1
|
Yagur Y, Weitzner O, Shams R, Man-El G, Kadan Y, Daykan Y, Klein Z, Schonman R. Bilateral or unilateral tubo-ovarian abscess: exploring its clinical significance. BMC Womens Health 2023; 23:678. [PMID: 38115034 PMCID: PMC10729436 DOI: 10.1186/s12905-023-02826-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 12/03/2023] [Indexed: 12/21/2023] Open
Abstract
OBJECTIVES To assess the characteristics of patients with unilateral and bilateral tubo-ovarian abscess (TOA). METHODS Women diagnosed with TOA during 2003-2017 were included in this retrospective cohort study. TOA was diagnosed using sonography or computerized tomography and clinical criteria, or by surgical diagnosis. Demographics, sonographic data, clinical treatment, surgical treatment, and post-operative information were retrieved. RESULTS The study cohort included 144 women who met the inclusion criteria, of whom 78 (54.2%) had unilateral TOA and 66 (45.8%) had bilateral TOA. Baseline characteristics were not different between the groups. There was a statistical trend that women with fewer events of previous PID were less likely to have with bilateral TOA (75.3% vs. 64.1%, respectively; p = 0.074). Women diagnosed with bilateral TOA were more likely to undergo surgical treratment for bilateral salpingo-oophorectomy compared to unilateral TOA (61.5% vs. 42.3%, respectively; p = 0.04). There was no difference in maximum TOA size between groups. CONCLUSIONS This study detected a trend toward increased need for surgical treatment in women diagnosed with bilateral TOA. These findings may contribute to determining the optimal medical or surgical treatment, potentially leading to a decrease in the duration of hospitalization, antibiotic exposure, and resistance. However, it is important to acknowledge that the results of the current study are limited, and further research is warranted to validate these potential outcomes.
Collapse
Affiliation(s)
- Yael Yagur
- Department of Obstetrics and Gynecology, Meir Medical Center, Kfar Saba, Israel affiliated with The School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Omer Weitzner
- Department of Obstetrics and Gynecology, Meir Medical Center, Kfar Saba, Israel affiliated with The School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Rebecca Shams
- Department of Obstetrics and Gynecology, Meir Medical Center, Kfar Saba, Israel affiliated with The School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Gili Man-El
- Department of Obstetrics and Gynecology, Meir Medical Center, Kfar Saba, Israel affiliated with The School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yfat Kadan
- Department of Gynecology Oncology, Heamek Medical Center, Afula, Israel affiliated with The Ruth and Bruce Rappaport Faculty of Medicine, The Technion-Israel Institute of Technology, Haifa, Israel
| | - Yair Daykan
- Department of Obstetrics and Gynecology, Meir Medical Center, Kfar Saba, Israel affiliated with The School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Zvi Klein
- Department of Obstetrics and Gynecology, Meir Medical Center, Kfar Saba, Israel affiliated with The School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ron Schonman
- Department of Obstetrics and Gynecology, Meir Medical Center, Kfar Saba, Israel affiliated with The School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
2
|
Harley ITW, Allison K, Scofield RH. Polygenic autoimmune disease risk alleles impacting B cell tolerance act in concert across shared molecular networks in mouse and in humans. Front Immunol 2022; 13:953439. [PMID: 36090990 PMCID: PMC9450536 DOI: 10.3389/fimmu.2022.953439] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/19/2022] [Indexed: 11/23/2022] Open
Abstract
Most B cells produced in the bone marrow have some level of autoreactivity. Despite efforts of central tolerance to eliminate these cells, many escape to periphery, where in healthy individuals, they are rendered functionally non-responsive to restimulation through their antigen receptor via a process termed anergy. Broad repertoire autoreactivity may reflect the chances of generating autoreactivity by stochastic use of germline immunoglobulin gene segments or active mechanisms may select autoreactive cells during egress to the naïve peripheral B cell pool. Likewise, it is unclear why in some individuals autoreactive B cell clones become activated and drive pathophysiologic changes in autoimmune diseases. Both of these remain central questions in the study of the immune system(s). In most individuals, autoimmune diseases arise from complex interplay of genetic risk factors and environmental influences. Advances in genome sequencing and increased statistical power from large autoimmune disease cohorts has led to identification of more than 200 autoimmune disease risk loci. It has been observed that autoantibodies are detectable in the serum years to decades prior to the diagnosis of autoimmune disease. Thus, current models hold that genetic defects in the pathways that control autoreactive B cell tolerance set genetic liability thresholds across multiple autoimmune diseases. Despite the fact these seminal concepts were developed in animal (especially murine) models of autoimmune disease, some perceive a disconnect between human risk alleles and those identified in murine models of autoimmune disease. Here, we synthesize the current state of the art in our understanding of human risk alleles in two prototypical autoimmune diseases - systemic lupus erythematosus (SLE) and type 1 diabetes (T1D) along with spontaneous murine disease models. We compare these risk networks to those reported in murine models of these diseases, focusing on pathways relevant to anergy and central tolerance. We highlight some differences between murine and human environmental and genetic factors that may impact autoimmune disease development and expression and may, in turn, explain some of this discrepancy. Finally, we show that there is substantial overlap between the molecular networks that define these disease states across species. Our synthesis and analysis of the current state of the field are consistent with the idea that the same molecular networks are perturbed in murine and human autoimmune disease. Based on these analyses, we anticipate that murine autoimmune disease models will continue to yield novel insights into how best to diagnose, prognose, prevent and treat human autoimmune diseases.
Collapse
Affiliation(s)
- Isaac T. W. Harley
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
- Human Immunology and Immunotherapy Initiative (HI3), Department of Immunology, University of Colorado School of Medicine, Aurora, CO, United States
- Rheumatology Section, Medicine Service, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, United States
| | - Kristen Allison
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
- Human Immunology and Immunotherapy Initiative (HI3), Department of Immunology, University of Colorado School of Medicine, Aurora, CO, United States
| | - R. Hal Scofield
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Arthritis & Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
- Medical/Research Service, US Department of Veterans Affairs Medical Center, Oklahoma City, OK, United States
| |
Collapse
|
3
|
Francisco A, Figueira TR, Castilho RF. Mitochondrial NAD(P) + Transhydrogenase: From Molecular Features to Physiology and Disease. Antioxid Redox Signal 2022; 36:864-884. [PMID: 34155914 DOI: 10.1089/ars.2021.0111] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Significance: Proton-translocating NAD(P)+ transhydrogenase, also known as nicotinamide nucleotide transhydrogenase (NNT), catalyzes a reversible reaction coupling the protonmotive force across the inner mitochondrial membrane and hydride (H-, a proton plus two electrons) transfer between the mitochondrial pools of NAD(H) and NADP(H). The forward NNT reaction is a source of NADPH in the mitochondrial matrix, fueling antioxidant and biosynthetic pathways with reductive potential. Despite the greater emphasis given to the net forward reaction, the reverse NNT reaction that oxidizes NADPH also occurs in physiological and pathological conditions. Recent Advances: NNT (dys)function has been linked to various metabolic pathways and disease phenotypes. Most of these findings have been based on spontaneous loss-of-function Nnt mutations found in the C57BL/6J mouse strain (NntC57BL/6J mutation) and disease-causing Nnt mutations in humans. The present review focuses on recent advances based on the mouse NntC57BL/6J mutation. Critical Issues: Most studies associating NNT function with disease phenotypes have been based on comparisons between different strains of inbred mice (with or without the NntC57BL/6J mutation), which creates uncertainties over the actual contribution of NNT in the context of other potential genetic modifiers. Future Directions: Future research might contribute to understanding the role of NNT in pathological conditions and elucidate how NNT regulates physiological signaling through its forward and reverse reactions. The importance of NNT in redox balance and tumor cell proliferation makes it a potential target of new therapeutic strategies for oxidative-stress-mediated diseases and cancer. Antioxid. Redox Signal. 36, 864-884.
