1
|
He M, Tao Y, Mu K, Feng H, Fan Y, Liu T, Huang Q, Xiao Y, Chen W. Coordinated regulation of chemotaxis and resistance to copper by CsoR in Pseudomonas putida. eLife 2025; 13:RP100914. [PMID: 40197389 PMCID: PMC11978298 DOI: 10.7554/elife.100914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025] Open
Abstract
Copper is an essential enzyme cofactor in bacteria, but excess copper is highly toxic. Bacteria can cope with copper stress by increasing copper resistance and initiating chemorepellent response. However, it remains unclear how bacteria coordinate chemotaxis and resistance to copper. By screening proteins that interacted with the chemotaxis kinase CheA, we identified a copper-binding repressor CsoR that interacted with CheA in Pseudomonas putida. CsoR interacted with the HPT (P1), Dimer (P3), and HATPase_c (P4) domains of CheA and inhibited CheA autophosphorylation, resulting in decreased chemotaxis. The copper-binding of CsoR weakened its interaction with CheA, which relieved the inhibition of chemotaxis by CsoR. In addition, CsoR bound to the promoter of copper-resistance genes to inhibit gene expression, and copper-binding released CsoR from the promoter, leading to increased gene expression and copper resistance. P. putida cells exhibited a chemorepellent response to copper in a CheA-dependent manner, and CsoR inhibited the chemorepellent response to copper. Besides, the CheA-CsoR interaction also existed in proteins from several other bacterial species. Our results revealed a mechanism by which bacteria coordinately regulated chemotaxis and resistance to copper by CsoR.
Collapse
Affiliation(s)
- Meina He
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhanChina
| | - Yongxin Tao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhanChina
| | - Kexin Mu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhanChina
| | - Haoqi Feng
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhanChina
| | - Ying Fan
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhanChina
| | - Tong Liu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhanChina
| | - Qiaoyun Huang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhanChina
| | - Yujie Xiao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhanChina
| | - Wenli Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhanChina
| |
Collapse
|
2
|
Pérez-Recalde M, Pacheco E, Aráoz B, Hermida ÉB. Effects of Polyhydroxybutyrate-co-hydroxyvalerate Microparticle Loading on Rheology, Microstructure, and Processability of Hydrogel-Based Inks for Bioprinted and Moulded Scaffolds. Gels 2025; 11:200. [PMID: 40136905 PMCID: PMC11941948 DOI: 10.3390/gels11030200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/22/2024] [Accepted: 03/10/2025] [Indexed: 03/27/2025] Open
Abstract
Resorbable microparticles can be added to hydrogel-based biocompatible scaffolds to improve their mechanical characteristics and allow localised drug delivery, which will aid in tissue repair and regeneration. It is well-known that bioprinting is important for producing scaffolds personalised to patients by loading them with their own cells and printing them with specified shapes and dimensions. The question is how the addition of such particles affects the rheological responsiveness of the hydrogels (which is critical during the printing process) as well as mechanical parameters like the elastic modulus. This study tries to answer this question using a specific system: an alginate-gelatine hydrogel containing polyhydroxybutyrate-co-hydroxyvalerate (PHBV) microparticles. Scaffolds were made by bioprinting and moulding incorporating PHBV microspheres (7-12 μm in diameter) into alginate-gelatine inks (4.5 to 9.0% w/v). The microparticles (MP) were predominantly located within the polymeric matrix at concentrations up to 10 mg MP/mL ink. Higher particle concentrations disrupted their spatial distribution. Inks pre-crosslinked with 15 mM calcium and containingMPat concentrations ranging from 0 to 10 mg/mL demonstrated rheological characteristics appropriate for bioprinting, such as solid-like behaviour (G' = 1060-1300 Pa, G″ = 720-930 Pa), yield stresses of 320-400 Pa, and pseudoplastic behaviour (static viscosities of 4000-5600 Pa·s and ~100 Pa·s at bioprinting shear rates). Furthermore, these inks allow high printing quality, assessed through scaffold dimensions, filament widths, and printability (Pr > 0.94). The modulus of elasticity in compression (E) of the scaffolds varied according to the content of MP and the manufacturing technique, with values resembling those of soft tissues (200-600 kPa) and exhibiting a maximum reinforcement effect with 3 mg MP/mL ink (bioprinted E = 273 ± 28 kPa; moulded E = 541 ± 66 kPa). Over the course of six days, the sample's mass and shape remained stable during degradation in simulated body fluid (SBF). Thus, the alginate-gelatine hydrogel loaded with PHBV microspheres inks shows promise for targeted drug delivery in soft tissue bioengineering applications.
Collapse
Affiliation(s)
- Mercedes Pérez-Recalde
- Instituto de Tecnologías Emergentes y Ciencias Aplicadas (ITECA), National Scientific and Technical Research Council (CONICET), National University of General San Martin (UNSAM), San Martin 1650, Buenos Aires, Argentina
- Escuela de Ciencia y Tecnología, National University of General San Martin (UNSAM), San Martin 1650, Buenos Aires, Argentina
| | - Evelina Pacheco
- Escuela de Ciencia y Tecnología, National University of General San Martin (UNSAM), San Martin 1650, Buenos Aires, Argentina
| | - Beatriz Aráoz
- Instituto de Tecnologías Emergentes y Ciencias Aplicadas (ITECA), National Scientific and Technical Research Council (CONICET), National University of General San Martin (UNSAM), San Martin 1650, Buenos Aires, Argentina
- Escuela de Ciencia y Tecnología, National University of General San Martin (UNSAM), San Martin 1650, Buenos Aires, Argentina
| | - Élida B. Hermida
- Instituto de Tecnologías Emergentes y Ciencias Aplicadas (ITECA), National Scientific and Technical Research Council (CONICET), National University of General San Martin (UNSAM), San Martin 1650, Buenos Aires, Argentina
- Escuela de Ciencia y Tecnología, National University of General San Martin (UNSAM), San Martin 1650, Buenos Aires, Argentina
| |
Collapse
|
3
|
Sha’at F, Miu D, Eremia MC, Neagu G, Albulescu A, Albulescu R, Deaconu M, Vladu MG, Pavaloiu RD. Fabrication and Evaluation of Polyhydroxyalkanoate-Based Nanoparticles for Curcumin Delivery in Biomedical Applications. Molecules 2025; 30:1216. [PMID: 40141993 PMCID: PMC11944280 DOI: 10.3390/molecules30061216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/05/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
This study investigates the fabrication and characterization of polymeric nanoparticles based on polyhydroxyalkanoates (PHAs) loaded with curcumin for biomedical applications. PHAs, biodegradable and biocompatible polymers, were synthesized via bacterial fermentation and used to encapsulate curcumin using the nanoprecipitation method. The resulting nanoparticles were characterized for their particle size, polydispersity index, and encapsulation efficiency, achieving high entrapment rates (above 80%) and nanometric size distribution. Stability assessments demonstrated prolonged structural integrity under storage conditions. In vitro release studies conducted in phosphate-buffered saline at pH 5 and 7.4 revealed sustained drug release profiles. Biocompatibility and cytotoxicity assays using human astrocytes and fibroblasts confirmed the nanoparticles' safety, while antiproliferative tests on glioblastoma and colon cancer cell lines indicated potential therapeutic efficacy. Additionally, skin irritation and corrosion tests using the EpiDerm™ model classified the formulations as non-irritant and non-corrosive. These findings suggest that PHA-based nanoparticles offer a promising nanocarrier system for curcumin delivery, with potential applications in cancer treatment and regenerative medicine. Future research should focus on optimizing the formulation and evaluating in vivo therapeutic effects.
Collapse
Affiliation(s)
- Fawzia Sha’at
- National Institute for Chemical-Pharmaceutical Research & Development—ICCF, Bucharest 112 Vitan Avenue, 3rd District, 031299 Bucharest, Romania; (F.S.); (D.M.); (M.C.E.); (G.N.); (A.A.); (R.A.); (M.G.V.)
| | - Dana Miu
- National Institute for Chemical-Pharmaceutical Research & Development—ICCF, Bucharest 112 Vitan Avenue, 3rd District, 031299 Bucharest, Romania; (F.S.); (D.M.); (M.C.E.); (G.N.); (A.A.); (R.A.); (M.G.V.)
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gheorghe POLIZU St., 011061 Bucharest, Romania;
| | - Mihaela Carmen Eremia
- National Institute for Chemical-Pharmaceutical Research & Development—ICCF, Bucharest 112 Vitan Avenue, 3rd District, 031299 Bucharest, Romania; (F.S.); (D.M.); (M.C.E.); (G.N.); (A.A.); (R.A.); (M.G.V.)
| | - Georgeta Neagu
- National Institute for Chemical-Pharmaceutical Research & Development—ICCF, Bucharest 112 Vitan Avenue, 3rd District, 031299 Bucharest, Romania; (F.S.); (D.M.); (M.C.E.); (G.N.); (A.A.); (R.A.); (M.G.V.)
| | - Adrian Albulescu
- National Institute for Chemical-Pharmaceutical Research & Development—ICCF, Bucharest 112 Vitan Avenue, 3rd District, 031299 Bucharest, Romania; (F.S.); (D.M.); (M.C.E.); (G.N.); (A.A.); (R.A.); (M.G.V.)
- Department of Molecular Virology, Stefan S. Nicolau Institute of Virology, Mihai Bravu Av. nr. 285, 3rd District, 030304 Bucharest, Romania
| | - Radu Albulescu
- National Institute for Chemical-Pharmaceutical Research & Development—ICCF, Bucharest 112 Vitan Avenue, 3rd District, 031299 Bucharest, Romania; (F.S.); (D.M.); (M.C.E.); (G.N.); (A.A.); (R.A.); (M.G.V.)
| | - Mihaela Deaconu
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gheorghe POLIZU St., 011061 Bucharest, Romania;
| | - Mariana Gratiela Vladu
- National Institute for Chemical-Pharmaceutical Research & Development—ICCF, Bucharest 112 Vitan Avenue, 3rd District, 031299 Bucharest, Romania; (F.S.); (D.M.); (M.C.E.); (G.N.); (A.A.); (R.A.); (M.G.V.)
| | - Ramona-Daniela Pavaloiu
- National Institute for Chemical-Pharmaceutical Research & Development—ICCF, Bucharest 112 Vitan Avenue, 3rd District, 031299 Bucharest, Romania; (F.S.); (D.M.); (M.C.E.); (G.N.); (A.A.); (R.A.); (M.G.V.)
| |
Collapse
|
4
|
Haraźna K, Guzik M, Sobczak-Kupiec A, Wojnarowska M, Nitkiewicz T. Managing life cycle impacts of poly(3-hydroxyoctanoate)-based nanocomposites intended for biomedical and packaging applications. WASTE MANAGEMENT (NEW YORK, N.Y.) 2025; 195:55-68. [PMID: 39889390 DOI: 10.1016/j.wasman.2025.01.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/06/2025] [Accepted: 01/23/2025] [Indexed: 02/03/2025]
Abstract
The environmental pollution caused by post-consumer plastics and the associated health risks necessitate comprehensive life-cycle analyses of these materials, mainly focusing on their end-of-life impacts. This study presents an in-depth evaluation of the environmental implications of producing nanocomposites using poly(3-hydroxyoctanoate) (P(3HO)), a biodegradable and biocompatible polymer that holds great promise as an alternative to traditional plastics, in combination with calcium-, and zinc-based double-layered hydroxides (LDH) modified with the antioxidant α-tocopherol. Utilising the ReCiPe impact assessment method, we identified critical environmental impact categories, including fine particle formation, global warming potential, and toxicity. The analysis revealed that the biosynthesis of P(3HO) is the primary contributor to environmental impact, with electricity consumption accounting for approximately 95% of the overall effect. Purification processes significantly increase environmental impact, mainly due to the extra electricity used for freezing, centrifugation and evaporation. The preparation of nanoparticles contributes to the overall environmental impact, but its scale is reasonably differentiated and spans from 0,3% for Ca/Al nanoparticles to 9.9% for Zn/Al-toc variants, respectively. Although producing these eco-friendly polymers involves significant energy consumption, they present a viable long-term alternative to petroleum-based polymers. Specific life cycle management decisions, like recovering substrates, using renewable energy sources, or gaining overall process improvement, could bring significant environmental benefits. Investigated materials show substantial potential in biomedical coatings and active packaging applications.
Collapse
Affiliation(s)
- Katarzyna Haraźna
- Department of Materials Engineering, Cracow University of Technology, Jana Pawła II Av. 37, 31-864 Cracow, Poland
| | - Maciej Guzik
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Cracow, Poland
| | - Agnieszka Sobczak-Kupiec
- Department of Materials Engineering, Cracow University of Technology, Jana Pawła II Av. 37, 31-864 Cracow, Poland
| | - Magdalena Wojnarowska
- Department of Technology and Ecology of Product, Cracow University of Economics, Rakowicka 27, 31-510 Cracow, Poland
| | - Tomasz Nitkiewicz
- Life Cycle Modelling Centre, Faculty of Management, Częstochowa University of Technology, al. Armii Krajowej 19B, 42-200 Częstochowa, Poland.
| |
Collapse
|
5
|
Pecorini G, Domingos MAN, Richardson SM, Carmassi L, Vecchi DL, Parrini G, Puppi D. 3D printing of bacterial poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/poly(lactide-co-glycolide) blend loaded with β-tricalcium phosphate for the development of scaffolds to support human mesenchymal stromal cell proliferation. Int J Biol Macromol 2025; 288:138744. [PMID: 39674454 DOI: 10.1016/j.ijbiomac.2024.138744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/20/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
Polyhydroxyalkanoates (PHAs) are microbially produced aliphatic polyesters investigated for tissue engineering thanks to their biocompatibility, processability, and suitable mechanical properties. Taking advantage of these properties, the present study investigates the development by 3D printing of bacterial poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) scaffolds loaded with β-tricalcium phosphate (β-TCP) for bone tissue regeneration. PHBV blending with poly(lactide-co-glycolide) (PLGA) (30 wt%) was exploited to enhance material processability via an optimized computer-aided wet-spinning approach. In particular, PHBV/PLGA blends were loaded with different β-TCP percentages (up to 15 wt%) by suspending the ceramic particles into the polymeric solution. The composite materials were successfully fabricated into 3D scaffolds with a fully interconnected porous architecture, as demonstrated by scanning electron microscopy. The ceramic phase had a significant effect on PHBV crystallization as shown by differential scanning calorimetry, as well as on scaffold mechanical properties with a significant increase of compressive modulus in the case of 5 wt% β-TCP loading. In addition, in vitro cell culture experiments demonstrated that β-TCP loading led to a significant increase of the viability of human mesenchymal stem/stromal cells grown on the scaffolds. Taken together, our data suggest that microbial PHBV processability, biomechanical performance, and bioactivity can be improved through combined PLGA blending and β-TCP loading.
