1
|
Oliveira J, Raposo de Magalhães C, Schrama D, Rodrigues PM, Barata M, Soares F, Pousão-Ferreira P, Oliva-Teles A, Couto A. Skin mucus and blood plasma as non-lethal sources of malnutrition protein biomarkers in meagre (Argyrosomus regius). J Proteomics 2025; 316:105432. [PMID: 40089056 DOI: 10.1016/j.jprot.2025.105432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/14/2025] [Accepted: 03/11/2025] [Indexed: 03/17/2025]
Abstract
Developing dietary formulations for aquaculture that meet nutritional requirements is essential to production, as nutrition is key for fish growth and health. However, novel dietary formulations may induce malnutrition, which is complex to evaluate and often requires animal sacrifice. Therefore, finding reliable non-lethal biomarkers to diagnose malnutrition in fish is important. This study aimed to obtain vital information on potential non-lethal biomarkers from blood plasma and skin mucus to assess the fish's nutritional status using meagre (Argyrosomus regius) juveniles. For that purpose, a nutritional challenge was performed with fish fed a fish meal (FM) and fish-oil (FO) based control diet (55.1 % FM; 11 % FO, CTRL), a challenging diet (15 % FM; 7 % FO, CD), and a highly challenging diet (5 % FM; 5 % FO, ED), which, despite being nutritionally complete, may pose digestive and physiological challenges to carnivorous species. Diets significantly affected blood parameters, except for leukocyte counts, peroxidase activity, and immunoglobulin levels. Overall, blood parameters showed potential as non-lethal biomarkers to accurately identify signs of malnutrition. Meagre's plasma and skin mucus proteomes provided crucial information on the species' reaction to malnutrition, and 29 proteins connected to various physiological functions such as metabolism, development and immunity showed potential as non-lethal biomarkers. SIGNIFICANCE: The significance of this study lies in the establishment of potential non-lethal biomarkers for diagnosing malnutrition in fish. The results demonstrate that immunological, haematological, and biochemical parameters measured in fish blood can reveal signs of nutritional deficiencies. The findings further highlight that the proteomes of plasma and skin mucus provide valuable information about the fish's nutritional status. Notably, 29 proteins identified in this study, associated with various physiological functions, exhibit biomarker potential and warrant consideration in future research in the field of aquaculture nutrition. Moreover, the research provides critical insights into the proteome of meagre (Argyrosomus regius), enhancing our understanding of the species and contributing to the future improvement of its aquaculture production.
Collapse
Affiliation(s)
- Joana Oliveira
- FCUP-Department of Biology, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4050-208 Matosinhos, Portugal.
| | - Cláudia Raposo de Magalhães
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, Edifício 7, 8005-139 Faro, Portugal
| | - Denise Schrama
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, Edifício 7, 8005-139 Faro, Portugal
| | - Pedro M Rodrigues
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, Edifício 7, 8005-139 Faro, Portugal; Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Marisa Barata
- IPMA - EPPO, Portuguese Institute for the Sea and Atmosphere, Aquaculture Research Station, 8700-194 Olhão, Portugal; S2AQUA-Collaborative Laboratory, Association for a Sustainable and Smart Aquaculture, Olhão, Portugal
| | - Florbela Soares
- IPMA - EPPO, Portuguese Institute for the Sea and Atmosphere, Aquaculture Research Station, 8700-194 Olhão, Portugal; S2AQUA-Collaborative Laboratory, Association for a Sustainable and Smart Aquaculture, Olhão, Portugal
| | - Pedro Pousão-Ferreira
- IPMA - EPPO, Portuguese Institute for the Sea and Atmosphere, Aquaculture Research Station, 8700-194 Olhão, Portugal; S2AQUA-Collaborative Laboratory, Association for a Sustainable and Smart Aquaculture, Olhão, Portugal
| | - Aires Oliva-Teles
- FCUP-Department of Biology, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4050-208 Matosinhos, Portugal
| | - Ana Couto
- FCUP-Department of Biology, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4050-208 Matosinhos, Portugal
| |
Collapse
|
2
|
Felice AG, Rodrigues TCV, Marques PH, Zen FL, Lemes MR, Trevisan RO, Andrade BS, de Oliveira CJF, Azevedo VADC, Tiwari S, Soares SDC. In silico construction of a multi-epitope vaccine (RGME-VAC/ATS-1) against the Rickettsia genus using immunoinformatics. Mem Inst Oswaldo Cruz 2025; 120:e240201. [PMID: 40136144 PMCID: PMC11932644 DOI: 10.1590/0074-02760240201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/23/2024] [Indexed: 03/27/2025] Open
Abstract
BACKGROUND Rickettsia is a genus of Gram-negative bacteria that causes various diseases, including epidemic typhus, Rocky Mountain spotted fever, and Mediterranean spotted fever. Ticks transmit these diseases and commonly found in developing regions with poor sanitation. As a result, it is difficult to estimate the number of these diseases cases, making it challenging to create prevention and diagnostic mechanisms. OBJECTIVES Thus, this study aimed to develop an in silico multi-epitope vaccine against Rickettsia. METHODS Eight proteins were previously identified as potential vaccine candidates through reverse vaccinology and were screened for epitopes that bind to MHC class I and II molecules. The epitopes were then analysed for antigenicity, allergenicity, and toxicity. The selected epitopes were linked with AAY and GPGPG sequences peptide and a known adjuvant, the B-chain of Escherichia coli heat-labile enterotoxin, to form a chimeric multi-epitope protein. The protein's three-dimensional structure was predicted, and molecular docking analysis was performed against the toll-like receptor 4 (TLR4). Finally, the immune response to the protein was simulated using C-ImmSim tool. FINDINGS A total of 26 immunogenic epitopes, formed the multi-epitope vaccine RGME-VAC/ATS-1. The vaccine showed excellent immunogenic parameters and was predicted to do not be toxic or allergenic to the host. It also showed good potential stimulation of immune cells, with a propensity to generate memory cells and elicit IFN-γ secretion. MAIN CONCLUSIONS The in silico validations suggest that our study successfully designed an innovative multi-epitope vaccine against Rickettsia, addressing the challenges posed by the elusive nature of diseases caused by this genus. We provide a promising potential for further experimental exploration and the development of targeted prevention and diagnostic strategies for these diseases.
Collapse
Affiliation(s)
- Andrei Giacchetto Felice
- Universidade Federal do Triângulo Mineiro, Instituto de Ciências Biológicas e Naturais, Programa de Pós-Graduação em Medicina Tropical e Infectologia, Uberaba, MG, Brasil
| | | | - Pedro Henrique Marques
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Programa de Pós-Graduação em Bioinformática, Belo Horizonte, MG, Brasil
| | - Felipe Lucas Zen
- Universidade Federal do Triângulo Mineiro, Instituto de Ciências Biológicas e Naturais, Programa de Pós-Graduação em Medicina Tropical e Infectologia, Uberaba, MG, Brasil
| | - Marcela Rezende Lemes
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Programa de Pós-Graduação em Bioinformática, Belo Horizonte, MG, Brasil
| | - Rafael Obata Trevisan
- Universidade Federal do Triângulo Mineiro, Instituto de Ciências Biológicas e Naturais, Programa de Pós-Graduação em Medicina Tropical e Infectologia, Uberaba, MG, Brasil
| | - Bruno Silva Andrade
- Universidade Estadual do Sudoeste da Bahia, Departamento de Ciências Biológicas, Vitória da Conquista, BA, Brasil
| | - Carlo José Freire de Oliveira
- Universidade Federal do Triângulo Mineiro, Instituto de Ciências Biológicas e Naturais, Departamento de Microbiologia, Imunologia e Parasitologia, Uberaba, MG, Brasil
| | | | - Sandeep Tiwari
- Universidade Federal da Bahia, Instituto de Biologia, Programa de Pós-Graduação em Microbiologia, Salvador, BA, Brasil
- Universidade Federal da Bahia, Instituto de Ciências da Saúde, Programa de Pós-Graduação em Imunologia, Salvador, BA, Brasil
| | - Siomar de Castro Soares
- Universidade Federal do Triângulo Mineiro, Instituto de Ciências Biológicas e Naturais, Departamento de Microbiologia, Imunologia e Parasitologia, Uberaba, MG, Brasil
| |
Collapse
|
3
|
Sant'Anna MRV, Pereira-Filho AA, Mendes-Sousa AF, Silva NCS, Gontijo NF, Pereira MH, Koerich LB, D'Avila Pessoa GC, Andersen J, Araujo RN. Inhibition of vertebrate complement system by hematophagous arthropods: inhibitory molecules, mechanisms, physiological roles, and applications. INSECT SCIENCE 2024; 31:1334-1352. [PMID: 38246860 DOI: 10.1111/1744-7917.13317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/28/2023] [Accepted: 12/07/2023] [Indexed: 01/23/2024]
Abstract
In arthropods, hematophagy has arisen several times throughout evolution. This specialized feeding behavior offered a highly nutritious diet obtained during blood feeds. On the other hand, blood-sucking arthropods must overcome problems brought on by blood intake and digestion. Host blood complement acts on the bite site and is still active after ingestion, so complement activation is a potential threat to the host's skin feeding environment and to the arthropod gut enterocytes. During evolution, blood-sucking arthropods have selected, either in their saliva or gut, anticomplement molecules that inactivate host blood complement. This review presents an overview of the complement system and discusses the arthropod's salivary and gut anticomplement molecules studied to date, exploring their mechanism of action and other aspects related to the arthropod-host-pathogen interface. The possible therapeutic applications of arthropod's anticomplement molecules are also discussed.
Collapse
Affiliation(s)
- Mauricio Roberto Vianna Sant'Anna
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - Adalberto Alves Pereira-Filho
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Naylene Carvalho Sales Silva
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Nelder Figueiredo Gontijo
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - Marcos Horácio Pereira
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - Leonardo Barbosa Koerich
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - Grasielle Caldas D'Avila Pessoa
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - John Andersen
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Ricardo Nascimento Araujo
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
4
|
Cao L, Zhou Y, Lin S, Yang C, Guan Z, Li X, Yang S, Gao T, Zhao J, Fan N, Song Y, Li D, Li X, Li Z, Guan F, Tan Z. The trajectory of vesicular proteomic signatures from HBV-HCC by chitosan-magnetic bead-based separation and DIA-proteomic analysis. J Extracell Vesicles 2024; 13:e12499. [PMID: 39207047 PMCID: PMC11359709 DOI: 10.1002/jev2.12499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/04/2024] [Accepted: 07/18/2024] [Indexed: 09/04/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a prevalent primary liver cancer often associated with chronic hepatitis B virus infection (CHB) and liver cirrhosis (LC), underscoring the critical need for biomarker discovery to improve patient outcomes. Emerging as a promising avenue for biomarker development, proteomic technology leveraging liquid biopsy from small extracellular vesicles (sEV) offers new insights. Here, we evaluated various methods for sEV isolation and identified polysaccharide chitosan (CS) as an optimal approach. Subsequently, we employed optimized CS-based magnetic beads (Mag-CS) for sEV separation from serum samples of healthy controls, CHB, LC, and HBV-HCC patients. Leveraging data-independent acquisition mass spectrometry coupled with machine learning, we uncovered potential vesicular protein biomarker signatures (KNG1, F11, KLKB1, CAPNS1, CDH1, CPN2, NME2) capable of distinguishing HBV-HCC from CHB, LC, and non-HCC conditions. Collectively, our findings highlight the utility of Mag-CS-based sEV isolation for identifying early detection biomarkers in HBV-HCC.
Collapse
Affiliation(s)
- Lin Cao
- Institute of HematologyProvincial Key Laboratory of Biotechnology, School of MedicineNorthwest UniversityXi'anShaanxiChina
| | - Yue Zhou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life SciencesNorthwest UniversityXi'anShaanxiChina
| | - Shuai Lin
- Department of OncologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Chunyan Yang
- Institute of Basic and Translational MedicineXi'an Medical UniversityXi'anShaanxiChina
| | - Zixuan Guan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life SciencesNorthwest UniversityXi'anShaanxiChina
| | - Xiaofan Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life SciencesNorthwest UniversityXi'anShaanxiChina
| | - Shujie Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life SciencesNorthwest UniversityXi'anShaanxiChina
| | - Tong Gao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life SciencesNorthwest UniversityXi'anShaanxiChina
| | - Jiazhen Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life SciencesNorthwest UniversityXi'anShaanxiChina
| | - Ning Fan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life SciencesNorthwest UniversityXi'anShaanxiChina
| | - Yanan Song
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life SciencesNorthwest UniversityXi'anShaanxiChina
| | - Dongmin Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical SciencesXi'an Jiaotong University Health Science CenterXi'anShaanxiP.R. China
| | - Xiang Li
- Institute of HematologyProvincial Key Laboratory of Biotechnology, School of MedicineNorthwest UniversityXi'anShaanxiChina
| | - Zhuo Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life SciencesNorthwest UniversityXi'anShaanxiChina
- Department of Laboratory MedicineThe First Affiliated Hospital of Xi'an Medical UniversityXi'anShaanxiP.R. China
| | - Feng Guan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life SciencesNorthwest UniversityXi'anShaanxiChina
| | - Zengqi Tan
- Institute of HematologyProvincial Key Laboratory of Biotechnology, School of MedicineNorthwest UniversityXi'anShaanxiChina
| |
Collapse
|
5
|
Niksirat H, Siino V, Steinbach C, Levander F. The quantification of zebrafish ocular-associated proteins provides hints for sex-biased visual impairments and perception. Heliyon 2024; 10:e33057. [PMID: 38994070 PMCID: PMC11238053 DOI: 10.1016/j.heliyon.2024.e33057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 07/13/2024] Open
Abstract
Biochemical differences between sexes can also be seen in non-sexual organs and may affect organ functions and susceptibility to diseases. It has been shown that there are sex-biased visual perceptions and impairments. Abundance differences of eye proteins could provide explanations for some of these. Exploration of the ocular proteome was performed to find sex-based protein abundance differences in zebrafish Danio rerio. A label-free protein quantification workflow using high-resolution mass spectrometry was employed to find proteins with significant differences between the sexes. In total, 3740 unique master proteins were identified and quantified, and 49 proteins showed significant abundance differences between the eyes of male and female zebrafish. Those proteins belong to lipoproteins, immune system, blood coagulation, antioxidants, iron and heme-binding proteins, ion channels, pumps and exchangers, neuronal and photoreceptor proteins, and the cytoskeleton. An extensive literature review provided clues for the possible links between the sex-biased level of proteins and visual perception and impairments. In conclusion, sexual dimorphism at the protein level was discovered for the first time in the eye of zebrafish and should be accounted for in ophthalmological studies. Data are available via ProteomeXchange with identifier PXD033338.
Collapse
Affiliation(s)
- Hamid Niksirat
- Faculty of Fisheries and Protection of Waters, CENAKVA, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| | - Valentina Siino
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - Christoph Steinbach
- Faculty of Fisheries and Protection of Waters, CENAKVA, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| | - Fredrik Levander
- Department of Immunotechnology, Lund University, Lund, Sweden
- National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, Lund University, Lund, Sweden
| |
Collapse
|
6
|
Abiola J, Berg AM, Aiyelaagbe O, Adeyi A, König S. Dabsylated Bradykinin Is Cleaved by Snake Venom Proteases from Echis ocellatus. Biomedicines 2024; 12:1027. [PMID: 38790989 PMCID: PMC11118064 DOI: 10.3390/biomedicines12051027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/22/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
The vasoactive peptide bradykinin (BK) is an important member of the renin-angiotensin system. Its discovery is tightly interwoven with snake venom research, because it was first detected in plasma following the addition of viper venom. While the fact that venoms liberate BK from a serum globulin fraction is well described, its destruction by the venom has largely gone unnoticed. Here, BK was found to be cleaved by snake venom metalloproteinases in the venom of Echis ocellatus, one of the deadliest snakes, which degraded its dabsylated form (DBK) in a few minutes after Pro7 (RPPGFSP↓FR). This is a common cleavage site for several mammalian proteases such as ACE, but is not typical for matrix metalloproteinases. Residual protease activity < 5% after addition of EDTA indicated that DBK is also cleaved by serine proteases to a minor extent. Mass spectrometry-based protein analysis provided spectral proof for several peptides of zinc metalloproteinase-disintegrin-like Eoc1, disintegrin EO4A, and three serine proteases in the venom.
Collapse
Affiliation(s)
- Julius Abiola
- IZKF Core Unit Proteomics, Interdisciplinary Center for Clinical Research, University of Münster, Röntgenstr. 21, 48149 Münster, Germany; (J.A.)
