1
|
Dali R, Langlet F. Tanycytes in the nexus of hypothalamic inflammation, appetite control, and obesity. Physiol Behav 2025; 296:114917. [PMID: 40222438 DOI: 10.1016/j.physbeh.2025.114917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/16/2025] [Accepted: 04/10/2025] [Indexed: 04/15/2025]
Abstract
Hypothalamic inflammation has been identified as a critical factor driving the development of obesity and associated metabolic disorders. This inflammation-related disruption of energy balance relies on alterations in metabolic cues sensing and hypothalamic cellular functions, together leading to overeating and weight gain. Within the hypothalamic cellular networks controlling energy balance, recent studies have highlighted the significance of glial dysfunction in these processes, suggesting that these cells could provide new avenues for weight loss therapies. Glia rapidly activates following the consumption of a high-fat diet, even after a very short exposure, and contributes to the disruption of the entire system through inflammatory crosstalk. This review explores recent progress in understanding the molecular interactions between glial cells and neurons in hypothalamic inflammation related to obesity, diabetes, and associated complications. Notably, it highlights specialized ependymal cells called tanycytes, whose role is still underestimated in hypothalamic inflammation, and examines the potential for targeting this cell type as a treatment strategy for metabolic disorders.
Collapse
Affiliation(s)
- Rafik Dali
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland; Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Fanny Langlet
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland; Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
2
|
Chen B, de Launoit E, Meseguer D, Garcia Caceres C, Eichmann A, Renier N, Schneeberger M. The interactions between energy homeostasis and neurovascular plasticity. Nat Rev Endocrinol 2024; 20:749-759. [PMID: 39054359 DOI: 10.1038/s41574-024-01021-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/10/2024] [Indexed: 07/27/2024]
Abstract
Food intake and energy expenditure are sensed and processed by multiple brain centres to uphold energy homeostasis. Evidence from the past decade points to the brain vasculature as a new critical player in regulating energy balance that functions in close association with the local neuronal networks. Nutritional imbalances alter many properties of the neurovascular system (such as neurovascular coupling and blood-brain barrier permeability), thus suggesting a bidirectional link between the nutritional milieu and neurovascular health. Increasing numbers of people are consuming a Western diet (comprising ultra-processed food with high-fat and high-sugar content) and have a sedentary lifestyle, with these factors contributing to the current obesity epidemic. Emerging pharmacological interventions (for example, glucagon-like peptide 1 receptor agonists) successfully trigger weight loss. However, whether these approaches can reverse the detrimental effects of long-term exposure to the Western diet (such as neurovascular uncoupling, neuroinflammation and blood-brain barrier disruption) and maintain stable body weight in the long-term needs to be clarified in addition to possible adverse effects. Lifestyle interventions revert the nutritional trigger for obesity and positively affect our overall health, including the cardiovascular system. This Perspective examines how lifestyle interventions affect the neurovascular system and neuronal networks.
Collapse
Affiliation(s)
- Bandy Chen
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA.
| | - Elisa de Launoit
- Sorbonne Université, Institut Du Cerveau-Paris Brain Institute-ICM, Inserm U1127, CNRS UMR 7225, Paris, France
| | - David Meseguer
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Cristina Garcia Caceres
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Munich & German Center for Diabetes Research (DZD), Neuherberg, Germany
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Anne Eichmann
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
- Paris Cardiovascular Research Center, Inserm U970, Université Paris, Paris, France
| | - Nicolas Renier
- Sorbonne Université, Institut Du Cerveau-Paris Brain Institute-ICM, Inserm U1127, CNRS UMR 7225, Paris, France
| | - Marc Schneeberger
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA.
- Wu Tsai Institute for Mind and Brain, Yale University, New Haven, CT, USA.
| |
Collapse
|
3
|
Le Thuc O, García-Cáceres C. Obesity-induced inflammation: connecting the periphery to the brain. Nat Metab 2024; 6:1237-1252. [PMID: 38997442 DOI: 10.1038/s42255-024-01079-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 06/11/2024] [Indexed: 07/14/2024]
Abstract
Obesity is often associated with a chronic, low-grade inflammatory state affecting the entire body. This sustained inflammatory state disrupts the coordinated communication between the periphery and the brain, which has a crucial role in maintaining homeostasis through humoural, nutrient-mediated, immune and nervous signalling pathways. The inflammatory changes induced by obesity specifically affect communication interfaces, including the blood-brain barrier, glymphatic system and meninges. Consequently, brain areas near the third ventricle, including the hypothalamus and other cognition-relevant regions, become susceptible to impairments, resulting in energy homeostasis dysregulation and an elevated risk of cognitive impairments such as Alzheimer's disease and dementia. This Review explores the intricate communication between the brain and the periphery, highlighting the effect of obesity-induced inflammation on brain function.
Collapse
Affiliation(s)
- Ophélia Le Thuc
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Cristina García-Cáceres
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
4
|
Firth W, Pye KR, Weightman Potter PG. Astrocytes at the intersection of ageing, obesity, and neurodegeneration. Clin Sci (Lond) 2024; 138:515-536. [PMID: 38652065 DOI: 10.1042/cs20230148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/25/2024]
Abstract
Once considered passive cells of the central nervous system (CNS), glia are now known to actively maintain the CNS parenchyma; in recent years, the evidence for glial functions in CNS physiology and pathophysiology has only grown. Astrocytes, a heterogeneous group of glial cells, play key roles in regulating the metabolic and inflammatory landscape of the CNS and have emerged as potential therapeutic targets for a variety of disorders. This review will outline astrocyte functions in the CNS in healthy ageing, obesity, and neurodegeneration, with a focus on the inflammatory responses and mitochondrial function, and will address therapeutic outlooks.
Collapse
Affiliation(s)
- Wyn Firth
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, U.K
| | - Katherine R Pye
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, U.K
| | - Paul G Weightman Potter
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, U.K
| |
Collapse
|
5
|
Lund C, Ranea-Robles P, Falk S, Rausch DM, Skovbjerg G, Vibe-Petersen VK, Krauth N, Skytte JL, Vana V, Roostalu U, Pers TH, Lund J, Clemmensen C. Protection against overfeeding-induced weight gain is preserved in obesity but does not require FGF21 or MC4R. Nat Commun 2024; 15:1192. [PMID: 38331907 PMCID: PMC10853283 DOI: 10.1038/s41467-024-45223-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 01/18/2024] [Indexed: 02/10/2024] Open
Abstract
Overfeeding triggers homeostatic compensatory mechanisms that counteract weight gain. Here, we show that both lean and diet-induced obese (DIO) male mice exhibit a potent and prolonged inhibition of voluntary food intake following overfeeding-induced weight gain. We reveal that FGF21 is dispensable for this defense against weight gain. Targeted proteomics unveiled novel circulating factors linked to overfeeding, including the protease legumain (LGMN). Administration of recombinant LGMN lowers body weight and food intake in DIO mice. The protection against weight gain is also associated with reduced vascularization in the hypothalamus and sustained reductions in the expression of the orexigenic neuropeptide genes, Npy and Agrp, suggesting a role for hypothalamic signaling in this homeostatic recovery from overfeeding. Overfeeding of melanocortin 4 receptor (MC4R) KO mice shows that these mice can suppress voluntary food intake and counteract the enforced weight gain, although their rate of weight recovery is impaired. Collectively, these findings demonstrate that the defense against overfeeding-induced weight gain remains intact in obesity and involves mechanisms independent of both FGF21 and MC4R.
Collapse
Affiliation(s)
- Camilla Lund
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Pablo Ranea-Robles
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Sarah Falk
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Dylan M Rausch
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Grethe Skovbjerg
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- Gubra ApS, Hørsholm, Denmark
| | | | - Nathalie Krauth
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | | | - Vasiliki Vana
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | | | - Tune H Pers
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Jens Lund
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Christoffer Clemmensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
6
|
Do T, Van A, Ataei A, Sharma S, Mohandas R. Microvascular Dysfunction in Obesity-Hypertension. Curr Hypertens Rep 2023; 25:447-453. [PMID: 37837517 DOI: 10.1007/s11906-023-01272-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2023] [Indexed: 10/16/2023]
Abstract
PURPOSE OF REVIEW This review aims to explore the role of microvascular dysfunction in obesity-hypertension, discuss the effects obesity has on renal microvasculature, review the current methods for assessing microvascular dysfunction and available therapeutic options, and identify critical areas for further research. RECENT FINDINGS There is a strong association between obesity and hypertension. However, the pathophysiology of obesity-hypertension is not clear. Microvascular dysfunction has been linked to hypertension and obesity and could be an important mediator of obesity-related hypertension. Newer therapies for hypertension and obesity could have ameliorating effects on microvascular dysfunction, including GLP-1 agonists and SGLT-2 inhibitors. There is still much progress to be made in our understanding of the complex interplay between obesity, hypertension, and microvascular dysfunction. Continued efforts to understand microvascular dysfunction and its role in obesity-hypertension are crucial to develop precision therapy to target obesity-hypertension.
Collapse
Affiliation(s)
- Tammy Do
- Department of Medicine, LSU Health Sciences Center - New Orleans, New Orleans, LA, USA
| | - Ashley Van
- Department of Medicine, LSU Health Sciences Center - New Orleans, New Orleans, LA, USA
| | - Arash Ataei
- Department of Medicine, LSU Health Sciences Center - New Orleans, New Orleans, LA, USA
| | - Swati Sharma
- Section of Nephrology and Hypertension, LSU Health Sciences Center - New Orleans, 2021 Perdido Street, Ste 4325, New Orleans, LA, 70112, USA
| | - Rajesh Mohandas
- Section of Nephrology and Hypertension, LSU Health Sciences Center - New Orleans, 2021 Perdido Street, Ste 4325, New Orleans, LA, 70112, USA.
| |
Collapse
|
7
|
Brown SSG, Westwater ML, Seidlitz J, Ziauddeen H, Fletcher PC. Hypothalamic volume is associated with body mass index. Neuroimage Clin 2023; 39:103478. [PMID: 37558541 PMCID: PMC10509524 DOI: 10.1016/j.nicl.2023.103478] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/19/2023] [Accepted: 07/18/2023] [Indexed: 08/11/2023]
Abstract
The hypothalamus is an important neuroendocrine hub for the control of appetite and satiety. In animal studies it has been established that hypothalamic lesioning or stimulation causes alteration to feeding behaviour and consequently body mass, and exposure to high calorie diets induces hypothalamic inflammation. These findings suggest that alterations in hypothalamic structure and function are both a cause and a consequence of changes to food intake. However, there is limited in vivo human data relating the hypothalamus to obesity or eating disorders, in part due to technical problems relating to its small size. Here, we used a novel automated segmentation algorithm to exploratorily investigate the relationship between hypothalamic volume, normalised to intracranial volume, and body mass index (BMI). The analysis was applied across four independent datasets comprising of young adults (total n = 1,351 participants) spanning a range of BMIs (13.3 - 47.8 kg/m2). We compared underweight (including individuals with anorexia nervosa), healthy weight, overweight and obese individuals in a series of complementary analyses. We report that overall hypothalamic volume is significantly larger in overweight and obese groups of young adults. This was also observed for a number of hypothalamic sub-regions. In the largest dataset (the HCP-Young Adult dataset (n = 1111)) there was a significant relationship between hypothalamic volume and BMI. We suggest that our findings of a positive relationship between hypothalamic volume and BMI is potentially consistent with hypothalamic inflammation as seen in animal models in response to high fat diet, although more research is needed to establish a causal relationship. Overall, we present novel, in vivo findings that link elevated BMI to altered hypothalamic structure. This has important implications for study of the neural mechanisms of obesity in humans.