Collapse
Affiliation(s)
- Gianni Pecorini
- Department of Chemistry and Industrial Chemistry, University of Pisa, UdR INSTM-Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Marco A N Domingos
- Department of Mechanical and Aerospace Engineering, School of Engineering, Faculty of Science and Engineering, Henry Royce Institute, The University of Manchester, Manchester M13 9PL, UK.
| | - Stephen M Richardson
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK
| | - Leonardo Carmassi
- Department of Chemistry and Industrial Chemistry, University of Pisa, UdR INSTM-Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Diego Li Vecchi
- Department of Chemistry and Industrial Chemistry, University of Pisa, UdR INSTM-Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | | | - Dario Puppi
- Department of Chemistry and Industrial Chemistry, University of Pisa, UdR INSTM-Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy.
| |
Collapse
|
6
|
Lalonde JN, Pilania G, Marrone BL. Materials designed to degrade: structure, properties, processing, and performance relationships in polyhydroxyalkanoate biopolymers. Polym Chem 2025; 16:235-265. [PMID: 39464417 PMCID: PMC11498330 DOI: 10.1039/d4py00623b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/05/2024] [Indexed: 10/29/2024]
Abstract
Conventional plastics pose significant environmental and health risks across their life cycle, driving intense interest in sustainable alternatives. Among these, polyhydroxyalkanoates (PHAs) stand out for their biocompatibility, degradation characteristics, and diverse applications. Yet, challenges like production cost, scalability, and limited chemical variety hinder their widespread adoption, impacting material selection and design. This review examines PHA research through the lens of the classical materials tetrahedron, exploring property-structure-processing-performance (PSPP) relationships. By analyzing recent literature and addressing current limitations, we gain valuable insights into PHA development. Despite challenges, we remain optimistic about the role of PHAs in transitioning towards a circular plastic economy, emphasizing the need for further research to unlock their full potential.
Collapse
Affiliation(s)
- Jessica N Lalonde
- Department of Mechanical Engineering and Materials Science, Duke University Durham NC 27708 USA
- Bioscience Division, Los Alamos National Laboratory Los Alamos NM 87545 USA
| | | | - Babetta L Marrone
- Bioscience Division, Los Alamos National Laboratory Los Alamos NM 87545 USA
| |
Collapse
|
7
|
Dobrzyńska‐Mizera M, Dodda JM, Liu X, Knitter M, Oosterbeek RN, Salinas P, Pozo E, Ferreira AM, Sadiku ER. Engineering of Bioresorbable Polymers for Tissue Engineering and Drug Delivery Applications. Adv Healthc Mater 2024; 13:e2401674. [PMID: 39233521 PMCID: PMC11616265 DOI: 10.1002/adhm.202401674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/15/2024] [Indexed: 09/06/2024]
Abstract
Herein, the recent advances in the development of resorbable polymeric-based biomaterials, their geometrical forms, resorption mechanisms, and their capabilities in various biomedical applications are critically reviewed. A comprehensive discussion of the engineering approaches for the fabrication of polymeric resorbable scaffolds for tissue engineering, drug delivery, surgical, cardiological, aesthetical, dental and cardiovascular applications, are also explained. Furthermore, to understand the internal structures of resorbable scaffolds, representative studies of their evaluation by medical imaging techniques, e.g., cardiac computer tomography, are succinctly highlighted. This approach provides crucial clinical insights which help to improve the materials' suitable and viable characteristics for them to meet the highly restrictive medical requirements. Finally, the aspects of the legal regulations and the associated challenges in translating research into desirable clinical and marketable materials of polymeric-based formulations, are presented.
Collapse
Affiliation(s)
| | - Jagan Mohan Dodda
- New Technologies – Research Centre (NTC)University of West BohemiaUniverzitní 8Pilsen30100Czech Republic
| | - Xiaohua Liu
- Chemical and Biomedical Engineering DepartmentUniversity of Missouri1030 Hill StreetColumbiaMissouri65211USA
| | - Monika Knitter
- Institute of Materials TechnologyPolymer DivisionPoznan University of TechnologyPoznanPoland
| | - Reece N. Oosterbeek
- Department of Engineering ScienceUniversity of OxfordParks RoadOxfordOX1 3PJUK
| | - Pablo Salinas
- Department of CardiologyHospital Clínico San CarlosMadridSpain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC)MadridSpain
| | - Eduardo Pozo
- Department of CardiologyHospital Clínico San CarlosMadridSpain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC)MadridSpain
| | - Ana Marina Ferreira
- School of EngineeringNewcastle UniversityNewcastle upon TyneNewcastleNE1 7RUUK
| | - Emmanuel Rotimi Sadiku
- Tshwane University of TechnologyDepartment of ChemicalMetallurgical and Materials EngineeringPolymer Division & Institute for Nano Engineering Research (INER)Pretoria West CampusPretoriaSouth Africa
| |
Collapse
|
8
|
Chaber P, Andrä-Żmuda S, Śmigiel-Gac N, Zięba M, Dawid K, Martinka Maksymiak M, Adamus G. Enhancing the Potential of PHAs in Tissue Engineering Applications: A Review of Chemical Modification Methods. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5829. [PMID: 39685265 DOI: 10.3390/ma17235829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024]
Abstract
Polyhydroxyalkanoates (PHAs) are a family of polyesters produced by many microbial species. These naturally occurring polymers are widely used in tissue engineering because of their in vivo degradability and excellent biocompatibility. The best studied among them is poly(3-hydroxybutyrate) (PHB) and its copolymer with 3-hydroxyvaleric acid (PHBV). Despite their superior properties, PHB and PHBV suffer from high crystallinity, poor mechanical properties, a slow resorption rate, and inherent hydrophobicity. Not only are PHB and PHBV hydrophobic, but almost all members of the PHA family struggle because of this characteristic. One can overcome the limitations of microbial polyesters by modifying their bulk or surface chemical composition. Therefore, researchers have put much effort into developing methods for the chemical modification of PHAs. This paper explores a rarely addressed topic in review articles-chemical methods for modifying the structure of PHB and PHBV to enhance their suitability as biomaterials for tissue engineering applications. Different chemical strategies for improving the wettability and mechanical properties of PHA scaffolds are discussed in this review. The properties of PHAs that are important for their applications in tissue engineering are also discussed.
Collapse
Affiliation(s)
- Paweł Chaber
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, ul. M. Curie-Skłodowska 34, 41-819 Zabrze, Poland
| | - Silke Andrä-Żmuda
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, ul. M. Curie-Skłodowska 34, 41-819 Zabrze, Poland
| | - Natalia Śmigiel-Gac
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, ul. M. Curie-Skłodowska 34, 41-819 Zabrze, Poland
| | - Magdalena Zięba
- Department of Optoelectronics, Silesian University of Technology, ul. B. Krzywoustego 2, 44-100 Gliwice, Poland
| | - Kamil Dawid
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, ul. M. Curie-Skłodowska 34, 41-819 Zabrze, Poland
| | - Magdalena Martinka Maksymiak
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, ul. M. Curie-Skłodowska 34, 41-819 Zabrze, Poland
| | - Grażyna Adamus
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, ul. M. Curie-Skłodowska 34, 41-819 Zabrze, Poland
| |
Collapse
|
9
|
Ben Abdeladhim R, Reis JA, Vieira AM, de Almeida CD. Polyhydroxyalkanoates: Medical Applications and Potential for Use in Dentistry. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5415. [PMID: 39597239 PMCID: PMC11595952 DOI: 10.3390/ma17225415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024]
Abstract
Polyhydroxyalkanoates (PHAs) are promising biopolymers as an alternative to traditional synthetic polymers due to their biodegradability and biocompatibility. The PHA market is blooming in response to the growing demand for biodegradable and environmentally friendly plastics. These biopolyesters are produced and degraded by a variety of microorganisms, making them environmentally friendly, while offering benefits such as biocompatibility (when adequately processed) and biodegradability. Their versatility extends to various areas, from biomedicine to agriculture and composite materials, where they pave the way for significative innovations. In the field of regenerative medicine, some PHAs have key applications, namely in vascular grafts, oral tissue regeneration, and development of self-healing polymers. In addition, PHAs have the potential to be used in the creation of dental implant materials and dental medical devices. PHAs can also be used to encapsulate hydrophobic drugs, providing an approach for more targeted and effective treatments. To summarize, PHAs open new perspectives in the field of medicine by improving drug delivery and offering ecologically biocompatible solutions for medical devices. The aim of this review is to present the medical and dental applications of PHA, their advantages, disadvantages, and indications.
Collapse
Affiliation(s)
- Rim Ben Abdeladhim
- Egas Moniz School of Health & Science, Campus Universitário, Quinta da Granja, 2829-511 Caparica, Portugal; (R.B.A.); (J.A.R.); (A.M.V.)
| | - José Alexandre Reis
- Egas Moniz School of Health & Science, Campus Universitário, Quinta da Granja, 2829-511 Caparica, Portugal; (R.B.A.); (J.A.R.); (A.M.V.)
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Campus Universitário, Quinta da Granja, 2829-511 Caparica, Portugal
| | - Ana Maria Vieira
- Egas Moniz School of Health & Science, Campus Universitário, Quinta da Granja, 2829-511 Caparica, Portugal; (R.B.A.); (J.A.R.); (A.M.V.)
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Campus Universitário, Quinta da Granja, 2829-511 Caparica, Portugal
| | - Catarina Dias de Almeida
- Egas Moniz School of Health & Science, Campus Universitário, Quinta da Granja, 2829-511 Caparica, Portugal; (R.B.A.); (J.A.R.); (A.M.V.)
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Campus Universitário, Quinta da Granja, 2829-511 Caparica, Portugal
| |
Collapse
|
10
|
Cheng M, Fang Q, Xiao Y, Shen R, Xiong B, Zhou W. Effect of enrichment conditions of secondary feeding on the synthesis of polyhydroxyalkanoates (PHAs) by activated sludge. ENVIRONMENTAL TECHNOLOGY 2024; 45:5999-6010. [PMID: 38450452 DOI: 10.1080/09593330.2024.2317818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/02/2024] [Indexed: 03/08/2024]
Abstract
Polyhydroxyalkanoates (PHAs) are biodegradable plastics with great performance and development prospects. However, their traditional anaerobic/aerobic enrichment process requires a high concentration of dissolved oxygen (DO), resulting in high energy consumption. In this study, an anaerobic/oxygen-limited with secondary feeding enrichment mode was used to enhance the synthesis of PHAs while reducing energy consumption. The enrichment process of PHAs-synthesizing bacteria lasted up to 100 days, and the experiment was conducted to investigate the change of the PHAs synthesizing ability of the system in this mode by detecting the PHAs content and community distribution of the activated sludge under different stages. Under these conditions, the system enriched two major genera of PHAs-synthesizing bacteria, Thauera (30.21%) and Thiothrix (21.30%). The content of PHAs in the sludge increased from 4.51% to 30.87% and was able to achieve a concomitant increase in poly(3-hydroxyvalerate) (PHV) monomer content. After nitrogen limitation (C/N = 150) treatment, the content of PHAs reached 63.05%. The results showed that the enrichment mode of anaerobic/oxygen-limited with secondary feeding could enrich more PHAs-synthesizing bacteria and significantly increase the synthesis amount of PHAs, which revealed the great potential of this mode in solid waste value-added and reduce the production cost of PHAs and could provide a theoretical basis for the production of PHAs from activated sludge.
Collapse
Affiliation(s)
- Meiying Cheng
- Department of Municipal Engineering, College of Civil Engineering, Guangzhou University, Guangzhou, People's Republic of China
| | - Qian Fang
- Department of Municipal Engineering, College of Civil Engineering, Guangzhou University, Guangzhou, People's Republic of China
| | - Yanyu Xiao
- Department of Municipal Engineering, College of Civil Engineering, Guangzhou University, Guangzhou, People's Republic of China
| | - Ruoyu Shen
- Department of Municipal Engineering, College of Civil Engineering, Guangzhou University, Guangzhou, People's Republic of China
| | - Bowen Xiong
- Department of Municipal Engineering, College of Civil Engineering, Guangzhou University, Guangzhou, People's Republic of China
| | - Wuyang Zhou
- Department of Municipal Engineering, College of Civil Engineering, Guangzhou University, Guangzhou, People's Republic of China
| |
Collapse
|
11
|
Jeon JM, Shin SJ, Choi TR, Yeo JS, Park B, Yang YH, Choi SS, Yoon JJ. Expanding the utilization of alkane mixtures: Enhancing medium chain length polyhydroxyalkanoate production in Pseudomonas resinovorans through alkane monooxygenase overexpression. Int J Biol Macromol 2024; 279:135355. [PMID: 39244130 DOI: 10.1016/j.ijbiomac.2024.135355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/20/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Medium chain length Polyhydroxyalkanoate (mcl-PHA) is a biodegradable bioplastic material with promising applications in various fields, including the medical, packaging, and agricultural industries. This mcl-PHA can be biosynthesized by microorganisms from various carbon sources, and notably, it can also be produced from alkane mixtures contained in pyrolysis oil derived from low-grade waste plastics. In this study, Pseudomonas resinovorans was engineered to overexpress alkane monooxygenase from Lysinibaillus fusiformis JJY0216, enhancing its ability to utilize alkanes as carbon sources and thereby increasing mcl-PHA production. The engineered strain, P. resinovorans JJY01, demonstrated a notable increase in cell dry weight (CDW) to 0.97 g/L and mcl-PHA production to 0.33 g/L from an optimized alkane mixture, achieving a 1.7-fold enhancement compared to the wild type. The PHA content reached 39.5 %, which is 3.1 times higher than the wild type. Further optimization through fed-batch cultivation resulted in P. resinovorans JJY01 achieving 5.65 g/L of CDW, 3.07 g/L of PHA, and a PHA content of 57.5 % within 96 h. In addition, produced mcl-PHA were characterized through various analytical techniques to assess their physical properties and monomer compositions, highlighting the potential of mcl-PHA produced by P. resinovorans JJY01 as a candidate for medical-grade biopolymers.