- Organic Unit, Department of Chemistry, University of Ibadan, Ibadan 200005, Nigeria
| | - Anna Maria Berg
- IZKF Core Unit Proteomics, Interdisciplinary Center for Clinical Research, University of Münster, Röntgenstr. 21, 48149 Münster, Germany; (J.A.)
| | - Olapeju Aiyelaagbe
- Organic Unit, Department of Chemistry, University of Ibadan, Ibadan 200005, Nigeria
| | - Akindele Adeyi
- Animal Physiology Unit, Department of Zoology, University of Ibadan, Ibadan 200005, Nigeria
| | - Simone König
- IZKF Core Unit Proteomics, Interdisciplinary Center for Clinical Research, University of Münster, Röntgenstr. 21, 48149 Münster, Germany; (J.A.)
| |
Collapse
|
7
|
Vincent D, Parsopoulou F, Martin L, Gaboriaud C, Demongeot J, Loules G, Fischer S, Cichon S, Germenis AE, Ghannam A, Drouet C. Hereditary angioedema with normal C1 inhibitor associated with carboxypeptidase N deficiency. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2024; 3:100223. [PMID: 38445235 PMCID: PMC10912455 DOI: 10.1016/j.jacig.2024.100223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/18/2023] [Accepted: 11/19/2023] [Indexed: 03/07/2024]
Abstract
Background Hereditary angioedema (HAE) is a potentially life-threatening disorder characterized by recurrent episodes of subcutaneous or submucosal swelling. HAE with normal C1 inhibitor (HAE-nC1-INH) is an underdiagnosed condition. Although the association with genetic variants has been identified for some families, the genetic causes in many patients with HAE-nC1-INH remain unknown. The role of genes associated with bradykinin catabolism is not fully understood. Objective We sought to investigate the biological parameters and the genes related to kallikrein-kinin system in families with a clinical phenotype of HAE-nC1-INH and presenting with a carboxypeptidase N (CPN) deficiency. Methods This study includes 4 families presenting with HAE-nC1-INH and CPN deficiency. Patients' clinical records were examined, biological parameters of kallikrein-kinin system were measured, and genetics was analyzed by next-generation sequencing and Sanger sequencing. Predictive algorithms (Human Splicing Finder, Sorting Intolerant From Tolerant, Polymorphism Phenotyping v2, MutationTaster, and ClinPred) were used to classify variants as affecting splicing, as benign to deleterious, or as disease-causing. Results Patients presented with angioedema and urticaria, mainly on face/lips, but also with abdominal pain or laryngeal symptoms. Affected patients displayed low CPN activity-30% to 50% of median value in plasma. We identified 3 variants of the CPN1 gene encoding the catalytic 55-kDa subunit of CPN: c.533G>A, c.582A>G, and c.734C>T. CPN deficiency associated with genetic variants segregated with HAE-nC1-INH symptoms in affected family members. Conclusions CPN1 gene variants are associated with CPN deficiency and HAE-nC1-INH symptoms in 4 unrelated families. Genetic CPN deficiency may contribute to bradykinin and anaphylatoxin accumulation, with synergistic effects in angioedema and urticarial symptoms.
Collapse
Affiliation(s)
- Denis Vincent
- Allergy and Internal Medicine Unit, University Hospital, Nîmes, France
- Centre de compétence, Centre de Référence des Angioedèmes (CREAK), Nîmes
| | | | - Ludovic Martin
- Dermatology Department, University Hospital, Angers, France
- Centre de Référence des Maladies Rares de la peau et des muqueuses d’origine génétique-Nord (MAGEC), filière FIMARAD, CHU Angers, Angers, France
| | | | | | | | - Sascha Fischer
- Human Genomics Research Group, Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Sven Cichon
- Human Genomics Research Group, Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Anastasios E. Germenis
- Department of Immunology and Histocompatibility, University of Thessaly, Larissa, Greece
| | | | - Christian Drouet
- Université Grenoble Alpes, CHU Grenoble Alpes, Grenoble, France
- Institut Cochin, INSERM, CNRS, Université Paris Cité, 75679, Paris, France
| |
Collapse
|
8
|
Kralova K, Vrtelka O, Fouskova M, Smirnova TA, Michalkova L, Hribek P, Urbanek P, Kuckova S, Setnicka V. Comprehensive spectroscopic, metabolomic, and proteomic liquid biopsy in the diagnostics of hepatocellular carcinoma. Talanta 2024; 270:125527. [PMID: 38134814 DOI: 10.1016/j.talanta.2023.125527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023]
Abstract
Liquid biopsy is a very topical issue in clinical diagnostics research nowadays. In this study, we explored and compared various analytical approaches to blood plasma analysis. Finally, we proposed a comprehensive procedure, which, thanks to the utilization of multiple analytical techniques, allowed the targeting of various biomolecules in blood plasma reflecting diverse biological processes underlying disease development. The potential of such an approach, combining proteomics, metabolomics, and vibrational spectroscopy along with preceding blood plasma fractionation, was demonstrated on blood plasma samples of patients suffering from hepatocellular carcinoma in cirrhotic terrain (n = 20) and control subjects with liver cirrhosis (n = 20) as well as healthy subjects (n = 20). Most of the applied methods allowed the classification of the samples with an accuracy exceeding 80.0 % and therefore have the potential to be used as a stand-alone method in clinical diagnostics. Moreover, a final panel of 48 variables obtained by a combination of the utilized analytical methods enabled the discrimination of the hepatocellular carcinoma samples from cirrhosis with 94.3 % cross-validated accuracy. Thus, this study, although limited by the cohort size, clearly demonstrated the benefit of the multimethod approach in clinical diagnosis.
Collapse
Affiliation(s)
- Katerina Kralova
- Department of Analytical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology, Prague, Technicka 5, 166 28, Prague 6, Czech Republic
| | - Ondrej Vrtelka
- Department of Analytical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology, Prague, Technicka 5, 166 28, Prague 6, Czech Republic
| | - Marketa Fouskova
- Department of Analytical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology, Prague, Technicka 5, 166 28, Prague 6, Czech Republic
| | - Tatiana Anatolievna Smirnova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technicka 5, 166 28, Prague 6, Czech Republic
| | - Lenka Michalkova
- Department of Analytical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology, Prague, Technicka 5, 166 28, Prague 6, Czech Republic; Department of Analytical Chemistry, Institute of Chemical Process Fundamentals of the CAS, Rozvojova 135, 165 02, Prague 6, Czech Republic
| | - Petr Hribek
- Military University Hospital Prague, Department of Medicine 1st Faculty of Medicine Charles University and Military University Hospital Prague, U Vojenske Nemocnice 1200, 169 02, Prague 6, Czech Republic; Department of Internal Medicine, Faculty of Military Health Sciences in Hradec Kralove, University of Defense, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Petr Urbanek
- Military University Hospital Prague, Department of Medicine 1st Faculty of Medicine Charles University and Military University Hospital Prague, U Vojenske Nemocnice 1200, 169 02, Prague 6, Czech Republic
| | - Stepanka Kuckova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technicka 5, 166 28, Prague 6, Czech Republic
| | - Vladimir Setnicka
- Department of Analytical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology, Prague, Technicka 5, 166 28, Prague 6, Czech Republic.
| |
Collapse
|
9
|
Kotol D, Woessmann J, Hober A, Álvez MB, Tran Minh KH, Pontén F, Fagerberg L, Uhlén M, Edfors F. Absolute Quantification of Pan-Cancer Plasma Proteomes Reveals Unique Signature in Multiple Myeloma. Cancers (Basel) 2023; 15:4764. [PMID: 37835457 PMCID: PMC10571728 DOI: 10.3390/cancers15194764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/31/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Mass spectrometry based on data-independent acquisition (DIA) has developed into a powerful quantitative tool with a variety of implications, including precision medicine. Combined with stable isotope recombinant protein standards, this strategy provides confident protein identification and precise quantification on an absolute scale. Here, we describe a comprehensive targeted proteomics approach to profile a pan-cancer cohort consisting of 1800 blood plasma samples representing 15 different cancer types. We successfully performed an absolute quantification of 253 proteins in multiplex. The assay had low intra-assay variability with a coefficient of variation below 20% (CV = 17.2%) for a total of 1013 peptides quantified across almost two thousand injections. This study identified a potential biomarker panel of seven protein targets for the diagnosis of multiple myeloma patients using differential expression analysis and machine learning. The combination of markers, including the complement C1 complex, JCHAIN, and CD5L, resulted in a prediction model with an AUC of 0.96 for the identification of multiple myeloma patients across various cancer patients. All these proteins are known to interact with immunoglobulins.
Collapse
Affiliation(s)
- David Kotol
- Science For Life Laboratory, KTH Royal Institute of Technology, 114 28 Stockholm, Sweden; (D.K.); (J.W.); (A.H.); (M.B.Á.); (K.H.T.M.); (L.F.); (M.U.)
- Department of Protein Science, Division of Systems Biology, School of Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 114 28 Stockholm, Sweden
| | - Jakob Woessmann
- Science For Life Laboratory, KTH Royal Institute of Technology, 114 28 Stockholm, Sweden; (D.K.); (J.W.); (A.H.); (M.B.Á.); (K.H.T.M.); (L.F.); (M.U.)
- Department of Protein Science, Division of Systems Biology, School of Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 114 28 Stockholm, Sweden
| | - Andreas Hober
- Science For Life Laboratory, KTH Royal Institute of Technology, 114 28 Stockholm, Sweden; (D.K.); (J.W.); (A.H.); (M.B.Á.); (K.H.T.M.); (L.F.); (M.U.)
- Department of Protein Science, Division of Systems Biology, School of Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 114 28 Stockholm, Sweden
| | - María Bueno Álvez
- Science For Life Laboratory, KTH Royal Institute of Technology, 114 28 Stockholm, Sweden; (D.K.); (J.W.); (A.H.); (M.B.Á.); (K.H.T.M.); (L.F.); (M.U.)
- Department of Protein Science, Division of Systems Biology, School of Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 114 28 Stockholm, Sweden
| | - Khue Hua Tran Minh
- Science For Life Laboratory, KTH Royal Institute of Technology, 114 28 Stockholm, Sweden; (D.K.); (J.W.); (A.H.); (M.B.Á.); (K.H.T.M.); (L.F.); (M.U.)
- Department of Protein Science, Division of Systems Biology, School of Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 114 28 Stockholm, Sweden
| | - Fredrik Pontén
- Rudbeck Laboratory, Uppsala University, 752 36 Uppsala, Sweden;
| | - Linn Fagerberg
- Science For Life Laboratory, KTH Royal Institute of Technology, 114 28 Stockholm, Sweden; (D.K.); (J.W.); (A.H.); (M.B.Á.); (K.H.T.M.); (L.F.); (M.U.)
- Department of Protein Science, Division of Systems Biology, School of Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 114 28 Stockholm, Sweden
| | - Mathias Uhlén
- Science For Life Laboratory, KTH Royal Institute of Technology, 114 28 Stockholm, Sweden; (D.K.); (J.W.); (A.H.); (M.B.Á.); (K.H.T.M.); (L.F.); (M.U.)
- Department of Protein Science, Division of Systems Biology, School of Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 114 28 Stockholm, Sweden
| | - Fredrik Edfors
- Science For Life Laboratory, KTH Royal Institute of Technology, 114 28 Stockholm, Sweden; (D.K.); (J.W.); (A.H.); (M.B.Á.); (K.H.T.M.); (L.F.); (M.U.)
- Department of Protein Science, Division of Systems Biology, School of Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 114 28 Stockholm, Sweden
| |
Collapse
|
10
|
Holers VM. Complement therapeutics are coming of age in rheumatology. Nat Rev Rheumatol 2023; 19:470-485. [PMID: 37337038 DOI: 10.1038/s41584-023-00981-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2023] [Indexed: 06/21/2023]
Abstract
The complement system was described over 100 years ago, and it is well established that activation of this pathway accompanies the great majority of autoimmune and inflammatory diseases. In addition, over three decades of work in murine models of human disease have nearly universally demonstrated that complement activation is upstream of tissue injury and the engagement of pro-inflammatory mechanisms such as the elaboration of cytokines and chemokines, as well as myeloid cell recruitment and activation. With that background, and taking advantage of advances in the development of biologic and small-molecule therapeutics, the creation and clinical evaluation of complement therapeutics is now rapidly expanding. This article reviews the current state of the complement therapeutics field, with a focus on their use in diseases cared for or consulted upon by rheumatologists. Included is an overview of the activation mechanisms and components of the system, in addition to the mechanisms by which the complement system interacts with other immune system constituents. The various therapeutic approaches to modulating the system in rheumatic and autoimmune diseases are reviewed. To understand how best to clinically assess the complement system, methods of its evaluation are described. Finally, next-generation therapeutic and diagnostic advances that can be envisioned for the future are discussed.
Collapse
Affiliation(s)
- V Michael Holers
- Medicine/Rheumatology, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
11
|
Budkowska M, Ostrycharz E, Serwin NM, Nazarewski Ł, Cecerska-Heryć E, Poręcka M, Rykowski P, Pietrzak R, Zieniewicz K, Siennicka A, Hukowska-Szematowicz B, Dołęgowska B. Biomarkers of the Complement System Activation (C3a, C5a, sC5b-9) in Serum of Patients before and after Liver Transplantation. Biomedicines 2023; 11:2070. [PMID: 37509709 PMCID: PMC10377212 DOI: 10.3390/biomedicines11072070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
The liver has a huge impact on the functioning of our body and the preservation of homeostasis. It is exposed to many serious diseases, which may lead to the chronic failure of this organ, which is becoming a global health problem today. Currently, the final form of treatment in patients with end-stage (acute and chronic) organ failure is transplantation. The proper function of transplanted organs depends on many cellular processes and immune and individual factors. An enormous role in the process of acceptance or rejection of a transplanted organ is attributed to, among others, the activation of the complement system. The aim of this study was the evaluation of the concentration of selected biomarkers' complement system activation (C3a, C5a, and sC5b-9 (terminal complement complex)) in the serum of patients before and after liver transplantation (24 h, two weeks). The study was conducted on a group of 100 patients undergoing liver transplantation. There were no complications during surgery and no transplant rejection in any of the patients. All patients were discharged home 2-3 weeks after the surgery. The levels of all analyzed components of the complement system were measured using the ELISA method. Additionally, the correlations of the basic laboratory parameters-C-reactive protein (CRP), hemoglobin (Hb), total bilirubin, alkaline phosphatase (ALP), alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma-glutamyl transpeptidase (GGTP), and albumin-with the parameters of the complement system (C3a, C5a, and sC5b-9) were determined. In our study, changes in the concentrations of all examined complement system components before and after liver transplantation were observed, with the lowest values before liver transplantation and the highest concentration two weeks after. The direct increase in components of the complement system (C3a, C5a, and sC5b-9) 24 h after transplantation likely affects liver damage after ischemia-reperfusion injury (IRI), while their increase two weeks after transplantation may contribute to transplant tolerance. Increasingly, attention is being paid to the role of C3a and CRP as biomarkers of damage and failure of various organs. From the point of view of liver transplantation, the most interesting correlation in our own research was found exactly between CRP and C3a, 24 h after the transplantation. This study shows that changes in complement activation biomarkers and the correlation with CRP in blood could be a prognostic signature of liver allograft survival or rejection.
