1
|
Leih M, Plemel RL, West M, Angers CG, Merz AJ, Odorizzi G. Disordered hinge regions of the AP-3 adaptor complex promote vesicle budding from the late Golgi in yeast. J Cell Sci 2024; 137:jcs262234. [PMID: 39330471 PMCID: PMC11574352 DOI: 10.1242/jcs.262234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024] Open
Abstract
Vesicles bud from maturing Golgi cisternae in a programmed sequence. Budding is mediated by adaptors that recruit cargoes and facilitate vesicle biogenesis. In Saccharomyces cerevisiae, the AP-3 adaptor complex directs cargoes from the Golgi to the lysosomal vacuole. The AP-3 core consists of small and medium subunits complexed with two non-identical large subunits, β3 (Apl6) and δ (Apl5). The C-termini of β3 and δ were thought to be flexible hinges linking the core to ear domains that bind accessory proteins involved in vesicular transport. We found by computational modeling that the yeast β3 and δ hinges are intrinsically disordered and lack folded ear domains. When either hinge is truncated, AP-3 is recruited to the Golgi, but vesicle budding is impaired and cargoes normally sorted into the AP-3 pathway are mistargeted. This budding deficiency causes AP-3 to accumulate on ring-like Golgi structures adjacent to GGA adaptors that, in wild-type cells, bud vesicles downstream of AP-3 during Golgi maturation. Thus, each of the disordered hinges of yeast AP-3 has a crucial role in mediating transport vesicle formation at the Golgi.
Collapse
Affiliation(s)
- Mitchell Leih
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Rachael L Plemel
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Matt West
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Cortney G Angers
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Alexey J Merz
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Greg Odorizzi
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
2
|
Dobrewa W, Bielska M, Bąbol-Pokora K, Janczar S, Młynarski W. Congenital neutropenia: From lab bench to clinic bedside and back. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2024; 793:108476. [PMID: 37989463 DOI: 10.1016/j.mrrev.2023.108476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 11/11/2023] [Accepted: 11/12/2023] [Indexed: 11/23/2023]
Abstract
Neutropenia is a hematological condition characterized by a decrease in absolute neutrophil count (ANC) in peripheral blood, typically classified in adults as mild (1-1.5 × 109/L), moderate (0.5-1 × 109/L), or severe (< 0.5 × 109/L). It can be categorized into two types: congenital and acquired. Congenital severe chronic neutropenia (SCN) arises from mutations in various genes, with different inheritance patterns, including autosomal recessive, autosomal dominant, and X-linked forms, often linked to mitochondrial diseases. The most common genetic cause is alterations in the ELANE gene. Some cases exist as non-syndromic neutropenia within the SCN spectrum, where genetic origins remain unidentified. The clinical consequences of congenital neutropenia depend on granulocyte levels and dysfunction. Infants with this condition often experience recurrent bacterial infections, with approximately half facing severe infections within their first six months of life. These infections commonly affect the respiratory system, digestive tract, and skin, resulting in symptoms like fever, abscesses, and even sepsis. The severity of these symptoms varies, and the specific organs and systems affected depend on the genetic defect. Congenital neutropenia elevates the risk of developing acute myeloid leukemia (AML) or myelodysplastic syndromes (MDS), particularly with certain genetic variants. SCN patients may acquire CSF3R and RUNX1 mutations, which can predict the development of leukemia. It is important to note that high-dose granulocyte colony-stimulating factor (G-CSF) treatment may have the potential to promote leukemogenesis. Treatment for neutropenia involves antibiotics, drugs that boost neutrophil production, or bone marrow transplants. Immediate treatment is essential due to the heightened risk of severe infections. In severe congenital or cyclic neutropenia (CyN), the primary therapy is G-CSF, often combined with antibiotics. The G-CSF dosage is gradually increased to normalize neutrophil counts. Hematopoietic stem cell transplants are considered for non-responders or those at risk of AML/MDS. In cases of WHIM syndrome, CXCR4 inhibitors can be effective. Future treatments may involve gene editing and the use of the diabetes drug empagliflozin to alleviate neutropenia symptoms.
Collapse
Affiliation(s)
- Weronika Dobrewa
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, 36\50 Sporna Str, 91-738 Lodz, Poland.
| | - Marta Bielska
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, 36\50 Sporna Str, 91-738 Lodz, Poland
| | - Katarzyna Bąbol-Pokora
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, 36\50 Sporna Str, 91-738 Lodz, Poland
| | - Szymon Janczar
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, 36\50 Sporna Str, 91-738 Lodz, Poland
| | - Wojciech Młynarski
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, 36\50 Sporna Str, 91-738 Lodz, Poland.
| |
Collapse
|
3
|
Smith ET, Kruppa M, Johnson DA, Van Haeften J, Chen X, Leahy D, Peake J, Harris JM. High yield expression in Pichia pastoris of human neutrophil elastase fused to cytochrome B5. Protein Expr Purif 2023; 206:106255. [PMID: 36822453 PMCID: PMC10118287 DOI: 10.1016/j.pep.2023.106255] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 02/16/2023] [Indexed: 02/23/2023]
Abstract
Recombinant human neutrophil elastase (rHNE), a serine protease, was expressed in Pichia pastoris. Glycosylation sites were removed via bioengineering to prevent hyper-glycosylation (a common problem with this system) and the cDNA was codon optimized for translation in Pichia pastoris. The zymogen form of rHNE was secreted as a fusion protein with an N-terminal six histidine tag followed by the heme binding domain of Cytochrome B5 (CytB5) linked to the N-terminus of the rHNE sequence via an enteropeptidase cleavage site. The CytB5 fusion balanced the very basic rHNE (pI = 9.89) to give a colored fusion protein (pI = 6.87), purified via IMAC. Active rHNE was obtained via enteropeptidase cleavage, and purified via cation exchange chromatography, resulting in a single protein band on SDS PAGE (Mr = 25 KDa). Peptide mass fingerprinting analysis confirmed the rHNE amino acid sequence, the absence of glycosylation and the absence of an 8 amino acid C-terminal peptide as opposed to the 20 amino acids usually missing from the C-terminus of native enzyme. The yield of active rHNE was 0.41 mg/L of baffled shaker flask culture medium. Active site titration with alpha-1 antitrypsin, a potent irreversible elastase inhibitor, quantified the concentration of purified active enzyme. The Km of rHNE with methoxy-succinyl-AAPVpNA was identical with that of the native enzyme within the assay's limit of accuracy. This is the first report of full-length rHNE expression at high yields and low cost facilitating further studies on this major human neutrophil enzyme.
Collapse
Affiliation(s)
- Eliot T Smith
- Departments of Biomedical Sciences and Medical Education, James H. Quillen College of Medicine, East Tennessee State University, Box 70582, Johnson City, Tennessee, USA
| | - Michael Kruppa
- Departments of Biomedical Sciences and Medical Education, James H. Quillen College of Medicine, East Tennessee State University, Box 70582, Johnson City, Tennessee, USA
| | - David A Johnson
- Departments of Biomedical Sciences and Medical Education, James H. Quillen College of Medicine, East Tennessee State University, Box 70582, Johnson City, Tennessee, USA.
| | - Jessica Van Haeften
- Queensland University of Technology, Molecular Simulation Group, Institute of Health and Biomedical Innovation, Corner Blamey Street & Musk Avenue, Kelvin Grove Urban Village, Queensland, 4059, Australia
| | - Xingchen Chen
- Queensland University of Technology, Molecular Simulation Group, Institute of Health and Biomedical Innovation, Corner Blamey Street & Musk Avenue, Kelvin Grove Urban Village, Queensland, 4059, Australia
| | - Darren Leahy
- Queensland University of Technology, Molecular Simulation Group, Institute of Health and Biomedical Innovation, Corner Blamey Street & Musk Avenue, Kelvin Grove Urban Village, Queensland, 4059, Australia
| | - Jonathan Peake
- Queensland University of Technology, Molecular Simulation Group, Institute of Health and Biomedical Innovation, Corner Blamey Street & Musk Avenue, Kelvin Grove Urban Village, Queensland, 4059, Australia
| | - Jonathan M Harris
- Queensland University of Technology, Molecular Simulation Group, Institute of Health and Biomedical Innovation, Corner Blamey Street & Musk Avenue, Kelvin Grove Urban Village, Queensland, 4059, Australia
| |
Collapse
|
4
|
Overlapping Machinery in Lysosome-Related Organelle Trafficking: A Lesson from Rare Multisystem Disorders. Cells 2022; 11:cells11223702. [PMID: 36429129 PMCID: PMC9688865 DOI: 10.3390/cells11223702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/08/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022] Open
Abstract
Lysosome-related organelles (LROs) are a group of functionally diverse, cell type-specific compartments. LROs include melanosomes, alpha and dense granules, lytic granules, lamellar bodies and other compartments with distinct morphologies and functions allowing specialised and unique functions of their host cells. The formation, maturation and secretion of specific LROs are compromised in a number of hereditary rare multisystem disorders, including Hermansky-Pudlak syndromes, Griscelli syndrome and the Arthrogryposis, Renal dysfunction and Cholestasis syndrome. Each of these disorders impacts the function of several LROs, resulting in a variety of clinical features affecting systems such as immunity, neurophysiology and pigmentation. This has demonstrated the close relationship between LROs and led to the identification of conserved components required for LRO biogenesis and function. Here, we discuss aspects of this conserved machinery among LROs in relation to the heritable multisystem disorders they associate with, and present our current understanding of how dysfunctions in the proteins affected in the disease impact the formation, motility and ultimate secretion of LROs. Moreover, we have analysed the expression of the members of the CHEVI complex affected in Arthrogryposis, Renal dysfunction and Cholestasis syndrome, in different cell types, by collecting single cell RNA expression data from the human protein atlas. We propose a hypothesis describing how transcriptional regulation could constitute a mechanism that regulates the pleiotropic functions of proteins and their interacting partners in different LROs.