Collapse
Affiliation(s)
- Jong-Min Jeon
- Green & Sustainable Materials R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Republic of Korea
| | - Su Jin Shin
- Green & Sustainable Materials R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Republic of Korea; Department of Food and Nutrition, Myongji University, Yongin 17058, Republic of Korea
| | - Tae-Rim Choi
- Department of Biological Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Jun-Seok Yeo
- Green & Sustainable Materials R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Republic of Korea
| | - Baeksoo Park
- Green & Sustainable Materials R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Shin Sik Choi
- Department of Food and Nutrition, Myongji University, Yongin 17058, Republic of Korea
| | - Jeong-Jun Yoon
- Green & Sustainable Materials R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Republic of Korea.
| |
Collapse
|
12
|
Shishlyannikov SM, Zubkov IN, Vysochinskaya VV, Gavrilova NV, Dobrovolskaya OA, Elpaeva EA, Maslov MA, Vasin A. Stable Polymer-Lipid Hybrid Nanoparticles Based on mcl-Polyhydroxyalkanoate and Cationic Liposomes for mRNA Delivery. Pharmaceutics 2024; 16:1305. [PMID: 39458633 PMCID: PMC11511049 DOI: 10.3390/pharmaceutics16101305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: The development of polymer-lipid hybrid nanoparticles (PLNs) is a promising area of research, as it can help increase the stability of cationic lipid carriers. Hybrid PLNs are core-shell nanoparticle structures that combine the advantages of both polymer nanoparticles and liposomes, especially in terms of their physical stability and biocompatibility. Natural polymers such as polyhydroxyalkanoate (PHA) can be used as a matrix for the PLNs' preparation. Methods: In this study, we first obtained stable cationic hybrid PLNs using a cationic liposome (CL) composed of a polycationic lipid 2X3 (1,26-bis(cholest-5-en-3β-yloxycarbonylamino)-7,11,16,20-tetraazahexacosane tetrahydrochloride), helper lipid DOPE (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine), and the hydrophobic polymer mcl-PHA, which was produced by the soil bacterium Pseudomonas helmantisensis P1. Results: The new polymer-lipid carriers effectively encapsulated and delivered model mRNA-eGFP (enhanced green fluorescent protein mRNA) to BHK-21 cells. We then evaluated the role of mcl-PHA in increasing the stability of cationic PLNs in ionic solutions using dynamic light scattering data, electrophoretic mobility, and transmission electron microscopy techniques. Conclusions: The results showed that increasing the concentration of PBS (phosphate buffered saline) led to a decrease in the stability of the CLs. At high concentrations of PBS, the CLs aggregate. In contrast, the presence of isotonic PBS did not result in the aggregation of PLNs, and the particles remained stable for 120 h when stored at +4 °C. The obtained results show that PLNs hold promise for further in vivo studies on nucleic acid delivery.
Collapse
Affiliation(s)
- Sergey M. Shishlyannikov
- Institute of Biomedical Systems and Biotechnology, Peter the Great Saint Petersburg Polytechnic University, 29 Politechnicheskaya St., 195251 Saint Petersburg, Russia; (I.N.Z.); (V.V.V.); (N.V.G.); (A.V.)
- Smorodintsev Research Institute of Influenza, 15/17 Prof. Popova Street, 197022 Saint Petersburg, Russia; (O.A.D.); (E.A.E.)
| | - Ilya N. Zubkov
- Institute of Biomedical Systems and Biotechnology, Peter the Great Saint Petersburg Polytechnic University, 29 Politechnicheskaya St., 195251 Saint Petersburg, Russia; (I.N.Z.); (V.V.V.); (N.V.G.); (A.V.)
- Smorodintsev Research Institute of Influenza, 15/17 Prof. Popova Street, 197022 Saint Petersburg, Russia; (O.A.D.); (E.A.E.)
| | - Vera V. Vysochinskaya
- Institute of Biomedical Systems and Biotechnology, Peter the Great Saint Petersburg Polytechnic University, 29 Politechnicheskaya St., 195251 Saint Petersburg, Russia; (I.N.Z.); (V.V.V.); (N.V.G.); (A.V.)
- Smorodintsev Research Institute of Influenza, 15/17 Prof. Popova Street, 197022 Saint Petersburg, Russia; (O.A.D.); (E.A.E.)
| | - Nina V. Gavrilova
- Institute of Biomedical Systems and Biotechnology, Peter the Great Saint Petersburg Polytechnic University, 29 Politechnicheskaya St., 195251 Saint Petersburg, Russia; (I.N.Z.); (V.V.V.); (N.V.G.); (A.V.)
- Smorodintsev Research Institute of Influenza, 15/17 Prof. Popova Street, 197022 Saint Petersburg, Russia; (O.A.D.); (E.A.E.)
| | - Olga A. Dobrovolskaya
- Smorodintsev Research Institute of Influenza, 15/17 Prof. Popova Street, 197022 Saint Petersburg, Russia; (O.A.D.); (E.A.E.)
| | - Ekaterina A. Elpaeva
- Smorodintsev Research Institute of Influenza, 15/17 Prof. Popova Street, 197022 Saint Petersburg, Russia; (O.A.D.); (E.A.E.)
| | - Mikhail A. Maslov
- M.V. Lomonosov Institute of Fine Chemical Technologies, Rtu Mirea, 86 Vernadsky Ave., 119454 Moscow, Russia;
| | - Andrey Vasin
- Institute of Biomedical Systems and Biotechnology, Peter the Great Saint Petersburg Polytechnic University, 29 Politechnicheskaya St., 195251 Saint Petersburg, Russia; (I.N.Z.); (V.V.V.); (N.V.G.); (A.V.)
- Smorodintsev Research Institute of Influenza, 15/17 Prof. Popova Street, 197022 Saint Petersburg, Russia; (O.A.D.); (E.A.E.)
| |
Collapse
|
13
|
Santolin L, Riedel SL, Brigham CJ. Synthetic biology toolkit of Ralstonia eutropha (Cupriavidus necator). Appl Microbiol Biotechnol 2024; 108:450. [PMID: 39207499 PMCID: PMC11362209 DOI: 10.1007/s00253-024-13284-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
Synthetic biology encompasses many kinds of ideas and techniques with the common theme of creating something novel. The industrially relevant microorganism, Ralstonia eutropha (also known as Cupriavidus necator), has long been a subject of metabolic engineering efforts to either enhance a product it naturally makes (polyhydroxyalkanoate) or produce novel bioproducts (e.g., biofuels and other small molecule compounds). Given the metabolic versatility of R. eutropha and the existence of multiple molecular genetic tools and techniques for the organism, development of a synthetic biology toolkit is underway. This toolkit will allow for novel, user-friendly design that can impart new capabilities to R. eutropha strains to be used for novel application. This article reviews the different synthetic biology techniques currently available for modifying and enhancing bioproduction in R. eutropha. KEY POINTS: • R. eutropha (C. necator) is a versatile organism that has been examined for many applications. • Synthetic biology is being used to design more powerful strains for bioproduction. • A diverse synthetic biology toolkit is being developed to enhance R. eutropha's capabilities.
Collapse
Affiliation(s)
- Lara Santolin
- Technische Universität Berlin, Institute of Biotechnology, Chair of Bioprocess Engineering, Berlin, Germany
| | - Sebastian L Riedel
- Berliner Hochschule Für Technik, Department VIII - Mechanical Engineering, Event Technology and Process Engineering, Environmental and Bioprocess Engineering Laboratory, Berlin, Germany.
| | - Christopher J Brigham
- Department of Bioengineering, University of Massachusetts Dartmouth, North Dartmouth, MA, USA.
| |
Collapse
|
14
|
Huang H, Wang Y, Zeng J, Ma Y, Cui Z, Zhou Y, Ruan Z. Study on in vivoand in vitrodegradation of polydioxanone weaving tracheal stents. Biomed Mater 2024; 19:055032. [PMID: 39094619 DOI: 10.1088/1748-605x/ad6ac6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/02/2024] [Indexed: 08/04/2024]
Abstract
The appropriate degradation characteristics of polydioxanone (PDO) are necessary for the safety and effectiveness of stents. This study aimed to investigate the degradation of PDO weaving tracheal stents (PW stents)in vitroandin vivo. The degradation solution ofS. aureus(SAU),E. coli(ECO),P. aeruginosa(PAE), and control (N) were prepared, and the PW stents were immersed for 12 weeks. Then, the radial support force, weight retention, pH, molecular structure, thermal performance, and morphology were determined. Furthermore, the PW stents were implanted into the abdominal cavity of rabbits, and omentum was embedded. At feeding for 16 weeks, the mechanical properties, and morphology were measured. During the first 8 weeks, the radial support force in all groups was progressively decreased. At week 2, the decline rate of radial support force in the experimental groups was significantly faster compared to the N group, and the difference was narrowed thereafter. The infrared spectrum showed that during the whole degradation process, SAU, ECO and PAE solution did not lead to the formation of new functional groups in PW stents.In vitroscanning electron microscope observation showed that SAU and ECO were more likely to gather and multiply at the weaving points of the PW stents, forming colonies.In vivoexperiments showed that the degradation in the concavity of weaving points of PW stents was more rapid and severe. The radial support loss rate reached more than 70% at week 4, and the radial support force was no longer measurable after week 8. In omentum, multinuclear giant cells and foreign giant cells were found to infiltrate. PW stents have good biocompatibility. The degradation rate of PW stents in the aseptic conditionsin vivowas faster than in the bacteriological environmentin vitro.
Collapse
Affiliation(s)
- Haihua Huang
- Department of Thoracic Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, People's Republic of China
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai 201620, People's Republic of China
| | - Yuchen Wang
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai 201620, People's Republic of China
| | - Jun Zeng
- College of Textiles, Donghua University, Shanghai 201620, People's Republic of China
| | - Yanxue Ma
- College of Textiles, Donghua University, Shanghai 201620, People's Republic of China
| | - Zelin Cui
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai 200080, People's Republic of China
| | - Yongxin Zhou
- Department of Thoracic Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, People's Republic of China
| | - Zheng Ruan
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai 201620, People's Republic of China
| |
Collapse
|
15
|
Khan MUA, Aslam MA, Abdullah MFB, Abdal-Hay A, Gao W, Xiao Y, Stojanović GM. Recent advances of bone tissue engineering: carbohydrate and ceramic materials, fundamental properties and advanced biofabrication strategies ‒ a comprehensive review. Biomed Mater 2024; 19:052005. [PMID: 39105493 DOI: 10.1088/1748-605x/ad6b8a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/05/2024] [Indexed: 08/07/2024]
Abstract
Bone is a dynamic tissue that can always regenerate itself through remodeling to maintain biofunctionality. This tissue performs several vital physiological functions. However, bone scaffolds are required for critical-size damages and fractures, and these can be addressed by bone tissue engineering. Bone tissue engineering (BTE) has the potential to develop scaffolds for repairing critical-size damaged bone. BTE is a multidisciplinary engineered scaffold with the desired properties for repairing damaged bone tissue. Herein, we have provided an overview of the common carbohydrate polymers, fundamental structural, physicochemical, and biological properties, and fabrication techniques for bone tissue engineering. We also discussed advanced biofabrication strategies and provided the limitations and prospects by highlighting significant issues in bone tissue engineering. There are several review articles available on bone tissue engineering. However, we have provided a state-of-the-art review article that discussed recent progress and trends within the last 3-5 years by emphasizing challenges and future perspectives.
