1
|
Wang Z, Xiao N, Guo S, Liu X, Liu C, Ai M. Unlocking the Potential of Keratin: A Comprehensive Exploration from Extraction and Structural Properties to Cross-Disciplinary Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:1014-1037. [PMID: 39681472 DOI: 10.1021/acs.jafc.4c07102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
The rapid expansion of the livestock and poultry industry has led to a considerable increase in slaughter byproducts; however, exploring their potential applications still needs to be improved. These underutilized byproducts, which include nails, hides, skins, and bones, represent a significant loss of valuable biological resources. Among these materials, keratin has garnered considerable attention due to its unique properties as a natural biopolymer. Keratin exhibits outstanding mechanical properties and biocompatibility and has attracted increasing attention for its recovery and conversion into relevant application materials. However, natural keratin typically has a high sulfur content, complex 3D structure, and abundant hydrogen and disulfide bonds, which cause challenges in application. Current extraction for keratin includes physical, chemical, biological, and hybrid approaches. Combining multiple methods synergistically enhances protein extraction efficiency and purity, and facilitates the exploration of structure and functional properties. This review encompasses the structural characteristics, properties, extraction methods, and research progress related to keratin. The preparation and application of keratin composite materials in different forms, such as fibers, films, hydrogels, and scaffolds, are illustrated. Applications in several fields, including biomedicine, flexible electronic components, environmental materials and food packaging are discussed. Hopefully, this paper will provide a comprehensive understanding and guidance for further development and application of keratin materials.
Collapse
Affiliation(s)
- Ziyuan Wang
- The National Center for Precision Machining and Safety of Livestock and Poultry Products Joint Engineering Research Center, College of Food Science, South China Agricultural University, 510642 Guangzhou, China
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, 510642 Guangzhou, China
| | - Nan Xiao
- The National Center for Precision Machining and Safety of Livestock and Poultry Products Joint Engineering Research Center, College of Food Science, South China Agricultural University, 510642 Guangzhou, China
| | - Shanguang Guo
- The National Center for Precision Machining and Safety of Livestock and Poultry Products Joint Engineering Research Center, College of Food Science, South China Agricultural University, 510642 Guangzhou, China
| | - Xuwei Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, 510642 Guangzhou, China
| | - Chunhong Liu
- The National Center for Precision Machining and Safety of Livestock and Poultry Products Joint Engineering Research Center, College of Food Science, South China Agricultural University, 510642 Guangzhou, China
| | - Minmin Ai
- The National Center for Precision Machining and Safety of Livestock and Poultry Products Joint Engineering Research Center, College of Food Science, South China Agricultural University, 510642 Guangzhou, China
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, 510642 Guangzhou, China
| |
Collapse
|
2
|
Shao H, Wu X, Xiao Y, Yang Y, Ma J, Zhou Y, Chen W, Qin S, Yang J, Wang R, Li H. Recent research advances on polysaccharide-, peptide-, and protein-based hemostatic materials: A review. Int J Biol Macromol 2024; 261:129752. [PMID: 38280705 DOI: 10.1016/j.ijbiomac.2024.129752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/05/2023] [Accepted: 01/23/2024] [Indexed: 01/29/2024]
Abstract
Hemorrhage is a potentially life-threatening emergency that can occur at any time or place. Whether traumatic, congenital, surgical, disease-related, or drug-induced, bleeding can lead to severe complications or death. Therefore, the development of efficient hemostatic materials is critical. However, the results and prognosis demonstrated by clinical means of hemostasis do not reach expectations. With the development of technology, novel hemostatic materials have been developed from polysaccharides (chitosan, hyaluronic acid, alginate, cellulose, cyclodextrins, starch, dextran, and carrageenan), peptides (self-assembling peptides), and proteins (silk fibroin, collagen, gelatin, keratin, and thrombin). These new materials exhibit high hemostatic efficacy due to the enhancement or interaction of various hemostatic mechanisms. The main forms include adhesives, sealants, bandages, hemostatic powders, and hemostatic sponges. This article introduces the clotting process and principles of hemostatic methods and reviews the research on polysaccharide-, peptide-, and protein-based hemostatic materials in the last five years. The design ideas and hemostatic principles of polysaccharide-, peptide-, and protein-based hemostatic materials are mainly introduced. Finally, we summarize material designs, advantages, disadvantages, and challenges regarding hemostatic materials.
Collapse
Affiliation(s)
- Hanjie Shao
- Ningbo Medical Center Li Huili Hospital, Health Science Center, Ningbo University, Ningbo 315000, PR China; Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, PR China
| | - Xiang Wu
- Ningbo Medical Center Li Huili Hospital, Health Science Center, Ningbo University, Ningbo 315000, PR China; Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, PR China
| | - Ying Xiao
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, PR China
| | - Yanyu Yang
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, PR China
| | - Jingyun Ma
- Ningbo Institute of Innovation for Combined Medicine and Engineering, The Affiliated Li Huili Hospital, Ningbo University, Ningbo 315100, PR China
| | - Yang Zhou
- Ningbo Institute of Innovation for Combined Medicine and Engineering, The Affiliated Li Huili Hospital, Ningbo University, Ningbo 315100, PR China
| | - Wen Chen
- Ningbo Medical Center Li Huili Hospital, Health Science Center, Ningbo University, Ningbo 315000, PR China
| | - Shaoxia Qin
- Ningbo Medical Center Li Huili Hospital, Health Science Center, Ningbo University, Ningbo 315000, PR China
| | - Jiawei Yang
- Ningbo Medical Center Li Huili Hospital, Health Science Center, Ningbo University, Ningbo 315000, PR China
| | - Rong Wang
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, PR China.
| | - Hong Li
- Ningbo Medical Center Li Huili Hospital, Health Science Center, Ningbo University, Ningbo 315000, PR China.
| |
Collapse
|
3
|
Majeed Z, Farhat H, Ahmad B, Iqbal A, Faiz AUH, Mahnashi MH, Alqarni AO, Alqahtani O, Ali AA, Momenah AM. Process optimization, antioxidant, antibacterial, and drug adjuvant properties of bioactive keratin microparticles derived from porcupine ( Hystrix indica) quills. PeerJ 2023; 11:e15653. [PMID: 37609437 PMCID: PMC10441523 DOI: 10.7717/peerj.15653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 06/07/2023] [Indexed: 08/24/2023] Open
Abstract
A structural protein called keratin is often employed in the medical industry to create medication carriers. Process improvement, antioxidant, antibacterial, and adjuvant drug studies of synthetic bioactive keratin microparticles made from lipids and keratin derived from porcupine (Hystrix indica) quills are the main objectives of this study. After coating the keratin microparticles with lipids which were obtained from the same porcupine quills, the bioactive keratin microparticles were produced. The response surface technique was applied to optimize the conditions for extraction of the keratin protein and sizing of the keratin microparticles. An infrared spectroscopy was used to analyze the chemical shifts in compositions of keratin microparticles while the optical microscopy was used to measure the size of the keratin microparticles. The results of this work revealed that a yield 27.36 to 42.25% of the keratin protein could be obtained from porcupine quills. The keratin microparticles were sized between 60.65 and 118.87 µm. Through response surface optimization, mercaptoethanol and urea were shown to be the main variables which positively affected the yield and the size of the keratin protein. The lipid stacking on the keratin microparticles' surface was confirmed by infrared spectroscopy. The 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulphonate) assay confirmed the keratin microparticle's antioxidant activity of 29.83%. Compared to lipid alone, the antibacterial properties of the keratin microparticles against Escherichia coli-a gram-negative-and Staphylococcus aureus-a gram-positive-bacteria enhanced by up to 55% following the coating of the microparticles with the lipids. The pharmacological action against these bacterial species was further improved by the lipid-loaded erythromycin that was carried on the surface of keratin microparticles. This work has demonstrated the design and uses of the keratin microparticles obtained from porcupine quills for clinical applications.