Collapse
|
5
|
Moravčíková N, Kasarda R, Židek R, Vostrý L, Vostrá-Vydrová H, Vašek J, Čílová D. Czechoslovakian Wolfdog Genomic Divergence from Its Ancestors Canis lupus, German Shepherd Dog, and Different Sheepdogs of European Origin. Genes (Basel) 2021; 12:832. [PMID: 34071464 PMCID: PMC8228135 DOI: 10.3390/genes12060832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/14/2021] [Accepted: 05/25/2021] [Indexed: 12/03/2022] Open
Abstract
This study focused on the genomic differences between the Czechoslovakian wolfdog (CWD) and its ancestors, the Grey wolf (GW) and German Shepherd dog. The Saarloos wolfdog and Belgian Shepherd dog were also included to study the level of GW genetics retained in the genome of domesticated breeds. The dataset consisted of 131 animals and 143,593 single nucleotide polymorphisms (SNPs). The effects of demographic history on the overall genome structure were determined by screening the distribution of the homozygous segments. The genetic variance distributed within and between groups was quantified by genetic distances, the FST index, and discriminant analysis of principal components. Fine-scale population stratification due to specific morphological and behavioural traits was assessed by principal component and factorial analyses. In the CWD, a demographic history effect was manifested mainly in a high genome-wide proportion of short homozygous segments corresponding to a historical load of inbreeding derived from founders. The observed proportion of long homozygous segments indicated that the inbreeding events shaped the CWD genome relatively recently compared to other groups. Even if there was a significant increase in genetic similarity among wolf-like breeds, they were genetically separated from each other. Moreover, this study showed that the CWD genome carries private alleles that are not found in either wolves or other dog breeds analysed in this study.
Collapse
Affiliation(s)
- Nina Moravčíková
- Department of Animal Genetics and Breeding Biology, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia;
| | - Radovan Kasarda
- Department of Animal Genetics and Breeding Biology, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia;
| | - Radoslav Židek
- Department of Food Hygiene and Safety, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia;
- NU3gen, Pažite 145/7, 010 09 Žilina, Slovakia
| | - Luboš Vostrý
- Department of Genetics and Breeding, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czech Republic; (L.V.); (J.V.); (D.Č.)
| | - Hana Vostrá-Vydrová
- Department of Ethology and Companion Animal Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czech Republic;
| | - Jakub Vašek
- Department of Genetics and Breeding, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czech Republic; (L.V.); (J.V.); (D.Č.)
| | - Daniela Čílová
- Department of Genetics and Breeding, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czech Republic; (L.V.); (J.V.); (D.Č.)
| |
Collapse
|
6
|
Rydzynska Z, Pawlik B, Krzyzanowski D, Mlynarski W, Madzio J. Neutrophil Elastase Defects in Congenital Neutropenia. Front Immunol 2021; 12:653932. [PMID: 33968054 PMCID: PMC8100030 DOI: 10.3389/fimmu.2021.653932] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/06/2021] [Indexed: 12/21/2022] Open
Abstract
Severe congenital neutropenia (SCN) is a rare hematological condition with heterogenous genetic background. Neutrophil elastase (NE) encoded by ELANE gene is mutated in over half of the SCN cases. The role of NE defects in myelocytes maturation arrest in bone marrow is widely investigated; however, the mechanism underlying this phenomenon has still remained unclear. In this review, we sum up the studies exploring mechanisms of neutrophil deficiency, biological role of NE in neutrophil and the effects of ELANE mutation and neutropenia pathogenesis. We also explain the hypotheses presented so far and summarize options of neutropenia therapy.
Collapse
Affiliation(s)
- Zuzanna Rydzynska
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Bartlomiej Pawlik
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Damian Krzyzanowski
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland.,Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Wojciech Mlynarski
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Joanna Madzio
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
7
|
Plemel RL, Odorizzi G, Merz AJ. Genetically encoded multimode reporter of adaptor complex 3 traffic in budding yeast. Traffic 2020; 22:38-44. [PMID: 33225520 DOI: 10.1111/tra.12772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 11/29/2022]
Abstract
AP-3 (adaptor complex 3) mediates traffic from the late Golgi or early endosomes to late endosomal compartments. In mammals, mutations in AP-3 cause Hermansky-Pudlak syndrome type 2, cyclic neutropenias, and a form of epileptic encephalopathy. In budding yeast, AP-3 carries cargo directly from the trans-Golgi to the lysosomal vacuole. Despite the pathway's importance and its discovery two decades ago, rapid screens and selections for AP-3 mutants have not been available. We now report GNSI, a synthetic, genetically encoded reporter that allows rapid plate-based assessment of AP-3 functional deficiency, using either chromogenic or growth phenotype readouts. This system identifies defects in both the formation and consumption of AP-3 carrier vesicles and is adaptable to high-throughput screening or selection in both plate array and liquid batch culture formats. Episomal and integrating plasmids encoding GNSI have been submitted to the Addgene repository.
Collapse
Affiliation(s)
- Rachael L Plemel
- Department of Biochemistry, University of Washington, Seattle, Washington
| | - Greg Odorizzi
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado
| | - Alexey J Merz
- Department of Biochemistry, University of Washington, Seattle, Washington
| |
Collapse
|
8
|
Fingerhut L, Dolz G, de Buhr N. What Is the Evolutionary Fingerprint in Neutrophil Granulocytes? Int J Mol Sci 2020; 21:E4523. [PMID: 32630520 PMCID: PMC7350212 DOI: 10.3390/ijms21124523] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 01/18/2023] Open
Abstract
Over the years of evolution, thousands of different animal species have evolved. All these species require an immune system to defend themselves against invading pathogens. Nevertheless, the immune systems of different species are obviously counteracting against the same pathogen with different efficiency. Therefore, the question arises if the process that was leading to the clades of vertebrates in the animal kingdom-namely mammals, birds, amphibians, reptiles, and fish-was also leading to different functions of immune cells. One cell type of the innate immune system that is transmigrating as first line of defense in infected tissue and counteracts against pathogens is the neutrophil granulocyte. During the host-pathogen interaction they can undergo phagocytosis, apoptosis, degranulation, and form neutrophil extracellular traps (NETs). In this review, we summarize a wide spectrum of information about neutrophils in humans and animals, with a focus on vertebrates. Special attention is kept on the development, morphology, composition, and functions of these cells, but also on dysfunctions and options for cell culture or storage.
Collapse
Affiliation(s)
- Leonie Fingerhut
- Department of Physiological Chemistry, Department of Infectious Diseases, University of Veterinary Medicine Hannover, 30559 Hannover, Germany;
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, 30559 Hannover, Germany
- Clinic for Horses, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Gaby Dolz
- Escuela de Medicina Veterinaria, Universidad Nacional, Heredia 40104, Costa Rica;
| | - Nicole de Buhr
- Department of Physiological Chemistry, Department of Infectious Diseases, University of Veterinary Medicine Hannover, 30559 Hannover, Germany;
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| |
Collapse
|
9
|
Franco-Martínez L, Tvarijonaviciute A, Horvatić A, Guillemin N, Cerón JJ, Escribano D, Eckersall D, Kocatürk M, Yilmaz Z, Lamy E, Martínez-Subiela S, Mrljak V. Changes in salivary analytes in canine parvovirus: A high-resolution quantitative proteomic study. Comp Immunol Microbiol Infect Dis 2018; 60:1-10. [PMID: 30396423 PMCID: PMC7124818 DOI: 10.1016/j.cimid.2018.09.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 01/24/2023]
Abstract
The present study evaluated the changes in salivary proteome in parvoviral enteritis (PVE) in dogs through a high-throughput quantitative proteomic analysis. Saliva samples from healthy dogs and dogs with severe parvovirosis that survived or perished due to the disease were analysed and compared by Tandem Mass Tags (TMT) analysis. Proteomic analysis quantified 1516 peptides, and 287 (corresponding to 190 proteins) showed significantly different abundances between studied groups. Ten proteins were observed to change significantly between dogs that survived or perished due to PVE. Bioinformatics' analysis revealed that saliva reflects the involvement of different pathways in PVE such as catalytic activity and binding, and indicates antimicrobial humoral response as a pathway with a major role in the development of the disease. These results indicate that saliva proteins reflect physiopathological changes that occur in PVE and could be a potential source of biomarkers for this disease.
