1
|
Li K, Wei X, Yang J. Cytokine networks that suppress fish cellular immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 147:104769. [PMID: 37423553 DOI: 10.1016/j.dci.2023.104769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/16/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Immunosuppressive cytokines are a class of cytokines produced by immune cells and certain non-immune cells that have a suppressive effect on immune function. Currently known immunosuppressive cytokines include interleukin (IL)-10, transforming growth factor beta (TGF-β), IL-35, and IL-37. Although latest sequencing technologies have facilitated the identification of immunosuppressive cytokines in fish, IL-10 and TGF-β were the most well-known ones that have been widely studied and received continuous attention. Fish IL-10 and TGF-β have been identified as anti-inflammatory and immunosuppressive factors, acting on both innate and adaptive immune systems. However, unlike mammals, teleost fish underwent a third or fourth whole-genome duplication event, which significantly expanded the gene family associated with the cytokine signaling pathway, making the function and mechanism of these molecules need further investigation. In this review, we summarize the advances of studies on fish immunosuppressive cytokines IL-10 and TGF-β since their identification, mainly focusing on production, signaling transduction, and effects on the immunological function. This review aims to expand the understanding of the immunosuppressive cytokine network in fish.
Collapse
Affiliation(s)
- Kunming Li
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Xiumei Wei
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Jialong Yang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
2
|
Cao J, Xu H, Yu Y, Xu Z. Regulatory roles of cytokines in T and B lymphocytes-mediated immunity in teleost fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 144:104621. [PMID: 36801469 DOI: 10.1016/j.dci.2022.104621] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 06/05/2023]
Abstract
T and B lymphocytes (T and B cells) are immune effector cells that play critical roles in adaptive immunity and defend against external pathogens in most vertebrates, including teleost fish. In mammals, the development and immune response of T and B cells is associated with cytokines including chemokines, interferons, interleukins, lymphokines, and tumor necrosis factors during pathogenic invasion or immunization. Given that teleost fish have evolved a similar adaptive immune system to mammals with T and B cells bearing unique receptors (B-cell receptors (BCRs) and T-cell receptors (TCRs)) and that cytokines in general have been identified, whether the regulatory roles of cytokines in T and B cell-mediated immunity are evolutionarily conserved between mammalians and teleost fish is a fascinating question. Thus, the purpose of this review is to summarize the current knowledge of teleost cytokines and T and B cells as well as the regulatory roles of cytokines on these two types of lymphocytes. This may provide important information on the parallelisms and dissimilarities of the functions of cytokines in bony fish versus higher vertebrates, which may aid in the evaluation and development of adaptive immunity-based vaccines or immunostimulants.
Collapse
Affiliation(s)
- Jiafeng Cao
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Haoyue Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Yongyao Yu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhen Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
3
|
Mu L, Yin X, Bai H, Li J, Qiu L, Zeng Q, Fu S, Ye J. Mannose-binding lectin suppresses macrophage proliferation through TGF-β1 signaling pathway in Nile tilapia. Front Immunol 2023; 14:1159577. [PMID: 37261343 PMCID: PMC10227430 DOI: 10.3389/fimmu.2023.1159577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/25/2023] [Indexed: 06/02/2023] Open
Abstract
Mannose-binding lectin (MBL) is a multifunctional pattern recognition molecule, which not only mediates the recognition of pathogenic microorganisms and their products, playing an important role in innate immune defense, but also participates in adaptive immune responses of mammalian. However, it's related immune mechanism remains limited, especially the regulation of cell proliferation in early vertebrates. In this study, OnMBL was found to bind to kidney macrophages (MФ) from Nile tilapia (Oreochromis niloticus). Interestingly, OnMBL was able to reduce the proliferation of activated-MФ by regulating the cell cycle, arresting a large number of cells in the G0/G1 phase, and increasing the probability of apoptosis. More importantly, we found that the inhibition of cell proliferation by OnMBL was closely related to the evolutionarily conserved canonical transforming growth factor-beta 1 (TGF-β1) signaling pathway. Mechanistically, OnMBL could significantly increase the expression of TGF-β1, activate and regulate the downstream Smad-dependent pathway to reduce the MФ proliferation, thereby maintaining cellular homeostasis in the body's internal environment. This study represents the first description regarding the regulatory mechanisms of the MBL on cell proliferation in teleost fish, which provides a novel perspective on the understanding of the multiple function and evolutionary origins of C-type lectins in the immune system.
Collapse
Affiliation(s)
- Liangliang Mu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, Guangdong, China
| | - Xiaoxue Yin
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, Guangdong, China
| | - Hao Bai
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, Guangdong, China
| | - Jiadong Li
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, Guangdong, China
| | - Li Qiu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, Guangdong, China
| | - Qingliang Zeng
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, Guangdong, China
| | - Shengli Fu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, Guangdong, China
| | - Jianmin Ye
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, Guangdong, China
- Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, School of Life Sciences, South China Normal University, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Zhang Q, Geng M, Li K, Gao H, Jiao X, Ai K, Wei X, Yang J. TGF-β1 suppresses the T-cell response in teleost fish by initiating Smad3- and Foxp3-mediated transcriptional networks. J Biol Chem 2022; 299:102843. [PMID: 36581209 PMCID: PMC9860442 DOI: 10.1016/j.jbc.2022.102843] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 12/27/2022] Open
Abstract
Transforming growth factor-β1 (TGF-β1) can suppress the activation, proliferation, and function of many T-cell subsets, protecting organisms from inflammatory and autoimmune disease caused by an overexuberant immune response. However, whether and how TGF-β1 regulates T-cell immunity in early vertebrates remain unknown. Here, using a Nile tilapia (Oreochromis niloticus) model, we investigated suppression of the T-cell response by TGF-β1 in teleost species. Tilapia encodes an evolutionarily conserved TGF-β1, the expression of which in lymphocytes is significantly induced during the immune response following Edwardsiella piscicida infection. Once activated, tilapia T cells increase TGF-β1 production, which in turn suppresses proinflammatory cytokine expression and inhibits T-cell activation. Notably, we found administration of TGF-β1 cripples the proliferation of tilapia T cells, reduces the potential capacity of Th1/2 differentiation, and impairs the cytotoxic function, rendering the fish more vulnerable to bacterial infection. Mechanistically, TGF-β1 initiates the TGF-βR/Smad signaling pathway and triggers the phosphorylation and nuclear translocation of Smad2/3. Smad3 subsequently interacts with several transcriptional partners to repress transcription of cytokines IL-2 and IFN-γ but promote transcription of immune checkpoint regulator CTLA4 and transcription factor Foxp3. Furthermore, TGF-β1/Smad signaling further utilizes Foxp3 to achieve the cascade regulation of these T-cell genes. Taken together, our findings reveal a detailed mechanism by which TGF-β1 suppresses the T cell-based immunity in Nile tilapia and support the notion that TGF-β1 had already been employed to inhibit the T-cell response early in vertebrate evolution, thus providing novel insights into the evolution of the adaptive immune system.
Collapse
Affiliation(s)
- Qian Zhang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China
| | - Ming Geng
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China
| | - Kang Li
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China
| | - Haiyou Gao
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China
| | - Xinying Jiao
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China
| | - Kete Ai
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China
| | - Xiumei Wei
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China.
| | - Jialong Yang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
5
|
Upregulation of miR-33 Exacerbates Heat-Stress-Induced Apoptosis in Granulosa Cell and Follicular Atresia of Nile Tilapia (Oreochromis niloticus) by Targeting TGFβ1I1. Genes (Basel) 2022; 13:genes13061009. [PMID: 35741771 PMCID: PMC9222912 DOI: 10.3390/genes13061009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/18/2022] [Accepted: 05/23/2022] [Indexed: 02/04/2023] Open
Abstract
High temperature affects egg quality and increases follicular atresia in teleosts. The present study aimed to explore the regulated mechanism of ovary syndrome of Nile tilapia (Oreochromis niloticus) exposed to heat stress. To this end, we conducted histological and biochemical analyses and integrated miRNA-target gene analyses. The histochemical analyses confirmed that heat stress promoted the apoptosis of granulosa cell and therefore resulted in increased follicular atresia in the ovary. Heat stress led to the differential expression of multiple miRNAs (miR-27e, -27b-3p, -33, -34a -133a-5p, and -301b-5p). In a luciferase activity assay, miR-33 bound to the 3′-untranslated region (UTR) of the TGFβ1I1 (transforming growth factor-β1-induced transcript 1) gene and inhibited its expression. A TGFβ1I1 gene signal was detected in the granulosa cells of Nile tilapia by immunohistochemical analysis. Up-regulation of the miR-33 of tilapia at 6 d and 12 d exposed to heat (34.5 °C ± 0.5 °C) had significant down-regulation of the TGFβ1I1 expression of the gene and protein in tilapia ovaries. An miRNA-target gene integrated analysis revealed that miR-33 and TGFβ1I1 function in an apoptosis-related signal pathway. The signal transduction of the vascular endothelial growth factor (VEGF) family members VEGFA and its receptor (KDR) in the heat-stressed group decreased significantly compared with the control group. Transcript-levels of the Bax and Caspase-3 as apoptotic promotors were activated and Bcl-2 and Caspase-8 as apoptotic inhibitors were suppressed in the heat-stressed tilapia. These results suggest that heat stress increases the expression of miR-33, which targets TGFβ1I1 and inhibits its expression, resulting in decreased levels of follicle-stimulating hormone and 17β-estradiol and increased apoptosis by suppressing VEGF signaling, eventually inducing follicular atresia. In conclusion, our results show that the miR-33/TGFβ1I1 axis of Nile tilapia is involved in the follicular development of broodstock, and can suppress VEGF signaling to accelerate follicular atresia. Our findings demonstrate the suppressive role of miR-33 during oocyte development in Nile tilapia.
Collapse
|
6
|
Liu S, Guo J, Cheng X, Li W, Lyu S, Chen X, Li Q, Wang H. Molecular Evolution of Transforming Growth Factor-β (TGF-β) Gene Family and the Functional Characterization of Lamprey TGF-β2. Front Immunol 2022; 13:836226. [PMID: 35309318 PMCID: PMC8931421 DOI: 10.3389/fimmu.2022.836226] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/11/2022] [Indexed: 11/13/2022] Open
Abstract
The transforming growth factor-βs (TGF-βs) are multifunctional cytokines capable of regulating a wide range of cellular behaviors and play a key role in maintaining the homeostasis of the immune system. The TGF-β subfamily, which is only present in deuterostomes, expands from a single gene in invertebrates to multiple members in jawed vertebrates. However, the evolutionary processes of the TGF-β subfamily in vertebrates still lack sufficient elucidation. In this study, the TGF-β homologs are identified at the genome-wide level in the reissner lamprey (Lethenteron reissneri), the sea lamprey (Petromyzon marinus), and the Japanese lamprey (Lampetra japonica), which are the extant representatives of jawless vertebrates with a history of more than 350 million years. The molecular evolutionary analyses reveal that the lamprey TGF-β subfamily contains two members representing ancestors of TGF-β2 and 3 in vertebrates, respectively, but TGF-β1 is absent. The transcriptional expression patterns show that the lamprey TGF-β2 may play a central regulatory role in the innate immune response of the lamprey since it exhibits a more rapid and significant upregulation of expression than TGF-β3 during lipopolysaccharide stimuli. The incorporation of BrdU assay reveals that the lamprey TGF-β2 recombinant protein exerts the bipolar regulation on the proliferation of the supraneural myeloid body cells (SMB cells) in the quiescent and LPS-activated state, while plays an inhibitory role in the proliferation of quiescent and activated leukocytes in lampreys. Furthermore, caspase-3/7 activity analysis indicates that the lamprey TGF-β2 protects SMB cells from apoptosis after serum deprivation, in contrast to promoting apoptosis of leukocytes. Our composite results offer valuable clues to the origin and evolution of the TGF-β subfamily and imply that TGF-βs are among the most ancestral immune regulators in vertebrates.
