1
|
Hamed R, Obeid RZ, Huwaij RA, Qattan D, Shahin NA. Topical gel formulations as potential dermal delivery carriers for green-synthesized zinc oxide nanoparticles. Drug Deliv Transl Res 2025; 15:885-907. [PMID: 38837118 DOI: 10.1007/s13346-024-01642-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2024] [Indexed: 06/06/2024]
Abstract
This study aimed to incorporate green-synthesized zinc oxide nanoparticles (ZnO NPs), functionalized with polyethylene glycol (PEG) and linked to doxorubicin (DOX), into various topical gel formulations (hydrogel, oleogel, and bigel) to enhance their dermal delivery. The ZnO NPs were produced using the aqueous extract of the root hair of Phoenix dactylifera. The optimized green-synthesized ZnO NPs, PEGylated and conjugated to DOX, demonstrated a particle size below 100 nm, low polydispersity index, and zeta potential between - 11 and - 19 mV. The UV-Vis spectroscopy analysis confirmed characteristic absorption peaks at 351 and 545 nm for ZnO and DOX, respectively. The transmission electron microscope (TEM) images revealed well-dispersed spherical nanoparticles without aggregation. Additionally, ZnO NPs-loaded gels exhibited uniformity, cohesion, no phase separation, pseudoplastic flow, and viscoelastic properties. The in vitro release studies showed that DOX-PEG-ZnO NPs hydrogel released 99.5% of DOX after 5 h of starting the release. Moreover, the penetration of DOX-PEG-ZnO NPs through excised rat skin was visualized by TEM. In conclusion, the hydrogel formulation containing green-synthesized DOX-PEG-ZnO NPs holds great promise for dermal administration in skin cancer treatment. Furthermore, the release rate and skin penetration of DOX from gels were varied based on the type of gel matrix and corroborated with their corresponding rheological properties.
Collapse
Affiliation(s)
- Rania Hamed
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, 11733, Jordan.
| | - Ruwa Z Obeid
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, 11733, Jordan
| | - Rana Abu Huwaij
- Department of Pharmacy, College of Pharmacy, Amman Arab University, Mubis, 11953, Jordan
| | - Duaa Qattan
- Department of Pathology and Electron Microscopy, School of Medicine, The University of Jordan, Amman, 11942, Jordan
| | - Nisreen Abu Shahin
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman, 11942, Jordan
| |
Collapse
|
2
|
Zehra SH, Ramzan K, Viskelis J, Viskelis P, Balciunaitiene A. Advancements in Green Synthesis of Silver-Based Nanoparticles: Antimicrobial and Antifungal Properties in Various Films. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:252. [PMID: 39997815 PMCID: PMC11858222 DOI: 10.3390/nano15040252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 01/28/2025] [Accepted: 02/01/2025] [Indexed: 02/26/2025]
Abstract
Nanotechnology is an evolving field that presents extensive opportunities in antimicrobial and eco-friendly food packaging applications. Silver nanoparticles (AgNPs) are particularly valuable in this context due to their outstanding physicochemical properties and demonstrated biological and antimicrobial efficacy, rendering them highly effective in food packaging applications. Historically, nanoparticle synthesis has largely relied on synthetic chemicals and physical methods; however, growing awareness of their potential toxic impacts on human health and the environment has led researchers to reassess these conventional approaches. In response, green synthesis using plants or their metabolites to produce nanoparticles (NPs) has emerged as a focal point in recent research. This approach provides significant advantages, notably in reducing toxicity associated with traditionally synthesized nanoparticles. Silver, recognized for its non-toxic, safe profile as an inorganic antibacterial and antifungal agent, has been employed for centuries and exhibits remarkable potential in various biological applications in its nanoparticle form. Environmentally friendly synthesis techniques are increasingly prioritized within chemical sciences to reduce the harmful byproducts of reactions. Green synthesis methods also offer economic benefits due to their lower costs and the abundant availability of natural raw materials. In the past five years, concerted efforts have been made to develop new, sustainable, and cost-effective methodologies for nanoparticle synthesis. This review explains the green synthesis of silver nanoparticles from different sources along with their quantification techniques and application in food packaging.
Collapse
Affiliation(s)
- Syeda Hijab Zehra
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, Kaunas Str. 30, Kaunas District, 54333 Babtai, Lithuania; (K.R.); (J.V.); (P.V.)
| | | | | | | | - Aiste Balciunaitiene
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, Kaunas Str. 30, Kaunas District, 54333 Babtai, Lithuania; (K.R.); (J.V.); (P.V.)
| |
Collapse
|
3
|
Tijani NA, Hokello J, Eilu E, Akinola SA, Afolabi AO, Makeri D, Lukwago TW, Mutuku IM, Mwesigwa A, Baguma A, Adebayo IA. Metallic nanoparticles: a promising novel therapeutic tool against antimicrobial resistance and spread of superbugs. Biometals 2025; 38:55-88. [PMID: 39446237 DOI: 10.1007/s10534-024-00647-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/12/2024] [Indexed: 10/25/2024]
Abstract
In recent years, antimicrobial resistance (AMR) has become an alarming threat to global health as notable increase in morbidity and mortality has been ascribed to the emergence of superbugs. The increase in microbial resistance because of harboured or inherited resistomes has been complicated by the lack of new and effective antimicrobial agents, as well as misuse and failure of existing ones. These problems have generated severe and growing public health concern, due to high burden of bacterial infections resulting from scarce financial resources and poor functioning health systems, among others. It is therefore, highly pressing to search for novel and more efficacious alternatives for combating the action of these super bacteria and their infection. The application of metallic nanoparticles (MNPs) with their distinctive physical and chemical attributes appears as promising tools in fighting off these deadly superbugs. The simple, inexpensive and eco-friendly model for enhanced biologically inspired MNPs with exceptional antimicrobial effect and diverse mechanisms of action againsts multiple cell components seems to offer the most promising option and said to have enticed many researchers who now show tremendous interest. This synopsis offers critical discussion on application of MNPs as the foremost intervening strategy to curb the menace posed by the spread of superbugs. As such, this review explores how antimicrobial properties of the metallic nanoparticles which demonstrated considerable efficacy against several multi-drugs resistant bacteria, could be adopted as promising approach in subduing the threat of AMR and harvoc resulting from the spread of superbugs.