Collapse
Affiliation(s)
- Lorena Franco-Martínez
- Interdisciplinary Laboratory of Clinical Analysis Interlab-UMU, Regional Campus of International Excellence Mare Nostrum, University of Murcia, Espinardo, Murcia 30100, Spain
| | - Asta Tvarijonaviciute
- Interdisciplinary Laboratory of Clinical Analysis Interlab-UMU, Regional Campus of International Excellence Mare Nostrum, University of Murcia, Espinardo, Murcia 30100, Spain
| | - Anita Horvatić
- ERA Chair FP7, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia
| | - Nicolas Guillemin
- ERA Chair FP7, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia
| | - José Joaquín Cerón
- Interdisciplinary Laboratory of Clinical Analysis Interlab-UMU, Regional Campus of International Excellence Mare Nostrum, University of Murcia, Espinardo, Murcia 30100, Spain
| | - Damián Escribano
- Interdisciplinary Laboratory of Clinical Analysis Interlab-UMU, Regional Campus of International Excellence Mare Nostrum, University of Murcia, Espinardo, Murcia 30100, Spain; Department of Animal and Food Science, School of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - David Eckersall
- ERA Chair FP7, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia; Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow G61 1QH, United Kingdom
| | - Meriç Kocatürk
- Department of Internal Medicine, Faculty of Veterinary Medicine, Uludag University, 16059, Bursa, Turkey
| | - Zeki Yilmaz
- Department of Internal Medicine, Faculty of Veterinary Medicine, Uludag University, 16059, Bursa, Turkey
| | - Elsa Lamy
- ICAAM - Institute of Mediterranean Agricultural and Environmental Sciences, University of Evora, Portugal
| | - Silvia Martínez-Subiela
- Interdisciplinary Laboratory of Clinical Analysis Interlab-UMU, Regional Campus of International Excellence Mare Nostrum, University of Murcia, Espinardo, Murcia 30100, Spain.
| | - Vladimir Mrljak
- ERA Chair FP7, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia
| |
Collapse
|
10
|
The Ontogeny of a Neutrophil: Mechanisms of Granulopoiesis and Homeostasis. Microbiol Mol Biol Rev 2018; 82:82/1/e00057-17. [PMID: 29436479 DOI: 10.1128/mmbr.00057-17] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Comprising the majority of leukocytes in humans, neutrophils are the first immune cells to respond to inflammatory or infectious etiologies and are crucial participants in the proper functioning of both innate and adaptive immune responses. From their initial appearance in the liver, thymus, and spleen at around the eighth week of human gestation to their generation in large numbers in the bone marrow at the end of term gestation, the differentiation of the pluripotent hematopoietic stem cell into a mature, segmented neutrophil is a highly controlled process where the transcriptional regulators C/EBP-α and C/EBP-ε play a vital role. Recent advances in neutrophil biology have clarified the life cycle of these cells and revealed striking differences between neonatal and adult neutrophils based on fetal maturation and environmental factors. Here we detail neutrophil ontogeny, granulopoiesis, and neutrophil homeostasis and highlight important differences between neonatal and adult neutrophil populations.
Collapse
|
11
|
Kasperkiewicz P, Altman Y, D'Angelo M, Salvesen GS, Drag M. Toolbox of Fluorescent Probes for Parallel Imaging Reveals Uneven Location of Serine Proteases in Neutrophils. J Am Chem Soc 2017; 139:10115-10125. [PMID: 28672107 DOI: 10.1021/jacs.7b04394] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Neutrophils, the front line defenders against infection, express four serine proteases (NSPs) that play roles in the control of cell-signaling pathways and defense against pathogens and whose imbalance leads to pathological conditions. Dissecting the roles of individual NSPs in humans is problematic because neutrophils are end-stage cells with a short half-life and minimal ongoing protein synthesis. To gain insight into the regulation of NSP activity we have generated a small-molecule chemical toolbox consisting of activity-based probes with different fluorophore-detecting groups with minimal wavelength overlap and highly selective natural and unnatural amino acid recognition sequences. The key feature of these activity-based probes is the ability to use them for simultaneous observation and detection of all four individual NSPs by fluorescence microscopy, a feature never achieved in previous studies. Using these probes we demonstrate uneven distribution of NSPs in neutrophil azurophil granules, such that they seem to be mutually excluded from each other, suggesting the existence of unknown granule-targeting mechanisms.
Collapse
Affiliation(s)
- Paulina Kasperkiewicz
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology , Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland.,NCI-designated Cancer Center, Sanford-Burnham Prebys Medical Discovery Institute , La Jolla, California 92037, United States
| | - Yoav Altman
- NCI-designated Cancer Center, Sanford-Burnham Prebys Medical Discovery Institute , La Jolla, California 92037, United States
| | - Maximiliano D'Angelo
- NCI-designated Cancer Center, Sanford-Burnham Prebys Medical Discovery Institute , La Jolla, California 92037, United States
| | - Guy S Salvesen
- NCI-designated Cancer Center, Sanford-Burnham Prebys Medical Discovery Institute , La Jolla, California 92037, United States
| | - Marcin Drag
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology , Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| |
Collapse
|
12
|
Bartels M, Murphy K, Rieter E, Bruin M. Understanding chronic neutropenia: life is short. Br J Haematol 2015; 172:157-69. [PMID: 26456767 DOI: 10.1111/bjh.13798] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The pathophysiological mechanisms underlying chronic neutropenia are extensive, varying from haematopoietic stem cell disorders resulting in defective neutrophil production, to accelerated apoptosis of neutrophil progenitors or circulating mature neutrophils. While the knowledge concerning genetic defects associated with congenital neutropenia or bone marrow failure is increasing rapidly, the functional role and consequences of these genetic alterations is often not well understood. In addition, there is a large group of diseases, including primary immunodeficiencies and metabolic diseases, in which chronic neutropenia is one of the symptoms, while there is no clear bone marrow pathology or haematopoietic stem cell dysfunction. Altogether, these disease entities illustrate the complexity of normal neutrophil development, the functional role of the (bone marrow) microenvironment and the increased propensity to undergo apoptosis, which is typical for neutrophils. The large variety of disorders associated with chronic neutropenia makes classification almost impossible and possibly not desirable, based on the clinical phenotypes. However, a better understanding of the regulation of normal myeloid differentiation and neutrophil development is of great importance in the diagnostic evaluation of unexplained chronic neutropenia. In this review we propose insights in the pathophysiology of chronic neutropenia in the context of the functional role of key players during normal neutrophil development, neutrophil release and neutrophil survival.
Collapse
Affiliation(s)
- Marije Bartels
- Department of Paediatric Haematology and Stem Cell Transplantation, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Kate Murphy
- Department of Paediatric Haematology and Stem Cell Transplantation, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Ester Rieter
- Department of Paediatric Haematology and Stem Cell Transplantation, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Marrie Bruin
- Department of Paediatric Haematology and Stem Cell Transplantation, University Medical Centre Utrecht, Utrecht, the Netherlands
| |
Collapse
|
13
|
Parker HG, Gilbert SF. From caveman companion to medical innovator: genomic insights into the origin and evolution of domestic dogs. ACTA ACUST UNITED AC 2015; 5:239-255. [PMID: 28490917 DOI: 10.2147/agg.s57678] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The phenotypic and behavioral diversity of the domestic dog has yet to be matched by any other mammalian species. In their current form, which comprises more than 350 populations known as breeds, there is a size range of two orders of magnitude and morphological features reminiscent of not only different species but also different phylogenetic families. The range of both appearance and behavior found in the dog is the product of millennia of human interference, and though humans created the diversity it remains a point of fascination to both lay and scientific communities. In this review we summarize the current understanding of the history of dog domestication based on molecular data. We will examine the ways that canine genetic and genomic studies have evolved and look at examples of dog genetics in the light of human disease.
Collapse
Affiliation(s)
- Heidi G Parker
- National Human Genome Research Institute, National Institutes of Health, Bethesda MD, 20892 USA
| | - Samuel F Gilbert
- National Human Genome Research Institute, National Institutes of Health, Bethesda MD, 20892 USA
| |
Collapse
|
14
|
Abstract
This review addresses current thinking on the diagnosis, causation and management of common and rare primary disorders of granulocytes. The genetic basis of many of these disorders is now understood. Increased awareness is necessary to ensure that these disorders are identified promptly and treated appropriately.
Collapse
Affiliation(s)
- G P Spickett
- Regional Department of Immunology, Royal Victoria Infirmary, Newcastle upon Tyne NE1 4LP, UK.
| |
Collapse
|
15
|
Affiliation(s)
- Liza Köster
- Department of Companion Animal Clinical StudiesFaculty of Veterinary ScienceUniversity of PretoriaOnderstepoortGautengSouth Africa
- Department of Small Animal Internal MedicineRoss University School of Veterinary MedicineBasseterreSaint Kitts and Nevis
| | - Cindy Harper
- Veterinary Genetics LaboratoryFaculty of Veterinary ScienceUniversity of PretoriaOnderstepoortGautengSouth Africa
| | - Amelia Goddard
- Department of Clinical PathologyFaculty of Veterinary ScienceUniversity of PretoriaOnderstepoortGautengSouth Africa
| |
Collapse
|
16
|
Sheshachalam A, Srivastava N, Mitchell T, Lacy P, Eitzen G. Granule protein processing and regulated secretion in neutrophils. Front Immunol 2014; 5:448. [PMID: 25285096 PMCID: PMC4168738 DOI: 10.3389/fimmu.2014.00448] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 09/03/2014] [Indexed: 12/31/2022] Open
Abstract
Neutrophils are part of a family of granulocytes that, together with eosinophils and basophils, play an essential role in innate immunity. Neutrophils are the most abundant circulating leukocytes and are vital for rapid immune responses, being recruited to sites of injury or infection within minutes, where they can act as specialized phagocytic cells. However, another prominent function of neutrophils is the release of pro-inflammatory compounds, including cytokines, chemokines, and digestive enzymes, which are stored in intracellular compartments and released through regulated exocytosis. Hence, an important feature that contributes to rapid immune responses is capacity of neutrophils to synthesize and store pre-formed pro-inflammatory mediators in specialized intracellular vesicles and thus no new synthesis is required. This review will focus on advancement in three topics relevant to neutrophil secretion. First, we will examine what is known about basal level pro-inflammatory mediator synthesis, trafficking, and storage in secretory compartments. Second, we will review recent advancements in the mechanisms that control vesicle mobilization and the release of pre-formed mediators. Third, we will examine the upregulation and de novo synthesis of pro-inflammatory mediators by neutrophils engaged at sites of infection.