Collapse
Affiliation(s)
- Muhammad Umar Aslam Khan
- Department of Mechanical and Industrial Engineering, Qatar University, Doha 2713, Qatar
- Biomedical Research Center, Qatar University, Doha 2713, Qatar
| | - Muhammad Azhar Aslam
- Department of Physics, University of Engineering and Technology, Lahore 39161, Pakistan
| | - Mohd Faizal Bin Abdullah
- Oral and Maxillofacial Surgery Unit, School of Dental Sciences Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kota Bharu, Kelantan 16150, Malaysia
- Oral and Maxillofacial Surgery Unit, Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kota Bharu, Kelantan 16150, Malaysia
| | - Abdalla Abdal-Hay
- Department of Engineering Materials and Mechanical Design, Faculty of Engineering, South Valley University, Qena 83523, Egypt
- School of Dentistry, University of Queensland, 288 Herston Road, Herston QLD 4006, Australia
| | - Wendong Gao
- School of Medicine and Dentistry , Griffith University, Gold Coast Campus, Brisbane, Queensland 4222, Australia
| | - Yin Xiao
- School of Medicine and Dentistry , Griffith University, Gold Coast Campus, Brisbane, Queensland 4222, Australia
| | - Goran M Stojanović
- Faculty of Technical Sciences, University of Novi Sad, T. D. Obradovica 6, 21000 Novi Sad, Serbia
| |
Collapse
|
16
|
Marcello E, Nigmatullin R, Basnett P, Maqbool M, Prieto MA, Knowles JC, Boccaccini AR, Roy I. 3D Melt-Extrusion Printing of Medium Chain Length Polyhydroxyalkanoates and Their Application as Antibiotic-Free Antibacterial Scaffolds for Bone Regeneration. ACS Biomater Sci Eng 2024; 10:5136-5153. [PMID: 39058405 PMCID: PMC11322914 DOI: 10.1021/acsbiomaterials.4c00624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024]
Abstract
In this work, we investigated, for the first time, the possibility of developing scaffolds for bone tissue engineering through three-dimensional (3D) melt-extrusion printing of medium chain length polyhydroxyalkanoate (mcl-PHA) (i.e., poly(3-hydroxyoctanoate-co-hydroxydecanoate-co-hydroxydodecanoate), P(3HO-co-3HD-co-3HDD)). The process parameters were successfully optimized to produce well-defined and reproducible 3D P(3HO-co-3HD-co-3HDD) scaffolds, showing high cell viability (100%) toward both undifferentiated and differentiated MC3T3-E1 cells. To introduce antibacterial features in the developed scaffolds, two strategies were investigated. For the first strategy, P(3HO-co-3HD-co-3HDD) was combined with PHAs containing thioester groups in their side chains (i.e., PHACOS), inherently antibacterial PHAs. The 3D blend scaffolds were able to induce a 70% reduction of Staphylococcus aureus 6538P cells by direct contact testing, confirming their antibacterial properties. Additionally, the scaffolds were able to support the growth of MC3T3-E1 cells, showing the potential for bone regeneration. For the second strategy, composite materials were produced by the combination of P(3HO-co-3HD-co-HDD) with a novel antibacterial hydroxyapatite doped with selenium and strontium ions (Se-Sr-HA). The composite material with 10 wt % Se-Sr-HA as a filler showed high antibacterial activity against both Gram-positive (S. aureus 6538P) and Gram-negative bacteria (Escherichia coli 8739), through a dual mechanism: by direct contact (inducing 80% reduction of both bacterial strains) and through the release of active ions (leading to a 54% bacterial cell count reduction for S. aureus 6538P and 30% for E. coli 8739 after 24 h). Moreover, the composite scaffolds showed high viability of MC3T3-E1 cells through both indirect and direct testing, showing promising results for their application in bone tissue engineering.
Collapse
Affiliation(s)
- Elena Marcello
- Faculty
of Science and Technology, College of Liberal Arts, University of Westminster, London W1W 6UW, U.K.
| | - Rinat Nigmatullin
- Faculty
of Science and Technology, College of Liberal Arts, University of Westminster, London W1W 6UW, U.K.
| | - Pooja Basnett
- Faculty
of Science and Technology, College of Liberal Arts, University of Westminster, London W1W 6UW, U.K.
| | - Muhammad Maqbool
- Institute
of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen 91058, Germany
- Lucideon
Ltd., Stoke-on-Trent ST4 7LQ, Staffordshire U.K.
- CAM
Bioceramics B.V., Zernikedreef
6, 2333 CL Leiden, The Netherlands
| | - M. Auxiliadora Prieto
- Polymer
Biotechnology Lab, Centro de Investigaciones Biológicas-Margarita
Salas, Spanish National Research Council
(CIB-CSIC), Madrid 28040, Spain
| | - Jonathan C. Knowles
- Division
of Biomaterials and Tissue Engineering, University College London Eastman Dental Institute, London NW3 2PF, U.K.
- Department
of Nanobiomedical Science and BK21 Plus NBM, Global Research Center
for Regenerative Medicine, Dankook University, Cheonan 31116, South Korea
| | - Aldo R. Boccaccini
- Institute
of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen 91058, Germany
| | - Ipsita Roy
- Department
of Materials Science and Engineering, Faculty of Engineering, University of Sheffield, Sheffield S3 7HQ, U.K.
- Insigneo
Institute for In Silico Medicine, University
of Sheffield, Sheffield S3 7HQ, U.K.
| |
Collapse
|
17
|
Wang D, Xiong F, Wu L, Liu Z, Xu K, Huang J, Liu J, Ding Q, Zhang J, Pu Y, Sun R. A progress update on the biological effects of biodegradable microplastics on soil and ocean environment: A perfect substitute or new threat? ENVIRONMENTAL RESEARCH 2024; 252:118960. [PMID: 38636648 DOI: 10.1016/j.envres.2024.118960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Conventional plastics are inherently difficult to degrade, causing serious plastic pollution. With the development of society, biodegradable plastics (BPs) are considered as an alternative to traditional plastics. However, current research indicated that BPs do not undergo complete degradation in natural environments. Instead, they may convert into biodegradable microplastics (BMPs) at an accelerated rate, thereby posing a significant threat to environment. In this paper, the definition, application, distribution, degradation behaviors, bioaccumulation and biomagnification of BPs were reviewed. And the impacts of BMPs on soil and marine ecosystems, in terms of physicochemical property, nutrient cycling, microorganisms, plants and animals were comprehensively summarized. The effects of combined exposure of BMPs with other pollutants, and the mechanism of ecotoxicity induced by BMPs were also addressed. It was found that BMPs reduced pH, increased DOC content, and disrupted the nitrification of nitrogen cycle in soil ecosystem. The shoot dry weight, pod number and root growth of soil plants, and reproduction and body length of soil animals were inhibited by BMPs. Furthermore, the growth of marine plants, and locomotion, body length and survival of marine animals were suppressed by BMPs. Additionally, the ecotoxicity of combined exposure of BMPs with other pollutants has not been uniformly concluded. Exposure to BMPs induced several types of toxicity, including neurotoxicity, gastrointestinal toxicity, reproductive toxicity, immunotoxicity and genotoxicity. The future calls for heightened attention towards the regulation of the degradation of BPs in the environment, and pursuit of interventions aimed at mitigating their ecotoxicity and potential health risks to human.
Collapse
Affiliation(s)
- Daqin Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Fei Xiong
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Lingjie Wu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Zhihui Liu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Kai Xu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Jiawei Huang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Jinyan Liu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Qin Ding
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Juan Zhang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Rongli Sun
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Labor and Environmental Health, School of Public Health, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
18
|
Ghorabe FDE, Aglikov A, Novikov AS, Nosonovsky M, Ryltseva GA, Dudaev AE, Menzianova NG, Skorb EV, Shishatskaya EI. Topography hierarchy of biocompatible polyhydroxyalkanoate film. RSC Adv 2024; 14:19603-19611. [PMID: 38895528 PMCID: PMC11184939 DOI: 10.1039/d4ra03398a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024] Open
Abstract
Polyhydroxyalkanoates (PHAs) are used for various biomedical applications due to their biocompatibility. Surface properties, such as surface roughness, are crucial for PHAs performance. Traditional parameters used for the characterization of surface roughness, such as R a, are often insufficient to capture the complex and hierarchical (multiscale) topography of PHA films. We measure the topography and surface roughness of thin PHA films with atomic force microscopy and analyze the topography data using several relatively novel data processing methods, including the calculation of autocorrelation functions, topological data analysis, and the distribution of minimum and maximum values of pixels over the topography data. The results provide details of multiscale and anisotropic surface properties that are crucial to PHAs biocompatibility but often overlooked by traditional topography analysis methods.
Collapse
Affiliation(s)
- Fares D E Ghorabe
- Infochemistry Scientific Center, ITMO University Lomonosova St. 9 191002 St. Petersburg Russia
| | - Aleksandr Aglikov
- Infochemistry Scientific Center, ITMO University Lomonosova St. 9 191002 St. Petersburg Russia
| | - Alexander S Novikov
- Infochemistry Scientific Center, ITMO University Lomonosova St. 9 191002 St. Petersburg Russia
| | - Michael Nosonovsky
- Mechanical Engineering, University of Wisconsin-Milwaukee 3200 N Cramer St. Milwaukee WI 53211 USA
| | - Galina A Ryltseva
- School of Fundamental Biology and Biotechnology, Siberian Federal University Svobodnyi Av. 79 660041 Krasnoyarsk Russia
| | - Alexey E Dudaev
- School of Fundamental Biology and Biotechnology, Siberian Federal University Svobodnyi Av. 79 660041 Krasnoyarsk Russia
- Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS" Akademgorodok, 50/50 660036 Krasnoyarsk Russia
| | - Natalia G Menzianova
- School of Fundamental Biology and Biotechnology, Siberian Federal University Svobodnyi Av. 79 660041 Krasnoyarsk Russia
| | - Ekaterina V Skorb
- Infochemistry Scientific Center, ITMO University Lomonosova St. 9 191002 St. Petersburg Russia
| | | |
Collapse
|
19
|
Haraźna K, Fricker AT, Konefał R, Medaj A, Zimowska M, Leszczyński B, Wróbel A, Bojarski AJ, Roy I, Guzik M. Physicochemical, structural and biological characterisation of poly(3-hydroxyoctanoate) supplemented with diclofenac acid conjugates - Harnessing the potential in the construction of materials for skin regeneration processes. Int J Biol Macromol 2024; 268:131476. [PMID: 38614181 DOI: 10.1016/j.ijbiomac.2024.131476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/27/2024] [Accepted: 04/06/2024] [Indexed: 04/15/2024]
Abstract
This study involved creating oligomeric conjugates of 3-hydroxy fatty acids and diclofenac, named Dic-oligo(3HAs). Advanced NMR techniques confirmed no free diclofenac in the mix. We tested diclofenac release under conditions resembling healthy and chronic wound skin. These oligomers were used to make P(3HO) blends, forming patches for drug delivery. Their preparation used the solvent casting/porogen leaching (SCPL) method. The patches' properties like porosity, roughness, and wettability were thoroughly analysed. Antimicrobial assays showed that Dic-oligo(3HAs) exhibited antimicrobial activity against reference (S. aureus, S. epidermis, S. faecalis) and clinical (Staphylococcus spp.) strains. Human keratinocytes (HaCaT) cell line tests, as per ISO 10993-5, showed no toxicity. A clear link between material roughness and HaCaT cell adhesion was found. Deep cell infiltration was verified using DAPI and phalloidin staining, observed under confocal microscopy. SEM also confirmed HaCaT cell growth on these scaffolds. The strong adhesion and proliferation of HaCaT cells on these materials indicate their potential as wound dressing layers. Additionally, the successful diclofenac release tests point to their applicability in treating both normal and chronic wounds.
Collapse
Affiliation(s)
- Katarzyna Haraźna
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Kraków, Poland; Łukasiewicz Research Network - Kraków Institute of Technology, Zakopiańska 73, 30-418 Kraków, Poland; Department of Materials Engineering, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Kraków, Poland.
| | - Annabelle T Fricker
- Department of Materials Science and Engineering, The University of Sheffield, Sheffield S3 7HQ, United Kingdom
| | - Rafał Konefał
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6-Brevnov, Czech Republic
| | - Aneta Medaj
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Małgorzata Zimowska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Kraków, Poland
| | - Bartosz Leszczyński
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Andrzej Wróbel
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Andrzej J Bojarski
- Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Ipsita Roy
- Department of Materials Science and Engineering, The University of Sheffield, Sheffield S3 7HQ, United Kingdom
| | - Maciej Guzik
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Kraków, Poland.
| |
Collapse
|
20
|
Jia B, Huang H, Dong Z, Ren X, Lu Y, Wang W, Zhou S, Zhao X, Guo B. Degradable biomedical elastomers: paving the future of tissue repair and regenerative medicine. Chem Soc Rev 2024; 53:4086-4153. [PMID: 38465517 DOI: 10.1039/d3cs00923h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Degradable biomedical elastomers (DBE), characterized by controlled biodegradability, excellent biocompatibility, tailored elasticity, and favorable network design and processability, have become indispensable in tissue repair. This review critically examines the recent advances of biodegradable elastomers for tissue repair, focusing mainly on degradation mechanisms and evaluation, synthesis and crosslinking methods, microstructure design, processing techniques, and tissue repair applications. The review explores the material composition and cross-linking methods of elastomers used in tissue repair, addressing chemistry-related challenges and structural design considerations. In addition, this review focuses on the processing methods of two- and three-dimensional structures of elastomers, and systematically discusses the contribution of processing methods such as solvent casting, electrostatic spinning, and three-/four-dimensional printing of DBE. Furthermore, we describe recent advances in tissue repair using DBE, and include advances achieved in regenerating different tissues, including nerves, tendons, muscle, cardiac, and bone, highlighting their efficacy and versatility. The review concludes by discussing the current challenges in material selection, biodegradation, bioactivation, and manufacturing in tissue repair, and suggests future research directions. This concise yet comprehensive analysis aims to provide valuable insights and technical guidance for advances in DBE for tissue engineering.
Collapse
Affiliation(s)
- Ben Jia
- School of Civil Aviation, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Heyuan Huang
- School of Aeronautics, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Zhicheng Dong
- School of Civil Aviation, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Xiaoyang Ren
- School of Aeronautics, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Yanyan Lu
- School of Aeronautics, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Wenzhi Wang
- School of Aeronautics, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Shaowen Zhou
- Department of Periodontology, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xin Zhao
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Baolin Guo
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
21
|
Righetti GIC, Faedi F, Famulari A. Embracing Sustainability: The World of Bio-Based Polymers in a Mini Review. Polymers (Basel) 2024; 16:950. [PMID: 38611207 PMCID: PMC11013738 DOI: 10.3390/polym16070950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
The proliferation of polymer science and technology in recent decades has been remarkable, with synthetic polymers derived predominantly from petroleum-based sources dominating the market. However, concerns about their environmental impacts and the finite nature of fossil resources have sparked interest in sustainable alternatives. Bio-based polymers, derived from renewable sources such as plants and microbes, offer promise in addressing these challenges. This review provides an overview of bio-based polymers, discussing their production methods, properties, and potential applications. Specifically, it explores prominent examples including polylactic acid (PLA), polyhydroxyalkanoates (PHAs), and polyhydroxy polyamides (PHPAs). Despite their current limited market share, the growing awareness of environmental issues and advancements in technology are driving increased demand for bio-based polymers, positioning them as essential components in the transition towards a more sustainable future.