Collapse
Affiliation(s)
- Naheem Adekilekun Tijani
- Department of Microbiology and Immunology, Kampala International University, Western Campus, Bushenyi, Uganda
| | - Joseph Hokello
- Department of Biology, Faculty of Science and Education, Busitema University, Tororo, Uganda
| | - Emmanuel Eilu
- Department of Microbiology and Immunology, Kampala International University, Western Campus, Bushenyi, Uganda
| | - Saheed Adekunle Akinola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Abdullateef Opeyemi Afolabi
- Department of Microbiology and Immunology, Kampala International University, Western Campus, Bushenyi, Uganda
| | - Danladi Makeri
- Department of Microbiology and Immunology, Kampala International University, Western Campus, Bushenyi, Uganda
| | - Tonny Wotoyitide Lukwago
- Department of Pharmacology and Toxicology, Kampala International University, Western Campus, Bushenyi, Uganda
| | - Irene M Mutuku
- Department of Microbiology, School of Medicine, Kabale University, Kabale, Uganda
| | - Alex Mwesigwa
- Department of Microbiology, School of Medicine, Kabale University, Kabale, Uganda
| | - Andrew Baguma
- Department of Microbiology, School of Medicine, Kabale University, Kabale, Uganda
| | | |
Collapse
|
4
|
Gomes LR, Correia LIV, Reis TFMD, Peres PABM, Sommerfeld S, Silva RR, Fonseca BB, Silva ACA, Lima AMC. In vitro evaluation of the antimicrobial effect of ZnO:9Ag nanoparticle and antibiotics on standard strains of Leptospira spp. Microb Pathog 2025; 199:107259. [PMID: 39736342 DOI: 10.1016/j.micpath.2024.107259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/27/2024] [Accepted: 12/24/2024] [Indexed: 01/01/2025]
Abstract
Silver nanoparticles are recognized for potent antimicrobial properties against pathogenic bacteria, crucial in addressing the severity of leptospirosis, where an ideal treatment is lacking. This study focuses on assessing the antimicrobial efficacy of silver-doped zinc oxide nanoparticles (ZnO:9Ag) on standard Leptospira spp. strains (six species and ten serovars). Comparisons with conventional antibiotics were made. In vitro characterizations, including minimum inhibitory concentration (MIC), cell viability, membrane permeability, intracellular content release, and broth microdilution checkerboard assay, evaluated streptomycin, penicillin G, doxycycline, tetracycline, and ZnO:9Ag effects on Leptospira. The safety and toxicological effects of ZnO:9Ag were explored using the chicken embryo in vivo model. All treatments displayed notable anti-Leptospira effects. Penicillin G had a lower MIC (<0.048), contrasting ZnO:9Ag's higher MIC (6.25-50 μg/mL). Despite this, ZnO:9Ag exhibited pronounced inhibitory effects, making it a viable therapeutic option. At 100 μg/mL, ZnO:9Ag reduced cell viability in 50 % of strains, notably in L. interrogans, L. kirschneri, and L. noguchii species. ZnO:9Ag induced a significant permeability change (p < 0.05) and substantial intracellular content extravasation across all species. The checkerboard method revealed a significant synergistic antibacterial effect of the ZnO:9Ag combination with doxycycline, penicillin G, streptomycin, and tetracycline against the L. interrogans species. In vivo, ZnO:9Ag differed significantly (p < 0.05) from the negative control in the GGT enzyme parameter. In conclusion, ZnO:9Ag shows promising potential as an alternative antibacterial agent against Leptospira spp., inhibiting growth with a relatively safe and low toxicity level.
Collapse
Affiliation(s)
- Lara Reis Gomes
- Faculty of Veterinary Medicine, Federal University of Uberlândia, Uberlândia, 38402-018, Brazil.
| | | | | | | | - Simone Sommerfeld
- Faculty of Veterinary Medicine, Federal University of Uberlândia, Uberlândia, 38402-018, Brazil
| | - Rogério Reis Silva
- Faculty of Veterinary Medicine, Federal University of Uberlândia, Uberlândia, 38402-018, Brazil
| | | | | | | |
Collapse
|
5
|
Uddin Rabbi MB, Haque S, Bedoura S. Advancements in synthesis, immobilization, characterization, and multifaceted applications of silver nanoparticles: A comprehensive review. Heliyon 2024; 10:e40931. [PMID: 39759340 PMCID: PMC11700253 DOI: 10.1016/j.heliyon.2024.e40931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/28/2024] [Accepted: 12/03/2024] [Indexed: 01/07/2025] Open
Abstract
Silver nanoparticles (AgNPs) have attracted significant interest in recent years owing to their unique physicochemical properties, including antimicrobial reduction capabilities, photocatalytic activity, self-cleaning features, superhydrophobicity, and electrical conductivity. Their characteristics render them highly advantageous for various textile, electronics, food and agriculture, water treatment, and biomedical applications. This detailed analysis explores the recent benefits and drawbacks of various synthesis methods, immobilization techniques, and characterization of AgNPs while emphasizing novel strategies that improve their functionality across different substrates. A comprehensive analysis is conducted on various synthesis methods, including physical, chemical, and biological approaches. Additionally, immobilization techniques such as in-situ synthesis, pad-dry-cure, and printing on diverse substrates are thoroughly examined for their role in enhancing the functionality of textile substrates. Advanced characterization techniques, encompassing spectroscopic and microscopic methods, have been reviewed to provide a comprehensive understanding of AgNPs' structural and functional properties. This review highlights the progress made in synthesizing AgNPs, focusing on the ability to control their size and shape for targeted applications. Improved immobilization methods have significantly enhanced the stability of AgNPs in intricate environments. In contrast, advanced characterization techniques facilitate a more accurate control and assessment of the properties of AgNPs. The utilization of AgNPs as an antimicrobial agent for surface and food protection, medical devices, antiviral agents, and therapeutic tools showcases their extensive influence across the field. The cytotoxic effects of AgNPs on the human body have been thoroughly examined. This review examines recent advancements in AgNPs to encourage additional research and the development of innovative formulations. It also highlights future perspectives and research directions to effectively and sustainably utilize the potential of AgNPs.
Collapse
Affiliation(s)
- Md. Belal Uddin Rabbi
- Department of Wet Process Engineering, Bangladesh University of Textiles, Dhaka, 1208, Bangladesh
| | - Sadia Haque
- Department of Wet Process Engineering, Bangladesh University of Textiles, Dhaka, 1208, Bangladesh
| | - Sultana Bedoura
- Department of Dyes and Chemical Engineering, Bangladesh University of Textiles, Dhaka, 1208, Bangladesh
| |
Collapse
|
6
|
Barua N, Buragohain AK. Therapeutic Potential of Silver Nanoparticles (AgNPs) as an Antimycobacterial Agent: A Comprehensive Review. Antibiotics (Basel) 2024; 13:1106. [PMID: 39596799 PMCID: PMC11591479 DOI: 10.3390/antibiotics13111106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/08/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
The uncontrolled emergence of multidrug-resistant mycobacterial strains presents as the primary determinant of the present crisis in antimycobacterial therapeutics and underscores tuberculosis (TB) as a daunting global health concern. There is an urgent requirement for drug development for the treatment of TB. Numerous novel molecules are presently undergoing clinical investigation as part of TB drug development. However, the complex cell wall and the lifecycle of M. tuberculosis within the host pose a significant challenge to the development of new drugs and, therefore, led to a shift in research focus towards alternative antibacterial compounds, notably nanotechnology. A novel approach to TB therapy utilizing silver nanoparticles (AgNPs) holds the potential to address the medical limitations imposed by drug resistance commonly associated with currently available antibiotics. Their broad-spectrum antimicrobial activity presents the utilization of AgNPs as a promising avenue for the development of therapeutics targeting mycobacterial-induced diseases, which can effectively target Mycobacterium tuberculosis, including drug-resistant strains. AgNPs can enhance the effectiveness of traditional antibiotics, potentially leading to better treatment outcomes and a shorter duration of therapy. However, the successful implementation of this complementary strategy is contingent upon addressing several pivotal therapeutic challenges, including suboptimal delivery, variability in intra-macrophagic antimycobacterial effect, and potential toxicity. Future perspectives may involve developing targeted delivery systems that maximize therapeutic effects and minimize side effects, as well as exploring combinations with existing TB medications to enhance treatment outcomes. We have attempted to provide a comprehensive overview of the antimycobacterial activity of AgNPs, and critically analyze the advantages and limitations of employing silver nanoparticles in the treatment of TB.