Collapse
Affiliation(s)
| | - Nutan Srivastava
- Pulmonary Research Group, University of Alberta , Edmonton, AB , Canada ; Department of Medicine, University of Alberta , Edmonton, AB , Canada
| | - Troy Mitchell
- Department of Medicine, University of Alberta , Edmonton, AB , Canada
| | - Paige Lacy
- Pulmonary Research Group, University of Alberta , Edmonton, AB , Canada ; Department of Medicine, University of Alberta , Edmonton, AB , Canada
| | - Gary Eitzen
- Department of Cell Biology, University of Alberta , Edmonton, AB , Canada
| |
Collapse
|
17
|
Decreased hematopoietic progenitor cell mobilization in pearl mice. Exp Hematol 2013; 41:848-57. [DOI: 10.1016/j.exphem.2013.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 05/14/2013] [Accepted: 05/19/2013] [Indexed: 11/21/2022]
|
18
|
Schulz C, Engelmann B, Massberg S. Crossroads of coagulation and innate immunity: the case of deep vein thrombosis. J Thromb Haemost 2013; 11 Suppl 1:233-41. [PMID: 23809127 DOI: 10.1111/jth.12261] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Deep vein thrombosis (DVT) is a common condition characterized by the formation of an occlusive blood clot in the venous vascular system, potentially complicated by detachment and embolization of thrombi into the lung. Recent evidence from mouse models has shed light on the sequence of events and on the cellular (innate immune cells, platelets) and molecular (hematopoietic tissue factor, nucleic acids) components involved. In response to decreased blood flow, circulating neutrophils and monocytes adhere to the activated endothelium within hours. They initiate and propagate DVT by interacting with platelets and by the exposure and activation of circulating tissue factor and FXII. Intravascular blood coagulation is also induced by extracellular nucleosomes released mainly from activated neutrophils. Interestingly, these mechanisms are closely linked to an evolutionary conserved immune defense mechanism activated in response to infections. In this review, we will give an overview of DVT and the role of innate immune pathways supporting this process. While the latter are aimed at preserving tissue integrity and function, uncontrolled blood coagulation and activation of immune cells may result in pathological thrombus formation and vascular occlusion. Understanding the molecular and cellular players triggering occlusion of large veins, and their distinction from physiological hemostasis, is important for the development of strategies to prevent and treat DVT.
Collapse
Affiliation(s)
- C Schulz
- Cardiovascular Division, King's College London British Heart Foundation Centre of Excellence, London, UK.
| | | | | |
Collapse
|
19
|
Otsu W, Kurooka T, Otsuka Y, Sato K, Inaba M. A new class of endoplasmic reticulum export signal PhiXPhiXPhi for transmembrane proteins and its selective interaction with Sec24C. J Biol Chem 2013; 288:18521-32. [PMID: 23658022 DOI: 10.1074/jbc.m112.443325] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein export from the endoplasmic reticulum (ER) depends on the interaction between a signal motif on the cargo and a cargo recognition site on the coatomer protein complex II. A hydrophobic sequence in the N terminus of the bovine anion exchanger 1 (AE1) anion exchanger facilitated the ER export of human AE1Δ11, an ER-retained AE1 mutant, through interaction with a specific Sec24 isoform. The cell surface expression and N-glycan processing of various substitution mutants or chimeras of human and bovine AE1 proteins and their Δ11 mutants in HEK293 cells were examined. The N-terminal sequence (V/L/F)X(I/L)X(M/L), (26)VSIPM(30) in bovine AE1, which is comparable with ΦXΦXΦ, acted as the ER export signal for AE1 and AE1Δ11 (Φ is a hydrophobic amino acid, and X is any amino acid). The AE1-Ly49E chimeric protein possessing the ΦXΦXΦ motif exhibited effective cell surface expression and N-glycan maturation via the coatomer protein complex II pathway, whereas a chimera lacking this motif was retained in the ER. A synthetic polypeptide containing the N terminus of bovine AE1 bound the Sec23A-Sec24C complex through a selective interaction with Sec24C. Co-transfection of Sec24C-AAA, in which the residues (895)LIL(897) (the binding site for another ER export signal motif IXM on Sec24C and Sec24D) were mutated to (895)AAA(897), specifically increased ER retention of the AE1-Ly49E chimera. These findings demonstrate that the ΦXΦXΦ sequence functions as a novel signal motif for the ER export of cargo proteins through an exclusive interaction with Sec24C.
Collapse
Affiliation(s)
- Wataru Otsu
- Laboratory of Molecular Medicine, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | | | | | | | | |
Collapse
|
20
|
Horwitz MS, Corey SJ, Grimes HL, Tidwell T. ELANE mutations in cyclic and severe congenital neutropenia: genetics and pathophysiology. Hematol Oncol Clin North Am 2013; 27:19-41, vii. [PMID: 23351986 PMCID: PMC3559001 DOI: 10.1016/j.hoc.2012.10.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The 2 main forms of hereditary neutropenia are cyclic (CN) and severe congenital (SCN) neutropenia. CN is an autosomal dominant disorder in which neutrophil counts fluctuate with 21-day periodicity. SCN consists of static neutropenia, with promyelocytic maturation arrest in the bone marrow. Unlike CN, SCN displays frequent acquisition of somatic mutations in the gene CSF3R. CN is caused by heterozygous mutations in the gene ELANE, encoding neutrophil elastase. SCN is genetically heterogeneous but is most frequently associated with ELANE mutations. We discuss how the mutations provide clues into the pathogenesis of neutropenia and describe current hypotheses for its molecular mechanisms.
Collapse
Affiliation(s)
- Marshall S Horwitz
- Department of Pathology, University of Washington School of Medicine, 850 Republican Street, Seattle, WA 98109, USA.
| | | | | | | |
Collapse
|
21
|
Bristow CL, Babayeva MA, LaBrunda M, Mullen MP, Winston R. α1Proteinase inhibitor regulates CD4+ lymphocyte levels and is rate limiting in HIV-1 disease. PLoS One 2012; 7:e31383. [PMID: 22363634 PMCID: PMC3281957 DOI: 10.1371/journal.pone.0031383] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 01/06/2012] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The regulation of adult stem cell migration through human hematopoietic tissue involves the chemokine CXCL12 (SDF-1) and its receptor CXCR4 (CD184). In addition, human leukocyte elastase (HLE) plays a key role. When HLE is located on the cell surface (HLE(CS)), it acts not as a proteinase, but as a receptor for α(1)proteinase inhibitor (α(1)PI, α(1)antitrypsin, SerpinA1). Binding of α(1)PI to HLE(CS) forms a motogenic complex. We previously demonstrated that α(1)PI deficiency attends HIV-1 disease and that α(1)PI augmentation produces increased numbers of immunocompetent circulating CD4(+) lymphocytes. Herein we investigated the mechanism underlying the α(1)PI deficiency that attends HIV-1 infection. METHODS AND FINDINGS Active α(1)PI in HIV-1 subjects (median 17 µM, n = 35) was significantly below normal (median 36 µM, p<0.001, n = 30). In HIV-1 uninfected subjects, CD4(+) lymphocytes were correlated with the combined factors α(1)PI, HLE(CS) (+) lymphocytes, and CXCR4(+) lymphocytes (r(2) = 0.91, p<0.001, n = 30), but not CXCL12. In contrast, in HIV-1 subjects with >220 CD4 cells/µl, CD4(+) lymphocytes were correlated solely with active α(1)PI (r(2) = 0.93, p<0.0001, n = 26). The monoclonal anti-HIV-1 gp120 antibody 3F5 present in HIV-1 patient blood is shown to bind and inactivate human α(1)PI. Chimpanzee α(1)PI differs from human α(1)PI by a single amino acid within the 3F5-binding epitope. Unlike human α(1)PI, chimpanzee α(1)PI did not bind 3F5 or become depleted following HIV-1 challenge, consistent with the normal CD4(+) lymphocyte levels and benign syndrome of HIV-1 infected chimpanzees. The presence of IgG-α(1)PI immune complexes correlated with decreased CD4(+) lymphocytes in HIV-1 subjects. CONCLUSIONS This report identifies an autoimmune component of HIV-1 disease that can be overcome therapeutically. Importantly, results identify an achievable vaccine modification with the novel objective to protect against AIDS as opposed to the current objective to protect against HIV-1 infection.
Collapse
Affiliation(s)
- Cynthia L Bristow
- Weill Cornell Medical College, New York, New York, United States of America.
| | | | | | | | | |
Collapse
|
22
|
Aronchik I, Chen T, Durkin KA, Horwitz MS, Preobrazhenskaya MN, Bjeldanes LF, Firestone GL. Target protein interactions of indole-3-carbinol and the highly potent derivative 1-benzyl-I3C with the C-terminal domain of human elastase uncouples cell cycle arrest from apoptotic signaling. Mol Carcinog 2011; 51:881-94. [PMID: 22012859 DOI: 10.1002/mc.20857] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 07/28/2011] [Accepted: 08/19/2011] [Indexed: 12/15/2022]
Abstract
Elastase is the only currently identified target protein for indole-3-carbinol (I3C), a naturally occurring hydrolysis product of glucobrassicin in cruciferous vegetables such as broccoli, cabbage, and Brussels sprouts that induces a cell cycle arrest and apoptosis of human breast cancer cells. In vitro elastase enzymatic assays demonstrated that I3C and at lower concentrations its more potent derivative 1-benzyl-indole-3-carbinol (1-benzyl-I3C) act as non-competitive allosteric inhibitors of elastase activity. Consistent with these results, in silico computational simulations have revealed the first predicted interactions of I3C and 1-benzyl-I3C with the crystal structure of human neutrophil elastase, and identified a potential binding cluster on an external surface of the protease outside of the catalytic site that implicates elastase as a target protein for both indolecarbinol compounds. The Δ205 carboxyterminal truncation of elastase, which disrupts the predicted indolecarbinol binding site, is enzymatically active and generates a novel I3C resistant enzyme. Expression of the wild type and Δ205 elastase in MDA-MB-231 human breast cancer cells demonstrated that the carboxyterminal domain of elastase is required for the I3C and 1-benzyl-I3C inhibition of enzymatic activity, accumulation of the unprocessed form of the CD40 elastase substrate (a tumor necrosis factor receptor family member), disruption of NFκB nuclear localization and transcriptional activity, and induction of a G1 cell cycle arrest. Surprisingly, expression of the Δ205 elastase molecule failed to reverse indolecarbinol stimulated apoptosis, establishing an elastase-dependent bifurcation point in anti-proliferative signaling that uncouples the cell cycle and apoptotic responses in human breast cancer cells.