Collapse
Affiliation(s)
- Grazia Isa C. Righetti
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | | | - Antonino Famulari
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| |
Collapse
|
22
|
Diankristanti PA, Lin YC, Yi YC, Ng IS. Polyhydroxyalkanoates bioproduction from bench to industry: Thirty years of development towards sustainability. BIORESOURCE TECHNOLOGY 2024; 393:130149. [PMID: 38049017 DOI: 10.1016/j.biortech.2023.130149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/06/2023]
Abstract
The pursuit of carbon neutrality goals has sparked considerable interest in expanding bioplastics production from microbial cell factories. One prominent class of bioplastics, polyhydroxyalkanoates (PHA), is generated by specific microorganisms, serving as carbon and energy storage materials. To begin with, a native PHA producer, Cupriavidus necator (formerly Ralstonia eutropha) is extensively studied, covering essential topics such as carbon source selection, cultivation techniques, and accumulation enhancement strategies. Recently, various hosts including archaea, bacteria, cyanobacteria, yeast, and plants have been explored, stretching the limit of microbial PHA production. This review provides a comprehensive overview of current advancements in PHA bioproduction, spanning from the native to diversified cell factories. Recovery and purification techniques are discussed, and the current status of industrial applications is assessed as a critical milestone for startups. Ultimately, it concludes by addressing contemporary challenges and future prospects, offering insights into the path towards reduced carbon emissions and sustainable development goals.
Collapse
Affiliation(s)
| | - Yu-Chieh Lin
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Ying-Chen Yi
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, USA
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
23
|
Durán-Lara EF, Rafael D, Andrade F, G OL, Vijayakumar S. Bacterial Polyhydroxyalkanoates-based Therapeutics-delivery Nano-systems. Curr Med Chem 2024; 31:5884-5897. [PMID: 37828676 DOI: 10.2174/0109298673268775231003111540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/05/2023] [Accepted: 09/01/2023] [Indexed: 10/14/2023]
Abstract
Microbial polyhydroxyalkanoates (PHAs) are bio-based aliphatic biopolyester produced by bacteria as an intracellular storage material of carbon and energy under stressed conditions. PHAs have been paid attention to due to their unique and impressive biological properties including high biodegradability, biocompatibility, low cytotoxicity, and different mechanical properties. Under this context, the development of drug-delivery nanosystems based on PHAs has been revealed to have numerous advantages compared with synthetic polymers that included biocompatibility, biodegradability, non-toxic, and low-cost production, among others. In this review article, we present the available state of the art of PHAs. Moreover, we discussed the potential benefits, weaknesses, and perspectives of PHAs to the develop drug delivery systems.
Collapse
Affiliation(s)
- Esteban F Durán-Lara
- Departamento de Microbiología, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Maule, Chile
- Bio & NanoMaterials Lab, Drug Delivery and Controlled Release, Universidad de Talca, Talca, 3460000, Maule, Chile
| | - Diana Rafael
- Drug Delivery and Targeting Group, Molecular Biology and Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain
- Networking Research Centre for Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Fernanda Andrade
- Drug Delivery and Targeting Group, Molecular Biology and Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain
- Networking Research Centre for Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Olga Lobos G
- Departamento de Microbiología, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Maule, Chile
| | | |
Collapse
|
24
|
Blanco FG, Machatschek R, Keller M, Hernández-Arriaga AM, Godoy MS, Tarazona NA, Prieto MA. Nature-inspired material binding peptides with versatile polyester affinities and binding strengths. Int J Biol Macromol 2023; 253:126760. [PMID: 37683751 DOI: 10.1016/j.ijbiomac.2023.126760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 09/10/2023]
Abstract
Biodegradable polyesters, such as polyhydroxyalkanoates (PHAs), are having a tremendous impact on biomedicine. However, these polymers lack functional moieties to impart functions like targeted delivery of molecules. Inspired by native GAPs, such as phasins and their polymer-binding and surfactant properties, we generated small material binding peptides (MBPs) for polyester surface functionalization using a rational approach based on amphiphilicity. Here, two peptides of 48 amino acids derived from phasins PhaF and PhaI from Pseudomonas putida, MinP and the novel-designed MinI, were assessed for their binding towards two types of PHAs, PHB and PHOH. In vivo, fluorescence studies revealed selective binding towards PHOH, whilst in vitro binding experiments using the Langmuir-Blodgett technique coupled to ellipsometry showed KD in the range of nM for all polymers and MBPs. Marked morphological changes of the polymer surface upon peptide adsorption were shown by BAM and AFM for PHOH. Moreover, both MBPs were successfully used to immobilize cargo proteins on the polymer surfaces. Altogether, this work shows that by redesigning the amphiphilicity of phasins, a high affinity but lower specificity to polyesters can be achieved in vitro. Furthermore, the MBPs demonstrated binding to PET, showing potential to bind cargo molecules also to synthetic polyesters.
Collapse
Affiliation(s)
- Francisco G Blanco
- Polymer Biotechnology Group, Plant and Microbial Biotechnology Department, Margarita Salas Centre for Biological Research (CIB - CSIC), Madrid, Spain; Interdisciplinary Platform of Sustainable Plastics towards a Circular Economy, Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| | - Rainhard Machatschek
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, Kantstraße 55, 14513 Teltow, Germany
| | - Manuela Keller
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, Kantstraße 55, 14513 Teltow, Germany
| | - Ana M Hernández-Arriaga
- Polymer Biotechnology Group, Plant and Microbial Biotechnology Department, Margarita Salas Centre for Biological Research (CIB - CSIC), Madrid, Spain; Interdisciplinary Platform of Sustainable Plastics towards a Circular Economy, Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| | - Manuel S Godoy
- Polymer Biotechnology Group, Plant and Microbial Biotechnology Department, Margarita Salas Centre for Biological Research (CIB - CSIC), Madrid, Spain; Interdisciplinary Platform of Sustainable Plastics towards a Circular Economy, Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| | - Natalia A Tarazona
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, Kantstraße 55, 14513 Teltow, Germany.
| | - M Auxiliadora Prieto
- Polymer Biotechnology Group, Plant and Microbial Biotechnology Department, Margarita Salas Centre for Biological Research (CIB - CSIC), Madrid, Spain; Interdisciplinary Platform of Sustainable Plastics towards a Circular Economy, Spanish National Research Council (SusPlast-CSIC), Madrid, Spain.
| |
Collapse
|
25
|
Deng Y, Yang P, Tan H, Shen R, Chen D. Polylactic Acid Microplastics Do Not Exhibit Lower Biological Toxicity in Growing Mice Compared to Polyvinyl Chloride Microplastics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19772-19782. [PMID: 38039335 DOI: 10.1021/acs.jafc.3c06576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
Biomicroplastics (BMPs) will be produced during bioplastic degradation (i.e., polylactic acid), although bioplastics have been widely used for food packaging. Like conventional microplastics (MPs), BMPs would be mistakenly ingested into the body through diet or drinking water, but their health risks in vivo are poorly understood. Here, we deeply compared the toxicity difference between irregularly shaped polylactic acid (PLA-MPs, 16-350 μm) and polyvinyl chloride (PVC-MPs, 40-300 μm) MPs in growing mice. After six weeks of exposure, PLA-MP exposure resulted in more severe inhibition of the mice's weight gain than PVC-MPs did. Both PLA- and PVC-MPs significantly elevated the levels of oxidative stress. Moreover, significant changes including altered transcriptional profiles and significantly differentially expressed genes in liver and colon transcription levels were observed in the PVC- and PLA-MP groups. Compared with PVC-MPs, PLA-MPs have a stronger effect on lipid metabolism and digestive systems. PLA-MPs also caused gut microbiota dysbiosis, significantly interfering with the relative abundance of microbiota and altering microbial diversity. These findings indicated the toxicities of PLA-MPs in growing mice were not significantly reduced compared to PVC-MPs, which would also provide new insights for re-examining bioplastic safety.
Collapse
Affiliation(s)
- Yongfeng Deng
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Pan Yang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Hongli Tan
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR, 999077, China
| | - Ruqin Shen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Da Chen
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| |
Collapse
|
26
|
Vaporidou N, Peroni F, Restelli A, Jalil MN, Dye JF. Artificial Skin Therapies; Strategy for Product Development. Adv Wound Care (New Rochelle) 2023; 12:574-600. [PMID: 36680749 DOI: 10.1089/wound.2022.0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Significance: Tissue-engineered artificial skin for clinical reconstruction can be regarded as an established practice. Bi-layered skin equivalents are available as established allogenic or autologous therapy, and various acellular skin replacements can support tissue repair. Moreover, there is considerable commonality between the skin and other soft tissue reconstruction products. This article presents an attempt to create a comprehensive global landscape review of advanced replacement materials and associated strategies for skin and soft tissue reconstruction. Recent Advances: There has been rapid growth in the number of commercial and pre-commercial products over the past decade. In this survey, 263 base products for advanced skin therapy have been identified, across 8 therapeutic categories, giving over 350 products in total. The largest market is in the United States, followed by the E.U. zone. However, despite these advances, and the investment of resources in each product development, there are key issues concerning the clinical efficacy, cost-benefit of products, and clinical impact. Each therapeutic strategy has relative merits and limitations. Critical Issues: A critical consideration in developing and evaluating products is the therapeutic modality, associated regulatory processes, and the potential for clinical adoption geographically, determined by regulatory territory, intellectual property, and commercial distribution factors. The survey identifies an opportunity for developments that improve basic efficacy or cost-benefit. Future Directions: The economic pressures on health care systems, compounded by the demands of our increasingly ageing population, and the imperative to distribute effective health care, create an urgent global need for effective and affordable products.
Collapse
Affiliation(s)
- Nephelie Vaporidou
- Division of Surgery and Interdisciplinary Sciences, University College London, London, United Kingdom
- Oxartis Ltd., Oxford, United Kingdom
| | | | | | - M Nauman Jalil
- Oxartis Ltd., Oxford, United Kingdom
- MADE Cymru, University of Wales Trinity Saint David, Swansea, Wales, United Kingdom
| | - Julian F Dye
- Oxartis Ltd., Oxford, United Kingdom
- Research Strategy and Development, University College London, London, United Kingdom
| |
Collapse
|
27
|
Giubilini A, Messori M, Bondioli F, Minetola P, Iuliano L, Nyström G, Maniura-Weber K, Rottmar M, Siqueira G. 3D-Printed Poly(3-hydroxybutyrate- co-3-hydroxyhexanoate)-Cellulose-Based Scaffolds for Biomedical Applications. Biomacromolecules 2023; 24:3961-3971. [PMID: 37589321 PMCID: PMC10498448 DOI: 10.1021/acs.biomac.3c00263] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/08/2023] [Indexed: 08/18/2023]
Abstract
While biomaterials have become indispensable for a wide range of tissue repair strategies, second removal procedures oftentimes needed in the case of non-bio-based and non-bioresorbable scaffolds are associated with significant drawbacks not only for the patient, including the risk of infection, impaired healing, or tissue damage, but also for the healthcare system in terms of cost and resources. New biopolymers are increasingly being investigated in the field of tissue regeneration, but their widespread use is still hampered by limitations regarding mechanical, biological, and functional performance when compared to traditional materials. Therefore, a common strategy to tune and broaden the final properties of biopolymers is through the effect of different reinforcing agents. This research work focused on the fabrication and characterization of a bio-based and bioresorbable composite material obtained by compounding a poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH) matrix with acetylated cellulose nanocrystals (CNCs). The developed biocomposite was further processed to obtain three-dimensional scaffolds by additive manufacturing (AM). The 3D printability of the PHBH-CNC biocomposites was demonstrated by realizing different scaffold geometries, and the results of in vitro cell viability studies provided a clear indication of the cytocompatibility of the biocomposites. Moreover, the CNC content proved to be an important parameter in tuning the different functional properties of the scaffolds. It was demonstrated that the water affinity, surface roughness, and in vitro degradability rate of biocomposites increase with increasing CNC content. Therefore, this tailoring effect of CNC can expand the potential field of use of the PHBH biopolymer, making it an attractive candidate for a variety of tissue engineering applications.
Collapse
Affiliation(s)
- Alberto Giubilini
- Department
of Management and Production Engineering (DIGEP), Politecnico di Torino, Torino 10129, Italy
- Integrated
Additive Manufacturing Centre (IAM@PoliTO), Politecnico di Torino, Torino 10129, Italy
| | - Massimo Messori
- Integrated
Additive Manufacturing Centre (IAM@PoliTO), Politecnico di Torino, Torino 10129, Italy
- Department
of Applied Science and Technology (DISAT), Politecnico di Torino, Torino 10129, Italy
| | - Federica Bondioli
- Integrated
Additive Manufacturing Centre (IAM@PoliTO), Politecnico di Torino, Torino 10129, Italy
- Department
of Applied Science and Technology (DISAT), Politecnico di Torino, Torino 10129, Italy
| | - Paolo Minetola
- Department
of Management and Production Engineering (DIGEP), Politecnico di Torino, Torino 10129, Italy
- Integrated
Additive Manufacturing Centre (IAM@PoliTO), Politecnico di Torino, Torino 10129, Italy
| | - Luca Iuliano
- Department
of Management and Production Engineering (DIGEP), Politecnico di Torino, Torino 10129, Italy
- Integrated
Additive Manufacturing Centre (IAM@PoliTO), Politecnico di Torino, Torino 10129, Italy
| | - Gustav Nyström
- Cellulose
& Wood Materials Laboratory, Swiss Federal
Laboratories for Materials Science and Technology (Empa), Dübendorf 8600, Switzerland
- Department
of Health Sciences and Technology, ETH Zürich, Zürich 8092, Switzerland
| | - Katharina Maniura-Weber
- Biointerfaces, Swiss Federal Laboratories for Materials Science and
Technology (Empa), St. Gallen 9014, Switzerland
| | - Markus Rottmar
- Biointerfaces, Swiss Federal Laboratories for Materials Science and
Technology (Empa), St. Gallen 9014, Switzerland
| | - Gilberto Siqueira
- Cellulose
& Wood Materials Laboratory, Swiss Federal
Laboratories for Materials Science and Technology (Empa), Dübendorf 8600, Switzerland
| |
Collapse
|
28
|
Wayllace NM, Martín M, Busi MV, Gomez-Casati DF. Microbial glucoamylases: structural and functional properties and biotechnological uses. World J Microbiol Biotechnol 2023; 39:293. [PMID: 37653355 DOI: 10.1007/s11274-023-03731-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/14/2023] [Indexed: 09/02/2023]
Abstract
Glucoamylases (GAs) are one of the principal groups of enzymes involved in starch hydrolysis and belong to the glycosylhydrolase family. They are classified as exo-amylases due to their ability to hydrolyze α-1,4 glycosidic bonds from the non-reducing end of starch, maltooligosaccharides, and related substrates, releasing β-D-glucose. Structurally, GAs possess a characteristic catalytic domain (CD) with an (α/α)6 fold and exhibit five conserved regions within this domain. The CD may or may not be linked to a non-catalytic domain with variable functions depending on its origin. GAs are versatile enzymes with diverse applications in food, biofuel, bioplastic and other chemical industries. Although fungal GAs are commonly employed for these purposes, they have limitations such as their low thermostability and an acidic pH requirement. Alternatively, GAs derived from prokaryotic organisms are a good option to save costs as they exhibit greater thermostability compared to fungal GAs. Moreover, a group of cold-adapted GAs from psychrophilic organisms demonstrates intriguing properties that make them suitable for application in various industries. This review provides a comprehensive overview of the structural and sequential properties as well as biotechnological applications of GAs in different industrial processes.
