1
|
Wang X, Chen L, Wei J, Zheng H, Zhou N, Xu X, Deng X, Liu T, Zou Y. The immune system in cardiovascular diseases: from basic mechanisms to therapeutic implications. Signal Transduct Target Ther 2025; 10:166. [PMID: 40404619 DOI: 10.1038/s41392-025-02220-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 12/22/2024] [Accepted: 03/20/2025] [Indexed: 05/24/2025] Open
Abstract
Immune system plays a crucial role in the physiological and pathological regulation of the cardiovascular system. The exploration history and milestones of immune system in cardiovascular diseases (CVDs) have evolved from the initial discovery of chronic inflammation in atherosclerosis to large-scale clinical studies confirming the importance of anti-inflammatory therapy in treating CVDs. This progress has been facilitated by advancements in various technological approaches, including multi-omics analysis (single-cell sequencing, spatial transcriptome et al.) and significant improvements in immunotherapy techniques such as chimeric antigen receptor (CAR)-T cell therapy. Both innate and adaptive immunity holds a pivotal role in CVDs, involving Toll-like receptor (TLR) signaling pathway, nucleotide-binding oligomerization domain-containing proteins 1 and 2 (NOD1/2) signaling pathway, inflammasome signaling pathway, RNA and DNA sensing signaling pathway, as well as antibody-mediated and complement-dependent systems. Meanwhile, immune responses are simultaneously regulated by multi-level regulations in CVDs, including epigenetics (DNA, RNA, protein) and other key signaling pathways in CVDs, interactions among immune cells, and interactions between immune and cardiac or vascular cells. Remarkably, based on the progress in basic research on immune responses in the cardiovascular system, significant advancements have also been made in pre-clinical and clinical studies of immunotherapy. This review provides an overview of the role of immune system in the cardiovascular system, providing in-depth insights into the physiological and pathological regulation of immune responses in various CVDs, highlighting the impact of multi-level regulation of immune responses in CVDs. Finally, we also discuss pre-clinical and clinical strategies targeting the immune system and translational implications in CVDs.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
- State Key Laboratory of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Liming Chen
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jianming Wei
- Central Diagnostics Laboratory, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Hao Zheng
- Jiangsu Provincial Key Laboratory of Critical Care Medicine and Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| | - Ning Zhou
- Department of Cardiovascular Medicine, Anzhen Hospital Affiliated to Capital Medical University, Beijing, China
| | - Xinjie Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin Deng
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tao Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine and Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, China.
- Department of Biochemistry and Molecular Biology, School of Medicine, Southeast University, Jiangsu, Nanjing, China.
- State Key Laboratory of Respiratory Disease, Joint International Research Laboratory of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Yunzeng Zou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
- State Key Laboratory of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.
- Institutes of Advanced Medical Sciences and Huaihe Hospital, Henan University, Kaifeng, Henan, China.
| |
Collapse
|
2
|
Li LM, Kodosaki E, Heslegrave A, Zetterberg H, Graham N, Zimmerman K, Soreq E, Parker T, Garbero E, Moro F, Magnoni S, Bertolini G, Loane DJ, Sharp DJ. High-dimensional proteomic analysis for pathophysiological classification of traumatic brain injury. Brain 2025; 148:1015-1030. [PMID: 39323289 PMCID: PMC11884744 DOI: 10.1093/brain/awae305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/06/2024] [Accepted: 09/15/2024] [Indexed: 09/27/2024] Open
Abstract
Pathophysiology and outcomes after traumatic brain injury (TBI) are complex and heterogeneous. Current classifications are uninformative about pathophysiology. Proteomic approaches with fluid-based biomarkers are ideal for exploring complex disease mechanisms, because they enable sensitive assessment of an expansive range of processes potentially relevant to TBI pathophysiology. We used novel high-dimensional, multiplex proteomic assays to assess altered plasma protein expression in acute TBI. We analysed samples from 88 participants from the BIO-AX-TBI cohort [n = 38 moderate-severe TBI (Mayo Criteria), n = 22 non-TBI trauma and n = 28 non-injured controls] on two platforms: Alamar NULISA™ CNS Diseases and OLINK® Target 96 Inflammation. Patient participants were enrolled after hospital admission, and samples were taken at a single time point ≤10 days post-injury. Participants also had neurofilament light, GFAP, total tau, UCH-L1 (all Simoa®) and S100B (Millipore) data. The Alamar panel assesses 120 proteins, most of which were previously unexplored in TBI, plus proteins with known TBI specificity, such as GFAP. A subset (n = 29 TBI and n = 24 non-injured controls) also had subacute (10 days to 6 weeks post-injury) 3 T MRI measures of lesion volume and white matter injury (fractional anisotropy). Differential expression analysis identified 16 proteins with TBI-specific significantly different plasma expression. These were neuronal markers (calbindin 2, UCH-L1 and visinin-like protein 1), astroglial markers (S100B and GFAP), neurodegenerative disease proteins (total tau, pTau231, PSEN1, amyloid-beta-42 and 14-3-3γ), inflammatory cytokines (IL16, CCL2 and ficolin 2) and cell signalling- (SFRP1), cell metabolism- (MDH1) and autophagy-related (sequestome 1) proteins. Acute plasma levels of UCH-L1, PSEN1, total tau and pTau231 were correlated with subacute lesion volume. Sequestome 1 was positively correlated with white matter fractional anisotropy, whereas CCL2 was inversely correlated. Neuronal, astroglial, tau and neurodegenerative proteins were correlated with each other, IL16, MDH1 and sequestome 1. Exploratory clustering (k means) by acute protein expression identified three TBI subgroups that differed in injury patterns, but not in age or outcome. One TBI cluster had significantly lower white matter fractional anisotropy than control-predominant clusters but had significantly lower lesion subacute lesion volumes than another TBI cluster. Proteins that overlapped on two platforms had excellent (r > 0.8) correlations between values. We identified TBI-specific changes in acute plasma levels of proteins involved in neurodegenerative disease, inflammatory and cellular processes. These changes were related to patterns of injury, thus demonstrating that processes previously studied only in animal models are also relevant in human TBI pathophysiology. Our study highlights how proteomic approaches might improve classification and understanding of TBI pathophysiology, with implications for prognostication and treatment development.
Collapse
Affiliation(s)
- Lucia M Li
- Department of Brain Sciences, Imperial College London, London W12 0BZ, UK
- UK Dementia Research Institute Centre for Care Research & Technology, Imperial College London and University of Surrey, London W12 0BZ, UK
| | - Eleftheria Kodosaki
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London WC1N 3BG, UK
- UK Dementia Research Institute, UCL, London W1T 7NF, UK
| | - Amanda Heslegrave
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London WC1N 3BG, UK
- UK Dementia Research Institute, UCL, London W1T 7NF, UK
| | - Henrik Zetterberg
- UK Dementia Research Institute, UCL, London W1T 7NF, UK
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg 431 41, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal 413 45, Sweden
| | - Neil Graham
- Department of Brain Sciences, Imperial College London, London W12 0BZ, UK
- UK Dementia Research Institute Centre for Care Research & Technology, Imperial College London and University of Surrey, London W12 0BZ, UK
| | - Karl Zimmerman
- Department of Brain Sciences, Imperial College London, London W12 0BZ, UK
- UK Dementia Research Institute Centre for Care Research & Technology, Imperial College London and University of Surrey, London W12 0BZ, UK
| | - Eyal Soreq
- Department of Brain Sciences, Imperial College London, London W12 0BZ, UK
- UK Dementia Research Institute Centre for Care Research & Technology, Imperial College London and University of Surrey, London W12 0BZ, UK
| | - Thomas Parker
- Department of Brain Sciences, Imperial College London, London W12 0BZ, UK
- UK Dementia Research Institute Centre for Care Research & Technology, Imperial College London and University of Surrey, London W12 0BZ, UK
| | - Elena Garbero
- Department of Medical Epidemiology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Bergamo 21056, Italy
| | - Federico Moro
- Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Bergamo 21056, Italy
| | - Sandra Magnoni
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari 07100, Italy
| | - Guido Bertolini
- Department of Medical Epidemiology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Bergamo 21056, Italy
| | - David J Loane
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland
- Department of Anesthesiology and Shock, Trauma and Anesthesiology (STAR) Research Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - David J Sharp
- Department of Brain Sciences, Imperial College London, London W12 0BZ, UK
- UK Dementia Research Institute Centre for Care Research & Technology, Imperial College London and University of Surrey, London W12 0BZ, UK
| |
Collapse
|
3
|
Mannes M, Savukoski S, Ignatius A, Halbgebauer R, Huber-Lang M. Crepuscular rays - The bright side of complement after tissue injury. Eur J Immunol 2024; 54:e2350848. [PMID: 38794857 DOI: 10.1002/eji.202350848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024]
Abstract
Acute injuries trigger an intense activation of the body's defense mechanisms aiming to limit damage and initiate healing. Among the crucial components of the intravascular immune system, the complement system plays a significant role in traumatic injuries, albeit often negatively. It has been suggested that excessive activation of the complement system, transitioning from a localized and timed response to a systemic one, can lead to a loss of its host-protective characteristics. Complement activation products have been associated with the severity of injuries, which sometimes serve as predictors for the onset of organ dysfunctions. Animal studies utilizing complement-targeting agents have provided the basis for considering complement in the management of traumatic injuries in humans. However, numerous studies suggest that the spatial and temporal aspects of complement inhibition are crucial for its efficacy. Understanding the underlying mechanism of the injury is essential to determine where, when, and whether complement inhibition is warranted. Despite the detrimental effects of uncontrolled complement activation, its regulated activation may contribute to essential aspects of healing, such as waste removal and regeneration. This review focuses on the beneficial roles of complement activation in trauma, which are often overlooked or given less consideration but are of immense importance.
Collapse
Affiliation(s)
- Marco Mannes
- Institute of Clinical and Experimental Trauma Immunology, Ulm University Medical Center, Ulm, Germany
| | - Susa Savukoski
- Institute of Clinical and Experimental Trauma Immunology, Ulm University Medical Center, Ulm, Germany
| | - Anita Ignatius
- Institute for Orthopaedic Research and Biomechanics, Ulm University Medical Center, Ulm, Germany
| | - Rebecca Halbgebauer
- Institute of Clinical and Experimental Trauma Immunology, Ulm University Medical Center, Ulm, Germany
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma Immunology, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
4
|
Xuan W, Huang L, Xuan Y, Chen S, Tang J, Wei Y, Pan X, Hamblin MR. Use of the traditional Chinese medicine "compound healthy ear agent" to protect against age-related hearing loss in mice: A proteomics study. Heliyon 2024; 10:e26914. [PMID: 38434421 PMCID: PMC10907787 DOI: 10.1016/j.heliyon.2024.e26914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 02/21/2024] [Accepted: 02/21/2024] [Indexed: 03/05/2024] Open
Abstract
Background Previous studies have shown that the traditional Chinese medicine (TCM) called "compound healthy ear agent" (CHEA) had anti-apoptosis effects in cochlear hair cells and spiral ganglion neurons, and could protect mice hearing against presbycusis or age-related hearing loss (AHL), as well as aminoglycoside antibiotic-induced ototoxicity. Because its mechanisms of action are still unclear, we investigated the mechanism of action of CHEA against AHL in mice using proteomics techniques. Methods Eighteen C57BL/6J mice at 1 month of age were randomly divided into three groups: (A) drinking water until 2 months of age, K2M); (B) drinking water until 7 months of age to induce AHL, K7M; (C) drinking water containing CHEA daily until 7 months of age as treatment group, Z7M. At 2 or 7 months mice were sacrificed and their cochleae were removed for proteomics analysis. Results The numbers of proteins with a false discovery rate (FDR) < 1% were respectively 5873 for qualitative and 5492 for quantitative statistics. The numbers of proteins with differential enrichment at least 1.5-fold (p < 0.05) were respectively 351 for K7M vs K2M groups, 52 for Z7M vs K7M groups, 264 for Z7M vs K2M groups. The differentially expressed proteins in the Z7M group were involved in synaptic molecular transmission, energy metabolism, immune response, antioxidant defenses, and anti-apoptosis. Conclusion The TCM CHEA played a protective role against AHL in mice by regulating the expression of specific proteins and genes in cochlear hair cells and spiral ganglion neurons. Besides the pathways expected to be involved (antioxidant and anti-apoptosis), proteins related to immune response is a new finding of the present study.
Collapse
Affiliation(s)
- Weijun Xuan
- Department of Otorhinolaryngology, Head and Neck Surgery, First Clinical Medical College and Hospital, Guangxi University of Chinese Medicine, Nanning, China
- Department of Otorhinolaryngology, Head and Neck Surgery, International Zhuang Medical Hospital of Guangxi, Guangxi University of Chinese Medicine, Nanning, China
| | - Liyi Huang
- Department of Infection, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Yi Xuan
- School of Engineering, Tufts University, Medford, MA, 02155, USA
| | - Sizhong Chen
- Department of Otorhinolaryngology, Renai Branch Hospital, Guangxi University of Chinese Medicine, Nanning, China
| | - Junbo Tang
- Department of Otorhinolaryngology, Renai Branch Hospital, Guangxi University of Chinese Medicine, Nanning, China
| | - Yulong Wei
- Department of Pharmaceutical Manufacturing, Ruikang Clinical Medical College, Guangxi University of Chinese Medicine, Nanning, China
| | - Xu Pan
- Department of Otorhinolaryngology, Renai Branch Hospital, Guangxi University of Chinese Medicine, Nanning, China
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| |
Collapse
|
5
|
Huntoon K, Lee D, Dong S, Antony A, Kim BYS, Jiang W. Targeting phagocytosis to enhance antitumor immunity. Trends Cancer 2023; 9:650-665. [PMID: 37150626 DOI: 10.1016/j.trecan.2023.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/10/2023] [Accepted: 04/14/2023] [Indexed: 05/09/2023]
Abstract
Many patients with metastatic or treatment-resistant cancer have experienced improved outcomes after immunotherapy that targets adaptive immune checkpoints. However, innate immune checkpoints, which can hinder the detection and clearance of malignant cells, are also crucial in tumor-mediated immune escape and may also serve as targets in cancer immunotherapy. In this review, we discuss the current understanding of immune evasion by cancer cells via disruption of phagocytic clearance, and the potential effects of blocking phagocytosis checkpoints on the activation of antitumor immune responses. We propose that a more effective combination immunotherapy strategy could be to exploit tumor-intrinsic processes that inhibit key innate immune surveillance processes, such as phagocytosis, and incorporate both innate and adaptive immune responses for treating patients with cancer.
