Deqing, Deqing Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
18
|
Li M, Zuo J, Yang K, Wang P, Zhou S. Proteomics mining of cancer hallmarks on a single-cell resolution. MASS SPECTROMETRY REVIEWS 2024; 43:1019-1040. [PMID: 37051664 DOI: 10.1002/mas.21842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 11/25/2022] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
Dysregulated proteome is an essential contributor in carcinogenesis. Protein fluctuations fuel the progression of malignant transformation, such as uncontrolled proliferation, metastasis, and chemo/radiotherapy resistance, which severely impair therapeutic effectiveness and cause disease recurrence and eventually mortality among cancer patients. Cellular heterogeneity is widely observed in cancer and numerous cell subtypes have been characterized that greatly influence cancer progression. Population-averaged research may not fully reveal the heterogeneity, leading to inaccurate conclusions. Thus, deep mining of the multiplex proteome at the single-cell resolution will provide new insights into cancer biology, to develop prognostic biomarkers and treatments. Considering the recent advances in single-cell proteomics, herein we review several novel technologies with particular focus on single-cell mass spectrometry analysis, and summarize their advantages and practical applications in the diagnosis and treatment for cancer. Technological development in single-cell proteomics will bring a paradigm shift in cancer detection, intervention, and therapy.
Collapse
Affiliation(s)
- Maomao Li
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China
| | - Jing Zuo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, China
| | - Kailin Yang
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, Ohio, USA
| | - Ping Wang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China
| | - Shengtao Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China
| |
Collapse
|
19
|
Sivaraj KK, Majev PG, Dharmalingam B, Schröder S, Banjanin B, Stehling M, Zeuschner D, Nordheim A, Schneider RK, Adams RH. Endothelial LATS2 is a suppressor of bone marrow fibrosis. NATURE CARDIOVASCULAR RESEARCH 2024; 3:951-969. [PMID: 39155965 PMCID: PMC11324521 DOI: 10.1038/s44161-024-00508-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/13/2024] [Indexed: 08/20/2024]
Abstract
Myelofibrosis and osteosclerosis are fibrotic diseases disrupting bone marrow function that occur in various leukemias but also in response to non-malignant alterations in hematopoietic cells. Here we show that endothelial cell-specific inactivation of the Lats2 gene, encoding Hippo kinase large tumor suppressor kinase 2, or overexpression of the downstream effector YAP1 induce myofibroblast formation and lead to extensive fibrosis and osteosclerosis, which impair bone marrow function and cause extramedullary hematopoiesis in the spleen. Mechanistically, loss of LATS2 induces endothelial-to-mesenchymal transition, resulting in increased expression of extracellular matrix and secreted signaling molecules. Changes in endothelial cells involve increased expression of serum response factor target genes, and, strikingly, major aspects of the LATS2 mutant phenotype are rescued by inactivation of the Srf gene. These findings identify the endothelium as a driver of bone marrow fibrosis, which improves understanding of myelofibrotic and osteosclerotic diseases, for which drug therapies are currently lacking.
Collapse
Affiliation(s)
- Kishor K. Sivaraj
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Paul-Georg Majev
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | | | - Silke Schröder
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Bella Banjanin
- Department of Developmental Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Martin Stehling
- Flow Cytometry Unit, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Dagmar Zeuschner
- Electron Microscopy Unit, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Alfred Nordheim
- Department of Molecular Biology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
- Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany
| | - Rebekka K. Schneider
- Department of Developmental Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Oncode Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
- Institute for Cell and Tumor Biology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Ralf H. Adams
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| |
Collapse
|
20
|
Vermeersch G, Proost P, Struyf S, Gouwy M, Devos T. CXCL8 and its cognate receptors CXCR1/CXCR2 in primary myelofibrosis. Haematologica 2024; 109:2060-2072. [PMID: 38426279 PMCID: PMC11215396 DOI: 10.3324/haematol.2023.284921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/16/2024] [Indexed: 03/02/2024] Open
Abstract
BCR::ABL1 negative myeloproliferative neoplasms (MPN) form a distinct group of hematologic malignancies characterized by sustained proliferation of cells from multiple myeloid lineages. With a median survival of 16-35 months in patients with high-risk disease, primary myelofibrosis (PMF) is considered the most aggressive entity amongst all BCR::ABL1 MPN. Additionally, for a significant subset of patients, MPN evolve into secondary acute myeloid leukemia (AML), which has an even poorer prognosis compared to de novo AML. As the exact mechanisms of disease development and progression remain to be elucidated, current therapeutic approaches fail to prevent disease progression or transformation into secondary AML. As each MPN entity is characterized by sustained activation of various immune cells and raised cytokine concentrations within bone marrow (BM) and peripheral blood (PB), MPN may be considered to be typical inflammation-related malignancies. However, the exact role and consequences of increased cytokine concentrations within BM and PB plasma has still not been completely established. Up-regulated cytokines can stimulate cellular proliferation, or contribute to the development of an inflammation-related BM niche resulting in genotoxicity and thereby supporting mutagenesis. The neutrophil chemoattractant CXCL8 is of specific interest as its concentration is increased within PB and BM plasma of patients with PMF. Increased concentration of CXCL8 negatively correlates with overall survival. Furthermore, blockage of the CXCR1/2 axis appears to be able to reduce BM fibrosis and megakaryocyte dysmorphia in murine models. In this review, we summarize available evidence on the role of the CXCL8-CXCR1/2 axis within the pathogenesis of PMF, and discuss potential therapeutic modalities targeting either CXCL8 or its cognate receptors CXCR1/2.
Collapse
Affiliation(s)
- Gael Vermeersch
- Department of Hematology, University Hospitals Leuven, 3000, Leuven, Belgium; Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, 3000, Leuven
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, 3000, Leuven
| | - Sofie Struyf
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, 3000, Leuven
| | - Mieke Gouwy
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, 3000, Leuven
| | - Timothy Devos
- Department of Hematology, University Hospitals Leuven, 3000, Leuven, Belgium; Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, 3000, Leuven.
| |
Collapse
|
21
|
Carrelha J, Mazzi S, Winroth A, Hagemann-Jensen M, Ziegenhain C, Högstrand K, Seki M, Brennan MS, Lehander M, Wu B, Meng Y, Markljung E, Norfo R, Ishida H, Belander Strålin K, Grasso F, Simoglou Karali C, Aliouat A, Hillen A, Chari E, Siletti K, Thongjuea S, Mead AJ, Linnarsson S, Nerlov C, Sandberg R, Yoshizato T, Woll PS, Jacobsen SEW. Alternative platelet differentiation pathways initiated by nonhierarchically related hematopoietic stem cells. Nat Immunol 2024; 25:1007-1019. [PMID: 38816617 PMCID: PMC11147777 DOI: 10.1038/s41590-024-01845-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 04/17/2024] [Indexed: 06/01/2024]
Abstract
Rare multipotent stem cells replenish millions of blood cells per second through a time-consuming process, passing through multiple stages of increasingly lineage-restricted progenitors. Although insults to the blood-forming system highlight the need for more rapid blood replenishment from stem cells, established models of hematopoiesis implicate only one mandatory differentiation pathway for each blood cell lineage. Here, we establish a nonhierarchical relationship between distinct stem cells that replenish all blood cell lineages and stem cells that replenish almost exclusively platelets, a lineage essential for hemostasis and with important roles in both the innate and adaptive immune systems. These distinct stem cells use cellularly, molecularly and functionally separate pathways for the replenishment of molecularly distinct megakaryocyte-restricted progenitors: a slower steady-state multipotent pathway and a fast-track emergency-activated platelet-restricted pathway. These findings provide a framework for enhancing platelet replenishment in settings in which slow recovery of platelets remains a major clinical challenge.
Collapse
Affiliation(s)
- Joana Carrelha
- Haematopoietic Stem Cell Biology Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, London, UK.
| | - Stefania Mazzi
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Axel Winroth
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Christoph Ziegenhain
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- Division of Medical Systems Bioengineering, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Kari Högstrand
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Masafumi Seki
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Margs S Brennan
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Madeleine Lehander
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Bishan Wu
- Haematopoietic Stem Cell Biology Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Yiran Meng
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Ellen Markljung
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Ruggiero Norfo
- Haematopoietic Stem Cell Biology Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Interdepartmental Centre for Stem Cells and Regenerative Medicine (CIDSTEM), Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Hisashi Ishida
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Karin Belander Strålin
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Pediatric Oncology, Karolinska University Hospital, Stockholm, Sweden
| | - Francesca Grasso
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Christina Simoglou Karali
- Haematopoietic Stem Cell Biology Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Affaf Aliouat
- Haematopoietic Stem Cell Biology Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Amy Hillen
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Edwin Chari
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Kimberly Siletti
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Supat Thongjuea
- Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Adam J Mead
- Haematopoietic Stem Cell Biology Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Cancer and Haematology Centre, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Sten Linnarsson
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Claus Nerlov
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Rickard Sandberg
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Tetsuichi Yoshizato
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Petter S Woll
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sten Eirik W Jacobsen
- Haematopoietic Stem Cell Biology Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden.
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
22
|
Gao CF, Vaikuntanathan S, Riesenfeld SJ. Dissection and integration of bursty transcriptional dynamics for complex systems. Proc Natl Acad Sci U S A 2024; 121:e2306901121. [PMID: 38669186 PMCID: PMC11067469 DOI: 10.1073/pnas.2306901121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 03/06/2024] [Indexed: 04/28/2024] Open
Abstract
RNA velocity estimation is a potentially powerful tool to reveal the directionality of transcriptional changes in single-cell RNA-sequencing data, but it lacks accuracy, absent advanced metabolic labeling techniques. We developed an approach, TopicVelo, that disentangles simultaneous, yet distinct, dynamics by using a probabilistic topic model, a highly interpretable form of latent space factorization, to infer cells and genes associated with individual processes, thereby capturing cellular pluripotency or multifaceted functionality. Focusing on process-associated cells and genes enables accurate estimation of process-specific velocities via a master equation for a transcriptional burst model accounting for intrinsic stochasticity. The method obtains a global transition matrix by leveraging cell topic weights to integrate process-specific signals. In challenging systems, this method accurately recovers complex transitions and terminal states, while our use of first-passage time analysis provides insights into transient transitions. These results expand the limits of RNA velocity, empowering future studies of cell fate and functional responses.
Collapse
Affiliation(s)
- Cheng Frank Gao
- Department of Chemistry, University of Chicago, Chicago, IL60637
| | - Suriyanarayanan Vaikuntanathan
- Department of Chemistry, University of Chicago, Chicago, IL60637
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL60637
| | - Samantha J. Riesenfeld
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL60637
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL60637
- Department of Medicine, University of Chicago, Chicago, IL60637
- Committee on Immunology, Biological Sciences Division, University of Chicago, Chicago, IL60637
| |
Collapse
|
23
|
Xue G, Zhang X, Li W, Zhang L, Zhang Z, Zhou X, Zhang D, Zhang L, Li Z. A logic-incorporated gene regulatory network deciphers principles in cell fate decisions. eLife 2024; 12:RP88742. [PMID: 38652107 PMCID: PMC11037919 DOI: 10.7554/elife.88742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
Organisms utilize gene regulatory networks (GRN) to make fate decisions, but the regulatory mechanisms of transcription factors (TF) in GRNs are exceedingly intricate. A longstanding question in this field is how these tangled interactions synergistically contribute to decision-making procedures. To comprehensively understand the role of regulatory logic in cell fate decisions, we constructed a logic-incorporated GRN model and examined its behavior under two distinct driving forces (noise-driven and signal-driven). Under the noise-driven mode, we distilled the relationship among fate bias, regulatory logic, and noise profile. Under the signal-driven mode, we bridged regulatory logic and progression-accuracy trade-off, and uncovered distinctive trajectories of reprogramming influenced by logic motifs. In differentiation, we characterized a special logic-dependent priming stage by the solution landscape. Finally, we applied our findings to decipher three biological instances: hematopoiesis, embryogenesis, and trans-differentiation. Orthogonal to the classical analysis of expression profile, we harnessed noise patterns to construct the GRN corresponding to fate transition. Our work presents a generalizable framework for top-down fate-decision studies and a practical approach to the taxonomy of cell fate decisions.