Collapse
Affiliation(s)
- Marta Budkowska
- Department of Medical Analytics, Pomeranian Medical University, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Ewa Ostrycharz
- Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland
- Doctoral School, University of Szczecin, 70-383 Szczecin, Poland
- Molecular Biology and Biotechnology Center, University of Szczecin, 71-412 Szczecin, Poland
| | - Natalia Maria Serwin
- Department of Laboratory Medicine, Pomeranian Medical University, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Łukasz Nazarewski
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, ul Banacha 1a, 02-097 Warsaw, Poland
| | - Elżbieta Cecerska-Heryć
- Department of Laboratory Medicine, Pomeranian Medical University, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Marta Poręcka
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, ul Banacha 1a, 02-097 Warsaw, Poland
| | - Paweł Rykowski
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, ul Banacha 1a, 02-097 Warsaw, Poland
| | - Radosław Pietrzak
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, ul Banacha 1a, 02-097 Warsaw, Poland
| | - Krzysztof Zieniewicz
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, ul Banacha 1a, 02-097 Warsaw, Poland
| | - Aldona Siennicka
- Department of Medical Analytics, Pomeranian Medical University, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Beata Hukowska-Szematowicz
- Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland
- Molecular Biology and Biotechnology Center, University of Szczecin, 71-412 Szczecin, Poland
| | - Barbara Dołęgowska
- Department of Laboratory Medicine, Pomeranian Medical University, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| |
Collapse
|
12
|
König S, Vollenberg R, Tepasse PR. The Renin-Angiotensin System in COVID-19: Can Long COVID Be Predicted? Life (Basel) 2023; 13:1462. [PMID: 37511837 PMCID: PMC10381802 DOI: 10.3390/life13071462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
(1) Background: Co-morbidities such as hypertension and cardiovascular disease are major risk factors for severe COVID-19. The renin-angiotensin system (RAS) is critically involved in their pathophysiology and is counter-balanced by both angiotensin-converting enzyme 2 (ACE2), the functional receptor of SARS-CoV-2, and the kallikrein-kinin system (KKS). Considerable research interest with respect to COVID-19 treatment is currently being directed towards the components of these systems. In earlier studies, we noticed significantly reduced carboxypeptidase N (CPN, KKS member) activity and excessive angiotensin-converting enzyme (ACE, RAS member) activity in the sera of both hospitalized COVID-19 patients and a subgroup of convalescent patients. The data had been obtained using labeled bradykinin (BK) as a reporter peptide, which is a target of both CPN and ACE. The data were supplemented with mass-spectrometry-based serum proteomic analysis. Here, we hypothesize that the degree of BK serum degradation could be indicative of Long COVID. (2) Review and Discussion: The recent literature is briefly reviewed. The fact that the levels of the BK serum degradation products did not reach normal concentrations in almost half of the patients during convalescences could have been partially due to a dysregulated RAS. (3) Conclusions: Standard tests for routine patient care in Long COVID come often back normal. We suggest that the measurement of selected members of the RAS such as ACE and angiotensin II or the use of our BK degradation assay could identify Long COVID candidates. Clinical studies are required to test this hypothesis.
Collapse
Affiliation(s)
- Simone König
- IZKF Core Unit Proteomics, University of Münster, 48149 Münster, Germany
| | - Richard Vollenberg
- Department of Medicine B for Gastroenterology, Hepatology, Endocrinology and Clinical Infectiology, University Hospital Muenster, 48149 Münster, Germany
| | - Phil-Robin Tepasse
- Department of Medicine B for Gastroenterology, Hepatology, Endocrinology and Clinical Infectiology, University Hospital Muenster, 48149 Münster, Germany
| |
Collapse
|
13
|
Seiler DL, Kähler KH, Kleingarn M, Sadik CD, Bieber K, Köhl J, Ludwig RJ, Karsten CM. The complement receptor C5aR2 regulates neutrophil activation and function contributing to neutrophil-driven epidermolysis bullosa acquisita. Front Immunol 2023; 14:1197709. [PMID: 37275893 PMCID: PMC10235453 DOI: 10.3389/fimmu.2023.1197709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/02/2023] [Indexed: 06/07/2023] Open
Abstract
Introduction The function of the second receptor for the complement cleavage product C5a, C5aR2, is poorly understood and often neglected in the immunological context. Using mice with a global deficiency of C5aR2, we have previously reported an important role of this receptor in the pathogenesis of the neutrophil-driven autoimmune disease epidermolysis bullosa acquisita (EBA). Based on in vitro analyses, we hypothesized that the absence of C5aR2 specifically on neutrophils is the cause of the observed differences. Here, we report the generation of a new mouse line with a LysM-specific deficiency of C5aR2. Methods LysM-specific deletion of C5aR2 was achieved by crossing LysMcre mice with tdTomato-C5ar2fl/fl mice in which the tdTomato-C5ar2 gene is flanked by loxP sites. Passive EBA was induced by subcutaneous injection of rabbit anti-mouse collagen type VII IgG. The effects of targeted deletion of C5ar2 on C5a-induced effector functions of neutrophils were examined in in vitro assays. Results We confirm the successful deletion of C5aR2 at both the genetic and protein levels in neutrophils. The mice appeared healthy and the expression of C5aR1 in bone marrow and blood neutrophils was not negatively affected by LysM-specific deletion of C5aR2. Using the antibody transfer mouse model of EBA, we found that the absence of C5aR2 in LysM-positive cells resulted in an overall amelioration of disease progression, similar to what we had previously found in mice with global deficiency of C5aR2. Neutrophils lacking C5aR2 showed decreased activation after C5a stimulation and increased expression of the inhibitory Fcγ receptor FcγRIIb. Discussion Overall, with the data presented here, we confirm and extend our previous findings and show that C5aR2 in neutrophils regulates their activation and function in response to C5a by potentially affecting the expression of Fcγ receptors and CD11b. Thus, C5aR2 regulates the finely tuned interaction network between immune complexes, Fcγ receptors, CD11b, and C5aR1 that is important for neutrophil recruitment and sustained activation. This underscores the importance of C5aR2 in the pathogenesis of neutrophil-mediated autoimmune diseases.
Collapse
Affiliation(s)
- Daniel L. Seiler
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany
| | - Katja H. Kähler
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany
| | - Marie Kleingarn
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany
| | - Christian D. Sadik
- Center for Research on Inflammation of the Skin (CRIS), University of Lübeck, Lübeck, Germany
- Department of Dermatology, Allergology and Venerology, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Katja Bieber
- Center for Research on Inflammation of the Skin (CRIS), University of Lübeck, Lübeck, Germany
- Department of Dermatology, Allergology and Venerology, University Hospital Schleswig-Holstein, Lübeck, Germany
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Jörg Köhl
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Centre, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Ralf J. Ludwig
- Center for Research on Inflammation of the Skin (CRIS), University of Lübeck, Lübeck, Germany
- Department of Dermatology, Allergology and Venerology, University Hospital Schleswig-Holstein, Lübeck, Germany
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Christian M. Karsten
- Institute for Systemic Inflammation Research (ISEF), University of Lübeck, Lübeck, Germany
| |
Collapse
|
14
|
Yakout SM, Abdi S, Alaskar AH, Khattak MNK, Al-Masri AA, Al-Daghri NM. Impact of Vitamin D Status Correction on Serum Lipid Profile, Carboxypeptidase N and Nitric Oxide Levels in Saudi Adults. Int J Mol Sci 2023; 24:ijms24097711. [PMID: 37175418 PMCID: PMC10177893 DOI: 10.3390/ijms24097711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
This study aimed to determine the impact on the lipid profile, carboxypeptidase N (CPN) and nitric oxide (NOx) associated with vitamin D (VD) status correction among Saudi adults with VD deficiency. A total 111 VD deficient (25(OH)D < 50 nmol/L)) adult Saudis aged 18-50 years old (57 females and 54 males) were enrolled in this 6-month interventional study. They were given 50,000 IU VD weekly for the first 2 months and then twice a month for the next 2 months, followed by 1000 IU daily for the last 2 months. The fasting lipid profile and the blood glucose, VD, NOx and CPN concentrations were measured at baseline and after intervention. Post-supplementation, the median VD was significantly higher (p < 0.001) in females [58.3 (50.6-71.2)] and males [57.8 (51.0-71.8)]. HDL cholesterol significantly increased (p = 0.05) and NOx significantly decreased (p = 0.02) in males post-supplementation. Triglycerides were positively associated with NOx in all subjects before (r = 0.44, p = 0.01) and after (r = 0.37, p = 0.01) VD status correction. There was a significant increase in serum levels of CPN2 (p = 0.02) in all subjects. Furthermore, CPN was inversely correlated with NOx (r = -0.35, p = 0.05) in males post-supplementation. In conclusion, VD status correction reduced serum NOx, particularly in males. The inhibition of NOx synthesis may be responsible for the anti-inflammatory effects of VD supplementation. An inverse association was found between NOx and CPN2.
Collapse
Affiliation(s)
- Sobhy M Yakout
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saba Abdi
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Alhanouf H Alaskar
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Malak Nawaz Khan Khattak
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abeer A Al-Masri
- Department of Physiology, College Medicine, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nasser M Al-Daghri
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
15
|
Song S, Wu H, Liu Y, Lan D, Jiao B, Wan S, Guo Y, Zhou D, Ding Y, Ji X, Meng R. Remote ischemic conditioning-induced hyperacute and acute responses of plasma proteome in healthy young male adults: a quantitative proteomic analysis. Chin Med J (Engl) 2023; 136:150-158. [PMID: 36848171 PMCID: PMC10106146 DOI: 10.1097/cm9.0000000000002572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND Long-term remote ischemic conditioning (RIC) has been proven to be beneficial in multiple diseases, such as cerebral and cardiovascular diseases. However, the hyperacute and acute effects of a single RIC stimulus are still not clear. Quantitative proteomic analyses of plasma proteins following RIC application have been conducted in preclinical and clinical studies but exhibit high heterogeneity in results due to wide variations in experimental setups and sampling procedures. Hence, this study aimed to explore the immediate effects of RIC on plasma proteome in healthy young adults to exclude confounding factors of disease entity, such as medications and gender. METHODS Young healthy male participants were enrolled after a systematic physical examination and 6-month lifestyle observation. Individual RIC sessions included five cycles of alternative ischemia and reperfusion, each lasting for 5 min in bilateral forearms. Blood samples were collected at baseline, 5 min after RIC, and 2 h after RIC, and then samples were processed for proteomic analysis using liquid chromatography-tandem mass spectrometry method. RESULTS Proteins related to lipid metabolism (e.g., Apolipoprotein F), coagulation factors (hepatocyte growth factor activator preproprotein), members of complement cascades (mannan-binding lectin serine protease 1 isoform 2 precursor), and inflammatory responses (carboxypeptidase N catalytic chain precursor) were differentially altered at their serum levels following the RIC intervention. The most enriched pathways were protein glycosylation and complement/coagulation cascades. CONCLUSIONS One-time RIC stimulus may induce instant cellular responses like anti-inflammation, coagulation, and fibrinolysis balancing, and lipid metabolism regulation which are protective in different perspectives. Protective effects of single RIC in hyperacute and acute phases may be exploited in clinical emergency settings due to apparently beneficial alterations in plasma proteome profile. Furthermore, the beneficial effects of long-term (repeated) RIC interventions in preventing chronic cardiovascular diseases among general populations can also be expected based on our study findings.
Collapse
Affiliation(s)
- Siying Song
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing 100053, China
- Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Hao Wu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Yunhuan Liu
- Department of Neurology, Huadong Hospital, Fudan University, Shanghai 200031, China
| | - Duo Lan
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing 100053, China
- Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Baolian Jiao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing 100053, China
- Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Shuling Wan
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing 100053, China
- Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Yibing Guo
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing 100053, China
- Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Da Zhou
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing 100053, China
- Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Yuchuan Ding
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing 100053, China
- Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Xunming Ji
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing 100053, China
- Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Ran Meng
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing 100053, China
- Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| |
Collapse
|
16
|
Zarantonello A, Revel M, Grunenwald A, Roumenina LT. C3-dependent effector functions of complement. Immunol Rev 2023; 313:120-138. [PMID: 36271889 PMCID: PMC10092904 DOI: 10.1111/imr.13147] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
C3 is the central effector molecule of the complement system, mediating its multiple functions through different binding sites and their corresponding receptors. We will introduce the C3 forms (native C3, C3 [H2 O], and intracellular C3), the C3 fragments C3a, C3b, iC3b, and C3dg/C3d, and the C3 expression sites. To highlight the important role that C3 plays in human biological processes, we will give an overview of the diseases linked to C3 deficiency and to uncontrolled C3 activation. Next, we will present a structural description of C3 activation and of the C3 fragments generated by complement regulation. We will proceed by describing the C3a interaction with the anaphylatoxin receptor, followed by the interactions of opsonins (C3b, iC3b, and C3dg/C3d) with complement receptors, divided into two groups: receptors bearing complement regulatory functions and the effector receptors without complement regulatory activity. We outline the molecular architecture of the receptors, their binding sites on the C3 activation fragments, the cells expressing them, the diversity of their functions, and recent advances. With this review, we aim to give an up-to-date analysis of the processes triggered by C3 activation fragments on different cell types in health and disease contexts.
Collapse
Affiliation(s)
- Alessandra Zarantonello
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Margot Revel
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Anne Grunenwald
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Lubka T Roumenina
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| |
Collapse
|
17
|
Khan A, Das BC, Abiha U, Sisodiya S, Chikara A, Nazir SU, Das AM, Rodrigues AG, Passari AK, Tanwar P, Hussain S, Rashid S, Rashid S. Insights into the role of complement regulatory proteins in HPV mediated cervical carcinogenesis. Semin Cancer Biol 2022; 86:583-589. [PMID: 34087416 DOI: 10.1016/j.semcancer.2021.05.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 01/27/2023]
Abstract
The persistent infection of high-risk Human papillomavirus (HR-HPV) induced cervical cancer remains a challenge in women worldwide including India. Recent advances in cancer research have paved the way for advanced cancer treatment modalities including immunotherapy by manipulating the function or number of cytotoxic T cells. It is well established that anaphylatoxins like C3a and C5a of complement system influence tumor growth by evading apoptosis leading to progression of cancer. The role of the complement system, particularly the complement regulatory proteins (CRPs) which are important determinants of immune response play a crucial role in carcinogenesis. In a tumor microenvironment (TME) assisted suppression of immune effector cells may be achieved through CRPs. However, recent advances in pharmacogenomics including drug designing and combination of these approaches have provided a holistic understanding of signaling pathways and their crosstalk, to regulate cellular communications.This review describes the role of complement system; particularly CRPs in HPV induced cervical carcinogenesis which may be used for designing anti- HPV or cervical cancer therapeutics.
Collapse
Affiliation(s)
- Asiya Khan
- Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India; Laboratory Oncology Unit, Rotary Cancer Center, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Bhudev C Das
- Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Health & Allied Sciences Amity University, Noida, India
| | - Umme Abiha
- Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Sandeep Sisodiya
- Division of Molecular Oncology & Molecular Diagnostics, ICMR-National Institute of Cancer Prevention and Research, Ministry of Health & Family Welfare, Noida, India; Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| | - Atul Chikara
- Division of Molecular Oncology & Molecular Diagnostics, ICMR-National Institute of Cancer Prevention and Research, Ministry of Health & Family Welfare, Noida, India; Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| | - Sheeraz Un Nazir
- Division of Molecular Oncology & Molecular Diagnostics, ICMR-National Institute of Cancer Prevention and Research, Ministry of Health & Family Welfare, Noida, India
| | - Ankan M Das
- Amity Institute of Public Health, Amity University, Noida, India
| | - Alexandre Gomes Rodrigues
- Alpha & Omega Labor, Messe-Alle, 23, 04158, Leipzig, Germany; University of Veterinary Medicine Hannover, Bischofsholer Damm 15, 30173, Hannover, Germany
| | - Ajit Kumar Passari
- Departmento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Pranay Tanwar
- Laboratory Oncology Unit, Rotary Cancer Center, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Showket Hussain
- Division of Molecular Oncology & Molecular Diagnostics, ICMR-National Institute of Cancer Prevention and Research, Ministry of Health & Family Welfare, Noida, India.
| | - Sabia Rashid
- Queen Elizabeth Hospital & King's College Hospital, Stadium Road, London, United Kingdom.
| | - Shazia Rashid
- Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India.
| |
Collapse
|
18
|
Nogueira VC, de Oliveira VDN, Guedes MIF, Smith BJ, da C Freire JE, Gonçalves NGG, de O M Moreira AC, de A Moreira R. UPLC-HDMS E to discover serum biomarkers in adults with type 1 diabetes. Int J Biol Macromol 2022; 221:1161-1170. [PMID: 36115450 DOI: 10.1016/j.ijbiomac.2022.09.085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/05/2022]
Abstract
Type 1 diabetes (T1D) is a complex disease with metabolic and functional changes that can alter an individual's proteome. An LC-MS/MS analytical method, in an HDMSE system, was used to identify differentially expressed proteins in the high abundance protein-depleted serum of T1D patients and healthy controls. Samples were processed in Progenesis QI for Proteomics software. A functional enrichment of the proteins was performed with Gene Ontology and ToppGene, and the interactions were visualized by STRING 11.5. As a result, 139 proteins were identified, 14 of which were downregulated in the serum of patients with T1D compared to controls. Most of the differentially expressed proteins were shown to be involved with the immune system, inflammation, and growth hormone stimulus response, and were associated with the progression of T1D. Differential protein expression data showed for the first-time changes in CPN2 expression levels in the serum of patients with T1D. Our findings indicate that these proteins are targets of interest for future investigations and for validation of protein biomarkers in T1D.