Collapse
Affiliation(s)
- Siqi Liu
- College of Life Sciences, Liaoning Normal University, Dalian, China
- Lamprey Research Center, Liaoning Normal University, Dalian, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Junfu Guo
- College of Life Sciences, Liaoning Normal University, Dalian, China
- Lamprey Research Center, Liaoning Normal University, Dalian, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Xianda Cheng
- College of Life Sciences, Liaoning Normal University, Dalian, China
- Lamprey Research Center, Liaoning Normal University, Dalian, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Wenna Li
- College of Life Sciences, Liaoning Normal University, Dalian, China
- Lamprey Research Center, Liaoning Normal University, Dalian, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Shuangyu Lyu
- College of Life Sciences, Liaoning Normal University, Dalian, China
- Lamprey Research Center, Liaoning Normal University, Dalian, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Xuanyi Chen
- College of Life Sciences, Liaoning Normal University, Dalian, China
- Lamprey Research Center, Liaoning Normal University, Dalian, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Qingwei Li
- College of Life Sciences, Liaoning Normal University, Dalian, China
- Lamprey Research Center, Liaoning Normal University, Dalian, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
- *Correspondence: Hao Wang, ; Qingwei Li,
| | - Hao Wang
- College of Life Sciences, Liaoning Normal University, Dalian, China
- Lamprey Research Center, Liaoning Normal University, Dalian, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
- *Correspondence: Hao Wang, ; Qingwei Li,
| |
Collapse
|
7
|
Zuo Y, Yi L, Lu S. Dermal fibroblast from superficial layers of pig skin exhibits more proliferative capacity than that from deep layers. J Tissue Viability 2021; 31:278-285. [PMID: 34895969 DOI: 10.1016/j.jtv.2021.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 11/21/2021] [Accepted: 12/01/2021] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To further examine the feasibility of using pigs as an animal model for the study of dermal fibroblast heterogeneity and to explore the proliferative capacity of dermal fibroblasts from different layers of pig skin in vitro and in vivo. MATERIAL AND METHODS Cultured superficial and deep dermal fibroblasts were subjected to cell growth assay, cell cycle analysis, immunocytochemical staining and western blotting for proliferating cell nuclear antigens. Moreover, skin samples autografted with superficial/deep dermal fibroblasts were subjected to immunohistochemical staining and western blotting for proliferating cell nuclear antigen. RESULTS The cell growth assay showed that the growth curve of the superficial dermal fibroblast was progressively higher than that of the deep layer. The cell cycle analysis showed that the (G2+S) percentage of the superficial dermal fibroblasts was significantly higher than that of the deep layer fibroblasts. The immunocytochemical staining and western blotting showed that the expression of proliferating cell nuclear antigen in the cultured superficial dermal fibroblast was significantly higher than that of the deep layer cells. The immunohistochemical staining showed that the positive rate of proliferating cell nuclear antigen in the skin samples autografted with the superficial dermal fibroblast was significantly higher than that of the deep layer. CONCLUSIONS This study has demonstrated that similar to human dermal fibroblasts, dermal fibroblasts from different layers of pig skin exhibit distinct proliferative capacity, which increases the feasibility of using pigs as an animal model for future studies on the heterogeneity of dermal fibroblasts.
Collapse
Affiliation(s)
- Yanhai Zuo
- Department of Orthopedics, SiJing Hospital of SongJiang District, Shanghai, China; Wound Healing Center, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Lei Yi
- Department of Burn, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Shuliang Lu
- Wound Healing Center, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
8
|
Yin B, Liu H, Tan B, Dong X, Chi S, Yang Q, Zhang S. Dietary supplementation of β-conglycinin, with or without sodium butyrate on the growth, immune response and intestinal health of hybrid grouper. Sci Rep 2021; 11:17298. [PMID: 34453080 PMCID: PMC8397726 DOI: 10.1038/s41598-021-96693-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 07/31/2021] [Indexed: 12/15/2022] Open
Abstract
We investigated the effects of low and high doses of β-conglycinin and the ameliorative effects of sodium butyrate (based on high-dose β-conglycinin) on the growth performance, serum immunity, distal intestinal histopathology, and gene, protein expression related to intestinal health in hybrid grouper (Epinephelus fuscoguttatus ♀ × E. lanceolatus ♂). The results revealed that the instantaneous growth rate (IGR) of grouper significantly increased, decreased, and increased in the low-dose β-conglycinin (bL), high-level β-conglycinin (bH) and high-level β-conglycinin plus sodium butyrate (bH-NaB), respectively. The feed coefficient ratio (FCR) was significantly increased in the bH and bH-NaB, serum levels of IFN-γ, IL-1β, and TNF-α were upregulated in the bH. The intestinal diameter/fold height ratio was significantly increased in the bH. Furthermore, there were increases in nitric oxide (NO), total nitric oxide synthase (total NOS), and peroxynitrite anion (ONOO-) in the bH, and decreases in total NOS and ONOO- in the bH-NaB. In the distal intestine, IL-1β and TGF-β1 mRNA levels were downregulated and upregulated, respective in the bL. The mRNA levels of TNF-α and IL-6 were upregulated in the bH, and downregulated in the bH-NaB, respectively. Occludin, claudin3 and ZO-3 mRNA levels were upregulated in the bL, downregulated in the bH and then upregulated in the bH-NaB. No significant differences were observed in the mRNA levels of IFN-γ and jam4. And the p-PI3K p85Tyr458/total PI3K p85 value was significantly increased in the bH and then decreased in the bH-NaB, and the total Akt value was significantly increased in the bH. These indicate β-conglycinin has a regulatory effect on serum immunity and affect distal intestinal development by modulating distal intestinal injury-related parameters. Within the distal intestinal tract, low- and high-dose β-conglycinin differentially affect immune responses and tight junctions in the distal intestine, which eventually manifests as a reduction in growth performance. Supplementing feed with sodium butyrate might represent an effective approach for enhancing serum immunity, and protects the intestines from damage caused by high-dose β-conglycinin.
Collapse
Affiliation(s)
- Bin Yin
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, 524025, People's Republic of China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, Guangdong, People's Republic of China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, 524025, People's Republic of China
| | - Hongyu Liu
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, 524025, People's Republic of China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, Guangdong, People's Republic of China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, 524025, People's Republic of China
| | - Beiping Tan
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, 524025, People's Republic of China.
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, Guangdong, People's Republic of China.
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, 524025, People's Republic of China.
| | - Xiaohui Dong
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, 524025, People's Republic of China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, Guangdong, People's Republic of China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, 524025, People's Republic of China
| | - Shuyan Chi
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, 524025, People's Republic of China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, Guangdong, People's Republic of China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, 524025, People's Republic of China
| | - Qihui Yang
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, 524025, People's Republic of China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, Guangdong, People's Republic of China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, 524025, People's Republic of China
| | - Shuang Zhang
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, 524025, People's Republic of China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, Guangdong, People's Republic of China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, 524025, People's Republic of China
| |
Collapse
|
9
|
Zhao L, Tang G, Xiong C, Han S, Yang C, He K, Liu Q, Luo J, Luo W, Wang Y, Li Z, Yang S. Chronic chlorpyrifos exposure induces oxidative stress, apoptosis and immune dysfunction in largemouth bass (Micropterus salmoides). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 282:117010. [PMID: 33848913 DOI: 10.1016/j.envpol.2021.117010] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/07/2021] [Accepted: 03/20/2021] [Indexed: 06/12/2023]
Abstract
This study was undertaken to (a) evaluate the destructive effects of chronic exposure to low-dose of chlorpyrifos (CPF) on antioxidant system and immune function in largemouth bass (Micropterus salmoides), and (b) to examine whether dietary supplementation of curcumin can mitigate the adverse effects induced by CPF contamination. The experiment consisted of three groups (with three replicates, 30 fish per replicate) which lasted for 60 days: A control group (without CPF exposure or CU application), CP group (exposed to 0.004 mg/L of CPF), and CU group (exposed to 0.004 mg/L of CPF and fed a diet containing 100 mg curcumin per kg feed). The results showed that CPF contamination leads to reduced weight gain, severe histopathological lesions, decreased activity of antioxidant enzymes and down-regulated expression of antioxidant-related genes. Moreover, CPF upregulated the expression of pro-inflammatory genes such as TNF-α, IL-8, IL-15, downregulated anti-inflammatory genes TGF-β1, IL-10, and promoted apoptosis through overexpression of Caspase-3, Caspase-8, caspase-9 and Bax. In addition, curcumin supplementation showed significant improvement in oxidative stress, apoptosis and immune dysfunction, but the improved effect gradually weakened during the exposure last. Gas chromatography-mass spectrometry (GC-MS) analysis for accumulation of CPF in muscle supported the changes of general physiological structure, excessive apoptotic responses, abnormal antioxidant and immune system functions and posed potential human health risks to children based on target hazard quotient. These results suggested that chronic exposure to CPF can cause oxidative stress, apoptosis and immune dysfunction, and that curcumin have the potential to reduce pesticides residues in fish. This also highlights the importance of monitoring pesticides residues in aquatic products and aquaculture aquatic environments.
Collapse
Affiliation(s)
- Liulan Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Gang Tang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Chen Xiong
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Shuaishuai Han
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Chunping Yang
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Kuo He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Qiao Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Jie Luo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Wei Luo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yan Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Zhiqiong Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Song Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
10
|
Li C, Wang L. Molecular characterization, expression and functional analysis of TGFβ1-b in crucian carp (Carassius carassius). Int J Biol Macromol 2020; 165:1392-1401. [PMID: 33045298 DOI: 10.1016/j.ijbiomac.2020.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/02/2020] [Accepted: 10/03/2020] [Indexed: 10/23/2022]
Abstract
Transforming growth factor β1 (TGFβ1) is a polyfunctional cytokine with important roles in growth, differentiation and immune function in various animals. In this study, PCR, bioinformatics, real-time quantitative PCR, prokaryotic expression, protein purification and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-TOF-MS) were applied to investigate the structural features and function of TGFβ1-b in crucian carp. The complete coding sequence (CDS) of TGFβ1-b was 1134 bp in length and was submitted to GenBank (ID: MH473141). TGFβ1-b encoded a putative protein of 377 amino acids and included a signal peptide consisting of 22 amino acids. TGFβ1-b was relatively conservative in fish and distant from mammals in terms of evolutionary relationship. TGFβ1-b was found to be expressed in various tissues, with the highest expression in the kidney. The expressions of TGFβ1-b in muscle, heart and liver were increased with the addition of Rhodopseudomonas palustris, Bacillus subtilis and Enterococcus faecium at 30 days (p < 0.01). While, the expressions of SMAD2, SMAD3 and SMAD7 were also up-regulated with the addition of R. palustris at 20 days (p < 0.01). The expression of TGFβ1-b could be affected by time and group factors (p < 0.05). Moreover, the expression vector TGFβ1-b-pDE2 was successfully constructed. Prokaryotic expression indicated that a 43 kDa target protein was obtained after induction with 1.5 mM isopropyl-beta-D-thiogalactopyranoside (IPTG) for 3.5 h at 37 °C for 200 r/h. The activities of alkaline phosphatase and lysozyme in injection TGFβ1-b protein group (ITg) and feeding broken bacterial liquid group (BTg) were significantly increased at 24 h (p < 0.01). And the activities of superoxide dismutase in ITg were significantly increased at 36 h (p < 0.01). Besides, the expressions of heat shock protein 30 and heat shock protein 47 in ITg and BTg were significantly increased (p < 0.01). Whereas, the expression of interleukin-11 was significantly reduced (p < 0.01). These results indicated that TGFβ1-b protein might play a role in immunity of crucian carp.