Collapse
Affiliation(s)
- Gang Xue
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking UniversityBeijingChina
| | - Xiaoyi Zhang
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking UniversityBeijingChina
| | - Wanqi Li
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking UniversityBeijingChina
| | - Lu Zhang
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking UniversityBeijingChina
| | - Zongxu Zhang
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking UniversityBeijingChina
| | - Xiaolin Zhou
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking UniversityBeijingChina
| | - Di Zhang
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking UniversityBeijingChina
| | - Lei Zhang
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking UniversityBeijingChina
- Beijing International Center for Mathematical Research, Center for Machine Learning Research, Peking UniversityBeijingChina
| | - Zhiyuan Li
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking UniversityBeijingChina
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking UniversityBeijingChina
| |
Collapse
|
24
|
Wang Z, Mei Y, Yang Z, Gao Q, Xu H, Han Z, Hong Z. TNF-α is a predictive marker in distinguishing myeloproliferative neoplasm and idiopathic erythrocytosis/thrombocytosis: development and validation of a non-invasive diagnostic model. Front Oncol 2024; 14:1369346. [PMID: 38585007 PMCID: PMC10995358 DOI: 10.3389/fonc.2024.1369346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/12/2024] [Indexed: 04/09/2024] Open
Abstract
Purpose Philadelphia-chromosome negative myeloproliferative neoplasms (MPN) exhibit phenotypic similarities with JAK/STAT-unmutated idiopathic erythrocytosis and thrombocytosis (IE/IT). We aimed to develop a clinical diagnostic model to discern MPN and IE/IT. Methods A retrospective study was performed on 77 MPN patients and 32 IE/IT patients in our center from January 2018 to December 2023. We investigated the role of hemogram, cytokine and spleen size in differentiating MPN and IE/IT among newly onset erythrocytosis and thrombocytosis patients. Independent influencing factors were integrated into a nomogram for individualized risk prediction. The calibration and discrimination ability of the model were evaluated by concordance index (C-index), calibration curve. Results MPN had significantly higher TNF-α level than IE/IT, and the TNF-α level is correlated with MF-grade. Multivariable analyses revealed that TNF-α, PLT count, age, size of spleen were independent diagnostic factors in differentiating MPN and IE/IT. Nomograms integrated the above 4 factors for differentiating MPN and IE/IT was internally validated and had good performance, the C-index of the model is 0.979. Conclusion The elevation of serum TNF-α in MPN patients is of diagnostic significance and is correlated with the severity of myelofibrosis. The nomogram incorporating TNF-α with age, PLT count and spleen size presents a noteworthy tool in the preliminary discrimination of MPN patients and those with idiopathic erythrocytosis or thrombocytosis. This highlights the potential of cytokines as biomarkers in hematologic disorders.
Collapse
Affiliation(s)
- Zhenhao Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yu Mei
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhuming Yang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qiang Gao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hao Xu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhiqiang Han
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhenya Hong
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
25
|
Gottardo A, Gristina V, Perez A, Di Giovanni E, Contino S, Barraco N, Bono M, Iannì G, Randazzo U, Bazan Russo TD, Iacono F, Incorvaia L, Badalamenti G, Russo A, Galvano A, Bazan V. Roles of Tumor-Educated Platelets (TEPs) in the biology of Non-Small Cell Lung Cancer (NSCLC): A systematic review. "Re-discovering the neglected biosources of the liquid biopsy family". THE JOURNAL OF LIQUID BIOPSY 2024; 3:100136. [PMID: 40026563 PMCID: PMC11863699 DOI: 10.1016/j.jlb.2024.100136] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/02/2024] [Accepted: 01/02/2024] [Indexed: 03/05/2025]
Abstract
Due to their interactions with the neoplasm, platelets undergo various proteomic and transcriptomic modifications, resulting in the development of what is known as the "Tumor-Educated Platelets (TEPs) phenotype". Consequently, in addition to their suitability for Liquid Biopsy (LB) applications, they play a pivotal role in the malignancy by communicating with Circulating Tumor Cells (CTCs), Tumor Microenvironment (TME), and the tumor itself through multiple mechanisms and at multiple levels, ultimately promoting the metastasis of cancer. Therefore, this Systematic Review of MEDLINE and the Cochrane Library present in-depth insights into these phenomena, with the aim of enhancing the understanding of the complex interplay between TEPs and Non-Small Cell Lung Cancer (NSCLC). This endeavor serves to provide context and drive medical research efforts, which are increasingly focused on developing novel diagnostic and therapeutic technologies that leverage the specific binding of these platelets to the disease.
Collapse
Affiliation(s)
- Andrea Gottardo
- Department of Surgical, Oncological and Oral Sciences (Di.Chir.On.S.), University of Palermo, Palermo, Italy
| | - Valerio Gristina
- Department of Surgical, Oncological and Oral Sciences (Di.Chir.On.S.), University of Palermo, Palermo, Italy
| | - Alessandro Perez
- Department of Surgical, Oncological and Oral Sciences (Di.Chir.On.S.), University of Palermo, Palermo, Italy
| | - Emilia Di Giovanni
- Department of Surgical, Oncological and Oral Sciences (Di.Chir.On.S.), University of Palermo, Palermo, Italy
| | - Silvia Contino
- Department of Surgical, Oncological and Oral Sciences (Di.Chir.On.S.), University of Palermo, Palermo, Italy
| | - Nadia Barraco
- Department of Surgical, Oncological and Oral Sciences (Di.Chir.On.S.), University of Palermo, Palermo, Italy
| | - Marco Bono
- Department of Surgical, Oncological and Oral Sciences (Di.Chir.On.S.), University of Palermo, Palermo, Italy
| | - Giuliana Iannì
- Department of Surgical, Oncological and Oral Sciences (Di.Chir.On.S.), University of Palermo, Palermo, Italy
| | - Ugo Randazzo
- Department of Surgical, Oncological and Oral Sciences (Di.Chir.On.S.), University of Palermo, Palermo, Italy
| | - Tancredi Didier Bazan Russo
- Department of Surgical, Oncological and Oral Sciences (Di.Chir.On.S.), University of Palermo, Palermo, Italy
| | - Federica Iacono
- Department of Surgical, Oncological and Oral Sciences (Di.Chir.On.S.), University of Palermo, Palermo, Italy
| | - Lorena Incorvaia
- Department of Surgical, Oncological and Oral Sciences (Di.Chir.On.S.), University of Palermo, Palermo, Italy
| | - Giuseppe Badalamenti
- Department of Surgical, Oncological and Oral Sciences (Di.Chir.On.S.), University of Palermo, Palermo, Italy
| | - Antonio Russo
- Department of Surgical, Oncological and Oral Sciences (Di.Chir.On.S.), University of Palermo, Palermo, Italy
| | - Antonio Galvano
- Department of Surgical, Oncological and Oral Sciences (Di.Chir.On.S.), University of Palermo, Palermo, Italy
| | - Viviana Bazan
- Department of Biomedicine, Neuroscience and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, Italy
| |
Collapse
|
26
|
Flosdorf N, Böhnke J, de Toledo MAS, Lutterbach N, Lerma VG, Graßhoff M, Olschok K, Gupta S, Tharmapalan V, Schmitz S, Götz K, Schüler HM, Maurer A, Sontag S, Küstermann C, Seré K, Wagner W, Costa IG, Brümmendorf TH, Koschmieder S, Chatain N, Castilho M, Schneider RK, Zenke M. Proinflammatory phenotype of iPS cell-derived JAK2 V617F megakaryocytes induces fibrosis in 3D in vitro bone marrow niche. Stem Cell Reports 2024; 19:224-238. [PMID: 38278152 PMCID: PMC10874863 DOI: 10.1016/j.stemcr.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 01/28/2024] Open
Abstract
The myeloproliferative disease polycythemia vera (PV) driven by the JAK2 V617F mutation can transform into myelofibrosis (post-PV-MF). It remains an open question how JAK2 V617F in hematopoietic stem cells induces MF. Megakaryocytes are major players in murine PV models but are difficult to study in the human setting. We generated induced pluripotent stem cells (iPSCs) from JAK2 V617F PV patients and differentiated them into megakaryocytes. In differentiation assays, JAK2 V617F iPSCs recapitulated the pathognomonic skewed megakaryocytic and erythroid differentiation. JAK2 V617F iPSCs had a TPO-independent and increased propensity to differentiate into megakaryocytes. RNA sequencing of JAK2 V617F iPSC-derived megakaryocytes reflected a proinflammatory, profibrotic phenotype and decreased ribosome biogenesis. In three-dimensional (3D) coculture, JAK2 V617F megakaryocytes induced a profibrotic phenotype through direct cell contact, which was reversed by the JAK2 inhibitor ruxolitinib. The 3D coculture system opens the perspective for further disease modeling and drug discovery.
Collapse
Affiliation(s)
- Niclas Flosdorf
- Department of Cell Biology, Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany; Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany; Institute for Cell and Tumor Biology, RWTH Aachen University Medical School, Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Janik Böhnke
- Department of Cell Biology, Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany; Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Marcelo A S de Toledo
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany; Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University Hospital, Aachen, Germany
| | - Niklas Lutterbach
- Institute for Cell and Tumor Biology, RWTH Aachen University Medical School, Aachen, Germany
| | - Vanesa Gómez Lerma
- Department of Cell Biology, Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany; Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Martin Graßhoff
- Institute of Computational Genomics, RWTH Aachen University Hospital, Aachen, Germany
| | - Kathrin Olschok
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany; Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University Hospital, Aachen, Germany
| | - Siddharth Gupta
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany; Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University Hospital, Aachen, Germany
| | - Vithurithra Tharmapalan
- Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany; Institute for Stem Cell Biology, RWTH Aachen University Medical School, Aachen, Germany
| | - Susanne Schmitz
- Institute for Cell and Tumor Biology, RWTH Aachen University Medical School, Aachen, Germany
| | - Katrin Götz
- Institute for Cell and Tumor Biology, RWTH Aachen University Medical School, Aachen, Germany
| | - Herdit M Schüler
- Institute for Human Genetics and Genome Medicine, Faculty of Medicine, RWTH Aachen University, Aachen, Germany; Center for Rare Diseases, Medical Faculty, and University Hospital Düsseldorf Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Angela Maurer
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany; Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University Hospital, Aachen, Germany
| | - Stephanie Sontag
- Department of Cell Biology, Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany; Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Caroline Küstermann
- Department of Cell Biology, Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany; Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Kristin Seré
- Department of Cell Biology, Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany; Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany; Institute for Cell and Tumor Biology, RWTH Aachen University Medical School, Aachen, Germany
| | - Wolfgang Wagner
- Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany; Institute for Stem Cell Biology, RWTH Aachen University Medical School, Aachen, Germany
| | - Ivan G Costa
- Institute of Computational Genomics, RWTH Aachen University Hospital, Aachen, Germany
| | - Tim H Brümmendorf
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany; Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University Hospital, Aachen, Germany
| | - Steffen Koschmieder
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany; Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University Hospital, Aachen, Germany
| | - Nicolas Chatain
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany; Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University Hospital, Aachen, Germany
| | - Miguel Castilho
- Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Rebekka K Schneider
- Institute for Cell and Tumor Biology, RWTH Aachen University Medical School, Aachen, Germany
| | - Martin Zenke
- Department of Cell Biology, Institute for Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany; Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany; Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University Hospital, Aachen, Germany.
| |
Collapse
|
27
|
Thomas S, Kelliher S, Krishnan A. Heterogeneity of platelets and their responses. Res Pract Thromb Haemost 2024; 8:102356. [PMID: 38666061 PMCID: PMC11043642 DOI: 10.1016/j.rpth.2024.102356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/22/2024] [Accepted: 02/06/2024] [Indexed: 04/28/2024] Open
Abstract
There has been increasing recognition of heterogeneity in blood platelets and their responses, particularly in recent years, where next-generation technologies and advanced bioinformatic tools that interrogate "big data" have enabled large-scale studies of RNA and protein expression across a growing list of disease states. However, pioneering platelet biologists and clinicians were already hypothesizing upon and investigating heterogeneity in platelet (and megakaryocyte) activity and platelet metabolism and aggregation over half a century ago. Building on their foundational hypotheses, in particular Professor Marian A. Packham's pioneering work and a State of the Art lecture in her memoriam at the 2023 International Society on Thrombosis and Haemostasis Congress by Anandi Krishnan, this review outlines the key features that contribute to the heterogeneity of platelets between and within individuals. Starting with important epidemiologic factors, we move stepwise through successively smaller scales down to heterogeneity revealed by single-cell technologies in health and disease. We hope that this overview will urge future scientific and clinical studies to recognize and account for heterogeneity of platelets and aim to apply methods that capture that heterogeneity. Finally, we summarize other exciting new data presented on this topic at the 2023 International Society on Thrombosis and Haemostasis Congress.