Collapse
Affiliation(s)
- Ida Aronchik
- Department of Molecular and Cell Biology and The Cancer Research Laboratory, University of California at Berkeley, Berkeley, California 94720-3200, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Congenital neutropenia: diagnosis, molecular bases and patient management. Orphanet J Rare Dis 2011; 6:26. [PMID: 21595885 PMCID: PMC3127744 DOI: 10.1186/1750-1172-6-26] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 05/19/2011] [Indexed: 12/27/2022] Open
Abstract
The term congenital neutropenia encompasses a family of neutropenic disorders, both permanent and intermittent, severe (<0.5 G/l) or mild (between 0.5-1.5 G/l), which may also affect other organ systems such as the pancreas, central nervous system, heart, muscle and skin. Neutropenia can lead to life-threatening pyogenic infections, acute gingivostomatitis and chronic parodontal disease, and each successive infection may leave permanent sequelae. The risk of infection is roughly inversely proportional to the circulating polymorphonuclear neutrophil count and is particularly high at counts below 0.2 G/l.When neutropenia is detected, an attempt should be made to establish the etiology, distinguishing between acquired forms (the most frequent, including post viral neutropenia and auto immune neutropenia) and congenital forms that may either be isolated or part of a complex genetic disease.Except for ethnic neutropenia, which is a frequent but mild congenital form, probably with polygenic inheritance, all other forms of congenital neutropenia are extremely rare and have monogenic inheritance, which may be X-linked or autosomal, recessive or dominant.About half the forms of congenital neutropenia with no extra-hematopoietic manifestations and normal adaptive immunity are due to neutrophil elastase (ELANE) mutations. Some patients have severe permanent neutropenia and frequent infections early in life, while others have mild intermittent neutropenia.Congenital neutropenia may also be associated with a wide range of organ dysfunctions, as for example in Shwachman-Diamond syndrome (associated with pancreatic insufficiency) and glycogen storage disease type Ib (associated with a glycogen storage syndrome). So far, the molecular bases of 12 neutropenic disorders have been identified.Treatment of severe chronic neutropenia should focus on prevention of infections. It includes antimicrobial prophylaxis, generally with trimethoprim-sulfamethoxazole, and also granulocyte-colony-stimulating factor (G-CSF). G-CSF has considerably improved these patients' outlook. It is usually well tolerated, but potential adverse effects include thrombocytopenia, glomerulonephritis, vasculitis and osteoporosis. Long-term treatment with G-CSF, especially at high doses, augments the spontaneous risk of leukemia in patients with congenital neutropenia.
Collapse
|
24
|
Abstract
Neutrophil granules store proteins that are critically important for the neutrophil to move from the vascular bed to tissues and to kill microorganisms. This is illustrated in nature when individual proteins are deleted due to inherited mutations of their cognate genes, and such deficiencies result in the conditions leucocyte adhesion deficiency and chronic granulomatous disease. The granules of the neutrophil have traditionally been divided into two or three major types but are instead a continuum where several subtypes can be identified with differences in protein content and propensity for mobilization. This is explained by the 'targeting by timing hypothesis' which states that granules are filled with granule proteins that are synthesized at the time the granule is formed. The heterogeneity of granules arises because the synthesis of granule proteins is individually controlled and major differences exist in the timings of biosynthesis during granulocytopoiesis. This is largely controlled by gene transcription.
Collapse
Affiliation(s)
- M Häger
- Granulocyte Research Laboratory, Department of Haematology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | | | | |
Collapse
|
25
|
Aronchik I, Bjeldanes LF, Firestone GL. Direct inhibition of elastase activity by indole-3-carbinol triggers a CD40-TRAF regulatory cascade that disrupts NF-kappaB transcriptional activity in human breast cancer cells. Cancer Res 2010; 70:4961-71. [PMID: 20530686 DOI: 10.1158/0008-5472.can-09-3349] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Treatment of highly tumorigenic MDA-MB-231 human breast cancer cells with indole-3-carbinol (I3C) directly inhibited the extracellular elastase-dependent cleavage of membrane-associated CD40, a member of the tumor necrosis factor (TNF) receptor superfamily. CD40 signaling has been implicated in regulating cell survival, apoptosis, and proliferation, as well as in sensitizing breast cancer cells to chemotherapy, and is therefore an important potential target of novel breast cancer treatments. The I3C-dependent accumulation of full-length unprocessed CD40 protein caused a shift in CD40 signaling through TNF receptor-associated factors (TRAF), including the TRAF1/TRAF2 positive regulators and TRAF3 negative regulator of NF-kappaB transcription factor activity. Because TRAF1 is a transcriptional target gene of NF-kappaB, I3C disrupted a positive feedback loop involving these critical cell survival components. siRNA ablation of elastase expression mimicked the I3C inhibition of CD40 protein processing and G(1) cell cycle arrest, whereas siRNA knockdown of TRAF3 and the NF-kappaB inhibitor IkappaB prevented the I3C-induced cell cycle arrest. In contrast, siRNA knockdown of PTEN had no effect on the I3C control of NF-kappaB activity, showing the importance of CD40 signaling in regulating this transcription factor. Our study provides the first direct in vitro evidence that I3C directly inhibits the elastase-mediated proteolytic processing of CD40, which alters downstream signaling to disrupt NF-kappaB-induced cell survival and proliferative responses. Furthermore, we have established a new I3C-mediated antiproliferative cascade that has significant therapeutic potential for treatment of human cancers associated with high levels of elastase and its CD40 membrane substrate.
Collapse
Affiliation(s)
- Ida Aronchik
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720-3200, USA
| | | | | |
Collapse
|
26
|
Asher L, Diesel G, Summers JF, McGreevy PD, Collins LM. Inherited defects in pedigree dogs. Part 1: disorders related to breed standards. Vet J 2010; 182:402-11. [PMID: 19836981 DOI: 10.1016/j.tvjl.2009.08.033] [Citation(s) in RCA: 174] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 08/07/2009] [Accepted: 08/28/2009] [Indexed: 11/29/2022]
Abstract
The United Kingdom pedigree-dog industry has faced criticism because certain aspects of dog conformation stipulated in the UK Kennel Club breed standards have a detrimental impact on dog welfare. A review of conformation-related disorders was carried out in the top 50 UK Kennel Club registered breeds using systematic searches of existing information. A novel index to score severity of disorders along a single scale was also developed and used to conduct statistical analyses to determine the factors affecting reported breed predisposition to defects. According to the literature searched, each of the top 50 breeds was found to have at least one aspect of its conformation predisposing it to a disorder; and 84 disorders were either directly or indirectly associated with conformation. The Miniature poodle, Bulldog, Pug and Basset hound had most associations with conformation-related disorders. Further research on prevalence and severity is required to assess the impact of different disorders on the welfare of affected breeds.
Collapse
Affiliation(s)
- Lucy Asher
- Department of Veterinary Clinical Sciences, Royal Veterinary College, Hawkshead Lane, Potters Bar, Herts AL9 7TA, UK
| | | | | | | | | |
Collapse
|
27
|
Thongyoo P, Bonomelli C, Leatherbarrow RJ, Tate EW. Potent Inhibitors of β-Tryptase and Human Leukocyte Elastase Based on the MCoTI-II Scaffold. J Med Chem 2009; 52:6197-200. [DOI: 10.1021/jm901233u] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Panumart Thongyoo
- Department of Chemistry and Chemical Biology Centre, Imperial College London SW7 2AZ, U.K
| | | | - Robin J. Leatherbarrow
- Department of Chemistry and Chemical Biology Centre, Imperial College London SW7 2AZ, U.K
| | - Edward W. Tate
- Department of Chemistry and Chemical Biology Centre, Imperial College London SW7 2AZ, U.K
| |
Collapse
|
28
|
Rezaei N, Moazzami K, Aghamohammadi A, Klein C. Neutropenia and Primary Immunodeficiency Diseases. Int Rev Immunol 2009; 28:335-66. [DOI: 10.1080/08830180902995645] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
29
|
Contributions to neutropenia from PFAAP5 (N4BP2L2), a novel protein mediating transcriptional repressor cooperation between Gfi1 and neutrophil elastase. Mol Cell Biol 2009; 29:4394-405. [PMID: 19506020 DOI: 10.1128/mcb.00596-09] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
"Neutropenia" refers to deficient numbers of neutrophils, the most abundant type of white blood cell. Two main forms of inherited neutropenia are cyclic neutropenia, in which neutrophil counts oscillate with a 21-day frequency, and severe congenital neutropenia, in which static neutropenia may evolve at times into leukemia. Mutations of ELA2, encoding the protease neutrophil elastase, can cause both disorders. Among other genes, severe congenital neutropenia can also result from mutations affecting the transcriptional repressor Gfi1, one of whose genetic targets is ELA2, suggesting that the two act through similar mechanisms. In order to identify components of a common pathway regulating neutrophil production, we conducted yeast two-hybrid screens with Gfi1 and neutrophil elastase and detected a novel protein, PFAAP5 (also known as N4BP2L2), interacting with both. Expression of PFAAP5 allows neutrophil elastase to potentiate the repression of Gfi1 target genes, as determined by reporter assays, RNA interference, chromatin immunoprecipitation, and impairment of neutrophil differentiation in HSCs with PFAAP5 depletion, thus delineating a mechanism through which neutrophil elastase could regulate its own synthesis. Our findings are consistent with theoretical models of cyclic neutropenia proposing that its periodicity can be explained through disturbance of a feedback circuit in which mature neutrophils inhibit cell proliferation, thereby homeostatically regulating progenitor populations.