Collapse
Affiliation(s)
- Annelise Francisco
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Tiago Rezende Figueira
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Roger Frigério Castilho
- Department of Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
4
|
Yue S, Shan B, Peng C, Tan C, Wang Q, Gong J. Theabrownin-targeted regulation of intestinal microorganisms to improve glucose and lipid metabolism in Goto-Kakizaki rats. Food Funct 2022; 13:1921-1940. [PMID: 35088787 DOI: 10.1039/d1fo03374c] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Diabetes is a disease that is characterized by a disturbance of glucose metabolism. Theabrownin (TB) is one of the most active and abundant pigments in Pu-erh tea, and it is a brown pigment with multiple aromatic rings and attached residues of polysaccharides and proteins. TB has been shown to be hypolipidemic and displays fasting blood glucose (FBG)-lowering properties in rats fed a high-fat diet, but the underlying mechanism has not been elucidated. This study aimed to determine the effect of TB in treating diabetes and explore the underlying mechanism of action of intestinal microbes by using Goto-Kakizaki (GK) rats. Diabetic GK rats were treated up to 8 weeks with TB (GK-TB). Following treatment, the body weight, triglyceride (TG) content, fasting blood glucose (FBG) content, and Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) were significantly lower in the GK-TB group than in the GK control group (P < 0.05). Meanwhile, the circulating adiponectin (ADPN), leptin, and glucokinase levels in the serum of the GK-TB group were significantly higher than those in the GK group, while there was little difference in hepatic lipase (HL) and hormone-sensitive triglyceride lipase (HSL) enzyme activities (P > 0.05). Furthermore, with the extension of treatment time, the number of unique intestinal microorganisms in GK rats greatly increased and an interaction among intestinal microorganisms was observed. The Firmicutes/Bacteroides ratio was decreased significantly, and the composition of Actinobacteria and Proteobacteria was increased. The use of multiple omics technologies showed that TB is involved in the targeted regulation of the core characteristic intestinal flora including Bacteroides thetaiotaomicron (BT), Lactobacillus murinus (LM), Parabacteroides distasonis (PD), and Bacteroides_acidifaciens (BA) which improved the glucose and lipid metabolism of GK rats via the AMP-activated protein kinase signaling pathway, insulin signaling pathway, bile secretion and glycerophospholipid metabolism. Intragastric administration of BT, LM, PD, or BA led to a significantly reduced HOMA-IR in GK rats. Furthermore, BT significantly reduced serum lipid TG and total cholesterol (TC) and BA significantly reduced the serum lipid TC and low-density lipoprotein (LDL). PD significantly reduced serum LDL, while the effect of LM was not significant. However, LM and PD significantly increased the content of ADPN in serum. Taken together, our results indicated that the effect of TB on diabetic rats mainly depends on the targeted regulation of intestinal microorganisms and that TB is a functional food component with great potential to treat or prevent diabetes.
Collapse
Affiliation(s)
- Suijuan Yue
- College of Food Science and Technology, Yunnan Agricultural University, Heilong Tan, Kunming, Yunnan 650201, China.
| | - Bo Shan
- College of Food Science and Technology, Yunnan Agricultural University, Heilong Tan, Kunming, Yunnan 650201, China.
| | - Chunxiu Peng
- College of Horticulture and Landscape, Yunnan Agricultural University, Heilong Tan, Kunming, Yunnan 650201, China.
| | - Chao Tan
- College of Food Science and Technology, Yunnan Agricultural University, Heilong Tan, Kunming, Yunnan 650201, China.
| | - Qiuping Wang
- College of Food Science and Technology, Yunnan Agricultural University, Heilong Tan, Kunming, Yunnan 650201, China.
| | - Jiashun Gong
- College of Food Science and Technology, Yunnan Agricultural University, Heilong Tan, Kunming, Yunnan 650201, China.
| |
Collapse
|
5
|
Zhu L, Fu J, Xiao X, Wang F, Jin M, Fang W, Wang Y, Zong X. Faecal microbiota transplantation-mediated jejunal microbiota changes halt high-fat diet-induced obesity in mice via retarding intestinal fat absorption. Microb Biotechnol 2021; 15:337-352. [PMID: 34704376 PMCID: PMC8719817 DOI: 10.1111/1751-7915.13951] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/13/2021] [Accepted: 10/06/2021] [Indexed: 01/21/2023] Open
Abstract
Faecal Microbiota Transplantation (FMT) is considered as a promising technology to fight against obesity. Wild boar has leanermuscle and less fat in comparison to the domestic pig, which were thought to be related with microbiota. To investigate the function and mechanism of the wild boar microbiota on obesity, we first analysed the wild boar microbiota composition via 16S rDNA sequencing, which showed that Firmicutes and Proteobacteria were the dominant bacteria. Then, we established a high‐fat diet (HFD)‐induced obesity model, and transfer low and high concentrations of wild boar faecal suspension in mice for 9 weeks. The results showed that FMT prevented HFD‐induced obesity and lipid metabolism disorders, and altered the jejunal microbiota composition especially increasing the abundance of the Lactobacillus and Romboutsia, which were negatively correlated with obesity‐related indicators. Moreover, we found that the anti‐obesity effect of wild boar faecal suspension was associated with jejunal N6‐methyladenosine (m6A) levels. Overall, these results suggest that FMT has a mitigating effect on HFD‐induced obesity, which may be due to the impressive effects of FMT on the microbial composition and structure of the jejunum. These changes further alter intestinal lipid metabolism and m6A levels to achieve resistance to obesity.