Collapse
Affiliation(s)
- Sally Thomas
- Sheffield Teaching Hospitals, National Health Services, Sheffield, UK
| | - Sarah Kelliher
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Anandi Krishnan
- Stanford University School of Medicine, Stanford University, Stanford, California, USA
- Rutgers University, Piscataway, New Jersey, USA
| |
Collapse
|
28
|
Verma T, Papadantonakis N, Peker Barclift D, Zhang L. Molecular Genetic Profile of Myelofibrosis: Implications in the Diagnosis, Prognosis, and Treatment Advancements. Cancers (Basel) 2024; 16:514. [PMID: 38339265 PMCID: PMC10854658 DOI: 10.3390/cancers16030514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Myelofibrosis (MF) is an essential element of primary myelofibrosis, whereas secondary MF may develop in the advanced stages of other myeloid neoplasms, especially polycythemia vera and essential thrombocythemia. Over the last two decades, advances in molecular diagnostic techniques, particularly the integration of next-generation sequencing in clinical laboratories, have revolutionized the diagnosis, classification, and clinical decision making of myelofibrosis. Driver mutations involving JAK2, CALR, and MPL induce hyperactivity in the JAK-STAT signaling pathway, which plays a central role in cell survival and proliferation. Approximately 80% of myelofibrosis cases harbor additional mutations, frequently in the genes responsible for epigenetic regulation and RNA splicing. Detecting these mutations is crucial for diagnosing myeloproliferative neoplasms (MPNs), especially in cases where no mutations are present in the three driver genes (triple-negative MPNs). While fibrosis in the bone marrow results from the disturbance of inflammatory cytokines, it is fundamentally associated with mutation-driven hematopoiesis. The mutation profile and order of acquiring diverse mutations influence the MPN phenotype. Mutation profiling reveals clonal diversity in MF, offering insights into the clonal evolution of neoplastic progression. Prognostic prediction plays a pivotal role in guiding the treatment of myelofibrosis. Mutation profiles and cytogenetic abnormalities have been integrated into advanced prognostic scoring systems and personalized risk stratification for MF. Presently, JAK inhibitors are part of the standard of care for MF, with newer generations developed for enhanced efficacy and reduced adverse effects. However, only a minority of patients have achieved a significant molecular-level response. Clinical trials exploring innovative approaches, such as combining hypomethylation agents that target epigenetic regulators, drugs proven effective in myelodysplastic syndrome, or immune and inflammatory modulators with JAK inhibitors, have demonstrated promising results. These combinations may be more effective in patients with high-risk mutations and complex mutation profiles. Expanding mutation profiling studies with more sensitive and specific molecular methods, as well as sequencing a broader spectrum of genes in clinical patients, may reveal molecular mechanisms in cases currently lacking detectable driver mutations, provide a better understanding of the association between genetic alterations and clinical phenotypes, and offer valuable information to advance personalized treatment protocols to improve long-term survival and eradicate mutant clones with the hope of curing MF.
Collapse
Affiliation(s)
- Tanvi Verma
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Nikolaos Papadantonakis
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Deniz Peker Barclift
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Linsheng Zhang
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
29
|
Attar LJ, Alelaimat A, Alshorman A, Aladily TN. MPIG6B Gene-Related Myelofibrosis: A Rare Inherited Disease That Is Frequently Described in Arab Population. Avicenna J Med 2024; 14:69-72. [PMID: 38694137 PMCID: PMC11057892 DOI: 10.1055/s-0044-1779697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024] Open
Abstract
The megakaryocyte and platelet inhibitory receptor gene G6P (MPIG6B) is located on chromosome 6p21.33. It encodes G6b-B; an inhibitory receptor expressed on the surface of platelets. It regulates platelets production, aggregation, and activation. We describe a case of a 31-year-old man who presented with a long history of thrombocytopenia, anemia, and hepatosplenomegaly. The patient received multiple blood transfusions and his clinical course was stable. A bone marrow biopsy showed morphologic features similar to primary myelofibrosis. Whole exome sequencing study was performed and revealed homozygous pathogenic mutation in exon 2 of MPIG6B gene (c.324C > A, p.Cys108Ter) that is the second reported case in literature. In this report, we describe the main clinical and pathologic features of this disease and review the literature of previously documented cases.
Collapse
Affiliation(s)
- Leen Jihad Attar
- Department of Hematopathology, The University of Jordan, Amman, Jordan
| | | | - Alaa Alshorman
- Department of Hematology, Ministry of Health, Amman, Jordan
| | - Tariq N. Aladily
- Department of Hematopathology, The University of Jordan, Amman, Jordan
| |
Collapse
|
30
|
Ryou H, Lomas O, Theissen H, Thomas E, Rittscher J, Royston D. Quantitative interpretation of bone marrow biopsies in MPN-What's the point in a molecular age? Br J Haematol 2023; 203:523-535. [PMID: 37858962 PMCID: PMC10952168 DOI: 10.1111/bjh.19154] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/20/2023] [Accepted: 09/30/2023] [Indexed: 10/21/2023]
Abstract
The diagnosis of myeloproliferative neoplasms (MPN) requires the integration of clinical, morphological, genetic and immunophenotypic findings. Recently, there has been a transformation in our understanding of the cellular and molecular mechanisms underlying disease initiation and progression in MPN. This has been accompanied by the widespread application of high-resolution quantitative molecular techniques. By contrast, microscopic interpretation of bone marrow biopsies by haematologists/haematopathologists remains subjective and qualitative. However, advances in tissue image analysis and artificial intelligence (AI) promise to transform haematopathology. Pioneering studies in bone marrow image analysis offer to refine our understanding of the boundaries between reactive samples and MPN subtypes and better capture the morphological correlates of high-risk disease. They also demonstrate potential to improve the evaluation of current and novel therapeutics for MPN and other blood cancers. With increased therapeutic targeting of diverse molecular, cellular and extra-cellular components of the marrow, these approaches can address the unmet need for improved objective and quantitative measures of disease modification in the context of clinical trials. This review focuses on the state-of-the-art in image analysis/AI of bone marrow tissue, with an emphasis on its potential to complement and inform future clinical studies and research in MPN.
Collapse
Affiliation(s)
- Hosuk Ryou
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of MedicineUniversity of OxfordOxfordUK
| | - Oliver Lomas
- Department of HaematologyOxford University Hospitals NHS Foundation TrustOxfordUK
| | - Helen Theissen
- Department of Engineering Science, Institute of Biomedical Engineering (IBME)University of OxfordOxfordUK
| | - Emily Thomas
- Department of Engineering Science, Institute of Biomedical Engineering (IBME)University of OxfordOxfordUK
| | - Jens Rittscher
- Department of Engineering Science, Institute of Biomedical Engineering (IBME)University of OxfordOxfordUK
- Ground Truth LabsOxfordUK
- Oxford NIHR Biomedical Research CentreOxford University Hospitals NHS Foundation TrustOxfordUK
- Ludwig Institute for Cancer ResearchUniversity of OxfordOxfordUK
| | - Daniel Royston
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of MedicineUniversity of OxfordOxfordUK
- Department of PathologyOxford University Hospitals NHS Foundation TrustOxfordUK
| |
Collapse
|
31
|
Calledda FR, Malara A, Balduini A. Inflammation and bone marrow fibrosis: novel immunotherapeutic targets. Curr Opin Hematol 2023; 30:237-244. [PMID: 37548363 DOI: 10.1097/moh.0000000000000778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
PURPOSE OF REVIEW Myelofibrosis (MF) is primarily driven by constitutive activation of the Janus kinase/signal transducer of activators of transcription (JAK/STAT) pathway. While JAK inhibitors have shown to alleviate disease symptoms, their disease-modifying effects in MF are limited. The only curative treatment remains allogeneic stem cell transplantation, which can be applied to a minority of patients. As a result, there is a need to explore novel targets in MF to facilitate appropriate drug development and therapeutic pathways. RECENT FINDINGS Recent research has focused on identifying novel signals that contribute to the abnormal cross-talk between hematopoietic and stromal cells, which promotes MF and disease progression. Inflammation and immune dysregulation have emerged as key drivers of both the initiation and progression of MF. A growing number of actionable targets has been identified, including cytokines, transcription factors, signalling networks and cell surface-associated molecules. These targets exhibit dysfunctions in malignant and nonmalignant hematopoietic cells, but also in nonhematopoietic cells of the bone marrow. The study of these inflammation-related molecules, in preclinical models and MF patient's samples, is providing novel therapeutic targets. SUMMARY The identification of immunotherapeutic targets is expanding the therapeutic landscape of MF. This review provides a summary of the most recent advancements in the study of immunotherapeutic targets in MF.
Collapse
|
32
|
Vainchenker W, Yahmi N, Havelange V, Marty C, Plo I, Constantinescu SN. Recent advances in therapies for primary myelofibrosis. Fac Rev 2023; 12:23. [PMID: 37771602 PMCID: PMC10523375 DOI: 10.12703/r/12-23] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023] Open
Abstract
Primary myelofibrosis (PMF), polycythemia vera (PV) and essential thrombocythemia (ET) form the classical BCR-ABL1-negative myeloproliferative neoplasms (MPNs) that are driven by a constitutive activation of JAK2 signaling. PMF as well as secondary MF (post-ET and post-PV MF) are the most aggressive MPNs. Presently, there is no curative treatment, except allogenic hematopoietic stem cell transplantation. JAK inhibitors, essentially ruxolitinib, are the therapy of reference for intermediate and high-risk MF. However, presently the current JAK inhibitors behave mainly as anti-inflammatory drugs, improving general symptoms and spleen size without major impact on disease progression. A better understanding of the genetics of MF, the biology of its leukemic stem cells (LSCs), the mechanisms of fibrosis and of cytopenia and the role of inflammatory cytokines has led to new approaches with the development of numerous therapeutic agents that target epigenetic regulation, telomerase, apoptosis, cell cycle, cytokines and signaling. Furthermore, the use of a new less toxic form of interferon-α has been revived, as it is presently one of the only molecules that targets the mutated clone. These new approaches have different aims: (a) to provide alternative therapy to JAK inhibition; (b) to correct cytopenia; and (c) to inhibit fibrosis development. However, the main important goal is to find new disease modifier treatments, which will profoundly modify the progression of the disease without major toxicity. Presently the most promising approaches consist of the inhibition of telomerase and the combination of JAK2 inhibitors (ruxolitinib) with either a BCL2/BCL-xL or BET inhibitor. Yet, the most straightforward future approaches can be considered to be the development of and/or selective inhibition of JAK2V617F and the targeting MPL and calreticulin mutants by immunotherapy. It can be expected that the therapy of MF will be significantly improved in the coming years.
