1
|
Russ-Silsby J, Lee Y, Rajesh V, Amoli M, Mirhosseini NA, Godbole T, Johnson MB, Ibarra DE, Sun H, Krentz NAJ, Wakeling MN, Flanagan SE, Hattersley AT, Gloyn AL, De Franco E. Complete Loss of PAX4 causes Transient Neonatal Diabetes in Humans. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.04.01.25324926. [PMID: 40236391 PMCID: PMC11998800 DOI: 10.1101/2025.04.01.25324926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Gene discovery studies in individuals with diabetes diagnosed within 6 months of life (neonatal diabetes, NDM) can provide unique insights into the development and function of human pancreatic beta-cells. We describe the identification of homozygous PAX4 loss-of-function variants in 2 unrelated individuals with NDM: a p.(Arg126*) stop-gain variant and a c.-352_104del deletion affecting the first 4 PAX4 exons. We confirmed the p.(Arg126*) variant causes nonsense mediated decay in CRISPR-edited human induced pluripotent stem cell (iPSC)-derived pancreatic endoderm cells. Integrated analysis of CUT&RUN and RNA-sequencing in PAX4-depleted islet cell models identified genes directly regulated by PAX4 involved in both pancreatic islet development and glucose-stimulated insulin secretion. Both probands had transient NDM which remitted in early infancy but relapsed between the ages of 2 and 7 years, demonstrating that in contrast to mouse models, PAX4 is not essential for the development of human pancreatic beta-cells.
Collapse
Affiliation(s)
- James Russ-Silsby
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, U.K
| | - Yunkyeong Lee
- Division of Endocrinology, Department of Pediatrics, School of Medicine, Stanford University, Stanford, CA, USA
| | - Varsha Rajesh
- Division of Endocrinology, Department of Pediatrics, School of Medicine, Stanford University, Stanford, CA, USA
| | - Mahsa Amoli
- Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Iran
| | | | | | - Matthew B. Johnson
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, U.K
| | - Dora E. Ibarra
- Division of Endocrinology, Department of Pediatrics, School of Medicine, Stanford University, Stanford, CA, USA
| | - Han Sun
- Division of Endocrinology, Department of Pediatrics, School of Medicine, Stanford University, Stanford, CA, USA
| | - Nicole A. J. Krentz
- Division of Endocrinology, Department of Pediatrics, School of Medicine, Stanford University, Stanford, CA, USA
| | - Matthew N. Wakeling
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, U.K
| | - Sarah E. Flanagan
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, U.K
| | - Andrew T. Hattersley
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, U.K
| | - Anna L. Gloyn
- Division of Endocrinology, Department of Pediatrics, School of Medicine, Stanford University, Stanford, CA, USA
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA, USA
- Stanford Diabetes Research Center, School of Medicine, Stanford University, Stanford, CA, USA
| | - Elisa De Franco
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, U.K
| |
Collapse
|
2
|
Setyono ESA, Rogers NK, Hofmann A, Lickert H, Burtscher I. Generation of ARX-T2A-H2B-CFP x C-PEP-mCherry-hiPSC double reporter line for monitoring of pancreatic differentiation. Stem Cell Res 2025; 84:103685. [PMID: 40022904 DOI: 10.1016/j.scr.2025.103685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 02/14/2025] [Indexed: 03/04/2025] Open
Abstract
Pancreatic islets consist of several different endocrine cell types that work in harmony. Aside from primary pancreatic islets, stem cell-derived pancreatic islets can be used as an alternative research and disease model. Here, we introduce a double reporter line of ARX-T2A-H2B-CFP x C-PEP-mCherry-hiPSC through CRISPR/Cas9-mediated insertion of mCherry in the C-terminus of C-Peptide in the previously published ARX-CFP hiPSC line. This reporter line allows live monitoring of stem cell-derived pancreatic alpha and beta cells throughout differentiation.
Collapse
Affiliation(s)
- Eunike Sawitning Ayu Setyono
- Institute of Diabetes and Regeneration Research, Helmholtz Munich, 85764 Neuherberg, Germany; Technical University Munich 81675 Munich, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Nicole Katarina Rogers
- Institute of Diabetes and Regeneration Research, Helmholtz Munich, 85764 Neuherberg, Germany; Technical University Munich 81675 Munich, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Anita Hofmann
- Institute of Diabetes and Regeneration Research, Helmholtz Munich, 85764 Neuherberg, Germany
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Munich, 85764 Neuherberg, Germany; Technical University Munich 81675 Munich, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Ingo Burtscher
- Institute of Diabetes and Regeneration Research, Helmholtz Munich, 85764 Neuherberg, Germany; Technical University Munich 81675 Munich, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany.
| |
Collapse
|
3
|
Wang L, Wu J, Sramek M, Obayomi SMB, Gao P, Li Y, Matveyenko AV, Wei Z. Heterogeneous enhancer states orchestrate β cell responses to metabolic stress. Nat Commun 2024; 15:9361. [PMID: 39472434 PMCID: PMC11522703 DOI: 10.1038/s41467-024-53717-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 10/18/2024] [Indexed: 11/02/2024] Open
Abstract
Obesity-induced β cell dysfunction contributes to the onset of type 2 diabetes. Nevertheless, elucidating epigenetic mechanisms underlying islet dysfunction at single cell level remains challenging. Here we profile single-nuclei RNA along with enhancer marks H3K4me1 or H3K27ac in islets from lean or obese mice. Our study identifies distinct gene signatures and enhancer states correlating with β cell dysfunction trajectory. Intriguingly, while many metabolic stress-induced genes exhibit concordant changes in both H3K4me1 and H3K27ac at their enhancers, expression changes of specific subsets are solely attributable to either H3K4me1 or H3K27ac dynamics. Remarkably, a subset of H3K4me1+H3K27ac- primed enhancers prevalent in lean β cells and occupied by FoxA2 are largely absent after metabolic stress. Lastly, cell-cell communication analysis identified the nerve growth factor (NGF) as protective paracrine signaling for β cells through repressing ER stress. In summary, our findings define the heterogeneous enhancer responses to metabolic challenges in individual β cells.
Collapse
Affiliation(s)
- Liu Wang
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Scottsdale, AZ, USA
| | - Jie Wu
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Scottsdale, AZ, USA
| | - Madeline Sramek
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Scottsdale, AZ, USA
| | - S M Bukola Obayomi
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Scottsdale, AZ, USA
| | - Peidong Gao
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Yan Li
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Aleksey V Matveyenko
- Department of Physiology and Biomedical Engineering and Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Zong Wei
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Scottsdale, AZ, USA.
- Division of Endocrinology, Mayo Clinic, Scottsdale, AZ, USA.
| |
Collapse
|
4
|
Arroyave F, Uscátegui Y, Lizcano F. From iPSCs to Pancreatic β Cells: Unveiling Molecular Pathways and Enhancements with Vitamin C and Retinoic Acid in Diabetes Research. Int J Mol Sci 2024; 25:9654. [PMID: 39273600 PMCID: PMC11395045 DOI: 10.3390/ijms25179654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
Diabetes mellitus, a chronic and non-transmissible disease, triggers a wide range of micro- and macrovascular complications. The differentiation of pancreatic β-like cells (PβLCs) from induced pluripotent stem cells (iPSCs) offers a promising avenue for regenerative medicine aimed at treating diabetes. Current differentiation protocols strive to emulate pancreatic embryonic development by utilizing cytokines and small molecules at specific doses to activate and inhibit distinct molecular signaling pathways, directing the differentiation of iPSCs into pancreatic β cells. Despite significant progress and improved protocols, the full spectrum of molecular signaling pathways governing pancreatic development and the physiological characteristics of the differentiated cells are not yet fully understood. Here, we report a specific combination of cofactors and small molecules that successfully differentiate iPSCs into PβLCs. Our protocol has shown to be effective, with the resulting cells exhibiting key functional properties of pancreatic β cells, including the expression of crucial molecular markers (pdx1, nkx6.1, ngn3) and the capability to secrete insulin in response to glucose. Furthermore, the addition of vitamin C and retinoic acid in the final stages of differentiation led to the overexpression of specific β cell genes.
Collapse
Affiliation(s)
- Felipe Arroyave
- Center of Biomedical Investigation (CIBUS), Universidad de La Sabana, Chia 250008, Colombia
- Doctoral Program in Biociencias, Universidad de La Sabana, Chia 250008, Colombia
| | - Yomaira Uscátegui
- Center of Biomedical Investigation (CIBUS), Universidad de La Sabana, Chia 250008, Colombia
| | - Fernando Lizcano
- Center of Biomedical Investigation (CIBUS), Universidad de La Sabana, Chia 250008, Colombia
- Doctoral Program in Biociencias, Universidad de La Sabana, Chia 250008, Colombia
- School of Medicine, Universidad de La Sabana, Chia 250008, Colombia
| |
Collapse
|
5
|
Ashok A, Kalthur G, Kumar A. Degradation meets development: Implications in β-cell development and diabetes. Cell Biol Int 2024; 48:759-776. [PMID: 38499517 DOI: 10.1002/cbin.12155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/22/2024] [Accepted: 03/04/2024] [Indexed: 03/20/2024]
Abstract
Pancreatic development is orchestrated by timely synthesis and degradation of stage-specific transcription factors (TFs). The transition from one stage to another stage is dependent on the precise expression of the developmentally relevant TFs. Persistent expression of particular TF would impede the exit from the progenitor stage to the matured cell type. Intracellular protein degradation-mediated protein turnover contributes to a major extent to the turnover of these TFs and thereby dictates the development of different tissues. Since even subtle changes in the crucial cellular pathways would dramatically impact pancreatic β-cell performance, it is generally acknowledged that the biological activity of these pathways is tightly regulated by protein synthesis and degradation process. Intracellular protein degradation is executed majorly by the ubiquitin proteasome system (UPS) and Lysosomal degradation pathway. As more than 90% of the TFs are targeted to proteasomal degradation, this review aims to examine the crucial role of UPS in normal pancreatic β-cell development and how dysfunction of these pathways manifests in metabolic syndromes such as diabetes. Such understanding would facilitate designing a faithful approach to obtain a therapeutic quality of β-cells from stem cells.
Collapse
Affiliation(s)
- Akshaya Ashok
- Manipal Institute of Regenerative Medicine, Bangalore, Manipal Academy of Higher Education, Manipal, India
| | - Guruprasad Kalthur
- Division of Reproductive and Developmental Biology, Department of Reproductive Science, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Anujith Kumar
- Manipal Institute of Regenerative Medicine, Bangalore, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
6
|
Liu N, Wang A, Xue M, Zhu X, Liu Y, Chen M. FOXA1 and FOXA2: the regulatory mechanisms and therapeutic implications in cancer. Cell Death Discov 2024; 10:172. [PMID: 38605023 PMCID: PMC11009302 DOI: 10.1038/s41420-024-01936-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/13/2024] Open
Abstract
FOXA1 (Forkhead Box A1) and FOXA2 (Forkhead Box A2) serve as pioneering transcription factors that build gene expression capacity and play a central role in biological processes, including organogenesis and differentiation, glycolipid metabolism, proliferation, migration and invasion, and drug resistance. Notably, FOXA1 and FOXA2 may exert antagonistic, synergistic, or complementary effects in the aforementioned biological processes. This article focuses on the molecular mechanisms and clinical relevance of FOXA1 and FOXA2 in steroid hormone-induced malignancies and highlights potential strategies for targeting FOXA1 and FOXA2 for cancer therapy. Furthermore, the article describes the prospect of targeting upstream regulators of FOXA1/FOXA2 to regulate its expression for cancer therapy because of the drug untargetability of FOXA1/FOXA2.
Collapse
Affiliation(s)
- Na Liu
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China.
| | - Anran Wang
- Department of Radiotherapy and Oncology, Gusu School, Nanjing Medical University, The First People's Hospital of Kunshan, Suzhou, 215300, Jiangsu Province, China
| | - Mengen Xue
- Department of Radiotherapy and Oncology, Gusu School, Nanjing Medical University, The First People's Hospital of Kunshan, Suzhou, 215300, Jiangsu Province, China
| | - Xiaoren Zhu
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Yang Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Minbin Chen
- Department of Radiotherapy and Oncology, Gusu School, Nanjing Medical University, The First People's Hospital of Kunshan, Suzhou, 215300, Jiangsu Province, China.
| |
Collapse
|
7
|
Yan D, Lv M, Kong X, Feng L, Ying Y, Liu W, Wang X, Ma X. FXR controls insulin content by regulating Foxa2-mediated insulin transcription. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119655. [PMID: 38135007 DOI: 10.1016/j.bbamcr.2023.119655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/07/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023]
Abstract
Farnesoid X receptor (FXR) is a nuclear ligand-activated receptor of bile acids that plays a role in the modulation of insulin content. However, the underlying molecular mechanisms remain unclear. Forkhead box a2 (Foxa2) is an important nuclear transcription factor in pancreatic β-cells and is involved in β-cell function. We aimed to explore the signaling mechanism downstream of FXR to regulate insulin content and underscore its association with Foxa2 and insulin gene (Ins) transcription. All experiments were conducted on FXR transgenic mice, INS-1 823/13 cells, and diabetic Goto-Kakizaki (GK) rats undergoing sham or Roux-en-Y gastric bypass (RYGB) surgery. Islets from FXR knockout mice and INS-1823/13 cells with FXR knockdown exhibited substantially lower insulin levels than that of controls. This was accompanied by decreased Foxa2 expression and Ins transcription. Conversely, FXR overexpression increased insulin content, concomitant with enhanced Foxa2 expression and Ins transcription in INS-1 823/13 cells. Moreover, FXR knockdown reduced FXR recruitment and H3K27 trimethylation in the Foxa2 promoter. Importantly, Foxa2 overexpression abrogated the adverse effects of FXR knockdown on Ins transcription and insulin content in INS-1 823/13 cells. Notably, RYGB surgery led to improved insulin content in diabetic GK rats, which was accompanied by upregulated FXR and Foxa2 expression and Ins transcription. Collectively, these data suggest that Foxa2 serves as the target gene of FXR in β-cells and mediates FXR-enhanced Ins transcription. Additionally, the upregulated FXR/Foxa2 signaling cascade could contribute to the enhanced insulin content in diabetic GK rats after RYGB.