Collapse
Affiliation(s)
- Valeria C Nogueira
- Department of Education, Federal Institute of Ceará (IFCE), Ubajara, Ceará, Brazil.
| | - Valzimeire do N de Oliveira
- Laboratory of Biotechnology and Molecular Biology, State University of Ceará (UECE), Fortaleza, Ceara, Brazil
| | - Maria I F Guedes
- Laboratory of Biotechnology and Molecular Biology, State University of Ceará (UECE), Fortaleza, Ceara, Brazil
| | - Bradley J Smith
- Laboratory of Neuroproteomics, Institute of Biology, Department of Biochemistry and Tissue Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - José E da C Freire
- Department of Clinical Medicine, Federal University of Ceará (UFC), Fortaleza, Ceará, Brazil
| | | | - Ana C de O M Moreira
- Experimental Biology Center, University of Fortaleza (UNIFOR), Fortaleza, Ceará, Brazil
| | - Renato de A Moreira
- Experimental Biology Center, University of Fortaleza (UNIFOR), Fortaleza, Ceará, Brazil
| |
Collapse
|
19
|
Schäfer N, Grässel S. Involvement of complement peptides C3a and C5a in osteoarthritis pathology. Peptides 2022; 154:170815. [PMID: 35598724 DOI: 10.1016/j.peptides.2022.170815] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/10/2022] [Accepted: 05/17/2022] [Indexed: 12/28/2022]
Abstract
Osteoarthritis (OA) affects more than 500 million people worldwide and is among the five diseases in Germany causing the highest suffering of the patients and cost for the society. The quality of life of OA patients is severely compromised, and adequate therapy is lacking owing to a knowledge gap that acts as a major barrier to finding safe and effective solutions. Chronic, low-grade inflammation plays a central role in OA pathogenesis and is associated with both OA pain and disease progression. Innate immune pathways, such as the complement- and pattern-recognition receptor pathways, are pivotal to the inflammation in OA and key components of the innate immune system implicated in OA include DAMP-TLR signaling, the complement system, carboxypeptidase B (CPB), and mononuclear cells. Anaphylatoxins C3a and C5a are small polypeptides (77 and 74 amino acids, respectively) which are released by proteolytic cleavage of the complement components C3 and C5. The alternative complement pathway seems to play a crucial role in OA pathogenesis as these complement components, mostly C3 and its activation peptide C3a, were detected at high levels in osteoarthritic cartilage, synovial membrane, and cultured chondrocytes. Targeting the complement system by using anti-complement drugs as a therapeutic option bears the risk of major side effects such as increasing the risk of infection, interfering with cell regeneration and metabolism, and suppressing the clearance of immune complexes. Despite those adverse effects, several synthetic complement peptide antagonists show promising effects in ameliorating inflammatory cell responses also in joint tissues.
Collapse
Affiliation(s)
- Nicole Schäfer
- Experimental Orthopaedics, Centre for Medical Biotechnology (ZMB), Bio Park 1, University of Regensburg, Germany
| | - Susanne Grässel
- Experimental Orthopaedics, Centre for Medical Biotechnology (ZMB), Bio Park 1, University of Regensburg, Germany; Department of Orthopaedic Surgery, University of Regensburg, Germany.
| |
Collapse
|
20
|
Lee CJ, Choi B, Pak H, Park JM, Lee JH, Lee SH. Genetic Variants Associated with Adverse Events after Angiotensin-Converting Enzyme Inhibitor Use: Replication after GWAS-Based Discovery. Yonsei Med J 2022; 63:342-348. [PMID: 35352885 PMCID: PMC8965428 DOI: 10.3349/ymj.2022.63.4.342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/13/2021] [Accepted: 01/11/2022] [Indexed: 11/27/2022] Open
Abstract
PURPOSE Angiotensin-converting enzyme inhibitors (ACEIs) are medications generally prescribed for patients with high cardiovascular risk; however, they are suboptimally used due to frequent adverse events (AEs). The present study aimed to identify and replicate the genetic variants associated with ACEI-related AEs in the Korean population. MATERIALS AND METHODS A two-stage approach employing genome-wide association study (GWAS)-based discovery and replication through target sequencing was used. In total, 1300 individuals received ACEIs from 2001 to 2007; among these, 228 were selected for GWAS. An additional 336 patients were selected for replication after screening 1186 subjects treated from 2008 to 2018. Candidate genes for target sequencing were selected based on the present GWAS, previous GWASs, and data from the PharmGKB database. Furthermore, association analyses were performed between no AE and AE or cough groups after target sequencing. RESULTS Five genes, namely CRIM1, NELL1, CACNA1D, VOPP1, and MYBPC1, were identified near variants associated with ACEI-related AEs. During target sequencing of 34 candidate genes, six single-nucleotide polymorphisms (SNPs; rs5224, rs8176786, rs10766756, rs561868018, rs4974539, and rs10946364) were replicated for association with all ACEI-related AEs. Four of these SNPs and rs147912715 exhibited associations with ACEI-related cough, whereas four SNPs (rs5224, rs81767786, rs10766756, and rs4974539 near BDKRB2, NELL1, NELL1 intron, and CPN2, respectively) were significantly associated with both categories of AEs. CONCLUSION Several variants, including novel and known variants, were successfully replicated and found to have associations with ACEI-related AEs. These results provide rare and clinically relevant information for safer use of ACEIs.
Collapse
Affiliation(s)
- Chan Joo Lee
- Division of Cardiology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Bogeum Choi
- Kyung Hee University College of Medicine, Seoul, Korea
| | - Hayeon Pak
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, Korea
| | - Jung Mi Park
- Department of Biostatistics and Computing, Graduate School, Yonsei University, Seoul, Korea
| | - Ji Hyun Lee
- Department of Clinical Pharmacology and Therapeutics, Kyung Hee University College of Medicine, Seoul, Korea
- Department of Biomedical Science and Technology, Kyung Hee University, Seoul, Korea.
| | - Sang-Hak Lee
- Division of Cardiology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
21
|
Saril A, Kocaturk M, Shimada K, Uemura A, Akgün E, Levent P, Baykal AT, Prieto AM, Agudelo CF, Tanaka R, Ceron JJ, Koch J, Yilmaz Z. Serum Proteomic Changes in Dogs with Different Stages of Chronic Heart Failure. Animals (Basel) 2022; 12:ani12040490. [PMID: 35203200 PMCID: PMC8868296 DOI: 10.3390/ani12040490] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/04/2022] [Accepted: 02/14/2022] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Canine MMVD is a progressive chronic disease with variable clinical signs, with some patients remaining completely asymptomatic while others develop CHF. Here, the aims of the pilot study were to evaluate serum proteins by proteomic analysis in dogs at different stages of chronic heart failure (CHF) due to degenerative mitral valve disease (MMVD), and how these proteins can change after a conventional treatment. Study revealed 157 different proteins; 11 were up- and 21 down-regulated at a statistically significant level in dogs with CHF compared to controls. Based on the bioinformatic analysis, protein–protein interactions between complement proteins, fibrinogen subtypes and others (albumin precursor, serpins, inter-alpha-trypsin inhibitor heavy chain, fetuin, clusterin, apolipoproteins, and alpha-glycoproteins) showed that pathophysiology of CHF seems to be more sophisticated than we had thought. These proteins are associated with several cellular, biologic, and metabolic processes such as immune-inflammatory responses, hemostasis, oxidative stress, and energy metabolism, which might be detrimental in the progression of canine CHF. Their molecular and biological functions as well as roles in the signaling pathways, such as inflammation, cadherin signaling, nicotinic acetylcholine receptor signaling and Wnt signaling make them possible biomarkers and therapeutic targets for the diagnosis and treatments in dogs with different stages of CHF. Abstract MMVD, the most common cause of CHF in dogs, is a chronic disease with variable clinical signs, with some patients remaining asymptomatic while others develop CHF. Here, we aimed to evaluate serum proteins by proteomic analysis in dogs at different stages of CHF due to MMVD, and proteome behaviors after conventional treatment. A total of 32 dogs were divided equally into four groups—stage A (healthy/controls), stage B2 (asymptomatic), stage C and stage D (symptomatic)—according to the ACVIM consensus. Serum proteomes were evaluated using LC/MS-based label-free differential proteome analysis. The study revealed 157 different proteins; 11 were up- and 21 down-regulated in dogs with CHF compared to controls. In stage B2 dogs, angiotensinogen (AGT) was up-regulated, but immunoglobulin iota chain-like, lipopolysaccharide-binding protein, and carboxypeptidase (CPN) were down-regulated. In stage C dogs, complement C3 (C3) and inter-alpha-trypsin inhibitor heavy chain were up-regulated, but hemopexin, and actin-cytoplasmic-1 (ACT-1) were down-regulated. In stage D dogs, AGT was up-regulated, whereas tetranectin, paraoxonase-1, adiponectin and ACT-1 were down-regulated. A decrease in CPN, C3 and AGT and an increase in ACT-1 were observed after treatment of dogs in stage C. This pilot study identified that dogs at different stages of CHF show different serum protein composition which has potential to be biomarker for diagnose and treatment monitorization.
Collapse
Affiliation(s)
- Ahmet Saril
- Department of Internal Medicine, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa 16059, Turkey; (A.S.); (M.K.); (P.L.); (Z.Y.)
| | - Meric Kocaturk
- Department of Internal Medicine, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa 16059, Turkey; (A.S.); (M.K.); (P.L.); (Z.Y.)
| | - Kazumi Shimada
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan;
- Correspondence:
| | - Akiko Uemura
- Laboratory of Veterinary Surgery, Department of Clinical Veterinary Medicine, Division of Veterinary Research, Obihiro University of Agriculture and Veterinary Medicine, Sapporo 080-8555, Japan;
| | - Emel Akgün
- Department of Medical Biochemistry, Acibadem University School of Medicine, Istanbul 34750, Turkey; (E.A.); (A.T.B.)
| | - Pinar Levent
- Department of Internal Medicine, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa 16059, Turkey; (A.S.); (M.K.); (P.L.); (Z.Y.)
| | - Ahmet Tarik Baykal
- Department of Medical Biochemistry, Acibadem University School of Medicine, Istanbul 34750, Turkey; (E.A.); (A.T.B.)
| | - Alberto Muñoz Prieto
- Clinic for Internal Diseases, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia;
| | - Carlos Fernando Agudelo
- Small Animal Clinic, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Palackého Tř. 1946/1, 612 42 Brno, Czech Republic;
| | - Ryou Tanaka
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan;
| | - Jose Joaquin Ceron
- Interdisciplinary Laboratory of Clinical Analysis, Interlab-UMU, Regional Campus of International Excellence, University of Murcia, Espinardo, 30100 Murcia, Spain;
| | - Jorgen Koch
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-1870 Frederiksberg, Denmark;
| | - Zeki Yilmaz
- Department of Internal Medicine, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa 16059, Turkey; (A.S.); (M.K.); (P.L.); (Z.Y.)
| |
Collapse
|
22
|
Talaat IM, Elemam NM, Saber-Ayad M. Complement System: An Immunotherapy Target in Colorectal Cancer. Front Immunol 2022; 13:810993. [PMID: 35173724 PMCID: PMC8841337 DOI: 10.3389/fimmu.2022.810993] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/14/2022] [Indexed: 12/26/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common malignant tumor and the second most fatal cancer worldwide. Several parts of the immune system contribute to fighting cancer including the innate complement system. The complement system is composed of several players, namely component molecules, regulators and receptors. In this review, we discuss the complement system activation in cancer specifically CRC and highlight the possible interactions between the complement system and the various TME components. Additionally, the role of the complement system in tumor immunity of CRC is reviewed. Hence, such work could provide a framework for researchers to further understand the role of the complement system in CRC and explore the potential therapies targeting complement activation in solid tumors such as CRC.
Collapse
Affiliation(s)
- Iman M. Talaat
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Noha Mousaad Elemam
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Maha Saber-Ayad
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
23
|
Wu S, Miao K, Wang L, Ma Y, Wu X. Bioinformatics analysis of C3 in brain low-grade gliomas as potential therapeutic target and promoting immune cell infiltration. Med Oncol 2022; 39:27. [PMID: 35018510 DOI: 10.1007/s12032-022-01647-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/03/2022] [Indexed: 11/25/2022]
Abstract
Low-grade gliomas is the malignant nervous tumor with distinct biological and clinical characteristics. Despite advances in diagnostic and therapeutic methods, how to significantly elongate the survival of low-grade gliomas is still challengeable. Complement 3, as the critical component in the innate immune system, plays an essential role in local immune response and participating into regulation of the epithelial-mesenchymal transition and tumor microenvironment. In this study, we systematically determined the expression levels and immunological roles of C3 in low-grade gliomas using various public databases. Then, we further identified the impact of C3 expression on immune cell infiltration compared to normal tissue, indicating the effect of cellular microenvironment on overall survival of LGG patients. We obtained clinical characteristics, transcriptome, and survival of C3 in LGG from the TCGA, GEPIA2.0, and cBioportal databases. Two differentially expressed genes (DEGs) were obtained, DEGs compared to normal tissue (DEG_G1) and DEGs between C3 high expression and C3 low expression in LGG patients (DEG_G2). By performing the GO analysis and protein-protein interaction (PPI) network of DEG_G1, we have identified the top-ranked 10 hub genes, which are highly associated with regulation of cell cycle. The gene set enrichment analysis demonstrated that overexpression of C3 in LGG patient is positively correlated with regulation of cell cycle. The relative PPI analysis and GSEA of DEG_G2 were performed and analysis results indicated that higher expression of C3 in the LGG can activate immune-related pathways. Finally, immune cell infiltration analysis of C3 in the LGG patients was employed and clearly indicated that higher neutrophil infiltration can worsen the survival of the LGG patients with higher expression of C3. These results were confirmed by the Human Protein Atlas database, in which expression level of C3 protein in gliomas patients always higher. This investigation implied that C3 can be as diagnostic biomarker and potential targets of precise therapy for the LGG patients.
Collapse
Affiliation(s)
- Siyi Wu
- Henan and Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Kaiting Miao
- Henan and Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Lijing Wang
- Henan and Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, 475004, China
- Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Yuanyuan Ma
- Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Xiujuan Wu
- Henan and Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, 475004, China.
- Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
24
|
Malicek D, Wittig I, Luger S, Foerch C. Proteomics-Based Approach to Identify Novel Blood Biomarker Candidates for Differentiating Intracerebral Hemorrhage From Ischemic Stroke-A Pilot Study. Front Neurol 2022; 12:713124. [PMID: 34975707 PMCID: PMC8719589 DOI: 10.3389/fneur.2021.713124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
Background: A reliable distinction between ischemic stroke (IS) and intracerebral hemorrhage (ICH) is required for diagnosis-specific treatment and effective secondary prevention in patients with stroke. However, in resource-limited settings brain imaging, which is the current diagnostic gold standard for this purpose, is not always available in time. Hence, an easily accessible and broadly applicable blood biomarker-based diagnostic test differing stroke subtypes would be desirable. Using an explorative proteomics approach, this pilot study aimed to identify novel blood biomarker candidates for distinguishing IS from ICH. Material and Methods: Plasma samples from patients with IS and ICH were drawn during hospitalization and were analyzed by using liquid chromatography/mass spectrometry. Proteins were identified using the human reference proteome database UniProtKB, and label-free quantification (LFQ) data were further analyzed using bioinformatic tools. Results: Plasma specimens of three patients with IS and four patients with ICH with a median National Institute of Health Stroke Scale (NIHSS) of 12 [interquartile range (IQR) 10.5–18.5] as well as serum samples from two healthy volunteers were analyzed. Among 495 identified protein groups, a total of 368 protein groups exhibited enough data points to be entered into quantitative analysis. Of the remaining 22 top-listed proteins, a significant difference between IS and ICH was found for Carboxypeptidase N subunit 2 (CPN2), Coagulation factor XII (FXII), Plasminogen, Mannan-binding lectin serine protease 1, Serum amyloid P-component, Paraoxonase 1, Carbonic anhydrase 1, Fibulin-1, and Granulins. Discussion: In this exploratory proteomics-based pilot study, nine candidate biomarkers for differentiation of IS and ICH were identified. The proteins belong to the immune system, the coagulation cascade, and the apoptosis system, respectively. Further investigations in larger cohorts of patients with stroke using additional biochemical analysis methods, such as ELISA or Western Blotting are now necessary to validate these markers, and to characterize diagnostic accuracy with regard to the development of a point-of-care-system for use in resource-limited areas.