Collapse
Affiliation(s)
- Nilakshi Barua
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, India
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin 999077, Hong Kong
| | - Alak Kumar Buragohain
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, India
- Department of Biotechnology, Royal Global University, Guwahati 781035, India
| |
Collapse
|
7
|
Ruhul-Amin M, Rahman MA, Khatun N, Hasan I, Kabir SR, Asaduzzaman A. Bioactivity of biogenic silver/silver chloride nanoparticles from Maranta arundinacea rhizome extract: Antibacterial and antioxidant properties with anticancer potential against Ehrlich ascites carcinoma and human breast cancer cell lines. Heliyon 2024; 10:e39493. [PMID: 39502215 PMCID: PMC11535985 DOI: 10.1016/j.heliyon.2024.e39493] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/20/2024] [Accepted: 10/15/2024] [Indexed: 11/08/2024] Open
Abstract
Introduction This study explores the synthesis and characterization of silver/silver chloride nanoparticles (Ag/AgCl-NPs) using Maranta arundinacea rhizome extract and evaluates their bioactivities, including antibacterial, antioxidant, and anticancer potentials. Methods The synthesis of Ag/AgCl-NPs was initially confirmed by a color change and a sharp peak at 463 nm in UV-visible spectroscopy. Further characterization was conducted using scanning electron microscopy (SEM), X-ray powder diffraction (XRD), and fourier transform infrared spectroscopy (FTIR). Antibacterial properties were checked against four pathogenic bacteria (Shigella boydii, Escherichia coli, Shigella dysenteriae, and Staphylococcus aureus), and antioxidant activities were assessed using DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS (2,2-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid) assay. In addition, the anticancer potential was evaluated in vitro using MTT (3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide) colorimetric assay and in vivo using the mouse models. Finally, toxicity was determined by employing the brine shrimp nauplii lethality assay. Results Ag/AgCl-NPs most effectively inhibited the growth of Staphylococcus aureus, showing maximum zone of inhibition and 7 μg/mL of minimum inhibitory concentration (MIC), and prevented the biofilm formation by Escherichia coli at 40 μg/mL. They displayed antioxidant activities against DPPH and ABTS with IC50 values of 90.65 and 24.34 μg/mL, respectively. In vitro, they inhibited 61.96 % EAC and 49.63 % MCF-7 cells growth at 32 and 128 μg/mL, respectively. Subsequently, inhibition rates of EAC cells growth in mice were measured as 38.30 %, 57.38 %, and 31.81 % after employing 2.5, 5, and 10 mg/kg/day of Ag/AgCl-NPs, respectively. Moreover, Ag/AgCl-NPs treated mice were found to carry more apoptotic EAC cells with distorted morphology. Treated mice showed decreased tumor weight, increased mean survival time, and a lifespan increase of up to 30 %, with improved hematological parameters. Later, Ag/AgCl-NPs exhibited moderate toxicity with an LC50 value of 208.41 μg/mL in brine shrimp nauplii lethality assay. Conclusion The promising antibacterial, antioxidant, and anticancer activities along with mild toxicity suggest the potential biomedical uses of Maranta arundinacea rhizome extract-mediated Ag/AgCl-NPs.
Collapse
Affiliation(s)
- Md. Ruhul-Amin
- Department of Biochemistry & Molecular Biology, Faculty of Science, University of Rajshahi, Rajshahi, 6205, Bangladesh
- Department of Biochemistry and Molecular Biology, Trust University, Barisal, 8200, Bangladesh
| | - Md. Abdur Rahman
- Department of Biochemistry & Molecular Biology, Faculty of Science, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Nisa Khatun
- Department of Biochemistry & Molecular Biology, Faculty of Science, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Imtiaj Hasan
- Department of Biochemistry & Molecular Biology, Faculty of Science, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Syed Rashel Kabir
- Department of Biochemistry & Molecular Biology, Faculty of Science, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - A.K.M. Asaduzzaman
- Department of Biochemistry & Molecular Biology, Faculty of Science, University of Rajshahi, Rajshahi, 6205, Bangladesh
| |
Collapse
|
8
|
Asif M, Fakhar-E-Alam M, Tahir M, Jamil F, Sardar H, Rehman J, Dahlous KA. Synthesis, Characterization, and Evaluation of the Antimicrobial and Anticancer Activities of Zinc Oxide and Aluminum-Doped Zinc Oxide Nanocomposites. Pharmaceuticals (Basel) 2024; 17:1216. [PMID: 39338378 PMCID: PMC11435269 DOI: 10.3390/ph17091216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
In this research, we developed undoped and aluminum-doped zinc oxide for antimicrobial and anticancer activities. This study focuses on the synthesis, characterization, and biological activities of zinc oxide nanoparticles (ZnO NPs) and aluminum-doped zinc oxide nanocomposites (Zn1-xAlxO NCs) at varying concentrations (x = 0, 0.25, 0.5, and 0.75 wt%) using the coprecipitation method. Various characterization techniques such as XRD, UV-Vis, FTIR, EDX, and SEM were performed to analyze the crystal structure, optical properties, functional group identification, elemental composition, and surface morphology. The antimicrobial activity test showed that Zn0.75Al0.25O NCs exhibited the strongest inhibition zone against Bacillus cereus compared to Staphylococcus aureus > Pasteurella multocida > Escherichia coli. Moreover, the cytotoxicity and cell viability of liver cancer (HepG-2), breast cancer (MCF-7), ovarian cancer (SKOV3), and normal liver cell lines) were evaluated using the MTT assay, demonstrating that Zn0.75Al0.25O NCs not only enhance cell destruction but also show low cytotoxicity and high biocompatibility at low concentrations. These results suggest that Zn0.75Al0.25O NCs could be a promising candidate for in vivo anticancer applications and should be further investigated.