Collapse
Affiliation(s)
- William Vainchenker
- INSERM, UMR1287, Gustave Roussy, Villejuif, France
- Université Paris-Saclay, UMR1287, Gustave Roussy, Villejuif, France
- Gustave Roussy, UMR1287, Villejuif, France
| | - Nasrine Yahmi
- INSERM, UMR1287, Gustave Roussy, Villejuif, France
- Université Paris-Saclay, UMR1287, Gustave Roussy, Villejuif, France
- Gustave Roussy, UMR1287, Villejuif, France
| | - Violaine Havelange
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
- Cliniques universitaires Saint Luc, Department of Hematology, Université Catholique de Louvain, Brussels, Belgium
| | - Caroline Marty
- INSERM, UMR1287, Gustave Roussy, Villejuif, France
- Université Paris-Saclay, UMR1287, Gustave Roussy, Villejuif, France
- Gustave Roussy, UMR1287, Villejuif, France
| | - Isabelle Plo
- INSERM, UMR1287, Gustave Roussy, Villejuif, France
- Université Paris-Saclay, UMR1287, Gustave Roussy, Villejuif, France
- Gustave Roussy, UMR1287, Villejuif, France
| | - Stefan N Constantinescu
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
- Ludwig Institute for Cancer Research, Brussels, Belgium
- WEL Research Institute, WELBIO Department, Wavre, Belgium
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, Oxford University, Oxford, United Kingdom
| |
Collapse
|
33
|
Bigot T, Gabinaud E, Hannouche L, Sbarra V, Andersen E, Bastelica D, Falaise C, Bernot D, Ibrahim-Kosta M, Morange PE, Loosveld M, Saultier P, Payet-Bornet D, Alessi MC, Potier D, Poggi M. Single-cell analysis of megakaryopoiesis in peripheral CD34 + cells: insights into ETV6-related thrombocytopenia. J Thromb Haemost 2023; 21:2528-2544. [PMID: 37085035 DOI: 10.1016/j.jtha.2023.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/21/2023] [Accepted: 04/04/2023] [Indexed: 04/23/2023]
Abstract
BACKGROUND Germline mutations in the ETV6 transcription factor gene are responsible for familial thrombocytopenia and leukemia predisposition syndrome. Although previous studies have shown that ETV6 plays an important role in megakaryocyte (MK) maturation and platelet formation, the mechanisms by which ETV6 dysfunction promotes thrombocytopenia remain unclear. OBJECTIVES To decipher the transcriptional mechanisms and gene regulatory network linking ETV6 germline mutations and thrombocytopenia. METHODS Presuming that ETV6 mutations result in selective effects at a particular cell stage, we applied single-cell RNA sequencing to understand gene expression changes during megakaryopoiesis in peripheral CD34+ cells from healthy controls and patients with ETV6-related thrombocytopenia. RESULTS Analysis of gene expression and regulon activity revealed distinct clusters partitioned into 7 major cell stages: hematopoietic stem/progenitor cells, common-myeloid progenitors (CMPs), MK-primed CMPs, granulocyte-monocyte progenitors, MK-erythroid progenitors (MEPs), progenitor MKs/mature MKs, and platelet-like particles. We observed a differentiation trajectory in which MEPs developed directly from hematopoietic stem/progenitor cells and bypassed the CMP stage. ETV6 deficiency led to the development of aberrant cells as early as the MEP stage, which intensified at the progenitor MK/mature MK stage, with a highly deregulated core "ribosome biogenesis" pathway. Indeed, increased translation levels have been documented in patient CD34+-derived MKs with overexpression of ribosomal protein S6 and phosphorylated ribosomal protein S6 in both CD34+-derived MKs and platelets. Treatment of patient MKs with the ribosomal biogenesis inhibitor CX-5461 resulted in an increase in platelet-like particles. CONCLUSION These findings provide novel insight into both megakaryopoiesis and the link among ETV6, translation, and platelet production.
Collapse
Affiliation(s)
- Timothée Bigot
- Aix-Marseille Univ, INSERM, INRAe, C2VN, Marseille, France
| | - Elisa Gabinaud
- Aix-Marseille Univ, INSERM, INRAe, C2VN, Marseille, France
| | | | | | - Elisa Andersen
- Aix-Marseille Univ, INSERM, INRAe, C2VN, Marseille, France
| | | | | | - Denis Bernot
- Aix-Marseille Univ, INSERM, INRAe, C2VN, Marseille, France
| | | | | | - Marie Loosveld
- Aix-Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| | - Paul Saultier
- Aix-Marseille Univ, INSERM, INRAe, C2VN, Marseille, France
| | | | - Marie-Christine Alessi
- Aix-Marseille Univ, INSERM, INRAe, C2VN, Marseille, France; AP-HM, CHU Timone, CRPP, Marseille, France
| | | | - Marjorie Poggi
- Aix-Marseille Univ, INSERM, INRAe, C2VN, Marseille, France.
| |
Collapse
|
34
|
Rodriguez-Meira A, Norfo R, Wen S, Chédeville AL, Rahman H, O'Sullivan J, Wang G, Louka E, Kretzschmar WW, Paterson A, Brierley C, Martin JE, Demeule C, Bashton M, Sousos N, Moralli D, Subha Meem L, Carrelha J, Wu B, Hamblin A, Guermouche H, Pasquier F, Marzac C, Girodon F, Vainchenker W, Drummond M, Harrison C, Chapman JR, Plo I, Jacobsen SEW, Psaila B, Thongjuea S, Antony-Debré I, Mead AJ. Single-cell multi-omics identifies chronic inflammation as a driver of TP53-mutant leukemic evolution. Nat Genet 2023; 55:1531-1541. [PMID: 37666991 PMCID: PMC10484789 DOI: 10.1038/s41588-023-01480-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 07/20/2023] [Indexed: 09/06/2023]
Abstract
Understanding the genetic and nongenetic determinants of tumor protein 53 (TP53)-mutation-driven clonal evolution and subsequent transformation is a crucial step toward the design of rational therapeutic strategies. Here we carry out allelic resolution single-cell multi-omic analysis of hematopoietic stem/progenitor cells (HSPCs) from patients with a myeloproliferative neoplasm who transform to TP53-mutant secondary acute myeloid leukemia (sAML). All patients showed dominant TP53 'multihit' HSPC clones at transformation, with a leukemia stem cell transcriptional signature strongly predictive of adverse outcomes in independent cohorts, across both TP53-mutant and wild-type (WT) AML. Through analysis of serial samples, antecedent TP53-heterozygous clones and in vivo perturbations, we demonstrate a hitherto unrecognized effect of chronic inflammation, which suppressed TP53 WT HSPCs while enhancing the fitness advantage of TP53-mutant cells and promoted genetic evolution. Our findings will facilitate the development of risk-stratification, early detection and treatment strategies for TP53-mutant leukemia, and are of broad relevance to other cancer types.
Collapse
Affiliation(s)
- Alba Rodriguez-Meira
- Haematopoietic Stem Cell Biology Laboratory, Medical Research Council Molecular Haematology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
- NIHR Biomedical Research Centre, University of Oxford, Oxford, UK.
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA, USA.
- Broad Institute, Cambridge, MA, USA.
| | - Ruggiero Norfo
- Haematopoietic Stem Cell Biology Laboratory, Medical Research Council Molecular Haematology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
- Centre for Regenerative Medicine 'Stefano Ferrari', Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Sean Wen
- Haematopoietic Stem Cell Biology Laboratory, Medical Research Council Molecular Haematology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
- Medical Research Council Centre for Computational Biology, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Agathe L Chédeville
- INSERM, UMR 1287, Villejuif, France
- Gustave Roussy, Villejuif, France
- Université Paris Saclay, Gif-sur-Yvette, France
- Université Paris Cité, Paris, France
| | - Haseeb Rahman
- Haematopoietic Stem Cell Biology Laboratory, Medical Research Council Molecular Haematology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Jennifer O'Sullivan
- Haematopoietic Stem Cell Biology Laboratory, Medical Research Council Molecular Haematology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Guanlin Wang
- Haematopoietic Stem Cell Biology Laboratory, Medical Research Council Molecular Haematology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
- Medical Research Council Centre for Computational Biology, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Eleni Louka
- Haematopoietic Stem Cell Biology Laboratory, Medical Research Council Molecular Haematology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Warren W Kretzschmar
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- Karolinska University Hospital, Stockholm, Sweden
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Aimee Paterson
- Haematopoietic Stem Cell Biology Laboratory, Medical Research Council Molecular Haematology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Charlotte Brierley
- Haematopoietic Stem Cell Biology Laboratory, Medical Research Council Molecular Haematology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
- Center for Hematological Malignancies, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Jean-Edouard Martin
- INSERM, UMR 1287, Villejuif, France
- Gustave Roussy, Villejuif, France
- Université Paris Saclay, Gif-sur-Yvette, France
- Université Paris Cité, Paris, France
| | | | - Matthew Bashton
- The Hub for Biotechnology in the Built Environment, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Nikolaos Sousos
- Haematopoietic Stem Cell Biology Laboratory, Medical Research Council Molecular Haematology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| | | | | | - Joana Carrelha
- Haematopoietic Stem Cell Biology Laboratory, Medical Research Council Molecular Haematology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Bishan Wu
- Haematopoietic Stem Cell Biology Laboratory, Medical Research Council Molecular Haematology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Angela Hamblin
- NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Helene Guermouche
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, AP-HP, Hôpital Saint-Antoine, Service d'hématologie biologique, Paris, France
| | - Florence Pasquier
- INSERM, UMR 1287, Villejuif, France
- Gustave Roussy, Villejuif, France
- Université Paris Saclay, Gif-sur-Yvette, France
- Département d'Hématologie, Gustave Roussy, Villejuif, France
| | - Christophe Marzac
- INSERM, UMR 1287, Villejuif, France
- Gustave Roussy, Villejuif, France
- Université Paris Saclay, Gif-sur-Yvette, France
- Laboratoire d'Immuno-Hématologie, Gustave Roussy, Villejuif, France
| | - François Girodon
- Laboratoire d'Hématologie, CHU Dijon, Dijon, France
- INSERM, UMR 1231, Centre de Recherche, Dijon, France
| | - William Vainchenker
- INSERM, UMR 1287, Villejuif, France
- Gustave Roussy, Villejuif, France
- Université Paris Saclay, Gif-sur-Yvette, France
| | | | | | - J Ross Chapman
- Genome Integrity Laboratory, Medical Research Council Molecular Haematology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Isabelle Plo
- INSERM, UMR 1287, Villejuif, France
- Gustave Roussy, Villejuif, France
- Université Paris Saclay, Gif-sur-Yvette, France
| | - Sten Eirik W Jacobsen
- Haematopoietic Stem Cell Biology Laboratory, Medical Research Council Molecular Haematology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- Karolinska University Hospital, Stockholm, Sweden
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Bethan Psaila
- Haematopoietic Stem Cell Biology Laboratory, Medical Research Council Molecular Haematology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Supat Thongjuea
- Medical Research Council Centre for Computational Biology, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Iléana Antony-Debré
- INSERM, UMR 1287, Villejuif, France.