Collapse
Affiliation(s)
- Luoyi Zhu
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, National Development and Reform Commission, Hangzhou, Zhejiang, 310058, China.,Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang, 310058, China.,Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, 310058, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang, 310058, China
| | - Jie Fu
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, National Development and Reform Commission, Hangzhou, Zhejiang, 310058, China.,Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang, 310058, China.,Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, 310058, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang, 310058, China
| | - Xiao Xiao
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, National Development and Reform Commission, Hangzhou, Zhejiang, 310058, China.,Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang, 310058, China.,Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, 310058, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang, 310058, China
| | - Fengqin Wang
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, National Development and Reform Commission, Hangzhou, Zhejiang, 310058, China.,Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang, 310058, China.,Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, 310058, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang, 310058, China
| | - Mingliang Jin
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, National Development and Reform Commission, Hangzhou, Zhejiang, 310058, China.,Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang, 310058, China.,Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, 310058, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang, 310058, China
| | - Weihuan Fang
- Zhejiang University Institute of Preventive Veterinary Medicine, Hangzhou, Zhejiang, 310058, China.,Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang, 310058, China
| | - Yizhen Wang
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, National Development and Reform Commission, Hangzhou, Zhejiang, 310058, China.,Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang, 310058, China.,Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, 310058, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang, 310058, China
| | - Xin Zong
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, National Development and Reform Commission, Hangzhou, Zhejiang, 310058, China.,Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang, 310058, China.,Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, 310058, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang, 310058, China
| |
Collapse
|
6
|
Jose S, Mukherjee A, Horrigan O, Setchell KDR, Zhang W, Moreno-Fernandez ME, Andersen H, Sharma D, Haslam DB, Divanovic S, Madan R. Obeticholic acid ameliorates severity of Clostridioides difficile infection in high fat diet-induced obese mice. Mucosal Immunol 2021; 14:500-510. [PMID: 32811993 PMCID: PMC7889747 DOI: 10.1038/s41385-020-00338-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 07/18/2020] [Accepted: 07/24/2020] [Indexed: 02/07/2023]
Abstract
Severe Clostridiodes difficile infection (CDI) is life-threatening and responds poorly to treatment. Obesity is associated with development of severe CDI. Therefore, to define the mechanisms that exacerbate disease severity, we examined CDI pathogenesis in high-fat diet (HFD)-fed obese mice. Compared to control mice, HFD-fed mice failed to clear C. difficile bacteria which resulted in protracted diarrhea, weight loss and colonic damage. After infection, HFD-induced obese mice had an intestinal bile acid (BA) pool that was dominated by primary BAs which are known promoters of C. difficile spore germination, and lacked secondary BAs that inhibit C. difficile growth. Concurrently, synthesis of primary BAs from liver was significantly increased in C. difficile-infected HFD-fed mice. A key pathway that regulates hepatic BA synthesis is via feedback inhibition from intestinal Farnesoid X receptors (FXRs). Our data reveal that the proportion of FXR agonist BAs to FXR antagonist BAs in the intestinal lumen was significantly reduced in HFD-fed mice after CDI. Treatment of HFD-fed mice with an FXR agonist Obeticholic acid, resulted in decreased primary BA synthesis, fewer C. difficile bacteria and better CDI outcomes. Thus, OCA treatment holds promise as a therapy for severe CDI.
Collapse
Affiliation(s)
- Shinsmon Jose
- Division of Infectious Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA
| | - Anindita Mukherjee
- Division of Infectious Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA
| | - Olivia Horrigan
- Division of Infectious Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA
| | - Kenneth D R Setchell
- Department of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA
| | - Wujuan Zhang
- Department of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Maria E Moreno-Fernandez
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Heidi Andersen
- Department of Pediatric Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Divya Sharma
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA
| | - David B Haslam
- Department of Pediatric Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Senad Divanovic
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Rajat Madan
- Division of Infectious Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA.
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
- Veterans Affairs Medical Center, Cincinnati, OH, 45220, USA.
| |
Collapse
|
7
|
Clinical presentation of asymptomatic and symptomatic women who tested positive for genital gonorrhoea at a sexual health service in Melbourne, Australia. Epidemiol Infect 2020; 148:e240. [PMID: 32985394 PMCID: PMC7584007 DOI: 10.1017/s0950268820002265] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Gonorrhoea cases in women have been rising in Australia in the 2010s but the cause of the increase is not well understood. This cross-sectional study aimed to describe the characteristics of genital gonorrhoea infection in women attending the Melbourne Sexual Health Centre, Australia. Gonorrhoea cases were diagnosed by nucleic acid amplification test (NAAT) and/or culture. Genitourinary specimens were obtained in 12 869 clinic visits in women aged 16 years or above between August 2017 and August 2018. Genital gonorrhoea was detected in 142 (1.1%) of the visits. Almost half of the cases were asymptomatic, 47.9% [95% confidence interval (CI) 39.8–56.1%]; yellow, green or pus-like vaginal discharge was present in 11.3% (95% CI 7.0–17.6%) and other genital symptoms in 40.8% (95% CI 33.1–49.1%) of the cases. The mean time between last sexual contact and onset of symptoms was 7.3 days and between the onset of symptoms to presentation to the clinic was 12.1 days. Half of the cases of genital gonorrhoea among women are asymptomatic and these cases would have been missed by testing of only symptomatic women. Further epidemiological and behavioural research is required to understand the temporal changes in sexual practices among women in Australia.
Collapse
|
8
|
Kurtz CC, Mitchell S, Nielsen K, Crawford KD, Mueller-Spitz SR. Acute high-dose titanium dioxide nanoparticle exposure alters gastrointestinal homeostasis in mice. J Appl Toxicol 2020; 40:1384-1395. [PMID: 32420653 DOI: 10.1002/jat.3991] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/10/2020] [Accepted: 04/04/2020] [Indexed: 01/09/2023]
Abstract
Human exposure to a wide variety of engineered nanoparticles (NPs) is on the rise and use in common food additives increases gastrointestinal (GI) exposure. Host health is intricately linked to the GI microbiome and immune response. Perturbations in the microbiota can affect energy harvest, trigger inflammation and alter the mucosal barrier leading to various disease states such as obesity and inflammatory bowel diseases. We hypothesized that single high-dose titanium dioxide (TiO2 ) NP exposure in mice would lead to dysbiosis and stimulate mucus production and local immune populations. Juvenile mice (9-10 weeks) were gavaged with 1 g/kg TiO2 NPs and examined for changes in mucosa-associated bacteria abundance, inflammatory cytokines, mucin expression and body mass. Our data provide support that TiO2 NP ingestion alters the GI microbiota and host defenses promoting metabolic disruption and subsequently weight gain in mice.