Collapse
Affiliation(s)
- Zahid Majeed
- Department of Biotechnology, Faculty of Science, The University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
| | - Hoorulain Farhat
- Department of Zoology, Faculty of Science, The University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
| | - Basharat Ahmad
- Department of Zoology, The University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
| | - Atia Iqbal
- Department of Microbiology and Molecular Genetics, The Women University, Multan, Pakistan
| | - Abu ul Hassan Faiz
- Department of Zoology, Faculty of Science and Technology, Women University of Azad Jammu and Kashmir, Bagh, Pakistan
| | - Mater H. Mahnashi
- Department of Pharmaceutical Chemistry, Najran University, Najran, Saudi Arabia
| | - Ali O. Alqarni
- Department of Pharmaceutical Chemistry, Najran University, Najran, Saudi Arabia
| | - Omaish Alqahtani
- Department of Pharmacognosy, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Amer Al Ali
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, University of Bisha, Al Nakhil Bisha, Saudi Arabia
| | - Aiman M. Momenah
- Department of Microbiology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
4
|
Li XF, Lu P, Jia HR, Li G, Zhu B, Wang X, Wu FG. Emerging materials for hemostasis. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
5
|
Zou CY, Li QJ, Hu JJ, Song YT, Zhang QY, Nie R, Li-Ling J, Xie HQ. Design of biopolymer-based hemostatic material: Starting from molecular structures and forms. Mater Today Bio 2022; 17:100468. [PMID: 36340592 PMCID: PMC9626749 DOI: 10.1016/j.mtbio.2022.100468] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Uncontrolled bleeding remains as a leading cause of death in surgical, traumatic, and emergency situations. Management of the hemorrhage and development of hemostatic materials are paramount for patient survival. Owing to their inherent biocompatibility, biodegradability and bioactivity, biopolymers such as polysaccharides and polypeptides have been extensively researched and become a focus for the development of next-generation hemostatic materials. The construction of novel hemostatic materials requires in-depth understanding of the physiological hemostatic process, fundamental hemostatic mechanisms, and the effects of material chemistry/physics. Herein, we have recapitulated the common hemostatic strategies and development status of biopolymer-based hemostatic materials. Furthermore, the hemostatic mechanisms of various molecular structures (components and chemical modifications) are summarized from a microscopic perspective, and the design based on them are introduced. From a macroscopic perspective, the design of various forms of hemostatic materials, e.g., powder, sponge, hydrogel and gauze, is summarized and compared, which may provide an enlightenment for the optimization of hemostat design. It has also highlighted current challenges to the development of biopolymer-based hemostatic materials and proposed future directions in chemistry design, advanced form and clinical application.
Collapse
Affiliation(s)
- Chen-Yu Zou
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Qian-Jin Li
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Juan-Juan Hu
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
- Department of Otolaryngology, Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Yu-Ting Song
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Qing-Yi Zhang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Rong Nie
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Jesse Li-Ling
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
- Department of Medical Genetics, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Hui-Qi Xie
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| |
Collapse
|
6
|
Trojanowska D, Suarato G, Braccia C, Armirotti A, Fiorentini F, Athanassiou A, Perotto G. Wool Keratin Nanoparticle-Based Micropatterns for Cellular Guidance Applications. ACS APPLIED NANO MATERIALS 2022; 5:15272-15287. [PMID: 36338329 PMCID: PMC9624257 DOI: 10.1021/acsanm.2c03116] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
The waste stream of low-grade wool is an underutilized source of keratin-rich materials with appropriate methods for upcycling into high value-added products still being an open challenge. In the present work, keratins were precipitated from their water solution to produce hierarchical keratin particles via isoelectric precipitation. Matrix-assisted laser desorption/ionization coupled with time-of-flight tandem mass spectrometry analysis (MALDI-TOF/TOF MS/MS) showed the presence of the amino acid sequence leucine-aspartic acid-valine (LDV) in the extracted keratin. This well-known cell adhesion motif is recognized by the cell adhesion molecule α4β1 integrin. We showed that keratin particles had this tripeptide exposed on the surface and that it could be leveraged, via patterns obtained with microcontact printing, to support and facilitate dermal fibroblast cell adhesion and direct their growth orientation. The zeta potential, isoelectric point, morphological structures, chemical composition, and biocompatibility of keratin particles and the influence of the surfactant sodium dodecyl sulfate (SDS) were investigated. An appropriate ink for microcontact printing of the keratin particles was developed and micron-sized patterns were obtained. Cells adhered preferentially to the patterns, showing how this strategy could be used to functionalize biointerfaces.
Collapse
Affiliation(s)
- Dagmara
J. Trojanowska
- Istituto
Italiano di Tecnologia, Smart Materials Group, Via Morego, 30, 16163Genova, Italy
- Department
of Materials Science, University of Milano-Bicocca, via R. Cozzi 55, 20125Milan, Italy
| | - Giulia Suarato
- Istituto
Italiano di Tecnologia, Smart Materials Group, Via Morego, 30, 16163Genova, Italy
- Istituto
Italiano di Tecnologia, Translational Pharmacology Facility, Via Morego, 30, 16163Genova, Italy
| | - Clarissa Braccia
- Istituto
Italiano di Tecnologia, Analytical Chemistry Facility, Via Morego, 30, 16163Genova, Italy
| | - Andrea Armirotti
- Istituto
Italiano di Tecnologia, Analytical Chemistry Facility, Via Morego, 30, 16163Genova, Italy
| | - Fabrizio Fiorentini
- Istituto
Italiano di Tecnologia, Smart Materials Group, Via Morego, 30, 16163Genova, Italy
| | - Athanassia Athanassiou
- Istituto
Italiano di Tecnologia, Smart Materials Group, Via Morego, 30, 16163Genova, Italy
| | - Giovanni Perotto
- Istituto
Italiano di Tecnologia, Smart Materials Group, Via Morego, 30, 16163Genova, Italy
| |
Collapse
|
7
|
Mecwan M, Li J, Falcone N, Ermis M, Torres E, Morales R, Hassani A, Haghniaz R, Mandal K, Sharma S, Maity S, Zehtabi F, Zamanian B, Herculano R, Akbari M, V. John J, Khademhosseini A. Recent advances in biopolymer-based hemostatic materials. Regen Biomater 2022; 9:rbac063. [PMID: 36196294 PMCID: PMC9522468 DOI: 10.1093/rb/rbac063] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/09/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Hemorrhage is the leading cause of trauma-related deaths, in hospital and prehospital settings. Hemostasis is a complex mechanism that involves a cascade of clotting factors and proteins that result in the formation of a strong clot. In certain surgical and emergency situations, hemostatic agents are needed to achieve faster blood coagulation to prevent the patient from experiencing a severe hemorrhagic shock. Therefore, it is critical to consider appropriate materials and designs for hemostatic agents. Many materials have been fabricated as hemostatic agents, including synthetic and naturally derived polymers. Compared to synthetic polymers, natural polymers or biopolymers, which include polysaccharides and polypeptides, have greater biocompatibility, biodegradability and processibility. Thus, in this review, we focus on biopolymer-based hemostatic agents of different forms, such as powder, particles, sponges and hydrogels. Finally, we discuss biopolymer-based hemostatic materials currently in clinical trials and offer insight into next-generation hemostats for clinical translation.
Collapse
Affiliation(s)
- Marvin Mecwan
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Jinghang Li
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Natashya Falcone
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Menekse Ermis
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Emily Torres
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Ramon Morales
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Alireza Hassani
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Reihaneh Haghniaz
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Kalpana Mandal
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Saurabh Sharma
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Surjendu Maity
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Fatemeh Zehtabi
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Behnam Zamanian
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Rondinelli Herculano
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
- Bioengineering & Biomaterials Group, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP 14800-903, Brazil
| | - Mohsen Akbari
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
- Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada
- Biotechnology Center, Silesian University of Technology, Gliwice 44-100, Poland
| | - Johnson V. John
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| |
Collapse
|
8
|
Yan RR, Xue D, Su C, Xu Y, Gong JS, Liu YL, Jiang M, Geng Y, Lv GZ, Xu ZH, Shi JS. A keratin/chitosan sponge with excellent hemostatic performance for uncontrolled bleeding. Colloids Surf B Biointerfaces 2022; 218:112770. [PMID: 35988313 DOI: 10.1016/j.colsurfb.2022.112770] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/19/2022] [Accepted: 08/08/2022] [Indexed: 12/24/2022]
Abstract
Uncontrolled bleeding leads to a higher fatality rate in the situation of surgery, traffic accidents and warfare. Traditional hemostatic materials such as bandages are not ideal for uncontrolled or incompressible bleeding. Therefore, it is of great significance to develop a new medical biomaterial with excellent rapid hemostatic effect. Keratin is a natural, biocompatible and biodegradable protein which contains amino acid sequences that induce cell adhesion. As a potential biomedical material, keratin has been developed and paid attention in tissue engineering fields such as promoting wound healing and nerve repair. Herein, a keratin/chitosan (K/C) sponge was prepared to achieve rapid hemostasis. The characterizations of K/C sponge were investigated, including SEM, TGA, liquid absorption and porosity, showing that the high porosity up to 90.12 ± 2.17 % resulted in an excellent blood absorption. The cytotoxicity test and implantation experiment proved that the K/C sponge was biocompatible and biodegradable. Moreover, the prepared K/C sponge showed better hemostatic performance than chitosan sponge (CS) and the commercially available gelatin sponge in both rat tail amputation and liver trauma bleeding models. Further experiments showed that K/C sponge plays a hemostatic role through the endogenous coagulation pathway, thus shortening the activated partial thromboplastin time (APTT) effectively. Therefore, this study provided a K/C sponge which can be served as a promising biomedical hemostatic material.