Collapse
Affiliation(s)
- Chenyang Li
- Key Laboratory of Qinghai-Tibet Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education and Sichuan Province, Southwest Minzu University, Chendu 610041, PR China; Healthy Aquaculture Key Laboratory of Sichuan Province, Chendu 610041, PR China
| | - Li Wang
- Key Laboratory of Qinghai-Tibet Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education and Sichuan Province, Southwest Minzu University, Chendu 610041, PR China.
| |
Collapse
|
11
|
Zuo S, Shi G, Fan J, Fan B, Zhang X, Liu S, Hao Y, Wei Z, Zhou X, Feng S. Identification of adhesion-associated DNA methylation patterns in the peripheral nervous system. Exp Ther Med 2020; 21:48. [PMID: 33273976 PMCID: PMC7706384 DOI: 10.3892/etm.2020.9479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/26/2020] [Indexed: 11/06/2022] Open
Abstract
Schwann cells are unique glial cells in the peripheral nervous system. These cells provide a range of cytokines and nutritional factors to maintain axons and support axonal regeneration. However, little is known concerning adhesion-associated epigenetic changes that occur in Schwann cells after peripheral nerve injury (PNI). In the present study, adhesion-associated DNA methylation biomarkers were assessed between normal and injury peripheral nerve. Specifically, normal Schwann cells (NSCs) and activated Schwann cells (ASCs) were obtained from adult Wistar rats. After the Schwann cells were identified, proliferation and adhesion assays were used to assess differences between NSCs and ASCs. Methylated DNA immunoprecipitation-sequencing and bioinformatics analysis were used to identify and analyze the differentially methylated genes. Reverse transcription-quantitative PCR was performed to assess the expression levels of adhesion-associated genes. In the present study, the proliferation and adhesion assays demonstrated that ASCs had a more robust proliferative activity and adhesion compared with NSCs. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed to identify methylation-associated biological processes and signaling pathways. Protein-protein interaction network analysis revealed that Fyn, Efna1, Jak2, Vav3, Flt4, Epha7, Crk, Kitlg, Ctnnb1 and Ptpn11 were potential markers for Schwann cell adhesion. The expression levels of several adhesion-associated genes, such as vinculin, BCAR1 scaffold protein, collagen type XVIII α1 chain and integrin subunit β6, in ASCs were altered compared with those in NSCs. The current study analyzed adhesion-associated DNA methylation patterns of Schwann cells and identified candidate genes that may potentially regulate Schwann cell adhesion in Wistar rats before and after PNI.
Collapse
Affiliation(s)
- Shanhuai Zuo
- Department of Radiology, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China
| | - Guidong Shi
- Department of Orthopedics, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China
| | - Jianchao Fan
- Department of Orthopedics, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China
| | - Baoyou Fan
- Department of Orthopedics, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China
| | - Xiaolei Zhang
- Department of Orthopedics, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China
| | - Shen Liu
- Department of Orthopedics, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China
| | - Yan Hao
- Department of Orthopedics, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China
| | - Zhijian Wei
- Department of Orthopedics, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China
| | - Xianhu Zhou
- Department of Orthopedics, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China
| | - Shiqing Feng
- Department of Orthopedics, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Heping, Tianjin 300052, P.R. China
| |
Collapse
|
12
|
Transcriptome Analysis of Paralichthys olivaceus Erythrocytes Reveals Profound Immune Responses Induced by Edwardsiella tarda Infection. Int J Mol Sci 2020; 21:ijms21093094. [PMID: 32353932 PMCID: PMC7247156 DOI: 10.3390/ijms21093094] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/03/2020] [Accepted: 04/03/2020] [Indexed: 12/12/2022] Open
Abstract
Unlike mammalian red blood cells (RBCs), fish RBCs are nucleated and thus capable of gene expression. Japanese flounder (Paralichthys olivaceus) is a species of marine fish with important economic values. Flounder are susceptible to Edwardsiella tarda, a severe bacterial pathogen that is able to infect and survive in flounder phagocytes. However, the infectivity of and the immune response induced by E. tarda in flounder RBCs are unclear. In the present research, we found that E. tarda was able to invade and replicate inside flounder RBCs in both in vitro and in vivo infections. To investigate the immune response induced by E. tarda in RBCs, transcriptome analysis of the spleen RBCs of flounder challenged with E. tarda was performed. Six sequencing libraries were constructed, and an average of 43 million clean reads per library were obtained, with 85% of the reads being successfully mapped to the genome of flounder. A total of 1720 differentially expressed genes (DEGs) were identified in E. tarda-infected fish. The DEGs were significantly enriched in diverse Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, especially those associated with immunity, disease, and infection. Ninety-one key DEGs involved in 12 immune-related pathways were found to form extensive interaction networks. Twenty-one genes that constituted the hub of the networks were further identified, which were highly regulated by E. tarda and involved in a number of immune processes, notably pathogen recognition and signal transduction, antigen processing and presentation, inflammation, and splicing. These results provide new insights into the immune role of flounder RBCs during bacterial infection.
Collapse
|
13
|
Cui ZW, Zhang XY, Zhang XJ, Wu N, Lu LF, Li S, Chen DD, Zhang YA. Molecular and functional characterization of the indoleamine 2,3-dioxygenase in grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2019; 89:301-308. [PMID: 30965085 DOI: 10.1016/j.fsi.2019.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 03/20/2019] [Accepted: 04/02/2019] [Indexed: 06/09/2023]
Abstract
Indoleamine 2,3-dioxygenase (IDO) is a kind of dioxygenase that can catalyze the degradation of levo-tryptophan (L-Trp) and plays key roles in immune tolerance. In this study, the IDO gene was cloned and functionally characterized from grass carp (gcIDO). The results showed that gcIDO overexpressed in GCO cells could catalyze the degradation of L-Trp through the L-Trp - kynurenine pathway, and this activity could be promoted by δ-aminolevulinic acid (ALA) while inhibited by levo-1-methyl tryptophan (L-1MT). Moreover, gcIDO was constitutively expressed in various tissues, and its expression could be significantly up-regulated by LPS and Poly (I:C) in peripheral blood leukocytes (PBLs). Furthermore, recombinant TGF-β1 of grass carp could up-regulate the expression of IDO, TGF-β1, CD25, and Foxp3 in PBLs, indicating that the TGF-β1/IDO pathway is present in fish. In the soybean meal induced enteritis (SBMIE) model, the expression of gcIDO in the intestine was up-regulated significantly, demonstrating that gcIDO may play an immunoregulatory role in SBMIE. Taken together, these data suggest that the IDO plays multiple roles in the immunity of fish.
Collapse
Affiliation(s)
- Zheng-Wei Cui
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xiang-Yang Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xu-Jie Zhang
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Nan Wu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Long-Feng Lu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Shun Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Dan-Dan Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
14
|
Caballero-Solares A, Xue X, Parrish CC, Foroutani MB, Taylor RG, Rise ML. Changes in the liver transcriptome of farmed Atlantic salmon (Salmo salar) fed experimental diets based on terrestrial alternatives to fish meal and fish oil. BMC Genomics 2018; 19:796. [PMID: 30390635 PMCID: PMC6215684 DOI: 10.1186/s12864-018-5188-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 10/19/2018] [Indexed: 01/06/2023] Open
Abstract
Background Dependence on marine natural resources threatens the sustainability of Atlantic salmon aquaculture. In the present study, Atlantic salmon fed for 14 weeks with an experimental diet based on animal by-products and vegetable oil (ABP) exhibited reduced growth performance compared with others fed a fish meal/fish oil based experimental diet (MAR) and a plant protein/vegetable oil-based experimental diet (VEG). To characterize the molecular changes underlying the differences in growth performance, we conducted a 44 K microarray study of the liver transcriptome of the three dietary groups. Results The microarray experiment identified 122 differentially expressed features (Rank Products, PFP < 10%). Based on their associated Gene Ontology terms, 46 probes were classified as metabolic and growth-relevant genes, 25 as immune-related, and 12 as related to oxidation-reduction processes. The microarray results were validated by qPCR analysis of 29 microarray-identified transcripts. Diets significantly modulated the transcription of genes involved in carbohydrate metabolism (gck and pfkfb4), cell growth and proliferation (sgk2 and htra1), apoptosis (gadd45b), lipid metabolism (fabp3, idi1, sqs), and immunity (igd, mx, ifit5, and mhcI). Hierarchical clustering and linear correlation analyses were performed to find gene expression patterns among the qPCR-analyzed transcripts, and connections between them and muscle and liver lipid composition. Overall, our results indicate that changes in the liver transcriptome and tissue lipid composition were driven by cholesterol synthesis up-regulation by ABP and VEG diets, and the lower carbohydrate intake in the ABP group. Two of the microarray-identified genes (sgk2 and htra1) might be key to explaining glucose metabolism regulation and the dietary-modulation of the immune system in fish. To evaluate the potential of these genes as predictive biomarkers, we subjected the qPCR data to a stepwise discriminant analysis. Three sets of no more than four genes were found to be able to predict, with high accuracy (67–94%), salmon growth and fatty acid composition. Conclusions This study provides new findings on the impact of terrestrial animal and plant products on the nutrition and health of farmed Atlantic salmon, and a new method based on gene biomarkers for potentially predicting desired phenotypes, which could help formulate superior feeds for the Atlantic salmon aquaculture industry. Electronic supplementary material The online version of this article (10.1186/s12864-018-5188-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Albert Caballero-Solares
- Department of Ocean Sciences, Memorial University of Newfoundland, 1 Marine Lab Road, St. John's, NL, A1C 5S7, Canada.
| | - Xi Xue
- Department of Ocean Sciences, Memorial University of Newfoundland, 1 Marine Lab Road, St. John's, NL, A1C 5S7, Canada
| | - Christopher C Parrish
- Department of Ocean Sciences, Memorial University of Newfoundland, 1 Marine Lab Road, St. John's, NL, A1C 5S7, Canada
| | - Maryam Beheshti Foroutani
- Department of Ocean Sciences, Memorial University of Newfoundland, 1 Marine Lab Road, St. John's, NL, A1C 5S7, Canada
| | | | - Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, 1 Marine Lab Road, St. John's, NL, A1C 5S7, Canada
| |
Collapse
|
15
|
Wei H, Lv M, Wen C, Zhang A, Yang K, Zhou H, Wang X. Identification of an intercellular cell adhesion molecule-1 homologue from grass carp: Evidence for its involvement in the immune cell adhesion in teleost. FISH & SHELLFISH IMMUNOLOGY 2018; 81:67-72. [PMID: 29981884 DOI: 10.1016/j.fsi.2018.07.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/04/2018] [Accepted: 07/05/2018] [Indexed: 06/08/2023]
Abstract
Intercellular cell adhesion molecule-1 (ICAM-1) is a single-chain transmembrane glycoprotein which plays key roles in transendothelial migration of leukocytes and interaction between antigen presenting cells and T cells. In teleost, information of cell adhesion-related molecules is still lacking. In this study, we identified a gene from grass carp sharing similar exon and intron organization with human ICAM-1. Cloning and in silico analysis of its homologues in zebrafish and other two cyprinid fishes, respectively demonstrated the existence of the gene in these fishes. Moreover, the molecular features of these genes in fishes were conserved compared with human ICAM-1. In grass carp, the transcripts of this gene were detected with high levels in heart and liver and its mRNA expression in headkidney leukocytes was induced by Il-1β. Overexpression of this molecule in COS-7 cells could increase the adhesion of the cells with grass carp peripheral blood lymphocytes (PBLs), and the adhesion was further enhanced by lipopolysaccharide stimulation on PBLs. Further studies revealed that the mRNA levels of lymphocyte function-associated antigen-1, a ligand for ICAM-1, were much higher in the PBLs adhering to the COS-7 cells with overexpressing this molecule than in the PBLs alone. These results collectively showed that the newly cloned cDNA encodes grass carp intercellular cell adhesion molecule-1 (Icam-1) and it can mediate the adhesion of PBLs. This provides functional evidence for the existence of Icam-1 in teleost and will facilitate investigation on the transendothelial migration of leukocytes in fish species.