Collapse
Affiliation(s)
- Dan Yan
- Shenzhen University Diabetes Institute, Medical School, Shenzhen University, Shenzhen 518060, PR China.
| | - Moyang Lv
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, PR China
| | - Xiangchen Kong
- Shenzhen University Diabetes Institute, Medical School, Shenzhen University, Shenzhen 518060, PR China
| | - Linxian Feng
- Shenzhen University Diabetes Institute, Medical School, Shenzhen University, Shenzhen 518060, PR China
| | - Ying Ying
- Shenzhen University Diabetes Institute, Medical School, Shenzhen University, Shenzhen 518060, PR China
| | - Wenjuan Liu
- Shenzhen University Diabetes Institute, Medical School, Shenzhen University, Shenzhen 518060, PR China
| | - Xin Wang
- Shenzhen University Diabetes Institute, Medical School, Shenzhen University, Shenzhen 518060, PR China
| | - Xiaosong Ma
- Shenzhen University Diabetes Institute, Medical School, Shenzhen University, Shenzhen 518060, PR China
| |
Collapse
|
8
|
Narayan G, Ronima K R, Agrawal A, Thummer RP. An Insight into Vital Genes Responsible for β-cell Formation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1450:1-27. [PMID: 37432546 DOI: 10.1007/5584_2023_778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
The regulation of glucose homeostasis and insulin secretion by pancreatic β-cells, when disturbed, will result in diabetes mellitus. Replacement of dysfunctional or lost β-cells with fully functional ones can tackle the problem of β-cell generation in diabetes mellitus. Various pancreatic-specific genes are expressed during different stages of development, which have essential roles in pancreatogenesis and β-cell formation. These factors play a critical role in cellular-based studies like transdifferentiation or de-differentiation of somatic cells to multipotent or pluripotent stem cells and their differentiation into functional β-cells. This work gives an overview of crucial transcription factors expressed during various stages of pancreas development and their role in β-cell specification. In addition, it also provides a perspective on the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Gloria Narayan
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Ronima K R
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Akriti Agrawal
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Rajkumar P Thummer
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India.
| |
Collapse
|
9
|
Zheng L, Wang Y, Li Y, Li L, Wang X, Li Y. miR-765 targeting PDX1 impairs pancreatic β-cell function to induce type 2 diabetes. Arch Physiol Biochem 2023; 129:1279-1288. [PMID: 34357821 DOI: 10.1080/13813455.2021.1946561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/17/2021] [Indexed: 01/02/2023]
Abstract
Type 2 diabetes (T2DM) is a chronic metabolism disorder with a symptom as pancreatic β-cell dysfunction. In this study, the bioinformatics analysis identified the key regulators (PDX1 and miR-765) in T2DM. By qRT-PCR and western blotting, miR-765 with high expression and PDX1 with low expression were observed in blood samples from T2DM patients and the T2DM cell model. Together with GSIS assay, CCK-8, TUNEL assay, glycolysis assay, and mitochondrial respiration assay, miR-765 overexpression impaired insulin secretion cell viability, glycolysis, and mitochondrial respiration, while enhanced cell apoptosis in pancreatic β-cell. The Luciferase reporter, RIP, and RNA pull-down assays showed that PDX1 was the target gene of miR-765 in pancreatic β-cell. Besides, the negative effect of miR-765 on pancreatic β-cell could be overturned by PDX1 overexpression. In conclusion, we confirmed that miR-765 could cause a detrimental effect on pancreatic β-cell survival and function by targeting PDX1, which might provide new insight for T2DM therapy.
Collapse
Affiliation(s)
- Li Zheng
- Department of Endocrinology, Wuhan Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Yalan Wang
- Department of Endocrinology, Wuhan Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Yanhong Li
- Department of Endocrinology, Wuhan Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Li Li
- Department of Endocrinology, Wuhan Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Xiaohong Wang
- Department of Endocrinology, Wuhan Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Yan Li
- Department of Endocrinology, Wuhan Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Mahmoudi-Aznaveh A, Tavoosidana G, Najmabadi H, Azizi Z, Ardestani A. The liver-derived exosomes stimulate insulin gene expression in pancreatic beta cells under condition of insulin resistance. Front Endocrinol (Lausanne) 2023; 14:1303930. [PMID: 38027137 PMCID: PMC10661932 DOI: 10.3389/fendo.2023.1303930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction An insufficient functional beta cell mass is a core pathological hallmark of type 2 diabetes (T2D). Despite the availability of several effective pharmaceuticals for diabetes management, there is an urgent need for novel medications to protect pancreatic beta cells under diabetic conditions. Integrative organ cross-communication controls the energy balance and glucose homeostasis. The liver and pancreatic islets have dynamic cross-communications where the liver can trigger a compensatory beta cell mass expansion and enhanced hormonal secretion in insulin-resistant conditions. However, the indispensable element(s) that foster beta cell proliferation and insulin secretion have yet to be completely identified. Exosomes are important extracellular vehicles (EVs) released by most cell types that transfer biological signal(s), including metabolic messengers such as miRNA and peptides, between cells and organs. Methods We investigated whether beta cells can take up liver-derived exosomes and examined their impact on beta cell functional genes and insulin expression. Exosomes isolated from human liver HepG2 cells were characterized using various methods, including Transmission Electron Microscopy (TEM), dynamic light scattering (DLS), and Western blot analysis of exosomal markers. Exosome labeling and cell uptake were assessed using CM-Dil dye. The effect of liver cell-derived exosomes on Min6 beta cells was determined through gene expression analyses of beta cell markers and insulin using qPCR, as well as Akt signaling using Western blotting. Results Treatment of Min6 beta cells with exosomes isolated from human liver HepG2 cells treated with insulin receptor antagonist S961 significantly increased the expression of beta cell markers Pdx1, NeuroD1, and Ins1 compared to the exosomes isolated from untreated cells. In line with this, the activity of AKT kinase, an integral component of the insulin receptor pathway, is elevated in pancreatic beta cells, as represented by an increase in AKT's downstream substrate, FoxO1 phosphorylation. Discussions This study suggests that liver-derived exosomes may carry a specific molecular cargo that can affect insulin expression in pancreatic beta cells, ultimately affecting glucose homeostasis.
Collapse
Affiliation(s)
- Azam Mahmoudi-Aznaveh
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Tavoosidana
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Najmabadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Zahra Azizi
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amin Ardestani
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany
| |
Collapse
|
11
|
Bohuslavova R, Fabriciova V, Smolik O, Lebrón-Mora L, Abaffy P, Benesova S, Zucha D, Valihrach L, Berkova Z, Saudek F, Pavlinkova G. NEUROD1 reinforces endocrine cell fate acquisition in pancreatic development. Nat Commun 2023; 14:5554. [PMID: 37689751 PMCID: PMC10492842 DOI: 10.1038/s41467-023-41306-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 08/30/2023] [Indexed: 09/11/2023] Open
Abstract
NEUROD1 is a transcription factor that helps maintain a mature phenotype of pancreatic β cells. Disruption of Neurod1 during pancreatic development causes severe neonatal diabetes; however, the exact role of NEUROD1 in the differentiation programs of endocrine cells is unknown. Here, we report a crucial role of the NEUROD1 regulatory network in endocrine lineage commitment and differentiation. Mechanistically, transcriptome and chromatin landscape analyses demonstrate that Neurod1 inactivation triggers a downregulation of endocrine differentiation transcription factors and upregulation of non-endocrine genes within the Neurod1-deficient endocrine cell population, disturbing endocrine identity acquisition. Neurod1 deficiency altered the H3K27me3 histone modification pattern in promoter regions of differentially expressed genes, which resulted in gene regulatory network changes in the differentiation pathway of endocrine cells, compromising endocrine cell potential, differentiation, and functional properties.
Collapse
Affiliation(s)
- Romana Bohuslavova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Valeria Fabriciova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Ondrej Smolik
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Laura Lebrón-Mora
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Pavel Abaffy
- Laboratory of Gene Expression, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Sarka Benesova
- Laboratory of Gene Expression, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Daniel Zucha
- Laboratory of Gene Expression, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Lukas Valihrach
- Laboratory of Gene Expression, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Zuzana Berkova
- Diabetes Centre, Experimental Medicine Centre, Institute for Clinical and Experimental Medicine, 14021, Prague, Czechia
| | - Frantisek Saudek
- Diabetes Centre, Experimental Medicine Centre, Institute for Clinical and Experimental Medicine, 14021, Prague, Czechia
| | - Gabriela Pavlinkova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology CAS, 25250, Vestec, Czechia.
| |
Collapse
|
12
|
Elsayed AK, Alajez NM, Abdelalim EM. Genome-wide differential expression profiling of long non-coding RNAs in FOXA2 knockout iPSC-derived pancreatic cells. Cell Commun Signal 2023; 21:229. [PMID: 37670346 PMCID: PMC10478503 DOI: 10.1186/s12964-023-01212-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/01/2023] [Indexed: 09/07/2023] Open
Abstract
BACKGROUND Our recent studies have demonstrated the crucial involvement of FOXA2 in the development of human pancreas. Reduction of FOXA2 expression during the differentiation of induced pluripotent stem cells (iPSCs) into pancreatic islets has been found to reduce α-and β-cell masses. However, the extent to which such changes are linked to alterations in the expression profile of long non-coding RNAs (lncRNAs) remains unraveled. METHODS Here, we employed our recently established FOXA2-deficient iPSCs (FOXA2-/- iPSCs) to investigate changes in lncRNA profiles and their correlation with dysregulated mRNAs during the pancreatic progenitor (PP) and pancreatic islet stages. Furthermore, we constructed co-expression networks linking significantly downregulated lncRNAs with differentially expressed pancreatic mRNAs. RESULTS Our results showed that 442 lncRNAs were downregulated, and 114 lncRNAs were upregulated in PPs lacking FOXA2 compared to controls. Similarly, 177 lncRNAs were downregulated, and 59 lncRNAs were upregulated in islet cells lacking FOXA2 compared to controls. At both stages, we observed a strong correlation between lncRNAs and several crucial pancreatic genes and TFs during pancreatic differentiation. Correlation analysis revealed 12 DE-lncRNAs that strongly correlated with key downregulated pancreatic genes in both PPs and islet cell stages. Selected DE-lncRNAs were validated using RT-qPCR. CONCLUSIONS Our data indicate that the observed defects in pancreatic islet development due to the FOXA2 loss is associated with significant alterations in the expression profile of lncRNAs. Therefore, our findings provide novel insights into the role of lncRNA and mRNA networks in regulating pancreatic islet development, which warrants further investigations. Video Abstract.
Collapse
Affiliation(s)
- Ahmed K Elsayed
- Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
- Stem Cell Core, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Nehad M Alajez
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
- Translational Cancer and Immunity Center (TCIC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | - Essam M Abdelalim
- Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar.
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar.
| |
Collapse
|
13
|
Blandino-Rosano M, Louzada RA, Werneck-De-Castro JP, Lubaczeuski C, Almaça J, Rüegg MA, Hall MN, Leibowitz G, Bernal-Mizrachi E. Raptor levels are critical for β-cell adaptation to a high-fat diet in male mice. Mol Metab 2023; 75:101769. [PMID: 37423392 PMCID: PMC10391668 DOI: 10.1016/j.molmet.2023.101769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/19/2023] [Accepted: 06/29/2023] [Indexed: 07/11/2023] Open
Abstract
OBJECTIVE The essential role of raptor/mTORC1 signaling in β-cell survival and insulin processing has been recently demonstrated using raptor knock-out models. Our aim was to evaluate the role of mTORC1 function in adaptation of β-cells to insulin resistant state. METHOD Here, we use mice with heterozygous deletion of raptor in β-cells (βraHet) to assess whether reduced mTORC1 function is critical for β-cell function in normal conditions or during β-cell adaptation to high-fat diet (HFD). RESULTS Deletion of a raptor allele in β-cells showed no differences at the metabolic level, islets morphology, or β-cell function in mice fed regular chow. Surprisingly, deletion of only one allele of raptor increases apoptosis without altering proliferation rate and is sufficient to impair insulin secretion when fed a HFD. This is accompanied by reduced levels of critical β-cell genes like Ins1, MafA, Ucn3, Glut2, Glp1r, and specially PDX1 suggesting an improper β-cell adaptation to HFD. CONCLUSION This study identifies that raptor levels play a key role in maintaining PDX1 levels and β-cell function during the adaptation of β-cell to HFD. Finally, we identified that Raptor levels regulate PDX1 levels and β-cell function during β-cell adaptation to HFD by reduction of the mTORC1-mediated negative feedback and activation of the AKT/FOXA2/PDX1 axis. We suggest that Raptor levels are critical to maintaining PDX1 levels and β-cell function in conditions of insulin resistance in male mice.