Collapse
Affiliation(s)
- David Malicek
- Department of Neurology, Goethe University/University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Ilka Wittig
- Functional Proteomics, Institute of Cardiovascular Physiology, Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
| | - Sebastian Luger
- Department of Neurology, Goethe University/University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Christian Foerch
- Department of Neurology, Goethe University/University Hospital Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
25
|
Zheng JM, Zhou HX, Yu HY, Xia YH, Yu QX, Qu HS, Bao JQ. By Increasing the Expression and Activation of STAT3, Sustained C5a Stimulation Increases the Proliferation, Migration, and Invasion of RCC Cells and Promotes the Growth of Transgrafted Tumors. Cancer Manag Res 2021; 13:7607-7621. [PMID: 34675657 PMCID: PMC8500505 DOI: 10.2147/cmar.s326352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/11/2021] [Indexed: 11/23/2022] Open
Abstract
Background Contradictive results about the direct role of C5a/C5aR1 axis in different cancer cells have been reported. The direct effect of C5a on human renal cell carcinoma (RCC) cells and the underlying mechanism are not clear. The aim of this study is to investigate the role of C5a/C5aR1 axis in RCC cells and its working mechanism. Methods RCC cells were infected with lentivirus Lenti-C5a, which was designed to over-express secretory C5a in the cells, or directly treated with recombinant C5a, the influence of these treatments in the cells and the underlying mechanism were explored. Results Transfection of RCC cells with Lenti-C5a markedly increased the production of C5a and significantly increased the proliferation, migration, and invasion of RCC cells, but direct addition of C5a to the cell culture medium had no such effects though it indeed induced a transient intracellular calcium rise. RCC cells were found to express carboxypeptidase D and M, which reportedly to inactivate C5a. Also, the RCC cells stably transfected with Lenti-C5a produced larger transgrafted tumors in nude mice compared with the non-transfected or control virus transfected cells. In addition, over-expression of C5a significantly increased the expression and phosphorylation of STAT3 as well as the phosphorylated JNK level. Furthermore, the effect of C5a over-expression on RCC cells' proliferation, migration, and invasion could be blocked by Stattic, a STAT3-specific inhibitor. Conclusion Chronic over-activation of C5a/C5aR1 axis could directly increase RCC cells' proliferation, migration, and invasion and thus contribute directly to the progression of the disease. Over-activation of STAT3 pathway is among the underlying mechanism.
Collapse
Affiliation(s)
- Jing-Min Zheng
- Department of Urology, Taizhou Hospital, Wenzhou Medical University, Linhai, Zhejiang, People's Republic of China
| | - Han-Xi Zhou
- Department of Urology, Taizhou Hospital, Wenzhou Medical University, Linhai, Zhejiang, People's Republic of China
| | - Hong-Yuan Yu
- Department of Urology, Taizhou Hospital, Wenzhou Medical University, Linhai, Zhejiang, People's Republic of China
| | - Yu-Hui Xia
- Department of Pathology, Taizhou Hospital, Wenzhou Medical University, Linhai, Zhejiang, People's Republic of China
| | - Qing-Xin Yu
- Department of Pathology, Taizhou Hospital, Wenzhou Medical University, Linhai, Zhejiang, People's Republic of China
| | - Hang-Shuai Qu
- Department of Urology, Taizhou Hospital, Wenzhou Medical University, Linhai, Zhejiang, People's Republic of China
| | - Jia-Qian Bao
- Department of Urology, Taizhou Hospital, Wenzhou Medical University, Linhai, Zhejiang, People's Republic of China
| |
Collapse
|
26
|
Ma J, Liu Q, White JR. Novel methods to determine complement activation in human serum induced by the complex of Dezamizumab and serum amyloid P. J Biol Chem 2021; 297:101136. [PMID: 34461096 PMCID: PMC8463879 DOI: 10.1016/j.jbc.2021.101136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 12/02/2022] Open
Abstract
Lack of simple and robust methods to determine complement activation in human serum induced by antigen–antibody complexes is a major hurdle for monitoring therapeutic antibody drug quality and stability. Dezamizumab is a humanized IgG1 monoclonal antibody that binds to serum amyloid P component (SAP) for potential treatment of systemic amyloidosis. The mechanism of action of Dezamizumab includes the binding of SAP, complement activation through classical pathway, and phagocytosis; however, the steps in this process cannot be easily monitored. We developed two novel methods to determine Dezamizumab-SAP complex-induced complement activation. Complement component 3 (C3) depletion was detected by homogeneous time-resolved fluorescence (HTRF), and C3a desArg fragment, formed after the cleavage of C3 to yield C3a followed by removal of its C-terminal arginine residue, was determined using Meso Scale Discovery (MSD) technology. We found that the presence of both Dezamizumab and SAP was required for complement activation via both methods. The optimal molar ratio of Dezamizumab:SAP was 6:1 in order to obtain maximal complement activation. The relative potency from both methods showed a good correlation to Dezamizumab-SAP-dependent complement component 1q (C1q) binding activity in Dezamizumab thermal-stressed samples. Both SAP and C1q binding, as determined by surface plasmon resonance and the two complement activation potency methods described here, reflect the mechanism of action of Dezamizumab. We conclude that these methods can be used to monitor Dezamizumab quality for drug release and stability testing, and the novel potency methods reported here can be potentially used to evaluate complement activity induced by other antigen–antibody complexes.
Collapse
Affiliation(s)
- Jianhong Ma
- GlaxoSmithKline, Structure Function Characterization, CMCA, Collegeville, Pennsylvania, USA.
| | - Qi Liu
- GlaxoSmithKline, Structure Function Characterization, CMCA, Collegeville, Pennsylvania, USA
| | - John R White
- GlaxoSmithKline, Structure Function Characterization, CMCA, Collegeville, Pennsylvania, USA
| |
Collapse
|
27
|
König S, Steinebrey N, Herrnberger M, Escolano-Lozano F, Schlereth T, Rebhorn C, Birklein F. Reduced serum protease activity in Complex Regional Pain Syndrome: The impact of angiotensin-converting enzyme and carboxypeptidases. J Pharm Biomed Anal 2021; 205:114307. [PMID: 34392129 DOI: 10.1016/j.jpba.2021.114307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/02/2021] [Accepted: 08/02/2021] [Indexed: 12/01/2022]
Abstract
Complex Regional Pain Syndrome (CRPS) occurs in about 2% of patients after fracture of the limbs. In an earlier clinical study with 102 probands we have shown that the serum protease network in CRPS might be less effective. Based on these results we hypothesized that angiotensin-converting enzyme (ACE) and carboxypeptidase N (CPN) activity contribute to the differences of labeled bradykinin (DBK) degradation by patients' sera. Details of the enzymatic processes remained however unclear. The contributions of ACE and CPN in the serum degradation of DBK were studied using specific inhibitors. CPN1-ELISA was performed in serum. It was confirmed that the majority of DBK was degraded by ACE and CPN. The data delivered proof that the ACE serum activity was lowered in CRPS. High-resolution mass spectrometry was additionally used for protein expression analysis of sera of above study cohort (CRPS vs. healthy probands). According to principal component analysis of these data, significant differences between CRPS and control samples only occurred in sera of females younger than 46 years. In these CRPS patients, a number of defence / immunity-related proteins and members of the renin-angiotensin system (RAS) protein network were regulated. The impact of CPN in CRPS pathophysiology is subject to further investigation. The data support the hypothesis that both the RAS and the innate immune system might be affected in CRPS. A database of regulated serum proteins was established for future research.
Collapse
Affiliation(s)
- Simone König
- Core Unit Proteomics, Interdisciplinary Center for Clinical Research, Medical Faculty, University of Münster, Germany.
| | - Nico Steinebrey
- Core Unit Proteomics, Interdisciplinary Center for Clinical Research, Medical Faculty, University of Münster, Germany
| | - Myriam Herrnberger
- Department of Neurology, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| | - Fabiola Escolano-Lozano
- Department of Neurology, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| | - Tanja Schlereth
- Department of Neurology, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany; Deutsche Klinik Für Diagnostik, DKD Helios Klinik Wiesbaden, Germany
| | - Cora Rebhorn
- Department of Neurology, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| | - Frank Birklein
- Department of Neurology, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
28
|
Borg DJ, Faridi P, Giam KL, Reeves P, Fotheringham AK, McCarthy DA, Leung S, Ward MS, Harcourt BE, Ayala R, Scheijen JL, Briskey D, Dudek NL, Schalkwijk CG, Steptoe R, Purcell AW, Forbes JM. Short Duration Alagebrium Chloride Therapy Prediabetes Does Not Inhibit Progression to Autoimmune Diabetes in an Experimental Model. Metabolites 2021; 11:426. [PMID: 34203471 PMCID: PMC8305727 DOI: 10.3390/metabo11070426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/17/2022] Open
Abstract
Mechanisms by which advanced glycation end products (AGEs) contribute to type 1 diabetes (T1D) pathogenesis are poorly understood. Since life-long pharmacotherapy with alagebrium chloride (ALT) slows progression to experimental T1D, we hypothesized that acute ALT therapy delivered prediabetes, may be effective. However, in female, non-obese diabetic (NODShiLt) mice, ALT administered prediabetes (day 50-100) did not protect against experimental T1D. ALT did not decrease circulating AGEs or their precursors. Despite this, pancreatic β-cell function was improved, and insulitis and pancreatic CD45.1+ cell infiltration was reduced. Lymphoid tissues were unaffected. ALT pre-treatment, prior to transfer of primed GC98 CD8+ T cell receptor transgenic T cells, reduced blood glucose concentrations and delayed diabetes, suggesting islet effects rather than immune modulation by ALT. Indeed, ALT did not reduce interferon-γ production by leukocytes from ovalbumin-pre-immunised NODShiLt mice and NODscid recipients given diabetogenic ALT treated NOD splenocytes were not protected against T1D. To elucidate β-cell effects, NOD-derived MIN6N8 β-cell major histocompatibility complex (MHC) Class Ia surface antigens were examined using immunopeptidomics. Overall, no major changes in the immunopeptidome were observed during the various treatments with all peptides exhibiting allele specific consensus binding motifs. As expected, longer MHC Class Ia peptides were captured bound to H-2Db than H-2Kb under all conditions. Moreover, more 10-12 mer peptides were isolated from H-2Db after AGE modified bovine serum albumin (AGE-BSA) treatment, compared with bovine serum albumin (BSA) or AGE-BSA+ALT treatment. Proteomics of MIN6N8 cells showed enrichment of processes associated with catabolism, the immune system, cell cycling and presynaptic endocytosis with AGE-BSA compared with BSA treatments. These data show that short-term ALT intervention, given prediabetes, does not arrest experimental T1D but transiently impacts β-cell function.
Collapse
Affiliation(s)
- Danielle J. Borg
- Glycation and Diabetes Complications, Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD 4102, Australia; (D.J.B.); (A.K.F.); (D.A.M.); (S.L.); (M.S.W.); (B.E.H.)
- Pregnancy and Development, Mater Research Institute, The University of Queensland, South Brisbane, QLD 4101, Australia
| | - Pouya Faridi
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia; (P.F.); (K.L.G.); (R.A.); (N.L.D.); (A.W.P.)
| | - Kai Lin Giam
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia; (P.F.); (K.L.G.); (R.A.); (N.L.D.); (A.W.P.)
| | - Peta Reeves
- Tolerance and Autoimmunity Group, The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD 4102, Australia; (P.R.); (R.S.)
| | - Amelia K. Fotheringham
- Glycation and Diabetes Complications, Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD 4102, Australia; (D.J.B.); (A.K.F.); (D.A.M.); (S.L.); (M.S.W.); (B.E.H.)
| | - Domenica A. McCarthy
- Glycation and Diabetes Complications, Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD 4102, Australia; (D.J.B.); (A.K.F.); (D.A.M.); (S.L.); (M.S.W.); (B.E.H.)
| | - Sherman Leung
- Glycation and Diabetes Complications, Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD 4102, Australia; (D.J.B.); (A.K.F.); (D.A.M.); (S.L.); (M.S.W.); (B.E.H.)
| | - Micheal S. Ward
- Glycation and Diabetes Complications, Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD 4102, Australia; (D.J.B.); (A.K.F.); (D.A.M.); (S.L.); (M.S.W.); (B.E.H.)
| | - Brooke E. Harcourt
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia
| | - Rochelle Ayala
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia; (P.F.); (K.L.G.); (R.A.); (N.L.D.); (A.W.P.)
| | - Jean L. Scheijen
- Laboratory for Metabolism and Vascular Medicine, Department of Internal Medicine, Maastricht University, 6211 Maastricht, The Netherlands; (J.L.S.); (C.G.S.)
- Cardiovascular Research Institute Maastricht, 6211 Maastricht, The Netherlands
| | - David Briskey
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, QLD 4067, Australia;
| | - Nadine L. Dudek
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia; (P.F.); (K.L.G.); (R.A.); (N.L.D.); (A.W.P.)
| | - Casper G. Schalkwijk
- Laboratory for Metabolism and Vascular Medicine, Department of Internal Medicine, Maastricht University, 6211 Maastricht, The Netherlands; (J.L.S.); (C.G.S.)
- Cardiovascular Research Institute Maastricht, 6211 Maastricht, The Netherlands
| | - Raymond Steptoe
- Tolerance and Autoimmunity Group, The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD 4102, Australia; (P.R.); (R.S.)
| | - Anthony W. Purcell
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia; (P.F.); (K.L.G.); (R.A.); (N.L.D.); (A.W.P.)
| | - Josephine M. Forbes
- Glycation and Diabetes Complications, Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD 4102, Australia; (D.J.B.); (A.K.F.); (D.A.M.); (S.L.); (M.S.W.); (B.E.H.)
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia
- Mater Clinical School, The University of Queensland, Brisbane, QLD 4101, Australia
| |
Collapse
|
29
|
Vandendriessche S, Cambier S, Proost P, Marques PE. Complement Receptors and Their Role in Leukocyte Recruitment and Phagocytosis. Front Cell Dev Biol 2021; 9:624025. [PMID: 33644062 PMCID: PMC7905230 DOI: 10.3389/fcell.2021.624025] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/15/2021] [Indexed: 12/21/2022] Open
Abstract
The complement system is deeply embedded in our physiology and immunity. Complement activation generates a multitude of molecules that converge simultaneously on the opsonization of a target for phagocytosis and activation of the immune system via soluble anaphylatoxins. This response is used to control microorganisms and to remove dead cells, but also plays a major role in stimulating the adaptive immune response and the regeneration of injured tissues. Many of these effects inherently depend on complement receptors expressed on leukocytes and parenchymal cells, which, by recognizing complement-derived molecules, promote leukocyte recruitment, phagocytosis of microorganisms and clearance of immune complexes. Here, the plethora of information on the role of complement receptors will be reviewed, including an analysis of how this functionally and structurally diverse group of molecules acts jointly to exert the full extent of complement regulation of homeostasis.
Collapse
Affiliation(s)
- Sofie Vandendriessche
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven (KU Leuven), Leuven, Belgium
| | - Seppe Cambier
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven (KU Leuven), Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven (KU Leuven), Leuven, Belgium
| | - Pedro E Marques
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven (KU Leuven), Leuven, Belgium
| |
Collapse
|
30
|
Zhang Y, Han K, Du C, Li R, Liu J, Zeng H, Zhu L, Li A. Carboxypeptidase B blocks ex vivo activation of the anaphylatoxin-neutrophil extracellular trap axis in neutrophils from COVID-19 patients. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2021; 25:51. [PMID: 33557911 PMCID: PMC7868871 DOI: 10.1186/s13054-021-03482-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 01/26/2021] [Indexed: 02/06/2023]
Abstract
Background Thrombosis and coagulopathy are highly prevalent in critically ill patients with COVID-19 and increase the risk of death. Immunothrombosis has recently been demonstrated to contribute to the thrombotic events in COVID-19 patients with coagulopathy. As the primary components of immunothrombosis, neutrophil extracellular traps (NETs) could be induced by complement cascade components and other proinflammatory mediators. We aimed to explore the clinical roles of NETs and the regulation of complement on the NET formation in COVID-19. Methods We recruited 135 COVID-19 patients and measured plasma levels of C5, C3, cell-free DNA and myeloperoxidase (MPO)-DNA. Besides, the formation of NETs was detected by immunofluorescent staining and the cytotoxicity to vascular endothelial HUVEC cells was evaluated by CCK-8 assay. Results We found that the plasma levels of complements C3 and MPO-DNA were positively related to coagulation indicator fibrin(-ogen) degradation products (C3: r = 0.300, p = 0.005; MPO-DNA: r = 0.316, p = 0.002) in COVID-19 patients. Besides, C3 was positively related to direct bilirubin (r = 0.303, p = 0.004) and total bilirubin (r = 0.304, p = 0.005), MPO-DNA was positively related to lactate dehydrogenase (r = 0.306, p = 0.003) and creatine kinase (r = 0.308, p = 0.004). By using anti-C3a and anti-C5a antibodies, we revealed that the complement component anaphylatoxins in the plasma of COVID-19 patients strongly induced NET formation. The pathological effect of the anaphylatoxin-NET axis on the damage of vascular endothelial cells could be relieved by recombinant carboxypeptidase B (CPB), a stable homolog of enzyme CPB2 which can degrade anaphylatoxins to inactive products. Conclusions Over-activation in anaphylatoxin-NET axis plays a pathological role in COVID-19. Early intervention in anaphylatoxins might help prevent thrombosis and disease progression in COVID-19 patients.