Collapse
Affiliation(s)
- He Wei
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China; School of Biomedical Sciences, Chengdu Medical College, Chengdu, People's Republic of China
| | - Mengyuan Lv
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Chao Wen
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Anying Zhang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Kun Yang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Hong Zhou
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Xinyan Wang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China.
| |
Collapse
|
16
|
MicroRNA-340 inhibits squamous cell carcinoma cell proliferation, migration and invasion by downregulating RhoA. J Dermatol Sci 2018; 92:197-206. [PMID: 30262127 DOI: 10.1016/j.jdermsci.2018.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 08/23/2018] [Accepted: 09/04/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND MicroRNAs are reported to play an important role in tumor growth and metastasis, including squamous cell carcinoma (SCC). Accumulative evidence has revealed that dysregulated miR-340 expression contributed to the carcinogenesis and development of various cancers. OBJECTIVE The aim of the current study was to investigate the role and the underlying mechanism of miR-340 in SCC cell proliferation, migration and invasion. METHODS Quantitative real-time PCR was performed to examine the expression of miR-340 in SCC tissues and cell lines. The function of miR-340 in SCC was investigated through Cell Counting Kit-8, wound healing, transwell migration and invasion assays. Bioinformatics analysis, luciferase reporter assay, western blotting and immunohistochemical analysis were conducted to predict and confirm the target gene of miR-340. RESULTS In the present study, we first found that miR-340 was significantly decreased in both SCC tissues and cell lines. Moreover, ectopic expression of miR-340 remarkably attenuated SCC cell proliferation, migration and invasion, whereas inhibition of endogenous miR-340 promoted SCC cell proliferation, migration and invasion in vitro. Our subsequent bioinformatics analysis and luciferase reporter assay showed that RhoA was a novel direct target of miR-340 in SCC cells, and the knockdown of RhoA expression rescued the effects of miR-340 inhibition on SCC cell proliferation, migration and invasion. More importantly, the expression of RhoA and miR-340 was negatively correlated in SCC tissues. CONCLUSION Our findings demonstrate the tumor suppressor role of miR-340 in SCC by directly regulating RhoA. Therefore, restoration of miR-340 expression can be a potential therapeutic approach for SCC treatment.
Collapse
|
17
|
Rebl A, Goldammer T. Under control: The innate immunity of fish from the inhibitors' perspective. FISH & SHELLFISH IMMUNOLOGY 2018; 77:328-349. [PMID: 29631025 DOI: 10.1016/j.fsi.2018.04.016] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 06/08/2023]
Abstract
The innate immune response involves a concerted network of induced gene products, preformed immune effectors, biochemical signalling cascades and specialised cells. However, the multifaceted activation of these defensive measures can derail or overshoot and, if left unchecked, overwhelm the host. A plenty of regulatory devices therefore mediate the fragile equilibrium between pathogen defence and pathophysiological manifestations. Over the past decade in particular, an almost complete set of teleostean sequences orthologous to mammalian immunoregulatory factors has been identified in various fish species, which prove the remarkable conservation of innate immune-control concepts among vertebrates. This review will present the current knowledge on more than 50 teleostean regulatory factors (plus additional fish-specific paralogs) that are of paramount importance for controlling the clotting cascade, the complement system, pattern-recognition pathways and cytokine-signalling networks. A special focus lies on those immunoregulatory features that have emerged as potential biomarker genes in transcriptome-wide research studies. Moreover, we report on the latest progress in elucidating control elements that act directly with immune-gene-encoding nucleic acids, such as transcription factors, hormone receptors and micro- and long noncoding RNAs. Investigations into the function of teleostean inhibitory factors are still mainly based on gene-expression profiling or overexpression studies. However, in support of structural and in-vitro analyses, evidence from in-vivo trials is also available and revealed many biochemical details on piscine immune regulation. The presence of multiple gene copies in fish adds a degree of complexity, as it is so far hardly understood if they might play distinct roles during inflammation. The present review addresses this and other open questions that should be tackled by fish immunologists in future.
Collapse
Affiliation(s)
- Alexander Rebl
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Fish Genetics Unit, Dummerstorf, Germany.
| | - Tom Goldammer
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Fish Genetics Unit, Dummerstorf, Germany
| |
Collapse
|
18
|
Wang X, Du L, Wei H, Zhang A, Yang K, Zhou H. Identification of two Stat3 variants lacking a transactivation domain in grass carp: New insights into alternative splicing in the modification of teleost Stat3 signaling. FISH & SHELLFISH IMMUNOLOGY 2018; 77:13-21. [PMID: 29555584 DOI: 10.1016/j.fsi.2018.03.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 03/13/2018] [Accepted: 03/15/2018] [Indexed: 06/08/2023]
Abstract
Signal transducer and activator of transcription 3 (STAT3) is a member of the STAT family in response to cytokines and growth factors. In mammals, alternative splicing of STAT3 generates STAT3α and STAT3β, which have distinct and overlapping functions. In the previous study, we have identified two spliceforms of Stat3α (Stat3α1 and Stat3α2) possessing all functional domains of Stat3 in grass carp (Ctenopharyngodon idella). In the present study, two Stat3β variants (Stat3β1 and Stat3β2) without C-terminal transactivation domain were isolated from this species, and their transcripts were ubiquitously expressed in all examined tissues with the highest levels in liver. Further studies showed that Stat3β1/2 had the ability to translocate into the nucleus upon activation, indicating their roles in transcriptional regulation. In support of this notion, grass carp Stat3β1 and Stat3β2 displayed the abilities to inhibit Interleukin-10 (Il-10) signaling and competitively impaired the transcriptional activities of Stat3α1/2. In particular, similar to their mammalian counterparts, grass carp Stat3β1 and Stat3β2 could enhance Stat3α1/2 phosphorylation upon cytokine stimulation. Interestingly, stat3β1 and stat3β2 transcripts were also found in zebrafish (Danio rerio) and goldfish (Carassius auratus), and each variant in these teleosts is generated through similar alternative splicing events, including exon skipping and intron retention. This highlights a conserved splicing event of stat3 gene during vertebrate evolution and indicates a potential physiological significance of generating unique Stat3 variants in fish. These results, along with the findings regarding Stat3α1/2, demonstrate the existence of Stat3 isoforms with functional diversity and redundancy in teleosts. It leads to the hypothesis that teleost-specific spliceforms of Stat3 gene may contribute to the complexity of Stat3 signaling in fishes, thereby benefiting them to adapt to evolution and environmental changes.
Collapse
Affiliation(s)
- Xinyan Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Linyong Du
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - He Wei
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Anying Zhang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Kun Yang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Hong Zhou
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China.
| |
Collapse
|
19
|
Du L, Zhou H, Qin L, Wei H, Zhang A, Yang K, Wang X. Identification and functional evaluation of two STAT3 variants in grass carp: Implication for the existence of specific alternative splicing of STAT3 gene in teleost. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 76:326-333. [PMID: 28698048 DOI: 10.1016/j.dci.2017.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/07/2017] [Accepted: 07/07/2017] [Indexed: 06/07/2023]
Abstract
A STAT family member, STAT3, becomes activated as a DNA binding protein in response to cytokines and growth factors. In teleost, STAT3 cDNA has been cloned and identified in a few species, but only a single STAT3 transcript is revealed in these studies. In the present study, two variants of STAT3 gene generated by alternative splicing were isolated from grass carp and nominated as STAT3α1 and STAT3α2 based on the homology with their mammalian orthologs. In particular, the homologs of STAT3α1/2 were also found in various fish species, including zebrafish, takifugu, tilapia, medaka and goldfish. Intriguingly, sequence alignment and genomic structure analysis revealed that fish STAT3α1/2 are generated through similar alternative splicing events, implying the potential physiological significance of generating STAT3 variants in fish. Grass carp STAT3α1/2 (gcSTAT3α1/2) were ubiquitously expressed although the transcript levels of STAT3α2 were markedly higher than STAT3α1 in all examined tissues. In vivo and in vitro studies showed that the expression patterns of these two variants were similar under the stimulation of immune stimuli. To reveal the role of gcSTAT3α1/2 in fish immunity, their phosphorylation and involvement in IL-17A/F1 mRNA expression were demonstrated in grass carp peripheral blood lymphocytes upon LPS or PHA challenge, providing evidence for the functional conservation of STAT3 signaling in fish. These findings also raise a question of whether both gcSTAT3α1/2 participate in transcriptional regulation in fish. Actually, our results showed that both of them had the ability to translocate into the nucleus upon activation, and to amplify IL-10 signaling, indicating the existence of STAT3 isoforms with functional redundancy in teleost.
Collapse
Affiliation(s)
- Linyong Du
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Hong Zhou
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Lei Qin
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - He Wei
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Anying Zhang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Kun Yang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Xinyan Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China.
| |
Collapse
|
20
|
Zuo Y, Yu X, Lu S. Dermal Fibroblasts from Different Layers of Pig Skin Exhibit Different Profibrotic and Morphological Characteristics. Anat Rec (Hoboken) 2016; 299:1585-1599. [PMID: 27518880 DOI: 10.1002/ar.23458] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 05/24/2016] [Accepted: 06/06/2016] [Indexed: 02/04/2023]
Abstract
In vitro studies of human dermal fibroblast (DF) heterogeneity have long been reported, yet in vivo studies and related research on animals are rare. The objectives of the study were to determine whether the DFs of pigs exhibit heterogeneity and to identify an animal model for the in vivo study of DF heterogeneity. The skin of three female red Duroc pigs (FRDPs) was separated into six layers, and the second and fifth layers (i.e., the superficial and deep dermis) were used in the establishment of wound models and cell cultures. To create the wound models, 54 tongue-shaped flaps were created on one side of the dorsum, and the underlying dermis was then fully replaced with the superficial or deep dermis (the superficial and deep groups, respectively). Skin samples were harvested at postoperative weeks 1, 2, and 3 for measurements of the normal and wounded skin thicknesses. Cells cultured from the superficial and deep dermis (i.e., superficial and deep DFs) were subjected to quantitative estimation of collagen and electron microscopy. The wounded skin thickness in the deep group was significantly greater than that in the superficial group. In contrast with the long deep DFs, the superficial DFs were short and exhibited microvilli-like cell surface projections. Compared with the superficial DFs, the deep DFs exhibited a greater density of rough endoplasmic reticulum and produced significantly more collagen. Similar to humans, FRDPs exhibit DF heterogeneity and should thus be a good animal model for in vivo studies of DF heterogeneity. Anat Rec, 299:1585-1599, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yanhai Zuo
- Shanghai Burns Institute, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin 2nd Road, Shanghai, 200025, China
| | - Xiaoping Yu
- Shanghai Burns Institute, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin 2nd Road, Shanghai, 200025, China
| | - Shuliang Lu
- Shanghai Burns Institute, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin 2nd Road, Shanghai, 200025, China.
| |
Collapse
|
21
|
Dissecting the role of transforming growth factor-β1 in topmouth culter immunobiological activity: a fundamental functional analysis. Sci Rep 2016; 6:27179. [PMID: 27251472 PMCID: PMC4890032 DOI: 10.1038/srep27179] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 05/13/2016] [Indexed: 11/24/2022] Open
Abstract
Transforming growth factor-β1 (TGF-β1) has been proven to function primarily in mammalian immunobiological activity, but information regarding the immune role of TGF-β1 in teleosts is limited. In the present study, we describe the cDNA cloning and characterization of the TGF-β1 molecule in the topmouth culter. TGF-β1 is highly expressed in immune-related tissues of the culter, including the thymus, head kidney, and spleen. The recombinant culter TGF-β1 (cTGF-β1) was successfully expressed and purified in vitro, and the effects of cTGF-β1 on the mRNA expression of pro-inflammatory cytokines, such as TNF-α and IL-1β, in the absence or presence of LPS was determined in culter peripheral blood leukocytes. cTGF-β1 was found to have bipolar properties in inflammatory reactions. Additionally, to assess the immune role of teleost TGF-β1 in vivo, the expression of TGF-β1 in the culter thymus and spleen tissues induced by poly I:C were also examined. The expression of TGF-β1 was obviously up-regulated, as shown in the cell lines. However, the peak time of cTGF-β1 expression in the cell lines occurred significantly earlier than in the organic tissues under the same inducer, suggesting that the response of the teleost TGF-β1 molecule to exogenous infection depends on a more complicated signalling pathway in vivo than in vitro.
Collapse
|
22
|
Zou J, Secombes CJ. The Function of Fish Cytokines. BIOLOGY 2016; 5:biology5020023. [PMID: 27231948 PMCID: PMC4929537 DOI: 10.3390/biology5020023] [Citation(s) in RCA: 319] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/28/2016] [Accepted: 05/17/2016] [Indexed: 12/14/2022]
Abstract
What is known about the biological activity of fish cytokines is reviewed. Most of the functional studies performed to date have been in teleost fish, and have focused on the induced effects of cytokine recombinant proteins, or have used loss- and gain-of-function experiments in zebrafish. Such studies begin to tell us about the role of these molecules in the regulation of fish immune responses and whether they are similar or divergent to the well-characterised functions of mammalian cytokines. This knowledge will aid our ability to determine and modulate the pathways leading to protective immunity, to improve fish health in aquaculture.