Collapse
Affiliation(s)
- Manuel Blandino-Rosano
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, Miller School of Medicine, University of Miami, Miami, FL, USA; Miami VA Health Care System, Miami, FL, USA.
| | - Ruy Andrade Louzada
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Joao Pedro Werneck-De-Castro
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, Miller School of Medicine, University of Miami, Miami, FL, USA; Miami VA Health Care System, Miami, FL, USA
| | - Camila Lubaczeuski
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Joana Almaça
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Markus A Rüegg
- Biozentrum, University of Basel, CH-4056, Basel, Switzerland
| | - Michael N Hall
- Biozentrum, University of Basel, CH-4056, Basel, Switzerland
| | - Gil Leibowitz
- Diabetes Unit and Endocrine Service, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ernesto Bernal-Mizrachi
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, Miller School of Medicine, University of Miami, Miami, FL, USA; Miami VA Health Care System, Miami, FL, USA.
| |
Collapse
|
14
|
Miranda MA, Macias-Velasco JF, Schmidt H, Lawson HA. Integrated transcriptomics contrasts fatty acid metabolism with hypoxia response in β-cell subpopulations associated with glycemic control. BMC Genomics 2023; 24:156. [PMID: 36978008 PMCID: PMC10052828 DOI: 10.1186/s12864-023-09232-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Understanding how heterogeneous β-cell function impacts diabetes is imperative for therapy development. Standard single-cell RNA sequencing analysis illuminates some factors driving heterogeneity, but new strategies are required to enhance information capture. RESULTS We integrate pancreatic islet single-cell and bulk RNA sequencing data to identify β-cell subpopulations based on gene expression and characterize genetic networks associated with β-cell function in obese SM/J mice. We identify β-cell subpopulations associated with basal insulin secretion, hypoxia response, cell polarity, and stress response. Network analysis associates fatty acid metabolism and basal insulin secretion with hyperglycemic-obesity, while expression of Pdyn and hypoxia response is associated with normoglycemic-obesity. CONCLUSIONS By integrating single-cell and bulk islet transcriptomes, our study explores β-cell heterogeneity and identifies novel subpopulations and genetic pathways associated with β-cell function in obesity.
Collapse
Affiliation(s)
- Mario A Miranda
- Department of Genetics, Washington University School of Medicine, 660 South Euclid Ave, Campus Box 8232, Saint Louis, MO, 63110, USA
| | - Juan F Macias-Velasco
- Department of Genetics, Washington University School of Medicine, 660 South Euclid Ave, Campus Box 8232, Saint Louis, MO, 63110, USA
| | - Heather Schmidt
- Department of Genetics, Washington University School of Medicine, 660 South Euclid Ave, Campus Box 8232, Saint Louis, MO, 63110, USA
| | - Heather A Lawson
- Department of Genetics, Washington University School of Medicine, 660 South Euclid Ave, Campus Box 8232, Saint Louis, MO, 63110, USA.
| |
Collapse
|
15
|
Bohuslavova R, Fabriciova V, Lebrón-Mora L, Malfatti J, Smolik O, Valihrach L, Benesova S, Zucha D, Berkova Z, Saudek F, Evans SM, Pavlinkova G. ISL1 controls pancreatic alpha cell fate and beta cell maturation. Cell Biosci 2023; 13:53. [PMID: 36899442 PMCID: PMC9999528 DOI: 10.1186/s13578-023-01003-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 03/01/2023] [Indexed: 03/12/2023] Open
Abstract
BACKGROUND Glucose homeostasis is dependent on functional pancreatic α and ß cells. The mechanisms underlying the generation and maturation of these endocrine cells remain unclear. RESULTS We unravel the molecular mode of action of ISL1 in controlling α cell fate and the formation of functional ß cells in the pancreas. By combining transgenic mouse models, transcriptomic and epigenomic profiling, we uncover that elimination of Isl1 results in a diabetic phenotype with a complete loss of α cells, disrupted pancreatic islet architecture, downregulation of key ß-cell regulators and maturation markers of ß cells, and an enrichment in an intermediate endocrine progenitor transcriptomic profile. CONCLUSIONS Mechanistically, apart from the altered transcriptome of pancreatic endocrine cells, Isl1 elimination results in altered silencing H3K27me3 histone modifications in the promoter regions of genes that are essential for endocrine cell differentiation. Our results thus show that ISL1 transcriptionally and epigenetically controls α cell fate competence, and ß cell maturation, suggesting that ISL1 is a critical component for generating functional α and ß cells.
Collapse
Affiliation(s)
- Romana Bohuslavova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology CAS, 25250, Vestec, Czechia.
| | - Valeria Fabriciova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Laura Lebrón-Mora
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Jessica Malfatti
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Ondrej Smolik
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Lukas Valihrach
- Laboratory of Gene Expression, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Sarka Benesova
- Laboratory of Gene Expression, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Daniel Zucha
- Laboratory of Gene Expression, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Zuzana Berkova
- Laboratory of Pancreatic Islets, Institute for Clinical and Experimental Medicine, 14021, Prague, Czechia
| | - Frantisek Saudek
- Laboratory of Pancreatic Islets, Institute for Clinical and Experimental Medicine, 14021, Prague, Czechia
| | - Sylvia M Evans
- Department of Pharmacology; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA, USA
| | - Gabriela Pavlinkova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology CAS, 25250, Vestec, Czechia.
| |
Collapse
|
16
|
In Vivo CaV3 Channel Inhibition Promotes Maturation of Glucose-Dependent Ca2+ Signaling in Human iPSC-Islets. Biomedicines 2023; 11:biomedicines11030807. [PMID: 36979793 PMCID: PMC10045717 DOI: 10.3390/biomedicines11030807] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/26/2023] [Accepted: 03/02/2023] [Indexed: 03/10/2023] Open
Abstract
CaV3 channels are ontogenetically downregulated with the maturation of certain electrically excitable cells, including pancreatic β cells. Abnormally exaggerated CaV3 channels drive the dedifferentiation of mature β cells. This led us to question whether excessive CaV3 channels, retained mistakenly in engineered human-induced pluripotent stem cell-derived islet (hiPSC-islet) cells, act as an obstacle to hiPSC-islet maturation. We addressed this question by using the anterior chamber of the eye (ACE) of immunodeficient mice as a site for recapitulation of in vivo hiPSC-islet maturation in combination with intravitreal drug infusion, intravital microimaging, measurements of cytoplasmic-free Ca2+ concentration ([Ca2+]i) and patch clamp analysis. We observed that the ACE is well suited for recapitulation, observation and intervention of hiPSC-islet maturation. Intriguingly, intraocular hiPSC-islet grafts, retrieved intact following intravitreal infusion of the CaV3 channel blocker NNC55-0396, exhibited decreased basal [Ca2+]i levels and increased glucose-stimulated [Ca2+]i responses. Insulin-expressing cells of these islet grafts indeed expressed the NNC55-0396 target CaV3 channels. Intraocular hiPSC-islets underwent satisfactory engraftment, vascularization and light scattering without being influenced by the intravitreally infused NNC55-0396. These data demonstrate that inhibiting CaV3 channels facilitates the maturation of glucose-activated Ca2+ signaling in hiPSC-islets, supporting the notion that excessive CaV3 channels as a developmental error impede the maturation of engineer ed hiPSC-islet insulin-expressing cells.
Collapse
|
17
|
Aldous N, Elsayed AK, Alajez NM, Abdelalim EM. iPSC-Derived Pancreatic Progenitors Lacking FOXA2 Reveal Alterations in miRNA Expression Targeting Key Pancreatic Genes. Stem Cell Rev Rep 2023; 19:1082-1097. [PMID: 36749553 DOI: 10.1007/s12015-023-10515-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2023] [Indexed: 02/08/2023]
Abstract
Recently, we reported that forkhead box A2 (FOXA2) is required for the development of human pancreatic α- and β-cells. However, whether miRNAs play a role in regulating pancreatic genes during pancreatic development in the absence of FOXA2 expression is largely unknown. Here, we aimed to capture the dysregulated miRNAs and to identify their pancreatic-specific gene targets in pancreatic progenitors (PPs) derived from wild-type induced pluripotent stem cells (WT-iPSCs) and from iPSCs lacking FOXA2 (FOXA2-/-iPSCs). To identify differentially expressed miRNAs (DEmiRs), and genes (DEGs), two different FOXA2-/-iPSC lines were differentiated into PPs. FOXA2-/- PPs showed a significant reduction in the expression of the main PP transcription factors (TFs) in comparison to WT-PPs. RNA sequencing analysis demonstrated significant reduction in the mRNA expression of genes involved in the development and function of exocrine and endocrine pancreas. Furthermore, miRNA profiling identified 107 downregulated and 111 upregulated DEmiRs in FOXA2-/- PPs compared to WT-PPs. Target prediction analysis between DEmiRs and DEGs identified 92 upregulated miRNAs, predicted to target 1498 downregulated genes in FOXA2-/- PPs. Several important pancreatic TFs essential for pancreatic development were targeted by multiple DEmiRs. Selected DEmiRs and DEGs were further validated using RT-qPCR. Our findings revealed that FOXA2 expression is crucial for pancreatic development through regulating the expression of pancreatic endocrine and exocrine genes targeted by a set of miRNAs at the pancreatic progenitor stage. These data provide novel insights of the effect of FOXA2 deficiency on miRNA-mRNA regulatory networks controlling pancreatic development and differentiation.
Collapse
Affiliation(s)
- Noura Aldous
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar.,Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | - Ahmed K Elsayed
- Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | - Nehad M Alajez
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar.,Translational Cancer and Immunity Center (TCIC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | - Essam M Abdelalim
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar. .,Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar.
| |
Collapse
|
18
|
Abstract
The islets of Langerhans are highly organized structures that have species-specific, three-dimensional tissue architecture. Islet architecture is critical for proper hormone secretion in response to nutritional stimuli. Islet architecture is disrupted in all types of diabetes mellitus and in cadaveric islets for transplantation during isolation, culture, and perfusion, limiting patient outcomes. Moreover, recapitulating native islet architecture remains a key challenge for in vitro generation of islets from stem cells. In this review, we discuss work that has led to the current understanding of determinants of pancreatic islet architecture, and how this architecture is maintained or disrupted during tissue remodeling in response to normal and pathological metabolic changes. We further discuss both empirical and modeling data that highlight the importance of islet architecture for islet function.
Collapse
Affiliation(s)
- Melissa T. Adams
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Barak Blum
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, USA
- CONTACT Barak Blum Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI53705, USA
| |
Collapse
|
19
|
Ebrahim N, Shakirova K, Dashinimaev E. PDX1 is the cornerstone of pancreatic β-cell functions and identity. Front Mol Biosci 2022; 9:1091757. [PMID: 36589234 PMCID: PMC9798421 DOI: 10.3389/fmolb.2022.1091757] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Diabetes has been a worldwide healthcare problem for many years. Current methods of treating diabetes are still largely directed at symptoms, aiming to control the manifestations of the pathology. This creates an overall need to find alternative measures that can impact on the causes of the disease, reverse diabetes, or make it more manageable. Understanding the role of key players in the pathogenesis of diabetes and the related β-cell functions is of great importance in combating diabetes. PDX1 is a master regulator in pancreas organogenesis, the maturation and identity preservation of β-cells, and of their role in normal insulin function. Mutations in the PDX1 gene are correlated with many pancreatic dysfunctions, including pancreatic agenesis (homozygous mutation) and MODY4 (heterozygous mutation), while in other types of diabetes, PDX1 expression is reduced. Therefore, alternative approaches to treat diabetes largely depend on knowledge of PDX1 regulation, its interaction with other transcription factors, and its role in obtaining β-cells through differentiation and transdifferentiation protocols. In this article, we review the basic functions of PDX1 and its regulation by genetic and epigenetic factors. Lastly, we summarize different variations of the differentiation protocols used to obtain β-cells from alternative cell sources, using PDX1 alone or in combination with various transcription factors and modified culture conditions. This review shows the unique position of PDX1 as a potential target in the genetic and cellular treatment of diabetes.
Collapse
Affiliation(s)
- Nour Ebrahim
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia,Moscow Institute of Physics and Technology (State University), Dolgoprudny, Russia
| | - Ksenia Shakirova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Erdem Dashinimaev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia,Moscow Institute of Physics and Technology (State University), Dolgoprudny, Russia,*Correspondence: Erdem Dashinimaev,
| |
Collapse
|
20
|
An artificial LAMA2-GelMA hydrogel microenvironment for the development of pancreatic endocrine progenitors. Biomaterials 2022; 291:121882. [DOI: 10.1016/j.biomaterials.2022.121882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 10/15/2022] [Accepted: 10/23/2022] [Indexed: 11/21/2022]
|
21
|
Ghorbani-Dalini S, Azarpira N, Sangtarash MH, Urbach V, Yaghobi R, Soleimanpour-Lichaei HR, Sarshar M. Optimization of 3D islet-like cluster derived from human pluripotent stem cells: an efficient in vitro differentiation protocol. Gene 2022; 845:146855. [PMID: 36058497 DOI: 10.1016/j.gene.2022.146855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/18/2022]
Abstract
Development of an optimized protocol to produce sufficient functional human insulin-producing islet-like cluster is important as a potential therapeutic strategy for diabetes as well as in vitro studies. Here, we described a stepwise protocol for differentiation of the human induced pluripotent stem cell line (R1-hiPSC1) into the islet-like cluster using several growth factors and small molecules. Therefore, various differentiation steps have been adopted to maximize mimicking of developmental processes in order to form functional islet like cluster. The differentiation protocol enables us to generate 3D islet-like clusters with highly viable cells, which are insulin producer and glucose responsive. Transcriptome analysis of transcription factors and functional genes revealed high coordination between gene expressions and resembling to those reported during natural development of islet cell. This coordination was further confirmed by hierarchical clustering of genes during differentiation. Furthermore, the islet-like clusters were enriched with insulin producing cells and formed glucose responsiveness behavior upon stimulation with glucose. Our protocol provides a robust platform and well-behaved model for additional developmental studies and shed light our clusters as a good candidate for in vitro model. Further studies are needed to assess the hormonal content of this cluster as well as transplantation into the animal model.