Collapse
Affiliation(s)
- Yue Zhang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Kai Han
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Chunjing Du
- Department of Critical Care Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Rui Li
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Jingyuan Liu
- Department of Critical Care Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Hui Zeng
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China.
| | - Liuluan Zhu
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China.
| | - Ang Li
- Department of Critical Care Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China.
| |
Collapse
|
31
|
Zheng JM, Wang SS, Tian X, Che DJ. Sustained activation of C3aR in a human podocyte line impairs the morphological maturation of the cells. Mol Med Rep 2020; 22:5326-5338. [PMID: 33174024 PMCID: PMC7646996 DOI: 10.3892/mmr.2020.11626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 09/02/2020] [Indexed: 12/03/2022] Open
Abstract
The C3a receptor (C3aR) has been reported to be involved in various physiological and pathological processes, including the regulation of cellular structure development. Expression of C3aR has been reported in podocytes; however, data concerning the role of C3aR in podocyte morphology is scarce. The aim of the present study was to examine the effect of C3aR activation on the architectural development of podocytes. An immortal human podocyte line (HPC) was transfected with a C3a expression lentivirus vector or recombinant C3a. SB290157 was used to block the activation of C3aR. The expression of C3a in HPC cells was analyzed by reverse transcription-quantitative PCR (RT-qPCR) and ELISAs. Phase contrast and fluorescence microscopy were used to observe the morphology of the podocytes. The adhesive ability of HPC cells was analyzed using an attachment assay. RT-qPCR, cyto-immunofluorescence and western blotting were used to determine the expression levels of the adhesion-associated genes. The expression levels of carboxypeptidases in HPC cells was also detected by RT-qPCR. Compared with the untransfected and control virus-transfected HPC cells, the C3a-overexpressing cells (HPC-C3a) failed to expand their cell bodies and develop an arborized appearance in the process of maturation, which the control cells exhibited. In addition, HPC-C3a cells presented with decreased adhesive capacity, altered focal adhesion (FA) plaques and decreased expression of FA-associated genes. These effects were blocked by a C3aR antagonist; however, the addition of purified C3a could not completely mimic the effects of C3a overexpression. Furthermore, HPC cells expressed carboxypeptidases, which have been reported to be able to inactivate C3a. In summary, the results demonstrated that sustained C3aR activation impaired the morphological maturation of HPC cells, which may be associated with the altered expression of FA-associated genes and impaired FA. Since chronic complement activation has been reported in renal diseases, which indicate sustained C3aR activation in renal cells, including podocytes and podocyte progenitors, the possible role of C3aR in the dysregulation of podocyte architecture and podocyte regeneration requires further research.
Collapse
Affiliation(s)
- Jing-Min Zheng
- Department of Nephrology, Taizhou Hospital, Wenzhou Medical University, Linhai, Zhejiang 317000, P.R. China
| | - Sha-Sha Wang
- Department of Nephrology, Taizhou Hospital, Wenzhou Medical University, Linhai, Zhejiang 317000, P.R. China
| | - Xiong Tian
- Department of Nephrology, Taizhou Hospital, Wenzhou Medical University, Linhai, Zhejiang 317000, P.R. China
| | - De-Jun Che
- Department of Nephrology, Taizhou Hospital, Wenzhou Medical University, Linhai, Zhejiang 317000, P.R. China
| |
Collapse
|
32
|
Loupy KM, Lee T, Zambrano CA, Elsayed AI, D'Angelo HM, Fonken LK, Frank MG, Maier SF, Lowry CA. Alzheimer's Disease: Protective Effects of Mycobacterium vaccae, a Soil-Derived Mycobacterium with Anti-Inflammatory and Anti-Tubercular Properties, on the Proteomic Profiles of Plasma and Cerebrospinal Fluid in Rats. J Alzheimers Dis 2020; 78:965-987. [PMID: 33074227 DOI: 10.3233/jad-200568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is an inflammatory neurodegenerative disease that may be associated with prior bacterial infections. Microbial "old friends" can suppress exaggerated inflammation in response to disease-causing infections or increase clearance of pathogens such as Mycobacterium tuberculosis, which causes tuberculosis (TB). One such "old friend" is Mycobacterium vaccae NCTC 11659, a soil-derived bacterium that has been proposed either as a vaccine for prevention of TB, or as immunotherapy for the treatment of TB when used alongside first line anti-TB drug treatment. OBJECTIVE The goal of this study was to use a hypothesis generating approach to explore the effects of M. vaccae on physiological changes in the plasma and cerebrospinal fluid (CSF). METHODS Liquid chromatography-tandem mass spectrometry-based proteomics were performed in plasma and CSF of adult male rats after immunization with a heat-killed preparation of M. vaccae NCTC 11659 or borate-buffered saline vehicle. Gene enrichment analysis and analysis of protein-protein interactions were performed to integrate physiological network changes in plasma and CSF. We used RT-qPCR to assess immune and metabolic gene expression changes in the hippocampus. RESULTS In both plasma and CSF, immunization with M. vaccae increased proteins associated with immune activation and downregulated proteins corresponding to lipid (including phospholipid and cholesterol) metabolism. Immunization with M. vaccae also increased hippocampal expression of interleukin-4 (IL-4) mRNA, implicating anti-inflammatory effects in the central nervous system. CONCLUSION M. vaccae alters host immune activity and lipid metabolism. These data are consistent with the hypothesis that microbe-host interactions may protect against possible infection-induced, inflammation-related cognitive impairments.
Collapse
Affiliation(s)
- Kelsey M Loupy
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Thomas Lee
- Central Analytical Laboratory and Mass Spectrometry Facility, Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Cristian A Zambrano
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Ahmed I Elsayed
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Heather M D'Angelo
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Laura K Fonken
- Division of Pharmacology and Toxicology, University of Texas at Austin, Austin, TX, USA
| | - Matthew G Frank
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA.,Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Steven F Maier
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA.,Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Christopher A Lowry
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA.,Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA.,Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO, USA.,Department of Physical Medicine and Rehabilitation and Center for Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, CO, USA.,Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO, USA.,Senior Fellow, inVIVO Planetary Health, of the Worldwide Universities Network (WUN), West New York, NJ, USA
| |
Collapse
|
33
|
Alayi T, Tawalbeh SM, Ogundele M, Smith HR, Samsel AM, Barbieri ML, Hathout Y. Tandem Mass Tag-Based Serum Proteome Profiling for Biomarker Discovery in Young Duchenne Muscular Dystrophy Boys. ACS OMEGA 2020; 5:26504-26517. [PMID: 33110978 PMCID: PMC7581259 DOI: 10.1021/acsomega.0c03206] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/23/2020] [Indexed: 06/11/2023]
Abstract
Blood-accessible molecular biomarkers are becoming highly attractive tools to assess disease progression and response to therapies in Duchenne muscular dystrophy (DMD) especially in very young patients for whom other outcome measures remain subjective and challenging. In this study, we have standardized a highly specific and reproducible multiplexing mass spectrometry method using the tandem mass tag (TMT) strategy in combination with depletion of abundant proteins from serum and high-pH reversed-phase peptide fractionation. Differential proteome profiling of 4 year-old DMD boys (n = 9) and age-matched healthy controls (n = 9) identified 38 elevated and 50 decreased serum proteins (adjusted P < 0.05, FDR <0.05) in the DMD group relative to the healthy control group. As expected, we confirmed previously reported biomarkers but also identified novel biomarkers. These included novel muscle injury-associated biomarkers such as telethonin, smoothelin-like protein 1, cofilin-1, and plectin, additional muscle-specific enzymes such as UTP-glucose-1-phosphate uridylyltransferase, aspartate aminotransferase, pyruvate kinase PKM, lactotransferrin, tissue alpha-l-fucosidase, pantetheinase, and ficolin-1, and some pro-inflammatory and cell adhesion-associated biomarkers such as leukosialin, macrophage receptor MARCO, vitronectin, galectin-3-binding protein, and ProSAAS. The workflow including serum depletion, sample processing, and mass spectrometry analysis was found to be reproducible and stable over time with CV < 20%. Furthermore, the method was found to be superior in terms of specificity compared to other multiplexing affinity-based methods. These findings demonstrate the specificity and reliability of TMT-based mass spectrometry methods in detection and identification of serum biomarkers in presymptomatic young DMD patients.
Collapse
Affiliation(s)
- Tchilabalo
D. Alayi
- Department
of Pharmaceutical Science, School of Pharmacy and Pharmaceutical Sciences, Binghamton University−SUNY, Johnson City, New York 13790, United States
| | - Shefa M. Tawalbeh
- Department
of Pharmaceutical Science, School of Pharmacy and Pharmaceutical Sciences, Binghamton University−SUNY, Johnson City, New York 13790, United States
- Department
of Biomedical Engineering, Binghamton University−SUNY, 4400 Vestal Pkwy E, Binghamton, New York 13902, United States
| | - Michael Ogundele
- Department
of Pharmaceutical Science, School of Pharmacy and Pharmaceutical Sciences, Binghamton University−SUNY, Johnson City, New York 13790, United States
- Department
of Biomedical Engineering, Binghamton University−SUNY, 4400 Vestal Pkwy E, Binghamton, New York 13902, United States
| | - Holly R. Smith
- Department
of Pharmaceutical Science, School of Pharmacy and Pharmaceutical Sciences, Binghamton University−SUNY, Johnson City, New York 13790, United States
- Department
of Biochemistry, Binghamton University−SUNY, 4400 Vestal Pkwy E, Binghamton, New York 13902, United States
| | - Alison M. Samsel
- Department
of Pharmaceutical Science, School of Pharmacy and Pharmaceutical Sciences, Binghamton University−SUNY, Johnson City, New York 13790, United States
| | - Marissa L. Barbieri
- Department
of Pharmaceutical Science, School of Pharmacy and Pharmaceutical Sciences, Binghamton University−SUNY, Johnson City, New York 13790, United States
| | - Yetrib Hathout
- Department
of Pharmaceutical Science, School of Pharmacy and Pharmaceutical Sciences, Binghamton University−SUNY, Johnson City, New York 13790, United States
| |
Collapse
|
34
|
Hammond MJ, Wang T, Cummins SF. Characterisation of early metazoan secretion through associated signal peptidase complex subunits, prohormone convertases and carboxypeptidases of the marine sponge (Amphimedon queenslandica). PLoS One 2019; 14:e0225227. [PMID: 31714927 PMCID: PMC6850559 DOI: 10.1371/journal.pone.0225227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 10/30/2019] [Indexed: 01/31/2023] Open
Abstract
Efficient communication between cells requires the ability to process precursor proteins into their mature and biologically active forms, prior to secretion into the extracellular space. Eukaryotic cells achieve this via a suite of enzymes that involve a signal peptidase complex, prohormone convertases and carboxypeptidases. Using genome and transcriptome data of the demosponge Amphimedon queenslandica, a universal ancestor to metazoan multicellularity, we endeavour to bridge the evolution of precursor processing machinery from single-celled eukaryotic ancestors through to the complex multicellular organisms that compromise Metazoa. The precursor processing repertoire as defined in this study of A. queenslandica consists of 3 defined signal peptidase subunits, 6 prohormone convertases and 1 carboxypeptidase, with 2 putative duplicates identified for signal peptidase complex subunits. Analysis of their gene expression levels throughout the sponge development enabled us to predict levels of activity. Some A. queenslandica precursor processing components belong to established functional clades while others were identified as having novel, yet to be discovered roles. These findings have clarified the presence of precursor processing machinery in the poriferans, showing the necessary machinery for the removal of precursor sequences, a critical post-translational modification required by multicellular organisms, and further sets a foundation towards understanding the molecular mechanism for ancient protein processing.
Collapse
Affiliation(s)
- Michael J. Hammond
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore Dc, Queensland, Australia
| | - Tianfang Wang
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore Dc, Queensland, Australia
| | - Scott F. Cummins
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore Dc, Queensland, Australia
| |
Collapse
|
35
|
Zasada M, Suski M, Bokiniec R, Szwarc-Duma M, Borszewska-Kornacka MK, Madej J, Bujak-Giżycka B, Madetko-Talowska A, Revhaug C, Baumbusch LO, Saugstad OD, Pietrzyk JJ, Kwinta P. Comparative two time-point proteome analysis of the plasma from preterm infants with and without bronchopulmonary dysplasia. Ital J Pediatr 2019; 45:112. [PMID: 31445514 PMCID: PMC6708124 DOI: 10.1186/s13052-019-0676-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 07/05/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In this study, we aimed to analyze differences in plasma protein abundances between infants with and without bronchopulmonary dysplasia (BPD), to add new insights into a better understanding of the pathogenesis of this disease. METHODS Cord and peripheral blood of neonates (≤ 30 weeks gestational age) was drawn at birth and at the 36th postmenstrual week (36 PMA), respectively. Blood samples were retrospectively subdivided into BPD(+) and BPD(-) groups, according to the development of BPD. RESULTS Children with BPD were characterized by decreased afamin, gelsolin and carboxypeptidase N subunit 2 levels in cord blood, and decreased galectin-3 binding protein and hemoglobin subunit gamma-1 levels, as well as an increased serotransferrin abundance in plasma at the 36 PMA. CONCLUSIONS BPD development is associated with the plasma proteome changes in preterm infants, adding further evidence for the possible involvement of disturbances in vitamin E availability and impaired immunological processes in the progression of prematurity pulmonary complications. Moreover, it also points to the differences in proteins related to infection resistance and maintaining an adequate level of hematocrit in infants diagnosed with BPD.