Collapse
Affiliation(s)
- Stephanie S G Brown
- Department of Psychiatry, University of Cambridge, Addenbrookes Hospital, Cambridge CB2 0QQ, United Kingdom.
| | - Margaret L Westwater
- Department of Psychiatry, University of Cambridge, Addenbrookes Hospital, Cambridge CB2 0QQ, United Kingdom; Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford OX3 7JX, United Kingdom
| | - Jakob Seidlitz
- Department of Child and Adolescent Psychiatry and Behavioral Science, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA; Lifespan Brain Institute of Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA, USA
| | - Hisham Ziauddeen
- Department of Psychiatry, University of Cambridge, Addenbrookes Hospital, Cambridge CB2 0QQ, United Kingdom
| | - Paul C Fletcher
- Department of Psychiatry, University of Cambridge, Addenbrookes Hospital, Cambridge CB2 0QQ, United Kingdom; Wellcome Trust MRC Institute of Metabolic Science, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, United Kingdom; Cambridgeshire and Peterborough NHS Trust, United Kingdom
| |
Collapse
|
8
|
Correa-da-Silva F, Kalsbeek MJ, Gadella FS, Oppersma J, Jiang W, Wolff SEC, Korpel NL, Swaab DF, Fliers E, Kalsbeek A, Yi CX. Reduction of oxytocin-containing neurons and enhanced glymphatic activity in the hypothalamic paraventricular nucleus of patients with type 2 diabetes mellitus. Acta Neuropathol Commun 2023; 11:107. [PMID: 37400893 DOI: 10.1186/s40478-023-01606-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/15/2023] [Indexed: 07/05/2023] Open
Abstract
Evidence from animal experiments has shown that the hypothalamic paraventricular nucleus (PVN) plays a key role in regulating body weight and blood glucose levels. However, it is unclear whether neuron populations in the human PVN are involved in the development of type 2 diabetes mellitus (T2DM). To address this, we investigated the neuronal and glial populations in the PVN of 26 T2DM patients and 20 matched controls. Our findings revealed a significant reduction in oxytocin (Oxt) neuron density in the PVN of T2DM patients compared to controls, while other neuronal populations remained unchanged. This suggests that Oxt neurons may play a specific role in the pathophysiology of T2DM. Interestingly, the reduction in Oxt neurons was accompanied by a decreased melanocortinergic input in to the PVN as reflected by a reduction in alpha-MSH immunoreactivity. We also analysed two glial cell populations, as they are important for maintaining a healthy neural microenvironment. We found that microglial density, phagocytic capacity, and their proximity to neurons were not altered in T2DM patients, indicating that the loss of Oxt neurons is independent of changes in microglial immunity. However, we did observe a reduction in the number of astrocytes, which are crucial for providing trophic support to local neurons. Moreover, a specific subpopulation of astrocytes characterized by aquaporin 4 expression was overrepresented in T2DM patients. Since this subset of astrocytes is linked to the glymphatic system, their overrepresentation might point to alterations in the hypothalamic waste clearance system in T2DM. Our study shows selective loss of Oxt neurons in the PVN of T2DM individuals in association with astrocytic reduction and gliovascular remodelling. Therefore, hypothalamic Oxt neurons may represent a potential target for T2DM treatment modalities.
Collapse
Affiliation(s)
- Felipe Correa-da-Silva
- Department of Endocrinology and Metabolism, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Laboratory of Endocrinology, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Martin J Kalsbeek
- Department of Endocrinology and Metabolism, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Laboratory of Endocrinology, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Femke S Gadella
- Department of Endocrinology and Metabolism, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Laboratory of Endocrinology, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jorn Oppersma
- Department of Endocrinology and Metabolism, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Laboratory of Endocrinology, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Wei Jiang
- Department of Endocrinology and Metabolism, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Laboratory of Endocrinology, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Samantha E C Wolff
- Department of Endocrinology and Metabolism, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Laboratory of Endocrinology, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Nikita L Korpel
- Laboratory of Endocrinology, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Dick F Swaab
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Eric Fliers
- Department of Endocrinology and Metabolism, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Andries Kalsbeek
- Department of Endocrinology and Metabolism, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Laboratory of Endocrinology, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Chun-Xia Yi
- Department of Endocrinology and Metabolism, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
- Laboratory of Endocrinology, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam, The Netherlands.
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands.
| |
Collapse
|
9
|
Dali R, Estrada-Meza J, Langlet F. Tanycyte, the neuron whisperer. Physiol Behav 2023; 263:114108. [PMID: 36740135 DOI: 10.1016/j.physbeh.2023.114108] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/23/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
Reciprocal communication between neurons and glia is essential for normal brain functioning and adequate physiological functions, including energy balance. In vertebrates, the homeostatic process that adjusts food intake and energy expenditure in line with physiological requirements is tightly controlled by numerous neural cell types located within the hypothalamus and the brainstem and organized in complex networks. Within these neural networks, peculiar ependymoglial cells called tanycytes are nowadays recognized as multifunctional players in the physiological mechanisms of appetite control, partly by modulating orexigenic and anorexigenic neurons. Here, we review recent advances in tanycytes' impact on hypothalamic neuronal activity, emphasizing on arcuate neurons.
Collapse
Affiliation(s)
- Rafik Dali
- Department of biomedical sciences, University of Lausanne, 1005 Lausanne, Switzerland
| | - Judith Estrada-Meza
- Department of biomedical sciences, University of Lausanne, 1005 Lausanne, Switzerland
| | - Fanny Langlet
- Department of biomedical sciences, University of Lausanne, 1005 Lausanne, Switzerland.
| |
Collapse
|
10
|
Delle C, Cankar N, Digebjerg Holgersson C, Hvorup Knudsen H, Schiøler Nielsen E, Kjaerby C, Mori Y, Nedergaard M, Weikop P. Long-term high-fat diet increases glymphatic activity in the hypothalamus in mice. Sci Rep 2023; 13:4137. [PMID: 36914703 PMCID: PMC10011420 DOI: 10.1038/s41598-023-30630-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/27/2023] [Indexed: 03/16/2023] Open
Abstract
Obesity affects millions of people worldwide and is associated with an increased risk of cognitive decline. The glymphatic system is a brain-wide metabolic waste clearance system, dysfunction of which is linked to dementia. We herein examined glymphatic transport in mice with long-term obesity induced by a high-fat diet for 10 months. The obese mice developed hypertension and elevated heart rate, neuroinflammation and gliosis, but not apparent systemic inflammation. Surprisingly, glymphatic inflow was globally unaffected by the high-fat diet except for the hypothalamus, which displayed increased influx and elevated AQP4 vascular polarization compared to the normal weight control group. We propose that a long-term high-fat diet induced metabolic alteration of hypothalamic neurons and neuroinflammation, which in turn enhanced glymphatic clearance in the effected brain region.
Collapse
Affiliation(s)
- Christine Delle
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| | - Neža Cankar
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| | - Christian Digebjerg Holgersson
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| | - Helle Hvorup Knudsen
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| | - Elise Schiøler Nielsen
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| | - Celia Kjaerby
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| | - Yuki Mori
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark.
- Center for Translational Neuromedicine, University of Rochester Medical School, Elmwood Avenue 601, Rochester, NY, 14642, USA.
| | - Pia Weikop
- Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| |
Collapse
|
11
|
Campillo BW, Galguera D, Cerdan S, López-Larrubia P, Lizarbe B. Short-term high-fat diet alters the mouse brain magnetic resonance imaging parameters consistently with neuroinflammation on males and metabolic rearrangements on females. A pre-clinical study with an optimized selection of linear mixed-effects models. Front Neurosci 2022; 16:1025108. [PMID: 36507349 PMCID: PMC9729798 DOI: 10.3389/fnins.2022.1025108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/20/2022] [Indexed: 11/25/2022] Open
Abstract
Introduction High-fat diet (HFD) consumption is known to trigger an inflammatory response in the brain that prompts the dysregulation of energy balance, leads to insulin and leptin resistance, and ultimately obesity. Obesity, at the same, has been related to cerebral magnetic resonance imaging (MRI) alterations, but the onset of HFD-induced neuroinflammation, however, has been principally reported on male rodents and by ex vivo methods, with the effects on females and the origin of MRI changes remaining unassessed. Methods We characterized the onset and evolution of obesity on male and female mice during standard or HFD administration by physiological markers and multiparametric MRI on four cerebral regions involved in appetite regulation and energy homeostasis. We investigated the effects of diet, time under diet, brain region and sex by identifying their significant contributions to sequential linear mixed-effects models, and obtained their regional neurochemical profiles by high-resolution magic angle spinning spectroscopy. Results Male mice developed an obese phenotype paralleled by fast increases in magnetization transfer ratio values, while females delayed the obesity progress and showed no MRI-signs of cerebral inflammation, but larger metabolic rearrangements on the neurochemical profile. Discussion Our study reveals early MRI-detectable changes compatible with the development of HFD-induced cerebral cytotoxic inflammation on males but suggest the existence of compensatory metabolic adaptations on females that preclude the corresponding detection of MRI alterations.
Collapse
Affiliation(s)
- Basilio Willem Campillo
- Instituto de Investigaciones Biomédicas Alberto Sols (IIBm), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - David Galguera
- Instituto de Investigaciones Biomédicas Alberto Sols (IIBm), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Sebastian Cerdan
- Instituto de Investigaciones Biomédicas Alberto Sols (IIBm), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Pilar López-Larrubia
- Instituto de Investigaciones Biomédicas Alberto Sols (IIBm), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain,Pilar López-Larrubia,
| | - Blanca Lizarbe
- Instituto de Investigaciones Biomédicas Alberto Sols (IIBm), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain,Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain,*Correspondence: Blanca Lizarbe,
| |
Collapse
|
12
|
Habashy KJ, Ahmad F, Ibeh S, Mantash S, Kobeissy F, Issa H, Habis R, Tfaily A, Nabha S, Harati H, Reslan MA, Yehya Y, Barsa C, Shaito A, Zibara K, El-Yazbi AF, Kobeissy FH. Western and ketogenic diets in neurological disorders: can you tell the difference? Nutr Rev 2022; 80:1927-1941. [PMID: 35172003 DOI: 10.1093/nutrit/nuac008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
Abstract
The prevalence of obesity tripled worldwide between 1975 and 2016, and it is projected that half of the US population will be overweight by 2030. The obesity pandemic is attributed, in part, to the increasing consumption of the high-fat, high-carbohydrate Western diet, which predisposes to the development of the metabolic syndrome and correlates with decreased cognitive performance. In contrast, the high-fat, low-carbohydrate ketogenic diet has potential therapeutic roles and has been used to manage intractable seizures since the early 1920s. The brain accounts for 25% of total body glucose metabolism and, as a result, is especially susceptible to changes in the types of nutrients consumed. Here, we discuss the principles of brain metabolism with a focus on the distinct effects of the Western and ketogenic diets on the progression of neurological diseases such as epilepsy, Parkinson's disease, Alzheimer's disease, and traumatic brain injury, highlighting the need to further explore the potential therapeutic effects of the ketogenic diet and the importance of standardizing dietary formulations to assure the reproducibility of clinical trials.
Collapse
Affiliation(s)
| | - Fatima Ahmad
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Stanley Ibeh
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Sarah Mantash
- PRASE and Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Fatima Kobeissy
- Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Hawraa Issa
- PRASE and Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Ralph Habis
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ali Tfaily
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Comprehensive Epilepsy Program, Department of Neurology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Sanaa Nabha
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Hayat Harati
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Mohammad Amine Reslan
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Yara Yehya
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Chloe Barsa
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Abdullah Shaito
- Biomedical Research Center, Department of Biomedical Sciences at College of Health Sciences, and College of Medicine, Qatar University, Doha, Qatar
| | - Kazem Zibara
- PRASE and Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Ahmed F El-Yazbi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- Faculty of Pharmacy, Alalamein International University, Alalamein, Egypt
| | - Firas H Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, Psychiatry, Neuroscience, and Chemistry, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
13
|
Mendes NF, Velloso LA. Perivascular macrophages in high-fat diet-induced hypothalamic inflammation. J Neuroinflammation 2022; 19:136. [PMID: 35681242 PMCID: PMC9185933 DOI: 10.1186/s12974-022-02519-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/01/2022] [Indexed: 02/06/2023] Open
Abstract
Brain macrophages and microglia are centrally involved in immune surveillance of the central nervous system. Upon inflammatory stimuli, they become reactive and release key molecules to prevent further damage to the neuronal network. In the hypothalamic area, perivascular macrophages (PVMs) are the first line of host defence against pathogenic organisms, particles and/or substances from the blood. They are distributed throughout the circumventricular organ median eminence, wrapping endothelial cells from fenestrated portal capillaries and in the hypothalamic vascular network, where they are localised in the perivascular space of the blood-brain barrier (BBB). Some studies have indicated that PVMs from the hypothalamus increase the expression of inducible nitric oxide synthase and vascular endothelial growth factor upon feeding for a long time on a high-fat diet. This adaptive response contributes to the impairment of glucose uptake, facilitates BBB leakage and leads to increased lipid and inflammatory cell influx towards the hypothalamic parenchyma. Despite these early findings, there is still a lack of studies exploring the mechanisms by which PVMs contribute to the development of obesity-related hypothalamic dysfunction, particularly at the early stages when there is chemotaxis of peripheral myeloid cells into the mediobasal hypothalamus. Here, we reviewed the studies involving the ontogeny, hallmarks and main features of brain PVMs in vascular homeostasis, inflammation and neuroendocrine control. This review provides a framework for understanding the potential involvement of PVMs in diet-induced hypothalamic inflammation.