Collapse
|
30
|
Complex dynamics of osteoclast formation and death in long-term cultures. PLoS One 2008; 3:e2104. [PMID: 18461134 PMCID: PMC2330067 DOI: 10.1371/journal.pone.0002104] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Accepted: 03/27/2008] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Osteoclasts, cells responsible for bone resorption, contribute to the development of degenerative, metabolic and neoplastic bone diseases, which are often characterized by persistent changes in bone microenvironment. We aimed to investigate the dynamics of osteoclast formation and death in cultures that considerably exceeded the length of standard protocol and to design a mathematical model describing osteoclastogenesis. METHODOLOGY/PRINCIPAL FINDINGS RAW 264.7 monocytic cells fuse to form multinucleated osteoclasts upon treatment with pro-resorptive cytokine RANKL. We have found that in long-term experiments (15-26 days), the dynamics of changes in osteoclast numbers was remarkably complex and qualitatively variable in different experiments. Whereas 19 of 46 experiments exhibited single peak of osteoclast formation, in 27 experiments we observed development of successive waves of osteoclast formation and death. Periodic changes in osteoclast numbers were confirmed in long-term cultures of mouse bone marrow cells treated with M-CSF and RANKL. Because the dynamics of changes in osteoclast numbers was found to be largely independent of monocytes, a two-species model of ordinary differential equations describing the changes in osteoclasts and monocytes was ineffective in recapitulating the oscillations in osteoclast numbers. Following experimental observation that medium collected from mature osteoclasts inhibited osteoclastogenesis in fresh cultures, we introduced a third variable, factor f, to describe osteoclast-derived inhibitor. This model allowed us to simulate the oscillatory changes in osteoclasts, which were coupled to oscillatory changes in the factor f, whereas monocytes changed exponentially. Importantly, to achieve the experimentally observed oscillations with increasing amplitude, we also had to assume that osteoclast presence stimulates osteoclast formation. CONCLUSIONS/SIGNIFICANCE This study identifies the critical role for osteoclast autocrine regulation in controlling long-term dynamic of osteoclast formation and death and describes the complementary roles for negative and positive feedback mediators in determining the sharp dynamics of activation and inactivation of osteoclasts.
Collapse
|
31
|
Single Residue Determines the Specificity of Neutrophil Elastase for Shigella Virulence Factors. J Mol Biol 2008; 377:1053-66. [DOI: 10.1016/j.jmb.2007.12.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Revised: 12/12/2007] [Accepted: 12/17/2007] [Indexed: 11/23/2022]
|
32
|
Donadieu J, Beaupain B, Bellanné-Chantelot C. [Granulopoeisis and leukemogenesis: lessons from congenital neutropenia]. Med Sci (Paris) 2008; 24:284-9. [PMID: 18334177 DOI: 10.1051/medsci/2008243284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Congenital neutropenia are extremely rare diseases, defined by a permanent or cyclic decrease of blood neutrophils. Molecular basis of several congenital neutropenia has been recently determined, involving gene coding for the neutrophil elastase gene (ELA2), GFI1, WAS protein and mitochondrial HAX1 protein. These mutations, dominant (ELA2, GFI1), X-linked (WAS) and autosomal recessive (HAX1), result in instability of the contents of the granules- particularly the neutrophil elastase- or in abnormalities of the cytoskeleton, and possibly, in an increased apoptosis. ELA2 mutations resulting both in profound and permanent neutropenia, and in cyclic--pseudo sinusoidal--neutropenia lead to consider that time pattern is very close in the two apparently distinct phenotypes. This observation suggests that temporal variations of neutrophils could be represented by non linear functions. Congenital neutropenia, specifically ELA2 mutated, are also characterized by a high rate of leukemia (about 15% at 20 years of age). Leukemia risk does not appear to be related to an oncogenic effect of ELA2 mutations, but much likely to the deepness of the neutropenia, and the intensity of G-CSF therapy.
Collapse
Affiliation(s)
- Jean Donadieu
- Service d'Hémato-oncologie Pédiatrique, Registre français des neutropénies congénitales, Hôpital Trousseau, 26 avenue du Docteur Arnold Netter, 75012 Paris, France.
| | | | | |
Collapse
|
33
|
Neutrophil elastase, proteinase 3 and cathepsin G: physicochemical properties, activity and physiopathological functions. Biochimie 2007; 90:227-42. [PMID: 18021746 DOI: 10.1016/j.biochi.2007.10.009] [Citation(s) in RCA: 356] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Accepted: 10/19/2007] [Indexed: 11/21/2022]
Abstract
Polymorphonuclear neutrophils form a primary line of defense against bacterial infections using complementary oxidative and non-oxidative pathways to destroy phagocytized pathogens. The three serine proteases elastase, proteinase 3 and cathepsin G, are major components of the neutrophil primary granules that participate in the non-oxidative pathway of intracellular pathogen destruction. Neutrophil activation and degranulation results in the release of these proteases into the extracellular medium as proteolytically active enzymes, part of them remaining exposed at the cell surface. Extracellular neutrophil serine proteases also help kill bacteria and are involved in the degradation of extracellular matrix components during acute and chronic inflammation. But they are also important as specific regulators of the immune response, controlling cellular signaling through the processing of chemokines, modulating the cytokine network, and activating specific cell surface receptors. Neutrophil serine proteases are also involved in the pathogenicity of a variety of human diseases. This review focuses on the structural and functional properties of these proteases that may explain their specific biological roles, and facilitate their use as molecular targets for new therapeutic strategies.
Collapse
|
34
|
Badolato R, Parolini S. Novel insights from adaptor protein 3 complex deficiency. J Allergy Clin Immunol 2007; 120:735-41; quiz 742-3. [DOI: 10.1016/j.jaci.2007.08.039] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Revised: 08/09/2007] [Accepted: 08/23/2007] [Indexed: 11/29/2022]
|
35
|
Maffia PC, Zittermann SE, Scimone ML, Tateosian N, Amiano N, Guerrieri D, Lutzky V, Rosso D, Romeo HE, Garcia VE, Issekutz AC, Chuluyan HE. Neutrophil elastase converts human immature dendritic cells into transforming growth factor-beta1-secreting cells and reduces allostimulatory ability. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 171:928-37. [PMID: 17690184 PMCID: PMC1959482 DOI: 10.2353/ajpath.2007.061043] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During microbial infection, neutrophils (polymorphonuclear leukocytes; PMNs) activate dendritic cells (DCs). However, early reports illustrated that neutrophil-derived mediators may suppress responses to mitogens. In the present study, we investigated the mechanism used by PMNs to modulate the immunostimulatory ability of DCs. Autologous syngeneic PMNs decreased T-cell proliferation induced by allogeneic DCs. Culture supernatant (CS) derived from PMNs also decreased allostimulation ability of immature DCs and increased the expression of transforming growth factor (TGF)-beta1 on DCs. A TGF-beta1 monoclonal antibody, a CD40 monoclonal antibody, or a serine protease inhibitor reversed the effect of PMN CS on DC allostimulatory ability. Furthermore, elastase reproduced the inhibitory effect of PMN CS on DC allostimulatory ability and the TGF-beta1 production. The role of elastase was confirmed by examining PMN CS from two patients with cyclic neutropenia, a disease due to mutations in the neutrophil elastase gene. These PMN CS samples had reduced elastase activity and were unable to increase DC TGF-beta1 production. Moreover, elastase and PMN CS induced IkappaBalpha degradation in DCs. We conclude that PMNs decrease DC allostimulatory ability via production of elastase leading to a switch of immature DCs into TGF-beta1-secreting cells.
Collapse
Affiliation(s)
- Paulo César Maffia
- Lanais de la Facultad de Medicina, Universidad de Buenos Aires, Avenida Córdoba 2351, C.P. 1120, Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Lemansky P, Smolenova E, Wrocklage C, Hasilik A. Neutrophil elastase is associated with serglycin on its way to lysosomes in U937 cells. Cell Immunol 2007; 246:1-7. [PMID: 17617393 DOI: 10.1016/j.cellimm.2007.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Revised: 05/31/2007] [Accepted: 06/01/2007] [Indexed: 02/07/2023]
Abstract
Mutations in the neutrophil elastase (NE) gene have been postulated to interfere with normal intracellular trafficking of NE as an AP3-interacting membrane integrated protein and to cause severe congenital or cyclic neutropenia in humans. Here, we show that in U937 promonocytes NE is synthesized as a predominantly soluble proenzyme and is completely secreted in the presence of phorbol esters similarly to serglycin. Using chemical cross-linking NE is shown to be associated with serglycin as 34 kDa proenzyme in the trans-Golgi region of these cells indicating that it is delivered to lysosomes associated with serglycin.