Collapse
Affiliation(s)
- Magdalena Zasada
- Department of Pediatrics, Jagiellonian University Medical College, Cracow, Poland
| | - Maciej Suski
- Chair of Pharmacology, Jagiellonian University Medical College, Cracow, Poland
| | - Renata Bokiniec
- Neonatal and Intensive Care Department, Medical University of Warsaw, Warsaw, Poland
| | - Monika Szwarc-Duma
- Neonatal and Intensive Care Department, Medical University of Warsaw, Warsaw, Poland
| | | | - Józef Madej
- Chair of Pharmacology, Jagiellonian University Medical College, Cracow, Poland
| | - Beata Bujak-Giżycka
- Chair of Pharmacology, Jagiellonian University Medical College, Cracow, Poland
| | - Anna Madetko-Talowska
- Department of Medical Genetics, Jagiellonian University Medical College, Cracow, Poland
| | - Cecilie Revhaug
- Department of Pediatric Research, Oslo University Hospital, Oslo, Norway
- University of Oslo, Oslo, Norway
| | - Lars O. Baumbusch
- Department of Pediatric Research, Oslo University Hospital, Oslo, Norway
| | - Ola D. Saugstad
- Department of Pediatric Research, Oslo University Hospital, Oslo, Norway
- University of Oslo, Oslo, Norway
| | - Jacek Józef Pietrzyk
- Department of Pediatrics, Jagiellonian University Medical College, Cracow, Poland
| | - Przemko Kwinta
- Department of Pediatrics, Jagiellonian University Medical College, Cracow, Poland
| |
Collapse
|
36
|
Bröker K, Terzenbach R, Bentzien F, Lüth S, Dammermann W. Complement factors C3a and C5a mimick a proinflammatory microenvironment and increase HBV IGRA sensitivity. J Transl Med 2019; 17:6. [PMID: 30602374 PMCID: PMC6317231 DOI: 10.1186/s12967-018-1752-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 12/21/2018] [Indexed: 12/13/2022] Open
Abstract
Background Hepatitis B virus (HBV) infections represent a global health problem and chronic hepatitis B (CHB) leads to liver cirrhosis and hepatocellular carcinoma. Thus, timely diagnosis of hepatitis B is crucial to ensure adequate treatment. We developed a powerful and rapid whole blood-based cytokine release assay assessing cellular immune responses to HBV antigens. IL-2 and IFNγ release in this assay depicts hepatitis B vaccination status. Of note, CHB goes along with elevated C5a concentrations in plasma. We aim at mimicking the proinflammatory microenvironment associated with HBV infection to enhance the diagnostic quality of our HBV specific cytokine release assay. We specifically investigated the potential of the complement factors C3a and C5a as costimulators and analyzed their potential effects on activation marker expression on T cells and antigen presenting cells. Results Whole blood from 87 healthy individuals (n = 59 hepatitis B vaccinated, n = 28 unvaccinated) was stimulated with HBV surface antigen (HBsAg) in presence or absence of C3a or C5a, respectively. Further, C3a and C5a were used in combination to investigate potential synergistic effects. IL-2 and IFNγ levels in plasma were quantified using ELISA. Complement factor C5a specifically enhances HBsAg-mediated IL-2 (690.3 ± 195.4 pg/ml vs. 789.4 ± 216.5 pg/ml) and IFNγ (146.0 ± 43.1 pg/ml vs. 336.7 ± 67.9 pg/ml) responses in whole blood. Similar cytokine levels were measured when both C3a and C5a were used. With a diagnostic specificity of 90% the IFNγ release assay reached a diagnostic sensitivity of 49.2% upon whole blood stimulation with HBsAg alone, but of 78.9% when HBsAg was combined with C3a and C5a. Conclusions Innate signals mediated via complement pathways contribute to HBV-specific cellular immune responses. The massively improved diagnostic sensitivity of the IFNγ release assay after addition of C3a and C5a demonstrates that these effects render whole blood-based cytokine release assays even more potent as screening tools in HBV immunology and HBV vaccination studies. Electronic supplementary material The online version of this article (10.1186/s12967-018-1752-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Katharina Bröker
- Center of Internal Medicine II, Brandenburg Medical School, University Hospital Brandenburg, Hochstrasse 29, 14770, Brandenburg, Germany.,Department of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Robin Terzenbach
- Center of Internal Medicine II, Brandenburg Medical School, University Hospital Brandenburg, Hochstrasse 29, 14770, Brandenburg, Germany.,Department of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Frank Bentzien
- Department of Transfusion Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Stefan Lüth
- Center of Internal Medicine II, Brandenburg Medical School, University Hospital Brandenburg, Hochstrasse 29, 14770, Brandenburg, Germany
| | - Werner Dammermann
- Center of Internal Medicine II, Brandenburg Medical School, University Hospital Brandenburg, Hochstrasse 29, 14770, Brandenburg, Germany. .,Department of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| |
Collapse
|
37
|
Perera NCN, Godahewa GI, Jung S, Kim MJ, Nam BH, Lee J. Identification and characterization of a carboxypeptidase N1 from red lip mullet (Liza haematocheila); revealing its immune relevance. FISH & SHELLFISH IMMUNOLOGY 2019; 84:223-232. [PMID: 30300741 DOI: 10.1016/j.fsi.2018.10.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 09/29/2018] [Accepted: 10/05/2018] [Indexed: 06/08/2023]
Abstract
Complement system orchestrates the innate and adaptive immunity via the activation, recruitment, and regulation of immune molecules to destroy pathogens. However, regulation of the complement is essential to avoid injuries to the autologous tissues. The present study unveils the characteristic features of an important complement component, anaphylatoxin inactivator from red lip mullet at its molecular and functional level. Mullet carboxypeptidase N1 (MuCPN1) cDNA sequence possessed an open reading frame of 1347 bp, which encoded a protein of 449 amino acids with a predicted molecular weight of 51 kDa. In silico analysis discovered two domains of PM14-Zn carboxypeptidase and a C-terminal domain of M14 N/E carboxypeptidase, two zinc-binding signature motifs, and an N-glycosylation site in the MuCPN1 sequence. Homology analysis revealed that most of the residues in the sequence are conserved among the other selected homologs. Phylogeny analysis showed that MuCPN1 closely cladded with the Maylandia zebra CPN1 and clustered together with the teleostean counterparts. A challenge experiment showed modulated expression of MuCPN1 upon polyinosinic:polycytidylic acid and Lactococcus garviae in head kidney, spleen, gill, and liver tissues. The highest upregulation of MuCPN1 was observed 24 h post infection against poly I:C in each tissue. Moreover, the highest relative expressions upon L. garviae challenge were observed at 24 h post infection in head kidney tissue and 48 h post infection in spleen, gill, and liver tissues. MuCPN1 transfected cells triggered a 2.2-fold increase of nitric oxide (NO) production upon LPS stimulation compared to the un-transfected controls suggesting that MuCPN1 is an active protease which releases arginine from complement C3a, C4a, and C5a. These results have driven certain way towards enhancing the understanding of immune role of MuCPN1 in the complement defense mechanism of red lip mullet.
Collapse
Affiliation(s)
- N C N Perera
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - G I Godahewa
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Sumi Jung
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Myoung-Jin Kim
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Bo-Hye Nam
- Biotechnology Research Division, National Institute of Fisheries Science, 408-1 Sirang-ri, Gijang-up, Gijang-gun, Busan, 46083, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea.
| |
Collapse
|
38
|
Burke LC, Ezeribe HO, Kwon AY, Dockery D, Lyons PJ. Carboxypeptidase O is a lipid droplet-associated enzyme able to cleave both acidic and polar C-terminal amino acids. PLoS One 2018; 13:e0206824. [PMID: 30388170 PMCID: PMC6214572 DOI: 10.1371/journal.pone.0206824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 10/19/2018] [Indexed: 11/18/2022] Open
Abstract
Carboxypeptidase O (CPO) is a member of the M14 family of metallocarboxypeptidases with a preference for the cleavage of C-terminal acidic amino acids. CPO is largely expressed in the small intestine, although it has been detected in other tissues such as the brain and ovaries. CPO does not contain a prodomain, nor is it strongly regulated by pH, and hence appears to exist as a constitutively active enzyme. The goal of this study was to investigate the intracellular distribution and activity of CPO in order to predict physiological substrates and function. The distribution of CPO, when expressed in MDCK cells, was analyzed by immunofluorescence microscopy. Soon after addition of nutrient-rich media, CPO was found to associate with lipid droplets, causing an increase in lipid droplet quantity. As media became depleted, CPO moved to a broader ER distribution, no longer impacting lipid droplet numbers. Membrane cholesterol levels played a role in the distribution and in vitro enzymatic activity of CPO, with cholesterol enrichment leading to decreased lipid droplet association and enzymatic activity. The ability of CPO to cleave C-terminal amino acids within the early secretory pathway (in vivo) was examined using Gaussia luciferase as a substrate, C-terminally tagged with variants of an ER retention signal. While no effect of cholesterol was observed, these data show that CPO does function as an active enzyme within the ER where it removes C-terminal glutamates and aspartates, as well as a number of polar amino acids.
Collapse
Affiliation(s)
- Linnea C. Burke
- Department of Biology, Andrews University, Berrien Springs, Michigan, United States of America
| | - Hazel O. Ezeribe
- Department of Biology, Andrews University, Berrien Springs, Michigan, United States of America
| | - Anna Y. Kwon
- Department of Biology, Andrews University, Berrien Springs, Michigan, United States of America
| | - Donnel Dockery
- Department of Biology, Andrews University, Berrien Springs, Michigan, United States of America
| | - Peter J. Lyons
- Department of Biology, Andrews University, Berrien Springs, Michigan, United States of America
- * E-mail:
| |
Collapse
|
39
|
Canet-Pons J, Schubert R, Duecker RP, Schrewe R, Wölke S, Kieslich M, Schnölzer M, Chiocchetti A, Auburger G, Zielen S, Warnken U. Ataxia telangiectasia alters the ApoB and reelin pathway. Neurogenetics 2018; 19:237-255. [DOI: 10.1007/s10048-018-0557-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 10/09/2018] [Indexed: 02/07/2023]
|
40
|
Boiziau C, Nikolski M, Mordelet E, Aussudre J, Vargas-Sanchez K, Petry KG. A Peptide Targeting Inflammatory CNS Lesions in the EAE Rat Model of Multiple Sclerosis. Inflammation 2018. [PMID: 29516383 DOI: 10.1007/s10753-018-0748-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Multiple sclerosis is characterized by inflammatory lesions dispersed throughout the central nervous system (CNS) leading to severe neurological handicap. Demyelination, axonal damage, and blood brain barrier alterations are hallmarks of this pathology, whose precise processes are not fully understood. In the experimental autoimmune encephalomyelitis (EAE) rat model that mimics many features of human multiple sclerosis, the phage display strategy was applied to select peptide ligands targeting inflammatory sites in CNS. Due to the large diversity of sequences after phage display selection, a bioinformatics procedure called "PepTeam" designed to identify peptides mimicking naturally occurring proteins was used, with the goal to predict peptides that were not background noise. We identified a circular peptide CLSTASNSC called "Ph48" as an efficient binder of inflammatory regions of EAE CNS sections including small inflammatory lesions of both white and gray matter. Tested on human brain endothelial cells hCMEC/D3, Ph48 was able to bind efficiently when these cells were activated with IL1β to mimic inflammatory conditions. The peptide is therefore a candidate for further analyses of the molecular alterations in inflammatory lesions.
Collapse
Affiliation(s)
- Claudine Boiziau
- INSERM, UMR 1049, F-33076, Bordeaux, France. .,Univ. Bordeaux, Neuroinflammation Imaging and Therapy of Multiple Sclerosis, F-33076, Bordeaux, France. .,INSERM, UMR 1026, BioTis, F-33 076, Bordeaux, France.
| | - Macha Nikolski
- Univ. Bordeaux, CBiB, F-33076, Bordeaux, France.,CNRS, LaBRI UMR 5800, F-33400, Talence, France
| | - Elodie Mordelet
- INSERM, UMR 1049, F-33076, Bordeaux, France.,Univ. Bordeaux, Neuroinflammation Imaging and Therapy of Multiple Sclerosis, F-33076, Bordeaux, France
| | - Justine Aussudre
- INSERM, UMR 1049, F-33076, Bordeaux, France.,Univ. Bordeaux, Neuroinflammation Imaging and Therapy of Multiple Sclerosis, F-33076, Bordeaux, France
| | - Karina Vargas-Sanchez
- INSERM, UMR 1049, F-33076, Bordeaux, France.,Univ. Bordeaux, Neuroinflammation Imaging and Therapy of Multiple Sclerosis, F-33076, Bordeaux, France.,Biomedical Sciences Research Group, GRINCIBIO, School of Medicine, Universidad Antonio Nariño, Bogotà, Colombia
| | - Klaus G Petry
- INSERM, UMR 1049, F-33076, Bordeaux, France.,Univ. Bordeaux, Neuroinflammation Imaging and Therapy of Multiple Sclerosis, F-33076, Bordeaux, France.,INSERM, UMR1029, F-33076, Bordeaux, France
| |
Collapse
|
41
|
Budkowska M, Ostrycharz E, Wojtowicz A, Marcinowska Z, Woźniak J, Ratajczak MZ, Dołęgowska B. A Circadian Rhythm in both Complement Cascade (ComC) Activation and Sphingosine-1-Phosphate (S1P) Levels in Human Peripheral Blood Supports a Role for the ComC-S1P Axis in Circadian Changes in the Number of Stem Cells Circulating in Peripheral Blood. Stem Cell Rev Rep 2018; 14:677-685. [PMID: 29911288 PMCID: PMC6132735 DOI: 10.1007/s12015-018-9836-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The number of hematopoietic stem/progenitor cells (HSPCs) circulating in peripheral blood (PB) is regulated by a circadian rhythm, and more HSPCs circulate in PB in the morning hours than at night. Different mechanisms have been proposed that might regulate this process, including changes in tonus of β-adrenergic innervation of bone marrow (BM) tissue. Our group reported that in mice circadian changes in the number of HSPCs circulating in PB correlates with diurnal activation of the complement cascade (ComC) and that the mice deficient in C5 component of ComC (C5-KO mice) do not show circadian changes in the number of circulating HSPCs in PB. We also reported the existence of a gradient between PB and BM of a bioactive phosphosphingolipid, sphingosine-1-phosphate (S1P), which is a major PB chemottractant for BM-residing HSPCs. Based on these observations, we investigated activation of the ComC and the level of S1P in the PB of 66 healthy volunteers. We found that both ComC activation and the S1P level undergo changes in a circadian cycle. While the ComC becomes highly activated during deep sleep at 2 am, S1P becomes activated later, and its highest level is observed at 8 am, which precedes circadian egress of HSPCs from BM into PB. In sum, circadian activation of the ComC-S1P axis releases HSPCs from BM into PB.
Collapse
Affiliation(s)
- Marta Budkowska
- Department of Medical Analytics, Pomeranian Medical University, Al. Powstańców Wielkopolskich 72, 70-111, Szczecin, Poland.
| | - Ewa Ostrycharz
- Department of Medical Analytics, Pomeranian Medical University, Al. Powstańców Wielkopolskich 72, 70-111, Szczecin, Poland
| | - Adrianna Wojtowicz
- Department of Medical Analytics, Pomeranian Medical University, Al. Powstańców Wielkopolskich 72, 70-111, Szczecin, Poland
| | - Zuzanna Marcinowska
- Centre for Human Structural and Functional Research, Faculty of Physical Education and Health Promotion, University of Szczecin, ul. Narutowicza 17C, 70-240, Szczecin, Poland
| | - Jarosław Woźniak
- Institute of Mathematics, Department of Mathematics and Physics, University of Szczecin, Ul. Wielkopolska 15, 70-451, Szczecin, Poland
| | - Mariusz Z Ratajczak
- Stem Cell Biology Program at the James Graham Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA
- Department of Regenerative Medicine, Center for Preclinical Research and Technology, Warsaw Medical University, ul. Banacha 1B, 02-097, Warsaw, Poland
| | - Barbara Dołęgowska
- Department of Microbiology, Immunology and Laboratory Medicine, Pomeranian Medical University, Al. Powstańców Wielkopolskich 72, 70-111, Szczecin, Poland
| |
Collapse
|
42
|
Itoh T, Yoshimoto N, Hirano Y, Yamamoto K. Structural basis for the selective inhibition of activated thrombin-activatable fibrinolysis inhibitor (TAFIa) by a selenium-containing inhibitor with chloro-aminopyridine as a basic group. Bioorg Med Chem Lett 2018; 28:2256-2260. [DOI: 10.1016/j.bmcl.2018.05.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/21/2018] [Accepted: 05/22/2018] [Indexed: 11/15/2022]
|
43
|
Serum-Mediated Cleavage of Bacillus anthracis Protective Antigen Is a Two-Step Process That Involves a Serum Carboxypeptidase. mSphere 2018; 3:3/3/e00091-18. [PMID: 29950379 PMCID: PMC6021598 DOI: 10.1128/msphere.00091-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 06/09/2018] [Indexed: 11/20/2022] Open
Abstract
Our findings identify a serum-mediated modification of PA20 that has not been previously described. These observations further imply that the processing of PA is more complex than currently thought. Additional study is needed to define the contribution of serum processing of PA to the host response and individual susceptibility to anthrax. Much of our understanding of the activity of anthrax toxin is based on in vitro systems, which delineate the interaction between Bacillus anthracis toxins and the cell surface. However, these systems fail to account for the intimate association of B. anthracis with the circulatory system, including the contribution of serum proteins to the host response and processing of anthrax toxins. Using a variety of immunological techniques to inhibit serum processing of B. anthracis protective antigen (PA) along with mass spectrometry analysis, we demonstrate that serum digests PA via 2 distinct reactions. In the first reaction, serum cleaves PA83 into 2 fragments to produce PA63 and PA20 fragments, similarly to that observed following furin digestion. This is followed by carboxypeptidase-mediated removal of the carboxy-terminal arginine and lysines from PA20. IMPORTANCE Our findings identify a serum-mediated modification of PA20 that has not been previously described. These observations further imply that the processing of PA is more complex than currently thought. Additional study is needed to define the contribution of serum processing of PA to the host response and individual susceptibility to anthrax.
Collapse
|
44
|
Kolev M, Markiewski MM. Targeting complement-mediated immunoregulation for cancer immunotherapy. Semin Immunol 2018; 37:85-97. [PMID: 29454575 PMCID: PMC5984681 DOI: 10.1016/j.smim.2018.02.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/31/2018] [Accepted: 02/02/2018] [Indexed: 12/21/2022]
Abstract
Complement was initially discovered as an assembly of plasma proteins "complementing" the cytolytic activity of antibodies. However, our current knowledge places this complex system of several plasma proteins, receptors, and regulators in the center of innate immunity as a bridge between the initial innate responses and adaptive immune reactions. Consequently, complement appears to be pivotal for elimination of pathogens, not only as an early response defense, but by directing the subsequent adaptive immune response. The discovery of functional intracellular complement and its roles in cellular metabolism opened novel avenues for research and potential therapeutic implications. The recent studies demonstrating immunoregulatory functions of complement in the tumor microenvironment and the premetastatic niche shifted the paradigm on our understanding of functions of the complement system in regulating immunity. Several complement proteins, through their interaction with cells in the tumor microenvironment and in metastasis-targeted organs, contribute to modulating tumor growth, antitumor immunity, angiogenesis, and therefore, the overall progression of malignancy and, perhaps, responsiveness of cancer to different therapies. Here, we focus on recent progress in our understanding of immunostimulatory vs. immunoregulatory functions of complement and potential applications of these findings to the design of novel therapies for cancer patients.