Collapse
Affiliation(s)
- Natalia F Mendes
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Rua Carl Von Linnaeus s/n, Instituto de Biologia - Bloco Z. Campus Universitário Zeferino Vaz - Barão Geraldo, Campinas, SP, 13083-864, Brazil.
| | - Licio A Velloso
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Rua Carl Von Linnaeus s/n, Instituto de Biologia - Bloco Z. Campus Universitário Zeferino Vaz - Barão Geraldo, Campinas, SP, 13083-864, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation, Rio de Janeiro, Brazil
| |
Collapse
|
14
|
Engel DF, Velloso LA. The timeline of neuronal and glial alterations in experimental obesity. Neuropharmacology 2022; 208:108983. [PMID: 35143850 DOI: 10.1016/j.neuropharm.2022.108983] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 01/03/2022] [Accepted: 02/02/2022] [Indexed: 12/14/2022]
Abstract
In experimental models, hypothalamic dysfunction is a key component of the pathophysiology of diet-induced obesity. Early after the introduction of a high-fat diet, neurons, microglia, astrocytes and tanycytes of the mediobasal hypothalamus undergo structural and functional changes that impact caloric intake, energy expenditure and systemic glucose tolerance. Inflammation has emerged as a central component of this response, and as in other inflammatory conditions, there is a time course of events that determine the fate of distinct cells involved in the central regulation of whole-body energy homeostasis. Here, we review the work that identified key mechanisms, cellular players and temporal features of diet-induced hypothalamic abnormalities.
Collapse
Affiliation(s)
- Daiane F Engel
- School of Pharmacy, Federal University of Ouro Preto, Brazil
| | - Licio A Velloso
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Brazil.
| |
Collapse
|
15
|
Mirzadeh Z, Faber CL, Schwartz MW. Central Nervous System Control of Glucose Homeostasis: A Therapeutic Target for Type 2 Diabetes? Annu Rev Pharmacol Toxicol 2022; 62:55-84. [PMID: 34990204 PMCID: PMC8900291 DOI: 10.1146/annurev-pharmtox-052220-010446] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Historically, pancreatic islet beta cells have been viewed as principal regulators of glycemia, with type 2 diabetes (T2D) resulting when insulin secretion fails to compensate for peripheral tissue insulin resistance. However, glycemia is also regulated by insulin-independent mechanisms that are dysregulated in T2D. Based on evidence supporting its role both in adaptive coupling of insulin secretion to changes in insulin sensitivity and in the regulation of insulin-independent glucose disposal, the central nervous system (CNS) has emerged as a fundamental player in glucose homeostasis. Here, we review and expand upon an integrative model wherein the CNS, together with the islet, establishes and maintains the defended level of glycemia. We discuss the implications of this model for understanding both normal glucose homeostasis and T2D pathogenesis and highlight centrally targeted therapeutic approaches with the potential to restore normoglycemia to patients with T2D.
Collapse
Affiliation(s)
- Zaman Mirzadeh
- Ivy Brain Tumor Center, Department of Neurosurgery, Barrow Neurological Institute, Phoenix, Arizona 85013, USA;
| | - Chelsea L Faber
- Ivy Brain Tumor Center, Department of Neurosurgery, Barrow Neurological Institute, Phoenix, Arizona 85013, USA;
- UW Medicine Diabetes Institute, Department of Medicine, University of Washington, Seattle, Washington 98109, USA;
| | - Michael W Schwartz
- UW Medicine Diabetes Institute, Department of Medicine, University of Washington, Seattle, Washington 98109, USA;
| |
Collapse
|
16
|
Bhusal A, Rahman MH, Suk K. Hypothalamic inflammation in metabolic disorders and aging. Cell Mol Life Sci 2021; 79:32. [PMID: 34910246 PMCID: PMC11071926 DOI: 10.1007/s00018-021-04019-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/01/2021] [Accepted: 10/29/2021] [Indexed: 12/15/2022]
Abstract
The hypothalamus is a critical brain region for the regulation of energy homeostasis. Over the years, studies on energy metabolism primarily focused on the neuronal component of the hypothalamus. Studies have recently uncovered the vital role of glial cells as an additional player in energy balance regulation. However, their inflammatory activation under metabolic stress condition contributes to various metabolic diseases. The recruitment of monocytes and macrophages in the hypothalamus helps sustain such inflammation and worsens the disease state. Neurons were found to actively participate in hypothalamic inflammatory response by transmitting signals to the surrounding non-neuronal cells. This activation of different cell types in the hypothalamus leads to chronic, low-grade inflammation, impairing energy balance and contributing to defective feeding habits, thermogenesis, and insulin and leptin signaling, eventually leading to metabolic disorders (i.e., diabetes, obesity, and hypertension). The hypothalamus is also responsible for the causation of systemic aging under metabolic stress. A better understanding of the multiple factors contributing to hypothalamic inflammation, the role of the different hypothalamic cells, and their crosstalks may help identify new therapeutic targets. In this review, we focus on the role of glial cells in establishing a cause-effect relationship between hypothalamic inflammation and the development of metabolic diseases. We also cover the role of other cell types and discuss the possibilities and challenges of targeting hypothalamic inflammation as a valid therapeutic approach.
Collapse
Affiliation(s)
- Anup Bhusal
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Md Habibur Rahman
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
- Division of Endocrinology, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA
| | - Kyoungho Suk
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.
- Brain Science and Engineering Institute, Kyungpook National University, Daegu, 41944, Republic of Korea.
| |
Collapse
|
17
|
Astrocyte Gliotransmission in the Regulation of Systemic Metabolism. Metabolites 2021; 11:metabo11110732. [PMID: 34822390 PMCID: PMC8623475 DOI: 10.3390/metabo11110732] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 12/28/2022] Open
Abstract
Normal brain function highly relies on the appropriate functioning of astrocytes. These glial cells are strategically situated between blood vessels and neurons, provide significant substrate support to neuronal demand, and are sensitive to neuronal activity and energy-related molecules. Astrocytes respond to many metabolic conditions and regulate a wide array of physiological processes, including cerebral vascular remodeling, glucose sensing, feeding, and circadian rhythms for the control of systemic metabolism and behavior-related responses. This regulation ultimately elicits counterregulatory mechanisms in order to couple whole-body energy availability with brain function. Therefore, understanding the role of astrocyte crosstalk with neighboring cells via the release of molecules, e.g., gliotransmitters, into the parenchyma in response to metabolic and neuronal cues is of fundamental relevance to elucidate the distinct roles of these glial cells in the neuroendocrine control of metabolism. Here, we review the mechanisms underlying astrocyte-released gliotransmitters that have been reported to be crucial for maintaining homeostatic regulation of systemic metabolism.
Collapse
|
18
|
Wang J, Beecher K. TSPO: an emerging role in appetite for a therapeutically promising biomarker. Open Biol 2021; 11:210173. [PMID: 34343461 PMCID: PMC8331234 DOI: 10.1098/rsob.210173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
There is accumulating evidence that an obesogenic Western diet causes neuroinflammatory damage to the brain, which then promotes further appetitive behaviour. Neuroinflammation has been extensively studied by analysing the translocator protein of 18 kDa (TSPO), a protein that is upregulated in the inflamed brain following a damaging stimulus. As a result, there is a rich supply of TSPO-specific agonists, antagonists and positron emission tomography ligands. One TSPO ligand, etifoxine, is also currently used clinically for the treatment of anxiety with a minimal side-effect profile. Despite the neuroinflammatory pathogenesis of diet-induced obesity, and the translational potential of targeting TSPO, there is sparse literature characterizing the effect of TSPO on appetite. Therefore, in this review, the influence of TSPO on appetite is discussed. Three putative mechanisms for TSPO's appetite-modulatory effect are then characterized: the TSPO–allopregnanolone–GABAAR signalling axis, glucosensing in tanycytes and association with the synaptic protein RIM-BP1. We highlight that, in addition to its plethora of functions, TSPO is a regulator of appetite. This review ultimately suggests that the appetite-modulating function of TSPO should be further explored due to its potential therapeutic promise.
Collapse
Affiliation(s)
- Joshua Wang
- Addiction Neuroscience and Obesity Laboratory, School of Clinical Sciences, Faculty of Health, Translational Research Institute, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Kate Beecher
- Addiction Neuroscience and Obesity Laboratory, School of Clinical Sciences, Faculty of Health, Translational Research Institute, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
19
|
High-Fat Diet Impairs Mouse Median Eminence: A Study by Transmission and Scanning Electron Microscopy Coupled with Raman Spectroscopy. Int J Mol Sci 2021; 22:ijms22158049. [PMID: 34360816 PMCID: PMC8347199 DOI: 10.3390/ijms22158049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 12/28/2022] Open
Abstract
Hypothalamic dysfunction is an initial event following diet-induced obesity, primarily involving areas regulating energy balance such as arcuate nucleus (Arc) and median eminence (ME). To gain insights into the early hypothalamic diet-induced alterations, adult CD1 mice fed a high-fat diet (HFD) for 6 weeks were studied and compared with normo-fed controls. Transmission and scanning electron microscopy and histological staining were employed for morphological studies of the ME, while Raman spectroscopy was applied for the biochemical analysis of the Arc-ME complex. In HFD mice, ME β2-tanycytes, glial cells dedicated to blood-liquor crosstalk, exhibited remarkable ultrastructural anomalies, including altered alignment, reduced junctions, degenerating organelles, and higher content of lipid droplets, lysosomes, and autophagosomes. Degenerating tanycytes also displayed an electron transparent cytoplasm filled with numerous vesicles, and they were surrounded by dilated extracellular spaces extending up to the subependymal layer. Consistently, Raman spectroscopy analysis of the Arc-ME complex revealed higher glycogen, collagen, and lipid bands in HFD mice compared with controls, and there was also a higher band corresponding to the cyanide group in the former compared to the last. Collectively, these data show that ME β2-tanycytes exhibit early structural and chemical alterations due to HFD and reveal for the first-time hypothalamic cyanide presence following high dietary lipids consumption, which is a novel aspect with potential implications in the field of obesity.
Collapse
|
20
|
Hypothalamic Astrocytes as a Specialized and Responsive Cell Population in Obesity. Int J Mol Sci 2021; 22:ijms22126176. [PMID: 34201099 PMCID: PMC8228119 DOI: 10.3390/ijms22126176] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 12/11/2022] Open
Abstract
Astrocytes are a type of glial cell anatomically and functionally integrated into the neuronal regulatory circuits for the neuroendocrine control of metabolism. Being functional integral compounds of synapses, astrocytes are actively involved in the physiological regulatory aspects of metabolic control, but also in the pathological processes that link neuronal dysfunction and obesity. Between brain areas, the hypothalamus harbors specialized functional circuits that seem selectively vulnerable to metabolic damage, undergoing early cellular rearrangements which are thought to be at the core of the pathogenesis of diet-induced obesity. Such changes in the hypothalamic brain region consist of a rise in proinflammatory cytokines, the presence of a reactive phenotype in astrocytes and microglia, alterations in the cytoarchitecture and synaptology of hypothalamic circuits, and angiogenesis, a phenomenon that cannot be found elsewhere in the brain. Increasing evidence points to the direct involvement of hypothalamic astrocytes in such early metabolic disturbances, thus moving the study of these glial cells to the forefront of obesity research. Here we provide a comprehensive review of the most relevant findings of molecular and pathophysiological mechanisms by which hypothalamic astrocytes might be involved in the pathogenesis of obesity.