Collapse
Affiliation(s)
- Courtney C Kurtz
- Department of Biology, University of Wisconsin Oshkosh, Oshkosh, Wisconsin, US
| | - Samantha Mitchell
- Department of Biology, University of Wisconsin Oshkosh, Oshkosh, Wisconsin, US
| | - Kaitlyn Nielsen
- Department of Biology, University of Wisconsin Oshkosh, Oshkosh, Wisconsin, US
| | - Kevin D Crawford
- Department of Chemistry, University of Wisconsin Oshkosh, Oshkosh, Wisconsin, US.,Sustainability Institute for Regional Transformations, University of Wisconsin Oshkosh, Oshkosh, Wisconsin, US
| | - Sabrina R Mueller-Spitz
- Department of Biology, University of Wisconsin Oshkosh, Oshkosh, Wisconsin, US.,Sustainability Institute for Regional Transformations, University of Wisconsin Oshkosh, Oshkosh, Wisconsin, US
| |
Collapse
|
9
|
Wróblewska B, Kaliszewska-Suchodoła A, Markiewicz LH, Szyc A, Wasilewska E. Whey prefermented with beneficial microbes modulates immune response and lowers responsiveness to milk allergens in mouse model. J Funct Foods 2019. [DOI: 10.1016/j.jff.2018.12.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
10
|
Kawashita E, Ishihara K, Nomoto M, Taniguchi M, Akiba S. A comparative analysis of hepatic pathological phenotypes in C57BL/6J and C57BL/6N mouse strains in non-alcoholic steatohepatitis models. Sci Rep 2019; 9:204. [PMID: 30659241 PMCID: PMC6338790 DOI: 10.1038/s41598-018-36862-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 11/26/2018] [Indexed: 12/27/2022] Open
Abstract
C57BL/6J (BL6J) and C57BL/6N (BL6N) inbred substrains are most widely used to understand the pathological roles of target molecules in a variety of diseases, including non-alcoholic steatohepatitis (NASH), based on transgenic mouse technologies. There are notable differences in the metabolic phenotypes, including glucose tolerance, between the BL6J and BL6N substrains, but the phenotypic differences in NASH are still unknown. We performed a comparative analysis of the two mouse substrains to identify the pathological phenotypic differences in NASH models. In the CCl4-induced NASH model, the BL6J mice exhibited a more severe degree of oxidative stress and fibrosis in the liver than the BL6N mice. In contrast, in the high-fat diet-induced NASH model, more accumulation of hepatic triglycerides but less weight gain and liver injury were noted in the BL6J mice than in the BL6N mice. Our findings strongly suggest caution be exercised with the use of unmatched mixed genetic background C57BL6 mice for studies related to NASH, especially when generating conditional knockout C57BL6 mice.
Collapse
Affiliation(s)
- Eri Kawashita
- Department of Pathological Biochemistry, Kyoto Pharmaceutical University, 5 Misasaginakauchi-cho, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Keiichi Ishihara
- Department of Pathological Biochemistry, Kyoto Pharmaceutical University, 5 Misasaginakauchi-cho, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Madoka Nomoto
- Department of Pathological Biochemistry, Kyoto Pharmaceutical University, 5 Misasaginakauchi-cho, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Mika Taniguchi
- Department of Pathological Biochemistry, Kyoto Pharmaceutical University, 5 Misasaginakauchi-cho, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Satoshi Akiba
- Department of Pathological Biochemistry, Kyoto Pharmaceutical University, 5 Misasaginakauchi-cho, Yamashina-ku, Kyoto, 607-8414, Japan.
| |
Collapse
|
11
|
de Carvalho Marchesin J, Celiberto LS, Orlando AB, de Medeiros AI, Pinto RA, Zuanon JAS, Spolidorio LC, dos Santos A, Taranto MP, Cavallini DCU. A soy-based probiotic drink modulates the microbiota and reduces body weight gain in diet-induced obese mice. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.07.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
12
|
Andréasson K, Marsal J, Månsson B, Saxne T, Wollheim FA. Diet-Induced Arthritis in Pigs: Comment on the Article by Scher et al. Arthritis Rheumatol 2018; 68:1568-9. [PMID: 26881393 DOI: 10.1002/art.39642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 02/11/2016] [Indexed: 11/10/2022]
|
13
|
Soil exposure modifies the gut microbiota and supports immune tolerance in a mouse model. J Allergy Clin Immunol 2018; 143:1198-1206.e12. [PMID: 30097187 DOI: 10.1016/j.jaci.2018.06.024] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 06/08/2018] [Accepted: 06/14/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Sufficient exposure to natural environments, in particular soil and its microbes, has been suggested to be protective against allergies. OBJECTIVE We aim at gaining more direct evidence of the environment-microbiota-health axis by studying the colonization of gut microbiota in mice after exposure to soil and by examining immune status in both a steady-state situation and during allergic inflammation. METHODS The gastrointestinal microbiota of mice housed on clean bedding or in contact with soil was analyzed by using 16S rRNA gene sequencing, and the data were combined with immune parameters measured in the gut mucosa, lung tissue, and serum samples. RESULTS We observed marked differences in the small intestinal and fecal microbiota composition between mice housed on clean bedding or in contact with soil, with a higher proportion of Bacteroidetes relative to Firmicutes in the soil group. The housing environment also influenced mouse intestinal gene expression, as shown by upregulated expression of the immunoregulatory markers IL-10, forkhead box P3, and cytotoxic T lymphocyte-associated protein 4 in the soil group. Importantly, using the murine asthma model, we found that exposure to soil polarizes the immune system toward TH1 and a higher level of anti-inflammatory signaling, alleviating TH2-type allergic responses. The inflammatory status of the mice had a marked influence on the composition of the gut microbiota, suggesting bidirectional communication along the gut-lung axis. CONCLUSION Our results provide evidence of the role of environmentally acquired microbes in alleviating against TH2-driven inflammation, which relates to allergic diseases.
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW To analyze the respective roles of macronutrient-derived moieties, of a gut mucosal function [intestinal gluconeogenesis (IGN)] and its capacity of influencing the brain control of energy homeostasis, and of the microbiota 'function' versus 'genomic composition' in the control of host metabolism. RECENT FINDINGS Small products deriving from protein digestion (peptides) or from fermentation by the gut microbiota (short-chain fatty acids and succinate) activate IGN, a mucosal function sensed by the peripheral gut nervous system, which intitiates metabolic benefits deriving from brain control of energy homeostasis. The microbiota function (fermentation) rather than its genomic composition is a key in these processes. SUMMARY Short-chain fatty acids and succinate produced from the fermentation of macronutrients by the gut microbiota positively influence the brain's control of energy homeostasis via the activation of IGN. The microbiota function rather than genomic composition is a key in these processes.