Collapse
Affiliation(s)
- Kristin Huntoon
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - DaeYong Lee
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shiyan Dong
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Abin Antony
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Betty Y S Kim
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Wen Jiang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
6
|
Mayilyan KR, Krarup A, Soghoyan AF, Jensenius JC, Sim RB. l-ficolin-MASP arm of the complement system in schizophrenia. Immunobiology 2023; 228:152349. [PMID: 36805857 DOI: 10.1016/j.imbio.2023.152349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/11/2023] [Indexed: 02/17/2023]
Abstract
The abnormal neurodevelopment secondary to in utero adversities, such as hypoxia, malnutrition and maternal infections, underlies schizophrenia (SZ) etiology. As the genes of MBL-associated serine proteases (MASP) of the complement lectin pathway, MASP1 and MASP2, are expressed in the developing cortex and are functionally important for neuronal migration, we hypothesize that the malfunction ofl-ficolin-MASP arm may also be involved in schizophrenia pathophysiology as it was shown for MBL-MASP complexes. We investigated serum l-ficolin and plasma MASP-2 levels, the activity of l-ficolin-bound MASP-2, as well as an array of the complement-related variables in chronic schizophrenic patients in the acute phase of the disease and controls without physical or mental diagnoses. The median concentration of l-ficolin in Armenian controls was 3.66 μg/ml and similar to those reported for other Caucasian populations. SZ-cases had ∼40 % increase in serum l-ficolin (median 5.08 μg/ml; P < 0.0024). In the pooled sample, l-ficolin level was higher in males than in females (P < 0.0031), but this gender dichotomy was not affecting the variable association with schizophrenia (P < 0.016). Remarkably, MASP-2 plasma concentration showed gender-dependent significant variability in the group of patients but not in controls. When adjusted for gender and gender*diagnosis interaction, a significantly high MASP-2 level in female patients versus female controls was observed (median: 362 ng/ml versus 260 ng/ml, respectively; P < 0.0020). A significant increase in l-ficolin-bound MASP-2 activity was also observed in schizophrenia (on the median, cases vs controls: 7.60 vs 6.50 RU; P < 0.021). Correlation analyses of the levels of l-ficolin and MASP-2, l-ficolin-(MASP-2) activity and the demographic data did not show any significant association with the age of individuals, family history, age at onset and duration of the illness, and smoking. Noteworthy, the levels of l-ficolin and MASP-2 in circulation were significantly associated with the type of schizophrenia (paranoid SZ-cases had much higher l-ficolin (P < 0.0035) and lower MASP-2 levels than the other types combined (P < 0.049)). Correlations were also found between: (i) the classical pathway functional activity and l-ficolin level (rs = 0.19, P < 0.010); (ii) the alternative pathway functional activity and MASP-2 level (rs = 0.26, P < 0.00035); (iii) the activity of l-ficolin-bound MASP2 and the downstream C2 component haemolytic activity (rs = -0.19, P < 0.017); and (iv) l-ficolin and the upstream C-reactive protein (CRP) serum concentrations (r = 0.28, P < 0.018). Overall, the results showed l-ficolin-related lectin pathway alterations in schizophrenia pathophysiology. It is likely that in addition to the MBL-MASP component over-activity reported previously, the alterations of the lectin pathway in schizophrenia also involve variations of l-ficolin-(MASP-2) on protein concentration and activity levels.
Collapse
Affiliation(s)
- Karine R Mayilyan
- MRC Immunochemistry Unit, Department of Biochemistry, Oxford University, Oxford, United Kingdom; Institute of Molecular Biology, Armenian National Academy of Sciences, Yerevan, Armenia; Department of Therapeutics, Faculty of General Medicine, University of Traditional Medicine, Yerevan, Armenia.
| | - Anders Krarup
- MRC Immunochemistry Unit, Department of Biochemistry, Oxford University, Oxford, United Kingdom
| | - Armen F Soghoyan
- Yerevan State Medical University, Health Ministry of Armenia, Yerevan, Armenia; Psychosocial Recovery Center, Yerevan, Armenia
| | | | - Robert B Sim
- MRC Immunochemistry Unit, Department of Biochemistry, Oxford University, Oxford, United Kingdom
| |
Collapse
|
7
|
Xie J, Sun Y, Li Y, Zhang X, Hao P, Han L, Cao Y, Ding B, Chang Y, Yin D, Ding J. TMT-based proteomics analysis of growth advantage of triploid Apostichopus japonicus. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 45:101043. [PMID: 36493631 DOI: 10.1016/j.cbd.2022.101043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/20/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022]
Abstract
Polyploid breeding can produce new species with a faster growth rate, higher disease resistance, and higher survival rate, and has achieved significant economic benefits. This study investigated the protein differences in the body wall of triploid Apostichopus japonicus and diploid A. japonicus using isotope-labeled relative and absolute quantitative Tandem Mass Tag technology. A total of 21,096 independent peptides and 4621 proteins were identified. Among them, there were 723 proteins with significant expression differences, including 413 up-regulated proteins and 310 down-regulated proteins. The differentially expressed proteins (DEPs) were enriched in 4519 Gene Ontology enrichment pathways and 320 Kyoto Encyclopedia of Genes and Genomes enrichment pathways. Twenty-two key DEPs related to important functions such as growth and immunity of triploid A. japonicus were screened from the results, among which 20 were up-regulated, such as cathepsin L2 cysteine protease and fibrinogen-like protein A. Arylsulfatase A and zonadhesin were down-regulated. The up-regulated proteins were mainly involved in oxidative stress response, innate immune response, and collagen synthesis in triploid A. japonicus, and the down-regulated proteins were mainly associated with the sterility of triploid A. japonicus. In addition, the transcriptome and proteome were analyzed jointly to support proteome data. In this study, the differences in protein composition between triploid and diploid A. japonicus were analyzed for the first time, and the results revealed the underlying reasons for the growth advantage of triploid A. japonicus.
Collapse
Affiliation(s)
- Jiahui Xie
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China
| | - Yi Sun
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China
| | - Yuanxin Li
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China
| | - Xianglei Zhang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China
| | - Pengfei Hao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China
| | - Lingshu Han
- Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Yue Cao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China
| | - Beichen Ding
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China
| | - Yaqing Chang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China
| | - Donghong Yin
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China
| | - Jun Ding
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China.
| |
Collapse
|
8
|
Zhao BR, Wang XX, Liu PP, Wang XW. Complement-related proteins in crustacean immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 139:104577. [PMID: 36265592 DOI: 10.1016/j.dci.2022.104577] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/02/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
As an important part of innate immune system, complement system is widely involved in defense response and immune regulation, and plays an important biological role. The complement system has been deeply studied. More than 30 complement-related molecules and three major complement-activation pathways have been identified in vertebrates. Crustacean animals do not have complement system. There are only some complement-related proteins in crustaceans which are important for host defense. In this review, we summarize the current knowledge about complement-related proteins in crustaceans, and their functions in crustacean immunity. We also make a comparation of the crustacean pro-phenoloxidase activating system and the mammalian complement system. This review provides a better understanding of the evolution and function of complement-related proteins in crustaceans.
Collapse
Affiliation(s)
- Bao-Rui Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, And State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Xin-Xin Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, And State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Ping-Ping Liu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, And State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Xian-Wei Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, And State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, 266237, China.
| |
Collapse
|
9
|
Gajek G, Świerzko AS, Jarych D, Mikulski D, Kobiela P, Chojnacka K, Kufelnicka-Babout M, Szala-Poździej A, Chrzanowski J, Sobczuk K, Fendler W, Matsushita M, Domżalska-Popadiuk I, Mazela J, Kalinka J, Sekine H, Cedzyński M. Association of low ficolin-2 concentration in cord serum with respiratory distress syndrome in preterm newborns. Front Immunol 2023; 14:1107063. [PMID: 36733481 PMCID: PMC9886859 DOI: 10.3389/fimmu.2023.1107063] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/02/2023] [Indexed: 01/18/2023] Open
Abstract
Introduction Ficolin-2 is a serum pattern recognition molecule, involved in complement activation via the lectin pathway. This study aimed to investigate the association of ficolin-2 concentration in cord blood serum with complications related to premature birth. Methods 546 premature neonates were included. The concentration of ficolin-2 in cord blood serum was determined by a sandwich TRIFMA method. FCN2 genetic variants were analysed with RFLP-PCR, allele-specific PCR, Sanger sequencing or allelic discrimination using TaqMan probes method. Findings Cord blood serum ficolin-2 concentration correlated positively with Apgar score and inversely with the length of hospitalisation and stay at Neonatal Intensive Care Unit (NICU). Multivariate logistic regression analysis indicated that low ficolin-2 increased the possibility of respiratory distress syndrome (RDS) diagnosis [OR=2.05, 95% CI (1.24-3.37), p=0.005]. Median ficolin-2 concentration was significantly lower in neonates with RDS than in premature babies without this complication, irrespective of FCN2 gene polymorphisms localised to promoter and 3'untranslated regions: for patients born <33 GA: 1471 ng/ml vs. 2115 ng/ml (p=0.0003), and for patients born ≥33 GA 1610 ng/ml vs. 2081 ng/ml (p=0.012). Ficolin-2 level was also significantly lower in neonates requiring intubation in the delivery room (1461 ng/ml vs. 1938 ng/ml, p=0.023) and inversely correlated weakly with the duration of respiratory support (R=-0.154, p<0.001). Interestingly, in the neonates born at GA <33, ficolin-2 concentration permitted differentiation of those with/without RDS [AUC=0.712, 95% CI (0.612-0.817), p<0.001] and effective separation of babies with mild RDS from those with moderate/severe form of the disease [AUC=0.807, 95% CI (0.644-0.97), p=0.0002]. Conclusion Low cord serum ficolin-2 concentration (especially in neonates born at GA <33 weeks) is associated with a higher risk of developing moderate/severe RDS, requiring respiratory support and intensive care.
Collapse
Affiliation(s)
- Gabriela Gajek
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Łódź, Poland
| | - Anna S. Świerzko
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Łódź, Poland,*Correspondence: Anna S. Świerzko,
| | - Dariusz Jarych
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Łódź, Poland
| | - Damian Mikulski
- Department of Biostatistics and Translational Medicine, Medical University of Łódź, Łódź, Poland
| | - Paulina Kobiela
- Department of Neonatology, Medical University of Gdańsk, Gdańsk, Poland
| | - Karolina Chojnacka
- II Department of Neonatology, Poznań University of Medical Sciences, Poznań, Poland
| | - Maja Kufelnicka-Babout
- Department of Perinatology, First Chair of Gynecology and Obstetrics, Medical University of Łódź, Łódź, Poland
| | - Agnieszka Szala-Poździej
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Łódź, Poland
| | - Jędrzej Chrzanowski
- Department of Biostatistics and Translational Medicine, Medical University of Łódź, Łódź, Poland
| | - Katarzyna Sobczuk
- Department of Perinatology, First Chair of Gynecology and Obstetrics, Medical University of Łódź, Łódź, Poland
| | - Wojciech Fendler
- Department of Biostatistics and Translational Medicine, Medical University of Łódź, Łódź, Poland
| | - Misao Matsushita
- Department of Applied Biochemistry, Tokai University, Hiratsuka, Kanagawa, Japan
| | | | - Jan Mazela
- Department of Neonatology, Poznań University of Medical Sciences, Poznań, Poland
| | - Jarosław Kalinka
- Department of Perinatology, First Chair of Gynecology and Obstetrics, Medical University of Łódź, Łódź, Poland
| | - Hideharu Sekine
- Department of Immunology, Fukushima Medical University, Fukushima, Japan
| | - Maciej Cedzyński
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Łódź, Poland
| |
Collapse
|
10
|
Lucientes-Continente L, Márquez-Tirado B, Goicoechea de Jorge E. The Factor H protein family: The switchers of the complement alternative pathway. Immunol Rev 2023; 313:25-45. [PMID: 36382387 PMCID: PMC10099856 DOI: 10.1111/imr.13166] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The factor H (FH) protein family is emerging as a complex network of proteins controlling the fate of the complement alternative pathway (AP) and dictating susceptibility to a wide range of diseases including infectious, inflammatory, autoimmune, and degenerative diseases and cancer. Composed, in man, of seven highly related proteins, FH, factor H-like 1, and 5 factor H-related proteins, some of the FH family proteins are devoted to down-regulating the AP, while others exert an opposite function by promoting AP activation. Recent findings have provided insights into the molecular mechanisms defining their biological roles and their pathogenicity, illustrating the relevance that the balance between the regulators and the activators within this protein family has in defining the outcome of complement activation on cell surfaces. In this review we will discuss the emerging roles of the factor H protein family, their impact in the complement cascade, and their involvement in the pathogenesis of complement-mediated diseases associated with the AP dysregulation.
Collapse
Affiliation(s)
- Laura Lucientes-Continente
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University and Research Institute Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Bárbara Márquez-Tirado
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University and Research Institute Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Elena Goicoechea de Jorge
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University and Research Institute Hospital 12 de Octubre (imas12), Madrid, Spain
| |
Collapse
|
11
|
Świerzko AS, Jarych D, Gajek G, Chojnacka K, Kobiela P, Kufelnicka-Babout M, Michalski M, Sobczuk K, Szala-Poździej A, Matsushita M, Mazela J, Domżalska-Popadiuk I, Kilpatrick DC, Kalinka J, Sekine H, Cedzyński M. Polymorphisms of the FCN2 Gene 3'UTR Region and Their Clinical Associations in Preterm Newborns. Front Immunol 2021; 12:741140. [PMID: 34777352 PMCID: PMC8581395 DOI: 10.3389/fimmu.2021.741140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/12/2021] [Indexed: 11/24/2022] Open
Abstract
Ficolin-2 is regarded as an important innate immunity factor endowed with both lectin (carbohydrate recognition) qualities and ability to induce complement activation. The aim of this study was to investigate the association of the FCN2 3'-untranslated region (3'UTR) polymorphisms with ficolin-2 expression and perinatal complications in preterm neonates. The sequencing analysis allowed us to identify six 3'UTR polymorphisms with minor allele frequency (MAF) >1%: rs4521835, rs73664188, rs11103564, rs11103565, rs6537958 and rs6537959. Except for rs4521835, all adhered to Hardy-Weinberg expectations. Moreover, rs6537958 and rs6537959 were shown to be in perfect linkage disequilibrium (LD) with nine other genetic polymorphisms: rs7040372, rs7046516, rs747422, rs7847431, rs6537957, rs6537960, rs6537962, rs11462298 and rs7860507 together stretched on a distance of 1242 bp and very high LD with rs11103565. The 3'UTR region was shown to bind nuclear extract proteins. The polymorphisms at rs4521835 and rs73664188 were found to influence serum ficolin-2 concentration significantly. All polymorphisms identified create (together with exon 8 polymorphism, rs7851696) two haplotype blocks. Among 49 diplotypes (D1-D49) created from rs7851696 (G>T), rs4521835 (T>G), rs73664188 (T>C), rs11103564 (T>C), rs11103565 (G>A) and rs6537959 (T>A), twenty two occurred with frequency >1%. Two diplotypes: D13 (GTTTGT/GGTCGT) and D10 (GTTTGT/GGTCGA), were significantly more frequent among preterm neonates with early onset of infection and pneumonia, compared with newborns with no infectious complications (OR 2.69 and 2.81, respectively; both p<0.05). The minor (C) allele at rs73664188 was associated with an increased risk of very low (≤1500 g) birthweight (OR=1.95, p=0.042) but was associated with the opposite effect at rs11103564 (OR=0.11, p=0.005).