Collapse
|
21
|
Obesity-associated hyperleptinemia alters the gliovascular interface of the hypothalamus to promote hypertension. Cell Metab 2021; 33:1155-1170.e10. [PMID: 33951475 PMCID: PMC8183500 DOI: 10.1016/j.cmet.2021.04.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/27/2021] [Accepted: 04/12/2021] [Indexed: 12/21/2022]
Abstract
Pathologies of the micro- and macrovascular systems are a hallmark of the metabolic syndrome, which can lead to chronically elevated blood pressure. However, the underlying pathomechanisms involved still need to be clarified. Here, we report that an obesity-associated increase in serum leptin triggers the select expansion of the micro-angioarchitecture in pre-autonomic brain centers that regulate hemodynamic homeostasis. By using a series of cell- and region-specific loss- and gain-of-function models, we show that this pathophysiological process depends on hypothalamic astroglial hypoxia-inducible factor 1α-vascular endothelial growth factor (HIF1α-VEGF) signaling downstream of leptin signaling. Importantly, several distinct models of HIF1α-VEGF pathway disruption in astrocytes are protected not only from obesity-induced hypothalamic angiopathy but also from sympathetic hyperactivity or arterial hypertension. These results suggest that hyperleptinemia promotes obesity-induced hypertension via a HIF1α-VEGF signaling cascade in hypothalamic astrocytes while establishing a novel mechanistic link that connects hypothalamic micro-angioarchitecture with control over systemic blood pressure.
Collapse
|
22
|
Robb JL, Morrissey NA, Weightman Potter PG, Smithers HE, Beall C, Ellacott KLJ. Immunometabolic Changes in Glia - A Potential Role in the Pathophysiology of Obesity and Diabetes. Neuroscience 2020; 447:167-181. [PMID: 31765625 PMCID: PMC7567742 DOI: 10.1016/j.neuroscience.2019.10.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 12/15/2022]
Abstract
Chronic low-grade inflammation is a feature of the pathophysiology of obesity and diabetes in the CNS as well as peripheral tissues. Glial cells are critical mediators of the response to inflammation in the brain. Key features of glia include their metabolic flexibility, sensitivity to changes in the CNS microenvironment, and ability to rapidly adapt their function accordingly. They are specialised cells which cooperate to promote and preserve neuronal health, playing important roles in regulating the activity of neuronal networks across the brain during different life stages. Increasing evidence points to a role of glia, most notably astrocytes and microglia, in the systemic regulation of energy and glucose homeostasis in the course of normal physiological control and during disease. Inflammation is an energetically expensive process that requires adaptive changes in cellular metabolism and, in turn, metabolic intermediates can also have immunomodulatory actions. Such "immunometabolic" changes in peripheral immune cells have been implicated in contributing to disease pathology in obesity and diabetes. This review will discuss the evidence for a role of immunometabolic changes in glial cells in the systemic regulation of energy and glucose homeostasis, and how this changes in the context of obesity and diabetes.
Collapse
Affiliation(s)
- Josephine L Robb
- Neuroendocrine Research Group, Institute of Biomedical & Clinical Sciences, University of Exeter Medical School, Exeter, UK
| | - Nicole A Morrissey
- Neuroendocrine Research Group, Institute of Biomedical & Clinical Sciences, University of Exeter Medical School, Exeter, UK
| | - Paul G Weightman Potter
- Neuroendocrine Research Group, Institute of Biomedical & Clinical Sciences, University of Exeter Medical School, Exeter, UK
| | - Hannah E Smithers
- Neuroendocrine Research Group, Institute of Biomedical & Clinical Sciences, University of Exeter Medical School, Exeter, UK
| | - Craig Beall
- Neuroendocrine Research Group, Institute of Biomedical & Clinical Sciences, University of Exeter Medical School, Exeter, UK
| | - Kate L J Ellacott
- Neuroendocrine Research Group, Institute of Biomedical & Clinical Sciences, University of Exeter Medical School, Exeter, UK.
| |
Collapse
|
23
|
Prezotto LD, Thorson JF, Prevot V, Redmer DA, Grazul-Bilska AT. Nutritionally induced tanycytic plasticity in the hypothalamus of adult ewes. Domest Anim Endocrinol 2020; 72:106438. [PMID: 32388344 DOI: 10.1016/j.domaniend.2020.106438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/27/2019] [Accepted: 01/16/2020] [Indexed: 02/07/2023]
Abstract
The blood-brain barrier regulates the transport of molecules that convey global energetic status to the feeding circuitry within the hypothalamus. Capillaries within the median eminence (ME) and tight junctions between tanycytes lining the third ventricle (3V) are critical components of this barrier. Herein, we tested the hypothesis that altering the plane of nutrition results in the structural reorganization of tanycytes, tight junctions, and capillary structure within the medial basal hypothalamus. Proopiomelanocortin (POMC) neuronal content within the arcuate nucleus of the hypothalamus (ARC) was also assessed to test whether reduced nutritional status improved access of nutrients to the ARC, while decreasing the access of nutrients of overfed animals. Multiparous, nongestating ewes were stratified by weight and randomly assigned to dietary treatments offered for 75 d: 200% of dietary recommendations (overfed), 100% of dietary recommendations (control), or 60% of dietary recommendations (underfed). The number of POMC-expressing neurons within the ARC was increased (P ≤ 0.002) in underfed ewes. Overfeeding increased (P ≤ 0.01) tanycyte cellular process penetration and density compared with control and underfeeding as assessed using vimentin immunostaining. Immunostaining of tight junctions along the wall of the 3V did not differ (P = 0.32) between treatments. No differences were observed in capillary density (P = 0.21) or classification (P ≥ 0.47) within the ME. These results implicate that changes within the satiety center and morphology of tanycytes within the ARC occur as an adaptation to nutrient availability.
Collapse
Affiliation(s)
- L D Prezotto
- Nutritional & Reproductive Physiology Laboratory, Northern Agricultural Research Center, Montana State University, 3710 Assinniboine Road, Havre, MT 59501, USA.
| | - J F Thorson
- Nutritional & Reproductive Physiology Laboratory, Northern Agricultural Research Center, Montana State University, 3710 Assinniboine Road, Havre, MT 59501, USA
| | - V Prevot
- INSERM, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Centre, U1172, Lille, France
| | - D A Redmer
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - A T Grazul-Bilska
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA
| |
Collapse
|
24
|
Thomas K, Beyer F, Lewe G, Zhang R, Schindler S, Schönknecht P, Stumvoll M, Villringer A, Witte AV. Higher body mass index is linked to altered hypothalamic microstructure. Sci Rep 2019; 9:17373. [PMID: 31758009 PMCID: PMC6874651 DOI: 10.1038/s41598-019-53578-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/01/2019] [Indexed: 01/23/2023] Open
Abstract
Animal studies suggest that obesity-related diets induce structural changes in the hypothalamus, a key brain area involved in energy homeostasis. Whether this translates to humans is however largely unknown. Using a novel multimodal approach with manual segmentation, we here show that a higher body mass index (BMI) selectively predicted higher proton diffusivity within the hypothalamus, indicative of compromised microstructure in the underlying tissue, in a well-characterized population-based cohort (n1 = 338, 48% females, age 21-78 years, BMI 18-43 kg/m²). Results were independent from confounders and confirmed in another independent sample (n2 = 236). In addition, while hypothalamic volume was not associated with obesity, we identified a sexual dimorphism and larger hypothalamic volumes in the left compared to the right hemisphere. Using two large samples of the general population, we showed that a higher BMI specifically relates to altered microstructure in the hypothalamus, independent from confounders such as age, sex and obesity-associated co-morbidities. This points to persisting microstructural changes in a key regulatory area of energy homeostasis occurring with excessive weight. Our findings may help to better understand the pathomechanisms of obesity and other eating-related disorders.
Collapse
Affiliation(s)
- K Thomas
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103, Leipzig, Germany
- Collaborative Research Centre 1052'Obesity Mechanisms', Subproject A1, Faculty of Medicine, Leipzig University, 04103, Leipzig, Germany
| | - F Beyer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103, Leipzig, Germany
- Collaborative Research Centre 1052'Obesity Mechanisms', Subproject A1, Faculty of Medicine, Leipzig University, 04103, Leipzig, Germany
| | - G Lewe
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103, Leipzig, Germany
| | - R Zhang
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103, Leipzig, Germany
| | - S Schindler
- Department of Psychiatry and Psychotherapy, Leipzig University Hospital, 04103, Leipzig, Germany
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, 04103, Leipzig, Germany
| | - P Schönknecht
- Department of Psychiatry and Psychotherapy, Leipzig University Hospital, 04103, Leipzig, Germany
| | - M Stumvoll
- Collaborative Research Centre 1052'Obesity Mechanisms', Subproject A1, Faculty of Medicine, Leipzig University, 04103, Leipzig, Germany
- Department of Endocrinology and Nephrology, Leipzig University Hospital, 04103, Leipzig, Germany
| | - A Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103, Leipzig, Germany
- Collaborative Research Centre 1052'Obesity Mechanisms', Subproject A1, Faculty of Medicine, Leipzig University, 04103, Leipzig, Germany
- Clinic of Cognitive Neurology, Leipzig University Hospital, 04103, Leipzig, Germany
- Leipzig Research Center for Civilization Diseases (LIFE), Leipzig University, 04103, Leipzig, Germany
| | - A V Witte
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103, Leipzig, Germany.
- Collaborative Research Centre 1052'Obesity Mechanisms', Subproject A1, Faculty of Medicine, Leipzig University, 04103, Leipzig, Germany.
| |
Collapse
|
25
|
Lee CH, Kim HJ, Lee YS, Kang GM, Lim HS, Lee SH, Song DK, Kwon O, Hwang I, Son M, Byun K, Sung YH, Kim S, Kim JB, Choi EY, Kim YB, Kim K, Kweon MN, Sohn JW, Kim MS. Hypothalamic Macrophage Inducible Nitric Oxide Synthase Mediates Obesity-Associated Hypothalamic Inflammation. Cell Rep 2019; 25:934-946.e5. [PMID: 30355499 PMCID: PMC6284237 DOI: 10.1016/j.celrep.2018.09.070] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 06/13/2018] [Accepted: 09/21/2018] [Indexed: 02/08/2023] Open
Abstract
Obesity-associated metabolic alterations are closely linked to low-grade
inflammation in peripheral organs, in which macrophages play a central role.
Using genetic labeling of myeloid lineage cells, we show that hypothalamic
macrophages normally reside in the perivascular area and circumventricular organ
median eminence. Chronic consumption of a high-fat diet (HFD) induces expansion
of the monocyte-derived macrophage pool in the hypothalamic arcuate nucleus
(ARC), which is significantly attributed to enhanced proliferation of
macrophages. Notably, inducible nitric oxide synthase (iNOS) is robustly
activated in ARC macrophages of HFD-fed obese mice. Hypothalamic macrophage iNOS
inhibition completely abrogates macrophage accumulation and activation,
proinflammatory cytokine overproduction, reactive astrogliosis,
blood-brain-barrier permeability, and lipid accumulation in the ARC of obese
mice. Moreover, central iNOS inhibition improves obesity-induced alterations in
systemic glucose metabolism without affecting adiposity. Our findings suggest a
critical role for hypothalamic macrophage-expressed iNOS in hypothalamic
inflammation and abnormal glucose metabolism in cases of overnutrition-induced
obesity. Lee et al. demonstrate in mice that, upon prolonged high-fat diet
feeding, hypothalamic macrophages proliferate, expand their pool, and sustain
hypothalamic inflammation. Moreover, they show that hypothalamic macrophage iNOS
inhibition diminishes macrophage activation, astrogliosis, blood-brain-barrier
permeability, and impaired glucose metabolism in diet-induced obese mice.