Collapse
Affiliation(s)
- Natael M Wayllace
- CEFOBI-CONICET. Centro de Estudios Fotosintéticos y Bioquímicos - Consejo Nacional de Investigaciones Científicas y Técnicas. Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario, Santa Fe, Argentina
| | - Mariana Martín
- CEFOBI-CONICET. Centro de Estudios Fotosintéticos y Bioquímicos - Consejo Nacional de Investigaciones Científicas y Técnicas. Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario, Santa Fe, Argentina
| | - María V Busi
- CEFOBI-CONICET. Centro de Estudios Fotosintéticos y Bioquímicos - Consejo Nacional de Investigaciones Científicas y Técnicas. Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario, Santa Fe, Argentina.
| | - Diego F Gomez-Casati
- CEFOBI-CONICET. Centro de Estudios Fotosintéticos y Bioquímicos - Consejo Nacional de Investigaciones Científicas y Técnicas. Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario, Santa Fe, Argentina.
| |
Collapse
|
29
|
Shishatskaya EI, Demidenko AV, Sukovatyi AG, Dudaev AE, Mylnikov AV, Kisterskij KA, Volova TG. Three-Dimensional Printing of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] Biodegradable Scaffolds: Properties, In Vitro and In Vivo Evaluation. Int J Mol Sci 2023; 24:12969. [PMID: 37629152 PMCID: PMC10455171 DOI: 10.3390/ijms241612969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
The results of constructing 3D scaffolds from degradable poly(3-hydrosbutyrpate-co-3-hydroxyvalerate) using FDM technology and studying the structure, mechanical properties, biocompatibility in vitro, and osteoplastic properties in vivo are presented. In the process of obtaining granules, filaments, and scaffolds from the initial polymer material, a slight change in the crystallization and glass transition temperature and a noticeable decrease in molecular weight (by 40%) were registered. During the compression test, depending on the direction of load application (parallel or perpendicular to the layers of the scaffold), the 3D scaffolds had a Young's modulus of 207.52 ± 19.12 and 241.34 ± 7.62 MPa and compressive stress tensile strength of 19.45 ± 2.10 and 22.43 ± 1.89 MPa, respectively. SEM, fluorescent staining with DAPI, and calorimetric MTT tests showed the high biological compatibility of scaffolds and active colonization by NIH 3T3 fibroblasts, which retained their metabolic activity for a long time (up to 10 days). The osteoplastic properties of the 3D scaffolds were studied in the segmental osteotomy test on a model defect in the diaphyseal zone of the femur in domestic Landrace pigs. X-ray and histological analysis confirmed the formation of fully mature bone tissue and complete restoration of the defect in 150 days of observation. The results allow us to conclude that the constructed resorbable 3D scaffolds are promising for bone grafting.
Collapse
Affiliation(s)
- Ekaterina I. Shishatskaya
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Akademgorodok, 50/50, 660036 Krasnoyarsk, Russia; (E.I.S.); (A.V.D.); (A.G.S.); (A.E.D.)
- School of Fundamental Biology and Biotechnology, Siberian Federal University, Svobodnyi Av. 79, 660041 Krasnoyarsk, Russia;
| | - Aleksey V. Demidenko
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Akademgorodok, 50/50, 660036 Krasnoyarsk, Russia; (E.I.S.); (A.V.D.); (A.G.S.); (A.E.D.)
- School of Fundamental Biology and Biotechnology, Siberian Federal University, Svobodnyi Av. 79, 660041 Krasnoyarsk, Russia;
| | - Aleksey G. Sukovatyi
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Akademgorodok, 50/50, 660036 Krasnoyarsk, Russia; (E.I.S.); (A.V.D.); (A.G.S.); (A.E.D.)
| | - Alexey E. Dudaev
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Akademgorodok, 50/50, 660036 Krasnoyarsk, Russia; (E.I.S.); (A.V.D.); (A.G.S.); (A.E.D.)
- School of Fundamental Biology and Biotechnology, Siberian Federal University, Svobodnyi Av. 79, 660041 Krasnoyarsk, Russia;
| | - Aleksey V. Mylnikov
- Clinical Hospital “RZD-Medicine”, Lomonosov Street, 47, 660058 Krasnoyarsk, Russia
| | - Konstantin A. Kisterskij
- School of Fundamental Biology and Biotechnology, Siberian Federal University, Svobodnyi Av. 79, 660041 Krasnoyarsk, Russia;
| | - Tatiana G. Volova
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Akademgorodok, 50/50, 660036 Krasnoyarsk, Russia; (E.I.S.); (A.V.D.); (A.G.S.); (A.E.D.)
- School of Fundamental Biology and Biotechnology, Siberian Federal University, Svobodnyi Av. 79, 660041 Krasnoyarsk, Russia;
| |
Collapse
|
30
|
Lee JG, Raj RR, Day NB, Shields CW. Microrobots for Biomedicine: Unsolved Challenges and Opportunities for Translation. ACS NANO 2023; 17:14196-14204. [PMID: 37494584 PMCID: PMC10928690 DOI: 10.1021/acsnano.3c03723] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Microrobots are being explored for biomedical applications, such as drug delivery, biological cargo transport, and minimally invasive surgery. However, current efforts largely focus on proof-of-concept studies with nontranslatable materials through a "design-and-apply" approach, limiting the potential for clinical adaptation. While these proof-of-concept studies have been key to advancing microrobot technologies, we believe that the distinguishing capabilities of microrobots will be most readily brought to patient bedsides through a "design-by-problem" approach, which involves focusing on unsolved problems to inform the design of microrobots with practical capabilities. As outlined below, we propose that the clinical translation of microrobots will be accelerated by a judicious choice of target applications, improved delivery considerations, and the rational selection of translation-ready biomaterials, ultimately reducing patient burden and enhancing the efficacy of therapeutic drugs for difficult-to-treat diseases.
Collapse
Affiliation(s)
| | | | | | - C. Wyatt Shields
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado, 80303, USA
| |
Collapse
|
31
|
Morales-Jiménez M, Palacio DA, Palencia M, Meléndrez MF, Rivas BL. Bio-Based Polymeric Membranes: Development and Environmental Applications. MEMBRANES 2023; 13:625. [PMID: 37504991 PMCID: PMC10383737 DOI: 10.3390/membranes13070625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/20/2023] [Accepted: 06/24/2023] [Indexed: 07/29/2023]
Abstract
Nowadays, membrane technology is an efficient process for separating compounds with minimal structural abrasion; however, the manufacture of membranes still has several drawbacks to being profitable and competitive commercially under an environmentally friendly approach. In this sense, this review focuses on bio-based polymeric membranes as an alternative to solve the environmental concern caused by the use of polymeric materials of fossil origin. The fabrication of bio-based polymeric membranes is explained through a general description of elements such as the selection of bio-based polymers, the preparation methods, the usefulness of additives, the search for green solvents, and the characterization of the membranes. The advantages and disadvantages of bio-based polymeric membranes are discussed, and the application of bio-based membranes to recover organic and inorganic contaminants is also discussed.
Collapse
Affiliation(s)
- Mónica Morales-Jiménez
- Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR-Unidad Oaxaca), Instituto Politécnico Nacional, Calle Hornos 1003, Colonia Noche Buena, Santa Cruz Xoxocotlán 71230, Mexico
| | - Daniel A Palacio
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Casilla 160-C, Concepción 4070371, Chile
| | - Manuel Palencia
- GI-CAT, Department of Chemistry, Faculty of Natural and Exact Science, Universidad del Valle, Cali 25360, Colombia
| | - Manuel F Meléndrez
- Departamento de Ingeniería de Materiales (DIMAT), Facultad de Ingeniería, Universidad de Concepción, Edmundo Larenas 270, Casilla 160-C, Concepción 4070371, Chile
- Unidad de Desarrollo Tecnológico, 2634 Av. Cordillera, Parque Industrial Coronel, P.O. Box 4051, Concepción 4191996, Chile
| | - Bernabé L Rivas
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Casilla 160-C, Concepción 4070371, Chile
| |
Collapse
|
32
|
Mohammed-Sadhakathullah AHM, Paulo-Mirasol S, Torras J, Armelin E. Advances in Functionalization of Bioresorbable Nanomembranes and Nanoparticles for Their Use in Biomedicine. Int J Mol Sci 2023; 24:10312. [PMID: 37373461 PMCID: PMC10299464 DOI: 10.3390/ijms241210312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Bioresorbable nanomembranes (NMs) and nanoparticles (NPs) are powerful polymeric materials playing an important role in biomedicine, as they can effectively reduce infections and inflammatory clinical patient conditions due to their high biocompatibility, ability to physically interact with biomolecules, large surface area, and low toxicity. In this review, the most common bioabsorbable materials such as those belonging to natural polymers and proteins for the manufacture of NMs and NPs are reviewed. In addition to biocompatibility and bioresorption, current methodology on surface functionalization is also revisited and the most recent applications are highlighted. Considering the most recent use in the field of biosensors, tethered lipid bilayers, drug delivery, wound dressing, skin regeneration, targeted chemotherapy and imaging/diagnostics, functionalized NMs and NPs have become one of the main pillars of modern biomedical applications.
Collapse
Affiliation(s)
- Ahammed H. M. Mohammed-Sadhakathullah
- Departament d’Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.2, 08019 Barcelona, Spain; (A.H.M.M.-S.); (S.P.-M.)
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.S, 08019 Barcelona, Spain
| | - Sofia Paulo-Mirasol
- Departament d’Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.2, 08019 Barcelona, Spain; (A.H.M.M.-S.); (S.P.-M.)
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.S, 08019 Barcelona, Spain
| | - Juan Torras
- Departament d’Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.2, 08019 Barcelona, Spain; (A.H.M.M.-S.); (S.P.-M.)
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.S, 08019 Barcelona, Spain
| | - Elaine Armelin
- Departament d’Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.2, 08019 Barcelona, Spain; (A.H.M.M.-S.); (S.P.-M.)
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.S, 08019 Barcelona, Spain
| |
Collapse
|
33
|
Kalia VC, Patel SKS, Lee JK. Exploiting Polyhydroxyalkanoates for Biomedical Applications. Polymers (Basel) 2023; 15:polym15081937. [PMID: 37112084 PMCID: PMC10144186 DOI: 10.3390/polym15081937] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Polyhydroxyalkanoates (PHA) are biodegradable plastic. Numerous bacteria produce PHAs under environmental stress conditions, such as excess carbon-rich organic matter and limitations of other nutritional elements such as potassium, magnesium, oxygen, phosphorus, and nitrogen. In addition to having physicochemical properties similar to fossil-fuel-based plastics, PHAs have unique features that make them ideal for medical devices, such as easy sterilization without damaging the material itself and easy dissolution following use. PHAs can replace traditional plastic materials used in the biomedical sector. PHAs can be used in a variety of biomedical applications, including medical devices, implants, drug delivery devices, wound dressings, artificial ligaments and tendons, and bone grafts. Unlike plastics, PHAs are not manufactured from petroleum products or fossil fuels and are, therefore, environment-friendly. In this review, a recent overview of applications of PHAs with special emphasis on biomedical sectors, including drug delivery, wound healing, tissue engineering, and biocontrols, are discussed.
Collapse
Affiliation(s)
- Vipin Chandra Kalia
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Sanjay K S Patel
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| |
Collapse
|
34
|
Ali N, Rashid MI, Rehan M, Shah Eqani SAMA, Summan ASA, Ismail IMI, Koller M, Ali AM, Shahzad K. Environmental Evaluation of Polyhydroxyalkanoates from Animal Slaughtering Waste Using Material Input Per Service Unit. N Biotechnol 2023; 75:40-51. [PMID: 36948413 DOI: 10.1016/j.nbt.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/28/2023] [Accepted: 03/19/2023] [Indexed: 03/24/2023]
Abstract
The massive production and extensive use of fossil-based non-biodegradable plastics are leading to their environmental accumulation and ultimately cause health threats to animals, humans, and the biosphere in general. The problem can be overcome by developing eco-friendly ways for producing plastics-like biopolymers from waste residues such as of agricultural origin. This will solve two currently prevailing social issues: waste management and the efficient production of a biopolymer that is environmentally benign, polyhydroxyalkanoates (PHA). The current study assesses the environmental impact of biopolymer (PHA) manufacturing, starting from slaughterhouse waste as raw material. The Material Input Per Service Unit methodology (MIPS) is used to examine the sustainability of the PHA production process. In addition, the impact of shifting from business-as-usual energy provision (i.e., electricity from distribution grid network and heat provision from natural gas) to alternative renewable energy sources is also evaluated. As a major outcome, it is shown that the abiotic material contribution for PHA production process is almost double for using hard coal as an energy source than the petro-plastic low-density-poly(ethene) (LPDE), which PHA shall ultimately replace. Likewise, abiotic material contribution is 43% and 7% higher when using the electricity from the European electricity mix (EU-27 mix) and biogas, respectively, than in the case of LDPE production. However, PHA production based on wind power for energy provision has 12% lower abiotic material input than LDPE. Furthermore, the water input decreases when moving from the EU-27 mix to wind power. The reduction in water consumption for various electricity provision resources amounts to 20% for the EU-27 mix, 25% for hard coal, 71% for wind, and 70% for biogas. As the main conclusion, it is demonstrated that using wind farm electricity to generate PHA is the most environmentally friendly choice. Biogas is the second-best choice, although it requires additional abiotic material input.