Collapse
Affiliation(s)
- Anna S. Świerzko
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Łódź, Poland
| | - Dariusz Jarych
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Łódź, Poland
| | - Gabriela Gajek
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Łódź, Poland
| | - Karolina Chojnacka
- Department of Newborns’ Infectious Diseases, Poznań University of Medical Sciences, Poznań, Poland
| | - Paulina Kobiela
- Department of Neonatology, Medical University of Gdańsk, Gdańsk, Poland
| | - Maja Kufelnicka-Babout
- Department of Perinatology, First Chair of Gynecology and Obstetrics, Medical University of Łódź, Łódź, Poland
| | - Mateusz Michalski
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Łódź, Poland
| | - Katarzyna Sobczuk
- Department of Perinatology, First Chair of Gynecology and Obstetrics, Medical University of Łódź, Łódź, Poland
| | - Agnieszka Szala-Poździej
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Łódź, Poland
| | - Misao Matsushita
- Department of Applied Biochemistry, Tokai University, Hiratsuka, Japan
| | - Jan Mazela
- Department of Newborns’ Infectious Diseases, Poznań University of Medical Sciences, Poznań, Poland
| | | | - David C. Kilpatrick
- Scottish National Blood Transfusion Service, National Science Laboratory, Edinburgh, Scotland, United Kingdom
| | - Jarosław Kalinka
- Department of Perinatology, First Chair of Gynecology and Obstetrics, Medical University of Łódź, Łódź, Poland
| | - Hideharu Sekine
- Department of Immunology, Fukushima Medical University, Fukushima, Japan
| | - Maciej Cedzyński
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Łódź, Poland
| |
Collapse
|
12
|
Vogt S, Leuppi JD, Schuetz P, Mueller B, Volken C, Dräger S, Trendelenburg M, Rutishauser J, Osthoff M. Association of mannose-binding lectin, ficolin-2 and immunoglobulin concentrations with future exacerbations in patients with chronic obstructive pulmonary disease: secondary analysis of the randomized controlled REDUCE trial. Respir Res 2021; 22:227. [PMID: 34391418 PMCID: PMC8364051 DOI: 10.1186/s12931-021-01822-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/09/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The innate and adaptive immune system is involved in the airway inflammation associated with acute exacerbations in patients with chronic obstructive pulmonary disease (COPD). We evaluated the association of mannose-binding lectin (MBL), immunoglobulin (Ig) and ficolin-2 concentrations with COPD exacerbations and according to the glucocorticoid treatment duration for an index exacerbation. METHODS Post-hoc analysis of the randomized, double-blind, placebo-controlled REDUCE trial of 5 vs. 14 days of glucocorticoid treatment for an index exacerbation. MBL, ficolin-2 and total IgG/IgA and subclass concentrations were determined in stored samples drawn (n = 178) 30 days after the index exacerbation and associated with the risk of re-exacerbation during a 180-day follow-up period. RESULTS IgG and subclass concentrations were significantly lower after 14 days vs. 5 days of glucocorticoid treatment. Patients with higher MBL concentrations were more likely to suffer from a future exacerbation (multivariable hazard ratio 1.03 per 200 ng/ml increase (95% confidence interval (CI) 1.00-1.06), p = 0.048), whereas ficolin-2 and IgG deficiency were not associated. The risk was most pronounced in patients with high MBL concentrations, IgG deficiency and 14 days of glucocorticoid treatment pointing towards an interactive effect of MBL and IgG deficiency in the presence of prolonged glucocorticoid treatment duration [Relative excess risk due to interaction 2.13 (95% CI - 0.41-4.66, p = 0.10)]. IgG concentrations were significantly lower in patients with frequent re-exacerbations (IgG, 7.81 g/L vs. 9.53 g/L, p = 0.03). CONCLUSIONS MBL modified the short-term exacerbation risk after a recent acute exacerbation of COPD, particularly in the setting of concurrent IgG deficiency and recent prolonged systemic glucocorticoid treatment. Ficolin-2 did not emerge as a predictor of a future exacerbation risk.
Collapse
Affiliation(s)
- Severin Vogt
- Division of Internal Medicine, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
| | - Jörg D Leuppi
- Department of Medicine, Kantonsspital Baselland, Liestal, Switzerland
| | - Philipp Schuetz
- Medical University Department, Kantonsspital Aarau, Aarau, Switzerland
- Faculty of Medicine, University of Basel, Basel, Switzerland
| | - Beat Mueller
- Medical University Department, Kantonsspital Aarau, Aarau, Switzerland
- Faculty of Medicine, University of Basel, Basel, Switzerland
| | - Carmen Volken
- Central Laboratory, Kantonsspital Baselland, Bruderholz, Switzerland
| | - Sarah Dräger
- Division of Internal Medicine, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
- Department of Clinical Research, University of Basel, Basel, Switzerland
| | - Marten Trendelenburg
- Division of Internal Medicine, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
- Department of Clinical Research, University of Basel, Basel, Switzerland
| | - Jonas Rutishauser
- Faculty of Medicine, University of Basel, Basel, Switzerland
- Department of Medicine, Clinical Trial Unit, Kantonsspital Baden, Baden, Switzerland
| | - Michael Osthoff
- Division of Internal Medicine, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland.
- Department of Clinical Research, University of Basel, Basel, Switzerland.
| |
Collapse
|
13
|
Cockram TOJ, Dundee JM, Popescu AS, Brown GC. The Phagocytic Code Regulating Phagocytosis of Mammalian Cells. Front Immunol 2021; 12:629979. [PMID: 34177884 PMCID: PMC8220072 DOI: 10.3389/fimmu.2021.629979] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 05/18/2021] [Indexed: 01/21/2023] Open
Abstract
Mammalian phagocytes can phagocytose (i.e. eat) other mammalian cells in the body if they display certain signals, and this phagocytosis plays fundamental roles in development, cell turnover, tissue homeostasis and disease prevention. To phagocytose the correct cells, phagocytes must discriminate which cells to eat using a 'phagocytic code' - a set of over 50 known phagocytic signals determining whether a cell is eaten or not - comprising find-me signals, eat-me signals, don't-eat-me signals and opsonins. Most opsonins require binding to eat-me signals - for example, the opsonins galectin-3, calreticulin and C1q bind asialoglycan eat-me signals on target cells - to induce phagocytosis. Some proteins act as 'self-opsonins', while others are 'negative opsonins' or 'phagocyte suppressants', inhibiting phagocytosis. We review known phagocytic signals here, both established and novel, and how they integrate to regulate phagocytosis of several mammalian targets - including excess cells in development, senescent and aged cells, infected cells, cancer cells, dead or dying cells, cell debris and neuronal synapses. Understanding the phagocytic code, and how it goes wrong, may enable novel therapies for multiple pathologies with too much or too little phagocytosis, such as: infectious disease, cancer, neurodegeneration, psychiatric disease, cardiovascular disease, ageing and auto-immune disease.
Collapse
Affiliation(s)
| | | | | | - Guy C. Brown
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
14
|
Wang P, Wu Q, Shuai ZW. Emerging role of ficolins in autoimmune diseases. Pharmacol Res 2021; 163:105266. [PMID: 33127557 DOI: 10.1016/j.phrs.2020.105266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/15/2020] [Accepted: 10/18/2020] [Indexed: 12/22/2022]
Abstract
Ficolins are pattern-recognition molecules (PRMs) that could form complexes with mannose-binding lectin-associated serine proteases (MASPs) to trigger complement activation via the lectin pathway, thereby mediating a series of immune responses including opsonization, phagocytosis and cytokine production. In the past few decades, accumulating evidence have suggested that ficolins play a major role in the onset and development of several autoimmune diseases (ADs), including systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), systemic sclerosis (SSc), Type 1 diabetes (T1D), inflammatory bowel disease (IBD), etc. In this review, we synthesized previous literatures and recent advances to elucidate the immunological regulations of ficolins and discuss the potential diagnostic ability of ficolins in ADs, as well as giving an insight into the future therapeutic options for ficolins in ADs.
Collapse
Affiliation(s)
- Peng Wang
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University Medical College, 199 Renai Road, Suzhou, Jiangsu, 215123, China.
| | - Qian Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230016, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, 230016, Anhui, China
| | - Zong-Wen Shuai
- Department of Rheumatology and Immunology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, 230016, Anhui, China.
| |
Collapse
|
15
|
Ashmawy I, El-Lebedy D, Awadallah E, Marzouk H, Farag Y, Ibrahim AA. Association of FCN2 gene rs3124954 and STAT4 gene rs7582694 polymorphisms with juvenile onset systemic lupus erythematosus and lupus nephritis in a sample of Egyptian children. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Świerzko AS, Cedzyński M. The Influence of the Lectin Pathway of Complement Activation on Infections of the Respiratory System. Front Immunol 2020; 11:585243. [PMID: 33193407 PMCID: PMC7609860 DOI: 10.3389/fimmu.2020.585243] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/01/2020] [Indexed: 12/16/2022] Open
Abstract
Lung diseases are among the leading causes of morbidity and mortality. Complement activation may prevent a variety of respiratory infections, but on the other hand, could exacerbate tissue damage or contribute to adverse side effects. In this review, the associations of factors specific for complement activation via the lectin pathway (LP) with infections of the respiratory system, from birth to adulthood, are discussed. The most extensive data concern mannose-binding lectin (MBL) which together with other collectins (collectin-10, collectin-11) and the ficolins (ficolin-1, ficolin-2, ficolin-3) belong to pattern-recognition molecules (PRM) specific for the LP. Those PRM form complexes with MBL-associated serine proteases (MASP-1, MASP-2, MASP-3) and related non-enzymatic factors (MAp19, MAp44). Beside diseases affecting humanity for centuries like tuberculosis or neonatal pneumonia, some recently published data concerning COVID-19 are summarized.
Collapse
Affiliation(s)
- Anna S Świerzko
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Łódź, Poland
| | - Maciej Cedzyński
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Łódź, Poland
| |
Collapse
|
17
|
Cedzyński M, Świerzko AS. Components of the Lectin Pathway of Complement in Haematologic Malignancies. Cancers (Basel) 2020; 12:E1792. [PMID: 32635486 PMCID: PMC7408476 DOI: 10.3390/cancers12071792] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 12/12/2022] Open
Abstract
The complement system is activated cascadically via three distinct major routes: classical pathway (CP), alternative pathway (AP) or lectin pathway (LP). The unique factors associated with the latter are collectins (mannose-binding lectin, collectin-10, collectin-11), ficolins (ficolin-1, ficolin-2, ficolin-3) and proteins of the mannose-binding lectin-associated serine protease (MASP) family (MASP-1, MASP-2, MASP-3, MAp19, MAp44). Collectins and ficolins are both pattern-recognising molecules (PRM), reactive against pathogen-associated molecular patterns (PAMP) or danger-associated molecular patterns (DAMP). The MASP family proteins were first discovered as complexes with mannose-binding lectin (MBL) and therefore named MBL-associated serine proteases, but later, they were found to interact with ficolins, and later still, collectin-10 and collectin-11. As well as proteolytic enzymes (MASP-1, MASP-2, MASP-3), the group includes non-enzymatic factors (MAp19, MAp44). In this review, the association-specific factors of the lectin pathway with haematologic malignancies and related infections are discussed.
Collapse
Affiliation(s)
- Maciej Cedzyński
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 92-232 Łódź, Poland;
| | | |
Collapse
|
18
|
Jarlhelt I, Pilely K, Clausen JB, Skjoedt MO, Bayarri-Olmos R, Garred P. Circulating Ficolin-2 and Ficolin-3 Form Heterocomplexes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:1919-1928. [PMID: 32094208 DOI: 10.4049/jimmunol.1900694] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 01/18/2020] [Indexed: 01/16/2023]
Abstract
The complement system constitutes an important part of the innate immune system. The collectins and the ficolins are soluble pattern recognition molecules that contribute to complement activation via the lectin pathway. During previous experiments with ficolin-2 and ficolin-3, we have observed that the molecules may interact. We therefore hypothesized the existence of stable ficolin-2/-3 heterocomplexes. We could demonstrate ficolin-2/-3 heterocomplexes in normal human serum and plasma by ELISA using Abs specific for ficolin-2 and ficolin-3. The formation of heteromeric protein complexes were validated by coimmunoprecipitation and Western blot analysis. When recombinant ficolin-2 and recombinant ficolin-3 were mixed, no complexes were formed. However, when coexpressing ficolin-2 and ficolin-3 in Chinese hamster ovary cells, we could detect ficolin-2/-3 heterocomplexes in the supernatant. Furthermore, we measured concentration of the ficolin-2/-3 heterocomplexes in arbitrary units in 94 healthy individuals. We also established the relationship between the concentrations of ficolin-2, ficolin-3, and the ficolin-2/-3 heterocomplexes. We observed that the concentration of the ficolin-2/-3 heterocomplex correlated significantly with ficolin-2 (ρ: 0.24, p < 0.018) and ficolin-3 concentrations (ρ: 0.46, p < 0.0001). In conclusion, we describe a novel protein complex between ficolin-2 and ficolin-3 present in serum and plasma, which might be of additional biological relevance apart from the native ficolin-2 and ficolin-3 molecules.