- Gustave Roussy, Villejuif, France.
- Université Paris Saclay, Gif-sur-Yvette, France.
| | - Adam J Mead
- Haematopoietic Stem Cell Biology Laboratory, Medical Research Council Molecular Haematology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
- NIHR Biomedical Research Centre, University of Oxford, Oxford, UK.
| |
Collapse
|
35
|
Zhu J, Giannakeas V, Narod SA, Akbari MR. Emerging applications of tumour-educated platelets in the detection and prognostication of ovarian cancer. Protein Cell 2023; 14:556-559. [PMID: 36971351 PMCID: PMC10392028 DOI: 10.1093/procel/pwad015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/12/2023] [Accepted: 03/20/2023] [Indexed: 08/02/2023] Open
Affiliation(s)
- Jiewei Zhu
- Women's College Research Institute, Women's College Hospital, University of Toronto, Toronto, Ontario M5S 1B2, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario M5S 1A, Canada
| | - Vasily Giannakeas
- Women's College Research Institute, Women's College Hospital, University of Toronto, Toronto, Ontario M5S 1B2, Canada
| | - Steven A Narod
- Women's College Research Institute, Women's College Hospital, University of Toronto, Toronto, Ontario M5S 1B2, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario M5S 1A, Canada
| | - Mohammad R Akbari
- Women's College Research Institute, Women's College Hospital, University of Toronto, Toronto, Ontario M5S 1B2, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario M5S 1A, Canada
| |
Collapse
|
36
|
Gao CF, Vaikuntanathan S, Riesenfeld SJ. Dissection and Integration of Bursty Transcriptional Dynamics for Complex Systems. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.13.544828. [PMID: 37398022 PMCID: PMC10312759 DOI: 10.1101/2023.06.13.544828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
RNA velocity estimation is a potentially powerful tool to reveal the directionality of transcriptional changes in single-cell RNA-seq data, but it lacks accuracy, absent advanced metabolic labeling techniques. We developed a novel approach, TopicVelo, that disentangles simultaneous, yet distinct, dynamics by using a probabilistic topic model, a highly interpretable form of latent space factorization, to infer cells and genes associated with individual processes, thereby capturing cellular pluripotency or multifaceted functionality. Focusing on process-associated cells and genes enables accurate estimation of process-specific velocities via a master equation for a transcriptional burst model accounting for intrinsic stochasticity. The method obtains a global transition matrix by leveraging cell topic weights to integrate process-specific signals. In challenging systems, this method accurately recovers complex transitions and terminal states, while our novel use of first-passage time analysis provides insights into transient transitions. These results expand the limits of RNA velocity, empowering future studies of cell fate and functional responses.
Collapse
Affiliation(s)
| | | | - Samantha J Riesenfeld
- Institute for Biophysical Dynamics, University of Chicago, IL
- Pritzker School of Molecular Engineering, University of Chicago, IL
- Department of Medicine, University of Chicago, IL
- Committee on Immunology, University of Chicago, IL
| |
Collapse
|
37
|
Willekens C, Laplane L, Dagher T, Benlabiod C, Papadopoulos N, Lacout C, Rameau P, Catelain C, Alfaro A, Edmond V, Signolle N, Marchand V, Droin N, Hoogenboezem R, Schneider RK, Penson A, Abdel-Wahab O, Giraudier S, Pasquier F, Marty C, Plo I, Villeval JL, Constantinescu SN, Porteu F, Vainchenker W, Solary E. SRSF2-P95H decreases JAK/STAT signaling in hematopoietic cells and delays myelofibrosis development in mice. Leukemia 2023:10.1038/s41375-023-01878-0. [PMID: 37100881 DOI: 10.1038/s41375-023-01878-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 04/28/2023]
Abstract
Heterozygous mutation targeting proline 95 in Serine/Arginine-rich Splicing Factor 2 (SRSF2) is associated with V617F mutation in Janus Activated Kinase 2 (JAK2) in some myeloproliferative neoplasms (MPNs), most commonly primary myelofibrosis. To explore the interaction of Srsf2P95H with Jak2V617F, we generated Cre-inducible knock-in mice expressing these mutants under control of the stem cell leukemia (Scl) gene promoter. In transplantation experiments, Srsf2P95H unexpectedly delayed myelofibrosis induced by Jak2V617F and decreased TGFβ1 serum level. Srsf2P95H reduced the competitiveness of transplanted Jak2V617F hematopoietic stem cells while preventing their exhaustion. RNA sequencing of sorted megakaryocytes identified an increased number of splicing events when the two mutations were combined. Focusing on JAK/STAT pathway, Jak2 exon 14 skipping was promoted by Srsf2P95H, an event detected in patients with JAK2V617F and SRSF2P95 co-mutation. The skipping event generates a truncated inactive JAK2 protein. Accordingly, Srsf2P95H delays myelofibrosis induced by the thrombopoietin receptor agonist Romiplostim in Jak2 wild-type animals. These results unveil JAK2 exon 14 skipping promotion as a strategy to reduce JAK/STAT signaling in pathological conditions.
Collapse
Affiliation(s)
- Christophe Willekens
- INSERM U1287, Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- Département d'hématologie, Gustave Roussy Cancer Campus, Villejuif, France
| | - Lucie Laplane
- INSERM U1287, Gustave Roussy Cancer Campus, Villejuif, France
- Institut d'Histoire et Philosophie des Sciences et des Techniques, Université Paris I Panthéon-Sorbonne, Paris, France
| | - Tracy Dagher
- INSERM U1287, Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Camelia Benlabiod
- INSERM U1287, Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- Institut d'Histoire et Philosophie des Sciences et des Techniques, Université Paris I Panthéon-Sorbonne, Paris, France
| | - Nicolas Papadopoulos
- Ludwig Institute for Cancer Research Brussels, Brussels, Belgium
- Université catholique de Louvain and de Duve Institute, Brussels, Belgium
| | | | | | | | | | - Valérie Edmond
- INSERM U1287, Gustave Roussy Cancer Campus, Villejuif, France
| | | | - Valentine Marchand
- INSERM U1287, Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Nathalie Droin
- INSERM U1287, Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- Gustave Roussy Cancer Campus, Villejuif, France
| | - Remco Hoogenboezem
- Department of Hematology, Erasmus University, Rotterdam, The Netherlands
| | - Rebekka K Schneider
- Department of Hematology, Erasmus University, Rotterdam, The Netherlands
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, RWTH Aachen University, Aachen, Germany
| | - Alex Penson
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Florence Pasquier
- INSERM U1287, Gustave Roussy Cancer Campus, Villejuif, France
- Département d'hématologie, Gustave Roussy Cancer Campus, Villejuif, France
| | - Caroline Marty
- INSERM U1287, Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Isabelle Plo
- INSERM U1287, Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Jean-Luc Villeval
- INSERM U1287, Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Stefan N Constantinescu
- Ludwig Institute for Cancer Research Brussels, Brussels, Belgium
- Université catholique de Louvain and de Duve Institute, Brussels, Belgium
- WELBIO department, WEL Research Institute, Wavre, Belgium
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, Oxford University, Oxford, UK
| | - Françoise Porteu
- INSERM U1287, Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - William Vainchenker
- INSERM U1287, Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Eric Solary
- INSERM U1287, Gustave Roussy Cancer Campus, Villejuif, France.
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.
- Département d'hématologie, Gustave Roussy Cancer Campus, Villejuif, France.
| |
Collapse
|
38
|
Weinstock JS, Gopakumar J, Burugula BB, Uddin MM, Jahn N, Belk JA, Bouzid H, Daniel B, Miao Z, Ly N, Mack TM, Luna SE, Prothro KP, Mitchell SR, Laurie CA, Broome JG, Taylor KD, Guo X, Sinner MF, von Falkenhausen AS, Kääb S, Shuldiner AR, O'Connell JR, Lewis JP, Boerwinkle E, Barnes KC, Chami N, Kenny EE, Loos RJF, Fornage M, Hou L, Lloyd-Jones DM, Redline S, Cade BE, Psaty BM, Bis JC, Brody JA, Silverman EK, Yun JH, Qiao D, Palmer ND, Freedman BI, Bowden DW, Cho MH, DeMeo DL, Vasan RS, Yanek LR, Becker LC, Kardia SLR, Peyser PA, He J, Rienstra M, Van der Harst P, Kaplan R, Heckbert SR, Smith NL, Wiggins KL, Arnett DK, Irvin MR, Tiwari H, Cutler MJ, Knight S, Muhlestein JB, Correa A, Raffield LM, Gao Y, de Andrade M, Rotter JI, Rich SS, Tracy RP, Konkle BA, Johnsen JM, Wheeler MM, Smith JG, Melander O, Nilsson PM, Custer BS, Duggirala R, Curran JE, Blangero J, McGarvey S, Williams LK, Xiao S, Yang M, Gu CC, Chen YDI, Lee WJ, Marcus GM, Kane JP, Pullinger CR, Shoemaker MB, Darbar D, Roden DM, Albert C, Kooperberg C, Zhou Y, Manson JE, Desai P, Johnson AD, Mathias RA, et alWeinstock JS, Gopakumar J, Burugula BB, Uddin MM, Jahn N, Belk JA, Bouzid H, Daniel B, Miao Z, Ly N, Mack TM, Luna SE, Prothro KP, Mitchell SR, Laurie CA, Broome JG, Taylor KD, Guo X, Sinner MF, von Falkenhausen AS, Kääb S, Shuldiner AR, O'Connell JR, Lewis JP, Boerwinkle E, Barnes KC, Chami N, Kenny EE, Loos RJF, Fornage M, Hou L, Lloyd-Jones DM, Redline S, Cade BE, Psaty BM, Bis JC, Brody JA, Silverman EK, Yun JH, Qiao D, Palmer ND, Freedman BI, Bowden DW, Cho MH, DeMeo DL, Vasan RS, Yanek LR, Becker LC, Kardia SLR, Peyser PA, He J, Rienstra M, Van der Harst P, Kaplan R, Heckbert SR, Smith NL, Wiggins KL, Arnett DK, Irvin MR, Tiwari H, Cutler MJ, Knight S, Muhlestein JB, Correa A, Raffield LM, Gao Y, de Andrade M, Rotter JI, Rich SS, Tracy RP, Konkle BA, Johnsen JM, Wheeler MM, Smith JG, Melander O, Nilsson PM, Custer BS, Duggirala R, Curran JE, Blangero J, McGarvey S, Williams LK, Xiao S, Yang M, Gu CC, Chen YDI, Lee WJ, Marcus GM, Kane JP, Pullinger CR, Shoemaker MB, Darbar D, Roden DM, Albert C, Kooperberg C, Zhou Y, Manson JE, Desai P, Johnson AD, Mathias RA, Blackwell TW, Abecasis GR, Smith AV, Kang HM, Satpathy AT, Natarajan P, Kitzman JO, Whitsel EA, Reiner AP, Bick AG, Jaiswal S. Aberrant activation of TCL1A promotes stem cell expansion in clonal haematopoiesis. Nature 2023; 616:755-763. [PMID: 37046083 PMCID: PMC10360040 DOI: 10.1038/s41586-023-05806-1] [Show More Authors] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 02/08/2023] [Indexed: 04/14/2023]
Abstract
Mutations in a diverse set of driver genes increase the fitness of haematopoietic stem cells (HSCs), leading to clonal haematopoiesis1. These lesions are precursors for blood cancers2-6, but the basis of their fitness advantage remains largely unknown, partly owing to a paucity of large cohorts in which the clonal expansion rate has been assessed by longitudinal sampling. Here, to circumvent this limitation, we developed a method to infer the expansion rate from data from a single time point. We applied this method to 5,071 people with clonal haematopoiesis. A genome-wide association study revealed that a common inherited polymorphism in the TCL1A promoter was associated with a slower expansion rate in clonal haematopoiesis overall, but the effect varied by driver gene. Those carrying this protective allele exhibited markedly reduced growth rates or prevalence of clones with driver mutations in TET2, ASXL1, SF3B1 and SRSF2, but this effect was not seen in clones with driver mutations in DNMT3A. TCL1A was not expressed in normal or DNMT3A-mutated HSCs, but the introduction of mutations in TET2 or ASXL1 led to the expression of TCL1A protein and the expansion of HSCs in vitro. The protective allele restricted TCL1A expression and expansion of mutant HSCs, as did experimental knockdown of TCL1A expression. Forced expression of TCL1A promoted the expansion of human HSCs in vitro and mouse HSCs in vivo. Our results indicate that the fitness advantage of several commonly mutated driver genes in clonal haematopoiesis may be mediated by TCL1A activation.