Collapse
Affiliation(s)
- Sadegh Ghorbani-Dalini
- Department of Research and Development, CBSAlife Ltd., Richardson Center of Food Technology and Research, Winnipeg, Manitoba, Canada; Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | | | - Valérie Urbach
- Insitut National de la Santé Et de la Recherche Médicale, U1151 Paris, France
| | - Ramin Yaghobi
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamid Reza Soleimanpour-Lichaei
- Department of Stem Cells and Regenerative Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Meysam Sarshar
- Research Laboratories, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| |
Collapse
|
22
|
Cuesta-Gomez N, Verhoeff K, Jasra IT, Pawlick R, Dadheech N, Shapiro AMJ. Characterization of stem-cell-derived islets during differentiation and after implantation. Cell Rep 2022; 40:111238. [PMID: 36001981 DOI: 10.1016/j.celrep.2022.111238] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/26/2022] [Accepted: 07/27/2022] [Indexed: 12/11/2022] Open
Abstract
Recapitulation of embryonic pancreatic development has enabled development of methods for in vitro islet cell differentiation using human pluripotent stem cells (hPSCs), which have the potential to cure diabetes. Advanced methods for optimal generation of stem-cell-derived islets (SC-islets) has enabled successful diabetes reversal in rodents and shown promising early clinical trial outcomes. The main impediment for use of SC-islets is concern about safety because of off-target growth resulting from contaminated residual cells. In this review, we summarize the different endocrine and non-endocrine cell populations that have been described to emerge throughout β cell differentiation and after transplantation. We discuss the most recent approaches to enrich endocrine populations and remove off-target cells. Finally, we discuss the critical quality control and release criteria testing that we anticipate will be required prior to transplantation to ensure product safety.
Collapse
Affiliation(s)
- Nerea Cuesta-Gomez
- Alberta Diabetes Institute, Department of Surgery, 1-002 Li Ka Shing Centre for Health Research Innovation, University of Alberta, 112 St. NW & 87 Ave. NW, Edmonton, AB T6G 2E1, Canada
| | - Kevin Verhoeff
- Alberta Diabetes Institute, Department of Surgery, 1-002 Li Ka Shing Centre for Health Research Innovation, University of Alberta, 112 St. NW & 87 Ave. NW, Edmonton, AB T6G 2E1, Canada
| | - Ila Tewari Jasra
- Alberta Diabetes Institute, Department of Surgery, 1-002 Li Ka Shing Centre for Health Research Innovation, University of Alberta, 112 St. NW & 87 Ave. NW, Edmonton, AB T6G 2E1, Canada
| | - Rena Pawlick
- Alberta Diabetes Institute, Department of Surgery, 1-002 Li Ka Shing Centre for Health Research Innovation, University of Alberta, 112 St. NW & 87 Ave. NW, Edmonton, AB T6G 2E1, Canada
| | - Nidheesh Dadheech
- Alberta Diabetes Institute, Department of Surgery, 1-002 Li Ka Shing Centre for Health Research Innovation, University of Alberta, 112 St. NW & 87 Ave. NW, Edmonton, AB T6G 2E1, Canada.
| | - A M James Shapiro
- Alberta Diabetes Institute, Department of Surgery, 1-002 Li Ka Shing Centre for Health Research Innovation, University of Alberta, 112 St. NW & 87 Ave. NW, Edmonton, AB T6G 2E1, Canada.
| |
Collapse
|
23
|
Zhang Z, Piro AL, Allalou A, Alexeeff SE, Dai FF, Gunderson EP, Wheeler MB. Prolactin and Maternal Metabolism in Women With a Recent GDM Pregnancy and Links to Future T2D: The SWIFT Study. J Clin Endocrinol Metab 2022; 107:2652-2665. [PMID: 35666146 PMCID: PMC9387721 DOI: 10.1210/clinem/dgac346] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Indexed: 11/19/2022]
Abstract
CONTEXT Prolactin is a multifaceted hormone known to regulate lactation. In women with gestational diabetes mellitus (GDM) history, intensive lactation has been associated with lower relative risk of future type 2 diabetes (T2D). However, the role of prolactin in T2D development and maternal metabolism in women with a recent GDM pregnancy has not been ascertained. OBJECTIVE We examined the relationships among prolactin, future T2D risk, and key clinical and metabolic parameters. METHODS We utilized a prospective GDM research cohort (the SWIFT study) and followed T2D onset by performing 2-hour 75-g research oral glucose tolerance test (OGTT) at study baseline (6-9 weeks postpartum) and again annually for 2 years, and also by retrieving clinical diagnoses of T2D from 2 years through 10 years of follow up from electronic medical records. Targeted metabolomics and lipidomics were applied on fasting plasma samples collected at study baseline from 2-hour 75-g research OGTTs in a nested case-control study (100 future incident T2D cases vs 100 no T2D controls). RESULTS Decreasing prolactin quartiles were associated with increased future T2D risk (adjusted odds ratio 2.48; 95% CI, 0.81-7.58; P = 0.05). In women who maintained normoglycemia during the 10-year follow-up period, higher prolactin at baseline was associated with higher insulin sensitivity (P = 0.038) and HDL-cholesterol (P = 0.01), but lower BMI (P = 0.001) and leptin (P = 0.002). Remarkably, among women who developed future T2D, prolactin was not correlated with a favorable metabolic status (all P > 0.05). Metabolomics and lipidomics showed that lower circulating prolactin strongly correlated with a T2D-high risk lipid profile, with elevated circulating neutral lipids and lower concentrations of specific phospholipids/sphingolipids. CONCLUSION In women with recent GDM pregnancy, low circulating prolactin is associated with specific clinical and metabolic parameters and lipid metabolites linked to a high risk of developing T2D.
Collapse
Affiliation(s)
- Ziyi Zhang
- Department of Physiology, Faculty of Medicine, University of Toronto, Ontario M5S 1A8, Canada
- Department of Endocrinology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, China
| | - Anthony L Piro
- Department of Physiology, Faculty of Medicine, University of Toronto, Ontario M5S 1A8, Canada
| | - Amina Allalou
- Department of Physiology, Faculty of Medicine, University of Toronto, Ontario M5S 1A8, Canada
| | - Stacey E Alexeeff
- Division of Research, Kaiser Permanente Northern California, Oakland, CA 94612, USA
| | - Feihan F Dai
- Correspondence: Feihan F. Dai, PhD, Department of Physiology, Faculty of Medicine, University of Toronto, 1 King’s College Circle, M5S 1A8 Ontario, Canada.
| | - Erica P Gunderson
- Correspondence: Erica P. Gunderson, PhD, MS, MPH, Division of Research, Kaiser Permanente Northern California, 1 King’s College Circle, M5S 1A8 Oakland, CA, USA.
| | - Michael B Wheeler
- Correspondence: Michael B. Wheeler, PhD, Department of Physiology, Faculty of Medicine, University of Toronto, 1 King’s College Circle, M5S 1A8 Ontario, Canada.
| |
Collapse
|
24
|
Zhou N, Qi H, Liu J, Zhang G, Liu J, Liu N, Zhu M, Zhao X, Song C, Zhou Z, Gong J, Li R, Bai X, Jin Y, Song Y, Yin Y. Deubiquitinase OTUD3 regulates metabolism homeostasis in response to nutritional stresses. Cell Metab 2022; 34:1023-1041.e8. [PMID: 35675826 DOI: 10.1016/j.cmet.2022.05.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/01/2022] [Accepted: 05/16/2022] [Indexed: 11/20/2022]
Abstract
The ovarian-tumor-domain-containing deubiquitinases (OTUDs) block ubiquitin-dependent protein degradation and are involved in diverse signaling pathways. We discovered a rare OTUD3 c.863G>A mutation in a family with an early age of onset of diabetes. This mutation reduces the stability and catalytic activity of OTUD3. We next constructed an experiment with Otud3-/- mice and found that they developed worse obesity, dyslipidemia, and insulin resistance than wild-type mice when challenged with a high-fat diet (HFD). We further found that glucose and fatty acids stimulate CREB-binding-protein-dependent OTUD3 acetylation, promoting its nuclear translocation, where OTUD3 regulates various genes involved in glucose and lipid metabolism and oxidative phosphorylation by stabilizing peroxisome-proliferator-activated receptor delta (PPARδ). Moreover, targeting PPARδ using a specific agonist can partially rescue the phenotype of HFD-fed Otud3-/- mice. We propose that OTUD3 is an important regulator of energy metabolism and that the OTUD3 c.863G>A is associated with obesity and a higher risk of diabetes.
Collapse
Affiliation(s)
- Na Zhou
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Hailong Qi
- Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Junjun Liu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Shandong Institute of Endocrine & Metabolic Diseases, Shandong First Medical University, Jinan, Shandong 250021, China
| | - Guangze Zhang
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jianping Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Ning Liu
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Minglu Zhu
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xuyang Zhao
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Chang Song
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Zhe Zhou
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jingjing Gong
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Ridong Li
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xinyu Bai
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yan Jin
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yongfeng Song
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Shandong Institute of Endocrine & Metabolic Diseases, Shandong First Medical University, Jinan, Shandong 250021, China; Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China.
| | - Yuxin Yin
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing 100191, China; Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen 518036, China.
| |
Collapse
|
25
|
Zhong W, Lai Y, Xia ZS, Lin Y, Ni CY, Yu Z, Li JY, Yu T, Chen QK. Pancreatic-Like Cells Derived From Mouse Embryonic Stem Cells Are Regulated by Pdx1 Involving the Notch Pathway. Pancreas 2022; 51:330-337. [PMID: 35695761 DOI: 10.1097/mpa.0000000000002018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES Embryonic stem cells (ESCs)-derived pancreatic precursor cells have great potential for pancreas repair. Expression of pancreatic duodenal homeobox 1 (Pdx1) in definitive endoderm (DE) cells is the premise that DE cells differentiate into pancreatic cells. To achieve the required number of Pdx1-expressing DE cells for cell transplantation therapy, a valid model must be established. Using this model, researchers investigated how Pdx1 regulates ESC differentiation into pancreatic cells. METHODS Tet-On inducible lentiviral vector encoding Pdx1 or mock vector was transduced into mouse ESC (ES-E14TG2a). The mouse ESCs were divided into 3 groups: control (ESC), mock vector (Pdx1 - -ESC), and vector encoding Pdx1 (Pdx1 + -ESC). All groups were separately cocultured with the DE cells sorted by immune beads containing CXCR-4 + (C-X-C chemokine receptor type-4) antibody. Doxycycline induced the expression of Pdx1 on the Pdx1 + -ESC cells. The markers of cell differentiation and Notch pathway were examined. RESULTS Significantly increased expression levels of Ptf1a, CK19, and amylase on day (d) 3 and d7, Neuro-D1 on d10 and d14, Pax6 and insulin on d14, as well as Notch1, Notch2, Hes1, and Hes5 on d3 and thereafter declined on d14 were observed in Pdx1 + -ESC group. CONCLUSIONS Pdx1 + -ESC could differentiate into pancreatic-like cells with involvement of the Notch pathway.
Collapse
Affiliation(s)
- Wa Zhong
- From the Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou
| | - Yu Lai
- From the Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou
| | - Zhong-Sheng Xia
- From the Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou
| | - Ying Lin
- From the Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou
| | | | - Zhong Yu
- From the Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou
| | - Jie-Yao Li
- From the Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou
| | - Tao Yu
- From the Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou
| | - Qi-Kui Chen
- From the Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou
| |
Collapse
|
26
|
Human pluripotent stem-cell-derived islets ameliorate diabetes in non-human primates. Nat Med 2022; 28:272-282. [PMID: 35115708 DOI: 10.1038/s41591-021-01645-7] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 11/29/2021] [Indexed: 12/16/2022]
Abstract
Human pluripotent stem-cell-derived islets (hPSC-islets) are a promising cell resource for diabetes treatment1,2. However, this therapeutic strategy has not been systematically assessed in large animal models physiologically similar to humans, such as non-human primates3. In this study, we generated islets from human chemically induced pluripotent stem cells (hCiPSC-islets) and show that a one-dose intraportal infusion of hCiPSC-islets into diabetic non-human primates effectively restored endogenous insulin secretion and improved glycemic control. Fasting and average pre-prandial blood glucose levels significantly decreased in all recipients, accompanied by meal or glucose-responsive C-peptide release and overall increase in body weight. Notably, in the four long-term follow-up macaques, average hemoglobin A1c dropped by over 2% compared with peak values, whereas the average exogenous insulin requirement reduced by 49% 15 weeks after transplantation. Collectively, our findings show the feasibility of hPSC-islets for diabetic treatment in a preclinical context, marking a substantial step forward in clinical translation of hPSC-islets.