Collapse
Affiliation(s)
- Chan Hee Lee
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Hyo Jin Kim
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul 05505, Korea; Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Yong-Soo Lee
- Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Gil Myoung Kang
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Hyo Sun Lim
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul 05505, Korea; Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Seung-Hwan Lee
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Do Kyeong Song
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Obin Kwon
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Injae Hwang
- National Creative Research Initiatives Center for Adipose Tissue Remodeling, School of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Korea
| | - Myeongjoo Son
- Department of Anatomy and Cell Biology, Gachon University College of Medicine, Incheon 21565, Korea
| | - Kyunghee Byun
- Department of Anatomy and Cell Biology, Gachon University College of Medicine, Incheon 21565, Korea
| | - Young Hoon Sung
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul 05505, Korea; Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Seyun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Jae Bum Kim
- National Creative Research Initiatives Center for Adipose Tissue Remodeling, School of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Korea
| | - Eun Young Choi
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Young-Bum Kim
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Keetae Kim
- Department of New Biology, DGIST, Daegu 42988, Korea
| | - Mi-Na Kweon
- Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Jong-Woo Sohn
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Min-Seon Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Ulsan College of Medicine, Seoul 05505, Korea.
| |
Collapse
|
26
|
Morita-Takemura S, Wanaka A. Blood-to-brain communication in the hypothalamus for energy intake regulation. Neurochem Int 2019; 128:135-142. [DOI: 10.1016/j.neuint.2019.04.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 04/08/2019] [Accepted: 04/11/2019] [Indexed: 01/03/2023]
|
27
|
Endothelial Adora2a Activation Promotes Blood-Brain Barrier Breakdown and Cognitive Impairment in Mice with Diet-Induced Insulin Resistance. J Neurosci 2019; 39:4179-4192. [PMID: 30886019 DOI: 10.1523/jneurosci.2506-18.2019] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 02/18/2019] [Accepted: 03/06/2019] [Indexed: 02/07/2023] Open
Abstract
Obesity and insulin resistance elicit blood-brain barrier (BBB) breakdown in humans and animal models, but the relative contributions of the two pathologies remain poorly understood. These studies initially addressed the temporal progression of cerebrovascular dysfunction relative to dietary obesity or diet-induced insulin resistance in male mice. Obesity increased BBB permeability to the low molecular weight fluorophore sodium fluorescein (NaFl), whereas diet-induced insulin resistance increased permeability to both NaFl and Evans blue, which forms a high molecular weight complex with serum albumin. Serial section transmission electron microscopy analysis of hippocampal capillaries revealed that diabetes promotes involution of tight junctions, fenestration of endothelial cells, and pericyte regression. Chronic activation of adenosine receptor 2a (Adora2a) erodes tight junctions between endothelial cells of the cerebral vasculature in other models of chronic neuropathology, and we observed that acute Adora2a antagonism normalized BBB permeability in wild-type mice with diet-induced insulin resistance. Experiments in mice with inducible deletion of Adora2a in endothelial cells revealed protection against BBB breakdown with diet-induced insulin resistance, despite comparable metabolic dysfunction relative to nontransgenic littermates. Protection against BBB breakdown was associated with decreased vascular inflammation, recovery of hippocampal synaptic plasticity, and restoration of hippocampus-dependent memory. These findings indicate that Adora2a-mediated signaling in vascular endothelial cells disrupts the BBB in dietary obesity, and implicate cerebrovascular dysfunction as the underlying mechanism for deficits in synaptic plasticity and cognition with obesity and insulin resistance.SIGNIFICANCE STATEMENT The blood-brain barrier (BBB) restricts the entry of circulating factors into the brain, but obesity promotes BBB breakdown in humans and animal models. We used transgenic mice with resistance to BBB breakdown to investigate the role of neurovascular dysfunction in high-fat diet (HFD)-induced cognitive impairment. Transgenic mice with inducible ablation of Adora2a in endothelial cells were protected against BBB breakdown on HFD, despite comparable metabolic impairments relative to normal mice. Transgenic mice were also resistant to HFD-induced cognitive dysfunction and were protected against deficits in hippocampal synaptic plasticity. These findings indicate that Adora2a-mediated signaling in endothelial cells mediates obesity-induced BBB breakdown, and implicate cerebrovascular dysfunction as the mechanism for deficits in synaptic plasticity and cognition with obesity and diabetes.
Collapse
|
28
|
Molecular Mechanisms of Hypothalamic Insulin Resistance. Int J Mol Sci 2019; 20:ijms20061317. [PMID: 30875909 PMCID: PMC6471380 DOI: 10.3390/ijms20061317] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/07/2019] [Accepted: 03/13/2019] [Indexed: 02/06/2023] Open
Abstract
Insulin exists in the central nervous system, where it executes two important functions in the hypothalamus: the suppression of food intake and the improvement of glucose metabolism. Recent studies have shown that both are exerted robustly in rodents and humans. If intact, these functions exert beneficial effects on obesity and diabetes, respectively. Disruption of both occurs due to a condition known as hypothalamic insulin resistance, which is caused by obesity and the overconsumption of saturated fat. An enormous volume of literature addresses the molecular mechanisms of hypothalamic insulin resistance. IKKβ and JNK are major players in the inflammation pathway, which is activated by saturated fatty acids that induce hypothalamic insulin resistance. Two major tyrosine phosphatases, PTP-1B and TCPTP, are upregulated in chronic overeating. They dephosphorylate the insulin receptor and insulin receptor substrate proteins, resulting in hypothalamic insulin resistance. Prolonged hyperinsulinemia with excessive nutrition activates the mTOR/S6 kinase pathway, thereby enhancing IRS-1 serine phosphorylation to induce hypothalamic insulin resistance. Other mechanisms associated with this condition include hypothalamic gliosis and disturbed insulin transport into the central nervous system. Unveiling the precise molecular mechanisms involved in hypothalamic insulin resistance is important for developing new ways of treating obesity and type 2 diabetes.
Collapse
|
29
|
Ramírez D, Saba J, Turati J, Carniglia L, Imsen M, Mohn C, Scimonelli T, Durand D, Caruso C, Lasaga M. NDP-MSH reduces oxidative damage induced by palmitic acid in primary astrocytes. J Neuroendocrinol 2019; 31:e12673. [PMID: 30712280 DOI: 10.1111/jne.12673] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/13/2018] [Accepted: 12/13/2018] [Indexed: 12/22/2022]
Abstract
Recent findings relate obesity to inflammation in key hypothalamic areas for body weight control. Hypothalamic inflammation has also been related to oxidative stress. Palmitic acid (PA) is the most abundant free fatty acid found in food, and in vitro studies indicate that it triggers a pro-inflammatory response in the brain. Melanocortins are neuropeptides with proven anti-inflammatory and neuroprotective action mediated by melanocortin receptor 4 (MC4R), but little is known about the effect of melanocortins on oxidative stress. The aim of this study was to investigate whether melanocortins could alleviate oxidative stress induced by a high fat diet (HFD) model. We found that NDP-MSH treatment decreased PA-induced reactive oxygen species production in astrocytes, an effect blocked by the MC4R inhibitor JKC363. NDP-MSH abolished nuclear translocation of Nrf2 induced by PA and blocked the inhibitory effect of PA on superoxide dismutase (SOD) activity and glutathione levels while it also per se increased activity of SOD and γ-glutamate cysteine ligase (γ-GCL) antioxidant enzymes. However, HFD reduced hypothalamic MC4R and brain derived neurotrophic factor mRNA levels, thereby preventing the neuroprotective mechanism induced by melanocortins.
Collapse
Affiliation(s)
- Delia Ramírez
- INBIOMED - Instituto de Investigaciones Biomédicas, UBA-CONICET, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Julieta Saba
- INBIOMED - Instituto de Investigaciones Biomédicas, UBA-CONICET, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Juan Turati
- INBIOMED - Instituto de Investigaciones Biomédicas, UBA-CONICET, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Lila Carniglia
- INBIOMED - Instituto de Investigaciones Biomédicas, UBA-CONICET, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Mercedes Imsen
- INBIOMED - Instituto de Investigaciones Biomédicas, UBA-CONICET, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Claudia Mohn
- Department of Physiology, School of Dentistry, University of Buenos Aires, Buenos Aires, Argentina
| | - Teresa Scimonelli
- IFEC-CONICET, Pharmacology Department, School of Chemistry, National University of Cordoba, Cordoba, Argentina
| | - Daniela Durand
- INBIOMED - Instituto de Investigaciones Biomédicas, UBA-CONICET, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Carla Caruso
- INBIOMED - Instituto de Investigaciones Biomédicas, UBA-CONICET, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Mercedes Lasaga
- INBIOMED - Instituto de Investigaciones Biomédicas, UBA-CONICET, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
30
|
Role of astrocytes, microglia, and tanycytes in brain control of systemic metabolism. Nat Neurosci 2018; 22:7-14. [PMID: 30531847 DOI: 10.1038/s41593-018-0286-y] [Citation(s) in RCA: 203] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 11/06/2018] [Indexed: 12/28/2022]
Abstract
Astrocytes, microglia, and tanycytes play active roles in the regulation of hypothalamic feeding circuits. These non-neuronal cells are crucial in determining the functional interactions of specific neuronal subpopulations involved in the control of metabolism. Recent advances in biology, optics, genetics, and pharmacology have resulted in the emergence of novel and highly sophisticated approaches for studying hypothalamic neuronal-glial networks. Here we summarize the progress in the field and argue that glial-neuronal interactions provide a core hub integrating food-related cues, interoceptive signals, and internal states to adapt a complex set of physiological responses operating on different timescales to finely tune behavior and metabolism according to metabolic status. This expanding knowledge helps to redefine our understanding of the physiology of food intake and energy metabolism.
Collapse
|
31
|
Fluorescent blood-brain barrier tracing shows intact leptin transport in obese mice. Int J Obes (Lond) 2018; 43:1305-1318. [PMID: 30283080 PMCID: PMC6760579 DOI: 10.1038/s41366-018-0221-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 07/20/2018] [Accepted: 09/02/2018] [Indexed: 12/13/2022]
Abstract
Background/objectives Individuals carrying loss-of-function gene mutations for the adipocyte hormone leptin are morbidly obese, but respond favorably to replacement therapy. Recombinant leptin is however largely ineffective for the vast majority of obese individuals due to leptin resistance. One theory underlying leptin resistance is impaired leptin transport across the blood–brain-barrier (BBB). Here, we aim to gain new insights into the mechanisms of leptin BBB transport, and its role in leptin resistance. Methods We developed a novel tool for visualizing leptin transport using infrared fluorescently labeled leptin, combined with tissue clearing and light-sheet fluorescence microscopy. We corroborated these data using western blotting. Results Using 3D whole brain imaging, we display comparable leptin accumulation in circumventricular organs of lean and obese mice, predominantly in the choroid plexus (CP). Protein quantification revealed comparable leptin levels in microdissected mediobasal hypothalami (MBH) of lean and obese mice (p = 0.99). We further found increased leptin receptor expression in the CP (p = 0.025, p = 0.0002) and a trend toward elevated leptin protein levels in the MBH (p = 0.17, p = 0.078) of obese mice undergoing weight loss interventions by calorie restriction or exendin-4 treatment. Conclusions Overall, our findings suggest a crucial role for the CP in controlling the transport of leptin into the cerebrospinal fluid and from there to target areas such as the MBH, potentially mediated via the leptin receptor. Similar leptin levels in circumventricular organs and the MBH of lean and obese mice further suggest intact leptin BBB transport in leptin resistant mice.
Collapse
|
32
|
Hypothalamic inflammation and malfunctioning glia in the pathophysiology of obesity and diabetes: Translational significance. Biochem Pharmacol 2018; 153:123-133. [PMID: 29337002 DOI: 10.1016/j.bcp.2018.01.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/09/2018] [Indexed: 12/25/2022]
|
33
|
van den Top M, Zhao FY, Viriyapong R, Michael NJ, Munder AC, Pryor JT, Renaud LP, Spanswick D. The impact of ageing, fasting and high-fat diet on central and peripheral glucose tolerance and glucose-sensing neural networks in the arcuate nucleus. J Neuroendocrinol 2017; 29. [PMID: 28834571 DOI: 10.1111/jne.12528] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 08/01/2017] [Accepted: 08/17/2017] [Indexed: 12/14/2022]
Abstract
Obesity and ageing are risk factors for diabetes. In the present study, we investigated the effects of ageing, obesity and fasting on central and peripheral glucose tolerance and on glucose-sensing neuronal function in the arcuate nucleus of rats, with a view to providing insight into the central mechanisms regulating glucose homeostasis and how they change or are subject to dysfunction with ageing and obesity. We show that, following a glucose load, central glucose tolerance at the level of the cerebrospinal fluid (CSF) and plasma is significantly reduced in rats maintained on a high-fat diet (HFD). With ageing, up to 2 years, central glucose tolerance was impaired in an age-dependent manner, whereas peripheral glucose tolerance remained unaffected. Ageing-induced peripheral glucose intolerance was improved by a 24-hour fast, whereas central glucose tolerance was not corrected. Pre-wean, immature animals have elevated basal plasma glucose levels and a delayed increase in central glucose levels following peripheral glucose injection compared to mature animals. Electrophysiological recording techniques revealed an energy-status-dependent role for glucose-excited, inhibited and adapting neurones, along with glucose-induced changes in synaptic transmission. We conclude that ageing affects central glucose tolerance, whereas HFD profoundly affects central and peripheral glucose tolerance and, in addition, glucose-sensing neurones adapt function in an energy-status-dependent manner.