Collapse
Affiliation(s)
- Muhammad Asif
- Department of Physics, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Fakhar-E-Alam
- Department of Physics, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Tahir
- Department of Chemistry, Quaid-e-Azam University, Islamabad 45320, Pakistan
| | - Farah Jamil
- Department of Applied Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Hassan Sardar
- Department of Physics, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Javed Rehman
- State Key Laboratory of Metastable Materials Science and Technology, School of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004, China
- MEU Research Unit, Middle East University, Amman 11831, Jordan
| | - Kholood A Dahlous
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
9
|
Eweis A, Ahmad MS, El Domany EB, Al-Zharani M, Mubarak M, E Eldin Z, GadelHak Y, Mahmoud R, Hozzein WN. Actinobacterium-Mediated Green Synthesis of CuO/Zn-Al LDH Nanocomposite Using Micromonospora sp. ISP-2 27: A Synergistic Study that Enhances Antimicrobial Activity. ACS OMEGA 2024; 9:34507-34529. [PMID: 39157139 PMCID: PMC11325407 DOI: 10.1021/acsomega.4c02133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/20/2024]
Abstract
Bacterial resistance to conventional antibiotics has created an urgent need to develop enhanced alternatives. Nanocomposites combined with promising antibacterial nanomaterials can show improved antimicrobial activity compared to that of their components. In this work, green synthesized CuO nanoparticles (NPs) supported on an anionic clay with a hydrotalcite-like structure such as Zn-Al layered double hydroxide (LDH) nanocomposite were investigated as antimicrobial agents. This nanocomposite was synthesized using Micromonospora sp. ISP-2 27 cell-free supernatant to form CuO NPs on the surface of previously synthesized LDH. The prepared samples were characterized using UV-Vis spectrophotometry, XRD, FTIR, Field emission scanning electron microscopy with EDX, zeta potential, and hydrodynamic particle size. UV-vis spectral analysis of the biosynthesized CuO NPs revealed a maximum peak at 300 nm, indicating their successful synthesis. The synthesized CuO NPs had a flower-like morphology with a size range of 43-78 nm, while the LDH support had a typical hexagonal layered structure. The zeta potentials of the CuO NPs, Zn-Al LDH, and CuO NPs/LDH nanocomposite were -21.4, 22.3, and 30.8 mV, respectively, while the average hydrodynamic sizes were 687, 735, and 528 nm, respectively. The antimicrobial activity of the produced samples was tested against several microbes. The results demonstrated that the nanocomposite displayed superior antimicrobial properties compared to those of its components. Among the microbes tested, Listeria monocytogenes ATCC 7644 was more sensitive (30 ± 0.34) to the biosynthesized nanocomposite than to CuO NPs (25 ± 0.05) and Zn-Al LDH (22 ± 0.011). In summary, the use of nanocomposites with superior antimicrobial properties has the potential to offer innovative solutions to the global challenge of antibiotic resistance by providing alternative treatments, reducing the reliance on traditional antibiotics, and contributing to the development of more effective and targeted therapeutic approaches.
Collapse
Affiliation(s)
- Abdullah
A. Eweis
- Department
of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Maged S. Ahmad
- Department
of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Ehab B. El Domany
- Biotechnology
and Life Sciences Department, Faculty of Postgraduate Studies for
Advanced Sciences, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Mohammed Al-Zharani
- Department
of Biology, College of Science, Imam Mohammad
Ibn Saud Islamic University, Riyadh 11623, Saudi Arabia
| | - Mohammed Mubarak
- Department
of Biology, College of Science, Imam Mohammad
Ibn Saud Islamic University, Riyadh 11623, Saudi Arabia
| | - Zienab E Eldin
- Department
of Materials Science and Nanotechnology, Faculty of Postgraduate Studies
for Advanced Sciences, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Yasser GadelHak
- Department
of Materials Science and Nanotechnology, Faculty of Postgraduate Studies
for Advanced Sciences, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Rehab Mahmoud
- Department
of Chemistry, Faculty of Science, Beni-Suef
University, Beni-Suef 62511, Egypt
| | - Wael N. Hozzein
- Department
of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| |
Collapse
|
10
|
Jangid H, Singh S, Kashyap P, Singh A, Kumar G. Advancing biomedical applications: an in-depth analysis of silver nanoparticles in antimicrobial, anticancer, and wound healing roles. Front Pharmacol 2024; 15:1438227. [PMID: 39175537 PMCID: PMC11338803 DOI: 10.3389/fphar.2024.1438227] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 07/26/2024] [Indexed: 08/24/2024] Open
Abstract
Introduction: Silver nanoparticles (AgNPs) have gained significant attention in biomedical applications due to their unique physicochemical properties. This review focuses on the roles of AgNPs in antimicrobial activity, anticancer therapy, and wound healing, highlighting their potential to address critical health challenges. Methods: A bibliometric analysis was conducted using publications from the Scopus database, covering research from 2002 to 2024. The study included keyword frequency, citation patterns, and authorship networks. Data was curated with Zotero and analyzed using Bibliometrix R and VOSviewer for network visualizations. Results: The study revealed an increasing trend in research on AgNPs, particularly in antimicrobial applications, leading to 8,668 publications. Anticancer and wound healing applications followed, with significant contributions from India and China. The analysis showed a growing focus on "green synthesis" methods, highlighting a shift towards sustainable production. Key findings indicated the effectiveness of AgNPs in combating multidrug-resistant bacteria, inducing apoptosis in cancer cells, and promoting tissue regeneration in wound healing. Discussion: The widespread research and applications of AgNPs underscore their versatility in medical interventions. The study emphasizes the need for sustainable synthesis methods and highlights the potential risks, such as long-term toxicity and environmental impacts. Future research should focus on optimizing AgNP formulations for clinical use and further understanding their mechanisms of action. Conclusion: AgNPs play a pivotal role in modern medicine, particularly in addressing antimicrobial resistance, cancer treatment, and wound management. Ongoing research and international collaboration are crucial for advancing the safe and effective use of AgNPs in healthcare.