Collapse
|
27
|
Rabiei M, Kalhor N, Farhadi A, Ramezanpour S, Tahamtani Y, Azarnia M. Synthetic Small Molecules to Induce Insulin Secretion and Pancreatic Beta Cell Specific Gene Expression. Cells Tissues Organs 2022:000522154. [DOI: 10.1159/000522154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 01/17/2022] [Indexed: 11/19/2022] Open
Abstract
Despite various efficient pharmaceuticals which are already used to manage diabetes, new drugs are needed to preserve and restore the function of pancreatic β-cells (pβCs) including cell specific gene expression and insulin production and secretion. Newly developed small molecules (SMs) with potential anti-diabetic activity need to be preliminary tested. Mice insulinoma MIN6 cells (MIN6) can be utilized as an in vitro screening model. These cells have pancreatic β-cells characteristics and can secrete insulin in response to glucose level changes. As well, β-cell-specific gene expression pattern of these cells is similar to that of mouse pancreatic islet cells. It is possible to use this cell line as a research tool to study the function of the pancreatic β-cells. To date, approximately 60 genes have been identified which, are effective in the pβCs embryonic development and insulin production and secretion during puberty, including pancreas/duodenum homeobox protein 1 (Pdx1), neuronal differentiation 1 (Neurod1), neurogenin3 (Ngn3), and insulin-1 precursor (Ins1). In this study, a family of new SMs that are structurally similar to glinides was synthesized through three different synthetic methods and categorized into three categories (C1-C3). Then, these novel SMs were characterized by testing their effects on cell viability, pβCs-specific gene expression, and insulin secretion of MIN6 in four different concentrations and three time points. According to our results, SMs of C1 (1j, 1k, and 1l) and two SMs of C3 (1f, 1I), at 200 μM concentration, were able to increase the expression levels of Pdx1, Neurod1, Ngn3, and Ins1 as well as the insulin secretion after 24 hours. However, C2 (1a, 1b, 1c and 1d) did not show significant bio-activity of MIN6 cells. These investigated molecules can provide a tool for exploring pseudo-islet functionality in MIN6 cells or provide a possible basis for future therapeutic interventions for diabetes.
Collapse
|
28
|
Lange M, Bergen V, Klein M, Setty M, Reuter B, Bakhti M, Lickert H, Ansari M, Schniering J, Schiller HB, Pe'er D, Theis FJ. CellRank for directed single-cell fate mapping. Nat Methods 2022; 19:159-170. [PMID: 35027767 PMCID: PMC8828480 DOI: 10.1038/s41592-021-01346-6] [Citation(s) in RCA: 341] [Impact Index Per Article: 113.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 11/07/2021] [Indexed: 12/20/2022]
Abstract
Computational trajectory inference enables the reconstruction of cell state dynamics from single-cell RNA sequencing experiments. However, trajectory inference requires that the direction of a biological process is known, largely limiting its application to differentiating systems in normal development. Here, we present CellRank (https://cellrank.org) for single-cell fate mapping in diverse scenarios, including regeneration, reprogramming and disease, for which direction is unknown. Our approach combines the robustness of trajectory inference with directional information from RNA velocity, taking into account the gradual and stochastic nature of cellular fate decisions, as well as uncertainty in velocity vectors. On pancreas development data, CellRank automatically detects initial, intermediate and terminal populations, predicts fate potentials and visualizes continuous gene expression trends along individual lineages. Applied to lineage-traced cellular reprogramming data, predicted fate probabilities correctly recover reprogramming outcomes. CellRank also predicts a new dedifferentiation trajectory during postinjury lung regeneration, including previously unknown intermediate cell states, which we confirm experimentally. CellRank infers directed cell state transitions and cell fates incorporating RNA velocity information into a graph based Markov process.
Collapse
Affiliation(s)
- Marius Lange
- Institute of Computational Biology, Helmholtz Center Munich, Munich, Germany.,Department of Mathematics, Technical University of Munich, Munich, Germany
| | - Volker Bergen
- Institute of Computational Biology, Helmholtz Center Munich, Munich, Germany.,Department of Mathematics, Technical University of Munich, Munich, Germany
| | - Michal Klein
- Institute of Computational Biology, Helmholtz Center Munich, Munich, Germany
| | - Manu Setty
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Basic Sciences Division and Translational Data Science IRC, Fred Hutchinson Cancer Research Center, Seattle WA, USA
| | - Bernhard Reuter
- Department of Computer Science, University of Tübingen, Tübingen, Germany.,Zuse Institute Berlin (ZIB), Berlin, Germany
| | - Mostafa Bakhti
- Institute of Diabetes and Regeneration Research, Helmholtz Center Munich, Munich, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Center Munich, Munich, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Meshal Ansari
- Institute of Computational Biology, Helmholtz Center Munich, Munich, Germany.,Comprehensive Pneumology Center (CPC) / Institute of Lung Biology and Disease (ILBD), Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Janine Schniering
- Comprehensive Pneumology Center (CPC) / Institute of Lung Biology and Disease (ILBD), Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Herbert B Schiller
- Comprehensive Pneumology Center (CPC) / Institute of Lung Biology and Disease (ILBD), Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Dana Pe'er
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Center Munich, Munich, Germany. .,Department of Mathematics, Technical University of Munich, Munich, Germany. .,TUM School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany.
| |
Collapse
|
29
|
Heller S, Li Z, Lin Q, Geusz R, Breunig M, Hohwieler M, Zhang X, Nair GG, Seufferlein T, Hebrok M, Sander M, Julier C, Kleger A, Costa IG. Transcriptional changes and the role of ONECUT1 in hPSC pancreatic differentiation. Commun Biol 2021; 4:1298. [PMID: 34789845 PMCID: PMC8599846 DOI: 10.1038/s42003-021-02818-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/24/2021] [Indexed: 02/07/2023] Open
Abstract
Cell type specification during pancreatic development is tightly controlled by a transcriptional and epigenetic network. The precise role of most transcription factors, however, has been only described in mice. To convey such concepts to human pancreatic development, alternative model systems such as pancreatic in vitro differentiation of human pluripotent stem cells can be employed. Here, we analyzed stage-specific RNA-, ChIP-, and ATAC-sequencing data to dissect transcriptional and regulatory mechanisms during pancreatic development. Transcriptome and open chromatin maps of pancreatic differentiation from human pluripotent stem cells provide a stage-specific pattern of known pancreatic transcription factors and indicate ONECUT1 as a crucial fate regulator in pancreas progenitors. Moreover, our data suggest that ONECUT1 is also involved in preparing pancreatic progenitors for later endocrine specification. The dissection of the transcriptional and regulatory circuitry revealed an important role for ONECUT1 within such network and will serve as resource to study human development and disease.
Collapse
Affiliation(s)
- Sandra Heller
- grid.410712.1Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | - Zhijian Li
- grid.1957.a0000 0001 0728 696XInstitute for Computational Genomics, RWTH Aachen University Medical School, Aachen, Germany
| | - Qiong Lin
- grid.420044.60000 0004 0374 4101Bayer AG, Research & Development, Pharmaceuticals, Bioinformatics, Berlin, Germany
| | - Ryan Geusz
- grid.266100.30000 0001 2107 4242Pediatric Diabetes Research Center (PDRC) at the University of California, San Diego, USA
| | - Markus Breunig
- grid.410712.1Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | - Meike Hohwieler
- grid.410712.1Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | - Xi Zhang
- grid.410712.1Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | - Gopika G. Nair
- grid.266102.10000 0001 2297 6811Diabetes Center at the University of California, San Francisco, USA
| | - Thomas Seufferlein
- grid.410712.1Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | - Matthias Hebrok
- grid.266102.10000 0001 2297 6811Diabetes Center at the University of California, San Francisco, USA
| | - Maike Sander
- grid.266100.30000 0001 2107 4242Pediatric Diabetes Research Center (PDRC) at the University of California, San Diego, USA
| | - Cécile Julier
- grid.4444.00000 0001 2112 9282Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR-8104, Paris, France
| | - Alexander Kleger
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany.
| | - Ivan G. Costa
- grid.1957.a0000 0001 0728 696XInstitute for Computational Genomics, RWTH Aachen University Medical School, Aachen, Germany
| |
Collapse
|
30
|
Yan H, Chen Z, Zhang H, Yang W, Liu X, Meng Y, Xiang R, Wu Z, Ye J, Chi Y, Yang J. Intracellular ATP Signaling Contributes to FAM3A-Induced PDX1 Upregulation in Pancreatic Beta Cells. Exp Clin Endocrinol Diabetes 2021; 130:498-508. [PMID: 34592773 PMCID: PMC9377833 DOI: 10.1055/a-1608-0607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
FAM3A is a recently identified mitochondrial protein that stimulates
pancreatic-duodenal homeobox 1 (PDX1) and insulin expressions by promoting ATP
release in islet β cells. In this study, the role of intracellular ATP
in FAM3A-induced PDX1 expression in pancreatic β cells was further
examined. Acute FAM3A inhibition using siRNA transfection in mouse pancreatic
islets significantly reduced PDX1 expression, impaired insulin secretion, and
caused glucose intolerance in normal mice.
In vitro
, FAM3A overexpression
elevated both intracellular and extracellular ATP contents and promoted PDX1
expression and insulin secretion. FAM3A-induced increase in cellular calcium
(Ca
2+
) levels, PDX1 expression, and insulin secretion,
while these were significantly repressed by inhibitors of P2 receptors or the
L-type Ca
2+
channels. FAM3A-induced PDX1 expression was
abolished by a calmodulin inhibitor. Likewise, FAM3A-induced β-cell
proliferation was also inhibited by a P2 receptor inhibitor and an L-type
Ca
2+
channels inhibitor. Both intracellular and
extracellular ATP contributed to FAM3A-induced PDX1 expression, insulin
secretion, and proliferation of pancreatic β cells.
Collapse
Affiliation(s)
- Han Yan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Zhenzhen Chen
- Hypertension Center, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Beijing 100037, China
| | - Haizeng Zhang
- Hypertension Center, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Beijing 100037, China
| | - Weili Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China.,Beijing Key Laboratory of Diabetes Research and Care, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Xiangyang Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Yuhong Meng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Rui Xiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Zhe Wu
- Department of Gastroenterology, Peking University People's Hospital, Beijing 100044, China
| | - Jingjing Ye
- Department of Gastroenterology, Peking University People's Hospital, Beijing 100044, China
| | - Yujing Chi
- Department of Central Laboratory & Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing 100044, China
| | - Jichun Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
31
|
Hammelman J, Gifford DK. Discovering differential genome sequence activity with interpretable and efficient deep learning. PLoS Comput Biol 2021; 17:e1009282. [PMID: 34370721 PMCID: PMC8376110 DOI: 10.1371/journal.pcbi.1009282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 08/19/2021] [Accepted: 07/16/2021] [Indexed: 11/23/2022] Open
Abstract
Discovering sequence features that differentially direct cells to alternate fates is key to understanding both cellular development and the consequences of disease related mutations. We introduce Expected Pattern Effect and Differential Expected Pattern Effect, two black-box methods that can interpret genome regulatory sequences for cell type-specific or condition specific patterns. We show that these methods identify relevant transcription factor motifs and spacings that are predictive of cell state-specific chromatin accessibility. Finally, we integrate these methods into framework that is readily accessible to non-experts and available for download as a binary or installed via PyPI or bioconda at https://cgs.csail.mit.edu/deepaccess-package/.
Collapse
Affiliation(s)
- Jennifer Hammelman
- Computational and Systems Biology, MIT, Cambridge, Massachusetts, United States of America
- Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, Massachusetts, United States of America
| | - David K. Gifford
- Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, Massachusetts, United States of America
- Department of Electrical Engineering & Computer Science, MIT, Cambridge, Massachusetts, United States of America
- Department of Biological Engineering, MIT, Cambridge, Massachusetts, United States of America
| |
Collapse
|
32
|
Adams MT, Dwulet JM, Briggs JK, Reissaus CA, Jin E, Szulczewski JM, Lyman MR, Sdao SM, Kravets V, Nimkulrat SD, Ponik SM, Merrins MJ, Mirmira RG, Linnemann AK, Benninger RKP, Blum B. Reduced synchroneity of intra-islet Ca 2+ oscillations in vivo in Robo-deficient β cells. eLife 2021; 10:e61308. [PMID: 34231467 PMCID: PMC8289414 DOI: 10.7554/elife.61308] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 07/06/2021] [Indexed: 12/13/2022] Open
Abstract
The spatial architecture of the islets of Langerhans is hypothesized to facilitate synchronized insulin secretion among β cells, yet testing this in vivo in the intact pancreas is challenging. Robo βKO mice, in which the genes Robo1 and Robo2 are deleted selectively in β cells, provide a unique model of altered islet spatial architecture without loss of β cell differentiation or islet damage from diabetes. Combining Robo βKO mice with intravital microscopy, we show here that Robo βKO islets have reduced synchronized intra-islet Ca2+ oscillations among β cells in vivo. We provide evidence that this loss is not due to a β cell-intrinsic function of Robo, mis-expression or mis-localization of Cx36 gap junctions, or changes in islet vascularization or innervation, suggesting that the islet architecture itself is required for synchronized Ca2+ oscillations. These results have implications for understanding structure-function relationships in the islets during progression to diabetes as well as engineering islets from stem cells.