Collapse
Affiliation(s)
| | - F-Y Zhao
- NeuroSolutions Ltd, Coventry, UK
| | - R Viriyapong
- Warwick Medical School, University of Warwick, Coventry, UK
- MOAC DTC, University of Warwick, Coventry, UK
| | - N J Michael
- Metabolic Disease and Obesity Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
- Department of Physiology, Monash University, Clayton, VIC, Australia
| | - A C Munder
- Metabolic Disease and Obesity Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
- Department of Physiology, Monash University, Clayton, VIC, Australia
| | - J T Pryor
- Warwick Medical School, University of Warwick, Coventry, UK
- Metabolic Disease and Obesity Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
- Department of Physiology, Monash University, Clayton, VIC, Australia
| | - L P Renaud
- Ottawa Hospital Research Institute, Ottawa Civic Hospital, Ottawa, ON, Canada
| | - D Spanswick
- NeuroSolutions Ltd, Coventry, UK
- Warwick Medical School, University of Warwick, Coventry, UK
- Metabolic Disease and Obesity Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
- Department of Physiology, Monash University, Clayton, VIC, Australia
- Neuroscience Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
34
|
Gao Y, Bielohuby M, Fleming T, Grabner GF, Foppen E, Bernhard W, Guzmán-Ruiz M, Layritz C, Legutko B, Zinser E, García-Cáceres C, Buijs RM, Woods SC, Kalsbeek A, Seeley RJ, Nawroth PP, Bidlingmaier M, Tschöp MH, Yi CX. Dietary sugars, not lipids, drive hypothalamic inflammation. Mol Metab 2017; 6:897-908. [PMID: 28752053 PMCID: PMC5518723 DOI: 10.1016/j.molmet.2017.06.008] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 06/08/2017] [Accepted: 06/14/2017] [Indexed: 01/04/2023] Open
Abstract
Objective The hypothalamus of hypercaloric diet-induced obese animals is featured by a significant increase of microglial reactivity and its associated cytokine production. However, the role of dietary components, in particular fat and carbohydrate, with respect to the hypothalamic inflammatory response and the consequent impact on hypothalamic control of energy homeostasis is yet not clear. Methods We dissected the different effects of high-carbohydrate high-fat (HCHF) diets and low-carbohydrate high-fat (LCHF) diets on hypothalamic inflammatory responses in neurons and non-neuronal cells and tested the hypothesis that HCHF diets induce hypothalamic inflammation via advanced glycation end-products (AGEs) using mice lacking advanced glycation end-products (AGEs) receptor (RAGE) and/or the activated leukocyte cell-adhesion molecule (ALCAM). Results We found that consumption of HCHF diets, but not of LCHF diets, increases microgliosis as well as the presence of N(ε)-(Carboxymethyl)-Lysine (CML), a major AGE, in POMC and NPY neurons of the arcuate nucleus. Neuron-secreted CML binds to both RAGE and ALCAM, which are expressed on endothelial cells, microglia, and pericytes. On a HCHF diet, mice lacking the RAGE and ALCAM genes displayed less microglial reactivity and less neovasculature formation in the hypothalamic ARC, and this was associated with significant improvements of metabolic disorders induced by the HCHF diet. Conclusions Combined overconsumption of fat and sugar, but not the overconsumption of fat per se, leads to excessive CML production in hypothalamic neurons, which, in turn, stimulates hypothalamic inflammatory responses such as microgliosis and eventually leads to neuronal dysfunction in the control of energy metabolism. HCHF, but not LCHF diets, induce obesity and increase the hypothalamic inflammatory response. A HCHF diet increases N-epsilon-(carboxymethyl)lysine content in hypothalamic neurons in the ARC. Obesity and metabolic symptoms induced by a HCHF diet are improved in mice lacking functional RAGE and ALCAM genes. Lacking RAGE and ALCAM prevents the hypothalamic inflammatory response and angiogenesis that occur on a HCHF diet.
Collapse
Affiliation(s)
- Yuanqing Gao
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center (HDC), Helmholtz Zentrum München and German Center for Diabetes Research (DZD), München-Neuherberg, Germany; Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Maximilian Bielohuby
- Endocrine Research Unit, Klinikum der Ludwig-Maximilians-Universität, Munich, Germany
| | - Thomas Fleming
- Department of Medicine and Clinical Chemistry, University Hospital of Heidelberg, Germany
| | | | - Ewout Foppen
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, The Netherlands
| | | | | | - Clarita Layritz
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center (HDC), Helmholtz Zentrum München and German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Beata Legutko
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center (HDC), Helmholtz Zentrum München and German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Erwin Zinser
- FH JOANNEUM University for Applied Sciences, Graz, Austria
| | - Cristina García-Cáceres
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center (HDC), Helmholtz Zentrum München and German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | | | - Stephen C Woods
- Institute for Metabolic Diseases, University of Cincinnati, USA
| | - Andries Kalsbeek
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, The Netherlands; Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | | | - Peter P Nawroth
- Department of Medicine and Clinical Chemistry, University Hospital of Heidelberg, Germany
| | - Martin Bidlingmaier
- Endocrine Research Unit, Klinikum der Ludwig-Maximilians-Universität, Munich, Germany.
| | - Matthias H Tschöp
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center (HDC), Helmholtz Zentrum München and German Center for Diabetes Research (DZD), München-Neuherberg, Germany; Division of Metabolic Diseases, Technische Universität München, Munich, Germany.
| | - Chun-Xia Yi
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, The Netherlands.
| |
Collapse
|
35
|
Douglass JD, Dorfman MD, Thaler JP. Glia: silent partners in energy homeostasis and obesity pathogenesis. Diabetologia 2017; 60:226-236. [PMID: 27986987 PMCID: PMC5253392 DOI: 10.1007/s00125-016-4181-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/11/2016] [Indexed: 10/20/2022]
Abstract
Body weight stability requires homeostatic regulation to balance energy intake and energy expenditure. Research on this system and how it is affected by obesity has largely focused on the role of hypothalamic neurons as integrators of information about long-term fuel storage, short-term nutrient availability and metabolic demand. Recent studies have uncovered glial cells as additional contributors to energy balance regulation and obesity pathogenesis. Beginning with early work on leptin signalling in astrocytes, this area of research rapidly emerged after the discovery of hypothalamic inflammation and gliosis in obese rodents and humans. Current studies have revealed the involvement of a wide variety of glial cell types in the modulation of neuronal activity, regulation of hormone and nutrient availability, and participation in the physiological regulation of feeding behaviour. In addition, one glial type, microglia, has recently been implicated in susceptibility to diet-induced obesity. Together, these exciting new findings deepen our understanding of energy homeostasis regulation and raise the possibility of identifying novel mechanisms that contribute to the pathogenesis of obesity.
Collapse
Affiliation(s)
- John D Douglass
- UW Diabetes Institute and Department of Medicine, University of Washington, 850 Republican St, S248, Box 358055, Seattle, WA, 98109, USA
| | - Mauricio D Dorfman
- UW Diabetes Institute and Department of Medicine, University of Washington, 850 Republican St, S248, Box 358055, Seattle, WA, 98109, USA
| | - Joshua P Thaler
- UW Diabetes Institute and Department of Medicine, University of Washington, 850 Republican St, S248, Box 358055, Seattle, WA, 98109, USA.
| |
Collapse
|
36
|
Jais A, Brüning JC. Hypothalamic inflammation in obesity and metabolic disease. J Clin Invest 2017; 127:24-32. [PMID: 28045396 DOI: 10.1172/jci88878] [Citation(s) in RCA: 326] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Over the last years, hypothalamic inflammation has been linked to the development and progression of obesity and its sequelae. There is accumulating evidence that this inflammation not only impairs energy balance but also contributes to obesity-associated insulin resistance. Elevated activation of key inflammatory mediators such as JNK and IκB kinase (IKK) occurs rapidly upon consumption of a high-fat diet, even prior to significant weight gain. This activation of hypothalamic inflammatory pathways results in the uncoupling of caloric intake and energy expenditure, fostering overeating and further weight gain. In addition, these inflammatory processes contribute to obesity-associated insulin resistance and deterioration of glucose metabolism via altered neurocircuit functions. An understanding of the contributions of different neuronal and non-neuronal cell types to hypothalamic inflammatory processes, and delineation of the differences and similarities between acute and chronic activation of these inflammatory pathways, will be critical for the development of novel therapeutic strategies for the treatment of obesity and metabolic syndrome.
Collapse
|
37
|
Löffler T, Flunkert S, Temmel M, Hutter-Paier B. Decreased Plasma Aβ in Hyperlipidemic APPSL Transgenic Mice Is Associated with BBB Dysfunction. Front Neurosci 2016; 10:232. [PMID: 27313503 PMCID: PMC4887499 DOI: 10.3389/fnins.2016.00232] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 05/10/2016] [Indexed: 11/13/2022] Open
Abstract
Besides the continued focus on Aβ and Tau in Alzheimer's disease (AD), it is increasingly evident that other pathologic characteristics, such as vascular alterations or inflammation, are associated with AD. Whether these changes are an initial cause for the onset of AD or occur as a result of the disease in late stages is still under debate. In the present study, the impact of the high-fat diet (HFD) induced vascular risk factor hyperlipidemia on Aβ levels and clearance as well as cerebral vasculature and blood-brain barrier (BBB) integrity was examined in mice. For this purpose, human APP transgenic (APPSL) and wildtype (WT) mice were fed a HFD for 12 weeks. Plasma and tissues were subsequently investigated for Aβ distribution and concentrations of several vascular markers. Decreased plasma Aβ together with increased levels of insoluble Aβ and amyloid plaques in the brains of HFD fed APPSL mice point toward impaired Aβ clearance due to HFD. Additionally, HFD induced manifold alterations in the cerebral vasculature and BBB integrity exclusively in human APP overexpressing mice but not in wildtype mice. Therefore, HFD appears to enhance Aβ dependent vascular/BBB dysfunction in combination with an increased proportion of cerebral to plasma Aβ in APPSL mice.
Collapse
Affiliation(s)
- Tina Löffler
- Neuropharmacology, QPS Austria Grambach, Austria
| | | | | | | |
Collapse
|
38
|
Jais A, Solas M, Backes H, Chaurasia B, Kleinridders A, Theurich S, Mauer J, Steculorum SM, Hampel B, Goldau J, Alber J, Förster CY, Eming SA, Schwaninger M, Ferrara N, Karsenty G, Brüning JC. Myeloid-Cell-Derived VEGF Maintains Brain Glucose Uptake and Limits Cognitive Impairment in Obesity. Cell 2016; 165:882-95. [PMID: 27133169 DOI: 10.1016/j.cell.2016.03.033] [Citation(s) in RCA: 174] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 01/25/2016] [Accepted: 03/16/2016] [Indexed: 01/01/2023]
Abstract
High-fat diet (HFD) feeding induces rapid reprogramming of systemic metabolism. Here, we demonstrate that HFD feeding of mice downregulates glucose transporter (GLUT)-1 expression in blood-brain barrier (BBB) vascular endothelial cells (BECs) and reduces brain glucose uptake. Upon prolonged HFD feeding, GLUT1 expression is restored, which is paralleled by increased expression of vascular endothelial growth factor (VEGF) in macrophages at the BBB. In turn, inducible reduction of GLUT1 expression specifically in BECs reduces brain glucose uptake and increases VEGF serum concentrations in lean mice. Conversely, myeloid-cell-specific deletion of VEGF in VEGF(Δmyel) mice impairs BBB-GLUT1 expression, brain glucose uptake, and memory formation in obese, but not in lean mice. Moreover, obese VEGF(Δmyel) mice exhibit exaggerated progression of cognitive decline and neuroinflammation on an Alzheimer's disease background. These experiments reveal that transient, HFD-elicited reduction of brain glucose uptake initiates a compensatory increase of VEGF production and assign obesity-associated macrophage activation a homeostatic role to restore cerebral glucose metabolism, preserve cognitive function, and limit neurodegeneration in obesity.