Collapse
Affiliation(s)
- Peter Lemansky
- Institute of Physiological Chemistry, Philipps-University Marburg, Karl-von-Frisch-Str. 1, 35033 Marburg/Lahn, Germany.
| | | | | | | |
Collapse
|
37
|
Shearman JR, Wilton AN. Elimination of neutrophil elastase and the genes for [corrected] adaptor protein complex 3 subunits [corrected] as the cause of trapped neutrophil syndrome in Border collies. Anim Genet 2007; 38:188-9. [PMID: 17302793 DOI: 10.1111/j.1365-2052.2007.01565.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- J R Shearman
- School of Biotechnology and Biomolecular Sciences, Clive and Vera Ramaciotti Centre for Gene Function Analysis, University of New South Wales, Sydney, NSW 2052, Australia
| | | |
Collapse
|
38
|
Niemann CU, Abrink M, Pejler G, Fischer RL, Christensen EI, Knight SD, Borregaard N. Neutrophil elastase depends on serglycin proteoglycan for localization in granules. Blood 2007; 109:4478-86. [PMID: 17272511 DOI: 10.1182/blood-2006-02-001719] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
AbstractGranule proteins play a major role in bacterial killing by neutrophils. Serglycin proteoglycan, the major intracellular proteoglycan of hematopoietic cells, has been proposed to play a role in sorting and packing of granule proteins. We examined the content of major neutrophil granule proteins in serglycin knockout mice and found neutrophil elastase absent from mature neutrophils as shown by activity assay, Western blotting, and immunocytochemistry, whereas neutrophil elastase mRNA was present. The localization of other neutrophil granule proteins did not differ between wild-type and serglycin knockout mice. Differential counts and neutrophil ultrastructure were unaffected by the lack of serglycin, indicating that defective localization of neutrophil elastase does not induce neutropenia itself, albeit mutations in the neutrophil elastase gene can cause severe congenital neutropenia or cyclic neutropenia. The virulence of intraperitoneally injected Gram-negative bacteria (Klebsiella pneumoniae) was increased in serglycin knockout mice compared with wild-type mice, as previously reported for neutrophil elastase knockout mice. Thus, serglycin proteoglycan has an important role in localizing neutrophil elastase in azurophil granules of neutrophils, while localization of other granule proteins must be mediated by other mechanisms.
Collapse
Affiliation(s)
- Carsten U Niemann
- Rigshospitalet, Department of Hematology, Granulocyte Research Laboratory, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | | | | | |
Collapse
|
39
|
Salipante SJ, Benson KF, Luty J, Hadavi V, Kariminejad R, Kariminejad MH, Rezaei N, Horwitz MS. Double de novo mutations ofELA2 in cyclic and severe congenital neutropenia. Hum Mutat 2007; 28:874-81. [PMID: 17436313 DOI: 10.1002/humu.20529] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Heterozygous mutations of ELA2, encoding the protease neutrophil elastase (NE), cause either autosomal dominant cyclic neutropenia or severe congenital neutropenia (SCN). Three hypotheses have been proposed for how allelic mutations produce these different disorders: 1) disruption of proteolytic activity; 2) mislocalization of the protein; or 3) destabilization of the protein resulting in induction of the unfolded protein response. As with other dominant diseases with reduced reproductive fitness, sporadic cases can result from new mutations not inherited from either parent. Here we report an exceptional genetic phenomenon in which both a cyclic neutropenia patient and an SCN patient each possess two new ELA2 mutations. Because of the rarity of the phenomenon, we investigated the origins of the mutations and found that both arise nonmosaically and in cis from the paternally-inherited allele. Moreover, these cases offer a unique opportunity to investigate molecular pathways distinguishing these two forms of hereditary neutropenia. We have characterized the mutants separately and in combination, with respect to their effects on proteolysis, subcellular trafficking, and induction of the unfolded protein response. Each pair of mutations acts more or less additively to produce equivalent net effects on reducing proteolytic activity and induction of the unfolded protein response, yet each has different and somewhat opposing effects on disturbing subcellular localization, thus offering support for a role for protein mistrafficking as a disease mechanism.
Collapse
Affiliation(s)
- Stephen J Salipante
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Horwitz MS, Duan Z, Korkmaz B, Lee HH, Mealiffe ME, Salipante SJ. Neutrophil elastase in cyclic and severe congenital neutropenia. Blood 2006; 109:1817-24. [PMID: 17053055 PMCID: PMC1801070 DOI: 10.1182/blood-2006-08-019166] [Citation(s) in RCA: 166] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mutations in ELA2 encoding the neutrophil granule protease, neutrophil elastase (NE), are the major cause of the 2 main forms of hereditary neutropenia, cyclic neutropenia and severe congenital neutropenia (SCN). Genetic evaluation of other forms of neutropenia in humans and model organisms has helped to illuminate the role of NE. A canine form of cyclic neutropenia corresponds to human Hermansky-Pudlak syndrome type 2 (HPS2) and results from mutations in AP3B1 encoding a subunit of a complex involved in the subcellular trafficking of vesicular cargo proteins (among which NE appears to be one). Rare cases of SCN are attributable to mutations in the transcriptional repressor Gfi1 (among whose regulatory targets also include ELA2). The ultimate biochemical consequences of the mutations are not yet known, however. Gene targeting of ELA2 has thus far failed to recapitulate neutropenia in mice. The cycling phenomenon and origins of leukemic transformation in SCN remain puzzling. Nevertheless, mutations in all 3 genes are capable of causing the mislocalization of NE and may also induce the unfolded protein response, suggesting that there might a convergent pathogenic mechanism focusing on NE.
Collapse
Affiliation(s)
- Marshall S Horwitz
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Abstract
Neutrophils are essential for host defence against invading pathogens. They engulf and degrade microorganisms using an array of weapons that include reactive oxygen species, antimicrobial peptides, and proteases such as cathepsin G, neutrophil elastase and proteinase 3. As discussed in this Review, the generation of mice deficient in these proteases has established a role for these enzymes as intracellular microbicidal agents. However, I focus mainly on emerging data indicating that, after release, these proteases also contribute to the extracellular killing of microorganisms, and regulate non-infectious inflammatory processes by activating specific receptors and modulating the levels of cytokines.
Collapse
Affiliation(s)
- Christine T N Pham
- Division of Rheumatology, Department of Internal Medicine, Washington University School of Medicine, Saint Louis, Missouri 63110, USA.
| |
Collapse
|
42
|
Abstract
Complete and limited proteolysis represents key events that regulate many biological processes. At least 5% of the human genome codes for components of proteolytic processes if proteases, inhibitors, and cofactors are taken into account. Accordingly, disruption of proteolysis is involved in numerous pathological conditions. In particular, molecular genetic studies have identified a growing number of monogenic disorders caused by mutations in protease coding genes, highlighting the importance of this class of enzymes in development, organogenesis, immunity, and brain function. This review provides insights into the current knowledge about the molecular genetic causes of these disorders. It should be noted that most are due to loss of function mutations, indicating absolute requirement of proteolytic activities for normal cellular functions. Recent progress in understanding the function of the implicated proteins and the disease pathogenesis is detailed. In addition to providing important clues to the diagnosis, treatment, and pathophysiology of disease, functional characterisation of mutations in proteolytic systems emphasises the pleiotropic functions of proteases in the body homeostasis.
Collapse
Affiliation(s)
- I Richard
- Généthon CNRS UMR8115, 1, rue de l'internationale, 91000 Evry, France.
| |
Collapse
|
43
|
Young LR, Borchers MT, Allen HL, Gibbons RS, McCormack FX. Lung-restricted macrophage activation in the pearl mouse model of Hermansky-Pudlak syndrome. THE JOURNAL OF IMMUNOLOGY 2006; 176:4361-8. [PMID: 16547274 PMCID: PMC3783655 DOI: 10.4049/jimmunol.176.7.4361] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Pulmonary inflammation, abnormalities in alveolar type II cell and macrophage morphology, and pulmonary fibrosis are features of Hermansky-Pudlak Syndrome (HPS). We used the naturally occurring "pearl" HPS2 mouse model to investigate the mechanisms of lung inflammation observed in HPS. Although baseline bronchoalveolar lavage (BAL) cell counts and differentials were similar in pearl and strain-matched wild-type (WT) mice, elevated levels of proinflammatory (MIP1gamma) and counterregulatory (IL-12p40, soluble TNFr1/2) factors, but not TNF-alpha, were detected in BAL from pearl mice. After intranasal LPS challenge, BAL levels of TNF-alpha, MIP1alpha, KC, and MCP-1 were 2- to 3-fold greater in pearl than WT mice. At baseline, cultured pearl alveolar macrophages (AMs) had markedly increased production of inflammatory cytokines. Furthermore, pearl AMs had exaggerated TNF-alpha responses to TLR4, TLR2, and TLR3 ligands, as well as increased IFN-gamma/LPS-induced NO production. After 24 h in culture, pearl AM LPS responses reverted to WT levels, and pearl AMs were appropriately refractory to continuous LPS exposure. In contrast, cultured pearl peritoneal macrophages and peripheral blood monocytes did not produce TNF-alpha at baseline and had LPS responses which were no different from WT controls. Exposure of WT AMs to heat- and protease-labile components of pearl BAL, but not WT BAL, resulted in robust TNF-alpha secretion. Similar abnormalities were identified in AMs and BAL from another HPS model, pale ear HPS1 mice. We conclude that the lungs of HPS mice exhibit hyperresponsiveness to LPS and constitutive and organ-specific macrophage activation.