Collapse
Affiliation(s)
- Melissa T Adams
- Department of Cell and Regenerative Biology, University of Wisconsin-MadisonMadisonUnited States
| | - JaeAnn M Dwulet
- Department of Bioengineering, University of Colorado Denver, Anschutz Medical CampusAuroraUnited States
| | - Jennifer K Briggs
- Department of Bioengineering, University of Colorado Denver, Anschutz Medical CampusAuroraUnited States
| | - Christopher A Reissaus
- Herman B Wells Center for Pediatric Research and Center for Diabetes and Metabolic Diseases, Indiana University School of MedicineIndianapolisUnited States
| | - Erli Jin
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-MadisonMadisonUnited States
| | - Joseph M Szulczewski
- Department of Cell and Regenerative Biology, University of Wisconsin-MadisonMadisonUnited States
| | - Melissa R Lyman
- Department of Cell and Regenerative Biology, University of Wisconsin-MadisonMadisonUnited States
| | - Sophia M Sdao
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-MadisonMadisonUnited States
| | - Vira Kravets
- Department of Bioengineering, University of Colorado Denver, Anschutz Medical CampusAuroraUnited States
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Sutichot D Nimkulrat
- Department of Cell and Regenerative Biology, University of Wisconsin-MadisonMadisonUnited States
| | - Suzanne M Ponik
- Department of Cell and Regenerative Biology, University of Wisconsin-MadisonMadisonUnited States
| | - Matthew J Merrins
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-MadisonMadisonUnited States
| | - Raghavendra G Mirmira
- Kovler Diabetes Center and the Department of Medicine, University of ChicagoChicagoUnited States
| | - Amelia K Linnemann
- Herman B Wells Center for Pediatric Research and Center for Diabetes and Metabolic Diseases, Indiana University School of MedicineIndianapolisUnited States
| | - Richard KP Benninger
- Department of Bioengineering, University of Colorado Denver, Anschutz Medical CampusAuroraUnited States
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Barak Blum
- Department of Cell and Regenerative Biology, University of Wisconsin-MadisonMadisonUnited States
| |
Collapse
|
33
|
Salinno C, Büttner M, Cota P, Tritschler S, Tarquis-Medina M, Bastidas-Ponce A, Scheibner K, Burtscher I, Böttcher A, Theis FJ, Bakhti M, Lickert H. CD81 marks immature and dedifferentiated pancreatic β-cells. Mol Metab 2021; 49:101188. [PMID: 33582383 PMCID: PMC7932895 DOI: 10.1016/j.molmet.2021.101188] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/31/2021] [Accepted: 02/06/2021] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE Islets of Langerhans contain heterogeneous populations of insulin-producing β-cells. Surface markers and respective antibodies for isolation, tracking, and analysis are urgently needed to study β-cell heterogeneity and explore the mechanisms to harness the regenerative potential of immature β-cells. METHODS We performed single-cell mRNA profiling of early postnatal mouse islets and re-analyzed several single-cell mRNA sequencing datasets from mouse and human pancreas and islets. We used mouse primary islets, iPSC-derived endocrine cells, Min6 insulinoma, and human EndoC-βH1 β-cell lines and performed FAC sorting, Western blotting, and imaging to support and complement the findings from the data analyses. RESULTS We found that all endocrine cell types expressed the cluster of differentiation 81 (CD81) during pancreas development, but the expression levels of this protein were gradually reduced in β-cells during postnatal maturation. Single-cell gene expression profiling and high-resolution imaging revealed an immature signature of β-cells expressing high levels of CD81 (CD81high) compared to a more mature population expressing no or low levels of this protein (CD81low/-). Analysis of β-cells from different diabetic mouse models and in vitro β-cell stress assays indicated an upregulation of CD81 expression levels in stressed and dedifferentiated β-cells. Similarly, CD81 was upregulated and marked stressed human β-cells in vitro. CONCLUSIONS We identified CD81 as a novel surface marker that labels immature, stressed, and dedifferentiated β-cells in the adult mouse and human islets. This novel surface marker will allow us to better study β-cell heterogeneity in healthy subjects and diabetes progression.
Collapse
Affiliation(s)
- Ciro Salinno
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764, Neuherberg, Germany; German Center for Diabetes Research (DZD), D-85764, Neuherberg, Germany; Technische Universität München, School of Medicine, 81675, München, Germany
| | - Maren Büttner
- Institute of Computational Biology, Helmholtz Zentrum München, D-85764, Neuherberg, Germany
| | - Perla Cota
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764, Neuherberg, Germany; German Center for Diabetes Research (DZD), D-85764, Neuherberg, Germany
| | - Sophie Tritschler
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764, Neuherberg, Germany; Institute of Computational Biology, Helmholtz Zentrum München, D-85764, Neuherberg, Germany
| | - Marta Tarquis-Medina
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764, Neuherberg, Germany; German Center for Diabetes Research (DZD), D-85764, Neuherberg, Germany; Technische Universität München, School of Medicine, 81675, München, Germany
| | - Aimée Bastidas-Ponce
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764, Neuherberg, Germany; German Center for Diabetes Research (DZD), D-85764, Neuherberg, Germany
| | - Katharina Scheibner
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764, Neuherberg, Germany; German Center for Diabetes Research (DZD), D-85764, Neuherberg, Germany
| | - Ingo Burtscher
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764, Neuherberg, Germany; German Center for Diabetes Research (DZD), D-85764, Neuherberg, Germany
| | - Anika Böttcher
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764, Neuherberg, Germany; German Center for Diabetes Research (DZD), D-85764, Neuherberg, Germany
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Zentrum München, D-85764, Neuherberg, Germany; Technical University of Munich, Department of Mathematics, 85748, Munich, Germany
| | - Mostafa Bakhti
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764, Neuherberg, Germany; German Center for Diabetes Research (DZD), D-85764, Neuherberg, Germany.
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764, Neuherberg, Germany; German Center for Diabetes Research (DZD), D-85764, Neuherberg, Germany; Technische Universität München, School of Medicine, 81675, München, Germany.
| |
Collapse
|
34
|
Kerry RG, Mahapatra GP, Maurya GK, Patra S, Mahari S, Das G, Patra JK, Sahoo S. Molecular prospect of type-2 diabetes: Nanotechnology based diagnostics and therapeutic intervention. Rev Endocr Metab Disord 2021; 22:421-451. [PMID: 33052523 DOI: 10.1007/s11154-020-09606-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/08/2020] [Indexed: 02/08/2023]
Abstract
About ninety percent of all diabetic conditions account for T2D caused due to abnormal insulin secretion/ action or increased hepatic glucose production. Factors that contribute towards the aetiology of T2D could be well explained through biochemical, molecular, and cellular aspects. In this review, we attempt to explain the recent evolving molecular and cellular advancement associated with T2D pathophysiology. Current progress fabricated in T2D research concerning intracellular signaling cascade, inflammasome, autophagy, genetic and epigenetics changes is discretely explained in simple terms. Present available anti-diabetic therapeutic strategies commercialized and their limitations which are needed to be acknowledged are addressed in the current review. In particular, the pre-eminence of nanotechnology-based approaches to nullify the inadequacy of conventional anti-diabetic therapeutics and heterogeneous nanoparticulated systems exploited in diabetic researches are also discretely mentioned and are also listed in a tabular format in the review. Additionally, as a future prospect of nanotechnology, the review presents several strategic hypotheses to ameliorate the austerity of T2D by an engineered smart targeted nano-delivery system. In detail, an effort has been made to hypothesize novel nanotechnological based therapeutic strategies, which exploits previously described inflammasome, autophagic target points. Utilizing graphical description it is explained how a smart targeted nano-delivery system could promote β-cell growth and development by inducing the Wnt signaling pathway (inhibiting Gsk3β), inhibiting inflammasome (inhibiting NLRP3), and activating autophagic target points (protecting Atg3/Atg7 complex from oxidative stress) thereby might ameliorate the severity of T2D. Additionally, several targeting molecules associated with autophagic and epigenetic factors are also highlighted, which can be exploited in future diabetic research.
Collapse
Affiliation(s)
- Rout George Kerry
- Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar, Odisha, 751004, India
| | | | - Ganesh Kumar Maurya
- Zoology Section, Mahila MahaVidyalya, Banaras Hindu University, Varanasi, 221005, India
| | - Sushmita Patra
- Department of Biotechnology, North Odissa University, Takatpur, Baripada, Odisha, 757003, India
| | - Subhasis Mahari
- DBT- National Institute of Animal Biotechnology, Hyderabad, 500032, India
| | - Gitishree Das
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi, 10326, Republic of Korea
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi, 10326, Republic of Korea.
| | - Sabuj Sahoo
- Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar, Odisha, 751004, India.
| |
Collapse
|
35
|
Scrt1, a transcriptional regulator of β-cell proliferation identified by differential chromatin accessibility during islet maturation. Sci Rep 2021; 11:8800. [PMID: 33888791 PMCID: PMC8062533 DOI: 10.1038/s41598-021-88003-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 03/25/2021] [Indexed: 12/12/2022] Open
Abstract
Glucose-induced insulin secretion, a hallmark of mature β-cells, is achieved after birth and is preceded by a phase of intense proliferation. These events occurring in the neonatal period are decisive for establishing an appropriate functional β-cell mass that provides the required insulin throughout life. However, key regulators of gene expression involved in functional maturation of β-cells remain to be elucidated. Here, we addressed this issue by mapping open chromatin regions in newborn versus adult rat islets using the ATAC-seq assay. We obtained a genome-wide picture of chromatin accessible sites (~ 100,000) among which 20% were differentially accessible during maturation. An enrichment analysis of transcription factor binding sites identified a group of transcription factors that could explain these changes. Among them, Scrt1 was found to act as a transcriptional repressor and to control β-cell proliferation. Interestingly, Scrt1 expression was controlled by the transcriptional repressor RE-1 silencing transcription factor (REST) and was increased in an in vitro reprogramming system of pancreatic exocrine cells to β-like cells. Overall, this study led to the identification of several known and unforeseen key transcriptional events occurring during β-cell maturation. These findings will help defining new strategies to induce the functional maturation of surrogate insulin-producing cells.
Collapse
|
36
|
Miranda MA, Macias-Velasco JF, Lawson HA. Pancreatic β-cell heterogeneity in health and diabetes: classes, sources, and subtypes. Am J Physiol Endocrinol Metab 2021; 320:E716-E731. [PMID: 33586491 PMCID: PMC8238131 DOI: 10.1152/ajpendo.00649.2020] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pancreatic β-cells perform glucose-stimulated insulin secretion, a process at the center of type 2 diabetes etiology. Efforts to understand how β-cells behave in healthy and stressful conditions have revealed a wide degree of morphological, functional, and transcriptional heterogeneity. Sources of heterogeneity include β-cell topography, developmental origin, maturation state, and stress response. Advances in sequencing and imaging technologies have led to the identification of β-cell subtypes, which play distinct roles in the islet niche. This review examines β-cell heterogeneity from morphological, functional, and transcriptional perspectives, and considers the relevance of topography, maturation, development, and stress response. It also discusses how these factors have been used to identify β-cell subtypes, and how heterogeneity is impacted by diabetes. We examine open questions in the field and discuss recent technological innovations that could advance understanding of β-cell heterogeneity in health and disease.
Collapse
Affiliation(s)
- Mario A Miranda
- Department of Genetics, Washington University School of Medicine, Saint Louis, Missouri
| | - Juan F Macias-Velasco
- Department of Genetics, Washington University School of Medicine, Saint Louis, Missouri
| | - Heather A Lawson
- Department of Genetics, Washington University School of Medicine, Saint Louis, Missouri
| |
Collapse
|
37
|
Benáková Š, Holendová B, Plecitá-Hlavatá L. Redox Homeostasis in Pancreatic β-Cells: From Development to Failure. Antioxidants (Basel) 2021; 10:antiox10040526. [PMID: 33801681 PMCID: PMC8065646 DOI: 10.3390/antiox10040526] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 12/16/2022] Open
Abstract
Redox status is a key determinant in the fate of β-cell. These cells are not primarily detoxifying and thus do not possess extensive antioxidant defense machinery. However, they show a wide range of redox regulating proteins, such as peroxiredoxins, thioredoxins or thioredoxin reductases, etc., being functionally compartmentalized within the cells. They keep fragile redox homeostasis and serve as messengers and amplifiers of redox signaling. β-cells require proper redox signaling already in cell ontogenesis during the development of mature β-cells from their progenitors. We bring details about redox-regulated signaling pathways and transcription factors being essential for proper differentiation and maturation of functional β-cells and their proliferation and insulin expression/maturation. We briefly highlight the targets of redox signaling in the insulin secretory pathway and focus more on possible targets of extracellular redox signaling through secreted thioredoxin1 and thioredoxin reductase1. Tuned redox homeostasis can switch upon chronic pathological insults towards the dysfunction of β-cells and to glucose intolerance. These are characteristics of type 2 diabetes, which is often linked to chronic nutritional overload being nowadays a pandemic feature of lifestyle. Overcharged β-cell metabolism causes pressure on proteostasis in the endoplasmic reticulum, mainly due to increased demand on insulin synthesis, which establishes unfolded protein response and insulin misfolding along with excessive hydrogen peroxide production. This together with redox dysbalance in cytoplasm and mitochondria due to enhanced nutritional pressure impact β-cell redox homeostasis and establish prooxidative metabolism. This can further affect β-cell communication in pancreatic islets through gap junctions. In parallel, peripheral tissues losing insulin sensitivity and overall impairment of glucose tolerance and gut microbiota establish local proinflammatory signaling and later systemic metainflammation, i.e., low chronic inflammation prooxidative properties, which target β-cells leading to their dedifferentiation, dysfunction and eventually cell death.
Collapse
Affiliation(s)
- Štěpánka Benáková
- Department of Mitochondrial Physiology, Institute of Physiology, Czech Academy of Sciences, 142 20 Prague 4, Czech Republic; (Š.B.); (B.H.)