Collapse
Affiliation(s)
- Alexander Jais
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph Stelzmann Strasse 26, 50931 Cologne, Germany
| | - Maite Solas
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph Stelzmann Strasse 26, 50931 Cologne, Germany
| | - Heiko Backes
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany
| | - Bhagirath Chaurasia
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany
| | - André Kleinridders
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany; German Institute of Human Nutrition Potsdam-Rehbruecke, Central Regulation of Metabolism, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; National Center for Diabetes Research (DZD), Ingolstädter Land Strasse 1, 85764 Neuherberg, Germany
| | - Sebastian Theurich
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph Stelzmann Strasse 26, 50931 Cologne, Germany
| | - Jan Mauer
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph Stelzmann Strasse 26, 50931 Cologne, Germany
| | - Sophie M Steculorum
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph Stelzmann Strasse 26, 50931 Cologne, Germany
| | - Brigitte Hampel
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph Stelzmann Strasse 26, 50931 Cologne, Germany
| | - Julia Goldau
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph Stelzmann Strasse 26, 50931 Cologne, Germany
| | - Jens Alber
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph Stelzmann Strasse 26, 50931 Cologne, Germany
| | - Carola Y Förster
- Department of Anaesthesia and Critical Care, University of Würzburg, Oberdürrbacher Strasse 6, 97080 Würzburg, Germany
| | - Sabine A Eming
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph Stelzmann Strasse 26, 50931 Cologne, Germany; Department of Dermatology, University of Cologne, 50937 Cologne, Germany
| | - Markus Schwaninger
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Napoleone Ferrara
- Moores Cancer Center, University of California, 3855 Health Sciences Drive, La Jolla, CA 92093, USA
| | - Gerard Karsenty
- Department of Genetics and Development, Columbia University, 701 West 168th Street, New York, NY 10032, USA
| | - Jens C Brüning
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph Stelzmann Strasse 26, 50931 Cologne, Germany; National Center for Diabetes Research (DZD), Ingolstädter Land Strasse 1, 85764 Neuherberg, Germany.
| |
Collapse
|
39
|
Kälin S, Heppner FL, Bechmann I, Prinz M, Tschöp MH, Yi CX. Hypothalamic innate immune reaction in obesity. Nat Rev Endocrinol 2015; 11:339-51. [PMID: 25824676 DOI: 10.1038/nrendo.2015.48] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Findings from rodent and human studies show that the presence of inflammatory factors is positively correlated with obesity and the metabolic syndrome. Obesity-associated inflammatory responses take place not only in the periphery but also in the brain. The hypothalamus contains a range of resident glial cells including microglia, macrophages and astrocytes, which are embedded in highly heterogenic groups of neurons that control metabolic homeostasis. This complex neural-glia network can receive information directly from blood-borne factors, positioning it as a metabolic sensor. Following hypercaloric challenge, mediobasal hypothalamic microglia and astrocytes enter a reactive state, which persists during diet-induced obesity. In established mouse models of diet-induced obesity, the hypothalamic vasculature displays angiogenic alterations. Moreover, proopiomelanocortin neurons, which regulate food intake and energy expenditure, are impaired in the arcuate nucleus, where there is an increase in local inflammatory signals. The sum total of these events is a hypothalamic innate immune reactivity, which includes temporal and spatial changes to each cell population. Although the exact role of each participant of the neural-glial-vascular network is still under exploration, therapeutic targets for treating obesity should probably be linked to individual cell types and their specific signalling pathways to address each dysfunction with cell-selective compounds.
Collapse
Affiliation(s)
- Stefanie Kälin
- Institute for Diabetes and Obesity, Helmholtz Centre for Health and Environment &Technische Universität München, 85748, Munich, Germany
| | - Frank L Heppner
- Department of Neuropathology, Charité, Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Ingo Bechmann
- Institute of Anatomy, University of Leipzig, Liebigstr. 13, 04103 Leipzig, Germany
| | - Marco Prinz
- Institute of Neuropathology, University of Freiburg, Breisacher Str. 64, D-79106 Freiburg, Germany
| | - Matthias H Tschöp
- Institute for Diabetes and Obesity, Helmholtz Centre for Health and Environment &Technische Universität München, 85748, Munich, Germany
| | - Chun-Xia Yi
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, Netherlands
| |
Collapse
|
40
|
Reis WL, Yi CX, Gao Y, Tschöp MH, Stern JE. Brain innate immunity regulates hypothalamic arcuate neuronal activity and feeding behavior. Endocrinology 2015; 156:1303-15. [PMID: 25646713 PMCID: PMC4399317 DOI: 10.1210/en.2014-1849] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hypothalamic inflammation, involving microglia activation in the arcuate nucleus (ARC), is proposed as a novel underlying mechanism in obesity, insulin and leptin resistance. However, whether activated microglia affects ARC neuronal activity, and consequently basal and hormonal-induced food intake, is unknown. We show that lipopolysaccharide, an agonist of the toll-like receptor-4 (TLR4), which we found to be expressed in ARC microglia, inhibited the firing activity of the majority of orexigenic agouti gene-related protein/neuropeptide Y neurons, whereas it increased the activity of the majority of anorexigenic proopiomelanocortin neurons. Lipopolysaccharide effects in agouti gene-related protein/neuropeptide Y (but not in proopiomelanocortin) neurons were occluded by inhibiting microglia function or by blocking TLR4 receptors. Finally, we report that inhibition of hypothalamic microglia altered basal food intake, also preventing central orexigenic responses to ghrelin. Our studies support a major role for a TLR4-mediated microglia signaling pathway in the control of ARC neuronal activity and feeding behavior.
Collapse
Affiliation(s)
- Wagner L Reis
- Department of Physiology (W.L.R., J.E.S.), Medical College of Georgia, Georgia Regents University, Augusta, Georgia 30912; and Helmholtz Diabetes Center (C.-X.Y., Y.G., M.H.T.), Helmholtz Zentrum München and Technische Universität München, Munich 85764, Germany
| | | | | | | | | |
Collapse
|
41
|
Sasaki T. Age-Associated Weight Gain, Leptin, and SIRT1: A Possible Role for Hypothalamic SIRT1 in the Prevention of Weight Gain and Aging through Modulation of Leptin Sensitivity. Front Endocrinol (Lausanne) 2015; 6:109. [PMID: 26236282 PMCID: PMC4504171 DOI: 10.3389/fendo.2015.00109] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 07/01/2015] [Indexed: 12/14/2022] Open
Abstract
The hypothalamus is the principal regulator of body weight and energy balance. It modulates both energy intake and energy expenditure by sensing the energy status of the body through neural inputs from the periphery as well as direct humoral inputs. Leptin, an adipokine, is one of the humoral factors responsible for alerting the hypothalamus that enough energy is stored in the periphery. Plasma leptin levels are positively linked to adiposity; leptin suppress energy intake and stimulates energy expenditure. However, prolonged increases in plasma leptin levels due to obesity cause leptin resistance, affecting both leptin access to hypothalamic neurons and leptin signal transduction within hypothalamic neurons. Decreased sensing of peripheral energy status through leptin may lead to a positive energy balance and gradual gains in weight and adiposity, further worsening leptin resistance. Leptin resistance, increased adiposity, and weight gain are all associated with aging in both humans and animals. Central insulin resistance is associated with similar observations. Therefore, improving the action of humoral factors in the hypothalamus may prevent gradual weight gain, especially during middle age. SIRT1 is a NAD(+)-dependent protein deacetylase with numerous substrates, including histones, transcription factors, co-factors, and various enzymes. SIRT1 improves both leptin sensitivity and insulin sensitivity by decreasing the levels of several molecules that impair leptin and insulin signal transduction. SIRT1 and NAD(+) levels decrease with age in the hypothalamus; increased hypothalamic SIRT1 levels prevent age-associated weight gain and improve leptin sensitivity in mice. Therefore, preventing the age-dependent loss of SIRT1 function in the hypothalamus could improve the action of humoral factors in the hypothalamus as well as central regulation of energy balance.
Collapse
Affiliation(s)
- Tsutomu Sasaki
- Laboratory for Metabolic Signaling, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
- *Correspondence: Tsutomu Sasaki, Laboratory for Metabolic Signaling, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma 371-8512, Japan,
| |
Collapse
|
42
|
Argente-Arizón P, Freire-Regatillo A, Argente J, Chowen JA. Role of non-neuronal cells in body weight and appetite control. Front Endocrinol (Lausanne) 2015; 6:42. [PMID: 25859240 PMCID: PMC4374626 DOI: 10.3389/fendo.2015.00042] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 03/11/2015] [Indexed: 12/14/2022] Open
Abstract
The brain is composed of neurons and non-neuronal cells, with the latter encompassing glial, ependymal and endothelial cells, as well as pericytes and progenitor cells. Studies aimed at understanding how the brain operates have traditionally focused on neurons, but the importance of non-neuronal cells has become increasingly evident. Once relegated to supporting roles, it is now indubitable that these diverse cell types are fundamental for brain development and function, including that of metabolic circuits, and they may play a significant role in obesity onset and complications. They participate in processes of neurogenesis, synaptogenesis, and synaptic plasticity of metabolic circuits both during development and in adulthood. Some glial cells, such as tanycytes and astrocytes, transport circulating nutrients and metabolic factors that are fundamental for neuronal viability and activity into and within the hypothalamus. All of these cell types express receptors for a variety of metabolic factors and hormones, suggesting that they participate in metabolic function. They are the first line of defense against any assault to neurons. Indeed, microglia and astrocytes participate in the hypothalamic inflammatory response to high fat diet (HFD)-induced obesity, with this process contributing to inflammatory-related insulin and leptin resistance. Moreover, HFD-induced obesity and hyperleptinemia modify hypothalamic astroglial morphology, which is associated with changes in the synaptic inputs to neuronal metabolic circuits. Astrocytic contact with the microvasculature is increased by HFD intake and this could modify nutrient/hormonal uptake into the brain. In addition, progenitor cells in the hypothalamus are now known to have the capacity to renew metabolic circuits, and this can be affected by HFD intake and obesity. Here, we discuss our current understanding of how non-neuronal cells participate in physiological and physiopathological metabolic control.
Collapse
Affiliation(s)
- Pilar Argente-Arizón
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
- Fisiopatología de la Obesidad y Nutrición (CIBERobn), Centros de Investigación Biomédica en Red, Instituto de Salud Carlos III, Madrid, Spain
| | - Alejandra Freire-Regatillo
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
- Fisiopatología de la Obesidad y Nutrición (CIBERobn), Centros de Investigación Biomédica en Red, Instituto de Salud Carlos III, Madrid, Spain
| | - Jesús Argente
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
- Fisiopatología de la Obesidad y Nutrición (CIBERobn), Centros de Investigación Biomédica en Red, Instituto de Salud Carlos III, Madrid, Spain
| | - Julie A. Chowen
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Fisiopatología de la Obesidad y Nutrición (CIBERobn), Centros de Investigación Biomédica en Red, Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: Julie A. Chowen, Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Avda. Menéndez Pelayo, 65, Madrid E-28009, Spain e-mail: ;
| |
Collapse
|
43
|
Jastroch M, Morin S, Tschöp MH, Yi CX. The hypothalamic neural-glial network and the metabolic syndrome. Best Pract Res Clin Endocrinol Metab 2014; 28:661-71. [PMID: 25256762 DOI: 10.1016/j.beem.2014.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Despite numerous educational interventions and biomedical research efforts, modern society continues to suffer from obesity and its associated metabolic diseases, such as type 2 diabetes mellitus, and these diseases show little sign of abating. One reason for this is an incomplete understanding of the pathology of the metabolic syndrome, which obstructs the development of effective therapeutic strategies. While hypothalamic neuropathy is a potential candidate that may contribute to the pathogenesis of the metabolic syndrome, the specific causes of hypothalamic neuropathy remain largely unknown. During different stages of high-calorie diet-induced metabolic syndrome, the hypothalamus undergoes gliosis and angiogenesis, both of which potentially reflect ongoing inflammatory processes. This overview discusses current data suggesting a role for hypothalamic inflammation-like processes in diet-induced metabolic diseases and provides a perspective on how to unravel molecular mechanisms of "hypothalamic inflammation" in order to develop anti-obesity therapeutic strategies.