Collapse
Affiliation(s)
- Joshua S Weinstock
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | | | | | - Md Mesbah Uddin
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Nikolaus Jahn
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Julia A Belk
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Hind Bouzid
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Bence Daniel
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Zhuang Miao
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Nghi Ly
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Taralynn M Mack
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Sofia E Luna
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Katherine P Prothro
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Shaneice R Mitchell
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Cecelia A Laurie
- Department of Biostatistics, University of Washington, Seattle, WA, USA
- University of Washington, Seattle, WA, USA
| | - Jai G Broome
- Department of Biostatistics, University of Washington, Seattle, WA, USA
- University of Washington, Seattle, WA, USA
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Kent D Taylor
- Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- Institute for Translational Genomics and Populations Sciences, Lundquist Institute, Torrance, CA, USA
| | - Xiuqing Guo
- Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- Lundquist Institute, Torrance, CA, USA
| | - Moritz F Sinner
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site: Munich Heart Alliance, Munich, Germany
| | - Aenne S von Falkenhausen
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site: Munich Heart Alliance, Munich, Germany
| | - Stefan Kääb
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site: Munich Heart Alliance, Munich, Germany
| | - Alan R Shuldiner
- Department of Medicine, University of Maryland, Baltimore, Baltimore, MD, USA
| | - Jeffrey R O'Connell
- Department of Medicine, University of Maryland, Baltimore, Baltimore, MD, USA
| | - Joshua P Lewis
- Department of Medicine, University of Maryland, Baltimore, Baltimore, MD, USA
- University of Maryland, Baltimore, MD, USA
| | - Eric Boerwinkle
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- University of Texas Health at Houston, Houston, TX, USA
| | - Kathleen C Barnes
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Nathalie Chami
- The Charles Bronfman Institute of Personalized Medicine, New York, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eimear E Kenny
- Institute for Genomic Health, New York, NY, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ruth J F Loos
- The Charles Bronfman Institute of Personalized Medicine, New York, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Myriam Fornage
- University of Texas Health at Houston, Houston, TX, USA
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Lifang Hou
- Department of Preventive Medicine, Northeastern University, Chicago, IL, USA
| | | | - Susan Redline
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Brian E Cade
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Brigham and Women's Hospital, Boston, MA, USA
| | - Bruce M Psaty
- University of Washington, Seattle, WA, USA
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Jennifer A Brody
- University of Washington, Seattle, WA, USA
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Edwin K Silverman
- Brigham and Women's Hospital, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Jeong H Yun
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Dandi Qiao
- Brigham and Women's Hospital, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Nicholette D Palmer
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Department of Biochemistry, Wake Forest Baptist Health, Winston-Salem, NC, USA
| | - Barry I Freedman
- Department of Internal Medicine, Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Donald W Bowden
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Department of Biochemistry, Wake Forest Baptist Health, Winston-Salem, NC, USA
| | - Michael H Cho
- Brigham and Women's Hospital, Boston, MA, USA
- Channing Division of Network Medicine and Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Dawn L DeMeo
- Brigham and Women's Hospital, Boston, MA, USA
- Channing Division of Network Medicine and Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Ramachandran S Vasan
- National Heart Lung and Blood Institute's, Boston University's Framingham Heart Study, Framingham, MA, USA
| | - Lisa R Yanek
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Johns Hopkins University, Baltimore, MD, USA
| | - Lewis C Becker
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Johns Hopkins University, Baltimore, MD, USA
| | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- University of Michigan, Ann Arbor, MI, USA
| | - Patricia A Peyser
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- University of Michigan, Ann Arbor, MI, USA
| | - Jiang He
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
- Tulane University, New Orleans, LA, USA
| | - Michiel Rienstra
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Pim Van der Harst
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Robert Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
- Albert Einstein College of Medicine, New York, NY, USA
| | - Susan R Heckbert
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Kaiser Permanente Washington Health Research Institute, Kaiser Permanente Washington, Seattle, WA, USA
| | - Nicholas L Smith
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Kaiser Permanente Washington Health Research Institute, Kaiser Permanente Washington, Seattle, WA, USA
- Seattle Epidemiologic Research and Information Center, Department of Veterans Affairs Office of Research and Development, Seattle, WA, USA
- Broad Institute, Cambridge, MA, USA
| | - Kerri L Wiggins
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Donna K Arnett
- College of Public Health, University of Kentucky, Lexington, KY, USA
- University of Kentucky, Lexington, KY, USA
| | | | - Hemant Tiwari
- Department of Biostatistics, University of Alabama, Birmingham, AL, USA
| | - Michael J Cutler
- Intermountain Heart Institute, Intermountain Medical Center, Salt Lake City, UT, USA
| | - Stacey Knight
- Intermountain Heart Institute, Intermountain Medical Center, Salt Lake City, UT, USA
| | - J Brent Muhlestein
- Intermountain Heart Institute, Intermountain Medical Center, Salt Lake City, UT, USA
| | - Adolfo Correa
- Department of Medicine, Jackson Heart Study, University of Mississippi Medical Center, Jackson, MS, USA
- Department of Population Health Science, University of Mississippi, Jackson, MS, USA
| | - Laura M Raffield
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yan Gao
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
- University of Mississippi, Jackson, MS, USA
| | - Mariza de Andrade
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Jerome I Rotter
- Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- Department of Pediatrics, Lundquist Institute, Torrance, CA, USA
| | - Stephen S Rich
- Department of Public Health Sciences, Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
- University of Virginia, Charlottesville, VA, USA
| | - Russell P Tracy
- Department of Pathology and Laboratory Medicine and Biochemistry, Larner College of Medicine at the University of Vermont, Colchester, VT, USA
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT, USA
| | - Barbara A Konkle
- Department of Cardiology, Clinical Sciences, Lund University and Skåne University Hospital, Lund, Sweden
- Blood Works Northwest, Seattle, WA, USA
| | - Jill M Johnsen
- Department of Cardiology, Clinical Sciences, Lund University and Skåne University Hospital, Lund, Sweden
- Research Institute, Bloodworks Northwest, Seattle, WA, USA
| | | | - J Gustav Smith
- Department of Cardiology, Clinical Sciences, Lund University and Skåne University Hospital, Lund, Sweden
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg University, Gothenburg, Sweden
- Wallenberg Center for Molecular Medicine and Lund University Diabetes Center, Lund University, Lund, Sweden
- Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Olle Melander
- Department of Internal Medicine, Clinical Sciences, Lund University and Skane University Hospital, Malmo, Sweden
| | - Peter M Nilsson
- Department of Internal Medicine, Clinical Sciences, Lund University and Skane University Hospital, Malmo, Sweden
| | | | - Ravindranath Duggirala
- Department of Human Genetics, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - Joanne E Curran
- Department of Human Genetics, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
- University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - John Blangero
- Department of Human Genetics, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - Stephen McGarvey
- Department of Epidemiology and International Health Institute, Brown University School of Public Health, Providence, RI, USA
- Department of Epidemiology, Brown University, Providence, RI, USA
| | - L Keoki Williams
- Center for Individualized and Genomic Medicine Research (CIGMA), Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
- Henry Ford Health System, Detroit, MI, USA
| | - Shujie Xiao
- Center for Individualized and Genomic Medicine Research (CIGMA), Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| | - Mao Yang
- Center for Individualized and Genomic Medicine Research (CIGMA), Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| | - C Charles Gu
- Division of Biostatistics, Washington University School of Medicine, St Louis, MO, USA
- Washington University in St Louis, St Louis, MO, USA
| | - Yii-Der Ida Chen
- Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- Lundquist Institute, Torrance, CA, USA
| | - Wen-Jane Lee
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
- Taichung Veterans General Hospital Taiwan, Taichung City, Taiwan
| | - Gregory M Marcus
- Division of Cardiology, University of California, San Francisco, San Francisco, CA, USA
| | - John P Kane
- Department of Medicine, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Clive R Pullinger
- Cardiovascular Research Institute, University of California, San Francisco, USA
| | - M Benjamin Shoemaker
- Division of Cardiology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine and Cardiology, Vanderbilt University, Nashville, TN, USA
| | - Dawood Darbar
- Division of Cardiology, University of Illinois at Chicago, Chicago, IL, USA
- University of Illinois at Chicago, Chicago, IL, USA
| | - Dan M Roden
- Departments of Medicine, Pharmacology and Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christine Albert
- Department of Cardiology, Cedars-Sinai, Los Angeles, CA, USA
- Cedars-Sinai, Boston, MA, USA
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Ying Zhou
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - JoAnn E Manson
- Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Pinkal Desai
- Division of Hematology and Oncology, Weill Cornell Medicine, New York, NY, USA
- Englander Institute of Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Andrew D Johnson
- National Heart, Lung and Blood Institute, Population Sciences Branch, Framingham, MA, USA
- Population Sciences Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Rasika A Mathias
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Johns Hopkins University, Baltimore, MD, USA
| | - Thomas W Blackwell
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Goncalo R Abecasis
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Albert V Smith
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Hyun M Kang
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Ansuman T Satpathy
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Pradeep Natarajan
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Broad Institute, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Jacob O Kitzman
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Eric A Whitsel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Alexander P Reiner
- Broad Institute, Cambridge, MA, USA
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Fred Hutchinson Cancer Research Center, University of Washington, Seattle, WA, USA
| | - Alexander G Bick
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University, Nashville, TN, USA.
| | - Siddhartha Jaiswal
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
39
|
Maslah N, Benajiba L, Giraudier S, Kiladjian JJ, Cassinat B. Clonal architecture evolution in Myeloproliferative Neoplasms: from a driver mutation to a complex heterogeneous mutational and phenotypic landscape. Leukemia 2023; 37:957-963. [PMID: 37002477 PMCID: PMC10169637 DOI: 10.1038/s41375-023-01886-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 04/07/2023]
Abstract
AbstractMyeloproliferative neoplasms are characterized by the acquisition at the hematopoietic stem cell level of driver mutations targeting the JAK/STAT pathway. In addition, they also often exhibit additional mutations targeting various pathways such as intracellular signalling, epigenetics, mRNA splicing or transcription. The natural history of myeloproliferative neoplasms is usually marked by a chronic phase of variable duration depending on the disease subtype, which can be followed by an accelerated phase or transformation towards more aggressive diseases such as myelofibrosis or acute leukemia. Besides, recent studies revealed important new information about the rates and mechanisms of sequential acquisition and selection of mutations in hematopoietic cells of myeloproliferative neoplasms. Better understanding of these events has been made possible in large part with the help of novel techniques that are now available to precisely decipher at the single cell level both the clonal architecture and the mutation-induced cell modifications. In this review, we will summarize the most recent knowledge about the mechanisms leading to clonal selection, how clonal architecture complexity can explain disease heterogeneity, and the impact of clonal evolution on clinical evolution.