Collapse
Affiliation(s)
- Jun Zou
- Scottish Fish Immunology Research Centre, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen AB24 2TZ, UK.
| | - Christopher J Secombes
- Scottish Fish Immunology Research Centre, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen AB24 2TZ, UK.
| |
Collapse
|
23
|
Zhang LI, Wang C, Liu S, Zhao Y, Liu C, Guo Z. Prognostic significance of Dicer expression in hepatocellular carcinoma. Oncol Lett 2016; 11:3961-3966. [PMID: 27313724 PMCID: PMC4888077 DOI: 10.3892/ol.2016.4547] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 04/05/2016] [Indexed: 12/17/2022] Open
Abstract
Dicer is a RNaseIII endonuclease of the microRNA processing pathway, which is implicated in carcinogenesis of various types of human cancer. The present study assessed the expression level of Dicer in hepatocellular carcinoma (HCC) tissue to evaluate its association with HCC tumorigenesis. A low expression of Dicer was significantly associated with a shorter postoperative survival time of patients with HCC, which was assessed using the log-rank test with Kaplan-Meier survival analysis. Multivariate analysis identified that Dicer expression was an independent predictor for HCC outcome (relative risk, 0.660; 95% confidence interval, 0.506–0.861; P=0.002). A functional assay demonstrated that Dicer overexpression inhibited the proliferation and promoted the apoptosis of HCC cells. In addition, a Transwell assay revealed that Dicer markedly inhibited the migration and invasion of HCC cells. The present findings indicate that Dicer expression modified the outcomes of HCC patients by inhibiting proliferation, promoting apoptosis and inhibiting metastasis of HCC cells.
Collapse
Affiliation(s)
- L I Zhang
- Hebei Key Lab of Animal Science, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Cuiju Wang
- Department of Gynecology Ultrasound, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Shufeng Liu
- Hebei Key Lab of Animal Science, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Yufei Zhao
- Department of Gastroenterology and Hepatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Chao Liu
- Hebei Key Lab of Animal Science, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Zhanjun Guo
- Hebei Key Lab of Animal Science, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China; Department of Gastroenterology and Hepatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| |
Collapse
|
24
|
Wen LM, Jiang WD, Liu Y, Wu P, Zhao J, Jiang J, Kuang SY, Tang L, Tang WN, Zhang YA, Zhou XQ, Feng L. Evaluation the effect of thiamin deficiency on intestinal immunity of young grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2015; 46:501-515. [PMID: 26159094 DOI: 10.1016/j.fsi.2015.07.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 06/29/2015] [Accepted: 07/01/2015] [Indexed: 06/04/2023]
Abstract
Our study explored the effect of dietary thiamin on growth and immunity (intestine, head kidney, spleen and liver) of young grass carp (Ctenopharyngodon idella). Fish were fed diets containing six graded levels of thiamin at 0.12-2.04 mg/kg diet for 8 weeks. The percentage weight gain (PWG), feed intake and feed efficiency were lower in fish fed the 0.12 mg/kg diet. Thiamin deficiency decreased complement 3 content, lysozyme (LA) and acid phosphatase activities, mRNA levels of hepcidin and interleukin (IL) 10, elevated mRNA levels of interferon γ2, tumor necrosis factor α, IL-1β and IL-8 in intestine, head kidney, spleen and liver. The mRNA levels of inhibitor protein-κBα, target of rapamycin (TOR) and NF-E2-related factor 2 (Nrf2), the activities and mRNA levels of copper/zinc superoxide dismutase, manganese superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase and glutathione reductase were down-regulated, mRNA levels of myosin light-chain kinase (MLCK), IκB kinases (IKKβ and IKKγ), nuclear factor κB P65 (NF-κB P65) and Kelch-like-ECH-associated protein 1a (Keap1a) were up-regulated in the intestine of fish fed the thiamin-deficient diet. Additionally, thiamin deficiency decreased claudin b, c and 3, ZO-1 and occludin mRNA levels in each intestinal segment, increased claudin 12 and claudin 15a mRNA levels in distal intestine. In conclusion, thiamin deficiency decreased fish growth and immunity of intestine, head kidney, spleen and liver. The dietary thiamin requirement of young grass carp (242-742 g) based on intestinal LA activity or PWG were determined to be 1.15 or 0.90 mg/kg diet, respectively.
Collapse
Affiliation(s)
- Ling-Mei Wen
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Juan Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Wu-Neng Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China.
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
25
|
Zhan XL, Ma TY, Wu JY, Yi LY, Wang JY, Gao XK, Li WS. Cloning and primary immunological study of TGF-β1 and its receptors TβR I /TβR II in tilapia(Oreochromis niloticus). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 51:134-140. [PMID: 25819083 DOI: 10.1016/j.dci.2015.03.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 03/18/2015] [Accepted: 03/18/2015] [Indexed: 06/04/2023]
Abstract
The transforming growth factor β (TGF-β) superfamily plays critical roles in tumor suppression, cell proliferation and differentiation, tissue morphogenesis, lineage determination, cell migration and apoptosis. Recently, TGF-β1, one important member of TGF-β superfamily, is suggested as an immune regulator in the teleost. In this study, we cloned the cDNAs of TGF-β1 and its receptors, TβR I and TβR II (including three isoforms) from tilapia (Genbank accession numbers: KP754231- KP754235). A tissue distribution profile analysis indicated that TGF-β1 was highly expressed in the head kidney, gill, spleen, kidney and PBLs (peripheral blood leukocytes); TβR I only showed considerable expression in the liver; and TβR II-2 was highly expressed in the kidney, gill, liver, head kidney and heart. We determined that the mRNA expressions of TGF-β and TβR I /TβR II-2 were significantly increased in tilapia head kidney and spleen leukocytes by the stimulation of Lipopolysaccharide (LPS) or Poly I: C. We also examined their expressions in the spleen and head kidney of tilapia after IP injection of streptococcus agalactiae. The results showed that the mRNA expressions of these three genes all increased in the head kidney as early as 6 h post infection, and in the spleen 3 d post infection. In addition, the protein level of TGF-β1 was also up-regulated in the head kidney and the spleen after infection. Taken together, our data indicate that the TGF-β1-TβR I /TβR II-2 system functions potentially in tilapia immune system.
Collapse
Affiliation(s)
- Xu-liang Zhan
- State Key Laboratory Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Tai-yang Ma
- State Key Laboratory Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jin-ying Wu
- State Key Laboratory Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| | - Li-yuan Yi
- State Key Laboratory Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jing-yuan Wang
- State Key Laboratory Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiao-ke Gao
- State Key Laboratory Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Wen-sheng Li
- State Key Laboratory Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
26
|
Wang Y, Wei H, Wang X, Du L, Zhang A, Zhou H. Cellular activation, expression analysis and functional characterization of grass carp IκBα: evidence for its involvement in fish NF-κB signaling pathway. FISH & SHELLFISH IMMUNOLOGY 2015; 42:408-412. [PMID: 25434741 DOI: 10.1016/j.fsi.2014.11.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 11/19/2014] [Accepted: 11/20/2014] [Indexed: 06/04/2023]
Abstract
IκBα is a well-known member of the inhibitors of kappa B (IκB) family that controls NF-κB signaling by blocking NF-κB translocation from cytoplasm to nucleus. In the present study, an IκBα homologue was identified from grass carp (gcIκBα), showing the structural characteristics of IκB family. Moreover, mRNA expression of this molecule in grass carp periphery blood lymphocytes (PBLs) was enhanced significantly by both LPS and PHA in a time- and dose-dependent manner, indicating the involvement of gcIκBα in fish immune response. Further analysis demonstrated that LPS but not PHA induced gcIκBα phosphorylation and protein degradation in PBLs, implying different signaling pathways mediated by LPS and PHA in gcIκBα expression regulation in grass carp PBLs. In particular, the time-dependent oscillation of gcIκBα phosphorylation and total protein levels induced by LPS is in accordance with the characteristics of mammalian IκBα phosphorylation followed by protein degradation during NF-κB activation. In support of this notion, overexpression of gcIκBα was able to block both basal and LPS-stimulated NF-κB activity in grass carp kidney cell line, indicating the negatively regulatory role of gcIκBα in NF-κB activity as seen in mammals. Therefore, our results not only reveal a dynamic variation of NF-κB activity based on the activation and expression of IκBα for the first time, but also provide the direct evidence for the involvement of IκBα in NF-κB signaling in fish immune cells.
Collapse
Affiliation(s)
- Yanan Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - He Wei
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Xinyan Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Linyong Du
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Anying Zhang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Hong Zhou
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China.
| |
Collapse
|
27
|
Chen D, Zhang Z, Yao H, Cao Y, Xing H, Xu S. Pro- and anti-inflammatory cytokine expression in immune organs of the common carp exposed to atrazine and chlorpyrifos. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2014; 114:8-15. [PMID: 25175644 DOI: 10.1016/j.pestbp.2014.07.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 07/26/2014] [Accepted: 07/27/2014] [Indexed: 06/03/2023]
Abstract
Atrazine (ATR) and chlorpyrifos (CPF) are toxic and subject to long-term in vivo accumulation in different aquatic species throughout the world. The purpose of the present study was to examine the effect of ATR, CPF and combined ATR/CPF exposure on cytokines in the head kidney and spleen of common carp (Cyprinus carpio L.). The carp were sampled after a 40-d exposure to CPF and ATR, individually or in combination, followed by a 40-d recovery to measure the mRNA expression of IL-6fam (IL-6), IL-8, TNF-α, IL-10 and TGF-β1 (TGF-β) in the head kidney and spleen tissues. These results showed that the expression of cytokines IL-6, IL-8 and TNF-α in the head kidney and spleen was upregulated following ATR, CPF and mixed ATR/CPF exposure compared with the control group. The expression of IL-10 and TGF-β mRNA was significantly inhibited in both head kidney and spleen of carp exposed to ATR, CPF and the ATR/CPF mixture. The results suggested that long-term exposure of ATR, CPF and the ATR/CPF mixture in aquatic environments can induce the dysregulation of pro-/anti-inflammatory cytokine expression. The information regarding the effects of ATR and CPF on cytokine mRNA expression generated in this study will be important information for pesticides toxicology evaluation.
Collapse
Affiliation(s)
- Dechun Chen
- College of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Harbin 150030, China; Department of Biological Engineering, Jilin Engineering Vocational College, 1299 Changfa Road, Siping 136001, China
| | - Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Harbin 150030, China
| | - Haidong Yao
- College of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Harbin 150030, China
| | - Ye Cao
- College of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Harbin 150030, China
| | - Houjuan Xing
- College of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Harbin 150030, China; Animal Health Supervision Institute of Heilongjiang Province, 243 Haping Road, Xiangfang District, Harbin 150069, China.