Collapse
Affiliation(s)
- Gilles Mithieux
- Institut National de la Santé et de la Recherche Médicale
- Université de Lyon, Lyon
- Université Lyon I, Villeurbanne, France
| |
Collapse
|
15
|
Parilla JH, Willard JR, Barrow BM, Zraika S. A Mouse Model of Beta-Cell Dysfunction as Seen in Human Type 2 Diabetes. J Diabetes Res 2018; 2018:6106051. [PMID: 29854823 PMCID: PMC5952555 DOI: 10.1155/2018/6106051] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/30/2018] [Accepted: 04/08/2018] [Indexed: 12/28/2022] Open
Abstract
Loss of first-phase insulin release is an early pathogenic feature of type 2 diabetes (T2D). Various mouse models exist to study T2D; however, few recapitulate the early β-cell defects seen in humans. We sought to develop a nongenetic mouse model of T2D that exhibits reduced first-phase insulin secretion without a significant deficit in pancreatic insulin content. C57BL/6J mice were fed 10% or 60% fat diet for three weeks, followed by three consecutive, once-daily intraperitoneal injections of the β-cell toxin streptozotocin (STZ; 30, 50, or 75 mg/kg) or vehicle. Four weeks after injections, the first-phase insulin response to glucose was reduced in mice when high-fat diet was combined with 30, 50, or 75 mg/kg STZ. This was accompanied by diminished second-phase insulin release and elevated fed glucose levels. Further, body weight gain, pancreatic insulin content, and β-cell area were decreased in high fat-fed mice treated with 50 and 75 mg/kg STZ, but not 30 mg/kg STZ. Low fat-fed mice were relatively resistant to STZ, with the exception of reduced pancreatic insulin content and β-cell area. Together, these data demonstrate that in high fat-fed mice, three once-daily injections of 30 mg/kg STZ produces a model of β-cell failure without insulin deficiency that may be useful in studies investigating the etiology and progression of human T2D.
Collapse
Affiliation(s)
- Jacqueline H. Parilla
- Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Joshua R. Willard
- Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Breanne M. Barrow
- Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Sakeneh Zraika
- Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
16
|
Hull RL, Willard JR, Struck MD, Barrow BM, Brar GS, Andrikopoulos S, Zraika S. High fat feeding unmasks variable insulin responses in male C57BL/6 mouse substrains. J Endocrinol 2017; 233:53-64. [PMID: 28138002 PMCID: PMC5358546 DOI: 10.1530/joe-16-0377] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 01/30/2017] [Indexed: 12/22/2022]
Abstract
Mouse models are widely used for elucidating mechanisms underlying type 2 diabetes. Genetic background profoundly affects metabolic phenotype; therefore, selecting the appropriate model is critical. Although variability in metabolic responses between mouse strains is now well recognized, it also occurs within C57BL/6 mice, of which several substrains exist. This within-strain variability is poorly understood and could emanate from genetic and/or environmental differences. To better define the within-strain variability, we performed the first comprehensive comparison of insulin secretion from C57BL/6 substrains 6J, 6JWehi, 6NJ, 6NHsd, 6NTac and 6NCrl. In vitro, glucose-stimulated insulin secretion correlated with Nnt mutation status, wherein responses were uniformly lower in islets from C57BL/6J vs C57BL/6N mice. In contrast, in vivo insulin responses after 18 weeks of low fat feeding showed no differences among any of the six substrains. When challenged with a high-fat diet for 18 weeks, C57BL/6J substrains responded with a similar increase in insulin release. However, variability was evident among C57BL/6N substrains. Strikingly, 6NJ mice showed no increase in insulin release after high fat feeding, contributing to the ensuing hyperglycemia. The variability in insulin responses among high-fat-fed C57BL/6N mice could not be explained by differences in insulin sensitivity, body weight, food intake or beta-cell area. Rather, as yet unidentified genetic and/or environmental factor(s) are likely contributors. Together, our findings emphasize that caution should be exercised in extrapolating data from in vitro studies to the in vivo situation and inform on selecting the appropriate C57BL/6 substrain for metabolic studies.
Collapse
Affiliation(s)
- Rebecca L Hull
- Veterans Affairs Puget Sound Health Care SystemSeattle, Washington, USA
- Division of MetabolismEndocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Joshua R Willard
- Veterans Affairs Puget Sound Health Care SystemSeattle, Washington, USA
| | - Matthias D Struck
- Division of MetabolismEndocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Breanne M Barrow
- Veterans Affairs Puget Sound Health Care SystemSeattle, Washington, USA
| | - Gurkirat S Brar
- Veterans Affairs Puget Sound Health Care SystemSeattle, Washington, USA
| | - Sofianos Andrikopoulos
- Department of MedicineUniversity of Melbourne, Austin Hospital, Heidelberg, Victoria, Australia
| | - Sakeneh Zraika
- Veterans Affairs Puget Sound Health Care SystemSeattle, Washington, USA
- Division of MetabolismEndocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
17
|
Neyrinck AM, Schüppel VL, Lockett T, Haller D, Delzenne NM. Microbiome and metabolic disorders related to obesity: Which lessons to learn from experimental models? Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2016.08.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
18
|
High-fat diet modifies the PPAR-γ pathway leading to disruption of microbial and physiological ecosystem in murine small intestine. Proc Natl Acad Sci U S A 2016; 113:E5934-E5943. [PMID: 27638207 DOI: 10.1073/pnas.1612559113] [Citation(s) in RCA: 177] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Diet is among the most important factors contributing to intestinal homeostasis, and basic functions performed by the small intestine need to be tightly preserved to maintain health. Little is known about the direct impact of high-fat (HF) diet on small-intestinal mucosal defenses and spatial distribution of the microbiota during the early phase of its administration. We observed that only 30 d after HF diet initiation, the intervillous zone of the ileum-which is usually described as free of bacteria-became occupied by a dense microbiota. In addition to affecting its spatial distribution, HF diet also drastically affected microbiota composition with a profile characterized by the expansion of Firmicutes (appearance of Erysipelotrichi), Proteobacteria (Desulfovibrionales) and Verrucomicrobia, and decrease of Bacteroidetes (family S24-7) and Candidatus arthromitus A decrease in antimicrobial peptide expression was predominantly observed in the ileum where bacterial density appeared highest. In addition, HF diet increased intestinal permeability and decreased cystic fibrosis transmembrane conductance regulator (Cftr) and the Na-K-2Cl cotransporter 1 (Nkcc1) gene and protein expressions, leading to a decrease in ileal secretion of chloride, likely responsible for massive alteration in mucus phenotype. This complex phenotype triggered by HF diet at the interface between the microbiota and the mucosal surface was reversed when the diet was switched back to standard composition or when mice were treated for 1 wk with rosiglitazone, a specific agonist of peroxisome proliferator-activated receptor-γ (PPAR-γ). Moreover, weaker expression of antimicrobial peptide-encoding genes and intervillous bacterial colonization were observed in Ppar-γ-deficient mice, highlighting the major role of lipids in modulation of mucosal immune defenses.
Collapse
|
19
|
Fontaine DA, Davis DB. Attention to Background Strain Is Essential for Metabolic Research: C57BL/6 and the International Knockout Mouse Consortium. Diabetes 2016; 65:25-33. [PMID: 26696638 PMCID: PMC4686949 DOI: 10.2337/db15-0982] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The International Knockout Mouse Consortium (IKMC) introduces its targeted constructs into C57BL/6N embryonic stem cells. However, breeding with a Cre-recombinase and/or Flp-recombinase mouse is required for the generation of a null allele with the IKMC cassette. Many recombinase strains are in the C57BL/6J background, resulting in knockout animals on a mixed strain background. This can lead to variability in metabolic data and the use of improper control groups. While C57BL/6N and C57BL/6J are derived from the same parental C57BL/6 strain, there are key genotypic and phenotypic differences between these substrains. Many researchers may not even be aware of these differences, as the shorthand C57BL/6 is often used to describe both substrains. We found that 58% of articles involving genetically modified mouse models did not completely address background strain. This review will describe these two substrains and highlight the importance of separate consideration in mouse model development. Our aim is to increase awareness of this issue in the diabetes research community and to provide practical strategies to enable researchers to avoid mixed strain animals when using IKMC knockout mice.