Collapse
Affiliation(s)
- Rong-Rong Yan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Dai Xue
- Department of Stomatology, Wuxi Children's Hospital, Wuxi 214023, PR China
| | - Chang Su
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Yan Xu
- Affiliated Hospital of Jiangnan University, Wuxi 214062 PR China
| | - Jin-Song Gong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Yan-Ling Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Min Jiang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Yan Geng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Guo-Zhong Lv
- Affiliated Hospital of Jiangnan University, Wuxi 214062 PR China
| | - Zheng-Hong Xu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Jin-Song Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
9
|
Eissa RA, Saafan HA, Ali AE, Ibrahim KM, Eissa NG, Hamad MA, Pang C, Guo H, Gao H, Elsabahy M, Wooley KL. Design of nanoconstructs that exhibit enhanced hemostatic efficiency and bioabsorbability. NANOSCALE 2022; 14:10738-10749. [PMID: 35866631 DOI: 10.1039/d2nr02043b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hemorrhage is a prime cause of death in civilian and military traumatic injuries, whereby a significant proportion of death and complications occur prior to paramedic arrival and hospital resuscitation. Hence, it is crucial to develop hemostatic materials that are able to be applied by simple processes and allow control over bleeding by inducing rapid hemostasis, non-invasively, until subjects receive necessary medical care. This tutorial review discusses recent advances in synthesis and fabrication of degradable hemostatic nanomaterials and nanocomposites. Control of assembly and fine-tuning of composition of absorbable (i.e., degradable) hemostatic supramolecular structures and nanoconstructs have afforded the development of smart devices and scaffolds capable of efficiently controlling bleeding while degrading over time, thereby reducing surgical operation times and hospitalization duration. The nanoconstructs that are highlighted have demonstrated hemostatic efficiency pre-clinically in animal models, while also sharing characteristics of degradability, bioabsorbability and presence of nano-assemblies within their compositions.
Collapse
Affiliation(s)
- Rana A Eissa
- School of Biotechnology and Science Academy, Badr University in Cairo, Badr City, Cairo 11829, Egypt.
| | - Hesham A Saafan
- School of Biotechnology and Science Academy, Badr University in Cairo, Badr City, Cairo 11829, Egypt.
| | - Aliaa E Ali
- Department of Chemistry, University of Turku, Vatselankatu 2, 20014 Turku, Finland
| | - Kamilia M Ibrahim
- Department of Pharmacology, Faculty of Pharmacy, Ain Shams University, Cairo 11561, Egypt
| | - Noura G Eissa
- School of Biotechnology and Science Academy, Badr University in Cairo, Badr City, Cairo 11829, Egypt.
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Mostafa A Hamad
- Department of Surgery, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Ching Pang
- Departments of Chemistry, Chemical Engineering, and Materials Science & Engineering, Texas A&M University, College Station, Texas 77842, USA.
| | - Hongming Guo
- Departments of Chemistry, Chemical Engineering, and Materials Science & Engineering, Texas A&M University, College Station, Texas 77842, USA.
| | - Hui Gao
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, P. R. China.
| | - Mahmoud Elsabahy
- School of Biotechnology and Science Academy, Badr University in Cairo, Badr City, Cairo 11829, Egypt.
- Departments of Chemistry, Chemical Engineering, and Materials Science & Engineering, Texas A&M University, College Station, Texas 77842, USA.
- Misr University for Science and Technology, 6th of October City, Cairo 12566, Egypt
| | - Karen L Wooley
- Departments of Chemistry, Chemical Engineering, and Materials Science & Engineering, Texas A&M University, College Station, Texas 77842, USA.
| |
Collapse
|
10
|
Maisha N, Kulkarni C, Pandala N, Zilberberg R, Schaub L, Neidert L, Glaser J, Cannon J, Janeja V, Lavik EB. PEGylated Polyester Nanoparticles Trigger Adverse Events in a Large Animal Model of Trauma and in Naı̈ve Animals: Understanding Cytokine and Cellular Correlations with These Events. ACS NANO 2022; 16:10566-10580. [PMID: 35822898 DOI: 10.1021/acsnano.2c01993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Intravenously infusible nanoparticles to control bleeding have shown promise in rodents, but translation into preclinical models has been challenging as many of these nanoparticle approaches have resulted in infusion responses and adverse outcomes in large animal trauma models. We developed a hemostatic nanoparticle technology that was screened to avoid one component of the infusion response: complement activation. We administered these hemostatic nanoparticles, control nanoparticles, or saline volume controls in a porcine polytrauma model. While the hemostatic nanoparticles promoted clotting as marked by a decrease in prothrombin time and both the hemostatic nanoparticles and controls did not active complement, in a subset of the animals, hard thrombi were found in uninjured tissues in both the hemostatic and control nanoparticle groups. Using data science methods that allow one to work across heterogeneous data sets, we found that the presence of these thrombi correlated with changes in IL-6, INF-alpha, lymphocytes, and neutrophils. While these findings might suggest that this formulation would not be a safe one for translation for trauma, they provide guidance for developing screening tools to make nanoparticle formulations in the complex milieux of trauma as well as for therapeutic interventions more broadly. This is important as we look to translate intravenously administered nanoparticle formulations for therapies, particularly considering the vascular changes seen in a subset of patients following COVID-19. We need to understand adverse events like thrombi more completely and screen for these events early to make nanomaterials as safe and effective as possible.
Collapse
Affiliation(s)
| | | | | | | | - Leasha Schaub
- Naval Medical Research Unit-San Antonio, San Antonio, Texas 78234, United States
| | - Leslie Neidert
- Naval Medical Research Unit-San Antonio, San Antonio, Texas 78234, United States
| | - Jacob Glaser
- Naval Medical Research Unit-San Antonio, San Antonio, Texas 78234, United States
| | - Jeremy Cannon
- Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | | | | |
Collapse
|
11
|
Ye W, Qin M, Qiu R, Li J. Keratin-based wound dressings: From waste to wealth. Int J Biol Macromol 2022; 211:183-197. [PMID: 35513107 DOI: 10.1016/j.ijbiomac.2022.04.216] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/08/2023]
Abstract
Keratin is a natural protein with a high content of cysteine residues (7-13%) and is widely found in hair, wool, horns, hooves, and nails. Keratin possesses abundant cell-binding motifs such as leucine-aspartate-valine (LDV), glutamate-aspartate-serine (EDS), and arginine-glycine-aspartate (RGD), which benefit cell attachment and proliferation. It has been confirmed that keratin plays important roles in every stage of wound healing, including hemostasis, inflammation, proliferation, and remodeling, making keratin-based materials good candidates for wound dressings. In combination with synthetic and natural polymers, keratin-based wound dressings in the forms of films, hydrogels, and nanofibers can be achieved with improved mechanical properties. This review focuses on the recent development of keratin-based wound dressings. Firstly, the physicochemical and biological properties of keratin, are systematically discussed. Secondly, the role of keratin in wound healing is proposed. Thirdly, the applications of keratin-based wound dressings are summarized, in terms of the forms and functionalization. Finally, the current challenges and future development of keratin-based wound dressings are presented.
Collapse
Affiliation(s)
- Wenjin Ye
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, PR China, 610065
| | - Meng Qin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, PR China, 610065
| | - Rongmin Qiu
- College & Hospital of Stomatology, Guangxi Medical University, Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases, Nanning, Guangxi 530021, PR China.