Collapse
|
40
|
Wen W, Mead AJ, Thongjuea S. MARVEL: an integrated alternative splicing analysis platform for single-cell RNA sequencing data. Nucleic Acids Res 2023; 51:e29. [PMID: 36631981 PMCID: PMC10018366 DOI: 10.1093/nar/gkac1260] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 12/13/2022] [Accepted: 01/11/2023] [Indexed: 01/13/2023] Open
Abstract
Alternative splicing is an important source of heterogeneity underlying gene expression between individual cells but remains an understudied area due to the paucity of computational tools to analyze splicing dynamics at single-cell resolution. Here, we present MARVEL, a comprehensive R package for single-cell splicing analysis applicable to RNA sequencing generated from the plate- and droplet-based methods. We performed extensive benchmarking of MARVEL against available tools and demonstrated its utility by analyzing multiple publicly available datasets in diverse cell types, including in disease. MARVEL enables systematic and integrated splicing and gene expression analysis of single cells to characterize the splicing landscape and reveal biological insights.
Collapse
Affiliation(s)
- Wei Xiong Wen
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Adam J Mead
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford OX4 2PG, UK
| | - Supat Thongjuea
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford OX4 2PG, UK
| |
Collapse
|
41
|
Deepening Our Understanding of the Factors Affecting Landscape of Myeloproliferative Neoplasms: What Do We Know about Them? Cancers (Basel) 2023; 15:cancers15041348. [PMID: 36831689 PMCID: PMC9954305 DOI: 10.3390/cancers15041348] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
Myeloproliferative neoplasms (MPNs) arise from the uncontrolled proliferation of hematopoietic stem and progenitor cells in bone marrow. As with all tumors, the development of MPNs is a consequence of alterations in malignant cells and their interaction with other extrinsic factors that support and promote tumor progression. Since the discovery of driver mutations, much work has focused on studying and reviewing the genomic features of the disease but has neglected to delve into the important role that many other mechanisms may play. This review discusses the genetic component of MPNs but focuses mainly on some of the most relevant work investigating other non-genetic factors that may be crucial for the disease. The studies summarized here address MPN cell-intrinsic or -extrinsic factors and the interaction between them through transcriptomic, proteomic and microbiota studies, among others.
Collapse
|
42
|
Khan AO, Rodriguez-Romera A, Reyat JS, Olijnik AA, Colombo M, Wang G, Wen WX, Sousos N, Murphy LC, Grygielska B, Perrella G, Mahony CB, Ling RE, Elliott NE, Karali CS, Stone AP, Kemble S, Cutler EA, Fielding AK, Croft AP, Bassett D, Poologasundarampillai G, Roy A, Gooding S, Rayes J, Machlus KR, Psaila B. Human Bone Marrow Organoids for Disease Modeling, Discovery, and Validation of Therapeutic Targets in Hematologic Malignancies. Cancer Discov 2023; 13:364-385. [PMID: 36351055 PMCID: PMC9900323 DOI: 10.1158/2159-8290.cd-22-0199] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 10/04/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
Abstract
A lack of models that recapitulate the complexity of human bone marrow has hampered mechanistic studies of normal and malignant hematopoiesis and the validation of novel therapies. Here, we describe a step-wise, directed-differentiation protocol in which organoids are generated from induced pluripotent stem cells committed to mesenchymal, endothelial, and hematopoietic lineages. These 3D structures capture key features of human bone marrow-stroma, lumen-forming sinusoids, and myeloid cells including proplatelet-forming megakaryocytes. The organoids supported the engraftment and survival of cells from patients with blood malignancies, including cancer types notoriously difficult to maintain ex vivo. Fibrosis of the organoid occurred following TGFβ stimulation and engraftment with myelofibrosis but not healthy donor-derived cells, validating this platform as a powerful tool for studies of malignant cells and their interactions within a human bone marrow-like milieu. This enabling technology is likely to accelerate the discovery and prioritization of novel targets for bone marrow disorders and blood cancers. SIGNIFICANCE We present a human bone marrow organoid that supports the growth of primary cells from patients with myeloid and lymphoid blood cancers. This model allows for mechanistic studies of blood cancers in the context of their microenvironment and provides a much-needed ex vivo tool for the prioritization of new therapeutics. See related commentary by Derecka and Crispino, p. 263. This article is highlighted in the In This Issue feature, p. 247.
Collapse
Affiliation(s)
- Abdullah O. Khan
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Vincent Drive, Birmingham, United Kingdom
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine and National Institute of Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Antonio Rodriguez-Romera
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine and National Institute of Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Jasmeet S. Reyat
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Vincent Drive, Birmingham, United Kingdom
| | - Aude-Anais Olijnik
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine and National Institute of Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Michela Colombo
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine and National Institute of Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Guanlin Wang
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine and National Institute of Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
- Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Wei Xiong Wen
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine and National Institute of Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
- Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Nikolaos Sousos
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine and National Institute of Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
- Cancer and Haematology Centre, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Lauren C. Murphy
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine and National Institute of Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Beata Grygielska
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Vincent Drive, Birmingham, United Kingdom
| | - Gina Perrella
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Vincent Drive, Birmingham, United Kingdom
| | - Christopher B. Mahony
- Rheumatology Research Group, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Rebecca E. Ling
- MRC Weatherall Institute of Molecular Medicine, Department of Paediatrics and National Institute of Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Natalina E. Elliott
- MRC Weatherall Institute of Molecular Medicine, Department of Paediatrics and National Institute of Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Christina Simoglou Karali
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine and National Institute of Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Andrew P. Stone
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, Massachusetts
| | - Samuel Kemble
- Rheumatology Research Group, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Emily A. Cutler
- University College London Cancer Institute, London, United Kingdom
| | | | - Adam P. Croft
- Rheumatology Research Group, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - David Bassett
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Birmingham, United Kingdom
| | | | - Anindita Roy
- MRC Weatherall Institute of Molecular Medicine, Department of Paediatrics and National Institute of Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Sarah Gooding
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine and National Institute of Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
- Cancer and Haematology Centre, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Julie Rayes
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Vincent Drive, Birmingham, United Kingdom
| | - Kellie R. Machlus
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, Massachusetts
| | - Bethan Psaila
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine and National Institute of Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
- Cancer and Haematology Centre, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| |
Collapse
|
43
|
Introduction to a review series on single-cell genomics: getting ready for clinical impact in leukemia and myeloid neoplasms. Blood 2023; 141:323-325. [PMID: 36103728 DOI: 10.1182/blood.2022017361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 02/01/2023] Open
Abstract
Edited by Associate Editor Berthold Göttgens, this Review Series focuses on how the use of single-cell genomic and multiomic analyses are broadening our understanding of the complexity of leukemias and myeloid neoplasms. For acute myeloid leukemia, acute lymphoblastic leukemia, chronic lymphocytic leukemia, and myeloproliferative neoplasm, leading experts bring us up to date with recent data and speculate how these rapidly developing technologies may inform the directions of clinical care.
Collapse
|
44
|
O'Sullivan JM, Mead AJ, Psaila B. Single-cell methods in myeloproliferative neoplasms: old questions, new technologies. Blood 2023; 141:380-390. [PMID: 36322938 DOI: 10.1182/blood.2021014668] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022] Open
Abstract
Myeloproliferative neoplasms (MPN) are a group of clonal stem cell-derived hematopoietic malignancies driven by aberrant Janus kinase-signal transducer and activator of transcription proteins (JAK/STAT) signaling. Although these are genetically simple diseases, MPNs are phenotypically heterogeneous, reflecting underlying intratumoral heterogeneity driven by the interplay of genetic and nongenetic factors. Their evolution is determined by factors that enable certain cellular subsets to outcompete others. Therefore, techniques that resolve cellular heterogeneity at the single-cell level are ideally placed to provide new insights into MPN biology. With these insights comes the potential to uncover new approaches to predict the clinical course and treat these cancers, ultimately improving outcomes for patients. MPNs present a particularly tractable model of cancer evolution, because most patients present in an early disease phase and only a small proportion progress to aggressive disease. Therefore, it is not surprising that many groundbreaking technological advances in single-cell omics have been pioneered by their application in MPNs. In this review article, we explore how single-cell approaches have provided transformative insights into MPN disease biology, which are broadly applicable across human cancers, and discuss how these studies might be swiftly translated into clinical pathways and may eventually underpin precision medicine.
Collapse
Affiliation(s)
- Jennifer Mary O'Sullivan
- Medical Research Council Molecular Haematology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- NIHR Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Adam J Mead
- Medical Research Council Molecular Haematology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- NIHR Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Bethan Psaila
- Medical Research Council Molecular Haematology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- NIHR Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
45
|
Mazharian A, Maître B, Bornert A, Hennequin D, Lourenco-Rodrigues M, Geer MJ, Smith CW, Heising S, Walter M, Montel F, Walker LSK, de la Salle H, Watson SP, Gachet C, Senis YA. Treatment of congenital thrombocytopenia and decreased collagen reactivity in G6b-B-deficient mice. Blood Adv 2023; 7:46-59. [PMID: 36269841 PMCID: PMC9813534 DOI: 10.1182/bloodadvances.2022008873] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/15/2022] [Accepted: 09/22/2022] [Indexed: 01/18/2023] Open
Abstract
Mice lacking the immunoreceptor tyrosine-based inhibition motif-containing co-inhibitory receptor G6b-B (Mpig6b, G6b knockout, KO) are born with a complex megakaryocyte (MK) per platelet phenotype, characterized by severe macrothrombocytopenia, expansion of the MK population, and focal myelofibrosis in the bone marrow and spleen. Platelets are almost completely devoid of the glycoprotein VI (GPVI)-FcRγ-chain collagen receptor complex, have reduced collagen integrin α2β1, elevated Syk tyrosine kinase activity, and a subset has increased surface immunoglobulins. A similar phenotype was recently reported in patients with null and loss-of-function mutations in MPIG6B. To better understand the cause and treatment of this pathology, we used pharmacological- and genetic-based approaches to rescue platelet counts and function in G6b KO mice. Intravenous immunoglobulin resulted in a transient partial recovery of platelet counts, whereas immune deficiency did not affect platelet counts or receptor expression in G6b KO mice. Syk loss-of-function (R41A) rescued macrothrombocytopenia, GPVI and α2β1 expression in G6b KO mice, whereas treatment with the Syk kinase inhibitor BI1002494 partially rescued platelet count but had no effect on GPVI and α2β1 expression or bleeding. The Src family kinase inhibitor dasatinib was not beneficial in G6b KO mice. In contrast, treatment with the thrombopoietin mimetic romiplostim rescued thrombocytopenia, GPVI expression, and platelet reactivity to collagen, suggesting that it may be a promising therapeutic option for patients lacking functional G6b-B. Intriguingly, GPVI and α2β1 expression were significantly downregulated in romiplostim-treated wild-type mice, whereas GPVI was upregulated in romiplostim-treated G6b KO mice, suggesting a cell intrinsic feedback mechanism that autoregulates platelet reactivity depending on physiological needs.