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Harbin 150030, China.
| |
Collapse
|
28
|
Yao F, Liu Y, Du L, Wang X, Zhang A, Wei H, Zhou H. Molecular identification of transcription factor Runx1 variants in grass carp (Ctenopharyngodon idella) and their responses to immune stimuli. Vet Immunol Immunopathol 2014; 160:201-8. [PMID: 25001908 DOI: 10.1016/j.vetimm.2014.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/03/2014] [Accepted: 05/08/2014] [Indexed: 10/25/2022]
Abstract
The Runt-related transcription factor (Runx) family consists of three members, Runx1, Runx2 and Runx3 in mammals, which are involved in various biological processes. Recent studies have demonstrated that Runx1 plays critical roles in the immunity of higher vertebrates. In fish, zebrafish and fugu Runx family members have been identified, and their chromosome location, promoter usage and expression patterns have been elucidated. However, their expression profiles in immune responses are still unknown. In this study, we identified grass carp five Runx1 (gcRunx1) variants (v1-5) possibly generated through alternative promoter usage and alternative splicing. The gcRunx1 v1-3 encodes the proteins possessing intact structural characteristics of Runx family, but the putative proteins of gcRunx1 v4-5 lack a transactivation domain, an inhibitory domain and a C-terminal pentapeptide motif (VWRPY). Tissue distribution assays revealed that gcRunx1 was preferentially expressed in some immune-related tissues including thymus and spleen, indicating its potential roles in teleost immunity. The changes of gcRunx1 expression to various immune stimuli was examined in periphery blood lymphocytes, showing that gcRunx1 v1-3 mRNA levels were increased after LPS, poly I:C and PHA treatment, whereas gcRunx1 v4-5 mRNA expression were stimulated only by LPS and PHA. Furthermore, in vivo studies confirmed that bacterial challenge enhanced gcRunx1 mRNA levels. In particular, in vitro and in vivo studies revealed that gcRunx1 v4-5 mRNA expression was induced with a delayed kinetics compared with that of gcRunx1 v1-3. These findings not only provide the evidence for the involvement of gcRunx1 in immune response, but also reveal the inducible expression diversity of fish Runx1 splicing variants, thereby facilitating further elucidating the role of Runx1 in piscine immunity.
Collapse
Affiliation(s)
- Fuli Yao
- School of Life Science and Technology, University of Electronic Science and Technology of China, No. 4, Section 2, North Jianshe Road, Chengdu 610054, Sichuan, People's Republic of China
| | - Yazhen Liu
- School of Life Science and Technology, University of Electronic Science and Technology of China, No. 4, Section 2, North Jianshe Road, Chengdu 610054, Sichuan, People's Republic of China
| | - Linyong Du
- School of Life Science and Technology, University of Electronic Science and Technology of China, No. 4, Section 2, North Jianshe Road, Chengdu 610054, Sichuan, People's Republic of China
| | - Xinyan Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, No. 4, Section 2, North Jianshe Road, Chengdu 610054, Sichuan, People's Republic of China
| | - Anying Zhang
- School of Life Science and Technology, University of Electronic Science and Technology of China, No. 4, Section 2, North Jianshe Road, Chengdu 610054, Sichuan, People's Republic of China
| | - He Wei
- School of Life Science and Technology, University of Electronic Science and Technology of China, No. 4, Section 2, North Jianshe Road, Chengdu 610054, Sichuan, People's Republic of China
| | - Hong Zhou
- School of Life Science and Technology, University of Electronic Science and Technology of China, No. 4, Section 2, North Jianshe Road, Chengdu 610054, Sichuan, People's Republic of China.
| |
Collapse
|
29
|
Wang S, Li F, Hu L, Liu S, Li H, Zhang S. Structural and functional characterization of a TGFβ molecule from amphioxus reveals an ancient origin of both immune-enhancing and -inhibitory functions. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 45:219-226. [PMID: 24657208 DOI: 10.1016/j.dci.2014.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 03/08/2014] [Accepted: 03/10/2014] [Indexed: 06/03/2023]
Abstract
Transforming growth factor beta (TGFβ) is a pleiotropic cytokine with important roles in mediating inflammatory response. TGFβ has been shown to be widely present in invertebrates, but little is known about its functions in immune and inflammatory responses. Moreover, structural and functional insights into TGFβ molecules in invertebrates remain completely lacking. Here we demonstrate the presence of a single TGFβ-like gene in the amphioxus Branchiostoma japonicum, Bjtgfβ, which represents the archetype of vertebrate TGFβ proteins, and displays a higher expression in the hind-gut, hepatic caecum, ovary, and gill. We also show that amphioxus TGFβ exerts both enhancing and suppressing effects on the migration of macrophages like RAW264.7, and the motif WSTD is important for TGFβ in inducing or inhibiting the migration of macrophages. Altogether, these data suggest that amphioxus TGFβ is phylogenetically and functionally similar to vertebrate TGFβ, suggesting an ancient origin of bipolar function of TGFβ proteins.
Collapse
Affiliation(s)
- Shengnan Wang
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Fengzhen Li
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Lili Hu
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Shousheng Liu
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Hongyan Li
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Shicui Zhang
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity, Department of Marine Biology, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
30
|
Schmidt JG, Nielsen ME. Expression of immune system-related genes during ontogeny in experimentally wounded common carp (Cyprinus carpio) larvae and juveniles. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 42:186-196. [PMID: 24064235 DOI: 10.1016/j.dci.2013.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 09/11/2013] [Accepted: 09/12/2013] [Indexed: 06/02/2023]
Abstract
We investigated the effect of full-thickness incisional wounding on expression of genes related to the immune system in larvae and juveniles of common carp (Cyprinus carpio). The wounds were inflicted by needle puncture immediately below the anterior part of the dorsal fin on days 7, 14, 28 and 49 after fertilization. We followed the local gene expression 1, 3 and 7 days after wounding by removing head and viscera before extracting RNA from the remaining part of the fish, including the wound area. In addition, we visually followed wound healing. Overall the wounds had regenerated to a point where they were microscopically indistinguishable from normal tissue by day 3 post-wounding in all but the juvenile carp wounded on day 49 post-fertilization. In these juveniles the wounded area was still visible even 7 days post-wounding. On the transcriptional level a very limited response was observed in the investigated genes as a result of the wounding. HSP70 was downregulated 1 and 3 days post-wounding in the smallest larvae. However, HSP70 was differentially expressed at different time-points in a similar manner in wounded and mock-wounded groups, thus suggesting a stress effect of the handling, which may have overshadowed some transcriptional effects of the wounding. MMP-9, TGF-β1 and IgZ1 were slightly but significantly upregulated at few time-points, while no effect of wounding was detected on the expression of IgM, C3, IL-1β and IL-6 family member M17.
Collapse
Affiliation(s)
- Jacob G Schmidt
- Technical University of Denmark, National Food Institute, Biological Quality Research Group, Division of Toxicology and Risk Assessment, Mørkhøj Bygade 19, Building FG, 2860 Søborg, Denmark
| | | |
Collapse
|
31
|
Li YW, Wang JX, Yin X, Qiu SJ, Wu H, Liao R, Yi Y, Xiao YS, Zhou J, Zhang BH, Fan J. Decreased expression of GATA2 promoted proliferation, migration and invasion of HepG2 in vitro and correlated with poor prognosis of hepatocellular carcinoma. PLoS One 2014; 9:e87505. [PMID: 24498120 PMCID: PMC3907524 DOI: 10.1371/journal.pone.0087505] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 12/26/2013] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND GATA family of transcription factors are critical for organ development and associated with progression of various cancer types. However, their expression patterns and prognostic values for hepatocellular carcinoma (HCC) are still largely unknown. METHODS Expression of GATA transcription factors in HCC cell lines and tissues (n = 240) were evaluated by RT-qPCR, western blot and immunohistochemistry. Cellular proliferation, migration and invasion of HepG2 was evaluated by CCK-8 kit, scratch wound assay and transwell matrigel invasion assay, respectively. RESULTS GATA2 expression was decreased in HCC cell lines (p = 0.056 for mRNA, p = 0.040 for protein) and tissues (p = 1.27E-25) compared with normal hepatocytes. Decreased expression of intratumoral GATA2 protein significantly correlated with elevated alpha feto-protein (p = 2.7E-05), tumor size >5 cm (p = 0.049), absence of tumor capsule (p = 0.002), poor differentiation (p = 0.005), presence of tumor thrombi (p = 0.005) and advanced TNM stage (p = 0.001) and was associated with increased recurrence rate and decreased overall survival rate by univariate (p = 1.6E-04 for TTR, p = 1.7E-04 for OS) and multivariate analyses (HR = 0.63, 95% CI = 0.43-0.90, p = 0.012 for TTR; HR = 0.67, 95% CI = 0.47-0.95, p = 0.026 for OS). RNAi-mediated knockdown of GATA2 expression significantly enhanced proliferation, migration and invasion of HepG2 cell in vitro. CONCLUSIONS Decreased expression of hematopoietic factor GATA2 was associated with poor prognosis of HCC following resection.
Collapse
Affiliation(s)
- Yi-Wei Li
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Jia-Xing Wang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Xin Yin
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Shuang-Jian Qiu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
- Biomedical Research Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Han Wu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Rui Liao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Yong Yi
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Yong-Sheng Xiao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Jian Zhou
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Bo-Heng Zhang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Jia Fan
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
- Institute of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
32
|
Wang T, Secombes CJ. The cytokine networks of adaptive immunity in fish. FISH & SHELLFISH IMMUNOLOGY 2013; 35:1703-1718. [PMID: 24036335 DOI: 10.1016/j.fsi.2013.08.030] [Citation(s) in RCA: 213] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 08/30/2013] [Accepted: 08/31/2013] [Indexed: 05/28/2023]
Abstract
Cytokines, produced at the site of entry of a pathogen, drive inflammatory signals that regulate the capacity of resident and newly arrived phagocytes to destroy the invading pathogen. They also regulate antigen presenting cells (APCs), and their migration to lymph nodes to initiate the adaptive immune response. When naive CD4+ T cells recognize a foreign antigen-derived peptide presented in the context of major histocompatibility complex class II on APCs, they undergo massive proliferation and differentiation into at least four different T-helper (Th) cell subsets (Th1, Th2, Th17, and induced T-regulatory (iTreg) cells in mammals. Each cell subset expresses a unique set of signature cytokines. The profile and magnitude of cytokines produced in response to invasion of a foreign organism or to other danger signals by activated CD4+ T cells themselves, and/or other cell types during the course of differentiation, define to a large extent whether subsequent immune responses will have beneficial or detrimental effects to the host. The major players of the cytokine network of adaptive immunity in fish are described in this review with a focus on the salmonid cytokine network. We highlight the molecular, and increasing cellular, evidence for the existence of T-helper cells in fish. Whether these cells will match exactly to the mammalian paradigm remains to be seen, but the early evidence suggests that there will be many similarities to known subsets. Alternative or additional Th populations may also exist in fish, perhaps influenced by the types of pathogen encountered by a particular species and/or fish group. These Th cells are crucial for eliciting disease resistance post-vaccination, and hopefully will help resolve some of the difficulties in producing efficacious vaccines to certain fish diseases.
Collapse
Affiliation(s)
- Tiehui Wang
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK.
| | | |
Collapse
|
33
|
Cytokine mediated immune responses in the Japanese pufferfish (Takifugu rubripes) administered with heat-killed Lactobacillus paracasei spp. paracasei (06TCa22) isolated from the Mongolian dairy product. Int Immunopharmacol 2013; 17:358-65. [DOI: 10.1016/j.intimp.2013.06.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 06/13/2013] [Accepted: 06/26/2013] [Indexed: 11/18/2022]
|
34
|
Zhang A, Fu J, Ning B, Li D, Sun N, Wei W, Wei J, Ju X. Tolerogenic dendritic cells generated with IL-10/TGFβ1 relieve immune thrombocytopenia in mice. Thromb Res 2013; 132:63-8. [DOI: 10.1016/j.thromres.2013.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 03/02/2013] [Accepted: 04/01/2013] [Indexed: 01/22/2023]
|
35
|
Biswas G, Korenaga H, Nagamine R, Takayama H, Kawahara S, Takeda S, Kikuchi Y, Dashnyam B, Kono T, Sakai M. Cytokine responses in the Japanese pufferfish (Takifugu rubripes) head kidney cells induced with heat-killed probiotics isolated from the Mongolian dairy products. FISH & SHELLFISH IMMUNOLOGY 2013; 34:1170-1177. [PMID: 23422813 DOI: 10.1016/j.fsi.2013.01.024] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 01/16/2013] [Accepted: 01/27/2013] [Indexed: 06/01/2023]
Abstract
Cytokine responses in the Japanese pufferfish (Takifugu rubripes) head kidney (HK) cells to heat-killed lactic acid bacteria probiotics isolated from the Mongolian dairy products were investigated by transcriptomic examination. The HK cells were incubated with two heat-killed bacteria, namely Lactobacillus paracasei spp. paracasei (strain 06TCa22) and L. plantarum (strain 06CC2) and the responses of 16 cytokine genes at 0 (control), 1, 4, 8, 12, 24 and 48 h post-stimulation were assayed by multiplex RT-PCR analysis (GenomeLab Genetic Analysis System, GeXPS; Beckman Coulter, Inc.). The 16 genes included in the assay were pro-inflammatory cytokines (IL-1β, IL-6, IL-17A/F-3, TNF-α and TNF-N), cell-mediated immune regulators (IL-12p35, IL-12p40 and IL-18), antiviral (I-IFN-1 and IFN-γ) and other regulatory (IL-2, IL-7, IL-15, IL-21, IL-10 and TGF-β1) cytokines. Despite the differences in the transcriptional profiles, expression of all the cytokines tested here was significantly elevated by both the probiotic bacterial stimulants compared with the unstimulated control. Therefore, this in vitro study has demonstrated the modulation of cytokine defense mechanisms in the HK cells by the two heat-killed probiotics indicating their potentiality as novel immunostimulants to fish. However, strain-dependent varied expression of important cytokines (cell-mediated immune regulators, antiviral and anti-inflammatory cytokines) suggests better efficacy of L. paracasei spp. paracasei strain as fish immunostimulant. Further in vivo studies to elucidate the cytokine regulation networks will validate our present observations. A careful evaluation of ant-inflammatory properties may be undertaken using single strain to affirm the immunostimulatory capability. Moreover, application timings and frequency to assess the longevity of immunostimulant effects and to make the application cost-effective need to be evaluated before any practical use in aquaculture.