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, PR China, 610065; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China; Med-X Center for Materials, Sichuan University, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
12
|
Montazerian H, Davoodi E, Baidya A, Baghdasarian S, Sarikhani E, Meyer CE, Haghniaz R, Badv M, Annabi N, Khademhosseini A, Weiss PS. Engineered Hemostatic Biomaterials for Sealing Wounds. Chem Rev 2022; 122:12864-12903. [PMID: 35731958 DOI: 10.1021/acs.chemrev.1c01015] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hemostatic biomaterials show great promise in wound control for the treatment of uncontrolled bleeding associated with damaged tissues, traumatic wounds, and surgical incisions. A surge of interest has been directed at boosting hemostatic properties of bioactive materials via mechanisms triggering the coagulation cascade. A wide variety of biocompatible and biodegradable materials has been applied to the design of hemostatic platforms for rapid blood coagulation. Recent trends in the design of hemostatic agents emphasize chemical conjugation of charged moieties to biomacromolecules, physical incorporation of blood-coagulating agents in biomaterials systems, and superabsorbing materials in either dry (foams) or wet (hydrogel) states. In addition, tough bioadhesives are emerging for efficient and physical sealing of incisions. In this Review, we highlight the biomacromolecular design approaches adopted to develop hemostatic bioactive materials. We discuss the mechanistic pathways of hemostasis along with the current standard experimental procedures for characterization of the hemostasis efficacy. Finally, we discuss the potential for clinical translation of hemostatic technologies, future trends, and research opportunities for the development of next-generation surgical materials with hemostatic properties for wound management.
Collapse
Affiliation(s)
- Hossein Montazerian
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, United States.,California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States.,Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, United States
| | - Elham Davoodi
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, United States.,California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States.,Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, United States.,Multi-Scale Additive Manufacturing Lab, Mechanical and Mechatronics Engineering Department, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Avijit Baidya
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Sevana Baghdasarian
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Einollah Sarikhani
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, United States
| | - Claire Elsa Meyer
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Reihaneh Haghniaz
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, United States
| | - Maryam Badv
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States.,Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States.,Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Nasim Annabi
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, United States.,Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, United States
| | - Paul S Weiss
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, United States.,California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States.,Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States.,Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
13
|
Fibrous Protein Composite Scaffolds (3D) for Tissue Regeneration: An in vitro Study on Skeletal Muscle Regeneration. Colloids Surf B Biointerfaces 2022; 217:112656. [DOI: 10.1016/j.colsurfb.2022.112656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/04/2022] [Accepted: 06/21/2022] [Indexed: 11/15/2022]
|
14
|
Wang Y, Xu Y, Zhang Z, He Y, Hou Z, Zhao Z, Deng J, Qing R, Wang B, Hao S. Rational Design of High-Performance Keratin-Based Hemostatic Agents. Adv Healthc Mater 2022; 11:e2200290. [PMID: 35613419 DOI: 10.1002/adhm.202200290] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 05/17/2022] [Indexed: 12/17/2022]
Abstract
Keratins are considered ideal candidates as hemostatic agents, but the development lags far behind their potentials due to the poorly understood hemostatic mechanism and structure-function relations, owing to the composition complexity in protein extracts. Here, it is shown that by using a recombinant synthesis approach, individual types of keratins can be expressed and used for mechanism investigation and further high-performance keratin hemostatic agent design. In the comparative evaluation of full-length, rod-domain, and helical segment keratins, the α-helical contents in the sequences are identified to be directly proportional to keratins' hemostatic activities, and Tyr, Phe, and Gln residues at the N-termini of α-helices in keratins are crucial in fibrinopeptide release and fibrin polymerization. A feasible route to significantly enhance the hemostatic efficiency of helical keratins by mutating Cys to Ser in the sequences for enhanced water wettability through soluble expression is then further presented. These results provide a rational strategy to design high-efficiency keratin hemostatic agents with superior performance over clinically used gelatin sponge in multiple animal models.
Collapse
Affiliation(s)
- Yumei Wang
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing 400030 China
- Department of Nuclear Medicine Chongqing University Cancer Hospital Chongqing 400044 China
| | - Yingqian Xu
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing 400030 China
| | - Zhi Zhang
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing 400030 China
| | - Ye He
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing 400030 China
| | - Zongkun Hou
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing 400030 China
| | - Zhibin Zhao
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing 400030 China
| | - Jia Deng
- College of Environment and Resources Chongqing Technology and Business University Chongqing 400067 China
| | - Rui Qing
- School of Life Sciences and Biotechnology Shanghai Jiao Tong University Shanghai 200240 China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing 400030 China
| | - Shilei Hao
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing 400030 China
| |
Collapse
|
15
|
Timorshina S, Popova E, Osmolovskiy A. Sustainable Applications of Animal Waste Proteins. Polymers (Basel) 2022; 14:polym14081601. [PMID: 35458349 PMCID: PMC9027211 DOI: 10.3390/polym14081601] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 12/19/2022] Open
Abstract
Currently, the growth of the global population leads to an increase in demand for agricultural products. Expanding the obtaining and consumption of food products results in a scale up in the amount of by-products formed, the development of processing methods for which is becoming an urgent task of modern science. Collagen and keratin make up a significant part of the animal origin protein waste, and the potential for their biotechnological application is almost inexhaustible. The specific fibrillar structure allows collagen and keratin to be in demand in bioengineering in various forms and formats, as a basis for obtaining hydrogels, nanoparticles and scaffolds for regenerative medicine and targeted drug delivery, films for the development of biodegradable packaging materials, etc. This review describes the variety of sustainable sources of collagen and keratin and the beneficial application multiformity of these proteins.
Collapse
|
16
|
Yan RR, Gong JS, Su C, Liu YL, Qian JY, Xu ZH, Shi JS. Preparation and applications of keratin biomaterials from natural keratin wastes. Appl Microbiol Biotechnol 2022; 106:2349-2366. [DOI: 10.1007/s00253-022-11882-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 03/08/2022] [Accepted: 03/12/2022] [Indexed: 12/20/2022]
|
17
|
Zhang W, Zhao L, Gao C, Huang J, Li Q, Zhang Z. Highly resilient, biocompatible, and antibacterial carbon nanotube/hydroxybutyl chitosan sponge dressing for rapid and effective hemostasis. J Mater Chem B 2021; 9:9754-9763. [PMID: 34796365 DOI: 10.1039/d1tb01911b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Uncontrolled hemorrhage is the leading cause of trauma death. The development of safe and efficient hemostatic agents that can rapidly and effectively control bleeding is of great significance to rescue the injured. However, the mechanical, absorptive, and antibacterial properties of conventional two-dimensional hemostatic agents are not satisfactory. Herein, a series of effective three-dimensional hemostatic dressings (JWCNT/HBC sponges) are developed by chemical modification of joint-welded carbon nanotube (JWCNT) sponges with hydroxybutyl chitosan (HBC) for hemorrhage hemostasis. The JWCNT/HBC sponges exhibit high elasticity, porous structure, and suitable blood-absorption and blood-maintaining performance. Moreover, the introduction of HBC endows the JWCNT/HBC sponges with favorable blood compatibility and good antibacterial activity. The sponge treated with 0.5% HBC (JWCNT/0.5%HBC sponge) displays better antiseptic capability, faster blood clotting ability in vitro and shorter hemostasis time in vivo than the commercial gelatin sponge. The JWCNT/HBC sponges combine the advantages of JWCNT sponges and HBC in the adhesion and activation of platelets and red blood cells, thus becoming a good medical material for trauma hemostasis.
Collapse
Affiliation(s)
- Wei Zhang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Liming Zhao
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
- CAS Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Chen Gao
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Jie Huang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Qingwen Li
- CAS Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Zhijun Zhang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| |
Collapse
|
18
|
Abstract
Keratin is a structural protein of mammalian tissues and birds, representing the principal constituent of hair, nails, skin, wool, hooves, horns, beaks, and feathers, and playing an essential role in protecting the body from external harassment. Due to its intrinsic features such as biocompatibility, biodegradability, responsiveness to specific biological environment, and physical–chemical properties, keratin has been extensively explored in the production of nanocarriers of active principles for different biomedical applications. In the present review paper, we aimed to give a literature overview of keratin-based nanoparticles produced starting from human hair, wool, and chicken feathers. Along with the chemical and structural description of keratin nanoparticles, selected in vitro and in vivo biological data are also discussed to provide a more comprehensive framework of possible fields of application of this protein. Despite the considerable number of papers describing the production and use of keratin nanoparticles as carries of anticancer and antimicrobial drugs or as hemostatic and wound healing materials, still, efforts are needed to implement keratin nanoparticles towards their clinical application.