Collapse
Affiliation(s)
- Lisa R. Young
- Department of Medicine, Division of Pulmonary and Critical Care, University of Cincinnati, Cincinnati, OH 45267
- Department of Pediatrics, Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Michael T. Borchers
- Department of Medicine, Division of Pulmonary and Critical Care, University of Cincinnati, Cincinnati, OH 45267
- Department of Environmental Health, Division of Environmental Genetics and Molecular Toxicology, University of Cincinnati, Cincinnati, OH 45267
| | - Holly L. Allen
- Department of Medicine, Division of Infectious Diseases, University of Cincinnati, Cincinnati, OH 45267
| | - Reta S. Gibbons
- Department of Medicine, Division of Infectious Diseases, University of Cincinnati, Cincinnati, OH 45267
| | - Francis X. McCormack
- Department of Medicine, Division of Pulmonary and Critical Care, University of Cincinnati, Cincinnati, OH 45267
- Address correspondence and reprint requests to Dr. Francis X. McCormack, Division of Pulmonary and Critical Care, University of Cincinnati, 231 Albert Sabin Way, 6053 Medical Sciences Building, Cincinnati, OH 45267-0564.
| |
Collapse
|
44
|
Abstract
The Hermansky-Pudlak syndrome (HPS) is a collection of related autosomal recessive disorders which are genetically heterogeneous. There are eight human HPS subtypes, characterized by oculocutaneous albinism and platelet storage disease; prolonged bleeding, congenital neutropenia, pulmonary fibrosis, and granulomatous colitis can also occur. HPS is caused primarily by defects in intracellular protein trafficking that result in the dysfunction of intracellular organelles known as lysosome-related organelles. HPS gene products are all ubiquitously expressed and all associate in various multi-protein complexes, yet HPS has cell type-specific disease expression. Impairment of specialized secretory cells such as melanocytes, platelets, lung alveolar type II epithelial cells and cytotoxic T cells are observed in HPS. This review summarizes recent molecular, biochemical and cell biological analyses together with clinical studies that have led to the correlation of molecular pathology with clinical manifestations and led to insights into such diverse disease processes such as albinism, fibrosis, hemorrhage, and congenital neutropenia.
Collapse
Affiliation(s)
- Maria L Wei
- Department of Dermatology, Veterans Affairs Medical Center 190, University of California, 4150 Clement St., San Francisco, USA.
| |
Collapse
|
45
|
Zhuang D, Qiu Y, Kogan SC, Dong F. Increased CCAAT enhancer-binding protein epsilon (C/EBPepsilon) expression and premature apoptosis in myeloid cells expressing Gfi-1 N382S mutant associated with severe congenital neutropenia. J Biol Chem 2006; 281:10745-51. [PMID: 16500901 DOI: 10.1074/jbc.m510924200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Granulocyte-colony-stimulating factor (G-CSF) stimulates the activation of multiple signaling pathways, leading to alterations in the activities of transcription factors. Gfi-1 is a zinc finger transcriptional repressor that is required for granulopoiesis. How Gfi-1 acts in myeloid cells is poorly understood. We show here that the expression of Gfi-1 was up-regulated during G-CSF-induced granulocytic differentiation in myeloid 32D cells. Truncation of the carboxyl terminus of the G-CSF receptor, as seen in patients with acute myeloid leukemia evolving from severe congenital neutropenia, disrupted Gfi-1 up-regulation by G-CSF. Ectopic expression of a dominant negative Gfi-1 mutant, N382S, which was associated with severe congenital neutropenia, resulted in premature apoptosis and reduced proliferation of cells induced to differentiate with G-CSF. The expression of neutrophil elastase (NE) and CCAAT enhancer-binding protein epsilon (C/EBPepsilon) was significantly increased in 32D cells expressing N382S. In contrast, overexpression of wild type Gfi-1 abolished G-CSF-induced up-regulation of C/EBPepsilon but had no apparent effect on NE up-regulation by G-CSF. Notably, G-CSF-dependent proliferation and survival were inhibited upon overexpression of C/EBPepsilon but not NE. These data indicate that Gfi-1 down-regulates C/EBPepsilon expression and suggest that increased expression of C/EBPepsilon as a consequence of loss of Gfi-1 function may be deleterious to the proliferation and survival of early myeloid cells.
Collapse
Affiliation(s)
- Dazhong Zhuang
- Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606, USA
| | | | | | | |
Collapse
|
46
|
Howell GJ, Holloway ZG, Cobbold C, Monaco AP, Ponnambalam S. Cell biology of membrane trafficking in human disease. INTERNATIONAL REVIEW OF CYTOLOGY 2006; 252:1-69. [PMID: 16984815 PMCID: PMC7112332 DOI: 10.1016/s0074-7696(06)52005-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Understanding the molecular and cellular mechanisms underlying membrane traffic pathways is crucial to the treatment and cure of human disease. Various human diseases caused by changes in cellular homeostasis arise through a single gene mutation(s) resulting in compromised membrane trafficking. Many pathogenic agents such as viruses, bacteria, or parasites have evolved mechanisms to subvert the host cell response to infection, or have hijacked cellular mechanisms to proliferate and ensure pathogen survival. Understanding the consequence of genetic mutations or pathogenic infection on membrane traffic has also enabled greater understanding of the interactions between organisms and the surrounding environment. This review focuses on human genetic defects and molecular mechanisms that underlie eukaryote exocytosis and endocytosis and current and future prospects for alleviation of a variety of human diseases.
Collapse
Affiliation(s)
- Gareth J Howell
- Endothelial Cell Biology Unit, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | | | | | | | | |
Collapse
|
47
|
|
48
|
Klausen P, Niemann CU, Cowland JB, Krabbe K, Borregaard N. On mouse and man: neutrophil gelatinase associated lipocalin is not involved in apoptosis or acute response. Eur J Haematol 2005; 75:332-40. [PMID: 16146540 DOI: 10.1111/j.1600-0609.2005.00511.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Neutrophil gelatinase-associated lipocalin (NGAL) is a siderphore binding molecule present in the specific granules of neutrophils and induced in a variety of epithelial cells during inflammation. Its mouse orthologue, 24p3, is also an acute phase protein synthesized in the liver and adipose tissue during inflammation. 24p3 has recently been implicated in apoptosis of myeloid cells. We investigated whether similar features are characteristics of NGAL. First, isolated normal myeloid bone marrow cells were incubated with NGAL for 6 and 24 hr and analyzed for apoptosis by annexin V binding and by propidium iodide labeling. We found no indication that NGAL induces significant apoptosis in myeloid cells. Second, a human sepsis model where normal volunteers were given endotoxin 2 ng/kg intravenously, showed no evidence that NGAL is an acute phase protein. The plasma level of NGAL reflected the number of circulating neutrophils and was completely different from the kinetics of C-reactive protein. We thus conclude that major differences exist between mouse and man with regards to the role of this lipocalin in myelopoiesis and inflammation.
Collapse
Affiliation(s)
- Pia Klausen
- Department of Hematology, The Granulocyte Research Laboratory, Rigshospitalet 9322, 9 Blegdamsvej, DK-2100 Copenhagen, Denmark.
| | | | | | | | | |
Collapse
|
49
|
Abstract
Hematopoiesis can be scripted into multiple acts that open with hematopoietic stem cells (HSCs) and close with the production of nonproliferating mature blood cells. Its lifelong durability requires that HSCs choose between mutually exclusive fates: self-renewal versus a capacity for multilineage differentiation. The growth factor independence 1 (Gfi-1) oncoprotein was first discovered playing supporting roles in lymphopoiesis and myelopoiesis. Two new studies indicate that Gfi-1 regulates self-renewal and preserves the functional integrity of HSCs, adding Gfi-1 to the short list of intrinsic regulators of self-renewal and casting it among the major players featured in starring roles in hematopoiesis.
Collapse
Affiliation(s)
- Zhijun Duan
- Division of Medical Genetics/Department of Medicine, University of Washington School of Medicine, 1705 NE Pacific Street, HSB-K236B, Box 357720, Seattle, WA 98195, USA
| | | |
Collapse
|
50
|
Massullo P, Druhan LJ, Bunnell BA, Hunter MG, Robinson JM, Marsh CB, Avalos BR. Aberrant subcellular targeting of the G185R neutrophil elastase mutant associated with severe congenital neutropenia induces premature apoptosis of differentiating promyelocytes. Blood 2005; 105:3397-404. [PMID: 15657182 PMCID: PMC1895019 DOI: 10.1182/blood-2004-07-2618] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mutations in the ELA2 gene encoding neutrophil elastase (NE) are present in most patients with severe congenital neutropenia (SCN). However, the mechanisms by which these mutations cause neutropenia remain unknown. To investigate the effects of mutant NE expression on granulopoiesis, we used the HL-60 promyelocytic cell line retrovirally transduced with the G185R NE mutant that is associated with a severe SCN phenotype. We show that the mutant enzyme accelerates apoptosis of differentiating but not of proliferating cells. Using metabolic labeling, confocal immunofluorescence microscopy, and immunoblot analysis of subcellular fractions, we also demonstrate that the G185R mutant is abnormally processed and localizes predominantly to the nuclear and plasma membranes rather than to the cytoplasmic compartment observed with the wild-type (WT) enzyme. Expression of the G185R mutant appeared to alter the subcellular distribution and expression of adaptor protein 3 (AP3), which traffics proteins from the trans-Golgi apparatus to the endosome. These observations provide further insight into potential mechanisms by which NE mutations cause neutropenia and suggest that abnormal protein trafficking and accelerated apoptosis of differentiating myeloid cells contribute to the severe SCN phenotype resulting from the G185R mutation.
Collapse
Affiliation(s)
- Pam Massullo
- Bone Marrow Transplant Program, The Ohio State University, A437A Starling-Loving Hall, 320 W Tenth Ave, Columbus, OH, USA
| | | | | | | | | | | | | |
Collapse
|