Collapse
Affiliation(s)
- G Biswas
- Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Functional expression and characterization of grass carp IL-10: An essential mediator of TGF-β1 immune regulation in peripheral blood lymphocytes. Mol Immunol 2013; 53:313-20. [DOI: 10.1016/j.molimm.2012.08.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Revised: 08/14/2012] [Accepted: 08/18/2012] [Indexed: 11/20/2022]
|
37
|
Zhu LY, Nie L, Zhu G, Xiang LX, Shao JZ. Advances in research of fish immune-relevant genes: a comparative overview of innate and adaptive immunity in teleosts. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 39:39-62. [PMID: 22504163 DOI: 10.1016/j.dci.2012.04.001] [Citation(s) in RCA: 331] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2011] [Revised: 03/18/2012] [Accepted: 04/05/2012] [Indexed: 05/31/2023]
Abstract
Fish is considered to be an important model in comparative immunology studies because it is a representative population of lower vertebrates serving as an essential link to early vertebrate evolution. Fish immune-relevant genes have received considerable attention due to its role in improving understanding of both fish immunology and the evolution of immune systems. In this review, we discuss the current understanding of teleost immune-relevant genes for both innate and adaptive immunity, including pattern recognition receptors, antimicrobial peptides, complement molecules, lectins, interferons and signaling factors, inflammatory cytokines, chemokines, adaptive immunity relevant cytokines and negative regulators, major histocompatibility complexes, immunoglobulins, and costimulatory molecules. The implications of these factors on the evolutionary history of immune systems were discussed and a perspective outline of innate and adaptive immunity of teleost fish was described. This review may provide clues on the evolution of the essential defense system in vertebrates.
Collapse
Affiliation(s)
- Lv-yun Zhu
- College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | | | | | | | | |
Collapse
|
38
|
Kono T, Takayama H, Nagamine R, Korenaga H, Sakai M. Establishment of a multiplex RT-PCR assay for the rapid detection of fish cytokines. Vet Immunol Immunopathol 2012; 151:90-101. [PMID: 23237907 DOI: 10.1016/j.vetimm.2012.10.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 10/19/2012] [Accepted: 10/30/2012] [Indexed: 02/07/2023]
Abstract
To monitor the expression of cytokine genes in Japanese pufferfish, a novel platform for quantitative multiplexed analysis was developed. This custom-designed multiplex RT-PCR assay was used to analyze the expression profiles of 19 cytokine genes, including pro-inflammatory (IL-1β, IL-6, IL-17A/F3, IL-18, TNF-α, TNF-N), anti-inflammatory (IL-4/13A, IL-4/13B, IL-10), T-cell proliferation/differentiation (IL-2, IL-15, IL-21, TGF-β1), B-cell activation/differentiation (IL-7, IL-6, IL-4/13A, IL-4/13B), NK cell stimulation (IL-12p35 and IL-12p40), induction of anti-viral activity (I-IFN-1 and IFN-γ), and monocyte/macrophage progenitor cell proliferation (M-CSF1b) cytokines in head kidney cells under immune stimulatory conditions. The expression profiles were dissimilar in the unstimulated control and immune-stimulated cells. Moreover, increased expression profile was observed due to different stimulations for IL-1β, IL-6, IL-10, IL-12p35, IL-12p40, IL-21, TNF-α, TNF-N, I-IFN-1 and IFN-γ genes. These results suggest that cytokine genes could be used as biomarkers to know the immune status of fish. The constructed multiplex RT-PCR assay will enhance understanding on immune regulation by cytokines in fish.
Collapse
Affiliation(s)
- Tomoya Kono
- Interdisciplinary Research Organization, University of Miyazaki, 1-1 Gakuen kibanadai-nishi, Miyazaki 889-2192, Japan.
| | | | | | | | | |
Collapse
|
39
|
Yan Y, He T, Shen Y, Chen X, Diao B, Li Z, Liu Q, Xing YQ. Adenoviral 15-lipoxygenase-1 gene transfer inhibits hypoxia-induced proliferation of retinal microvascular endothelial cells in vitro. Int J Ophthalmol 2012; 5:562-9. [PMID: 23166865 DOI: 10.3980/j.issn.2222-3959.2012.05.04] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 10/10/2012] [Indexed: 11/02/2022] Open
Abstract
AIM To investigate whether 15-Lipoxygenase-1 (15-LOX-1) plays an important role in the regulation of angiogenesis, inhibiting hypoxia-induced proliferation of retinal microvascular endothelial cells (RMVECs) and the underlying mechanism. METHODS Primary RMVECs were isolated from the retinas of C57/BL6J mice and identified by an evaluation for FITC-marked CD31. The hypoxia models were established with the Bio-bag and evaluated with a blood-gas analyzer. Experiments were performed using RMVECs treated with and without transfer Ad-15-LOX-1 or Ad-vector both under hypoxia and normoxia condition at 12, 24, 48, 72 hours. The efficacy of the gene transfer was assessed by immunofluorescence staining. Cells proliferation was evaluated by the CCK-8 method. RNA and protein expressions of 15-LOX-1, VEGF-A, VEGFR-2, eNOs and PPAR-r were analyzed by real-time reverse transcription polymerase chain reaction (RT-PCR) and Western blot. RESULTS Routine evaluation for FITC-marked CD31 showed that cells were pure. The results of blood-gas analysis showed that when the cultures were exposed to hypoxia for more than 2 hours, the Po2 was 4.5 to 5.4 Kpa. We verified RMVECs could be infected with Ad-15-LOX-1 or Ad-vector via Fluorescence microscopy. CCK-8 analysis revealed that the proliferative capacities of RMVECs in hypoxic group were significantly higher at each time point than they were in normoxic group (P<0.05). In a hypoxic condition, the proliferative capacities of RMVECs in 15-LOX-1 group were significantly inhibited (P<0.05). Real-time RT-PCR analysis revealed that the expressions of VEGF-A, VEGF-R2 and eNOs mRNA increased in hypoxia group compared with normoxia group (P<0.01). However, the expressions of 15-LOX-1, PPAR-r mRNA decreased in hypoxia group compared with normoxia group (P<0.01). It also showed that in a hypoxic condition, the expressions of VEGF-A, VEGF-R2 and eNOs mRNA decreased significantly in 15-LOX-1 group compared with hypoxia group (P<0.01). However, 15-LOX-1 and PPAR-r mRNA increased significantly in 15-LOX-1 group compared with hypoxia group (P<0.01). There was no significant difference of the mRNA expressions between vector group and hypoxia group (P>0.05). Western blot analysis revealed that the expressions of relative proteins were also ranked in that order. CONCLUSION Our results suggested that 15-LOX-1 and PPAR-r might act as a negative regulator of retinal angiogenesis. And the effect of 15-LOX-1 overexpression is an anti-angiogenic factor in hypoxia-induced retinal neovascularization (RNV). Overexpression 15-LOX-1 on RMVECs of hypoxia-induced RNV blocked signaling cascades by inhibiting hypoxia-induced increases in VEGF family. PPAR-r effect on VEGFR(2) could be an additional mechanism whereby 15-LOX-1 inhibited the hypoxia-induced RNV.
Collapse
Affiliation(s)
- Ying Yan
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China ; Department of Ophthalmology, Wuhan General Hospital of Guangzhou Military Command of Chinese PLA, Wuhan 430070, Hubei Province, China
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Yang M, Wei H, Zhao T, Wang X, Zhang A, Zhou H. Characterization of Foxp3 gene from grass carp (Ctenopharyngodon idellus): a rapamycin-inducible transcription factor in teleost immune system. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 38:98-107. [PMID: 22613483 DOI: 10.1016/j.dci.2012.04.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 04/20/2012] [Accepted: 04/24/2012] [Indexed: 06/01/2023]
Abstract
In this study, we cloned grass carp foxp3 (gcfoxp3) gene including 5' flanking region and determined its expression profiles in vivo under immunosuppressive conditions. Sequence analysis revealed that the promoter of gcfoxp3 contains AP-1, AML-1/Runx1, NF-κb and GATA-3 binding sites, which positively or negatively regulate mammalian foxp3 expression. In addition, the intron II of gcfoxp3 contains some putative binding sites including AP-1, NFAT, Smad3, RAR, CREB/ATF and FOXO1, which are corresponding to their locations in the proximal intronic enhancers of human foxp3. In an in vivo model of grass carp, an immunosuppressive agent rapamycin was showed to stimulate gcfoxp3 mRNA expression in thymus, gill, head kidney and spleen after bacterial challenge. Moreover, rapamycin increased gcFoxp3 protein levels with an additive manner in the infected fish. These findings support the involvement of fish Foxp3 in immune response and highlight a possible signaling pathway that regulates teleost Foxp3 expression.
Collapse
Affiliation(s)
- Mu Yang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | | | | | | | | | | |
Collapse
|
41
|
Du L, Yang X, Yang L, Wang X, Zhang A, Zhou H. Molecular evidence for the involvement of RORα and RORγ in immune response in teleost. FISH & SHELLFISH IMMUNOLOGY 2012; 33:418-426. [PMID: 22683816 DOI: 10.1016/j.fsi.2012.05.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 05/07/2012] [Accepted: 05/29/2012] [Indexed: 06/01/2023]
Abstract
In mammals, retinoid-related orphan receptors (ROR) consist of three members as RORα, RORβ and RORγ. It is well known that RORα plays a critical role in cerebellum development while RORγt directs T helper 17 (Th17) cell differentiation. So far, the knowledge on fish ROR family is limited as only zebrafish ROR family members have been characterized, showing that they play roles in embryonic and cerebellar development. In this study, we have cloned two paralogues for RORα (RORα1 and RORα2) and RORγ (RORγ1 and RORγ2) from grass carp (Ctenopharyngodon idellus). Phylogenetic analysis showed that grass carp RORα and RORγ were grouped in the clade of zebrafish RORα and RORγ, respectively. Real-time RT-PCR assay revealed that these four ROR transcripts exhibited similar expression patterns, in particular the high levels in pituitary, brain and some immune-related tissues, suggesting that all of them may play a role in endocrine and immune system of teleost. To explore the immune roles of grass carp RORα and RORγ, their expression was detected in periphery blood lymphocytes (PBLs) challenged by immune stimuli. Results showed that both RORα and RORγ mRNA levels were up-regulated by PHA but not LPS in PBLs, suggesting that their expression may be subject to different immune processes. In the same cell model, poly I:C stimulation induced RORγ1/2 but not RORα1/2 expression, pointing to the different roles of grass carp RORα and RORγ in immune response. Consistently, bacterial challenge significantly up-regulated the expression of these four ROR genes in spleen, headkidney and thymus. These results not only contribute to elucidate the roles of ROR in fish immunity but also facilitate to further clarify the existence of Th17-like cells in fish.