Collapse
|
19
|
Wongnarat C, Srihanam P. Biomaterial microparticles of keratose/collagen blend prepared by a water-in-oil emulsification–diffusion method. PARTICULATE SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1080/02726351.2020.1789904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Chuleerat Wongnarat
- Department of Chemistry and the Center of Excellence for Innovation in Chemistry, Faculty of Science, Creative and Innovation Chemistry Research Unit, Mahasarakham University, Mahasarakham, Thailand
| | - Prasong Srihanam
- Department of Chemistry and the Center of Excellence for Innovation in Chemistry, Faculty of Science, Creative and Innovation Chemistry Research Unit, Mahasarakham University, Mahasarakham, Thailand
| |
Collapse
|
20
|
Ali S, Khan MR, Khan R. Green synthesized AgNPs from Periploca hydaspidis Falc. and its biological activities. Microsc Res Tech 2021; 84:2268-2285. [PMID: 33880837 DOI: 10.1002/jemt.23780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/20/2020] [Accepted: 04/05/2021] [Indexed: 12/22/2022]
Abstract
Characterization of bio-synthesized silver nanoparticles (AgNPs) using Periploca hydaspidis (PHAgNPs) whole plant extract for the first time via UV-Visible spectroscopy, XRD, FTIR, DLS, and SEM analysis techniques was done. A rich variety of phytochemicals in P. hydaspidis aqueous extract (PHA) functioned as possible reducing and capping agents for AgNPs synthesis. In vitro antioxidant activities (DPPH, Iron chelating, Hydroxyl ion, Nitric oxide, and β-carotene bleaching assays) of PHAgNPs revealed least IC50 values especially in hydroxyl ion (39.08 ± 0.88 μg/mL) and nitric oxide (37.53 ± 2.24 μg/mL) scavenging assays relative to standard controls (ascorbic acid, rutin, and gallic acid) and PHA. In addition, visible inhibition zone diameters were formed around discs against all pathogenic microbial strains including multi-drug resistant strains (MDR's). MIC and MBC/MFC were depicted least in PHAgNPs with maximum bactericidal/fungicidal effects. MTT assay displayed a significant antiproliferative potential of PHAgNPs against HCCLM3, MCF-7, MDA-MB 231, and HEPG2 cancer cell lines, where least IC50 values were recorded against HEPG2 (12.97 ± 0.04 μg/mL) and MCF-7 (5.73 ± 0.22 μg/mL). Furthermore, PHAgNPs considerably (p > 0.001) prevented the migration of MCF-7 cancer cells in vitro whereas in in vivo wound healing assay, faster skin regeneration, and epithelization in wound biopsies was observed via histological analysis. PHAgNPs treated group rats significantly increased (p < 0.05) the wound contraction rate, hydroxyproline content and hemostatic potential compared to control and PHA-treated groups.
Collapse
Affiliation(s)
- Saima Ali
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Rashid Khan
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Raees Khan
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
21
|
Cheng Z, Qing R, Hao S, Ding Y, Yin H, Zha G, Chen X, Ji J, Wang B. Fabrication of ulcer-adhesive oral keratin hydrogel for gastric ulcer healing in a rat. Regen Biomater 2021; 8:rbab008. [PMID: 33738122 PMCID: PMC7955710 DOI: 10.1093/rb/rbab008] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/09/2021] [Accepted: 01/17/2021] [Indexed: 12/28/2022] Open
Abstract
Hydrogel has been used for in suit gastric ulcer therapy by stopping bleeding, separating from ulcer from gastric fluids and providing extracellular matrix scaffold for tissue regeneration, however, this treatment guided with endoscopic catheter in most cases. Here, we developed an oral keratin hydrogel to accelerate the ulcer healing without endoscopic guidance, which can specially adhere to the ulcer because of the high-viscosity gel formation on the wound surface in vivo. Approximately 50% of the ulcer-adhesive keratin hydrogel can resident in ethanol-treated rat stomach within 12 h, while approximately 18% of them maintained in health rat stomach in the same amount of time. Furthermore, Keratin hydrogels accelerated the ethanol-induced gastric ulcer healing by stopping the bleeding, preventing the epithelium cells from gastric acid damage, suppressing inflammation and promoting re-epithelization. The oral administration of keratin hydrogel in gastric ulcer treatment can enhance the patient compliance and reduce the gastroscopy complications. Our research findings reveal a promising biomaterial-based approach for treating gastrointestinal ulcers.
Collapse
Affiliation(s)
- Zhongjun Cheng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China.,School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China.,Bijie Institute of Traditional Chinese Medicine, Bijie City, Guizhou Province 551700, China
| | - Rui Qing
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Shilei Hao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Yi Ding
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Haimeng Yin
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - GuoDong Zha
- HEMOS (Chongqing) Bioscience Co., Ltd, Chongqing 402760, China
| | - Xiaoliang Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China.,Department of Nuclear Medicine, Institution of Chongqing Cancer, Chongqing 400030, China
| | - Jingou Ji
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| |
Collapse
|
22
|
An anti-inflammatory gelatin hemostatic agent with biodegradable polyurethane nanoparticles for vulnerable brain tissue. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 121:111799. [PMID: 33579446 DOI: 10.1016/j.msec.2020.111799] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/15/2020] [Accepted: 12/05/2020] [Indexed: 11/23/2022]
Abstract
Hemostasis plays a fundamental and critical role in all surgical procedures. However, the currently used topical hemostatic agents may at times undesirably induce inflammation, infection, and foreign body reaction and hamper the healing process. This may be serious in the central nervous system (CNS), especially for some neurosurgical diseases which have ongoing inflammation causing secondary brain injury. This study was aimed to develop a hemostatic agent with anti-inflammatory property by incorporating carboxyl-functionalized biodegradable polyurethane nanoparticles (PU NPs) and to evaluate its functionality using a rat neurosurgical model. PU NPs are specially-designed anti-inflammatory nanoparticles and absorbed by a commercially available hemostatic gelatin powder (Spongostan™). Then, the gelatin was implanted to the injured rat cortex and released anti-inflammatory PU NPs. The time to hemostasis, the cerebral edema formation, and the brain's immune responses were examined. The outcomes showed that PU NP-contained gelatin attenuated the brain edema, suppressed the gene expression levels of pro-inflammatory M1 biomarkers (e.g., IL-1β level to be about 25%), elevated the gene expression levels of anti-inflammatory M2 biomarkers (e.g., IL-10 level to be about 220%), and reduced the activation of inflammatory cells in the implanted site, compared with the conventional gelatin. Moreover, PU NP-contained gelatin increased the gene expression level of neurotrophic factor BDNF by nearly 3-folds. We concluded that the PU NP-contained hemostatic agents are anti-inflammatory with neuroprotective potential in vivo. This new hemostatic agent will be useful for surgery involving vulnerable tissue or organ (e.g., CNS) and also for diseases such as stroke, traumatic brain injury, and neurodegenerative diseases.
Collapse
|
23
|
Alginate-based composite microspheres coated by berberine simultaneously improve hemostatic and antibacterial efficacy. Colloids Surf B Biointerfaces 2020; 194:111168. [PMID: 32563918 DOI: 10.1016/j.colsurfb.2020.111168] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/25/2020] [Accepted: 06/01/2020] [Indexed: 12/19/2022]
Abstract
It is important to develop effective, biocompatible, easily stored and affordable hemostats for controlling bleeding and preventing infection in prehospital trauma. In this study, we synthesized a series of alginate-based composite microspheres coated by different amounts of berberine (SCC-1B, SCC-5B and SCC-10B), which were further characterized using scanning electron microscopy (SEM), viscometer, particle analyzer and Fourier transform infrared (FT-IR) spectroscopy. The in vitro and vivo results demonstrated that compared to control group (SCC, Composite polysaccharide microspheres without berberine, and CMPHP, Commercial hemostatic agent), SCC-10B with proper content berberine (7%), not only exhibited inherent excellent antibacterial activity, but also enhanced hemostatic effect by increasing adhesion and aggregation of blood cells, which could be considered as synergistic effects. More importantly, through inserting berberine into the cross-linked network, biodegradability and biocompatibility of SCC-10B were also improved. Taken together, SCC-10B could be a candidate for emergency hemostatic and antibacterial treatment in prehospital trauma.