Collapse
Affiliation(s)
- Himanshu Jangid
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Punjab, India
| | - Sudhakar Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Punjab, India
| | - Piyush Kashyap
- School of Agriculture, Lovely Professional University, Jalandhar, Punjab, India
| | - Avtar Singh
- School of Electrical Engineering and Computing (SoEEC), Adama Science and Technology University (AS-TU), Adama, Ethiopia
| | - Gaurav Kumar
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Punjab, India
| |
Collapse
|
11
|
El-Sapagh SH, El-Zawawy NA, Elshobary ME, Alquraishi M, Zabed HM, Nouh HS. Harnessing the power of Neobacillus niacini AUMC-B524 for silver oxide nanoparticle synthesis: optimization, characterization, and bioactivity exploration. Microb Cell Fact 2024; 23:220. [PMID: 39107838 PMCID: PMC11304630 DOI: 10.1186/s12934-024-02484-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/17/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Biotechnology provides a cost-effective way to produce nanomaterials such as silver oxide nanoparticles (Ag2ONPs), which have emerged as versatile entities with diverse applications. This study investigated the ability of endophytic bacteria to biosynthesize Ag2ONPs. RESULTS A novel endophytic bacterial strain, Neobacillus niacini AUMC-B524, was isolated from Lycium shawii Roem. & Schult leaves and used to synthesize Ag2ONPS extracellularly. Plackett-Burman design and response surface approach was carried out to optimize the biosynthesis of Ag2ONPs (Bio-Ag2ONPs). Comprehensive characterization techniques, including UV-vis spectral analysis, Fourier transform infrared spectroscopy, transmission electron microscopy, X-ray diffraction, dynamic light scattering analysis, Raman microscopy, and energy dispersive X-ray analysis, confirmed the precise composition of the Ag2ONPS. Bio-Ag2ONPs were effective against multidrug-resistant wound pathogens, with minimum inhibitory concentrations (1-25 µg mL-1). Notably, Bio-Ag2ONPs demonstrated no cytotoxic effects on human skin fibroblasts (HSF) in vitro, while effectively suppressing the proliferation of human epidermoid skin carcinoma (A-431) cells, inducing apoptosis and modulating the key apoptotic genes including Bcl-2 associated X protein (Bax), B-cell lymphoma 2 (Bcl-2), Caspase-3 (Cas-3), and guardian of the genome (P53). CONCLUSIONS These findings highlight the therapeutic potential of Bio-Ag2ONPs synthesized by endophytic N. niacini AUMC-B524, underscoring their antibacterial efficacy, anticancer activity, and biocompatibility, paving the way for novel therapeutic strategies.
Collapse
Affiliation(s)
- Shimaa H El-Sapagh
- Department of Botany and Microbiology, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Nessma A El-Zawawy
- Department of Botany and Microbiology, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Mostafa E Elshobary
- Department of Botany and Microbiology, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Mohammed Alquraishi
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, 11421, Riyadh, Saudi Arabia
| | - Hossain M Zabed
- School of Life Sciences, Guangzhou University, Guangzhou, 510006, Guangdong, China
| | - Hoda S Nouh
- Department of Botany and Microbiology, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
12
|
Hani U, Kidwan FN, Albarqi LA, Al-Qahtani SA, AlHadi RM, AlZaid HA, Haider N, Ansari MA. Biogenic silver nanoparticle synthesis using orange peel extract and its multifaceted biomedical application. Bioprocess Biosyst Eng 2024; 47:1363-1375. [PMID: 38740634 DOI: 10.1007/s00449-024-03031-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024]
Abstract
The aim of this study was to employ an agro-industrial byproduct, specifically Citrus sinensis peels, as a reservoir of polyphenols. The natural chemicals present in C. sinensis peels serve as reducing agents in an environmentally benign method for synthesizing silver nanoparticles (AgNPs). This methodology not only provides a more environmentally friendly method for synthesizing nanoparticles but also enhances the value of agricultural waste, emphasizing the sustainable utilization of resources. In our study, AgNPs were successfully synthesized using peel aqueous exact of C. sinensis and then their various biological activity has been investigated. The synthesized AgNPs were characterized by UV-vis spectroscopy, dynamic light scattering (DLS), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), and transmission electron microscopy (TEM) analysis. Furthermore, their effectiveness in inhibiting growth and biofilm formation of Escherichia coli, Staphylococcus aureus, and Candida albicans has been investigated. The minimum inhibitory concentrations (MIC) for E. coli and S. aureus were both 32 μg/mL, and for C. albicans, it was 128 µg/mL. At 250 µg/mL of AgNPs, 94% and 92% biofilm inhibition were observed against E. coli and S. aureus, respectively. Furthermore, AgNPs demonstrated significant toxic effects against human prostate cancer cell line DU145 as investigated by anti-apoptotic, 4',6-diamidino-2-phenylindole (DAPI), reactive oxygen species (ROS), and acridine orange/ethidium bromide (AO/EtBr) assays. We also conducted uptake analysis on these pathogens and cancer cell lines to preliminarily investigate the mechanisms underlying their toxic effects. These findings confirm that AgNPs can serve as a cost-effective, non-toxic, and environmentally friendly resource for green synthesis of medicinal AgNPs. Moreover, this approach offers an alternative recycling strategy that contributes to the sustainable use of biological by-products.
Collapse
Affiliation(s)
- Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia.
| | - Fawziah Nasser Kidwan
- Department of Doctor of Pharmacy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Lamis Ahmed Albarqi
- Department of Doctor of Pharmacy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | | | - Ruba Muhammad AlHadi
- Department of Doctor of Pharmacy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Haifa Abdullah AlZaid
- Pharmaceutical Sciences, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Nazima Haider
- Department of Pathology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, 31441, Dammam, Saudi Arabia.
| |
Collapse
|
13
|
Saifuddin NN, Matussin SN, Fariduddin Q, Khan MM. Potentials of roots, stems, leaves, flowers, fruits, and seeds extract for the synthesis of silver nanoparticles. Bioprocess Biosyst Eng 2024; 47:1119-1137. [PMID: 38904717 DOI: 10.1007/s00449-024-03044-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 06/06/2024] [Indexed: 06/22/2024]
Abstract
Silver nanoparticles (AgNPs) have gained significant attention in various applications due to their unique properties that differ from bulk or macro-sized counterparts. In the advancement of nanotechnology, a reliable, non-toxic, and eco-friendly green synthesis has widely been developed as an alternative method for the production of AgNPs, overcoming limitations associated with the traditional physical and chemical methods. Green synthesis of AgNPs involves the utilization of biological sources including plant extracts with silver salt as the precursor. The potential of phytochemicals in plant extracts serves as a reducing/capping and stabilizing agent to aid in the bio-reduction of Ag+ ions into a stable nanoform, Ag0. This review provides insights into the potentials of various plant parts like root, stem, leaf, flower, fruit, and seed extracts that have been extensively reported for the synthesis of AgNPs.