- First Faculty of Medicine, Charles University, Katerinska 1660/32, 121 08 Prague, Czech Republic
| | - Blanka Holendová
- Department of Mitochondrial Physiology, Institute of Physiology, Czech Academy of Sciences, 142 20 Prague 4, Czech Republic; (Š.B.); (B.H.)
| | - Lydie Plecitá-Hlavatá
- Department of Mitochondrial Physiology, Institute of Physiology, Czech Academy of Sciences, 142 20 Prague 4, Czech Republic; (Š.B.); (B.H.)
- Department of Mitochondrial Physiology, Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
- Correspondence: ; Tel.: +420-296-442-285
| |
Collapse
|
38
|
Zhu M, Liu X, Liu W, Lu Y, Cheng J, Chen Y. β cell aging and age-related diabetes. Aging (Albany NY) 2021; 13:7691-7706. [PMID: 33686020 PMCID: PMC7993693 DOI: 10.18632/aging.202593] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/23/2020] [Indexed: 02/05/2023]
Abstract
Type 2 diabetes is characterized by insulin resistance and loss of β cell mass and function. Aging is considered as a major risk factor for development of type 2 diabetes. However, the roles of pancreatic β cell senescence and systemic aging in the pathogenesis of type 2 diabetes in elderly people remain poorly understood. In this review, we aimed to discuss the current findings and viewpoints focusing on β cell aging and the development of type 2 diabetes.
Collapse
Affiliation(s)
- Min Zhu
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Xiaohong Liu
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Wen Liu
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Yanrong Lu
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Jingqiu Cheng
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, P.R. China
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Younan Chen
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, P.R. China
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, P.R. China
| |
Collapse
|
39
|
Nasteska D, Fine NHF, Ashford FB, Cuozzo F, Viloria K, Smith G, Dahir A, Dawson PWJ, Lai YC, Bastidas-Ponce A, Bakhti M, Rutter GA, Fiancette R, Nano R, Piemonti L, Lickert H, Zhou Q, Akerman I, Hodson DJ. PDX1 LOW MAFA LOW β-cells contribute to islet function and insulin release. Nat Commun 2021; 12:674. [PMID: 33514698 PMCID: PMC7846747 DOI: 10.1038/s41467-020-20632-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 12/01/2020] [Indexed: 12/25/2022] Open
Abstract
Transcriptionally mature and immature β-cells co-exist within the adult islet. How such diversity contributes to insulin release remains poorly understood. Here we show that subtle differences in β-cell maturity, defined using PDX1 and MAFA expression, contribute to islet operation. Functional mapping of rodent and human islets containing proportionally more PDX1HIGH and MAFAHIGH β-cells reveals defects in metabolism, ionic fluxes and insulin secretion. At the transcriptomic level, the presence of increased numbers of PDX1HIGH and MAFAHIGH β-cells leads to dysregulation of gene pathways involved in metabolic processes. Using a chemogenetic disruption strategy, differences in PDX1 and MAFA expression are shown to depend on islet Ca2+ signaling patterns. During metabolic stress, islet function can be restored by redressing the balance between PDX1 and MAFA levels across the β-cell population. Thus, preserving heterogeneity in PDX1 and MAFA expression, and more widely in β-cell maturity, might be important for the maintenance of islet function.
Collapse
Affiliation(s)
- Daniela Nasteska
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Nicholas H F Fine
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Fiona B Ashford
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Federica Cuozzo
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Katrina Viloria
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Gabrielle Smith
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Aisha Dahir
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Peter W J Dawson
- School of Sport, Exercise and Rehabilitation Science, University of Birmingham, Edgbaston, UK.,MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Edgbaston, UK
| | - Yu-Chiang Lai
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK.,School of Sport, Exercise and Rehabilitation Science, University of Birmingham, Edgbaston, UK.,MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Edgbaston, UK
| | - Aimée Bastidas-Ponce
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764, Neuherberg, Germany.,German Center for Diabetes Research (DZD), D-85764, Neuherberg, Germany.,Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764, Neuherberg, Germany.,Technical University of Munich, School of Medicine, Munich, Germany
| | - Mostafa Bakhti
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764, Neuherberg, Germany.,German Center for Diabetes Research (DZD), D-85764, Neuherberg, Germany.,Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764, Neuherberg, Germany
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology, and Metabolism, Department of Metabolism, Reproduction, and Digestion, Imperial College London, London, UK.,Lee Kong Chian School of Medicine, Nanyang Technological University, Nanyang, Singapore
| | - Remi Fiancette
- Institute of Immunology & Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Rita Nano
- San Raffaele Diabetes Research Institute, IRCCS Ospedale, San Raffaele, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Lorenzo Piemonti
- San Raffaele Diabetes Research Institute, IRCCS Ospedale, San Raffaele, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764, Neuherberg, Germany.,German Center for Diabetes Research (DZD), D-85764, Neuherberg, Germany.,Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764, Neuherberg, Germany.,Technical University of Munich, School of Medicine, Munich, Germany
| | - Qiao Zhou
- Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Ildem Akerman
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - David J Hodson
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK. .,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK. .,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK.
| |
Collapse
|
40
|
Elsayed AK, Younis I, Ali G, Hussain K, Abdelalim EM. Aberrant development of pancreatic beta cells derived from human iPSCs with FOXA2 deficiency. Cell Death Dis 2021; 12:103. [PMID: 33473118 PMCID: PMC7817686 DOI: 10.1038/s41419-021-03390-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 12/27/2020] [Accepted: 12/29/2020] [Indexed: 01/30/2023]
Abstract
FOXA2 has been identified as an essential factor for pancreas development and emerging evidence supports an association between FOXA2 and diabetes. Although the role of FOXA2 during pancreatic development is well-studied in animal models, its role during human islet cell development remains unclear. Here, we generated induced pluripotent stem cells (iPSCs) from a patient with FOXA2 haploinsufficiency (FOXA2+/- iPSCs) followed by beta-cell differentiation to understand the role of FOXA2 during pancreatic beta-cell development. Our results showed that FOXA2 haploinsufficiency resulted in aberrant expression of genes essential for the differentiation and proper functioning of beta cells. At pancreatic progenitor (PP2) and endocrine progenitor (EPs) stages, transcriptome analysis showed downregulation in genes associated with pancreatic development and diabetes and upregulation in genes associated with nervous system development and WNT signaling pathway. Knockout of FOXA2 in control iPSCs (FOXA2-/- iPSCs) led to severe phenotypes in EPs and beta-cell stages. The expression of NGN3 and its downstream targets at EPs as well as INSUILIN and GLUCAGON at the beta-cell stage, were almost absent in the cells derived from FOXA2-/- iPSCs. These findings indicate that FOXA2 is crucial for human pancreatic endocrine development and its defect may lead to diabetes based on FOXA2 dosage.
Collapse
Affiliation(s)
- Ahmed K. Elsayed
- grid.452146.00000 0004 1789 3191Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | - Ihab Younis
- grid.418818.c0000 0001 0516 2170Biological Sciences Program, Carnegie Mellon University, Qatar Foundation, Education City, Doha, Qatar
| | - Gowher Ali
- grid.452146.00000 0004 1789 3191Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | - Khalid Hussain
- Division of Endocrinology, Department of Pediatric Medicine, Sidra Medicine, Doha, Qatar
| | - Essam M. Abdelalim
- grid.452146.00000 0004 1789 3191Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar ,grid.418818.c0000 0001 0516 2170College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Education City, Doha, Qatar
| |
Collapse
|
41
|
Siehler J, Blöchinger AK, Akgün M, Wang X, Shahryari A, Geerlof A, Lickert H, Burtscher I. Generation of a heterozygous C-peptide-mCherry reporter human iPSC line (HMGUi001-A-8). Stem Cell Res 2020; 50:102126. [PMID: 33373890 DOI: 10.1016/j.scr.2020.102126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/21/2020] [Accepted: 12/13/2020] [Indexed: 01/20/2023] Open
Abstract
The peptide hormone insulin produced by pancreatic β-cells undergoes post-transcriptional processing before secretion. In particular, C-peptide is cleaved from pro-insulin to generate mature insulin. Here, we introduce a C-peptide-mCherry human iPSC line (HMGUi001-A-8). The line was generated by CRISPR/Cas9 mediated heterozygous insertion of the mCherry sequence into exon 3 of the insulin locus. We demonstrate that the line is pluripotent and efficiently differentiates towards pancreatic β-like cells, which localize a red fluorescent C-peptide-mCherry fusion protein in insulin containing granules. Hence, the HMGUi001-A-8 line is a valuable resource to purify derived β-like cells and follow insulin-containing granules in real time.
Collapse
Affiliation(s)
- Johanna Siehler
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Institute of Stem Cell Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Technische Universität München, Ismaninger Straße 22, 81675 München, Germany
| | - Anna Karolina Blöchinger
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Institute of Stem Cell Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Technische Universität München, Ismaninger Straße 22, 81675 München, Germany
| | - Melis Akgün
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Institute of Stem Cell Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Technische Universität München, Ismaninger Straße 22, 81675 München, Germany
| | - Xianming Wang
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Institute of Stem Cell Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Technische Universität München, Ismaninger Straße 22, 81675 München, Germany
| | - Alireza Shahryari
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Institute of Stem Cell Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Technische Universität München, Ismaninger Straße 22, 81675 München, Germany; Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Arie Geerlof
- Institute of Structural Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Institute of Stem Cell Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Technische Universität München, Ismaninger Straße 22, 81675 München, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany.
| | - Ingo Burtscher
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Institute of Stem Cell Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany.
| |
Collapse
|
42
|
Yang J, Liu X, Yuan F, Liu J, Li D, Wei L, Wang X, Yuan L. X-box-binding protein 1 is required for pancreatic development in Xenopus laevis. Acta Biochim Biophys Sin (Shanghai) 2020; 52:1215-1226. [PMID: 33098302 DOI: 10.1093/abbs/gmaa114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 06/25/2020] [Indexed: 11/14/2022] Open
Abstract
X-box-binding protein 1 (XBP1) is a protein containing the basic leucine zipper structure. It belongs to the cAMP-response element binding protein (CREB)/activating transcription factor transcription factor family. As the main transcription factor, spliced XBP1 (XBP1s) participates in many physiological and pathological processes and plays an important role in embryonic development. Previous studies showed that XBP1-knockout mice died because of pancreatic exocrine function deficiency, indicating that XBP1 plays an important role in pancreatic development. However, the exact role of XBP1 in pancreatic development remains unclear. This study aimed to investigate the role of XBP1 in the pancreatic development of Xenopus laevis embryos. Whole-mount in situ hybridization and quantitative real-time PCR results revealed that the expression levels of pancreatic progenitor marker genes pdx1, p48, ngn3, and sox9 were downregulated in XBP1s morpholino oligonucleotide (MO)-injected embryos. The expression levels of pancreatic exocrine and endocrine marker genes insulin and amylase were also downregulated. Through the overexpression of XBP1s, the phenotype and gene expressions were opposite to those in XBP1s MO-injected embryos. Luciferase and chromatin immunoprecipitation assays showed that XBP1s could bind to the XBP1-binding site in the foxa2 promoter. These results revealed that XBP1 is required in the pancreatic development of Xenopus laevis and might function by regulating foxa2.
Collapse
Affiliation(s)
- Jing Yang
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing 210029, China
| | - Xingjing Liu
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, Medical School, Southeast University, Nanjing 210009, China
| | - Fang Yuan
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing 210029, China
| | - Jia Liu
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing 210029, China
| | - Deli Li
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing 210029, China
| | - Liyuan Wei
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing 210029, China
| | - Xuejun Wang
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing 210029, China
| | - Li Yuan
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing 210029, China
| |
Collapse
|
43
|
Gao HL, Wang WQ, Yu XJ, Liu L. Molecular drivers and cells of origin in pancreatic ductal adenocarcinoma and pancreatic neuroendocrine carcinoma. Exp Hematol Oncol 2020; 9:28. [PMID: 33101770 PMCID: PMC7579802 DOI: 10.1186/s40164-020-00184-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 10/10/2020] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer is one of the most common causes of cancer-related deaths worldwide. The two major histological subtypes of pancreatic cancer are pancreatic ductal adenocarcinoma (PDAC), accounting for 90% of all cases, and pancreatic neuroendocrine neoplasm (PanNEN), which makes up 3-5% of all cases. PanNEN is classified into well-differentiated pancreatic neuroendocrine tumor and poorly-differentiated pancreatic neuroendocrine carcinoma (PanNEC). Although PDAC and PanNEN are commonly thought to be different diseases with distinct biology, cell of origin, and genomic abnormalities, the idea that PDAC and PanNEC share common cells of origin has been gaining support. This is substantiated by evidence that the molecular profiling of PanNEC is genetically and phenotypically related to PDAC. In the current review, we summarize published studies pointing to common potential cells of origin and speculate about how the distinct paths of differentiation are determined by the genomic patterns of each disease. We also discuss the overlap between PDAC and PanNEC, which has been noted in clinical observations.