Collapse
Affiliation(s)
- Linyong Du
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | | | | | | | | | | |
Collapse
|
42
|
Pierrard MA, Roland K, Kestemont P, Dieu M, Raes M, Silvestre F. Fish peripheral blood mononuclear cells preparation for future monitoring applications. Anal Biochem 2012; 426:153-65. [DOI: 10.1016/j.ab.2012.04.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 03/19/2012] [Accepted: 04/04/2012] [Indexed: 01/08/2023]
|
43
|
Maehr T, Wang T, González Vecino JL, Wadsworth S, Secombes CJ. Cloning and expression analysis of the transforming growth factor-beta receptors type 1 and 2 in the rainbow trout Oncorhynchus mykiss. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 37:115-126. [PMID: 22057119 DOI: 10.1016/j.dci.2011.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 10/07/2011] [Accepted: 10/09/2011] [Indexed: 05/31/2023]
Abstract
Transforming growth factor-β (TGF-β) binding to the TGF-β type I (TGFBR1) and type II (TGFBR2) receptors delivers a plethora of cell-type specific effects. Moreover, the responses to TGF-β are tuned by regulatory mechanisms at the receptor level itself. To further elucidate TGF-β family signal transduction in teleosts, we therefore cloned the first complete set of a putative TGF-β receptor complex in salmonids. Rainbow trout TGFBR1 and TGFBR2 are transmembrane proteins with a serine/threonine kinase domain and are highly conserved within vertebrates. High expression levels in muscle and brain indicate regulation of the TGF-β system in muscular and nervous systems. Lipopolysaccharide (LPS) induced expression of both receptor chains in RTgill cells while bacterial and viral mimics modulated the two receptors inversely in head kidney (HK) macrophages. In addition, T cell mitogens lowered receptor levels in HK leukocytes. These data provide the first insights into TGF-β type I and II receptor modulation during immune responses in teleost fish.
Collapse
Affiliation(s)
- Tanja Maehr
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | | | | | | | | |
Collapse
|
44
|
Recombinant medaka (Oryzias melastigmus) pro-hepcidin: Multifunctional characterization. Comp Biochem Physiol B Biochem Mol Biol 2012; 161:140-7. [DOI: 10.1016/j.cbpb.2011.10.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 10/15/2011] [Accepted: 10/19/2011] [Indexed: 11/23/2022]
|
45
|
Laing KJ, Hansen JD. Fish T cells: recent advances through genomics. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:1282-1295. [PMID: 21414347 DOI: 10.1016/j.dci.2011.03.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2010] [Revised: 01/14/2011] [Accepted: 03/06/2011] [Indexed: 05/30/2023]
Abstract
This brief review is intended to provide a concise overview of the current literature concerning T cells, advances in identifying distinct T cell functional subsets, and in distinguishing effector cells from memory cells. We compare and contrast a wealth of recent progress made in T cell immunology of teleost, elasmobranch, and agnathan fish, to knowledge derived from mammalian T cell studies. From genome studies, fish clearly have most components associated with T cell function and we can speculate on the presence of putative T cell subsets, and the ability to detect their differentiation to form memory cells. Some recombinant proteins for T cell associated cytokines and antibodies for T cell surface receptors have been generated that will facilitate studying the functional roles of teleost T cells during immune responses. Although there is still a long way to go, major advances have occurred in recent years for investigating T cell responses, thus phenotypic and functional characterization is on the near horizon.
Collapse
Affiliation(s)
- Kerry J Laing
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer, Research Center, Seattle, WA 98109, USA
| | | |
Collapse
|
46
|
Funkenstein B, Olekh E, Jakowlew SB. Identification of a novel transforming growth factor-beta (TGF-beta6) gene in fish: regulation in skeletal muscle by nutritional state. BMC Mol Biol 2010; 11:37. [PMID: 20459854 PMCID: PMC2881917 DOI: 10.1186/1471-2199-11-37] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Accepted: 05/12/2010] [Indexed: 12/16/2022] Open
Abstract
Background The transforming growth factor-β (TGF-β) family constitutes of dimeric proteins that regulate the growth, differentiation and metabolism of many cell types, including that of skeletal muscle in mammals. The potential role of TGF-βs in fish muscle growth is not known. Results Here we report the molecular characterization, developmental and tissue expression and regulation by nutritional state of a novel TGF-β gene from a marine fish, the gilthead sea bream Sparus aurata. S. aurata TGF-β6 is encoded by seven exons 361, 164, 133, 111, 181, 154, and 156 bp in length and is translated into a 420-amino acid peptide. The exons are separated by six introns: >643, 415, 93, 1250, 425 and >287 bp in length. Although the gene organization is most similar to mouse and chicken TGF-β2, the deduced amino acid sequence represents a novel TGF-β that is unique to fish that we have named TGF-β6. The molecule has conserved putative functional residues, including a cleavage motif (RXXR) and nine cysteine residues that are characteristic of TGF-β. Semi-quantitative analysis of TGF-β6 expression revealed differential expression in various tissues of adult fish with high levels in skin and muscle, very low levels in liver, and moderate levels in other tissues including brain, eye and pituitary. TGF-β6 is expressed in larvae on day of hatching and increases as development progresses. A fasting period of five days of juvenile fish resulted in increased levels of TGF-β6 expression in white skeletal muscle compared to that in fed fish, which was slightly attenuated by one injection of growth hormone. Conclusion Our findings provide valuable insights about genomic information and nutritional regulation of TGF-β6 which will aid the further investigation of the S. aurata TGF-β6 gene in association with muscle growth. The finding of a novel TGF-β6 molecule, unique to fish, will contribute to the understanding of the evolution of the TGF-β family of cytokines in vertebrates.
Collapse
Affiliation(s)
- Bruria Funkenstein
- National Institute of Oceanography, Israel Oceanographic and Limnological Research, Tel Shikmona, POB 8030, Haifa 31080, Israel.
| | | | | |
Collapse
|
47
|
Cai Z, Gao C, Li L, Xing K. Bipolar properties of red seabream (Pagrus major) transforming growth factor-beta in induction of the leucocytes migration. FISH & SHELLFISH IMMUNOLOGY 2010; 28:695-700. [PMID: 20109559 DOI: 10.1016/j.fsi.2010.01.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 01/07/2010] [Accepted: 01/20/2010] [Indexed: 05/28/2023]
Abstract
TGF-beta is one of the pleiotropic cytokines and plays a pivotal role in immune regulation and orchestrating the subsequent healing response. Recombinant red seabream TGF-beta (rTGF-beta) mature peptide was expressed and purified under native conditions in vitro. Bio-assay showed that the rTGF-beta could significantly induce head kidney (HK) and peripheral blood (PB) leucocytes migration in a dose dependent manner, whereas the rTGF-beta suppressed HK and PB leucocyte migration when the leucocytes was activated by primed with lipopolysaccharide (LPS). Both enhancing and suppressing roles of rTGF-beta on the HKL and PBL chemotactic activity indicated that the fish TGF-beta shared the similar bipolar nature with mammalian TGF-beta. Furthermore, the results indicated that the activity of TGF-beta induction of leucocyte migration appears not to be an innate feature but function by regulation the chemokines activity. This is the first time we reported that fish TGF-beta has innate bipolar property in regulation of fish immune function.
Collapse
Affiliation(s)
- Zhonghua Cai
- Life Science Division, Graduate School at Shenzhen, Tsinghua University, Shenzhen, PR China.
| | | | | | | |
Collapse
|
48
|
Yang M, Wang Y, Wang X, Chen C, Zhou H. Characterization of grass carp (Ctenopharyngodon idellus) Foxp1a/1b/2: evidence for their involvement in the activation of peripheral blood lymphocyte subpopulations. FISH & SHELLFISH IMMUNOLOGY 2010; 28:289-295. [PMID: 19922798 DOI: 10.1016/j.fsi.2009.11.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 10/14/2009] [Accepted: 11/03/2009] [Indexed: 05/28/2023]
Abstract
Foxp subfamily belongs to the Fox family of winged-helix transcription factors and plays critical roles in multiple biological processes including development and immunoregulation. However, little is known about the regulation and function of Foxp subfamily in fish immune system. In this study, we obtained the complete cDNAs of grass carp Foxp1a, Foxp1b and Foxp2. They possess the conserved leucine zipper domain, zinc finger domain and forkhead domain when compared with their mammalian counterparts, except that Foxp1a lacks the forkhead domain. Real-time RT-PCR analysis showed that their transcripts were mainly found in thymus, spleen and peripheral blood lymphocytes (PBLs). In grass carp PBLs, both LPS and PHA were effective in elevating Foxp1b mRNA levels but had no effect on Foxp1a mRNA, while only PHA affected Foxp2 mRNA expression. Using the same cell model, PHA was revealed to up-regulate mRNA expression of T-cell marker genes (CD4-like, CD8alpha and CD8beta) but not B-cell marker gene (IgM). Unlike PHA, LPS increased IgM mRNA level but did not affect T-cell marker gene expression. These findings suggest that PHA and LPS may act on distinct lymphocyte subpopulations in grass carp PBLs and provide evidence for the involvement of Foxp1b and Foxp2 in the activation of different lymphocyte subpopulations in grass carp.
Collapse
Affiliation(s)
- Mu Yang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, People's Republic of China
| | | | | | | | | |
Collapse
|
49
|
Weaver CT, Hatton RD. Interplay between the TH17 and TReg cell lineages: a (co-)evolutionary perspective. Nat Rev Immunol 2009; 9:883-9. [PMID: 19935807 DOI: 10.1038/nri2660] [Citation(s) in RCA: 308] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The origins of the adaptive immune system and the basis for its unique association with vertebrate species have been a source of considerable speculation. In light of recent advances in our understanding of the developmental and functional links between the induced regulatory T cell and T helper 17 cell lineages, and their specialized relationship to the gut, we speculate that the co-evolution of these adaptive immune pathways might have given primitive vertebrates a means to benefit from the diversification of their commensal microbiota.
Collapse
Affiliation(s)
- Casey T Weaver
- Department of Pathology, BBRB 870, University Station, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA.
| | | |
Collapse
|
50
|
Tan Q, Zagrodny A, Bernaudo S, Peng C. Regulation of membrane progestin receptors in the zebrafish ovary by gonadotropin, activin, TGF-beta and BMP-15. Mol Cell Endocrinol 2009; 312:72-9. [PMID: 19773085 DOI: 10.1016/j.mce.2009.03.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Revised: 02/19/2009] [Accepted: 03/19/2009] [Indexed: 01/26/2023]
Abstract
Progestin hormones are vital for inducing oocyte maturation in fish by binding to membrane progestin receptors (mPRs). The aim of this study was to examine the expression and regulation of mPRalpha and mPRbeta in zebrafish follicles. First, defolliculated fully grown oocytes were subjected to immunofluorescent staining using anti-mPRalpha and mPRbeta antibodies, and their expression on the oocyte membrane was confirmed. Second, total protein was collected from zebrafish follicles and Western blotting revealed that the level of mPRalpha and mPRbeta increased with follicle development. We have previously shown that several members of the transforming growth factor-beta (TGF-beta) superfamily, including TGF-beta1, activin-A, and bone morphogenetic protein (BMP)-15, regulate oocyte maturation in zebrafish. Therefore, the third major focus of this study was to test if these growth factors, as well as gonadotropins, regulate the expression of mPRs. Overexpression of BMP-15 significantly reduced, while knockdown of BMP-15 increased, mPRbeta levels. However, mPRalpha expression level remained unchanged with BMP-15 overexpression or knockdown. Treatment of follicles with human chorionic gonadotropin (hCG) resulted in an increased in mPRbeta, but not mPRalpha, expression levels. Activin-A induced the expression of mPRalpha and mPRbeta in a dose- and time-dependent manner. On the other hand, TGF-beta1 treatment suppressed the expression of mPRbeta, but not mPRalpha. Taken together, these findings further support the role of mPRs in oocyte maturation and suggest that gonadotropins, BMP-15, activin-A, and TGF-beta1 exert their regulatory effects on oocyte maturation in part by regulating mPR expression.
Collapse
Affiliation(s)
- Q Tan
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada
| | | | | | | |
Collapse
|