Collapse
Affiliation(s)
- Nurul Nazirah Saifuddin
- Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE, 1410, Brunei Darussalam
| | - Shaidatul Najihah Matussin
- Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE, 1410, Brunei Darussalam
| | - Qazi Fariduddin
- Plant Physiology and Biochemistry Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Mohammad Mansoob Khan
- Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE, 1410, Brunei Darussalam.
| |
Collapse
|
14
|
Wang D, Li Q, Xiao C, Wang H, Dong S. Nanoparticles in Periodontitis Therapy: A Review of the Current Situation. Int J Nanomedicine 2024; 19:6857-6893. [PMID: 39005956 PMCID: PMC11246087 DOI: 10.2147/ijn.s465089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/10/2024] [Indexed: 07/16/2024] Open
Abstract
Periodontitis is a disease of inflammation that affects the tissues supporting the periodontium. It is triggered by an immunological reaction of the gums to plaque, which leads to the destruction of periodontal attachment structures. Periodontitis is one of the most commonly recognized dental disorders in the world and a major factor in the loss of adult teeth. Scaling and root planing remain crucial for managing patients with persistent periodontitis. Nevertheless, exclusive reliance on mechanical interventions like periodontal surgery, extractions, and root planning is insufficient to halt the progression of periodontitis. In response to the problem of bacterial resistance, some researchers are committed to finding alternative therapies to antibiotics. In addition, some scholars focus on finding new materials to provide a powerful microenvironment for periodontal tissue regeneration and promote osteogenic repair. Nanoparticles possess distinct therapeutic qualities, including exceptional antibacterial, anti-inflammatory, and antioxidant properties, immunomodulatory capacities, and the promotion of bone regeneration ability, which made them can be used for the treatment of periodontitis. However, there are many problems that limit the clinical translation of nanoparticles, such as toxic accumulation in cells, poor correlation between in vitro and in vivo, and poor animal-to-human transmissibility. In this paper, we review the present researches on nanoparticles in periodontitis treatment from the perspective of three main categories: inorganic nanoparticles, organic nanoparticles, and nanocomposites (including nanofibers, hydrogels, and membranes). The aim of this review is to provide a comprehensive and recent update on nanoparticles-based therapies for periodontitis. The conclusion section summarizes the opportunities and challenges in the design and clinical translation of nanoparticles for the treatment of periodontitis.
Collapse
Affiliation(s)
- Di Wang
- The First Outpatient Department, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People’s Republic of China
| | - Qiqi Li
- The First Outpatient Department, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People’s Republic of China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People’s Republic of China
| | - Hao Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People’s Republic of China
| | - Shujun Dong
- The First Outpatient Department, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| |
Collapse
|
15
|
Arshad F, Naikoo GA, Hassan IU, Chava SR, El-Tanani M, Aljabali AA, Tambuwala MM. Bioinspired and Green Synthesis of Silver Nanoparticles for Medical Applications: A Green Perspective. Appl Biochem Biotechnol 2024; 196:3636-3669. [PMID: 37668757 PMCID: PMC11166857 DOI: 10.1007/s12010-023-04719-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2023] [Indexed: 09/06/2023]
Abstract
Silver nanoparticles (AgNPs) possess unmatched chemical, biological, and physical properties that make them unique compounds as antimicrobial, antifungal, antiviral, and anticancer agents. With the increasing drug resistance, AgNPs serve as promising entities for targeted drug therapy against several bacterial, fungal, and viral components. In addition, AgNPs also serve as successful anticancer agents against several cancers, including breast, prostate, and lung cancers. Several works in recent years have been done towards the development of AgNPs by using plant extracts like flowers, leaves, bark, root, stem, and whole plant parts. The green method of AgNP synthesis thus has several advantages over chemical and physical methods, especially the low cost of synthesis, no toxic byproducts, eco-friendly production pathways, can be easily regenerated, and the bio-reducing potential of plant derived nanoparticles. Furthermore, AgNPs are biocompatible and do not harm normally functioning human or host cells. This review provides an exhaustive overview and potential of green synthesized AgNPs that can be used as antimicrobial, antifungal, antiviral, and anticancer agents. After a brief introduction, we discussed the recent studies on the development of AgNPs from different plant extracts, including leaf parts, seeds, flowers, stems, bark, root, and whole plants. In the following section, we highlighted the different therapeutic actions of AgNPs against various bacteria, fungi, viruses, and cancers, including breast, prostate, and lung cancers. We then highlighted the general mechanism of action of AgNPs. The advantages of the green synthesis method over chemical and physical methods were then discussed in the article. Finally, we concluded the review by providing future perspectives on this promising field in nanotechnology.
Collapse
Affiliation(s)
- Fareeha Arshad
- Department of Mathematics and Sciences, College of Arts and Applied Sciences, Dhofar University, Salalah, PC 211, Oman
| | - Gowhar A Naikoo
- Department of Mathematics and Sciences, College of Arts and Applied Sciences, Dhofar University, Salalah, PC 211, Oman.
| | - Israr U Hassan
- College of Engineering, Dhofar University, Salalah, PC 211, Oman
| | | | - Mohamed El-Tanani
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Alaa A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Irbid, 21163, Jordan
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln, LN6 7TS, UK.
| |
Collapse
|
16
|
Marathe K, Naik J, Maheshwari V. Synthesis, characterisation and in vitro anticancer activity of conjugated protease inhibitor-silver nanoparticles (AgNPs-PI) against human breast MCF-7 and prostate PC-3 cancer cell lines. Bioprocess Biosyst Eng 2024; 47:931-942. [PMID: 38709274 DOI: 10.1007/s00449-024-03023-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 04/13/2024] [Indexed: 05/07/2024]
Abstract
The conjugated silver nanoparticles using biomolecules have attracted great attention of researchers because physical dimensions and surface chemistry play important roles in toxicity and biocompatibility of AgNPs. Hence, in the current study, synthesis of bio-conjugated AgNPs with protein protease inhibitor (PI) isolated from Streptomyces spp. is reported. UV-visible spectra of PI and AgNPs showed stronger peaks at 280 and 405 nm, confirming the synthesis of conjugated AgNPs-PI. TEM and SEM images of AgNPs-PI showed spherical-shaped nanoparticles with a slight increase in particle size and thin amorphous layer around the surface of silver nanomaterial. Circular dichroism, FT-IR and fluorescence spectral studies confirmed AgNPs-PI conjugation. Conjugated AgNPs-PI showed excellent anticancer potential than AgNPs and protease inhibitor separately on human breast MCF-7 and prostate PC-3 cell lines. The findings revealed that surface modification of AgNPs with protein protease inhibitor stabilised the nanomaterial and increased its anticancer activity.
Collapse
Affiliation(s)
- Kiran Marathe
- University Institute of Chemical Technology, Kavayitri Bahinabai Chaudhari North Maharashtra University, Jalgaon, 425001, MS, India.