Collapse
Affiliation(s)
- Ida Jarlhelt
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Katrine Pilely
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Jytte Bryde Clausen
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Mikkel-Ole Skjoedt
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Rafael Bayarri-Olmos
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| |
Collapse
|
19
|
Tajbakhsh A, Rezaee M, Barreto GE, Moallem SA, Henney NC, Sahebkar A. The role of nuclear factors as “Find-Me”/alarmin signals and immunostimulation in defective efferocytosis and related disorders. Int Immunopharmacol 2020; 80:106134. [DOI: 10.1016/j.intimp.2019.106134] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 12/16/2019] [Accepted: 12/16/2019] [Indexed: 12/22/2022]
|
20
|
Casals C, García-Fojeda B, Minutti CM. Soluble defense collagens: Sweeping up immune threats. Mol Immunol 2019; 112:291-304. [DOI: 10.1016/j.molimm.2019.06.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 12/14/2022]
|
21
|
Elkoumi MA, Emam AA, Allah MAN, Sherif AH, Abdelaal NM, Mosabah A, Zakaria MT, Soliman MM, Salah A, Sedky YM, Mashali MH, Elashkar SSA, Hafez SFM, Hashem MIA, Elshreif AM, Youssef M, Fahmy DS, Sallam MM, Nawara AM, Elgohary EA, Ahmed AA, Fahim MS, Fawzi MM, Abdou AM, Morsi SS, Abo-Alella DA, Malek MM, Anany HG, Sobeih AA, Elbasyouni HAA, El-Deeb FM. Association of ficolin-2 gene polymorphisms and susceptibility to systemic lupus erythematosus in Egyptian children and adolescents: a multicenter study. Lupus 2019; 28:995-1002. [PMID: 31184250 DOI: 10.1177/0961203319856089] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Pediatric-onset SLE (pSLE) is a multisystem autoimmune disease. Recently, the ficolin-2 (FCN2) gene has emerged as a potential candidate gene for susceptibility to SLE. OBJECTIVES The objective of this study was to evaluate the association of the FCN2 gene polymorphisms at positions -986 (G/A), -602 (G/A), -4 (A/G) and SNP C/T (rs3124954) located in intron 1, with susceptibility to pSLE in Egyptian children and adolescents. METHODS This was a multicenter study of 280 patients diagnosed with pSLE, and 280 well-matched healthy controls. The FCN2 promoter polymorphisms at -986 G/A (rs3124952), -602 G/A (rs3124953), -4 A/G (rs17514136) and SNP C/T (rs3124954) located in intron 1 were genotyped by polymerase chain reaction, while serum ficolin-2 levels were assessed using enzyme-linked immunosorbent assay. RESULTS The frequencies of the FCN2 GG genotype and G allele at -986 and -602 positions were significantly more represented in patients with pSLE than in controls (p < 0.001). Conversely, the FCN2 AA genotype and A allele at position -4 were more common in patients than in controls (p < 0.001). Moreover, patients carrying the FCN2 GG genotype in -986 position were more likely to develop lupus nephritis (odds ratio: 2.6 (95% confidence interval: 1.4-4.78); p = 0.006). The FCN2 AA genotype at position -4 was also identified as a possible risk factor for lupus nephritis (odds ratio: 3.12 (95% confidence interval: 1.25-7.84); p = 0.024). CONCLUSION The FCN2 promoter polymorphisms may contribute to susceptibility to pSLE in Egyptian children and adolescents. Moreover, the FCN2 GG genotype at position -986 and AA genotype at position -4 were associated with low serum ficolin-2 levels and may constitute risk factors for lupus nephritis in pSLE.
Collapse
Affiliation(s)
- M A Elkoumi
- 1 Department of Pediatrics, Faculty of Medicine, Zagazig University, Egypt
| | - A A Emam
- 1 Department of Pediatrics, Faculty of Medicine, Zagazig University, Egypt
| | - M A N Allah
- 1 Department of Pediatrics, Faculty of Medicine, Zagazig University, Egypt
| | | | - N M Abdelaal
- 2 Department of Pediatrics, Faculty of Medicine, Ain-Shams University, Egypt
| | - Aaa Mosabah
- 3 Department of Pediatrics, Faculty of Medicine, Cairo University, Egypt
| | - M T Zakaria
- 3 Department of Pediatrics, Faculty of Medicine, Cairo University, Egypt
| | - M M Soliman
- 3 Department of Pediatrics, Faculty of Medicine, Cairo University, Egypt
| | - A Salah
- 3 Department of Pediatrics, Faculty of Medicine, Cairo University, Egypt
| | - Y M Sedky
- 3 Department of Pediatrics, Faculty of Medicine, Cairo University, Egypt
| | - M H Mashali
- 3 Department of Pediatrics, Faculty of Medicine, Cairo University, Egypt
| | - S S A Elashkar
- 1 Department of Pediatrics, Faculty of Medicine, Zagazig University, Egypt
| | - S F M Hafez
- 1 Department of Pediatrics, Faculty of Medicine, Zagazig University, Egypt
| | - M I A Hashem
- 1 Department of Pediatrics, Faculty of Medicine, Zagazig University, Egypt
| | - A M Elshreif
- 4 Department of Pediatrics, Al Azhar Faculty of Medicine, Cairo, Egypt
| | - Maa Youssef
- 5 Department of Rheumatology, Faculty of Medicine, Zagazig University, Egypt
| | - D S Fahmy
- 5 Department of Rheumatology, Faculty of Medicine, Zagazig University, Egypt
| | - M M Sallam
- 6 Department of Internal Medicine, Faculty of Medicine, Zagazig University, Egypt
| | - A M Nawara
- 6 Department of Internal Medicine, Faculty of Medicine, Zagazig University, Egypt
| | - E A Elgohary
- 6 Department of Internal Medicine, Faculty of Medicine, Zagazig University, Egypt
| | - A A Ahmed
- 7 Department of Anesthesia, Faculty of Medicine, Zagazig University, Egypt
| | - M S Fahim
- 8 Department of Anesthesia, Faculty of Medicine, Ain-Shams University, Egypt
| | - M M Fawzi
- 9 Department of Clinical Pathology, Faculty of Medicine, Zagazig University, Egypt
| | - A M Abdou
- 10 Department of Clinical Pathology, Al Azhar Faculty of Medicine, Cairo, Egypt
| | - S S Morsi
- 11 Department of Microbiology and Immunology, Faculty of Medicine, Zagazig University, Egypt
| | - D A Abo-Alella
- 11 Department of Microbiology and Immunology, Faculty of Medicine, Zagazig University, Egypt
| | - M M Malek
- 11 Department of Microbiology and Immunology, Faculty of Medicine, Zagazig University, Egypt
| | - H G Anany
- 1 Department of Pediatrics, Faculty of Medicine, Zagazig University, Egypt
| | - A A Sobeih
- 3 Department of Pediatrics, Faculty of Medicine, Cairo University, Egypt
| | - H A A Elbasyouni
- 12 Department of Internal Medicine, Faculty of Medicine, Menoufia University, Egypt
| | - F M El-Deeb
- 13 Department of Dermatology, Faculty of Medicine, Zagazig University, Egypt
| |
Collapse
|
22
|
Osthoff M, Jaeger VK, Heijnen IAFM, Trendelenburg M, Jordan S, Distler O, Walker UA. Role of lectin pathway complement proteins and genetic variants in organ damage and disease severity of systemic sclerosis: a cross-sectional study. Arthritis Res Ther 2019; 21:76. [PMID: 30885245 PMCID: PMC6423822 DOI: 10.1186/s13075-019-1859-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/05/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The role of the complement system in the pathogenesis of systemic sclerosis (SSc) is controversial. This study investigated the role of the lectin pathway of complement as a mediator of ischemia/reperfusion injury in SSc. METHODS This is a prospective observational cross-sectional study of 211 SSc patients and 29 patients with Raynaud's phenomenon in undifferentiated connective tissue disease (UCTD) at risk of developing SSc from two outpatient clinics. Serum levels of lectin pathway proteins (FCN-2, FCN-3, MBL, and MASP-2) and eight MBL2 and FCN2 single-nucleotide polymorphisms (SNP) were analyzed by sandwich-type immunoassays and genotyping and examined for their association with disease manifestations. RESULTS Lectin pathway protein levels and SNPs were similar between SSc and UCTD patients. FCN-2 levels were however higher in SSc patients with present evidence of digital ulcers (mean 1.4 vs. 1.0 μg/mL, p = 0.05), pitting scars (mean 1.3 vs. 1.0 μg/mL, p = 0.01), and puffy fingers (mean 1.2 vs. 1.0 μg/mL, p = 0.04). Similarly, higher FCN-2 levels were observed in SSc patients with Scl-70 autoantibodies (mean 1.5 vs. 1.0 μg/mL, p = 0.001), interstitial lung disease (mean 1.2 vs. 0.9 μg/mL, p = 0.02), and a forced vital capacity (FVC) below 80% (mean 1.4 vs. 1.0 μg/mL, p = 0.02). In line, variant alleles in the FCN-2 SNP at position + 6359 were associated with a significantly reduced FVC and diffusion capacity. Furthermore, patients with SSc renal crisis harbored higher MBL levels (mean 2.7 vs. 1.5 μg/mL, p = 0.04). No other lectin pathway protein levels or polymorphisms were associated with disease manifestations, low complement C3 and/or C4 levels, or inflammatory markers. CONCLUSIONS This study does not support a relevant role for several lectin pathway complement proteins in the pathogenesis of SSc. Higher FCN-2 levels were however associated with Scl-70 autoantibody positivity, interstitial lung involvement, and digital vasculopathy. Elevated MBL levels were associated with renal crisis.
Collapse
Affiliation(s)
- Michael Osthoff
- Department of Internal Medicine, University Hospital Basel, 4031 Basel, Switzerland
- Department of Biomedicine, University Basel, 4031 Basel, Switzerland
| | - Veronika K. Jaeger
- Department of Rheumatology, University Hospital Basel, 4031 Basel, Switzerland
| | - Ingmar A. F. M. Heijnen
- Division of Medical Immunology, Laboratory Medicine, University Hospital Basel, 4031 Basel, Switzerland
| | - Marten Trendelenburg
- Department of Internal Medicine, University Hospital Basel, 4031 Basel, Switzerland
- Department of Biomedicine, University Basel, 4031 Basel, Switzerland
| | - Suzana Jordan
- Department of Rheumatology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Oliver Distler
- Department of Rheumatology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Ulrich A. Walker
- Department of Rheumatology, University Hospital Basel, 4031 Basel, Switzerland
| |
Collapse
|
23
|
Michalski M, Świerzko AS, Sawicki S, Kałużyński A, Łukasiewicz J, Maciejewska A, Wydra D, Cedzyński M. Interactions of ficolin-3 with ovarian cancer cells. Immunobiology 2019; 224:316-324. [PMID: 30846332 DOI: 10.1016/j.imbio.2019.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 01/25/2019] [Accepted: 01/25/2019] [Indexed: 11/18/2022]
Abstract
BACKGROUND Ficolin-3 is a pattern-recognition molecule with the ability to activate the lectin pathway of complement. It is found in lung, liver and blood, but its physiological role is unclear. We have investigated interaction of recombinant ficolin-3 with malignant cells and tissues. MATERIAL AND METHODS Cells of various lines of human origin as well as ovarian tissue sections have been studied with the use of flow cytometry and immunohistochemistry. RESULTS Recombinant (but not serum-derived) ficolin-3 was found to bind strongly to the ovarian cancer cell lines, SKOV-3, OVCAR-3 and ES-2, at concentrations of 2.5 μg/ml and above. Moreover, His-tagged recombinant ficolin-3 (10 μg/ml) preferentially stained ovarian tissue sections from patients with malignant tumours compared with those from patients without. Binding to cell lines was inhibited by EDTA and specific carbohydrate ligands, indicating involvement of the fibrinogen-like domain. Binding was enhanced under mildly acidic conditions and at physiological pH after pre-incubation of cells with mildly acidic buffer. CONCLUSION Basing on data concerning recombinant protein, it may be suggested that ficolin-3 is involved in immune response in ovarian cancer. However, unidentified serum factor(s) seem(s) to protect cancer cells from recognition by natural or rficolin-3.
Collapse
Affiliation(s)
- Mateusz Michalski
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Anna S Świerzko
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland.
| | - Sambor Sawicki
- Department of Gynaecology, Oncologic Gynaecology and Gynaecologic Endocrinology, Medical University of Gdansk, Gdansk, Poland
| | - Andrzej Kałużyński
- Department of Clinical Pathomorphology, Polish Mother's Memorial Hospital Research Institute, Lodz, Poland
| | - Jolanta Łukasiewicz
- Department of Immunochemistry, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Anna Maciejewska
- Department of Immunochemistry, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Dariusz Wydra
- Department of Gynaecology, Oncologic Gynaecology and Gynaecologic Endocrinology, Medical University of Gdansk, Gdansk, Poland
| | - Maciej Cedzyński
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| |
Collapse
|
24
|
Association of ficolin-2 (FCN2) functional polymorphisms and protein levels with rheumatic fever and rheumatic heart disease: relationship with cardiac function. ACTA ACUST UNITED AC 2018; 3:e142-e155. [PMID: 30775605 PMCID: PMC6374577 DOI: 10.5114/amsad.2018.80999] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 10/04/2018] [Indexed: 12/13/2022]
Abstract
Introduction A role for ficolin (FCN) 2 gene polymorphisms in the pathogenesis of recurrent severe streptococcal infections and rheumatic carditis has been suggested. The aim of the study was to evaluate a possible relationship between single nucleotide polymorphisms located at positions -602 and -4 of the FCN2 gene and FCN2 serum levels and risk of development of rheumatic fever (RF) and rheumatic heart disease (RHD). Material and methods Seventy-seven Caucasian Egyptian patients with RF were recruited with a control group of 43 healthy subjects. DNA was extracted for analysis of the FCN2 gene at positions -602 and -4 and serum protein level was measured by ELISA. Results FCN2 AA genotype at the -4 position was more frequently observed in RF and RHD patients, as compared to healthy subjects (p = 0.005 and p = 0.013, respectively); furthermore, the A allele was identified as a possible risk factor for the development of RF (p = 0.023, OR = 1.852, 95% CI: 1.085–3.159). The haplotype –602/–4 G/A, which was associated with low median levels of L-ficolin, was observed more frequently in the RF group when compared to the healthy subjects (74/162, 48.1% vs. 29/420, 33.7%, OR = 1.834, 95% CI: 1.034–3.252, p = 0.038). Low serum ficolin-2 level was associated with ESV and EDV increases. FCN 2 level was significantly lower with AA genotypes than GG+AG genotypes of the -4 position (56.68 ±17.90 vs. 66.05 ±18.79, p = 0.008). Conclusions Polymorphisms linked to low levels of L-ficolin may render an individual at risk of recurrent and/or severe streptococcal infection. The -4 AA genotype and -602/-4 G/A haplotype are possible risk factors for the development of carditis.
Collapse
|
25
|
Colliard S, Jourde-Chiche N, Clavarino G, Sarrot-Reynauld F, Gout E, Deroux A, Fougere M, Bardin N, Bouillet L, Cesbron JY, Thielens NM, Dumestre-Pérard C. Autoantibodies Targeting Ficolin-2 in Systemic Lupus Erythematosus Patients With Active Nephritis. Arthritis Care Res (Hoboken) 2018; 70:1263-1268. [PMID: 29045037 DOI: 10.1002/acr.23449] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 10/10/2017] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Systemic lupus erythematosus (SLE) is a multisystem inflammatory disease characterized by the production of various autoantibodies. The aim of this study was to investigate the presence of anti-ficolin-2 antibodies in SLE patients and to evaluate the association between the levels of these autoantibodies, clinical manifestations, and disease activity. METHODS This is a comparative study using a cohort of 165 SLE patients and 48 healthy subjects. SLE patients were further divided into 2 groups (low disease activity [SLE Disease Activity Index (SLEDAI) score ≤4, n = 88] and high disease activity [SLEDAI score >4, n = 77]). Clinical manifestations were defined according to the physician in charge. Active lupus nephritis (LN) was documented by kidney biopsy. Detection of anti-ficolin-2 antibodies was performed by enzyme-linked immunosorbent assay. RESULTS Levels of anti-ficolin-2 autoantibodies were significantly higher in SLE patients as compared to healthy subjects and associated with SLEDAI score. They were found to be positive in 61 of 165 SLE patients (37%). The presence of anti-ficolin-2 antibodies was significantly related only to renal involvement, with a very high prevalence (86%) of anti-ficolin-2 antibodies in SLE patients with active LN. Patients with active proliferative LN had significantly more positive anti-ficolin-2 antibodies than those with nonproliferative LN. The combination of anti-ficolin-2, anti-ficolin-3, and anti-C1q demonstrated a very high specificity (98%) for the diagnosis of active LN. CONCLUSION Our results support the usefulness of anti-ficolin-2 as a complementary serologic biomarker for the diagnosis of active lupus with renal manifestations.