Collapse
Affiliation(s)
- Nadeem Ali
- Centre of Excellence in Environmental Studies, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Muhammad Imtiaz Rashid
- Centre of Excellence in Environmental Studies, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Mohammad Rehan
- Centre of Excellence in Environmental Studies, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Syed Ali Musstjab Akber Shah Eqani
- Public Health and Environment Division, Department of Biosciences, COMSATS Institute of Information Technology, Islamabad 45550, Pakistan
| | - Ahmed Saleh Ahmed Summan
- Centre of Excellence in Environmental Studies, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | | | - Martin Koller
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28/IV, A-8010 Graz, Austria; ARENA Arbeitsgemeinschaft für Ressourcenschonende & Nachhaltige Technologien, Graz, Austria.
| | - Arshid Mahmood Ali
- Department of Chemical and Materials Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khurram Shahzad
- Centre of Excellence in Environmental Studies, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia.
| |
Collapse
|
35
|
Ponjavic M, Malagurski I, Lazic J, Jeremic S, Pavlovic V, Prlainovic N, Maksimovic V, Cosovic V, Atanase LI, Freitas F, Matos M, Nikodinovic-Runic J. Advancing PHBV Biomedical Potential with the Incorporation of Bacterial Biopigment Prodigiosin. Int J Mol Sci 2023; 24:ijms24031906. [PMID: 36768226 PMCID: PMC9915418 DOI: 10.3390/ijms24031906] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
The quest for sustainable biomaterials with excellent biocompatibility and tailorable properties has put polyhydroxyalkanoates (PHAs) into the research spotlight. However, high production costs and the lack of bioactivity limit their market penetration. To address this, poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) was combined with a bacterial pigment with strong anticancer activity, prodigiosin (PG), to obtain functionally enhanced PHBV-based biomaterials. The samples were produced in the form of films 115.6-118.8 µm in thickness using the solvent casting method. The effects of PG incorporation on the physical properties (morphology, biopolymer crystallinity and thermal stability) and functionality of the obtained biomaterials were investigated. PG has acted as a nucleating agent, in turn affecting the degree of crystallinity, thermal stability and morphology of the films. All samples with PG had a more organized internal structure and higher melting and degradation temperatures. The calculated degree of crystallinity of the PHBV copolymer was 53%, while the PG1, PG3 and PG3 films had values of 64.0%, 63.9% and 69.2%, respectively. Cytotoxicity studies have shown the excellent anticancer activity of films against HCT116 (colon cancer) cells, thus advancing PHBV biomedical application potential.
Collapse
Affiliation(s)
- Marijana Ponjavic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| | - Ivana Malagurski
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia
- Correspondence: (I.M.); (J.N.-R.); Tel.: +381-11-397-6034 (J.N.-R.)
| | - Jelena Lazic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| | - Sanja Jeremic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| | - Vladimir Pavlovic
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| | - Nevena Prlainovic
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia
| | - Vesna Maksimovic
- Vinca Institute of Nuclear Sciences, University of Belgrade, National Institute of the Republic of Serbia, Mike Petrovića Alasa 12-14, 11000 Belgrade, Serbia
| | - Vladan Cosovic
- Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoseva 12, 11000 Belgrade, Serbia
| | - Leonard Ionut Atanase
- Faculty of Dental Medicine, “Apollonia” University of Iasi, 700511 Iasi, Romania
- Academy of Romanian Scientists, 050045 Bucharest, Romania
| | - Filomena Freitas
- i4HB—Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Mariana Matos
- i4HB—Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Jasmina Nikodinovic-Runic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia
- Correspondence: (I.M.); (J.N.-R.); Tel.: +381-11-397-6034 (J.N.-R.)
| |
Collapse
|
36
|
Gregory DA, Fricker ATR, Mitrev P, Ray M, Asare E, Sim D, Larpnimitchai S, Zhang Z, Ma J, Tetali SSV, Roy I. Additive Manufacturing of Polyhydroxyalkanoate-Based Blends Using Fused Deposition Modelling for the Development of Biomedical Devices. J Funct Biomater 2023; 14:jfb14010040. [PMID: 36662087 PMCID: PMC9865795 DOI: 10.3390/jfb14010040] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/26/2022] [Accepted: 12/30/2022] [Indexed: 01/12/2023] Open
Abstract
In the last few decades Additive Manufacturing has advanced and is becoming important for biomedical applications. In this study we look at a variety of biomedical devices including, bone implants, tooth implants, osteochondral tissue repair patches, general tissue repair patches, nerve guidance conduits (NGCs) and coronary artery stents to which fused deposition modelling (FDM) can be applied. We have proposed CAD designs for these devices and employed a cost-effective 3D printer to fabricate proof-of-concept prototypes. We highlight issues with current CAD design and slicing and suggest optimisations of more complex designs targeted towards biomedical applications. We demonstrate the ability to print patient specific implants from real CT scans and reconstruct missing structures by means of mirroring and mesh mixing. A blend of Polyhydroxyalkanoates (PHAs), a family of biocompatible and bioresorbable natural polymers and Poly(L-lactic acid) (PLLA), a known bioresorbable medical polymer is used. Our characterisation of the PLA/PHA filament suggest that its tensile properties might be useful to applications such as stents, NGCs, and bone scaffolds. In addition to this, the proof-of-concept work for other applications shows that FDM is very useful for a large variety of other soft tissue applications, however other more elastomeric MCL-PHAs need to be used.
Collapse
|
37
|
Ene N, Savoiu VG, Spiridon M, Paraschiv CI, Vamanu E. The General Composition of Polyhydroxyalkanoates and Factors that Influence their Production and Biosynthesis. Curr Pharm Des 2023; 29:3089-3102. [PMID: 38099526 DOI: 10.2174/0113816128263175231102061920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/26/2023] [Indexed: 01/05/2024]
Abstract
Polyhydroxyalkanoates (PHAs) have been a current research topic for many years. PHAs are biopolymers produced by bacteria under unfavorable growth conditions. They are biomaterials that exhibit a variety of properties, including biocompatibility, biodegradability, and high mechanical strength, making them suitable for future applications. This review aimed to provide general information on PHAs, such as their structure, classification, and parameters that affect the production process. In addition, the most commonly used bacterial strains that produce PHAs are highlighted, and details are provided on the type of carbon source used and how to optimize the parameters for bioprocesses. PHAs present a challenge to researchers because a variety of parameters affect biosynthesis, including the variety of carbon sources, bacterial strains, and culture media. Nevertheless, PHAs represent an opportunity to replace plastics, because they can be produced quickly and at a relatively low cost. With growing environmental concerns and declining oil reserves, polyhydroxyalkanoates are a potential replacement for nonbiodegradable polymers. Therefore, the study of PHA production remains a hot topic, as many substrates can be used as carbon sources. Both researchers and industry are interested in facilitating the production, commercialization, and application of PHAs as potential replacements for nonbiodegradable polymers. The fact that they are biocompatible, environmentally biodegradable, and adaptable makes PHAs one of the most important materials available in the market. They are preferred in various industries, such as agriculture (for bioremediation of oil-polluted sites, minimizing the toxicity of pollutants, and environmental impact) or medicine (as medical devices). The various bioprocess technologies mentioned earlier will be further investigated, such as the carbon source (to obtain a biopolymer with the lowest possible cost, such as glucose, various fatty acids, and especially renewable sources), pretreatment of the substrate (to increase the availability of the carbon source), and supplementation of the growth environment with different substances and minerals). Consequently, the study of PHA production remains a current topic because many substrates can be used as carbon sources. Obtaining PHA from renewable substrates (waste oil, coffee grounds, plant husks, etc.) contributes significantly to reducing PHA costs. Therefore, in this review, pure bacterial cultures (Bacillus megaterium, Ralstonia eutropha, Cupriavidus necator, and Pseudomonas putida) have been investigated for their potential to utilize by-products as cheap feedstocks. The advantage of these bioprocesses is that a significant amount of PHA can be obtained using renewable carbon sources. The main disadvantage is that the chemical structure of the obtained biopolymer cannot be determined in advance, as is the case with bioprocesses using a conventional carbon source. Polyhydroxyalkanoates are materials that can be used in many fields, such as the medical field (skin grafts, implantable medical devices, scaffolds, drug-controlled release devices), agriculture (for polluted water cleaning), cosmetics and food (biodegradable packaging, gentle biosurfactants with suitable skin for cosmetics), and industry (production of biodegradable biopolymers that replace conventional plastic). Nonetheless, PHA biopolymers continue to be researched and improved and play an important role in various industrial sectors. The properties of this material allow its use as a biodegradable material in the cosmetics industry (for packaging), in the production of biodegradable plastics, or in biomedical engineering, as various prostheses or implantable scaffolds.
Collapse
Affiliation(s)
- Nicoleta Ene
- Department of Industrial Biotechnology, Faculty of Biotechnology, University of Agronomical Sciences and Veterinary Medicine, Bucharest, Romania
- Department of Pharmacology, National Institute for Chemical Pharmaceutical Research and Development- ICCF, Vitan Avenue 112, Bucharest 031299, Romania
| | - Valeria Gabriela Savoiu
- Department of Biotechnology, National Institute For Chemical Pharmaceutical Research and Development, Bucharest 031299, Romania
| | - Maria Spiridon
- Department of Biotechnology, National Institute For Chemical Pharmaceutical Research and Development, Bucharest 031299, Romania
| | - Catalina Ileana Paraschiv
- Department of Chemistry, National Institute for Chemical Pharmaceutical Research and Development, Bucharest 031299, Romania
| | - Emanuel Vamanu
- Department of Industrial Biotechnology, Faculty of Biotechnology, University of Agronomical Sciences and Veterinary Medicine, Bucharest, Romania
| |
Collapse
|
38
|
Ding Z, Kumar V, Sar T, Harirchi S, Dregulo AM, Sirohi R, Sindhu R, Binod P, Liu X, Zhang Z, Taherzadeh MJ, Awasthi MK. Agro waste as a potential carbon feedstock for poly-3-hydroxy alkanoates production: Commercialization potential and technical hurdles. BIORESOURCE TECHNOLOGY 2022; 364:128058. [PMID: 36191751 DOI: 10.1016/j.biortech.2022.128058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/24/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
The enormous production and widespread applications of non -biodegradable plastics lead to their accumulation and toxicity to animals and humans. The issue can be addressed by the development of eco-friendly strategies for the production of biopolymers by utilization of waste residues like agro residues. This will address two societal issues - waste management and the development of an eco-friendly biopolymer, poly-3-hydroxy alkanoates (PHAs). Strategies adopted for utilization of agro-residues, challenges and future perspectives are discussed in detail in this comprehensive review. The possibility of PHA properties improvements can be increased by preparation of blends.
Collapse
Affiliation(s)
- Zheli Ding
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, Hainan Province 571101, China
| | - Vinay Kumar
- Department of Community Medicine, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam 602105, India
| | - Taner Sar
- Swedish Centre for Resource Recovery, University of Borås, Borås 50190, Sweden
| | - Sharareh Harirchi
- Swedish Centre for Resource Recovery, University of Borås, Borås 50190, Sweden
| | - Andrei Mikhailovich Dregulo
- Institute for Regional Economy Problems of the Russian Academy of Sciences (IRES RAS), 38 Serpukhovskaya str, 190013 Saint-Petersburg, Russia
| | - Ranjna Sirohi
- Department of Food Technology, School of Health Sciences & Technology, University of Petroleum and Energy Studies, Dehradun 248 007, India
| | - Raveendran Sindhu
- Department of Food Technology, TKM Institute of Technology, Kollam 691505, Kerala, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695019, Kerala, India
| | - Xiaodi Liu
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, Hainan Province 571101, China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | | | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
| |
Collapse
|
39
|
Chaber P, Tylko G, Włodarczyk J, Nitschke P, Hercog A, Jurczyk S, Rech J, Kubacki J, Adamus G. Surface Modification of PHBV Fibrous Scaffold via Lithium Borohydride Reduction. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7494. [PMID: 36363086 PMCID: PMC9653721 DOI: 10.3390/ma15217494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/17/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
In this study, lithium borohydride (LiBH4) reduction was used to modify the surface chemistry of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) fibers. Although the most common reaction employed in the surface treatment of polyester materials is hydrolysis, it is not suitable for fiber modification of bacterial polyesters, which are highly resistant to this type of reaction. The use of LiBH4 allowed the formation of surface hydroxyl groups under very mild conditions, which was crucial for maintaining the fibers' integrity. The presence of these groups resulted in a noticeable improvement in the surface hydrophilicity of PHBV, as revealed by contact angle measurements. After the treatment with a LiBH4 solution, the electrospun PHBV fibrous mat had a significantly greater number of viable osteoblast-like cells (SaOS-2 cell line) than the untreated mat. Moreover, the results of the cell proliferation measurements correlated well with the observed cell morphology. The most flattened SaOS-2 cells were found on the surface that supported the best cell attachment. Most importantly, the results of our study indicated that the degree of surface modification could be controlled by changing the degradation time and concentration of the borohydride solution. This was of great importance since it allowed optimization of the surface properties to achieve the highest cell-proliferation capacity.