Collapse
|
24
|
Effect of thermal treatments on the structural change and the hemostatic property of hair extracted proteins. Colloids Surf B Biointerfaces 2020; 190:110951. [DOI: 10.1016/j.colsurfb.2020.110951] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 01/16/2023]
|
25
|
Gao F, Li W, Kan J, Ding Y, Wang Y, Deng J, Qing R, Wang B, Hao S. Insight into the Regulatory Function of Human Hair Keratins in Wound Healing Using Proteomics. ACTA ACUST UNITED AC 2020; 4:e1900235. [PMID: 32297487 DOI: 10.1002/adbi.201900235] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 03/18/2020] [Accepted: 03/27/2020] [Indexed: 01/14/2023]
Abstract
Keratins derived from human hair possess excellent wound healing qualities. However, their functional contribution to this process is poorly understood. In this study, the regulatory function of human hair keratins in wound healing is investigated using proteomic analysis by dividing keratins into different groups based on their molecular weight distributions: low molecular weight keratins (LMWK, 10-30 kDa), medium molecular weight keratins (MMWK, 30-50 kDa), and high molecular weight keratins (HMWK, >50 kDa). Keratin hydrogels with different molecular weights exhibit various morphologies, rheological properties, degradation rates, and wound healing activities. Using proteomic analysis, LMWK and HMWK hydrogels exhibit a stronger regulatory ability for wound healing at days 1 and 7, respectively. The major functions of LMWK during wound healing are regulation of cells communication and function. In contrast, proteins associated with energy metabolism are significantly expressed after HMWK hydrogel treatment at day 1, and these play an important role in cellular growth and reactive oxygen species scavenging at day 7. These results demonstrate that the wound healing qualities of human hair keratins are influenced by their molecular weight distribution, and the proteomic analysis sheds new light on the regulatory function of human hair keratins during wound healing.
Collapse
Affiliation(s)
- Feiyan Gao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Wenfeng Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Jinlan Kan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Yi Ding
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Yumei Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Jia Deng
- College of Environment and Resources, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Rui Qing
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Shilei Hao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China.,Media Lab, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| |
Collapse
|
26
|
Chen X, Zhai D, Wang B, Hao S, Song J, Peng Z. Hair keratin promotes wound healing in rats with combined radiation-wound injury. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2020; 31:28. [PMID: 32125534 DOI: 10.1007/s10856-020-06365-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/14/2020] [Indexed: 06/10/2023]
Abstract
Keratins derived from human hair have been suggested to be particularly effective in general surgical wound healing. However, the healing of a combined radiation-wound injury is a multifaceted regenerative process. Here, hydrogels fabricated with human hair keratins were used to test the wound healing effects on rats suffering from combined radiation-wound injuries. Briefly, the keratin extracts were verified by dodecyl sulfate polyacrylamide gel electrophoresis analysis and amino acid analysis, and the keratin hydrogels were then characterized by morphological observation, Fourier transform infrared spectroscopy analysis and rheology analyses. The results of the cell viability assay indicated that the keratin hydrogels could enhance cell growth after radiation exposure. Furthermore, keratin hydrogels could accelerate wound repair and improve the survival rate in vivo. The results demonstrate that keratin hydrogels possess a strong ability to accelerate the repair of a combined radiation-wound injury, which opens up new tissue regeneration applications for keratins.
Collapse
Affiliation(s)
- Xiaoliang Chen
- Department of Radiological Medicine, College of Basic Medicine, Chongqing Medical Universtiy, 400016, Chongqing, China
| | - Dongliang Zhai
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, 400030, Chongqing, China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, 400030, Chongqing, China
| | - Shilei Hao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, 400030, Chongqing, China.
| | - Jia Song
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, 400030, Chongqing, China.
| | - Zhiping Peng
- Department of Radiological Medicine, College of Basic Medicine, Chongqing Medical Universtiy, 400016, Chongqing, China.
| |
Collapse
|
27
|
Chen H, Shang X, Yu L, Xiao L, Fan J. Safety evaluation of a low-heat producing zeolite granular hemostatic dressing in a rabbit femoral artery hemorrhage model. J Biomater Appl 2019; 34:988-997. [DOI: 10.1177/0885328219888626] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Hao Chen
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaoqiang Shang
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lisha Yu
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, China
| | - Liping Xiao
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jie Fan
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
28
|
Leichner C, Jelkmann M, Bernkop-Schnürch A. Thiolated polymers: Bioinspired polymers utilizing one of the most important bridging structures in nature. Adv Drug Deliv Rev 2019; 151-152:191-221. [PMID: 31028759 DOI: 10.1016/j.addr.2019.04.007] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/16/2019] [Accepted: 04/16/2019] [Indexed: 12/13/2022]
Abstract
Thiolated polymers designated "thiomers" are obtained by covalent attachment of thiol functionalities on the polymeric backbone of polymers. In 1998 these polymers were first described as mucoadhesive and in situ gelling compounds forming disulfide bonds with cysteine-rich substructures of mucus glycoproteins and crosslinking through inter- and intrachain disulfide bond formation. In the following, it was shown that thiomers are able to form disulfides with keratins and membrane-associated proteins exhibiting also cysteine-rich substructures. Furthermore, permeation enhancing, enzyme inhibiting and efflux pump inhibiting properties were demonstrated. Because of these capabilities thiomers are promising tools for drug delivery guaranteeing a strongly prolonged residence time as well as sustained release on mucosal membranes. Apart from that, thiomers are used as drugs per se. In particular, for treatment of dry eye syndrome various thiolated polymers are in development and a first product has already reached the market. Within this review an overview about the thiomer-technology and its potential for different applications is provided discussing especially the outcome of studies in non-rodent animal models and that of numerous clinical trials. Moreover, an overview on product developments is given.
Collapse
|
29
|
Wang D, Li W, Wang Y, Yin H, Ding Y, Ji J, Wang B, Hao S. Fabrication of an expandable keratin sponge for improved hemostasis in a penetrating trauma. Colloids Surf B Biointerfaces 2019; 182:110367. [DOI: 10.1016/j.colsurfb.2019.110367] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 06/22/2019] [Accepted: 07/14/2019] [Indexed: 01/14/2023]
|
30
|
Vakilian S, Jamshidi-adegani F, Al-Shidhani S, Anwar MU, Al-Harrasi R, Al-Wahaibi N, Qureshi A, Alyaqoobi S, Al-Amri I, Al-Harrasi A, Al-Hashmi S. A Keratin-based biomaterial as a promising dresser for skin wound healing. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.wndm.2019.100155] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
31
|
Luo JW, Liu C, Wu JH, Lin LX, Fan HM, Zhao DH, Zhuang YQ, Sun YL. In situ injectable hyaluronic acid/gelatin hydrogel for hemorrhage control. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:628-634. [DOI: 10.1016/j.msec.2019.01.034] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 12/23/2018] [Accepted: 01/08/2019] [Indexed: 12/26/2022]
|
32
|
Kubota Y, Kishi T, Yano T, Matsushita N. One Step Fabrication of ZnO Films Using a Modified Gas-assisted Liquid Phase Deposition Process. CHEM LETT 2019. [DOI: 10.1246/cl.180975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yuta Kubota
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Tetsuo Kishi
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Tetsuji Yano
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Nobuhiro Matsushita
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
33
|
Synthesis and fabrication of a keratin-conjugated insulin hydrogel for the enhancement of wound healing. Colloids Surf B Biointerfaces 2019; 175:436-444. [DOI: 10.1016/j.colsurfb.2018.12.020] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 12/08/2018] [Accepted: 12/10/2018] [Indexed: 12/30/2022]
|
34
|
He Y, Qu Q, Luo T, Gong Y, Hou Z, Deng J, Xu Y, Wang B, Hao S. Human Hair Keratin Hydrogels Alleviate Rebleeding after Intracerebral Hemorrhage in a Rat Model. ACS Biomater Sci Eng 2019; 5:1113-1122. [DOI: 10.1021/acsbiomaterials.8b01609] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Ye He
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Qing Qu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Tiantian Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Yuhua Gong
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Zongkun Hou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Jia Deng
- College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
| | - Yingqian Xu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
- Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Shilei Hao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| |
Collapse
|
35
|
Zhang P, Li S, Zhang S, Zhang X, Wan L, Yun Z, Ji S, Gong F, Huang M, Wang L, Zhu X, Tan Y, Wan Y. GRGDS-functionalized chitosan nanoparticles as a potential intravenous hemostat for traumatic hemorrhage control in an animal model. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:2531-2540. [PMID: 30193814 DOI: 10.1016/j.nano.2018.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 07/15/2018] [Accepted: 08/08/2018] [Indexed: 01/25/2023]
Abstract
Hemostats, which are used for immediate intervention during internal hemorrhage in order to reduce resulting mortality and morbidity, are relatively rare. Here, we describe novel intravenous nanoparticles (CPG-NPs-2000) with chitosan succinate (CSS) as cores, polyethylene glycol (PEG-2000) as spacers and a glycine-arginine-glycine-aspartic acid-serine (GRGDS) peptide as targeted, active hemostatic motifs. CPG-NPs-2000 displayed significant hemostatic efficacy, compared to the saline control, CSS nanoparticles, and tranexamic acid in liver trauma rat models. Further studies have demonstrated that CPG-NPs-2000 are effectively cleared from organs and blood, within 2 and 48 h, respectively. In addition, administration of CPG-NPs-2000 does not affect clotting function under normal physiological conditions, indicating their potential safety in vivo. CPG-NPs-2000 exhibit excellent thermal stability, good solubility, and redistribution ability, in addition to being low cost. These characteristics indicate that CPG-NPs-2000 may have strong potential as effective intravenous hemostats for treating severe internal bleeding.