Collapse
Affiliation(s)
- Sophie Colliard
- Laboratoire d'Immunologie, Pôle de Biologie, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble Cedex 9, France
| | - Noémie Jourde-Chiche
- Aix-Marseille Université, Assistance-Publique Hôpitaux de Marseille, Centre de Néphrologie et Transplantation Rénale, Centre Hospitalier Universitaire de la Conception, and Aix-Marseille Université, Vascular Research Center of Marseille, Marseille, France
| | - Giovanna Clavarino
- Laboratoire d'Immunologie, Pôle de Biologie, Centre Hospitalier Universitaire Grenoble Alpes and CNRS-Université Grenoble Alpes, Grenoble Cedex 9, France
| | - Françoise Sarrot-Reynauld
- Clinique Universitaire de Médecine Interne, Pôle Pluridisciplinaire de Médecine et de Gérontologie Clinique, Centre Hospitalier Universitaire, Grenoble Alpes, Grenoble Cedex 9, France
| | - Evelyne Gout
- Université Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| | - Alban Deroux
- Clinique Universitaire de Médecine Interne, Pôle Pluridisciplinaire de Médecine et de Gérontologie Clinique, Centre Hospitalier Universitaire, Grenoble Alpes, Grenoble Cedex 9, France
| | - Mélanie Fougere
- Laboratoire d'Immunologie, Pôle de Biologie, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble Cedex 9, France
| | - Nathalie Bardin
- Aix-Marseille Université, UMR_S 1076, Vascular Research Center of Marseille, Hôpital de la Conception, Marseille, Aix-Marseille Université, Marseille, France
| | - Laurence Bouillet
- Clinique Universitaire de Médecine Interne, Pôle Pluridisciplinaire de Médecine et de Gérontologie Clinique, Centre Hospitalier Universitaire, Grenoble Alpes, Grenoble Cedex 9, France
| | - Jean-Yves Cesbron
- Laboratoire d'Immunologie, Pôle de Biologie, Centre Hospitalier Universitaire Grenoble Alpes and CNRS-Université Grenoble Alpes, Grenoble Cedex 9, France
| | | | - Chantal Dumestre-Pérard
- Laboratoire d'Immunologie, Pôle de Biologie, Centre Hospitalier Universitaire Grenoble Alpes and CNRS-Université Grenoble Alpes, Grenoble Cedex 9, France
| |
Collapse
|
26
|
Transcriptome changes in muscle of Nellore cows submitted to recovery weight gain under grazing condition. Animal 2018; 13:333-340. [PMID: 29983126 DOI: 10.1017/s1751731118001490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The aim of this study was to evaluate transcriptome changes in the muscle tissue of Bos taurus indicus cull cows subjected to recovery weight gain under grazing conditions. In all, 38 Nellore cull cows were divided randomly into two different management groups: (1) Maintenance (MA) and (2) Recovery gain (RG) from weight loss by moderate growth under high forage availability. After slaughter, RNA analysis was performed on the Longissimus thoracis muscle. Semaphorin 4A, solute carrier family 11 member 1, and Ficolin-2 were expressed in the RG, which may indicate an inflammatory response during tissue regrowth. Signaling factors, such as Myostatin, related to fibroblast activation, negative control of satellite cell proliferation in adults and muscle protein synthesis were less abundant in the RG group. The only gene related to anabolic processes that were more abundant in the MA group was related to fat deposition. The genes that were differentially expressed in the experiment showed muscle repair-related changes during RG based on the greater expression of genes involved in inflammatory responses and the lower expression of negative regulators of muscle cell proliferation and hypertrophy.
Collapse
|
27
|
Davies SP, Reynolds GM, Stamataki Z. Clearance of Apoptotic Cells by Tissue Epithelia: A Putative Role for Hepatocytes in Liver Efferocytosis. Front Immunol 2018; 9:44. [PMID: 29422896 PMCID: PMC5790054 DOI: 10.3389/fimmu.2018.00044] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 01/08/2018] [Indexed: 12/11/2022] Open
Abstract
Toxic substances and microbial or food-derived antigens continuously challenge the liver, which is tasked with their safe neutralization. This vital organ is also important for the removal of apoptotic immune cells during inflammation and has been previously described as a “graveyard” for dying lymphocytes. The clearance of apoptotic and necrotic cells is known as efferocytosis and is a critical liver function to maintain tissue homeostasis. Much of the research into this form of immunological control has focused on Kupffer cells, the liver-resident macrophages. However, hepatocytes (and other liver resident cells) are competent efferocytes and comprise 80% of the liver mass. Little is known regarding the mechanisms of apoptotic and necrotic cell capture by epithelia, which lack key receptors that mediate phagocytosis in macrophages. Herein, we discuss recent developments that increased our understanding of efferocytosis in tissues, with a special focus on the liver parenchyma. We discuss the impact of efferocytosis in health and in inflammation, highlighting the role of phagocytic epithelia.
Collapse
Affiliation(s)
- Scott P Davies
- Centre for Liver Research, College of Medical and Dental Sciences, Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Gary M Reynolds
- Centre for Liver Research, College of Medical and Dental Sciences, Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom.,Centre for Liver Research and National Institute for Health Research (NIHR) Birmingham Liver Biomedical Research Unit, College of Medical and Dental Sciences, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom.,University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Zania Stamataki
- Centre for Liver Research, College of Medical and Dental Sciences, Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
28
|
Howard M, Farrar CA, Sacks SH. Structural and functional diversity of collectins and ficolins and their relationship to disease. Semin Immunopathol 2018; 40:75-85. [PMID: 28894916 PMCID: PMC5794833 DOI: 10.1007/s00281-017-0642-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/03/2017] [Indexed: 12/13/2022]
Abstract
Pattern recognition molecules are sensors for the innate immune system and trigger a number of pathophysiological functions after interaction with the corresponding ligands on microorganisms or altered mammalian cells. Of those pattern recognition molecules used by the complement system, collagen-like lectins (collectins) are an important subcomponent. Whereas the best known of these collectins, mannose-binding lectin, largely occurs as a circulating protein following production by hepatocytes, the most recently described collectins exhibit strong local biosynthesis. This local production and release of soluble collectin molecules appear to serve local tissue functions at extravascular sites, including a developmental function. In this article, we focus on the characteristics of collectin-11 (CL-11 or CL-K1), whose ubiquitous expression and multiple activities likely reflect a wide biological relevance. Collectin-11 appears to behave as an acute phase protein whose production associated with metabolic and physical stress results in locally targeted inflammation and tissue cell death. Early results indicate the importance of fucosylated ligand marking the injured cells targeted by collectin-11, and we suggest that further characterisation of this and related ligands will lead to better understanding of pathophysiological significance and exploitation for clinical benefit.
Collapse
Affiliation(s)
- Mark Howard
- MRC Centre for Transplantation, King's College London, Guy's Hospital, 5th Floor Tower Wing, Great Maze Pond, London, SE1 9RT, UK
| | - Conrad A Farrar
- MRC Centre for Transplantation, King's College London, Guy's Hospital, 5th Floor Tower Wing, Great Maze Pond, London, SE1 9RT, UK
| | - Steven H Sacks
- MRC Centre for Transplantation, King's College London, Guy's Hospital, 5th Floor Tower Wing, Great Maze Pond, London, SE1 9RT, UK.
| |
Collapse
|
29
|
Biltoft D, Gram JB, Larsen A, Münster AMB, Sidelmann JJ, Skjoedt K, Palarasah Y. Fast form alpha-2-macroglobulin - A marker for protease activation in plasma exposed to artificial surfaces. Clin Biochem 2017; 50:1203-1208. [PMID: 28888879 DOI: 10.1016/j.clinbiochem.2017.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 09/01/2017] [Accepted: 09/05/2017] [Indexed: 10/18/2022]
Abstract
OBJECTIVES Investigation of the blood compatibility requires a number of sensitive assays to quantify the activation of the blood protein cascades and cells induced by biomaterials. A global assay measuring the blood compatibility of biomaterials could be a valuable tool in such regard. In this study, we investigated whether an enzyme-linked immunosorbent assay (ELISA), that specifically measures the electrophoretic "fast form" of α2-macroglobulin (F-α2M), could be a sensitive and global marker for activation of calcium dependent and in-dependent proteases in plasma exposed to biomaterials in vitro. METHODS A F-α2M specific monoclonal antibody was generated and applied in an ELISA setup. Using the F-α2M ELISA, we investigated activation of calcium dependent and in-dependent proteases by polyvinylchloride (n=10), polytetrafluoroethylene (n=10) and silicone (n=10) tubings as well as glass tubes (n=10). RESULTS We found that F-α2M is a sensitive marker for activation of both calcium dependent and in-dependent proteases. A significant difference between F-α2M concentrations in the control sample and plasma exposed to the artificial surfaces was found (p>0.001). This was observed both in the presence and absence of calcium. Furthermore, the highest F-α2M concentration was in both cases found in plasma incubated with glass. CONCLUSIONS Our findings demonstrate that F-α2M is a sensitive marker for detection of protease activation in plasma by artificial surfaces. Potentially, levels of F-α2M could be a global marker of the blood compatibility of biomaterials.
Collapse
Affiliation(s)
- Daniel Biltoft
- Unit for Thrombosis Research, Department of Regional Health Research, University of Southern Denmark, Esbjerg, Denmark; Department of Clinical Biochemistry, Hospital of South West Jutland, Esbjerg, Denmark.
| | - Jørgen B Gram
- Unit for Thrombosis Research, Department of Regional Health Research, University of Southern Denmark, Esbjerg, Denmark; Department of Clinical Biochemistry, Hospital of South West Jutland, Esbjerg, Denmark
| | - Anette Larsen
- Unit for Thrombosis Research, Department of Regional Health Research, University of Southern Denmark, Esbjerg, Denmark; Department of Clinical Biochemistry, Hospital of South West Jutland, Esbjerg, Denmark
| | - Anna-Marie B Münster
- Unit for Thrombosis Research, Department of Regional Health Research, University of Southern Denmark, Esbjerg, Denmark; Department of Clinical Biochemistry, Hospital of South West Jutland, Esbjerg, Denmark
| | - Johannes J Sidelmann
- Unit for Thrombosis Research, Department of Regional Health Research, University of Southern Denmark, Esbjerg, Denmark; Department of Clinical Biochemistry, Hospital of South West Jutland, Esbjerg, Denmark
| | - Karsten Skjoedt
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Yaseelan Palarasah
- Unit for Thrombosis Research, Department of Regional Health Research, University of Southern Denmark, Esbjerg, Denmark; Department of Clinical Biochemistry, Hospital of South West Jutland, Esbjerg, Denmark; Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
30
|
Abstract
Recognition and removal of apoptotic and necrotic cells must be efficient and highly controlled to avoid excessive inflammation and autoimmune responses to self. The complement system, a crucial part of innate immunity, plays an important role in this process. Thus, apoptotic and necrotic cells are recognized by complement initiators such as C1q, mannose binding lectin, ficolins, and properdin. This triggers complement activation and opsonization of cells with fragments of C3b, which enhances phagocytosis and thus ensures silent removal. Importantly, the process is tightly controlled by the binding of complement inhibitors C4b-binding protein and factor H, which attenuates late steps of complement activation and inflammation. Furthermore, factor H becomes actively internalized by apoptotic cells, where it catalyzes the cleavage of intracellular C3 to C3b. The intracellularly derived C3b additionally opsonizes the cell surface further supporting safe and fast clearance and thereby aids to prevent autoimmunity. Internalized factor H also binds nucleosomes and directs monocytes into production of anti-inflammatory cytokines upon phagocytosis of such complexes. Disturbances in the complement-mediated clearance of dying cells result in persistence of autoantigens and development of autoimmune diseases like systemic lupus erythematosus, and may also be involved in development of age-related macula degeneration.
Collapse
Affiliation(s)
- Myriam Martin
- Division of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Anna M Blom
- Division of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden.
| |
Collapse
|
31
|
Genster N, Østrup O, Schjalm C, Eirik Mollnes T, Cowland JB, Garred P. Ficolins do not alter host immune responses to lipopolysaccharide-induced inflammation in vivo. Sci Rep 2017; 7:3852. [PMID: 28634324 PMCID: PMC5478672 DOI: 10.1038/s41598-017-04121-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/09/2017] [Indexed: 11/17/2022] Open
Abstract
Ficolins are a family of pattern recognition molecules that are capable of activating the lectin pathway of complement. A limited number of reports have demonstrated a protective role of ficolins in animal models of infection. In addition, an immune modulatory role of ficolins has been suggested. Yet, the contribution of ficolins to inflammatory disease processes remains elusive. To address this, we investigated ficolin deficient mice during a lipopolysaccharide (LPS)-induced model of systemic inflammation. Although murine serum ficolin was shown to bind LPS in vitro, there was no difference between wildtype and ficolin deficient mice in morbidity and mortality by LPS-induced inflammation. Moreover, there was no difference between wildtype and ficolin deficient mice in the inflammatory cytokine profiles after LPS challenge. These findings were substantiated by microarray analysis revealing an unaltered spleen transcriptome profile in ficolin deficient mice compared to wildtype mice. Collectively, results from this study demonstrate that ficolins are not involved in host response to LPS-induced systemic inflammation.