| | - Jitendra Naik
- University Institute of Chemical Technology, Kavayitri Bahinabai Chaudhari North Maharashtra University, Jalgaon, 425001, MS, India
| | - Vijay Maheshwari
- School of Life Sciences, Kavayitri Bahinabai Chaudhari North Maharashtra University, Jalgaon, 425001, MS, India
| |
Collapse
|
17
|
Oves M, Khan MS, Al-Shaeri M, Khan MS. Antifungal potential of multi-drug-resistant Pseudomonas aeruginosa: harnessing pyocyanin for candida growth inhibition. Front Cell Infect Microbiol 2024; 14:1375872. [PMID: 38846355 PMCID: PMC11155300 DOI: 10.3389/fcimb.2024.1375872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/11/2024] [Indexed: 06/09/2024] Open
Abstract
Introduction Pseudomonas aeruginosa is notorious for its multidrug resistance and its involvement in hospital-acquired infections. In this study, 20 bacterial strains isolated from soil samples near the Hindan River in Ghaziabad, India, were investigated for their biochemical and morphological characteristics, with a focus on identifying strains with exceptional drug resistance and pyocyanin production. Methods The isolated bacterial strains were subjected to biochemical and morphological analyses to characterize their properties, with a particular emphasis on exopolysaccharide production. Strain GZB16/CEES1, exhibiting remarkable drug resistance and pyocyanin production. Biochemical and molecular analyses, including sequencing of its 16S rRNA gene (accession number LN735036.1), plasmid-curing assays, and estimation of plasmid size, were conducted to elucidate its drug resistance mechanisms and further pyocynin based target the Candida albicans Strain GZB16/CEES1 demonstrated 100% resistance to various antibiotics used in the investigation, with plasmid-curing assays, suggesting plasmid-based resistance gene transmission. The plasmid in GZB16/CEES1 was estimated to be approximately 24 kb in size. The study focused on P. aeruginosa's pyocyanin production, revealing its association with anticandidal activity. The minimum inhibitory concentration (MIC) of the bacterial extract against Candida albicans was 50 μg/ml, with a slightly lower pyocyanin-based MIC of 38.5 μg/ml. Scanning electron microscopy illustrated direct interactions between P. aeruginosa strains and Candida albicans cells, leading to the destruction of the latter. Discussion These findings underscore the potential of P. aeruginosa in understanding microbial interactions and developing strategies to combat fungal infections. The study highlights the importance of investigating bacterial-fungal interactions and the role of pyocyanin in antimicrobial activity. Further research in this area could lead to the development of novel therapeutic approaches for combating multidrug-resistant infections.
Collapse
Affiliation(s)
- Mohammad Oves
- Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohd Shahnawaz Khan
- Protein Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Majed Al-Shaeri
- Department of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Saghir Khan
- Department of Agricultural Microbiology, Faculty of Agricultural Science, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
18
|
Taheri SL, Poorirani S, Mostafavi SA. Intraocular drug delivery systems for Diabetic retinopathy: Current and future prospective. BIOIMPACTS : BI 2024; 15:30127. [PMID: 39963560 PMCID: PMC11830143 DOI: 10.34172/bi.30127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 02/20/2025]
Abstract
In pharmaceutical research and development, novel drug delivery systems represent a significant advancement aimed at enhancing the efficacy of therapeutic agents through innovative delivery mechanisms. The primary objective of these systems is to transport therapeutic compounds to specific target sites, such as tumors and afflicted tissues, with the dual purpose of mitigating side effects and toxicity associated with the drugs while concurrently augmenting therapeutic effectiveness. Numerous innovative drug delivery strategies have been scrutinized for their applicability in the context of targeted ocular drug delivery. Diverse novel carriers, including but not limited to implants, hydrogels, metal nanoparticles, Nano-liposomes, micelles, solid lipid nanoparticles (SLN), emulsions, and biodegradable nanoparticles, have been harnessed to facilitate the controlled release of pharmaceutical agents to the retina and vitreous. These carriers offer distinct advantages, such as enhanced intraocular drug delivery, precise control over drug release kinetics, heightened stability, and superior entrapment efficiency. This comprehensive review seeks to elucidate the current strides made in the realm of carriers and their contemporary applications in treating diabetic retinopathy (DR). Furthermore, it underscores these carriers' pivotal role in achieving efficacious intraocular drug delivery. Additionally, this article explores the various administration routes, potential future advancements, and the multifaceted challenges confronting the domain of novel carriers in treating DR. In conclusion, novel formulations are introduced to surmount the challenges associated with intraocular drug delivery.
Collapse
Affiliation(s)
- Sayed Latif Taheri
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences and Isfahan Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Safoora Poorirani
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences and Isfahan Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sayed Abolfazl Mostafavi
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences and Isfahan Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
19
|
Khan MH, Unnikrishnan S, Ramalingam K. Antipathogenic Efficacy of Biogenic Silver Nanoparticles and Antibiofilm Activities Against Multi-drug-Resistant ESKAPE Pathogens. Appl Biochem Biotechnol 2024; 196:2031-2052. [PMID: 37462813 DOI: 10.1007/s12010-023-04630-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2023] [Indexed: 04/23/2024]
Abstract
The silver nanoparticles (AgNPs) were produced by employing a biogenic loom and tested for antipathogenic assets against multi-drug-resistant (MDR) ESKAPE bacteria. Biogenically synthesized AgNPs were characterized adopting various high-throughput techniques such as UHRTEM, SEM with EDX, DLS, TGA-DTA, and XRD and spectroscopic analysis showed polydispersion of nanoparticles. In this context, AgNPs with the attribute of spherical-shaped nanoparticles with an average size of 26 nm were successfully synthesized utilizing bacterial supernatant. The antipathogenic activities of AgNPs were assessed against 11 strains of MDR ESKAPE bacteria including Enterococcus faecium; methicillin-resistant Staphylococcus aureus; Klebsiella pneumonia; Acinetobacter baumannii; Pseudomonas aeruginosa; Enterobacter aerogenes; and Enterobacter species. The exposure of biogenic AgNPs in a well diffusion assay showed all the growth inhibitions of ESKAPE bacteria at 200 μg/ml after 18 h of incubation. Growth kinetics demonstrated maximum killing at 60 μg/ml after 4 h of completion. The highest biofilm depletions were found at 100 μg/ml in adhesion assay. Live/dead assays showed effective killing of the ESKAPE bacteria at 10 μg/ml in pre-existing biofilms. The effective inhibitory concentrations of AgNPs were investigated ranging from 10 to 200 μg/ml. The selected pathogens found sensitive to AgNPs are statistically significant (P < 0.05) than that of cefotaxime/AgNO3. Consequently, a broad spectrum of antimicrobial potentials of AgNPs can be alternative to conventional antimicrobial agents for future medicine.
Collapse
Affiliation(s)
- Mohd Hashim Khan
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, GST Road, Vandalur, Chennai, Tamil Nadu, 600 048, India
| | - Sneha Unnikrishnan
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, GST Road, Vandalur, Chennai, Tamil Nadu, 600 048, India
| | - Karthikeyan Ramalingam
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, GST Road, Vandalur, Chennai, Tamil Nadu, 600 048, India.