Collapse
Affiliation(s)
- Pingyi Zhang
- School of Chemical Engineering and Technology, Guangdong Engineering Technology Research Center for Platform Chemicals from Marine Biomass and Their Functionalization, Sun Yat-sen University, Guangzhou, China
| | - Subo Li
- Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Shikun Zhang
- Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Xue Zhang
- Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Luming Wan
- Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Zhimin Yun
- Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Shouping Ji
- Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Feng Gong
- Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Manna Huang
- School of Chemical Engineering and Technology, Guangdong Engineering Technology Research Center for Platform Chemicals from Marine Biomass and Their Functionalization, Sun Yat-sen University, Guangzhou, China
| | - Leilei Wang
- School of Chemical Engineering and Technology, Guangdong Engineering Technology Research Center for Platform Chemicals from Marine Biomass and Their Functionalization, Sun Yat-sen University, Guangzhou, China
| | - Xinhai Zhu
- School of Chemical Engineering and Technology, Guangdong Engineering Technology Research Center for Platform Chemicals from Marine Biomass and Their Functionalization, Sun Yat-sen University, Guangzhou, China
| | - Yingxia Tan
- Institute of Health Service and Transfusion Medicine, Beijing, China.
| | - Yiqian Wan
- School of Chemical Engineering and Technology, Guangdong Engineering Technology Research Center for Platform Chemicals from Marine Biomass and Their Functionalization, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
36
|
Jin J, Ji Z, Xu M, Liu C, Ye X, Zhang W, Li S, Wang D, Zhang W, Chen J, Ye F, Lv Z. Microspheres of Carboxymethyl Chitosan, Sodium Alginate, and Collagen as a Hemostatic Agent in Vivo. ACS Biomater Sci Eng 2018; 4:2541-2551. [DOI: 10.1021/acsbiomaterials.8b00453] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jia Jin
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou 310018, China
| | - Zhixiao Ji
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Ming Xu
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Chenyu Liu
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xiaoqing Ye
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Weiyao Zhang
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Si Li
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou 310018, China
| | - Dan Wang
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou 310018, China
| | - Wenping Zhang
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou 310018, China
| | - Jianqing Chen
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou 310018, China
| | - Fei Ye
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhengbing Lv
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou 310018, China
| |
Collapse
|
37
|
Kiani MT, Higgins CA, Almquist BD. The Hair Follicle: An Underutilized Source of Cells and Materials for Regenerative Medicine. ACS Biomater Sci Eng 2018; 4:1193-1207. [PMID: 29682604 PMCID: PMC5905671 DOI: 10.1021/acsbiomaterials.7b00072] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The hair follicle is one of only two structures within the adult body that selectively degenerates and regenerates, making it an intriguing organ to study and use for regenerative medicine. Hair follicles have been shown to influence wound healing, angiogenesis, neurogenesis, and harbor distinct populations of stem cells; this has led to cells from the follicle being used in clinical trials for tendinosis and chronic ulcers. In addition, keratin produced by the follicle in the form of a hair fiber provides an abundant source of biomaterials for regenerative medicine. In this review, we provide an overview of the structure of a hair follicle, explain the role of the follicle in regulating the microenvironment of skin and the impact on wound healing, explore individual cell types of interest for regenerative medicine, and cover several applications of keratin-based biomaterials.
Collapse
Affiliation(s)
- Mehrdad T Kiani
- Department of Bioengineering, Royal School of Mines, Imperial College London, London SW7 2AZ UK
- Department of Materials Science, 496 Lomita Mall, Stanford University, Stanford CA 94305 USA
| | - Claire A Higgins
- Department of Bioengineering, Royal School of Mines, Imperial College London, London SW7 2AZ UK
| | - Benjamin D Almquist
- Department of Bioengineering, Royal School of Mines, Imperial College London, London SW7 2AZ UK
| |
Collapse
|
38
|
Guo T, Li W, Wang J, Luo T, Lou D, Wang B, Hao S. Recombinant human hair keratin proteins for halting bleeding. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:456-461. [DOI: 10.1080/21691401.2018.1459633] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Tingwang Guo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing, China
| | - Wenfeng Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing, China
| | - Ju Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing, China
| | - Tiantian Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing, China
| | - Deshuai Lou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing, China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing, China
| | - Shilei Hao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing, China
| |
Collapse
|
39
|
Cheng Z, Chen X, Zhai D, Gao F, Guo T, Li W, Hao S, Ji J, Wang B. Development of keratin nanoparticles for controlled gastric mucoadhesion and drug release. J Nanobiotechnology 2018; 16:24. [PMID: 29554910 PMCID: PMC5858146 DOI: 10.1186/s12951-018-0353-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 03/13/2018] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Nanotechnology-based drug delivery systems have been widely used for oral and systemic dosage forms delivery depending on the mucoadhesive interaction, and keratin has been applied for biomedical applications and drug delivery. However, few reports have focused on the keratin-based mucoadhesive drug delivery system and their mechanisms of mucoadhesion. Thus, the mucoadhesion controlled kerateine (reduced keratin, KTN)/keratose (oxidized keratin, KOS) composite nanoparticles were prepared via adjusting the proportion of KTN and KOS to achieve controlled gastric mucoadhesion and drug release based on their different mucoadhesive abilities and pH-sensitive properties. Furthermore, the mechanisms of mucoadhesion for KTN and KOS were also investigated in the present study. RESULTS The composite keratin nanoparticles (KNPs) with different mass ratio of KTN to KOS, including 100/0 (KNP-1), 75/25 (KNP-2), 50/50 (KNP-3), and 25/75 (KNP-4), displayed different drug release rates and gastric mucoadhesion capacities, and then altered the drug pharmacokinetic performances. The stronger mucoadhesive ability of nanoparticle could supply longer gastric retention time, indicating that KTN displayed a stronger mucoadhesion than that of KOS. Furthermore, the mechanisms of mucoadhesion for KTN and KOS at different pH conditions were also investigated. The binding between KTN and porcine gastric mucin (PGM) is dominated by electrostatic attractions and hydrogen bondings at pH 4.5, and disulfide bonds also plays a key role in the interaction at pH 7.4. While, the main mechanisms of KOS and PGM interactions are hydrogen bondings and hydrophobic interactions in pH 7.4 condition and were hydrogen bondings at pH 4.5. CONCLUSIONS The resulting knowledge offer an efficient strategy to control the gastric mucoadhesion and drug release of nano drug delivery systems, and the elaboration of mucoadhesive mechanism of keratins will enable the rational design of nanocarriers for specific mucoadhesive drug delivery.