Collapse
Affiliation(s)
- Martin Jastroch
- Institute for Diabetes and Obesity, Helmholtz Centre for Health and Environment & Technische Universität München, Munich 85748, Germany
| | - Silke Morin
- Institute for Diabetes and Obesity, Helmholtz Centre for Health and Environment & Technische Universität München, Munich 85748, Germany
| | - Matthias H Tschöp
- Institute for Diabetes and Obesity, Helmholtz Centre for Health and Environment & Technische Universität München, Munich 85748, Germany
| | - Chun-Xia Yi
- Institute for Diabetes and Obesity, Helmholtz Centre for Health and Environment & Technische Universität München, Munich 85748, Germany.
| |
Collapse
|
44
|
Berkseth KE, Guyenet SJ, Melhorn SJ, Lee D, Thaler JP, Schur EA, Schwartz MW. Hypothalamic gliosis associated with high-fat diet feeding is reversible in mice: a combined immunohistochemical and magnetic resonance imaging study. Endocrinology 2014; 155:2858-67. [PMID: 24914942 PMCID: PMC4098007 DOI: 10.1210/en.2014-1121] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Gliosis, the activation of astrocyte and microglial cell populations, is a hallmark of central nervous system injury and is detectable using either immunohistochemistry or in vivo magnetic resonance imaging (MRI). Obesity in rodents and humans is associated with gliosis of the arcuate nucleus, a key hypothalamic region for the regulation of energy homeostasis and adiposity, but whether this response is permanent or reversible is unknown. Here we combine terminal immunohistochemistry analysis with serial, noninvasive MRI to characterize the progression and reversibility of hypothalamic gliosis in high-fat diet (HFD)-fed mice. The effects of HFD feeding for 16 weeks to increase body weight and adiposity relative to chow were nearly normalized after the return to chow feeding for an additional 4 weeks in the diet-reversal group. Mice maintained on the HFD for the full 20-week study period experienced continued weight gain associated with the expected increases of astrocyte and microglial activation in the arcuate nucleus, but these changes were not observed in the diet-reversal group. The proopiomelanocortin neuron number did not differ between groups. Although MRI demonstrated a positive correlation between body weight, adiposity, and the gliosis-associated T2 signal in the mediobasal hypothalamus, it did not detect the reversal of gliosis among the HFD-fed mice after the return to chow diet. We conclude that hypothalamic gliosis associated with 16-week HFD feeding is largely reversible in rodents, consistent with the reversal of the HFD-induced obesity phenotype, and extend published evidence regarding the utility of MRI as a tool for studying obesity-associated hypothalamic gliosis in vivo.
Collapse
Affiliation(s)
- Kathryn E Berkseth
- Diabetes and Obesity Center of Excellence (K.E.B., S.J.G., J.P.T., M.W.S.) and Departments of Medicine (E.A.S., S.J.M.) and Radiology (D.L.), University of Washington, Seattle, Washington 98109
| | | | | | | | | | | | | |
Collapse
|
45
|
Koch M, Horvath TL. Molecular and cellular regulation of hypothalamic melanocortin neurons controlling food intake and energy metabolism. Mol Psychiatry 2014; 19:752-61. [PMID: 24732669 DOI: 10.1038/mp.2014.30] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 02/17/2014] [Accepted: 02/24/2014] [Indexed: 12/25/2022]
Abstract
The brain receives and integrates environmental and metabolic information, transforms these signals into adequate neuronal circuit activities, and generates physiological behaviors to promote energy homeostasis. The responsible neuronal circuitries show lifetime plasticity and guaranty metabolic health and survival. However, this highly evolved organization has become challenged nowadays by chronic overload with nutrients and reduced physical activity, which results in an ever-increasing number of obese individuals worldwide. Research within the last two decades has aimed to decipher the responsible molecular and cellular mechanisms for regulation of the hypothalamic melanocortin neurons, which have a key role in the control of food intake and energy metabolism. This review maps the central connections of the melanocortin system and highlights its global position and divergent character in physiological and pathological metabolic events. Moreover, recently uncovered molecular and cellular processes in hypothalamic neurons and glial cells that drive plastic morphological and physiological changes in these cells, and account for regulation of food intake and energy metabolism, are brought into focus. Finally, potential functional interactions between metabolic disorders and psychiatric diseases are discussed.
Collapse
Affiliation(s)
- M Koch
- 1] Program in Integrative Cell Signaling and Neurobiology of Metabolism, Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA [2] Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - T L Horvath
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
46
|
Goldani AAS, Downs SR, Widjaja F, Lawton B, Hendren RL. Biomarkers in autism. Front Psychiatry 2014; 5:100. [PMID: 25161627 PMCID: PMC4129499 DOI: 10.3389/fpsyt.2014.00100] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 07/22/2014] [Indexed: 12/20/2022] Open
Abstract
Autism spectrum disorders (ASDs) are complex, heterogeneous disorders caused by an interaction between genetic vulnerability and environmental factors. In an effort to better target the underlying roots of ASD for diagnosis and treatment, efforts to identify reliable biomarkers in genetics, neuroimaging, gene expression, and measures of the body's metabolism are growing. For this article, we review the published studies of potential biomarkers in autism and conclude that while there is increasing promise of finding biomarkers that can help us target treatment, there are none with enough evidence to support routine clinical use unless medical illness is suspected. Promising biomarkers include those for mitochondrial function, oxidative stress, and immune function. Genetic clusters are also suggesting the potential for useful biomarkers.
Collapse
Affiliation(s)
| | - Susan R Downs
- Department of Psychiatry, University of California San Francisco , San Francisco, CA , USA
| | - Felicia Widjaja
- Department of Psychiatry, University of California San Francisco , San Francisco, CA , USA
| | - Brittany Lawton
- Department of Psychiatry, University of California San Francisco , San Francisco, CA , USA
| | - Robert L Hendren
- Department of Psychiatry, University of California San Francisco , San Francisco, CA , USA
| |
Collapse
|
47
|
Buckman LB, Hasty AH, Flaherty DK, Buckman CT, Thompson MM, Matlock BK, Weller K, Ellacott KL. Obesity induced by a high-fat diet is associated with increased immune cell entry into the central nervous system. Brain Behav Immun 2014; 35:33-42. [PMID: 23831150 PMCID: PMC3858467 DOI: 10.1016/j.bbi.2013.06.007] [Citation(s) in RCA: 163] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 06/18/2013] [Accepted: 06/26/2013] [Indexed: 12/16/2022] Open
Abstract
Obesity is associated with chronic low-grade inflammation in peripheral tissues caused, in part, by the recruitment of inflammatory monocytes into adipose tissue. Studies in rodent models have also shown increased inflammation in the central nervous system (CNS) during obesity. The goal of this study was to determine whether obesity is associated with recruitment of peripheral immune cells into the CNS. To do this we used a bone marrow chimerism model to track the entry of green-fluorescent protein (GFP) labeled peripheral immune cells into the CNS. Flow cytometry was used to quantify the number of GFP(+) immune cells recruited into the CNS of mice fed a high-fat diet compared to standard chow fed controls. High-fat feeding resulted in obesity associated with a 30% increase in the number of GFP(+) cells in the CNS compared to control mice. Greater than 80% of the GFP(+) cells recruited to the CNS were also CD45(+) CD11b(+) indicating that the GFP(+) cells displayed characteristics of microglia/macrophages. Immunohistochemistry further confirmed the increase in GFP(+) cells in the CNS of the high-fat fed group and also indicated that 93% of the recruited cells were found in the parenchyma and had a stellate morphology. These findings indicate that peripheral immune cells can be recruited to the CNS in obesity and may contribute to the inflammatory response.
Collapse
Affiliation(s)
- Laura B. Buckman
- Department of Molecular Physiology & Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Alyssa H. Hasty
- Department of Molecular Physiology & Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - David K. Flaherty
- Vanderbilt Flow Cytometry Shared Resource, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Christopher T. Buckman
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Misty M. Thompson
- Department of Molecular Physiology & Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Brittany K. Matlock
- Vanderbilt Flow Cytometry Shared Resource, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Kevin Weller
- Vanderbilt Flow Cytometry Shared Resource, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Kate L.J. Ellacott
- Department of Molecular Physiology & Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| |
Collapse
|
48
|
Gao Y, Ottaway N, Schriever SC, Legutko B, García-Cáceres C, de la Fuente E, Mergen C, Bour S, Thaler JP, Seeley RJ, Filosa J, Stern JE, Perez-Tilve D, Schwartz MW, Tschöp MH, Yi CX. Hormones and diet, but not body weight, control hypothalamic microglial activity. Glia 2013; 62:17-25. [PMID: 24166765 DOI: 10.1002/glia.22580] [Citation(s) in RCA: 199] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 09/02/2013] [Accepted: 09/05/2013] [Indexed: 12/24/2022]
Abstract
The arcuate nucleus (ARC) of the hypothalamus plays a key role in sensing metabolic feedback and regulating energy homeostasis. Recent studies revealed activation of microglia in mice with high-fat diet (HFD)-induced obesity (DIO), suggesting a potential pathophysiological role for inflammatory processes within the hypothalamus. To further investigate the metabolic causes and molecular underpinnings of such glial activation, we analyzed the microglial activity in wild-type (WT), monogenic obese ob/ob (leptin deficient), db/db (leptin-receptor mutation), and Type-4 melanocortin receptor knockout (MC4R KO) mice on either a HFD or on standardized chow (SC) diet. Following HFD exposure, we observed a significant increase in the total number of ARC microglia, immunoreactivity of ionized calcium binding adaptor molecule 1 (iba1-ir), cluster of differentiation 68 (CD68-ir), and ramification of microglial processes. The ob/ob mice had significantly less iba1-ir and ramifications. Leptin replacement rescued these phenomena. The db/db mice had similar iba1-ir comparable with WT mice but had significantly lower CD68-ir and more ramifications than WT mice. After 2 weeks of HFD, ob/ob mice showed an increase of iba1-ir, and db/db mice showed increase of CD68-ir. Obese MC4R KO mice fed a SC diet had comparable iba1-ir and CD68-ir with WT mice but had significantly more ramifications than WT mice. Intriguingly, treatment of DIO mice with glucagon-like peptide-1 receptor agonists reduced microglial activation independent of body weight. Our results show that diet type, adipokines, and gut signals, but not body weight, affect the presence and activity levels of hypothalamic microglia in obesity.
Collapse
Affiliation(s)
- Yuanqing Gao
- Institute for Diabetes and Obesity, Helmholtz Centre for Health and Environment and Technische Universität München, Munich, Germany; Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Metabolic Diseases Institute, University of Cincinnati, Cincinnati, Ohio
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Lee D, Thaler JP, Berkseth KE, Melhorn SJ, Schwartz MW, Schur EA. Longer T(2) relaxation time is a marker of hypothalamic gliosis in mice with diet-induced obesity. Am J Physiol Endocrinol Metab 2013; 304:E1245-50. [PMID: 23548614 PMCID: PMC3680680 DOI: 10.1152/ajpendo.00020.2013] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A hallmark of brain injury from infection, vascular, neurodegenerative, and other disorders is the development of gliosis, which can be detected by magnetic resonance imaging (MRI). In rodent models of diet-induced obesity (DIO), high-fat diet (HFD) consumption rapidly induces inflammation and gliosis in energy-regulating regions of the mediobasal hypothalamus (MBH), and recently we reported MRI findings suggestive of MBH gliosis in obese humans. Thus, noninvasive imaging may obviate the need to assess MBH gliosis using histopathological end points, an obvious limitation to human studies. To investigate whether quantitative MRI is a valid tool with which to measure MBH gliosis, we performed analyses, including measurement of T(2) relaxation time from high-field MR brain imaging of mice fed HFD and chow-fed controls. Mean bilateral T(2) relaxation time was prolonged significantly in the MBH, but not in the thalamus or cortex, of HFD-fed mice compared with chow-fed controls. Histological analysis confirmed evidence of increased astrocytosis and microglial accumulation in the MBH of HFD-fed mice compared with controls, and T(2) relaxation times in the right MBH correlated positively with mean intensity of glial fibrillary acidic protein staining (a marker of astrocytes) in HFD-fed animals. Our findings indicate that T(2) relaxation time obtained from high-field MRI is a useful noninvasive measurement of HFD-induced gliosis in the mouse hypothalamus with potential for translation to human studies.
Collapse
Affiliation(s)
- Donghoon Lee
- Department of Radiology, University of Washington, Seattle, WA 98104, USA
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
Whether some hypothalamic neurons have direct access to circulating metabolic cues represents a crucial question that has been intensely debated. New findings reveal that fasting promotes "leakiness" of some hypothalamic blood vessels, increasing the access of circulating factors to certain hypothalamic neurons that control feeding (Langlet et al., 2013).
Collapse
Affiliation(s)
- Martin G Myers
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan Medical School, 6317 Brehm Tower, 1000 Wall Street, Ann Arbor, MI 48105, USA.
| |
Collapse
|