Collapse
Affiliation(s)
- Ninette Genster
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Olga Østrup
- Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, DK-2100, Copenhagen, Denmark
| | - Camilla Schjalm
- Department of Immunology, Oslo University Hospital, Rikshospitalet, 0424, Oslo, Norway
| | - Tom Eirik Mollnes
- Department of Immunology, Oslo University Hospital, Rikshospitalet, 0424, Oslo, Norway
- Research Laboratory, Nordland Hospital, Bodø, and K.J. Jebsen TREC, University of Tromsø, Tromsø, Norway
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jack B Cowland
- The Granulocyte Research Laboratory, Department of Hematology, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Genetics, Copenhagen University Hospital, Copenhagen, Denmark
| | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
32
|
Quach QH, Kah JCY. Non-specific adsorption of complement proteins affects complement activation pathways of gold nanomaterials. Nanotoxicology 2017; 11:382-394. [DOI: 10.1080/17435390.2017.1306131] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Quang Huy Quach
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - James Chen Yong Kah
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
33
|
Tanha N, Pilely K, Faurschou M, Garred P, Jacobsen S. Plasma ficolin levels and risk of nephritis in Danish patients with systemic lupus erythematosus. Clin Rheumatol 2017; 36:335-341. [PMID: 27981461 DOI: 10.1007/s10067-016-3508-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 11/04/2016] [Accepted: 12/07/2016] [Indexed: 10/20/2022]
Abstract
Given the scavenging properties of ficolins, we hypothesized that variation in the plasma concentrations of the three ficolins may be associated with development of lupus nephritis (LN), type of LN, end-stage renal disease (ESRD), and/or mortality among patients with systemic lupus erythematosus (SLE). SLE patients attending a Danish tertiary rheumatology referral center were included. Plasma concentrations of ficolin-1, ficolin-2, and ficolin-3 were determined and dichotomized by the median into high and low. LN was defined by clinical criteria; type of LN by renal biopsy; ESRD follow-up time was defined as time from onset of LN to the development of ESRD or censoring at the end of follow-up. The study included 112 SLE patients with median disease duration of 8 years of which 53 (47%) had LN at the time of inclusion. During a median follow-up of 10 years, five patients developed ESRD. Sixteen patients died. Odds ratios (ORs) of LN were 1.2 (95% CI: 0.6-2.7), 4.1 (95% CI: 1.7-9.7), and 0.9 (95% CI: 0.4-2.0) for patients with low ficolin-1, ficolin-2, and ficolin-3 plasma levels, respectively. The distribution of histological classes differed between patients with high and low plasma levels of ficolin-1 (p = 0.009). Patients with high ficolin-1 plasma levels had an increased risk of ESRD. There was no association between the levels of the analyzed plasma ficolins and mortality. Low plasma ficolin-2 levels were associated with an increased risk of having LN. High plasma levels of ficolin-1 were associated with the histological subtype of LN and development of ESRD.
Collapse
Affiliation(s)
- Nima Tanha
- Copenhagen Lupus and Vasculitis Clinic, Center for Rheumatology and Spine Diseases, Rigshospitalet, Copenhagen University Hospital, Section 4242, Blegdamsvej 9, DK-2100, Copenhagen, Denmark.
| | - Katrine Pilely
- Laboratory of Molecular Medicine, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, DK-2100, Copenhagen, Denmark
| | - Mikkel Faurschou
- Copenhagen Lupus and Vasculitis Clinic, Center for Rheumatology and Spine Diseases, Rigshospitalet, Copenhagen University Hospital, Section 4242, Blegdamsvej 9, DK-2100, Copenhagen, Denmark
| | - Peter Garred
- Laboratory of Molecular Medicine, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, DK-2100, Copenhagen, Denmark
| | - Søren Jacobsen
- Copenhagen Lupus and Vasculitis Clinic, Center for Rheumatology and Spine Diseases, Rigshospitalet, Copenhagen University Hospital, Section 4242, Blegdamsvej 9, DK-2100, Copenhagen, Denmark
| |
Collapse
|
34
|
Garred P, Genster N, Pilely K, Bayarri-Olmos R, Rosbjerg A, Ma YJ, Skjoedt MO. A journey through the lectin pathway of complement-MBL and beyond. Immunol Rev 2016; 274:74-97. [PMID: 27782323 DOI: 10.1111/imr.12468] [Citation(s) in RCA: 311] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mannose-binding lectin (MBL), collectin-10, collectin-11, and the ficolins (ficolin-1, ficolin-2, and ficolin-3) are soluble pattern recognition molecules in the lectin complement pathway. These proteins act as mediators of host defense and participate in maintenance of tissue homeostasis. They bind to conserved pathogen-specific structures and altered self-antigens and form complexes with the pentraxins to modulate innate immune functions. All molecules exhibit distinct expression in different tissue compartments, but all are found to a varying degree in the circulation. A common feature of these molecules is their ability to interact with a set of serine proteases named MASPs (MASP-1, MASP-2, and MASP-3). MASP-1 and -2 trigger the activation of the lectin pathway and MASP-3 may be involved in the activation of the alternative pathway of complement. Furthermore, MASPs mediate processes related to coagulation, bradykinin release, and endothelial and platelet activation. Variant alleles affecting expression and structure of the proteins have been associated with a variety of infectious and non-infectious diseases, most commonly as disease modifiers. Notably, the severe 3MC (Malpuech, Michels, Mingarelli, and Carnevale) embryonic development syndrome originates from rare mutations affecting either collectin-11 or MASP-3, indicating a broader functionality of the complement system than previously anticipated. This review summarizes the characteristics of the molecules in the lectin pathway.
Collapse
Affiliation(s)
- Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Ninette Genster
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Katrine Pilely
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rafael Bayarri-Olmos
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne Rosbjerg
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ying Jie Ma
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel-Ole Skjoedt
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
35
|
Hansen MB, Rasmussen LS, Pilely K, Hellemann D, Hein E, Madsen MB, Hyldegaard O, Garred P. The Lectin Complement Pathway in Patients with Necrotizing Soft Tissue Infection. J Innate Immun 2016; 8:507-16. [PMID: 27355483 PMCID: PMC6738884 DOI: 10.1159/000447327] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/01/2016] [Accepted: 06/01/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Mannose-binding lectin (MBL) and ficolins are pattern recognition molecules (PRMs) that play an important role during infection through activation of the lectin complement pathway. We assessed whether plasma PRM levels were associated with mortality in patients with necrotizing soft tissue infection (NSTI). METHODS We conducted a prospective, observational study over 25 months involving 135 NSTI patients with a maximum follow-up of 2.7 years. Blood samples were taken upon admission. Non-infected patients served as controls. RESULTS PRM levels were significantly lower compared with controls. A baseline Ficolin-2 level below the median was associated with mortality at the end of follow-up (p = 0.007). No significant association was found for MBL, Ficolin-1 and Ficolin-3. A Ficolin-2 level below the median had a negative predictive value of 0.94 for 28-day mortality, and a level below the optimal cut-off was independently associated with 28-day mortality when adjusted for age, sex and chronicity [hazard ratio 6.27 (95% confidence interval 2.28-17.21), p < 0.0001], also when Simplified Acute Physiology Score II was included in the analysis [hazard ratio 3.16 (95% confidence interval 1.03-9.73), p = 0.045]. CONCLUSIONS All PRMs were significantly lower in patients with NSTI than in controls. Only baseline Ficolin-2 was associated with short- and long-term mortality. A high baseline Ficolin-2 level indicated a 94% chance of surviving the first 28 days after admission.
Collapse
Affiliation(s)
- Marco B. Hansen
- Department of Anesthesia, Center of Head and Orthopedics, Slagelse, Denmark
- Hyperbaric Unit, Department of Anesthesia, Center of Head and Orthopedics, Slagelse, Denmark
| | - Lars S. Rasmussen
- Department of Anesthesia, Center of Head and Orthopedics, Slagelse, Denmark
| | - Katrine Pilely
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Slagelse, Denmark
| | - Dorthe Hellemann
- Department of Anesthesia and Intensive Care, Slagelse Hospital, Slagelse, Denmark
| | - Estrid Hein
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Slagelse, Denmark
| | - Martin B. Madsen
- Department of Intensive Care, Rigshospitalet, University of Copenhagen, Copenhagen, Slagelse, Denmark
| | - Ole Hyldegaard
- Department of Anesthesia, Center of Head and Orthopedics, Slagelse, Denmark
- Hyperbaric Unit, Department of Anesthesia, Center of Head and Orthopedics, Slagelse, Denmark
| | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Slagelse, Denmark
| |
Collapse
|
36
|
Pilely K, Rosbjerg A, Genster N, Gal P, Pál G, Halvorsen B, Holm S, Aukrust P, Bakke SS, Sporsheim B, Nervik I, Niyonzima N, Bartels ED, Stahl GL, Mollnes TE, Espevik T, Garred P. Cholesterol Crystals Activate the Lectin Complement Pathway via Ficolin-2 and Mannose-Binding Lectin: Implications for the Progression of Atherosclerosis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 196:5064-74. [PMID: 27183610 DOI: 10.4049/jimmunol.1502595] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 04/13/2016] [Indexed: 12/16/2023]
Abstract
Cholesterol crystals (CC) play an essential role in the formation of atherosclerotic plaques. CC activate the classical and the alternative complement pathways, but the role of the lectin pathway is unknown. We hypothesized that the pattern recognition molecules (PRMs) from the lectin pathway bind CC and function as an upstream innate inflammatory signal in the pathophysiology of atherosclerosis. We investigated the binding of the PRMs mannose-binding lectin (MBL), ficolin-1, ficolin-2, and ficolin-3, the associated serine proteases, and complement activation products to CC in vitro using recombinant proteins, specific inhibitors, as well as deficient and normal sera. Additionally, we examined the deposition of ficolin-2 and MBL in human carotid plaques by immunohistochemistry and fluorescence microscopy. The results showed that the lectin pathway was activated on CC by binding of ficolin-2 and MBL in vitro, resulting in activation and deposition of complement activation products. MBL bound to CC in a calcium-dependent manner whereas ficolin-2 binding was calcium-independent. No binding was observed for ficolin-1 or ficolin-3. MBL and ficolin-2 were present in human carotid plaques, and binding of MBL to CC was confirmed in vivo by immunohistochemistry, showing localization of MBL around CC clefts. Moreover, we demonstrated that IgM, but not IgG, bound to CC in vitro and that C1q binding was facilitated by IgM. In conclusion, our study demonstrates that PRMs from the lectin pathway recognize CC and provides evidence for an important role for this pathway in the inflammatory response induced by CC in the pathophysiology of atherosclerosis.
Collapse
Affiliation(s)
- Katrine Pilely
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen O, Denmark
| | - Anne Rosbjerg
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen O, Denmark
| | - Ninette Genster
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen O, Denmark
| | - Peter Gal
- Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences, 1113 Budapest, Hungary
| | - Gábor Pál
- Department of Biochemistry, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Bente Halvorsen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, 0424 Oslo, Norway; K.G. Jebsen Inflammation Research Center, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0318 Oslo, Norway
| | - Sverre Holm
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, 0424 Oslo, Norway; Hospital for Rheumatic Diseases, 2609 Lillehammer, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, 0424 Oslo, Norway; K.G. Jebsen Inflammation Research Center, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0318 Oslo, Norway
| | - Siril Skaret Bakke
- Center of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Bjørnar Sporsheim
- Center of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Ingunn Nervik
- Section for Children's and Women's Health, Department of Laboratory Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Nathalie Niyonzima
- Center of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Emil D Bartels
- Department of Clinical Biochemistry, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen O, Denmark
| | - Gregory L Stahl
- Department of Anesthesiology, Perioperative and Pain Medicine, Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Tom Eirik Mollnes
- K.G. Jebsen Inflammation Research Center, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0318 Oslo, Norway; Department of Immunology, Oslo University Hospital Rikshospitalet, 0424 Oslo, Norway; Research Laboratory, Nordland Hospital, 8038 Bodø, Norway; and K.G. Jebsen Thrombosis Research and Expertise Center, University of Tromsø, 9019 Tromsø, Norway
| | - Terje Espevik
- Center of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen O, Denmark;
| |
Collapse
|
37
|
Bjarnadottir H, Arnardottir M, Ludviksson BR. Frequency and distribution of FCN2 and FCN3 functional variants among MBL2 genotypes. Immunogenetics 2016; 68:315-25. [PMID: 26795763 PMCID: PMC4842218 DOI: 10.1007/s00251-016-0903-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 01/08/2016] [Indexed: 12/14/2022]
Abstract
The six types of pattern recognition molecules (PRMs) that initiate complement via the lectin pathway (LP) comprise collectins and ficolins. The importance of having various PRMs to initiate the LP is currently unclear. Mannan-binding lectin (MBL) is a collectin member of the LP PRMs. MBL deficiency is common with mild clinical consequence. Thus, the lack of MBL may be compensated for by the other PRMs. We hypothesized that variants FCN2 + 6424 and FCN3 + 1637delC that cause gene-dose-dependent reduction in ficolin-2 and ficolin-3 levels, respectively, may be rare in MBL-deficient individuals due to the importance of compensation within the LP. The aim of this study was to investigate the distribution and frequency of these variants among MBL2 genotypes in healthy subjects. The allele frequency of FCN2 + 6424 and FCN3 + 1637delC was 0.099 and 0.015, respectively, in the cohort (n = 498). The frequency of FCN2 + 6424 tended to be lower among MBL-deficient subjects (n = 53) than among MBL-sufficient subjects (n = 445) (0.047 versus 0.106, P = 0.057). In addition, individuals who were homozygous for FCN2 + 6424 were sufficient MBL producers. The frequency of FCN3 + 1637delC did not differ between the groups. The frequency of FCN2 + 6424 was similar in FCN3 + 1637delC carriers (n = 15) versus wild type (n = 498). Furthermore, subjects that were heterozygote carriers of both FCN2 + 6424 and FCN3 + 1637delC were sufficient MBL producers. In conclusion, FCN2 + 6424 carriers with MBL deficiency tend to be rare among healthy individuals. MBL-deficient individuals with additional LP PRM defects may be at risk to morbidity.
Collapse
Affiliation(s)
- Helga Bjarnadottir
- Department of Immunology, Landspitali-The National University Hospital of Iceland, Hringbraut (Building 14 at Eiriksgata), 101, Reykjavik, Iceland.
| | - Margret Arnardottir
- Department of Immunology, Landspitali-The National University Hospital of Iceland, Hringbraut (Building 14 at Eiriksgata), 101, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Bjorn Runar Ludviksson
- Department of Immunology, Landspitali-The National University Hospital of Iceland, Hringbraut (Building 14 at Eiriksgata), 101, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
38
|
Addobbati C, de Azevêdo Silva J, Tavares NAC, Monticielo O, Xavier RM, Brenol JCT, Crovella S, Chies JAB, Sandrin-Garcia P. Ficolin Gene Polymorphisms in Systemic Lupus Erythematosus and Rheumatoid Arthritis. Ann Hum Genet 2016; 80:1-6. [PMID: 26464189 DOI: 10.1111/ahg.12129] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 05/31/2015] [Accepted: 06/04/2015] [Indexed: 12/16/2022]
Abstract
Systemic lupus erythemathosus (SLE) and rheumatoid arthritis (RA) are complex autoimmune diseases characterized by an immune balance breakdown and by chronic inflammation. Several findings link SLE and RA development with the complement system and ficolin components have emerged as candidates for disease development. Since genetic association studies with ficolin genes in SLE and RA have not yet been conducted in a Brazilian population, the aim of this study was to determine whether polymorphisms of ficolin-1(FCN1) and ficolin-2 (FCN2) genes are associated with SLE and RA susceptibility as well as disease manifestation. Two SNPs within FCN1 (rs2989727 and 1071583) and three in FCN2 (rs17514136, rs3124954, and rs7851696) were studied in 208 SLE and184 RA patients as well as 264 healthy individuals in a Southeast Brazilian population. For SLE patients, the FCN2 rs17514136 SNP was associated with a more severe disease (SLICC) (p = 0.0067). Furthermore, an association between the occurrence of nephritis and the T/T genotype for FCN2 rs3124954 SNP (p = 0.047, OR = 3.17, 95%CI = 1.34-7.5) was observed. No association was observed between the studied polymorphisms and RA development. Thus, our data support involvement of the FCN2 gene in the SLE phenotype.