Collapse
Affiliation(s)
- Zhongjun Cheng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030 China
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400030 China
- Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing, 400030 China
| | - Xiaoliang Chen
- Department of Nuclear Medicine, Chongqing Cancer Institution, Chongqing, 400030 China
| | - Dongliang Zhai
- Department of Nuclear Medicine, Chongqing Cancer Institution, Chongqing, 400030 China
| | - Feiyan Gao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030 China
- Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing, 400030 China
| | - Tingwang Guo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030 China
- Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing, 400030 China
| | - Wenfeng Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030 China
- Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing, 400030 China
| | - Shilei Hao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030 China
- Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing, 400030 China
| | - Jingou Ji
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400030 China
- Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing, 400030 China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030 China
- Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing, 400030 China
| |
Collapse
|
40
|
Wu Y, Wang F, Huang Y. Comparative Evaluation of Biological Performance, Biosecurity, and Availability of Cellulose-Based Absorbable Hemostats. Clin Appl Thromb Hemost 2018; 24:566-574. [PMID: 29363998 PMCID: PMC6714697 DOI: 10.1177/1076029617751177] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Hemorrhage remains a leading cause of death after trauma, and developing a hemostat with excellent performance and good biosecurity is an extremely active area of research and commercial product development. Although oxidized regenerated cellulose (ORC) has been developed to address these problems, it is not always efficient and its biosecurity is not perfect. We aimed to refine ORC via a simple and mild neutralization method. The prepared neutralized oxidized regenerated cellulose (NORC) showed a superior gel property due to its chemical structure. The biological performance of both ORC and NORC was systematically evaluated; the results showed that ORC would induce erythema and edema in the irritation test, whereas NORC did not cause any adverse inflammation, indicating NORC had desirable biocompatibility. We further demonstrated that NORC confirmed to the toxicity requirements of International Organization for Standardization (ISO) standards; however, ORC showed an unacceptable cytotoxicity. The rabbit hepatic defect model stated that NORC exhibited better ability of hemostasis, which was attributed to its significant gel performance in physiological environment.
Collapse
Affiliation(s)
- Yadong Wu
- 1 MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Fang Wang
- 1 MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Yudong Huang
- 1 MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
41
|
Shabanova EM, Drozdov AS, Fakhardo AF, Dudanov IP, Kovalchuk MS, Vinogradov VV. Thrombin@Fe 3O 4 nanoparticles for use as a hemostatic agent in internal bleeding. Sci Rep 2018; 8:233. [PMID: 29321571 PMCID: PMC5762673 DOI: 10.1038/s41598-017-18665-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 12/05/2017] [Indexed: 12/21/2022] Open
Abstract
Bleeding remains one of the main causes of premature mortality at present, with internal bleeding being the most dangerous case. In this paper, magnetic hemostatic nanoparticles are shown for the first time to assist in minimally invasive treatment of internal bleeding, implying the introduction directly into the circulatory system followed by localization in the bleeding zone due to the application of an external magnetic field. Nanoparticles were produced by entrapping human thrombin (THR) into a sol-gel derived magnetite matrix followed by grinding to sizes below 200 nm and subsequent colloidization. Prepared colloids show protrombotic activity and cause plasma coagulation in in vitro experiments. We also show here using a model blood vessel that the THR@ferria composite does not cause systematic thrombosis due to low activity, but being concentrated by an external magnetic field with simultaneous fibrinogen injection accelerates local hemostasis and stops the bleeding. For instance, a model vessel system with circulating blood at the puncture of the vessel wall and the application of a permanent magnetic field yielded a hemostasis time by a factor of 6.5 shorter than that observed for the control sample. Biocompatibility of composites was tested on HELF and HeLa cells and revealed no toxic effects.
Collapse
Affiliation(s)
- Emiliya M Shabanova
- ITMO University, Laboratory of Solution Chemistry of Advanced Materials and Technologies, Lomonosova St. 9, 191002, St. Petersburg, Russian Federation
| | - Andrey S Drozdov
- ITMO University, Laboratory of Solution Chemistry of Advanced Materials and Technologies, Lomonosova St. 9, 191002, St. Petersburg, Russian Federation.
| | - Anna F Fakhardo
- ITMO University, Laboratory of Solution Chemistry of Advanced Materials and Technologies, Lomonosova St. 9, 191002, St. Petersburg, Russian Federation
| | - Ivan P Dudanov
- ITMO University, Laboratory of Solution Chemistry of Advanced Materials and Technologies, Lomonosova St. 9, 191002, St. Petersburg, Russian Federation
- Mariinsky Hospital, Regional Cardiovascular Center, Liteyny Ave. 56, 191054, St. Petersburg, Russian Federation
| | - Marina S Kovalchuk
- Mariinsky Hospital, Regional Cardiovascular Center, Liteyny Ave. 56, 191054, St. Petersburg, Russian Federation
| | - Vladimir V Vinogradov
- ITMO University, Laboratory of Solution Chemistry of Advanced Materials and Technologies, Lomonosova St. 9, 191002, St. Petersburg, Russian Federation.
| |
Collapse
|
42
|
Abstract
Wound healing is one of the most complex processes that our bodies must perform. While our ability to repair wounds is often taken for granted, conditions such as diabetes, obesity, or simply old age can significantly impair this process. With the incidence of all three predicted to continue growing into the foreseeable future, there is an increasing push to develop strategies that facilitate healing. Biomaterials are an attractive approach for modulating all aspects of repair, and have the potential to steer the healing process towards regeneration. In this review, we will cover recent advances in developing biomaterials that actively modulate the process of wound healing, and will provide insight into how biomaterials can be used to simultaneously rewire multiple phases of the repair process.
Collapse
Affiliation(s)
- Anna Stejskalová
- Department of Bioengineering, Royal School of Mines, Imperial College London, London SW7 2AZ, UK.
| | - Benjamin D Almquist
- Department of Bioengineering, Royal School of Mines, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
43
|
Konop M, Sulejczak D, Czuwara J, Kosson P, Misicka A, Lipkowski AW, Rudnicka L. The role of allogenic keratin-derived dressing in wound healing in a mouse model. Wound Repair Regen 2017; 25:62-74. [DOI: 10.1111/wrr.12500] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 11/18/2016] [Indexed: 01/02/2023]
Affiliation(s)
- Marek Konop
- Department of Dermatology; Medical University of Warsaw; Warsaw Poland
- Department of Neuropeptides; Mossakowski Medical Research Center, Polish Academy of Sciences; Warsaw Poland
| | - Dorota Sulejczak
- Department of Experimental Pharmacology; Mossakowski Medical Research Center, Polish Academy of Sciences; Warsaw Poland
| | - Joanna Czuwara
- Department of Dermatology; Medical University of Warsaw; Warsaw Poland
| | - Piotr Kosson
- Toxicology Research Laboratory; Mossakowski Medical Research Center, Polish Academy of Sciences; Warsaw Poland
| | - Aleksandra Misicka
- Department of Neuropeptides; Mossakowski Medical Research Center, Polish Academy of Sciences; Warsaw Poland
| | - Andrzej W. Lipkowski
- Department of Neuropeptides; Mossakowski Medical Research Center, Polish Academy of Sciences; Warsaw Poland
| | - Lidia Rudnicka
- Department of Neuropeptides; Mossakowski Medical Research Center, Polish Academy of Sciences; Warsaw Poland
| |
Collapse
|
44
|
Wang J, Hao S, Luo T, Zhou T, Yang X, Wang B. Keratose/poly (vinyl alcohol) blended nanofibers: Fabrication and biocompatibility assessment. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 72:212-219. [DOI: 10.1016/j.msec.2016.11.071] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 11/02/2016] [Accepted: 11/21/2016] [Indexed: 12/26/2022]
|
45
|
Wang J, Hao S, Luo T, Cheng Z, Li W, Gao F, Guo T, Gong Y, Wang B. Feather keratin hydrogel for wound repair: Preparation, healing effect and biocompatibility evaluation. Colloids Surf B Biointerfaces 2017; 149:341-350. [DOI: 10.1016/j.colsurfb.2016.10.038] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/17/2016] [Accepted: 10/21/2016] [Indexed: 12/20/2022]
|
46
|
Wang J, Hao S, Luo T, Yang Q, Wang B. Development of feather keratin nanoparticles and investigation of their hemostatic efficacy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 68:768-773. [DOI: 10.1016/j.msec.2016.07.035] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 06/28/2016] [Accepted: 07/16/2016] [Indexed: 11/25/2022]
|