Collapse
Affiliation(s)
- Danielle A Fontaine
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Wisconsin-Madison, Madison, WI
| | - Dawn Belt Davis
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Wisconsin-Madison, Madison, WI William S. Middleton Memorial Veterans Hospital, Madison, WI
| |
Collapse
|
20
|
Immunometabolism of obesity and diabetes: microbiota link compartmentalized immunity in the gut to metabolic tissue inflammation. Clin Sci (Lond) 2015; 129:1083-96. [PMID: 26464517 DOI: 10.1042/cs20150431] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The bacteria that inhabit us have emerged as factors linking immunity and metabolism. Changes in our microbiota can modify obesity and the immune underpinnings of metabolic diseases such as Type 2 diabetes. Obesity coincides with a low-level systemic inflammation, which also manifests within metabolic tissues such as adipose tissue and liver. This metabolic inflammation can promote insulin resistance and dysglycaemia. However, the obesity and metabolic disease-related immune responses that are compartmentalized in the intestinal environment do not necessarily parallel the inflammatory status of metabolic tissues that control blood glucose. In fact, a permissive immune environment in the gut can exacerbate metabolic tissue inflammation. Unravelling these discordant immune responses in different parts of the body and establishing a connection between nutrients, immunity and the microbiota in the gut is a complex challenge. Recent evidence positions the relationship between host gut barrier function, intestinal T cell responses and specific microbes at the crossroads of obesity and inflammation in metabolic disease. A key problem to be addressed is understanding how metabolite, immune or bacterial signals from the gut are relayed and transferred into systemic or metabolic tissue inflammation that can impair insulin action preceding Type 2 diabetes.
Collapse
|
21
|
Ussar S, Griffin NW, Bezy O, Fujisaka S, Vienberg S, Softic S, Deng L, Bry L, Gordon JI, Kahn CR. Interactions between Gut Microbiota, Host Genetics and Diet Modulate the Predisposition to Obesity and Metabolic Syndrome. Cell Metab 2015; 22:516-530. [PMID: 26299453 PMCID: PMC4570502 DOI: 10.1016/j.cmet.2015.07.007] [Citation(s) in RCA: 405] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 06/03/2015] [Accepted: 07/06/2015] [Indexed: 12/12/2022]
Abstract
Obesity, diabetes, and metabolic syndrome result from complex interactions between genetic and environmental factors, including the gut microbiota. To dissect these interactions, we utilized three commonly used inbred strains of mice-obesity/diabetes-prone C57Bl/6J mice, obesity/diabetes-resistant 129S1/SvImJ from Jackson Laboratory, and obesity-prone but diabetes-resistant 129S6/SvEvTac from Taconic-plus three derivative lines generated by breeding these strains in a new, common environment. Analysis of metabolic parameters and gut microbiota in all strains and their environmentally normalized derivatives revealed strong interactions between microbiota, diet, breeding site, and metabolic phenotype. Strain-dependent and strain-independent correlations were found between specific microbiota and phenotypes, some of which could be transferred to germ-free recipient animals by fecal transplantation. Environmental reprogramming of microbiota resulted in 129S6/SvEvTac becoming obesity resistant. Thus, development of obesity/metabolic syndrome is the result of interactions between gut microbiota, host genetics, and diet. In permissive genetic backgrounds, environmental reprograming of microbiota can ameliorate development of metabolic syndrome.
Collapse
Affiliation(s)
- Siegfried Ussar
- Joslin Diabetes Center and Harvard Medical School, Boston, MA 02215
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Center Munich, Munich, 85764, Germany
| | - Nicholas W. Griffin
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63108
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63108
| | - Olivier Bezy
- Joslin Diabetes Center and Harvard Medical School, Boston, MA 02215
| | - Shiho Fujisaka
- Joslin Diabetes Center and Harvard Medical School, Boston, MA 02215
| | - Sara Vienberg
- Joslin Diabetes Center and Harvard Medical School, Boston, MA 02215
| | - Samir Softic
- Joslin Diabetes Center and Harvard Medical School, Boston, MA 02215
| | - Luxue Deng
- Center for Clinical and Translational Metagenomics, Department of Pathology, Brigham & Women's Hospital Harvard Medical School, Boston, MA, 021115
| | - Lynn Bry
- Center for Clinical and Translational Metagenomics, Department of Pathology, Brigham & Women's Hospital Harvard Medical School, Boston, MA, 021115
| | - Jeffrey I. Gordon
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63108
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63108
| | - C. Ronald Kahn
- Joslin Diabetes Center and Harvard Medical School, Boston, MA 02215
| |
Collapse
|
22
|
Cani PD, Everard A. Talking microbes: When gut bacteria interact with diet and host organs. Mol Nutr Food Res 2015; 60:58-66. [PMID: 26178924 PMCID: PMC5014210 DOI: 10.1002/mnfr.201500406] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/03/2015] [Accepted: 07/07/2015] [Indexed: 12/12/2022]
Abstract
Obesity and diabetes have reached epidemic proportions. Evidence suggests that besides dietary habits and physical activity, other environmental factors, such as gut microbes, are recognized as additional partners implicated in the control of energy homeostasis. Studies on the human gut microbiota have shown that the general population can be stratified on the sole basis of three dominant bacteria (i.e., the concept of enterotypes), while some others have suggested categorizing the population according to their microbiome gene richness. Both aspects have been strengthened by recent studies investigating the impact of nutrients (e.g., dietary fibers, fat feeding) and dietary habits (i.e., vegans versus omnivores) of different populations. Using preclinical models, quite a few novel mechanisms have been proposed in these gut microbiota–host interactions, including the role of novel bacteria, the regulation of antimicrobial peptide production, the maintenance of the gut barrier function and intestinal innate immunity. In this review, we discuss several of the aforementioned aspects. Nonetheless, determining the overall mechanisms by which microbes dialogue with host cells will require further investigations before anticipating the development of next‐generation nutritional interventions using prebiotics, probiotics, synbiotics, or even specific nutrients for promoting health benefits.