Collapse
Affiliation(s)
- Catarina Addobbati
- Department of Genetics, Federal University of Pernambuco, Recife, Pernambuco, Brazil
- Keizo Asami Immunopathology Laboratory (LIKA), Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Jaqueline de Azevêdo Silva
- Keizo Asami Immunopathology Laboratory (LIKA), Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Nathália A C Tavares
- Keizo Asami Immunopathology Laboratory (LIKA), Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Odirlei Monticielo
- Division of Rheumatology, Clinical Hospital, Federal University of Rio Grande do Sul, Brazil
| | - Ricardo M Xavier
- Division of Rheumatology, Clinical Hospital, Federal University of Rio Grande do Sul, Brazil
| | - João Carlos T Brenol
- Division of Rheumatology, Clinical Hospital, Federal University of Rio Grande do Sul, Brazil
| | - Sergio Crovella
- Department of Genetics, Federal University of Pernambuco, Recife, Pernambuco, Brazil
- Keizo Asami Immunopathology Laboratory (LIKA), Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - José Artur B Chies
- Department of Genetics, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Paula Sandrin-Garcia
- Department of Genetics, Federal University of Pernambuco, Recife, Pernambuco, Brazil
- Keizo Asami Immunopathology Laboratory (LIKA), Federal University of Pernambuco, Recife, Pernambuco, Brazil
| |
Collapse
|
39
|
Pan JW, Gao XW, Jiang H, Li YF, Xiao F, Zhan RY. Low serum ficolin-3 levels are associated with severity and poor outcome in traumatic brain injury. J Neuroinflammation 2015; 12:226. [PMID: 26627059 PMCID: PMC4666053 DOI: 10.1186/s12974-015-0444-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 11/23/2015] [Indexed: 11/24/2022] Open
Abstract
Background Ficolin-mediated activation of the lectin pathway of complement contributes to the complement-independent inflammatory processes of traumatic brain injury. Lower serum ficolin-3 levels have been demonstrated to be highly associated with unfavorable outcome after ischemic stroke. This prospective observatory study was designed to investigate the relationships between serum ficolin-3 levels and injury severity and clinical outcomes after severe traumatic brain injury. Methods Serum ficolin-3 levels of 128 patients and 128 healthy controls were measured by sandwich immunoassays. An unfavorable outcome was defined as Glasgow Outcome Scale score of 1–3. Study endpoints included mortality at 1 week and 6 months and unfavorable outcome at 6 months after head trauma. Injury severity was assessed by Glasgow Coma Scale score. Multivariate logistic models were structured to evaluate the relationships between serum ficolin-3 levels and study endpoints and injury severity. Results Compared with the healthy controls, serum ficolin-3 levels on admission were statistically decreased in patients with severe traumatic brain injury. Serum ficolin-3 levels were independently correlated with Glasgow Coma Scale scores. Ficolin-3 was also identified as an independent prognostic predictor for 1-week mortality, 6-month mortality, and 6-month unfavorable outcome. Under receiver operating characteristics curves, ficolin-3 has similar prognostic predictive values for all study endpoints compared with Glasgow Coma Scale scores. Conclusions It was proposed that lower serum ficolin-3 levels, correlated with injury severity, had the potential to be the useful, complementary tool to predict short- or long-term clinical outcomes after severe traumatic brain injury.
Collapse
Affiliation(s)
- Jian-Wei Pan
- Department of Neurosurgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, People's Republic of China.
| | - Xiong-Wei Gao
- Department of Neurosurgery, Sanmen People's Hospital, 171 Renmin Road, Sanmen, 317100, People's Republic of China.
| | - Hao Jiang
- Department of Neurosurgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, People's Republic of China.
| | - Ya-Feng Li
- Department of Neurosurgery, Sanmen People's Hospital, 171 Renmin Road, Sanmen, 317100, People's Republic of China.
| | - Feng Xiao
- Department of Neurosurgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, People's Republic of China.
| | - Ren-Ya Zhan
- Department of Neurosurgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, People's Republic of China.
| |
Collapse
|
40
|
Troldborg A, Thiel S, Jensen L, Hansen S, Laska MJ, Deleuran B, Jensenius JC, Stengaard-Pedersen K. Collectin liver 1 and collectin kidney 1 and other complement-associated pattern recognition molecules in systemic lupus erythematosus. Clin Exp Immunol 2015; 182:132-8. [PMID: 26154564 PMCID: PMC4608502 DOI: 10.1111/cei.12678] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 07/02/2015] [Accepted: 07/03/2015] [Indexed: 11/30/2022] Open
Abstract
The objective of this study was to explore the involvement of collectin liver 1 (CL-L1) and collectin kidney 1 (CL-K1) and other pattern recognition molecules (PRMs) of the lectin pathway of the complement system in a cross-sectional cohort of systemic lupus erythematosus (SLE) patients. Concentrations in plasma of CL-L1, CL-K1, mannan-binding lectin (MBL), M-ficolin, H-ficolin and L-ficolin were determined in 58 patients with SLE and 65 healthy controls using time-resolved immunoflourometric assays. The SLE patients' demographic, diagnostic, clinical and biochemical data and collection of plasma samples were performed prospectively during 4 months. CL-L1, CL-K1 and M-ficolin plasma concentrations were lower in SLE patients than healthy controls (P-values < 0.001, 0.033 and < 0.001, respectively). H-ficolin concentration was higher in SLE patients (P < 0.0001). CL-L1 and CL-K1 plasma concentrations in the individuals correlated in both patients and controls. Patients with low complement component 3 (C3) demonstrated a negative correlation between C3 and CL-L1 and CL-K1 (P = 0.022 and 0.031, respectively). Patients positive for anti-dsDNA antibodies had lower levels of MBL in plasma than patients negative for anti-dsDNA antibodies (P = 0.02). In a cross-sectional cohort of SLE patients, we found differences in the plasma concentrations of CL-L1, CL-K1, M-ficolin and H-ficolin compared to a group of healthy controls. Alterations in plasma concentrations of the PRMs of the lectin pathway in SLE patients and associations to key elements of the disease support the hypothesis that the lectin pathway plays a role in the pathogenesis of SLE.
Collapse
Affiliation(s)
- A Troldborg
- Center of Cancer and InflammationDepartment of Rheumatology, Aarhus University Hospital, Aarhus University
- Institute of Clinical Medicine, Aarhus University
| | - S Thiel
- Department of Biomedicine, Aarhus University
| | - L Jensen
- Department of Biomedicine, Aarhus University
| | - S Hansen
- Department of Cancer and Inflammation Research, University of Southern Denmark
| | - M J Laska
- Department of Biomedicine, Aarhus University
| | - B Deleuran
- Center of Cancer and InflammationDepartment of Rheumatology, Aarhus University Hospital, Aarhus University
- Department of Biomedicine, Aarhus University
| | | | - K Stengaard-Pedersen
- Center of Cancer and InflammationDepartment of Rheumatology, Aarhus University Hospital, Aarhus University
- Institute of Clinical Medicine, Aarhus University
| |
Collapse
|
41
|
Sahagún-Ruiz A, Breda LCD, Valencia MMC, Elias WP, Munthe-Fog L, Garred P, Barbosa AS, Isaac L. Studies of the binding of ficolin-2 and ficolin-3 from the complement lectin pathway to Leptospira biflexa, Pasteurella pneumotropica and Diarrheagenic Escherichia coli. Immunobiology 2015; 220:1177-85. [PMID: 26074063 DOI: 10.1016/j.imbio.2015.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 05/28/2015] [Accepted: 06/01/2015] [Indexed: 11/15/2022]
Abstract
Ficolins recognize pathogen associated molecular patterns and activate the lectin pathway of complement system. However, our knowledge regarding pathogen recognition of human ficolins is still limited. We therefore set out to explore and investigate the possible interactions of the two main serum ficolins, ficolin-2 and ficolin-3 with different Gram-negative bacteria. We used recombinant ficolin molecules and normal human serum, which were detected with anti-ficolin monoclonal antibodies. In addition we investigated the capacity of these pathogens to activate the lectin pathway of complement system. We show for the first time that human ficolin-2 recognizes the nonpathogenic spirochete Leptospira biflexa serovar Patoc, but not the pathogenic Leptospira interrogans serovar Kennewicki strain Fromm. Additionally, human ficolin-2 and ficolin-3 recognize pathogenic Pasteurella pneumotropica, enteropathogenic Escherichia coli (EPEC) serotype O111ab:H2 and enteroaggregative E. coli (EAEC) serogroup O71 but not four enterohemorrhagic E. coli, three EPEC, three EAEC and two nonpathogenic E. coli strains (DH5α and HB101). The lectin pathway was activated by Pasteurella pneumotropica, EPEC O111ab:H2 and EAEC O71 after incubation with C1q depleted human serum. In conclusion, this study provide novel insight in the binding and complement activating capacity of the lectin pathway initiation molecules ficolin-2 and ficolin-3 towards relevant Gram-negative pathogens of pathophysiological relevance.
Collapse
Affiliation(s)
- Alfredo Sahagún-Ruiz
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico
| | | | | | - Waldir P Elias
- Laboratório de Bacteriologia, Instituto Butantan, Brazil
| | - Lea Munthe-Fog
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Lourdes Isaac
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Brazil.
| |
Collapse
|
42
|
Geno KA, Spencer BL, Nahm MH. Rapid and efficient purification of ficolin-2 using a disposable CELLine bioreactor. J Immunol Methods 2015; 424:106-10. [PMID: 26021447 PMCID: PMC4560653 DOI: 10.1016/j.jim.2015.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 05/22/2015] [Accepted: 05/22/2015] [Indexed: 10/23/2022]
Abstract
The human opsonin ficolin-2 (L-ficolin) is an innate pattern-recognizing molecule that binds to acetylated moieties. Upon binding, ficolin-2 activates complement through the lectin pathway, opsonizing the target to promote phagocytic clearance. Ficolin-2 has been found to interact with a growing number of pathogenic bacteria, fungi, and viruses. Ficolin-2 also has proposed roles in host homeostasis, including the clearance of apoptotic cells. Consequently, there is an increased interest in studying ficolin-2, and access to purified ficolin-2 is necessary for these studies. Ficolin-2 purified from serum, plasma, or cell culture supernatants has been a useful tool in the characterization of ficolin-2 function; however, available protocols are laborious and inefficient, requiring additional processing of starting materials (e.g., polyethylene glycol precipitation or dialysis) and multiple steps of purification. Here, we investigated a simple solution to the problem: use of a simple, disposable bioreactor requiring only standard tissue culture equipment. Using this system, we generated cell culture supernatants containing high concentrations of recombinant ficolin-2, which permitted rapid purification of high-purity recombinant ficolin-2 without processing the supernatants. Purified recombinant ficolin-2 retained its binding capacity and supported complement activation in vitro. Bioreactor cultivation will likely be generally useful in the production of other recombinant proteins in the study of the complement system.
Collapse
Affiliation(s)
- K Aaron Geno
- Department of Pathology, University of Alabama at Birmingham, P210 West Pavilion, 619 19th Street South, Birmingham, AL 35233, USA.
| | - Brady L Spencer
- Department of Pathology, University of Alabama at Birmingham, P210 West Pavilion, 619 19th Street South, Birmingham, AL 35233, USA.
| | - Moon H Nahm
- Department of Pathology, University of Alabama at Birmingham, P210 West Pavilion, 619 19th Street South, Birmingham, AL 35233, USA; Department of Microbiology, University of Alabama at Birmingham, Bevill Biomedical Research Building, Suite 276/11, 1720 2nd Avenue South, Birmingham, AL 35294, USA.
| |
Collapse
|
43
|
Zuliani-Alvarez L, Midwood KS. Fibrinogen-Related Proteins in Tissue Repair: How a Unique Domain with a Common Structure Controls Diverse Aspects of Wound Healing. Adv Wound Care (New Rochelle) 2015; 4:273-285. [PMID: 26005593 DOI: 10.1089/wound.2014.0599] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 10/14/2014] [Indexed: 12/23/2022] Open
Abstract
Significance: Fibrinogen-related proteins (FRePs) comprise an intriguing collection of extracellular molecules, each containing a conserved fibrinogen-like globe (FBG). This group includes the eponymous fibrinogen as well as the tenascin, angiopoietin, and ficolin families. Many of these proteins are upregulated during tissue repair and exhibit diverse roles during wound healing. Recent Advances: An increasing body of evidence highlights the specific expression of a number of FRePs following tissue injury and infection. Upon induction, each FReP uses its FBG domain to mediate quite distinct effects that contribute to different stages of tissue repair, such as driving coagulation, pathogen detection, inflammation, angiogenesis, and tissue remodeling. Critical Issues: Despite a high degree of homology among FRePs, each contains unique sequences that enable their diversification of function. Comparative analysis of the structure and function of FRePs and precise mapping of regions that interact with a variety of ligands has started to reveal the underlying molecular mechanisms by which these proteins play very different roles using their common domain. Future Directions: Fibrinogen has long been used in the clinic as a synthetic matrix serving as a scaffold or a delivery system to aid tissue repair. Novel therapeutic strategies are now emerging that harness the use of other FRePs to improve wound healing outcomes. As we learn more about the underlying mechanisms by which each FReP contributes to the repair response, specific blockade, or indeed potentiation, of their function offers real potential to enable regulation of distinct processes during pathological wound healing.
Collapse
Affiliation(s)
- Lorena Zuliani-Alvarez
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Kim S. Midwood
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
44
|
Endo Y, Matsushita M, Fujita T. New insights into the role of ficolins in the lectin pathway of innate immunity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 316:49-110. [PMID: 25805122 DOI: 10.1016/bs.ircmb.2015.01.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In the innate immune system, a variety of recognition molecules provide the first-line host defense to prevent infection and maintain endogenous homeostasis. Ficolin is a soluble recognition molecule, which senses pathogen-associated molecular patterns on microbes and aberrant sugar structures on self-cells. It consists of a collagen-like stalk and a globular fibrinogen-like domain, the latter binding to carbohydrates such as N-acetylglucosamine. Ficolins have been widely identified in animals from higher invertebrates to mammals. In mammals, ficolins form complexes with mannose-binding lectin-associated serine proteases (MASPs), and ficolin-MASP complexes trigger complement activation via the lectin pathway. Once activated, complement mediates many immune responses including opsonization, phagocytosis, and cytokine production. Although the precise function of each ficolin is still under investigation, accumulating information suggests that ficolins have a crucial role in host defense by recognizing a variety of microorganisms and interacting with effector proteins.