Collapse
Affiliation(s)
- Paweł Chaber
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowska 34, 41-819 Zabrze, Poland
| | - Grzegorz Tylko
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| | - Jakub Włodarczyk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowska 34, 41-819 Zabrze, Poland
| | - Paweł Nitschke
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowska 34, 41-819 Zabrze, Poland
| | - Anna Hercog
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowska 34, 41-819 Zabrze, Poland
| | - Sebastian Jurczyk
- Institute for Engineering of Polymer Materials and Dyes, Łukasiewicz Research Network, Marii Skłodowskiej-Curie 55, 87-100 Toruń, Poland
| | - Jakub Rech
- Department of Biotechnology and Genetic Engineering, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Poniatowskiego 15, 40-055 Katowice, Poland
| | - Jerzy Kubacki
- Faculty of Science and Technology, Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland
| | - Grażyna Adamus
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowska 34, 41-819 Zabrze, Poland
| |
Collapse
|
40
|
García-Cerna S, Sánchez-Pacheco U, Meneses-Acosta A, Rojas-García J, Campillo-Illanes B, Segura-González D, Peña-Malacara C. Evaluation of Poly-3-Hydroxybutyrate (P3HB) Scaffolds Used for Epidermal Cells Growth as Potential Biomatrix. Polymers (Basel) 2022; 14:polym14194021. [PMID: 36235969 PMCID: PMC9572615 DOI: 10.3390/polym14194021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/13/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Advances in tissue engineering have made possible the construction of organs and tissues with the use of biomaterials and cells. Three important elements are considered: a specific cell culture, an adequate environment, and a scaffold. The present study aimed to develop P3HB scaffolds by 3D printing and evaluate their biocompatibility with HaCaT epidermal cells, as a potential model that allows the formation of functional tissue. By using a method of extraction and purification with ethanol and acetone, a biopolymer having suitable properties for use as a tissue support was obtained. This polymer exhibited a higher molecular weight (1500 kDa) and lower contact angle (less than 90°) compared to the material obtained using the conventional method. The biocompatibility analysis reveals that the scaffold obtained using the ethanol–acetone method and produced by 3D printing without pores was not cytotoxic, did not self-degrade, and allowed high homogenous cell proliferation of HaCaT cells. In summary, it is possible to conclude that the P3HB scaffold obtained by 3D printing and a simplified extraction method is a suitable support for the homogeneous development of HaCaT keratinocyte cell lineage, which would allow the evaluation of this material to be used as a biomatrix for tissue engineering.
Collapse
Affiliation(s)
- Sandra García-Cerna
- Laboratorio 7 de la Facultad de Farmacia, Universidad Autonoma del Estado de Morelos, Avenida Universidad No. 1001, Chamilpa, Cuernavaca C.P. 62209, Morelos, Mexico
| | - Uriel Sánchez-Pacheco
- Laboratorio 7 de la Facultad de Farmacia, Universidad Autonoma del Estado de Morelos, Avenida Universidad No. 1001, Chamilpa, Cuernavaca C.P. 62209, Morelos, Mexico
| | - Angélica Meneses-Acosta
- Laboratorio 7 de la Facultad de Farmacia, Universidad Autonoma del Estado de Morelos, Avenida Universidad No. 1001, Chamilpa, Cuernavaca C.P. 62209, Morelos, Mexico
| | - José Rojas-García
- CIATEQ A. C. Plasticos y Materiales Avanzados. Av. Del Retablo 150, Queretaro C.P. 76150, Queretaro, Mexico
| | - Bernardo Campillo-Illanes
- Instituto de Ciencias Fisicas, Universidad Nacional Autonoma de Mexico, Avenida Universidad S/N, Chamilpa, Cuernavaca C.P. 62210, Morelos, Mexico
| | - Daniel Segura-González
- Departamento de Ingenieria Celular y Biocatalisis, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico, Apdo. Post. 510-3, Cuernavaca C.P. 62250, Morelos, Mexico
| | - Carlos Peña-Malacara
- Departamento de Ingenieria Celular y Biocatalisis, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico, Apdo. Post. 510-3, Cuernavaca C.P. 62250, Morelos, Mexico
- Correspondence: ; Tel.: +52-(777)-329-1617
| |
Collapse
|
41
|
Sarkari S, Khajehmohammadi M, Davari N, Li D, Yu B. The effects of process parameters on polydopamine coatings employed in tissue engineering applications. Front Bioeng Biotechnol 2022; 10:1005413. [PMID: 36172013 PMCID: PMC9512135 DOI: 10.3389/fbioe.2022.1005413] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/17/2022] [Indexed: 12/12/2022] Open
Abstract
The biomaterials’ success within the tissue engineering field is hinged on the capability to regulate tissue and cell responses, comprising cellular adhesion, as well as repair and immune processes’ induction. In an attempt to enhance and fulfill these biomaterials’ functions, scholars have been inspired by nature; in this regard, surface modification via coating the biomaterials with polydopamine is one of the most successful inspirations endowing the biomaterials with surface adhesive properties. By employing this approach, favorable results have been achieved in various tissue engineering-related experiments, a significant one of which is the more rapid cellular growth observed on the polydopamine-coated substrates compared to the untreated ones; nonetheless, some considerations regarding polydopamine-coated surfaces should be taken into account to control the ultimate outcomes. In this mini-review, the importance of coatings in the tissue engineering field, the different types of surfaces requiring coatings, the significance of polydopamine coatings, critical factors affecting the result of the coating procedure, and recent investigations concerning applications of polydopamine-coated biomaterials in tissue engineering are thoroughly discussed.
Collapse
Affiliation(s)
- Soulmaz Sarkari
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mehran Khajehmohammadi
- Department of Mechanical Engineering, Faculty of Engineering, Yazd University, Yazd, Iran
- Medical Nanotechnology and Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Niyousha Davari
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Dejian Li
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
- *Correspondence: Dejian Li, ; Baoqing Yu,
| | - Baoqing Yu
- Department of Orthopedics, Shanghai Pudong New Area People’s Hospital, Shanghai, China
- *Correspondence: Dejian Li, ; Baoqing Yu,
| |
Collapse
|
42
|
Morphology and crystallization behaviour of polyhydroxyalkanoates-based blends and composites: A review. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
Sethuram L, Thomas J, Mukherjee A, Chandrasekaran N. A review on contemporary nanomaterial-based therapeutics for the treatment of diabetic foot ulcers (DFUs) with special reference to the Indian scenario. NANOSCALE ADVANCES 2022; 4:2367-2398. [PMID: 36134136 PMCID: PMC9418054 DOI: 10.1039/d1na00859e] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 04/06/2022] [Indexed: 05/08/2023]
Abstract
Diabetes mellitus (DM) is a predominant chronic metabolic syndrome, resulting in various complications and high mortality associated with diabetic foot ulcers (DFUs). Approximately 15-30% of diabetic patients suffer from DFUs, which is expected to increase annually. The major challenges in treating DFUs are associated with wound infections, alterations to inflammatory responses, angiogenesis and lack of extracellular matrix (ECM) components. Furthermore, the lack of targeted therapy and efficient wound dressings for diabetic wounds often results in extended hospitalization and limb amputations. Hence, it is essential to develop and improve DFU-specific therapies. Nanomaterial-based innovative approaches have tremendous potential for preventing and treating wound infections of bacterial origin. They have greater benefits compared to traditional wound dressing approaches. In this approach, the physiochemical features of nanomaterials allow researchers to employ different methods for diabetic wound healing applications. In this review, the status and prevalence of diabetes mellitus (DM) and amputations due to DFUs in India, the pathophysiology of DFUs and their complications are discussed. Additionally, nanomaterial-based approaches such as the use of nanoemulsions, nanoparticles, nanoliposomes and nanofibers for the treatment of DFUs are studied. Besides, emerging therapeutics such as bioengineered skin substitutes and nanomaterial-based innovative approaches such as antibacterial hyperthermia therapy and gene therapy for the treatment of DFUs are highlighted. The present nanomaterial-based techniques provide a strong base for future therapeutic approaches for skin regeneration strategies in the treatment of diabetic wounds.
Collapse
Affiliation(s)
- Lakshimipriya Sethuram
- Centre for Nanobiotechnology, Vellore Institute of Technology Vellore Tamilnadu India +91 416 2243092 +91 416 2202624
| | - John Thomas
- Centre for Nanobiotechnology, Vellore Institute of Technology Vellore Tamilnadu India +91 416 2243092 +91 416 2202624
| | - Amitava Mukherjee
- Centre for Nanobiotechnology, Vellore Institute of Technology Vellore Tamilnadu India +91 416 2243092 +91 416 2202624
| | - Natarajan Chandrasekaran
- Centre for Nanobiotechnology, Vellore Institute of Technology Vellore Tamilnadu India +91 416 2243092 +91 416 2202624
| |
Collapse
|
44
|
Pulingam T, Appaturi JN, Parumasivam T, Ahmad A, Sudesh K. Biomedical Applications of Polyhydroxyalkanoate in Tissue Engineering. Polymers (Basel) 2022; 14:2141. [PMID: 35683815 PMCID: PMC9182786 DOI: 10.3390/polym14112141] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 02/06/2023] Open
Abstract
Tissue engineering technology aids in the regeneration of new tissue to replace damaged or wounded tissue. Three-dimensional biodegradable and porous scaffolds are often utilized in this area to mimic the structure and function of the extracellular matrix. Scaffold material and design are significant areas of biomaterial research and the most favorable material for seeding of in vitro and in vivo cells. Polyhydroxyalkanoates (PHAs) are biopolyesters (thermoplastic) that are appropriate for this application due to their biodegradability, thermo-processability, enhanced biocompatibility, mechanical properties, non-toxicity, and environmental origin. Additionally, they offer enormous potential for modification through biological, chemical and physical alteration, including blending with various other materials. PHAs are produced by bacterial fermentation under nutrient-limiting circumstances and have been reported to offer new perspectives for devices in biological applications. The present review discusses PHAs in the applications of conventional medical devices, especially for soft tissue (sutures, wound dressings, cardiac patches and blood vessels) and hard tissue (bone and cartilage scaffolds) regeneration applications. The paper also addresses a recent advance highlighting the usage of PHAs in implantable devices, such as heart valves, stents, nerve guidance conduits and nanoparticles, including drug delivery. This review summarizes the in vivo and in vitro biodegradability of PHAs and conducts an overview of current scientific research and achievements in the development of PHAs in the biomedical sector. In the future, PHAs may replace synthetic plastics as the material of choice for medical researchers and practitioners.
Collapse
Affiliation(s)
- Thiruchelvi Pulingam
- School of Biological Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia; (T.P.); (A.A.)
| | | | | | - Azura Ahmad
- School of Biological Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia; (T.P.); (A.A.)
| | - Kumar Sudesh
- School of Biological Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia; (T.P.); (A.A.)
| |
Collapse
|
45
|
Harris M, Mohsin H, Potgieter J, Ishfaq K, Archer R, Chen Q, De Silva K, Guen MJL, Wilson R, Arif KM. Partial Biodegradable Blend with High Stability against Biodegradation for Fused Deposition Modeling. Polymers (Basel) 2022; 14:polym14081541. [PMID: 35458292 PMCID: PMC9027655 DOI: 10.3390/polym14081541] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/02/2022] [Accepted: 04/07/2022] [Indexed: 02/04/2023] Open
Abstract
This research presents a partial biodegradable polymeric blend aimed for large-scale fused deposition modeling (FDM). The literature reports partial biodegradable blends with high contents of fossil fuel-based polymers (>20%) that make them unfriendly to the ecosystem. Furthermore, the reported polymer systems neither present good mechanical strength nor have been investigated in vulnerable environments that results in biodegradation. This research, as a continuity of previous work, presents the stability against biodegradability of a partial biodegradable blend prepared with polylactic acid (PLA) and polypropylene (PP). The blend is designed with intended excess physical interlocking and sufficient chemical grafting, which has only been investigated for thermal and hydrolytic degradation before by the same authors. The research presents, for the first time, ANOVA analysis for the statistical evaluation of endurance against biodegradability. The statistical results are complemented with thermochemical and visual analysis. Fourier transform infrared spectroscopy (FTIR) determines the signs of intermolecular interactions that are further confirmed by differential scanning calorimetry (DSC). The thermochemical interactions observed in FTIR and DSC are validated with thermogravimetric analysis (TGA). Scanning electron microscopy (SEM) is also used as a visual technique to affirm the physical interlocking. It is concluded that the blend exhibits high stability against soil biodegradation in terms of high mechanical strength and high mass retention percentage.
Collapse
Affiliation(s)
- Muhammad Harris
- Massey Agrifood Digital Lab, Massey University, Palmerston North 4410, New Zealand; (J.P.); (R.W.)
- Industrial and Manufacturing Engineering Department, Rachna College of Engineering and Technology, Gujranwala 52250, Pakistan
- Correspondence:
| | - Hammad Mohsin
- Department of Polymer Engineering, National Textile University, Faisalabad 37610, Pakistan;
| | - Johan Potgieter
- Massey Agrifood Digital Lab, Massey University, Palmerston North 4410, New Zealand; (J.P.); (R.W.)
| | - Kashif Ishfaq
- Industrial and Manufacturing Engineering Department, University of Engineering and Technology, Lahore 54890, Pakistan;
| | - Richard Archer
- School of Food and Advanced Technology, Massey University, Palmerston North 4410, New Zealand; (R.A.); (Q.C.)
| | - Qun Chen
- School of Food and Advanced Technology, Massey University, Palmerston North 4410, New Zealand; (R.A.); (Q.C.)
| | - Karnika De Silva
- Faculty of Engineering, University of Auckland, Auckland 1023, New Zealand;
| | | | - Russell Wilson
- Massey Agrifood Digital Lab, Massey University, Palmerston North 4410, New Zealand; (J.P.); (R.W.)
| | - Khalid Mahmood Arif
- Department of Mechanical and Electrical Engineering, SF&AT, Massey University, Auckland 0632, New Zealand;
| |
Collapse
|
46
|
Lin A, Liu S, Xiao L, Fu Y, Liu C, Li Y. Controllable preparation of bioactive open porous microspheres for tissue engineering. J Mater Chem B 2022; 10:6464-6471. [DOI: 10.1039/d2tb01198k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Biodegradable microspheres have been widely applied as cell carriers for tissue engineering and regenerative medicine. However, most cell carriers only have simple planar structure and show poor biological activity and...
Collapse
|