Collapse
Affiliation(s)
- Patrice D Cani
- Metabolism and Nutrition Research Group, WELBIO- Walloon Excellence in Life Sciences and BIOtechnology, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Amandine Everard
- Metabolism and Nutrition Research Group, WELBIO- Walloon Excellence in Life Sciences and BIOtechnology, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
23
|
Galimov A, Hartung A, Trepp R, Mader A, Flück M, Linke A, Blüher M, Christ E, Krützfeldt J. Growth hormone replacement therapy regulates microRNA-29a and targets involved in insulin resistance. J Mol Med (Berl) 2015. [PMID: 26199111 PMCID: PMC4661224 DOI: 10.1007/s00109-015-1322-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Abstract Replacement of growth hormone (GH) in patients suffering from GH deficiency (GHD) offers clinical benefits on body composition, exercise capacity, and skeletal integrity. However, GH replacement therapy (GHRT) is also associated with insulin resistance, but the mechanisms are incompletely understood. We demonstrate that in GH-deficient mice (growth hormone-releasing hormone receptor (Ghrhr)lit/lit), insulin resistance after GHRT involves the upregulation of the extracellular matrix (ECM) and the downregulation of microRNA miR-29a in skeletal muscle. Based on RNA deep sequencing of skeletal muscle from GH-treated Ghrhrlit/lit mice, we identified several upregulated genes as predicted miR-29a targets that are negative regulators of insulin signaling or profibrotic/proinflammatory components of the ECM. Using gain- and loss-of-function studies, five of these genes were confirmed as endogenous targets of miR-29a in human myotubes (PTEN, COL3A1, FSTL1, SERPINH1, SPARC). In addition, in human myotubes, IGF1, but not GH, downregulated miR-29a expression and upregulated COL3A1. These results were confirmed in a group of GH-deficient patients after 4 months of GHRT. Serum IGF1 increased, skeletal muscle miR-29a decreased, and miR-29a targets were upregulated in patients with a reduced insulin response (homeostatic model assessment of insulin resistance (HOMA-IR)) after GHRT. We conclude that miR-29a could contribute to the metabolic response of muscle tissue to GHRT by regulating ECM components and PTEN. miR-29a and its targets might be valuable biomarkers for muscle metabolism following GH replacement. Key messages GHRT most significantly affects the ECM cluster in skeletal muscle from mice. GHRT downregulates miR-29a and upregulates miR-29a targets in skeletal muscle from mice. PTEN, COL3A1, FSTL1, SERPINH1, and SPARC are endogenous miR-29a targets in human myotubes. IGF1 decreases miR-29a levels in human myotubes. miR-29a and its targets are regulated during GHRT in skeletal muscle from humans.
Electronic supplementary material The online version of this article (doi:10.1007/s00109-015-1322-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Artur Galimov
- Division of Endocrinology, Diabetes, and Clinical Nutrition, University of Zurich and University Hospital, Rämistrasse 100, 8091, Zurich, Switzerland.,Competence Center Personalized Medicine, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Angelika Hartung
- Division of Endocrinology, Diabetes, and Clinical Nutrition, University of Zurich and University Hospital, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Roman Trepp
- Division of Endocrinology, Diabetes and Clinical Nutrition, University Hospital Bern Inselspital, Bern, Switzerland
| | - Alexander Mader
- Division of Trauma Surgery, University Hospital, Zurich, Switzerland
| | - Martin Flück
- Department of Orthopedics, University Hospital Balgrist, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Axel Linke
- Heart Center Leipzig, University of Leipzig, Leipzig, Germany
| | - Matthias Blüher
- Department of Medicine, University of Leipzig, Leipzig, Germany
| | - Emanuel Christ
- Division of Endocrinology, Diabetes and Clinical Nutrition, University Hospital Bern Inselspital, Bern, Switzerland
| | - Jan Krützfeldt
- Division of Endocrinology, Diabetes, and Clinical Nutrition, University of Zurich and University Hospital, Rämistrasse 100, 8091, Zurich, Switzerland. .,Competence Center Personalized Medicine, ETH Zurich and University of Zurich, Zurich, Switzerland. .,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
24
|
McAlees JW, Whitehead GS, Harley IT, Cappelletti M, Rewerts CL, Holdcroft AM, Divanovic S, Wills-Karp M, Finkelman FD, Karp CL, Cook DN. Distinct Tlr4-expressing cell compartments control neutrophilic and eosinophilic airway inflammation. Mucosal Immunol 2015; 8:863-73. [PMID: 25465099 PMCID: PMC4454628 DOI: 10.1038/mi.2014.117] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 10/22/2014] [Indexed: 02/04/2023]
Abstract
Allergic asthma is a chronic, inflammatory lung disease. Some forms of allergic asthma are characterized by T helper type 2 (Th2)-driven eosinophilia, whereas others are distinguished by Th17-driven neutrophilia. Stimulation of Toll-like receptor 4 (TLR4) on hematopoietic and airway epithelial cells (AECs) contributes to the inflammatory response to lipopolysaccharide (LPS) and allergens, but the specific contribution of TLR4 in these cell compartments to airway inflammatory responses remains poorly understood. We used novel, conditionally mutant Tlr4(fl/fl) mice to define the relative contributions of AEC and hematopoietic cell Tlr4 expression to LPS- and allergen-induced airway inflammation. We found that Tlr4 expression by hematopoietic cells is critical for neutrophilic airway inflammation following LPS exposure and for Th17-driven neutrophilic responses to the house dust mite (HDM) lysates and ovalbumin (OVA). Conversely, Tlr4 expression by AECs was found to be important for robust eosinophilic airway inflammation following sensitization and challenge with these same allergens. Thus, Tlr4 expression by hematopoietic and airway epithelial cells controls distinct arms of the immune response to inhaled allergens.
Collapse
Affiliation(s)
- Jaclyn W. McAlees
- Division of Immunobiology, Cincinnati Children’s Hospital Research Foundation, Cincinnati, OH
| | - Gregory S. Whitehead
- Laboratory of Respiratory Biology, National Institutes of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC
| | - Isaac T.W. Harley
- Division of Immunobiology, Cincinnati Children’s Hospital Research Foundation, Cincinnati, OH
| | - Monica Cappelletti
- Division of Immunobiology, Cincinnati Children’s Hospital Research Foundation, Cincinnati, OH
| | - Cheryl L. Rewerts
- Division of Immunobiology, Cincinnati Children’s Hospital Research Foundation, Cincinnati, OH
| | - A. Maria Holdcroft
- Division of Immunobiology, Cincinnati Children’s Hospital Research Foundation, Cincinnati, OH
| | - Senad Divanovic
- Division of Immunobiology, Cincinnati Children’s Hospital Research Foundation, Cincinnati, OH
| | - Marsha Wills-Karp
- Division of Immunobiology, Cincinnati Children’s Hospital Research Foundation, Cincinnati, OH
| | - Fred D. Finkelman
- Division of Immunobiology, Cincinnati Children’s Hospital Research Foundation, Cincinnati, OH,Department of Medicine, Cincinnati Veterans Affairs Medical Center, Cincinnati, OH,Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, University of Cincinnati School of Medicine, Cincinnati, OH
| | - Christopher L. Karp
- Division of Immunobiology, Cincinnati Children’s Hospital Research Foundation, Cincinnati, OH
| | - Donald N. Cook
- Laboratory of Respiratory Biology, National Institutes of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC
| |
Collapse
|
25
|
Impact of kefir derived Lactobacillus kefiri on the mucosal immune response and gut microbiota. J Immunol Res 2015; 2015:361604. [PMID: 25811034 PMCID: PMC4355334 DOI: 10.1155/2015/361604] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 09/22/2014] [Accepted: 09/23/2014] [Indexed: 12/16/2022] Open
Abstract
The evaluation of the impact of probiotics on host health could help to understand how they can be used in the prevention of diseases. On the basis of our previous studies and in vitro assays on PBMC and Caco-2 ccl20:luc reporter system presented in this work, the strain Lactobacillus kefiri CIDCA 8348 was selected and administrated to healthy Swiss mice daily for 21 days. The probiotic treatment increased IgA in feces and reduced expression of proinflammatory mediators in Peyer Patches and mesenteric lymph nodes, where it also increased IL-10. In ileum IL-10, CXCL-1 and mucin 6 genes were upregulated; meanwhile in colon mucin 4 was induced whereas IFN-γ, GM-CSF, and IL-1β genes were downregulated. Moreover, ileum and colon explants showed the anti-inflammatory effect of L. kefiri since the LPS-induced increment of IL-6 and GM-CSF levels in control mice was significantly attenuated in L. kefiri treated mice. Regarding fecal microbiota, DGGE profiles allowed differentiation of experimental groups in two separated clusters. Quantitative PCR analysis of different bacterial groups revealed only significant changes in Lactobacillus population. In conclusion, L. kefiri is a good candidate to be used in gut inflammatory disorders.