Collapse
Affiliation(s)
- Alexandra Mazharian
- Université de Strasbourg, INSERM, Etablissement Français du Sang Grand-Est, Unité Mixte de Recherche-S 1255, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Blandine Maître
- Université de Strasbourg, INSERM, Etablissement Français du Sang Grand-Est, Unité Mixte de Recherche-S 1255, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
| | - Alicia Bornert
- Université de Strasbourg, INSERM, Etablissement Français du Sang Grand-Est, Unité Mixte de Recherche-S 1255, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
| | - Desline Hennequin
- Université de Strasbourg, INSERM, Etablissement Français du Sang Grand-Est, Unité Mixte de Recherche-S 1255, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
| | - Marc Lourenco-Rodrigues
- Université de Strasbourg, INSERM, Etablissement Français du Sang Grand-Est, Unité Mixte de Recherche-S 1255, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
| | - Mitchell J. Geer
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, NYU Langone Health, New York, NY
| | - Christopher W. Smith
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Silke Heising
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Michaela Walter
- Boehringer Ingelheim Pharma GmbH and Company KG, Ingelheim, Germany
| | - Florian Montel
- Boehringer Ingelheim Pharma GmbH and Company KG, Ingelheim, Germany
| | - Lucy S. K. Walker
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, Royal Free Campus, London, United Kingdom
| | - Henri de la Salle
- Université de Strasbourg, INSERM, Etablissement Français du Sang Grand-Est, Unité Mixte de Recherche-S 1255, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
| | - Steve P. Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Christian Gachet
- Université de Strasbourg, INSERM, Etablissement Français du Sang Grand-Est, Unité Mixte de Recherche-S 1255, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
| | - Yotis A. Senis
- Université de Strasbourg, INSERM, Etablissement Français du Sang Grand-Est, Unité Mixte de Recherche-S 1255, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| |
Collapse
|
46
|
Novel Molecular Insights into Leukemic Evolution of Myeloproliferative Neoplasms: A Single Cell Perspective. Int J Mol Sci 2022; 23:ijms232315256. [PMID: 36499582 PMCID: PMC9740017 DOI: 10.3390/ijms232315256] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/25/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Myeloproliferative neoplasms (MPNs) are clonal disorders originated by the serial acquisition of somatic mutations in hematopoietic stem/progenitor cells. The major clinical entities are represented by polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF), that are caused by driver mutations affecting JAK2, MPL or CALR. Disease progression is related to molecular and clonal evolution. PV and ET can progress to secondary myelofibrosis (sMF) but can also evolve to secondary acute myeloid leukemia (sAML). PMF is associated with the highest frequency of leukemic transformation, which represents the main cause of death. sAML is associated with a dismal prognosis and clinical features that differ from those of de novo AML. The molecular landscape distinguishes sAML from de novo AML, since the most frequent hits involve TP53, epigenetic regulators, spliceosome modulators or signal transduction genes. Single cell genomic studies provide novel and accurate information about clonal architecture and mutation acquisition order, allowing the reconstruction of clonal dynamics and molecular events that accompany leukemic transformation. In this review, we examine our current understanding of the genomic heterogeneity in MPNs and how it affects disease progression and leukemic transformation. We focus on molecular events elicited by somatic mutations acquisition and discuss the emerging findings coming from single cell studies.
Collapse
|
47
|
Gelon L, Fromont L, Lefrançais E. Occurrence and role of lung megakaryocytes in infection and inflammation. Front Immunol 2022; 13:1029223. [PMID: 36524131 PMCID: PMC9745136 DOI: 10.3389/fimmu.2022.1029223] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/09/2022] [Indexed: 12/03/2022] Open
Abstract
Megakaryocytes (MKs) are large cells giving rise to platelets. It is well established that in adults, MKs develop from hematopoietic stem cells and reside in the bone marrow. MKs are also rare but normal constituents of the venous blood returning to the lungs, and MKs are found in the lung vasculature (MKcirc), suggesting that these cells are migrants from the bone marrow and get trapped in lung capillaries where the final steps of platelet production can occur. An unprecedented increase in the number of lung and circulating MKs was described in coronavirus disease 2019 (COVID-19) patients, suggesting that lung thrombopoiesis may be increased during lung infection and/or thromboinflammation. In addition to the population of platelet-producing intravascular MKs in the lung, a population of lung-resident megakaryocytes (MKL) has been identified and presents a specific immune signature compared to its bone marrow counterparts. Recent single-cell analysis and intravital imaging have helped us gain a better understanding of these populations in mouse and human. This review aims at summarizing the recent data on increased occurrence of lung MKs and discusses their origin, specificities, and potential role in homeostasis and inflammatory and infectious lung diseases. Here, we address remaining questions, controversies, and methodologic challenges for further studies of both MKcirc and MKL.
Collapse
|
48
|
Roweth HG, Malloy MW, Goreczny GJ, Becker IC, Guo Q, Mittendorf EA, Italiano JE, McAllister SS, Battinelli EM. Pro-inflammatory megakaryocyte gene expression in murine models of breast cancer. SCIENCE ADVANCES 2022; 8:eabo5224. [PMID: 36223471 PMCID: PMC9555784 DOI: 10.1126/sciadv.abo5224] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 08/24/2022] [Indexed: 06/16/2023]
Abstract
Despite abundant research demonstrating that platelets can promote tumor cell metastasis, whether primary tumors affect platelet-producing megakaryocytes remains understudied. In this study, we used a spontaneous murine model of breast cancer to show that tumor burden reduced megakaryocyte number and size and disrupted polyploidization. Single-cell RNA sequencing demonstrated that megakaryocytes from tumor-bearing mice exhibit a pro-inflammatory phenotype, epitomized by increased Ctsg, Lcn2, S100a8, and S100a9 transcripts. Protein S100A8/A9 and lipocalin-2 levels were also increased in platelets, suggesting that tumor-induced alterations to megakaryocytes are passed on to their platelet progeny, which promoted in vitro tumor cell invasion and tumor cell lung colonization to a greater extent than platelets from wild-type animals. Our study is the first to demonstrate breast cancer-induced alterations in megakaryocytes, leading to qualitative changes in platelet content that may feedback to promote tumor metastasis.
Collapse
Affiliation(s)
- Harvey G. Roweth
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Michael W. Malloy
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Gregory J. Goreczny
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Isabelle C. Becker
- Harvard Medical School, Boston, MA 02115, USA
- Vascular Biology Program, Department of Surgery, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Qiuchen Guo
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Elizabeth A. Mittendorf
- Division of Breast Surgery, Department of Surgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Breast Oncology Program, Dana-Farber/Brigham and Women’s Cancer Center, Boston, MA 02215, USA
- Ludwig Centre for Cancer Research at Harvard, Harvard Medical School, Boston, MA 02215, USA
| | - Joseph E. Italiano
- Harvard Medical School, Boston, MA 02115, USA
- Vascular Biology Program, Department of Surgery, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Sandra S. McAllister
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Elisabeth M. Battinelli
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
49
|
Michaels YS, Edgar JM, Major MC, Castle EL, Zimmerman C, Yin T, Hagner A, Lau C, Hsu HH, Ibañez-Rios MI, Durland LJ, Knapp DJHF, Zandstra PW. DLL4 and VCAM1 enhance the emergence of T cell-competent hematopoietic progenitors from human pluripotent stem cells. SCIENCE ADVANCES 2022; 8:eabn5522. [PMID: 36001668 PMCID: PMC9401626 DOI: 10.1126/sciadv.abn5522] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 07/12/2022] [Indexed: 05/13/2023]
Abstract
T cells show tremendous efficacy as cellular therapeutics. However, obtaining primary T cells from human donors is expensive and variable. Pluripotent stem cells (PSCs) have the potential to provide a renewable source of T cells, but differentiating PSCs into hematopoietic progenitors with T cell potential remains an important challenge. Here, we report an efficient serum- and feeder-free system for differentiating human PSCs into hematopoietic progenitors and T cells. This fully defined approach allowed us to study the impact of individual proteins on blood emergence and differentiation. Providing DLL4 and VCAM1 during the endothelial-to-hematopoietic transition enhanced downstream progenitor T cell output by ~80-fold. These two proteins synergized to activate notch signaling in nascent hematopoietic stem and progenitor cells, and VCAM1 additionally promoted an inflammatory transcriptional program. We also established optimized medium formulations that enabled efficient and chemically defined maturation of functional CD8αβ+, CD4-, CD3+, TCRαβ+ T cells with a diverse TCR repertoire.
Collapse
Affiliation(s)
- Yale S. Michaels
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - John M. Edgar
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Matthew C. Major
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Elizabeth L. Castle
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Carla Zimmerman
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Ting Yin
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Andrew Hagner
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Charles Lau
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Han Hsuan Hsu
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - M. Iliana Ibañez-Rios
- Institut de recherche en immunologie et en cancérologie and Département de pathologie et biologie cellulaire, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Lauren J. Durland
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - David J. H. F. Knapp
- Institut de recherche en immunologie et en cancérologie and Département de pathologie et biologie cellulaire, Université de Montréal, Montreal, QC H3T 1J4, Canada
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Peter W. Zandstra
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
50
|
Pozzi G, Carubbi C, Gobbi G, Tagliaferri S, Mirandola P, Vitale M, Masselli E. Tracking fibrosis in myeloproliferative neoplasms by CCR2 expression on CD34+ cells. Front Oncol 2022; 12:980379. [PMID: 36072806 PMCID: PMC9444005 DOI: 10.3389/fonc.2022.980379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
In myeloproliferative neoplasm (MPNs), bone marrow fibrosis - mainly driven by the neoplastic megakaryocytic clone - dictates a more severe disease stage with dismal prognosis and higher risk of leukemic evolution. Therefore, accurate patient allocation into different disease categories and timely identification of fibrotic transformation are mandatory for adequate treatment planning. Diagnostic strategy still mainly relies on clinical/laboratory assessment and bone marrow histopathology, which, however, requires an invasive procedure and frequently poses challenges also to expert hemopathologists. Here we tested the diagnostic accuracy of the detection, by flow cytometry, of CCR2+CD34+ cells to discriminate among MPN subtypes with different degrees of bone marrow fibrosis. We found that the detection of CCR2 on MPN CD34+ cells has a very good diagnostic accuracy for the differential diagnosis between “true” ET and prePMF (AUC 0.892, P<0.0001), and a good diagnostic accuracy for the differential diagnosis between prePMF and overtPMF (AUC 0.817, P=0.0089). Remarkably, in MPN population, the percentage of CCR2-expressing cells parallels the degree of bone marrow fibrosis. In ET/PV patients with a clinical picture suggestive for transition into spent phase, we demonstrated that only patients with confirmed secondary MF showed significantly higher levels of CCR2+CD34+ cells. Overall, flow cytometric CCR2+CD34+ cell detection can be envisioned in support of conventional bone marrow histopathology in compelling clinical scenarios, with the great advantage of being extremely rapid. For patients in follow-up, its role can be conceived as an initial patient screening for subsequent bone marrow biopsy when disease evolution is suspected.
Collapse
Affiliation(s)
- Giulia Pozzi
- Department of Medicine and Surgery (DiMeC), University of Parma, Parma, Italy
| | - Cecilia Carubbi
- Department of Medicine and Surgery (DiMeC), University of Parma, Parma, Italy
| | - Giuliana Gobbi
- Department of Medicine and Surgery (DiMeC), University of Parma, Parma, Italy
| | - Sara Tagliaferri
- Department of Medicine and Surgery (DiMeC), University of Parma, Parma, Italy
| | - Prisco Mirandola
- Department of Medicine and Surgery (DiMeC), University of Parma, Parma, Italy
| | - Marco Vitale
- Department of Medicine and Surgery (DiMeC), University of Parma, Parma, Italy
- Parma University Hospital, (AOU-PR), Parma, Italy
- *Correspondence: Elena Masselli, ; Marco Vitale,
| | - Elena Masselli
- Department of Medicine and Surgery (DiMeC), University of Parma, Parma, Italy
- Parma University Hospital, (AOU-PR), Parma, Italy
- *Correspondence: Elena Masselli, ; Marco Vitale,
| |
Collapse
|