Collapse
Affiliation(s)
- He-Li Gao
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 20032 People’s Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong An Road, Shanghai, 200032 People’s Republic of China
- Shanghai Pancreatic Cancer Institute, 270 Dong An Road, Shanghai, 200032 People’s Republic of China
- Pancreatic Cancer Institute, Fudan University, 270 Dong An Road, Shanghai, 200032 People’s Republic of China
| | - Wen-Quan Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 20032 People’s Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong An Road, Shanghai, 200032 People’s Republic of China
- Shanghai Pancreatic Cancer Institute, 270 Dong An Road, Shanghai, 200032 People’s Republic of China
- Pancreatic Cancer Institute, Fudan University, 270 Dong An Road, Shanghai, 200032 People’s Republic of China
| | - Xian-Jun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 20032 People’s Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong An Road, Shanghai, 200032 People’s Republic of China
- Shanghai Pancreatic Cancer Institute, 270 Dong An Road, Shanghai, 200032 People’s Republic of China
| | - Liang Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 20032 People’s Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong An Road, Shanghai, 200032 People’s Republic of China
- Shanghai Pancreatic Cancer Institute, 270 Dong An Road, Shanghai, 200032 People’s Republic of China
- Pancreatic Cancer Institute, Fudan University, 270 Dong An Road, Shanghai, 200032 People’s Republic of China
| |
Collapse
|
44
|
Sawangmake C, Rodprasert W, Osathanon T, Pavasant P. Integrative protocols for an in vitro generation of pancreatic progenitors from human dental pulp stem cells. Biochem Biophys Res Commun 2020; 530:222-229. [PMID: 32828290 DOI: 10.1016/j.bbrc.2020.06.145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 06/26/2020] [Indexed: 01/17/2023]
Abstract
Efficiency of the induction protocol is crucial for the generation of insulin-producing cells (IPCs) from human dental pulp stem cells (hDPSCs). Here, we established the integrative induction protocol by merging genetic manipulation technique with our previous published 3-step induction protocol aiming to enhance the pancreatic progenitor commitment and production yield. We found that the overexpression of PDX1 following with 3-step induction protocol were able to generate the 3-dimensional (3D) colony structure of pancreatic progenitors (PPs) with the beneficial trends of pancreatic endoderm commitment and production yield, while other protocols using the prolong maintenance of PDX1-overexpressed hDPSCs and the PDX1 overexpression after definitive endoderm induction were unable to generate and sustain the 3D structure of the colonies. Further Notch signaling manipulation by DAPT treatment showed lesser degree of positive effects on progenitor commitment and production yield. Although the generated PPs from the integrative protocol expressed pancreatic mRNA markers along with pro-insulin and insulin proteins, they still contained the defective glucose-responsive C-peptide secretion. Only basal secreted C-peptide level was observed. In summary, the integrative induction protocol potentially enhanced the PP generation with high colony production yield and could serve as an efficient platform for further hDPSC-derived IPC production and maturation.
Collapse
Affiliation(s)
- Chenphop Sawangmake
- Department of Pharmacology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand; Veterinary Clinical Stem Cell and Bioengineering Research Unit, Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
| | - Watchareewan Rodprasert
- Veterinary Clinical Stem Cell and Bioengineering Research Unit, Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
| | - Thanaphum Osathanon
- Department of Anatomy, Center of Excellence for Regenerative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.
| | - Prasit Pavasant
- Department of Anatomy, Center of Excellence for Regenerative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
45
|
Blöchinger AK, Siehler J, Wißmiller K, Shahryari A, Burtscher I, Lickert H. Generation of an INSULIN-H2B-Cherry reporter human iPSC line. Stem Cell Res 2020; 45:101797. [PMID: 32361463 DOI: 10.1016/j.scr.2020.101797] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 03/14/2020] [Indexed: 11/26/2022] Open
Abstract
Differentiating human induced pluripotent stem cells (hiPSCs) into insulin (INS)-producing β-like cells has potential for diabetes research and therapy. Here, we generated a heterozygous fluorescent hiPSC reporter, labeling INS-producing β-like cells. We used CRISPR/Cas9 technology to knock-in a T2A-H2B-Cherry cassette to replace the translational INS stop codon, enabling co-transcription and T2A-peptide mediated co-translational cleavage of INS-T2A and H2B-Cherry. The hiPSC-INS-T2A-H2B-Cherry reporter cells were pluripotent and showed multi-lineage differentiation potential. Cells expressing the β-cell specific hormone INS are identified by nuclear localized H2B-Cherry reporter upon pancreatic endocrine differentiation. Thus, the generated reporter hiPSCs enable live identification of INS hormone-producing β-like cells.
Collapse
Affiliation(s)
- Anna Karolina Blöchinger
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Institute of Stem Cell Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Technische Universität München, Ismaninger Straße 22, 81675 München, Germany
| | - Johanna Siehler
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Institute of Stem Cell Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Technische Universität München, Ismaninger Straße 22, 81675 München, Germany
| | - Katharina Wißmiller
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Institute of Stem Cell Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Technische Universität München, Ismaninger Straße 22, 81675 München, Germany
| | - Alireza Shahryari
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Institute of Stem Cell Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Technische Universität München, Ismaninger Straße 22, 81675 München, Germany
| | - Ingo Burtscher
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Institute of Stem Cell Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Institute of Stem Cell Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Technische Universität München, Ismaninger Straße 22, 81675 München, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany.
| |
Collapse
|
46
|
Sachs S, Bastidas-Ponce A, Tritschler S, Bakhti M, Böttcher A, Sánchez-Garrido MA, Tarquis-Medina M, Kleinert M, Fischer K, Jall S, Harger A, Bader E, Roscioni S, Ussar S, Feuchtinger A, Yesildag B, Neelakandhan A, Jensen CB, Cornu M, Yang B, Finan B, DiMarchi RD, Tschöp MH, Theis FJ, Hofmann SM, Müller TD, Lickert H. Targeted pharmacological therapy restores β-cell function for diabetes remission. Nat Metab 2020; 2:192-209. [PMID: 32694693 DOI: 10.1038/s42255-020-0171-3] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 01/15/2020] [Indexed: 12/27/2022]
Abstract
Dedifferentiation of insulin-secreting β cells in the islets of Langerhans has been proposed to be a major mechanism of β-cell dysfunction. Whether dedifferentiated β cells can be targeted by pharmacological intervention for diabetes remission, and ways in which this could be accomplished, are unknown as yet. Here we report the use of streptozotocin-induced diabetes to study β-cell dedifferentiation in mice. Single-cell RNA sequencing (scRNA-seq) of islets identified markers and pathways associated with β-cell dedifferentiation and dysfunction. Single and combinatorial pharmacology further show that insulin treatment triggers insulin receptor pathway activation in β cells and restores maturation and function for diabetes remission. Additional β-cell selective delivery of oestrogen by Glucagon-like peptide-1 (GLP-1-oestrogen conjugate) decreases daily insulin requirements by 60%, triggers oestrogen-specific activation of the endoplasmic-reticulum-associated protein degradation system, and further increases β-cell survival and regeneration. GLP-1-oestrogen also protects human β cells against cytokine-induced dysfunction. This study not only describes mechanisms of β-cell dedifferentiation and regeneration, but also reveals pharmacological entry points to target dedifferentiated β cells for diabetes remission.
Collapse
Affiliation(s)
- Stephan Sachs
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
- Institute of Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
- Division of Metabolic Diseases, Department of Medicine, Technical University of Munich, Munich, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Aimée Bastidas-Ponce
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Stem Cell Research, Helmholtz Center Munich, Neuherberg, Germany
- Department of Medicine, Technical University of Munich, Munich, Germany
| | - Sophie Tritschler
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Computational Biology, Helmholtz Center Munich, Neuherberg, Germany
- School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Mostafa Bakhti
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Stem Cell Research, Helmholtz Center Munich, Neuherberg, Germany
| | - Anika Böttcher
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Stem Cell Research, Helmholtz Center Munich, Neuherberg, Germany
| | - Miguel A Sánchez-Garrido
- Institute of Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
| | - Marta Tarquis-Medina
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Stem Cell Research, Helmholtz Center Munich, Neuherberg, Germany
- Department of Medicine, Technical University of Munich, Munich, Germany
| | - Maximilian Kleinert
- Institute of Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Katrin Fischer
- Institute of Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
- Division of Metabolic Diseases, Department of Medicine, Technical University of Munich, Munich, Germany
| | - Sigrid Jall
- Institute of Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
- Division of Metabolic Diseases, Department of Medicine, Technical University of Munich, Munich, Germany
| | - Alexandra Harger
- Institute of Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
| | - Erik Bader
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
| | - Sara Roscioni
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
| | - Siegfried Ussar
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Department of Medicine, Technical University of Munich, Munich, Germany
- RG Adipocytes & Metabolism, Institute for Diabetes & Obesity, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
| | - Annette Feuchtinger
- Research Unit Analytical Pathology, Helmholtz Center Munich, Neuherberg, Germany
| | | | | | | | - Marion Cornu
- Global Drug Discovery, Novo Nordisk A/S, Maaloev, Denmark
| | - Bin Yang
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA
| | - Brian Finan
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA
| | - Richard D DiMarchi
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA
- Department of Chemistry, Indiana University, Bloomington, IN, USA
| | - Matthias H Tschöp
- Institute of Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
- Division of Metabolic Diseases, Department of Medicine, Technical University of Munich, Munich, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Center Munich, Neuherberg, Germany.
- School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany.
- Department of Mathematics, Technical University of Munich, Munich, Germany.
| | - Susanna M Hofmann
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
- Medical Clinic and Polyclinic IV, Ludwig Maximilian University of Munich, Munich, Germany.
| | - Timo D Müller
- Institute of Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
- Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, Eberhard Karls University Hospitals and Clinics, Tübingen, Germany.
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
- Institute of Stem Cell Research, Helmholtz Center Munich, Neuherberg, Germany.
- Department of Medicine, Technical University of Munich, Munich, Germany.
| |
Collapse
|
47
|
Yang W, Chi Y, Meng Y, Chen Z, Xiang R, Yan H, Yang J. FAM3A plays crucial roles in controlling PDX1 and insulin expressions in pancreatic beta cells. FASEB J 2020; 34:3915-3931. [PMID: 31944392 DOI: 10.1096/fj.201902368rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/22/2019] [Accepted: 12/24/2019] [Indexed: 11/11/2022]
Abstract
So far, the mechanism that links mitochondrial dysfunction to PDX1 inhibition in the pathogenesis of pancreatic β cell dysfunction under diabetic condition remains largely unclear. This study determined the role of mitochondrial protein FAM3A in regulating PDX1 expression in pancreatic β cells using gain- and loss-of function methods in vitro and in vivo. Within pancreas, FAM3A is highly expressed in β, α, δ, and pp cells of islets. Islet FAM3A expression was correlated with insulin expression under physiological and diabetic conditions. Mice with specific knockout of FAM3A in islet β cells exhibited markedly blunted insulin secretion and glucose intolerance. FAM3A-deficient islets showed significant decrease in PDX1 expression, and insulin expression and secretion. FAM3A overexpression upregulated PDX1 and insulin expressions, and augmented insulin secretion in cultured islets and β cells. Mechanistically, FAM3A enhanced ATP production to elevate cellular Ca2+ level and promote insulin secretion. Furthermore, FAM3A-induced ATP release activated CaM to function as a co-activator of FOXA2, stimulating PDX1 gene transcription. In conclusion, FAM3A plays crucial roles in controlling PDX1 and insulin expressions in pancreatic β cells. Inhibition of FAM3A will trigger mitochondrial dysfunction to repress PDX1 and insulin expressions.
Collapse
Affiliation(s)
- Weili Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China.,Beijing Key Laboratory of Diabetes Research and Care, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yujing Chi
- Department of Central Laboratory & Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing, China
| | - Yuhong Meng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
| | - Zhenzhen Chen
- State Key Laboratory of Cardiovascular Disease, Hypertension Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rui Xiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
| | - Han Yan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
| | - Jichun Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
| |
Collapse
|
48
|
Bulanenkova SS, Snezhkov EV, Akopov SB. SOX9 as One of the Central Units of Regulation Axis of Pancreas Embryogenesis and Cancer Progression. MOLECULAR GENETICS MICROBIOLOGY AND VIROLOGY 2020. [DOI: 10.3103/s0891416819030030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
49
|
L’îlot pancréatique : ce que nous savons 150 ans après Langerhans. BULLETIN DE L'ACADÉMIE NATIONALE DE MÉDECINE 2019. [DOI: 10.1016/j.banm.2019.06.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
50
|
2-Amino-4-(1-piperidine) pyridine exhibits inhibitory effect on colon cancer through suppression of FOXA2 expression. 3 Biotech 2019; 9:384. [PMID: 31656722 DOI: 10.1007/s13205-019-1915-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/21/2019] [Indexed: 12/27/2022] Open
Abstract
The present study was aimed to investigate the effect of 2-amino-4-(1-piperidine) pyridine on migration and invasion of colon cancer cells. Treatment of colon cancer cells with 2-amino-4-(1-piperidine) pyridine reduced viability in concentration-based manner. The migration potential of HCT116 and HT29 cells was also suppressed on treatment with 2-amino-4-(1-piperidine) pyridine. In HCT116 and HT29 cells, apoptotic cell proportion was increased significantly by 2-amino-4-(1-piperidine) pyridine treatment. The expression of EMT and Vimentin in HCT116 and HT29 cells was reduced markedly on treatment with 2-amino-4-(1-piperidine) pyridine. The expression of E-cadherin was increased in HCT116 and HT29 cells by 2-amino-4-(1-piperidine) pyridine treatment. Treatment with 2-amino-4-(1-piperidine) pyridine reduced the expression of FOXA2 in HCT116 and HT29 cells. The 2-amino-4-(1-piperidine) pyridine treatment reduced growth of tumor in vivo in mice model. In summary, 2-amino-4-(1-piperidine) pyridine treatment inhibits colon cancer cell proliferation through down-regulation of FOXA2 expression. Therefore, 2-amino-4-(1-piperidine) pyridine can be used for the treatment of colon cancer.
Collapse
|