Collapse
|
26
|
Preclinical studies of amixicile, a systemic therapeutic developed for treatment of Clostridium difficile infections that also shows efficacy against Helicobacter pylori. Antimicrob Agents Chemother 2014; 58:4703-12. [PMID: 24890599 DOI: 10.1128/aac.03112-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Amixicile shows efficacy in the treatment of Clostridium difficile infections (CDI) in a mouse model, with no recurrence of CDI. Since amixicile selectively inhibits the action of a B vitamin (thiamine pyrophosphate) cofactor of pyruvate:ferredoxin oxidoreductase (PFOR), it may both escape mutation-based drug resistance and spare beneficial probiotic gut bacteria that do not express this enzyme. Amixicile is a water-soluble derivative of nitazoxanide (NTZ), an antiparasitic therapeutic that also shows efficacy against CDI in humans. In comparative studies, amixicile showed no toxicity to hepatocytes at 200 μM (NTZ was toxic above 10 μM); was not metabolized by human, dog, or rat liver microsomes; showed equivalence or superiority to NTZ in cytochrome P450 assays; and did not activate efflux pumps (breast cancer resistance protein, P glycoprotein). A maximum dose (300 mg/kg) of amixicile given by the oral or intraperitoneal route was well tolerated by mice and rats. Plasma exposure (rats) based on the area under the plasma concentration-time curve was 79.3 h · μg/ml (30 mg/kg dose) to 328 h · μg/ml (100 mg/kg dose), the maximum concentration of the drug in serum was 20 μg/ml, the time to the maximum concentration of the drug in serum was 0.5 to 1 h, and the half-life was 5.6 h. Amixicile did not concentrate in mouse feces or adversely affect gut populations of Bacteroides species, Firmicutes, segmented filamentous bacteria, or Lactobacillus species. Systemic bioavailability was demonstrated through eradication of Helicobacter pylori in a mouse infection model. In summary, the efficacy of amixicile in treating CDI and other infections, together with low toxicity, an absence of mutation-based drug resistance, and excellent drug metabolism and pharmacokinetic metrics, suggests a potential for broad application in the treatment of infections caused by PFOR-expressing microbial pathogens in addition to CDI.
Collapse
|
27
|
Cani PD, Geurts L, Matamoros S, Plovier H, Duparc T. Glucose metabolism: focus on gut microbiota, the endocannabinoid system and beyond. DIABETES & METABOLISM 2014; 40:246-57. [PMID: 24631413 DOI: 10.1016/j.diabet.2014.02.004] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 02/05/2014] [Accepted: 02/05/2014] [Indexed: 12/25/2022]
Abstract
The gut microbiota is now considered as a key factor in the regulation of numerous metabolic pathways. Growing evidence suggests that cross-talk between gut bacteria and host is achieved through specific metabolites (such as short-chain fatty acids) and molecular patterns of microbial membranes (lipopolysaccharides) that activate host cell receptors (such as toll-like receptors and G-protein-coupled receptors). The endocannabinoid (eCB) system is an important target in the context of obesity, type 2 diabetes (T2D) and inflammation. It has been demonstrated that eCB system activity is involved in the control of glucose and energy metabolism, and can be tuned up or down by specific gut microbes (for example, Akkermansia muciniphila). Numerous studies have also shown that the composition of the gut microbiota differs between obese and/or T2D individuals and those who are lean and non-diabetic. Although some shared taxa are often cited, there is still no clear consensus on the precise microbial composition that triggers metabolic disorders, and causality between specific microbes and the development of such diseases is yet to be proven in humans. Nevertheless, gastric bypass is most likely the most efficient procedure for reducing body weight and treating T2D. Interestingly, several reports have shown that the gut microbiota is profoundly affected by the procedure. It has been suggested that the consistent postoperative increase in certain bacterial groups such as Proteobacteria, Bacteroidetes and Verrucomicrobia (A. muciniphila) may explain its beneficial impact in gnotobiotic mice. Taken together, these data suggest that specific gut microbes modulate important host biological systems that contribute to the control of energy homoeostasis, glucose metabolism and inflammation in obesity and T2D.
Collapse
Affiliation(s)
- P D Cani
- Université catholique de Louvain, Louvain Drug Research Institute, WELBIO (Walloon Excellence in Life sciences and BIOtechnology), Metabolism and Nutrition research group, Avenue E. Mounier, 73 Box B1.73.11, 1200 Brussels, Belgium.
| | - L Geurts
- Université catholique de Louvain, Louvain Drug Research Institute, WELBIO (Walloon Excellence in Life sciences and BIOtechnology), Metabolism and Nutrition research group, Avenue E. Mounier, 73 Box B1.73.11, 1200 Brussels, Belgium
| | - S Matamoros
- Université catholique de Louvain, Louvain Drug Research Institute, WELBIO (Walloon Excellence in Life sciences and BIOtechnology), Metabolism and Nutrition research group, Avenue E. Mounier, 73 Box B1.73.11, 1200 Brussels, Belgium
| | - H Plovier
- Université catholique de Louvain, Louvain Drug Research Institute, WELBIO (Walloon Excellence in Life sciences and BIOtechnology), Metabolism and Nutrition research group, Avenue E. Mounier, 73 Box B1.73.11, 1200 Brussels, Belgium
| | - T Duparc
- Université catholique de Louvain, Louvain Drug Research Institute, WELBIO (Walloon Excellence in Life sciences and BIOtechnology), Metabolism and Nutrition research group, Avenue E. Mounier, 73 Box B1.73.11, 1200 Brussels, Belgium
| |
Collapse
|