Collapse
Affiliation(s)
- Martin Kolev
- Complement and Inflammation Research Section, DIR, NHLBI, NIH, Bethesda, MD, 20892, United States.
| | - Maciej M Markiewski
- Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, 79601, United States.
| |
Collapse
|
45
|
Colley CS, Popovic B, Sridharan S, Debreczeni JE, Hargeaves D, Fung M, An L, Edwards B, Arnold J, England E, Eghobamien L, Sivars U, Flavell L, Renshaw J, Wickson K, Warrener P, Zha J, Bonnell J, Woods R, Wilkinson T, Dobson C, Vaughan TJ. Structure and characterization of a high affinity C5a monoclonal antibody that blocks binding to C5aR1 and C5aR2 receptors. MAbs 2018; 10:104-117. [PMID: 28952876 PMCID: PMC5800367 DOI: 10.1080/19420862.2017.1384892] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
C5a is a potent anaphylatoxin that modulates inflammation through the C5aR1 and C5aR2 receptors. The molecular interactions between C5a-C5aR1 receptor are well defined, whereas C5a-C5aR2 receptor interactions are poorly understood. Here, we describe the generation of a human antibody, MEDI7814, that neutralizes C5a and C5adesArg binding to the C5aR1 and C5aR2 receptors, without affecting complement-mediated bacterial cell killing. Unlike other anti-C5a mAbs described, this antibody has been shown to inhibit the effects of C5a by blocking C5a binding to both C5aR1 and C5aR2 receptors. The crystal structure of the antibody in complex with human C5a reveals a discontinuous epitope of 22 amino acids. This is the first time the epitope for an antibody that blocks C5aR1 and C5aR2 receptors has been described, and this work provides a basis for molecular studies aimed at further understanding the C5a-C5aR2 receptor interaction. MEDI7814 has therapeutic potential for the treatment of acute inflammatory conditions in which both C5a receptors may mediate inflammation, such as sepsis or renal ischemia-reperfusion injury.
Collapse
MESH Headings
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/genetics
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- Antibody Affinity
- Antibody Specificity
- Binding Sites, Antibody
- Complement C5a/antagonists & inhibitors
- Complement C5a/chemistry
- Complement C5a/immunology
- Complement C5a/metabolism
- Epitope Mapping/methods
- Epitopes
- HEK293 Cells
- Humans
- Protein Binding
- Protein Conformation
- Protein Engineering
- Receptor, Anaphylatoxin C5a/antagonists & inhibitors
- Receptor, Anaphylatoxin C5a/chemistry
- Receptor, Anaphylatoxin C5a/immunology
- Receptor, Anaphylatoxin C5a/metabolism
- Receptors, Chemokine/antagonists & inhibitors
- Receptors, Chemokine/chemistry
- Receptors, Chemokine/immunology
- Receptors, Chemokine/metabolism
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Caroline S. Colley
- Antibody Discovery and Protein Engineering, MedImmune Ltd, Cambridge, UK
- CONTACT Caroline S. Colley Antibody Discovery and Protein Engineering, MedImmune Ltd, Granta Park, Cambridge, CB21 6GH, UK
| | - Bojana Popovic
- Antibody Discovery and Protein Engineering, MedImmune Ltd, Cambridge, UK
| | | | | | | | - Michael Fung
- Respiratory, Inflammation and Autoimmunity, MedImmune LLC, Gaithersburg, MD, USA
| | - Ling–Ling An
- Respiratory, Inflammation and Autoimmunity, MedImmune LLC, Gaithersburg, MD, USA
| | - Bryan Edwards
- Antibody Discovery and Protein Engineering, MedImmune Ltd, Cambridge, UK
| | - Joanne Arnold
- Antibody Discovery and Protein Engineering, MedImmune Ltd, Cambridge, UK
| | - Elizabeth England
- Antibody Discovery and Protein Engineering, MedImmune Ltd, Cambridge, UK
| | - Laura Eghobamien
- Respiratory, Inflammation and Autoimmunity, MedImmune Ltd, Cambridge, UK
| | - Ulf Sivars
- Translational Biology, IMED RIA Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Liz Flavell
- Discovery Sciences, AstraZeneca R&D, Cambridge, UK
| | | | - Kate Wickson
- Discovery Sciences, AstraZeneca R&D, Cambridge, UK
| | - Paul Warrener
- Infectious Diseases, MedImmune LLC, Gaithersburg, MD, USA
| | - Jingying Zha
- Infectious Diseases, MedImmune LLC, Gaithersburg, MD, USA
| | | | - Rob Woods
- Antibody Discovery and Protein Engineering, MedImmune LLC, Gaithersburg, MD, USA
| | - Trevor Wilkinson
- Antibody Discovery and Protein Engineering, MedImmune Ltd, Cambridge, UK
| | - Claire Dobson
- Antibody Discovery and Protein Engineering, MedImmune Ltd, Cambridge, UK
| | - Tristan J. Vaughan
- Antibody Discovery and Protein Engineering, MedImmune Ltd, Cambridge, UK
| |
Collapse
|
46
|
Baek DS, Kim JH, Kim YJ, Kim YS. Immunoglobulin Fc-Fused Peptide without C-Terminal Arg or Lys Residue Augments Neuropilin-1-Dependent Tumor Vascular Permeability. Mol Pharm 2017; 15:394-402. [PMID: 29232521 DOI: 10.1021/acs.molpharmaceut.7b00761] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Neuropilin-1 (NRP1), which functions as a coreceptor for vascular endothelial growth factor (VEGF) and is implicated in vascular permeability and tumorigenesis, has been targeted by peptides that specifically bind to the VEGF-binding region on NRP1. Like natural VEGF ligands, all known peptides with NRP1-binding activity bind only through a carboxy (C)-terminal R/K-x-x-R/K sequence motif (x stands for any amino acids); this strict requirement is called the C-end rule (CendR). Here, we report immunoglobulin Fc-fused NRP1-specific peptides deviating from CendR. We screened a yeast surface-displayed Fc-fused non-CendR peptide library against NRP1 and isolated Fc-V12, wherein V12 peptide comprising 12 amino acids has a PPRV sequence at its C-terminal end. Although Fc-V12 lacked the CendR motif, it showed selective binding to the VEGF-binding region of NRP1 and triggered cellular internalization of NRP1, which resulted in enhanced extravasation into tumor tissues and tumor tissue penetration of the Fc-fused peptide along with the coinjected chemical drug in tumor-bearing mice. Through a saturation mutagenesis study, we identified that the Val residue at the C-terminus of Fc-V12 is crucial for NRP1 binding. We further improved NRP1 affinity of Fc-V12 (KD = ∼761 nM) through directed evolution of the upstream sequence of PPRV to obtain Fc-V12-33 (KD = ∼17.4 nM), which exhibited enhanced NRP1-mediated vascular permeability as compared with Fc-V12. Our results provide functional Fc-fused non-CendR peptides, which bind to the VEGF-binding region of NRP1 and enhance vascular permeability, expanding the sequence space of NRP1-targeting peptides.
Collapse
Affiliation(s)
- Du-San Baek
- Department of Molecular Science and Technology, Ajou University , Suwon 16499, Republic of Korea
| | - Jeong-Ho Kim
- Department of Molecular Science and Technology, Ajou University , Suwon 16499, Republic of Korea
| | - Ye-Jin Kim
- Department of Molecular Science and Technology, Ajou University , Suwon 16499, Republic of Korea
| | - Yong-Sung Kim
- Department of Molecular Science and Technology, Ajou University , Suwon 16499, Republic of Korea
| |
Collapse
|
47
|
Carayol J, Chabert C, Di Cara A, Armenise C, Lefebvre G, Langin D, Viguerie N, Metairon S, Saris WHM, Astrup A, Descombes P, Valsesia A, Hager J. Protein quantitative trait locus study in obesity during weight-loss identifies a leptin regulator. Nat Commun 2017; 8:2084. [PMID: 29234017 PMCID: PMC5727191 DOI: 10.1038/s41467-017-02182-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 11/10/2017] [Indexed: 12/12/2022] Open
Abstract
Thousands of genetic variants have been associated with complex traits through genome-wide association studies. However, the functional variants or mechanistic consequences remain elusive. Intermediate traits such as gene expression or protein levels are good proxies of the metabolic state of an organism. Proteome analysis especially can provide new insights into the molecular mechanisms of complex traits like obesity. The role of genetic variation in determining protein level variation has not been assessed in obesity. To address this, we design a large-scale protein quantitative trait locus (pQTL) analysis based on a set of 1129 proteins from 494 obese subjects before and after a weight loss intervention. This reveals 55 BMI-associated cis-pQTLs and trans-pQTLs at baseline and 3 trans-pQTLs after the intervention. We provide evidence for distinct genetic mechanisms regulating BMI-associated proteins before and after weight loss. Finally, by functional analysis, we identify and validate FAM46A as a trans regulator for leptin. Although many genetic variants are known for obesity, their function remains largely unknown. Here, in a weight-loss intervention cohort, the authors identify protein quantitative trait loci associated with BMI at baseline and after weight loss and find FAM46A to be a regulator of leptin in adipocytes.
Collapse
Affiliation(s)
- Jérôme Carayol
- Nestlé Institute of Health Sciences, EPFL Innovation Park, 1015, Lausanne, Switzerland.
| | - Christian Chabert
- Nestlé Institute of Health Sciences, EPFL Innovation Park, 1015, Lausanne, Switzerland
| | | | | | - Gregory Lefebvre
- Nestlé Institute of Health Sciences, EPFL Innovation Park, 1015, Lausanne, Switzerland
| | - Dominique Langin
- INSERM UMR1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, University of Toulouse, 1 avenue Jean Poulhès BP 84225, 31432, Toulouse, France
| | - Nathalie Viguerie
- INSERM UMR1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, University of Toulouse, 1 avenue Jean Poulhès BP 84225, 31432, Toulouse, France
| | - Sylviane Metairon
- Nestlé Institute of Health Sciences, EPFL Innovation Park, 1015, Lausanne, Switzerland
| | - Wim H M Saris
- Department of Human Biology, NUTRIM, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, PO Box 616, 6200 MD, Maastricht, The Netherlands
| | - Arne Astrup
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Nørre Alle 51, DK-2200, Copenhagen N, Denmark
| | - Patrick Descombes
- Nestlé Institute of Health Sciences, EPFL Innovation Park, 1015, Lausanne, Switzerland
| | - Armand Valsesia
- Nestlé Institute of Health Sciences, EPFL Innovation Park, 1015, Lausanne, Switzerland
| | - Jörg Hager
- Nestlé Institute of Health Sciences, EPFL Innovation Park, 1015, Lausanne, Switzerland
| |
Collapse
|
48
|
Ajona D, Ortiz-Espinosa S, Pio R. Complement anaphylatoxins C3a and C5a: Emerging roles in cancer progression and treatment. Semin Cell Dev Biol 2017; 85:153-163. [PMID: 29155219 DOI: 10.1016/j.semcdb.2017.11.023] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/07/2017] [Accepted: 11/15/2017] [Indexed: 02/06/2023]
Abstract
Recent insights into the role of complement anaphylatoxins C3a and C5a in cancer provide new opportunities for the development of innovative biomarkers and therapeutic strategies. These two complement activation products can maintain chronic inflammation, promote an immunosuppressive microenvironment, induce angiogenesis, and increase the motility and metastatic potential of cancer cells. Still, the diverse heterogeneity of responses mediated by these peptides poses a challenge both to our understanding of the role played by these molecules in cancer progression and to the development of effective treatments. This review attempts to summarize the evidence surrounding the involvement of anaphylatoxins in the biological contexts associated with tumor progression. We also describe the recent developments that support the inhibition of anaphylatoxins, or their cognate receptors C3aR and C5aR1, as a treatment option for maximizing the clinical efficacy of current immunotherapies that target the PD-1/PD-L1 immune checkpoint.
Collapse
Affiliation(s)
- Daniel Ajona
- University of Navarra, Center for Applied Medical Research (CIMA), Program in Solid Tumors and Biomarkers, Pamplona, Spain; Navarra's Health Research Institute (IdiSNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain; University of Navarra, School of Sciences, Department of Biochemistry and Genetics, Pamplona, Spain
| | - Sergio Ortiz-Espinosa
- University of Navarra, Center for Applied Medical Research (CIMA), Program in Solid Tumors and Biomarkers, Pamplona, Spain; University of Navarra, School of Sciences, Department of Biochemistry and Genetics, Pamplona, Spain
| | - Ruben Pio
- University of Navarra, Center for Applied Medical Research (CIMA), Program in Solid Tumors and Biomarkers, Pamplona, Spain; Navarra's Health Research Institute (IdiSNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain; University of Navarra, School of Sciences, Department of Biochemistry and Genetics, Pamplona, Spain.
| |
Collapse
|
49
|
Cheow ESH, Cheng WC, Yap T, Dutta B, Lee CN, Kleijn DPVD, Sorokin V, Sze SK. Myocardial Injury Is Distinguished from Stable Angina by a Set of Candidate Plasma Biomarkers Identified Using iTRAQ/MRM-Based Approach. J Proteome Res 2017; 17:499-515. [DOI: 10.1021/acs.jproteome.7b00651] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Esther Sok Hwee Cheow
- School
of Biological Sciences, Nanyang Technological University, 60 Nanyang
Drive, Singapore 637551, Singapore
| | - Woo Chin Cheng
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore & Cardiovascular Research Institute, Singapore 119228, Singapore
| | - Terence Yap
- School
of Biological Sciences, Nanyang Technological University, 60 Nanyang
Drive, Singapore 637551, Singapore
| | - Bamaprasad Dutta
- School
of Biological Sciences, Nanyang Technological University, 60 Nanyang
Drive, Singapore 637551, Singapore
| | - Chuen Neng Lee
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore & Cardiovascular Research Institute, Singapore 119228, Singapore
- Department of Cardiac, Thoracic & Vascular Surgery, National University Heart Centre, Singapore 119074, Singapore
- Department
of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Dominique P. V. de Kleijn
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore & Cardiovascular Research Institute, Singapore 119228, Singapore
- Department of Vascular Surgery, University Medical Center Utrecht, The Netherlands & Interuniversity Cardiovascular Institute of The Netherlands, Utrecht 3508 GA, The Netherlands
| | - Vitaly Sorokin
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore & Cardiovascular Research Institute, Singapore 119228, Singapore
- Department of Cardiac, Thoracic & Vascular Surgery, National University Heart Centre, Singapore 119074, Singapore
| | - Siu Kwan Sze
- School
of Biological Sciences, Nanyang Technological University, 60 Nanyang
Drive, Singapore 637551, Singapore
| |
Collapse
|
50
|
Thurman JM, Frazer-Abel A, Holers VM. The Evolving Landscape for Complement Therapeutics in Rheumatic and Autoimmune Diseases. Arthritis Rheumatol 2017; 69:2102-2113. [PMID: 28732131 PMCID: PMC5659941 DOI: 10.1002/art.40219] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 07/18/2017] [Indexed: 12/13/2022]
Abstract
The complement system is increasingly understood to play major roles in the pathogenesis of human inflammatory and autoimmune diseases. Because of this situation, there are rapidly expanding commercial efforts to develop novel complement inhibitors and effector pathway-modulating drugs. This review provides insights into the evolving understanding of the complement system components, mechanisms of activation within and across the 3 pathways (classical, alternative, and lectin), how the pathways are normally controlled and then dysregulated in target tissues, and what diseases are known to be, in large part, complement-dependent through the successful development and approval of complement therapeutics in patients. Mechanisms of complement activation in rheumatoid arthritis, lupus, and thrombotic microangiopathies are also illustrated. In addition, the specific therapeutic drugs that are both approved and under development are discussed in the context of both nonrheumatic and rheumatic diseases. Finally, the methods by which the complement system can be assessed in humans through biomarker studies are outlined, with the goal of understanding, in specific patients, how the system is functioning.
Collapse
Affiliation(s)
- Joshua M. Thurman
- University of Colorado Denver, Division of Nephrology and Hypertension, Aurora, CO, USA
| | - Ashley Frazer-Abel
- University of Colorado Denver, Division of Rheumatology, Aurora, CO, USA
- Exsera BioLabs, University of Colorado Denver, Aurora, CO, USA
| | - V. Michael Holers
- University of Colorado Denver, Division of Rheumatology, Aurora, CO, USA
| |
Collapse
|