Collapse
Affiliation(s)
- Yuichi Endo
- Department of Immunology, Fukushima Medical University School of Medicine, Fukushima, Japan; Radioisotope Research Center, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Misao Matsushita
- Department of Applied Biochemistry, Tokai University, Kanagawa, Japan
| | - Teizo Fujita
- Department of Immunology, Fukushima Medical University School of Medicine, Fukushima, Japan; Fukushima General Hygiene Institute, Fukushima, Japan
| |
Collapse
|
45
|
Hein E, Nielsen LA, Nielsen CT, Munthe-Fog L, Skjoedt MO, Jacobsen S, Garred P. Ficolins and the lectin pathway of complement in patients with systemic lupus erythematosus. Mol Immunol 2015; 63:209-14. [PMID: 25069872 DOI: 10.1016/j.molimm.2014.07.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 07/02/2014] [Accepted: 07/03/2014] [Indexed: 12/15/2022]
Abstract
The complement system plays a pathophysiological role in systemic lupus erythematosus (SLE). This study aims to investigate whether an association exists between the ficolins that are part of the lectin complement pathway and SLE. EDTA plasma samples from 68 Danish SLE patients and 29 healthy donors were included in the study. Plasma concentrations of Ficolin-1, -2, and -3 were determined in specific sandwich ELISAs. Lectin pathway activity via Ficolin-3 was measured in ELISA on acetylated bovine serum albumin (acBSA) and measured as Ficolin-3 binding and deposition of C4, C3 and the terminal complement complex (TCC). SLE patients had increased levels of Ficolin-3, 21.6μg/ml as compared to 17.0μg/ml in healthy controls (P=0.0098). The Ficolin-1 plasma concentration was negatively correlated with SLE Disease Activity Index (SLEDAI) (Rho=-0.29, P=0.015) and positively correlated to the [Systemic Lupus International Collaborating Clinics (SLICC)/American College of Rheumatology (ACR) Damage Index] (SDI) (Rho=0.27, P=0.026). The Ficolin-1 concentration was also associated with the occurrence of arterial (P=0.0053) but not venous thrombosis (P=0.42). Finally, deposition of C4, C3 and TCC in the Ficolin-3 pathway were all correlated to SLEDAI, respectively (P<0.0076). The Ficolin-1 association to SLEDAI and SDI as well as arterial thrombosis shown in this study suggests that Ficolin-1 may be a potential new biomarker for patients with SLE. Furthermore, Ficolin-3 mediated complement activation may be valuable in monitoring disease activity in SLE patients due to the high sensitivity for complement consumption in the assay independent of the Ficolin-3 concentration.
Collapse
Affiliation(s)
- Estrid Hein
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Louise Aas Nielsen
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christoffer T Nielsen
- Department of Clinical Biochemistry, Statens Serum Institut, Copenhagen, Denmark; Department of Infectious Diseases and Rheumatology, Rigshospitalet, Copenhagen, Denmark
| | - Lea Munthe-Fog
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel-Ole Skjoedt
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Søren Jacobsen
- Department of Infectious Diseases and Rheumatology, Rigshospitalet, Copenhagen, Denmark
| | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
46
|
Metzger ML, Michelfelder I, Goldacker S, Melkaoui K, Litzman J, Guzman D, Grimbacher B, Salzer U. Low ficolin-2 levels in common variable immunodeficiency patients with bronchiectasis. Clin Exp Immunol 2015; 179:256-64. [PMID: 25251245 PMCID: PMC4298403 DOI: 10.1111/cei.12459] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2014] [Indexed: 11/27/2022] Open
Abstract
Common variable immunodeficiency (CVID) encompasses a heterogeneous group of antibody deficiencies characterized by susceptibility to recurrent infections and sequelae, including bronchiectasis. We investigated the relevance of the lectin complement pathway in CVID patients by analysing ficolin-2 and ficolin-3 serum levels and genotyping single nucleotide polymorphisms (SNPs) in the FCN2 and FCN3 genes. Our results show that ficolin-2 levels in CVID patients are significantly lower (P < 0.0001) than in controls. The lowest ficolin-2 levels are found in CVID patients with bronchiectasis (P = 0.0004) and autoimmunity (P = 0.04). Although serum levels of ficolin-3 were similar in CVID patients and controls, CVID patients with bronchiectasis again showed lower levels when compared to controls (P = 0.0001). Analysis of single nucleotide polymorphisms in the FCN2 gene confirmed known influences on ficolin-2 serum levels, but did not support a genetic basis for the observed ficolin-2 deficiency in CVID. We found that CVID patients with bronchiectasis have very low levels of ficolin-2. The reason for the deficiency of ficolin-2 in CVID and any possible causal relationship is currently unknown. However, as bronchiectasis is a very important factor for morbidity and mortality in CVID, ficolin-2 could also serve as biomarker for monitoring disease complications such as bronchiectasis.
Collapse
Affiliation(s)
- M-L Metzger
- Centre for Chronic Immunodeficiency (CCI), University Medical Centre Freiburg, University of FreiburgFreiburg, Germany
| | - I Michelfelder
- Centre for Chronic Immunodeficiency (CCI), University Medical Centre Freiburg, University of FreiburgFreiburg, Germany
| | - S Goldacker
- Centre for Chronic Immunodeficiency (CCI), University Medical Centre Freiburg, University of FreiburgFreiburg, Germany
| | - K Melkaoui
- Centre for Chronic Immunodeficiency (CCI), University Medical Centre Freiburg, University of FreiburgFreiburg, Germany
| | - J Litzman
- Department of Clinical Immunology and Allergology, St. Anne's University HospitalBrno, Czech Republic
- Faculty of Medicine, Masaryk UniversityBrno, Czech Republic
- Central European Institute of Technology (CEITEC), Masaryk UniversityBrno, Czech Republic
| | - D Guzman
- Department of Clinical Immunology and Molecular Pathology, Royal Free Hospital, University College LondonLondon, UK
| | - B Grimbacher
- Centre for Chronic Immunodeficiency (CCI), University Medical Centre Freiburg, University of FreiburgFreiburg, Germany
- Department of Clinical Immunology and Molecular Pathology, Royal Free Hospital, University College LondonLondon, UK
| | - U Salzer
- Centre for Chronic Immunodeficiency (CCI), University Medical Centre Freiburg, University of FreiburgFreiburg, Germany
- Department of Rheumatology and Clinical Immunology, University Medical Centre FreiburgFreiburg, Germany
| |
Collapse
|
47
|
Human lectins and their roles in viral infections. Molecules 2015; 20:2229-71. [PMID: 25642836 PMCID: PMC6272597 DOI: 10.3390/molecules20022229] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 01/21/2015] [Accepted: 01/23/2015] [Indexed: 12/20/2022] Open
Abstract
Innate recognition of virus proteins is an important component of the immune response to viral pathogens. A component of this immune recognition is the family of lectins; pattern recognition receptors (PRRs) that recognise viral pathogen-associated molecular patterns (PAMPs) including viral glycoproteins. In this review we discuss the contribution of soluble and membrane-associated PRRs to immunity against virus pathogens, and the potential role of these molecules in facilitating virus replication. These processes are illustrated with examples of viruses including human immunodeficiency virus (HIV), hepatitis C virus (HCV) and Ebola virus (EBOV). We focus on the structure, function and genetics of the well-characterised C-type lectin mannose-binding lectin, the ficolins, and the membrane-bound CD209 proteins expressed on dendritic cells. The potential for lectin-based antiviral therapies is also discussed.
Collapse
|
48
|
Laffly E, Lacroix M, Martin L, Vassal-Stermann E, Thielens NM, Gaboriaud C. Human ficolin-2 recognition versatility extended: an update on the binding of ficolin-2 to sulfated/phosphated carbohydrates. FEBS Lett 2014; 588:4694-700. [PMID: 25447524 DOI: 10.1016/j.febslet.2014.10.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 10/26/2014] [Accepted: 10/27/2014] [Indexed: 01/18/2023]
Abstract
Ficolin-2 has been reported to bind to DNA and heparin, but the mechanism involved has not been thoroughly investigated. X-ray studies of the ficolin-2 fibrinogen-like domain in complex with several new ligands now show that sulfate and phosphate groups are prone to bind to the S3 binding site of the protein. Composed of Arg132, Asp133, Thr136 and Lys221, the S3 site was previously shown to mainly bind N-acetyl groups. Furthermore, DNA and heparin compete for binding to ficolin-2. Mutagenesis studies reveal that Arg132, and to a lesser extent Asp133, are important for this binding property. The versatility of the S3 site in binding N-acetyl, sulfate and phosphate groups is discussed through comparisons with homologous fibrinogen-like recognition proteins.
Collapse
Affiliation(s)
- Emmanuelle Laffly
- Univ. Grenoble Alpes, IBS, F-38044 Grenoble, France; CNRS, IBS, F-38044 Grenoble, France; CEA, IBS, F-38044 Grenoble, France
| | - Monique Lacroix
- Univ. Grenoble Alpes, IBS, F-38044 Grenoble, France; CNRS, IBS, F-38044 Grenoble, France; CEA, IBS, F-38044 Grenoble, France
| | - Lydie Martin
- Univ. Grenoble Alpes, IBS, F-38044 Grenoble, France; CNRS, IBS, F-38044 Grenoble, France; CEA, IBS, F-38044 Grenoble, France
| | - Emilie Vassal-Stermann
- Univ. Grenoble Alpes, IBS, F-38044 Grenoble, France; CNRS, IBS, F-38044 Grenoble, France; CEA, IBS, F-38044 Grenoble, France
| | - Nicole M Thielens
- Univ. Grenoble Alpes, IBS, F-38044 Grenoble, France; CNRS, IBS, F-38044 Grenoble, France; CEA, IBS, F-38044 Grenoble, France.
| | - Christine Gaboriaud
- Univ. Grenoble Alpes, IBS, F-38044 Grenoble, France; CNRS, IBS, F-38044 Grenoble, France; CEA, IBS, F-38044 Grenoble, France.
| |
Collapse
|
49
|
Vassal-Stermann E, Lacroix M, Gout E, Laffly E, Pedersen CM, Martin L, Amoroso A, Schmidt RR, Zähringer U, Gaboriaud C, Di Guilmi AM, Thielens NM. Human L-ficolin recognizes phosphocholine moieties of pneumococcal teichoic acid. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 193:5699-708. [PMID: 25344472 DOI: 10.4049/jimmunol.1400127] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Human L-ficolin is a soluble protein of the innate immune system able to sense pathogens through its fibrinogen (FBG) recognition domains and to trigger activation of the lectin complement pathway through associated serine proteases. L-Ficolin has been previously shown to recognize pneumococcal clinical isolates, but its ligands and especially its molecular specificity remain to be identified. Using solid-phase binding assays, serum and recombinant L-ficolins were shown to interact with serotype 2 pneumococcal strain D39 and its unencapsulated R6 derivative. Incubation of both strains with serum triggered complement activation, as measured by C4b and C3b deposition, which was decreased by using ficolin-depleted serum. Recombinant L-ficolin and its FBG-like recognition domain bound to isolated pneumococcal cell wall extracts, whereas binding to cell walls depleted of teichoic acid (TA) was decreased. Both proteins were also shown to interact with two synthetic TA compounds, each comprising part structures of the complete lipoteichoic acid molecule with two PCho residues. Competition studies and direct interaction measurements by surface plasmon resonance identified PCho as a novel L-ficolin ligand. Structural analysis of complexes of the FBG domain of L-ficolin and PCho revealed that the phosphate moiety interacts with amino acids previously shown to define an acetyl binding site. Consequently, binding of L-ficolin to immobilized acetylated BSA was inhibited by PCho and synthetic TA. Binding of serum L-ficolin to immobilized synthetic TA and PCho-conjugated BSA triggered activation of the lectin complement pathway, thus further supporting the hypothesis of L-ficolin involvement in host antipneumococcal defense.
Collapse
Affiliation(s)
- Emilie Vassal-Stermann
- University of Grenoble Alpes, Institut de Biologie Structurale, F-38044 Grenoble, France; Centre National de la Recherche Scientifique, Institut de Biologie Structurale, F-38044 Grenoble, France; Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Structurale, F-38044 Grenoble, France
| | - Monique Lacroix
- University of Grenoble Alpes, Institut de Biologie Structurale, F-38044 Grenoble, France; Centre National de la Recherche Scientifique, Institut de Biologie Structurale, F-38044 Grenoble, France; Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Structurale, F-38044 Grenoble, France
| | - Evelyne Gout
- University of Grenoble Alpes, Institut de Biologie Structurale, F-38044 Grenoble, France; Centre National de la Recherche Scientifique, Institut de Biologie Structurale, F-38044 Grenoble, France; Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Structurale, F-38044 Grenoble, France
| | - Emmanuelle Laffly
- University of Grenoble Alpes, Institut de Biologie Structurale, F-38044 Grenoble, France; Centre National de la Recherche Scientifique, Institut de Biologie Structurale, F-38044 Grenoble, France; Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Structurale, F-38044 Grenoble, France
| | | | - Lydie Martin
- University of Grenoble Alpes, Institut de Biologie Structurale, F-38044 Grenoble, France; Centre National de la Recherche Scientifique, Institut de Biologie Structurale, F-38044 Grenoble, France; Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Structurale, F-38044 Grenoble, France
| | - Ana Amoroso
- Centre for Protein Engineering, Department of Life Sciences, University of Liege, B4000 Liege, Belgium
| | - Richard R Schmidt
- Department of Chemistry, University of Konstanz, D-78457 Konstanz, Germany; Chemistry Department, King Abdulaziz University of Jeddah, 21589 Jeddah, Saudi Arabia; and
| | - Ulrich Zähringer
- Division of Immunochemistry, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, D-23845 Borstel, Germany
| | - Christine Gaboriaud
- University of Grenoble Alpes, Institut de Biologie Structurale, F-38044 Grenoble, France; Centre National de la Recherche Scientifique, Institut de Biologie Structurale, F-38044 Grenoble, France; Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Structurale, F-38044 Grenoble, France
| | - Anne-Marie Di Guilmi
- University of Grenoble Alpes, Institut de Biologie Structurale, F-38044 Grenoble, France; Centre National de la Recherche Scientifique, Institut de Biologie Structurale, F-38044 Grenoble, France; Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Structurale, F-38044 Grenoble, France;
| | - Nicole M Thielens
- University of Grenoble Alpes, Institut de Biologie Structurale, F-38044 Grenoble, France; Centre National de la Recherche Scientifique, Institut de Biologie Structurale, F-38044 Grenoble, France; Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biologie Structurale, F-38044 Grenoble, France
| |
Collapse
|
50
|
Heidt S, Eikmans M, Roelen DL, van Kooten C, Claas FH. Immunogenetics and immunology of transplantation in Leiden. Transpl Immunol 2014; 31:195-9. [DOI: 10.1016/j.trim.2014.09.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|