| |
Collapse
|
20
|
Singh J, Kumar A, Nayal AS, Vikal S, Shukla G, Singh A, Singh A, Goswami S, Kumar A, Gautam YK, Verma Y, Gaurav SS, Pratap D. Comprehensive antifungal investigation of green synthesized silver nanoformulation against four agriculturally significant fungi and its cytotoxic applications. Sci Rep 2024; 14:5934. [PMID: 38467843 PMCID: PMC10928228 DOI: 10.1038/s41598-024-56619-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 03/08/2024] [Indexed: 03/13/2024] Open
Abstract
The present study reports the green synthesis of silver nanoparticles (AgNPs) in powder form using the leaf extract of Azadirachta indica. The synthesis of AgNPs was confirmed by UV-vis spectroscopy, FTIR, XRD, FESEM, and EDX. The synthesized AgNPs were in a powdered state and dispersed completely in 5% polyethylene glycol (PEG) and demonstrated prolonged shelf life and enhanced bioavailability over a year without any aggregation. The resulting silver nanoformulation demonstrated complete inhibition against Sclerotinia sclerotiorum and Colletotrichum falcatum and 68% to 80% inhibition against Colletotrichum gloeosporioides and Rhizoctonia solani respectively, at 2000 ppm. The EC50 values determined through a statistical analysis were 66.42, 157.7, 19.06, and 33.30 ppm for S. sclerotiorum, C. falcatum, C. gloeosporioides, and R. solani respectively. The silver nanoformulation also established significant cytotoxicity, with a 74.96% inhibition rate against the human glioblastoma cell line U87MG at 250 ppm. The IC50 value for the cancerous cell lines was determined to be 56.87 ppm through statistical analysis. The proposed silver nanoformulation may be used as a next-generation fungicide in crop improvement and may also find application in anticancer investigations. To the best of our knowledge, this is also the first report of silver nanoformulation demonstrating complete inhibition against the economically significant phytopathogen C. falcatum.
Collapse
Affiliation(s)
- Jyoti Singh
- Plant Molecular Virology Laboratory, Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, Uttar Pradesh, 250004, India
| | - Ankit Kumar
- Plant Molecular Virology Laboratory, Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, Uttar Pradesh, 250004, India
| | - Amit Singh Nayal
- Department of Statistics, Chaudhary Charan Singh University, Meerut, Uttar Pradesh, 250004, India
| | - Sagar Vikal
- Smart Materials and Sensor Laboratory, Department of Physics, Chaudhary Charan Singh University, Meerut, 250004, Uttar Pradesh, India
| | - Gyanika Shukla
- NanoScience and NanoBiology Laboratory, Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, Uttar Pradesh, 250004, India
| | - Amardeep Singh
- NanoScience and NanoBiology Laboratory, Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, Uttar Pradesh, 250004, India
| | - Anupma Singh
- Department of Zoology, Chaudhary Charan Singh University, Meerut, Uttar Pradesh, 250004, India
| | - Sakshi Goswami
- Department of Toxicology, Chaudhary Charan Singh University, Meerut, Uttar Pradesh, 250004, India
| | - Ashwani Kumar
- Departemnt of Physics, Regional Institute of Education (RIE), Bhubaneswar, Odisha, 751022, India
| | - Yogendra K Gautam
- Smart Materials and Sensor Laboratory, Department of Physics, Chaudhary Charan Singh University, Meerut, 250004, Uttar Pradesh, India
| | - Yeshvandra Verma
- Department of Toxicology, Chaudhary Charan Singh University, Meerut, Uttar Pradesh, 250004, India
| | - Shailendra Singh Gaurav
- NanoScience and NanoBiology Laboratory, Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, Uttar Pradesh, 250004, India
| | - Dharmendra Pratap
- Plant Molecular Virology Laboratory, Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, Uttar Pradesh, 250004, India.
| |
Collapse
|
21
|
Sonam Dongsar T, Tsering Dongsar T, Gupta G, Alsayari A, Wahab S, Kesharwani P. PLGA nanomedical consignation: A novel approach for the management of prostate cancer. Int J Pharm 2024; 652:123808. [PMID: 38224758 DOI: 10.1016/j.ijpharm.2024.123808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/27/2023] [Accepted: 01/12/2024] [Indexed: 01/17/2024]
Abstract
The malignancy of the prostate is a complicated ailment which impacts millions of male populations around the globe. Despite the multitude of endeavour accomplished within this domain, modalities that are involved in the ameliorative management of predisposed infirmity are still relent upon non-specific and invasive procedures, thus imposing a detrimental mark on the living standard of the individual. Also, the orchestrated therapeutic interventions are still incompetent in substantiating a robust and unabridged therapeutic end point owing to their inadequate solubility, low bioavailability, limited cell assimilation, and swift deterioration, thereby muffling the clinical application of these existing treatment modalities. Nanotechnology has been employed in an array of modalities for the medical management of malignancies. Among the assortment of available nano-scaffolds, nanocarriers composed of a bio-decomposable and hybrid polymeric material like PLGA hold an opportunity to advance as standard chemotherapeutic modalities. PLGA-based nanocarriers have the prospect to address the drawbacks associated with conventional cancer interventions, owing to their versatility, durability, nontoxic nature, and their ability to facilitate prolonged drug release. This review intends to describe the plethora of evidence-based studies performed to validate the applicability of PLGA nanosystem in the amelioration of prostate malignancies, in conjunction with PLGA focused nano-scaffold in the clinical management of prostate carcinoma. This review seeks to explore numerous evidence-based studies confirming the applicability of PLGA nanosystems in ameliorating prostate malignancies. It also delves into the role of PLGA-focused nano-scaffolds in the clinical management of prostate carcinoma, aiming to provide a comprehensive perspective on these advancements.
Collapse
Affiliation(s)
- Tenzin Sonam Dongsar
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Tenzin Tsering Dongsar
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Garima Gupta
- Graphic Era Hill University, Dehradun, 248002, India; School of Allied Medical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Abdulrhman Alsayari
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
22
|
Djamila B, Eddine LS, Abderrhmane B, Nassiba A, Barhoum A. In vitro antioxidant activities of copper mixed oxide (CuO/Cu2O) nanoparticles produced from the leaves of Phoenix dactylifera L. BIOMASS CONVERSION AND BIOREFINERY 2024; 14:6567-6580. [DOI: 10.1007/s13399-022-02743-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/07/2022] [Accepted: 04/25/2022] [Indexed: 01/06/2025]
Abstract
AbstractBiosynthesis of antioxidant nanoparticles using plant extracts is a simple, rapid, environmentally friendly, and cost-effective approach. In this study, in vitro antioxidant copper mixed oxide nanoparticles (CuO/Cu2O) were prepared from the alcoholic extract of Phoenix Dactylifera L. and different aqueous concentrations of CuSO4·5H2O. The composition, crystallinity, morphology, and particle size of CuO/Cu2O NPs were tuned by increasing the CuSO4·5H2O concentration from 4 to 10 mM. Ultraviolet–visible (UV–Vis) and Fourier-transform infrared (FTIR) spectroscopy confirmed the reduction of CuSO4·5H2O and the formation of the CuO/Cu2O NPs. X-ray diffraction (XRD) confirmed the crystalline nature of the CuO/Cu2O NPs with a crystallite size varying from 18 to 35 nm. Scanning electron micrographs (SEM) showed that the CuO/Cu2O NPs have a spherical morphology with particle sizes ranging from 25 to 100 nm. The best antioxidant CuO/Cu2O NPs have a phase ratio of about 1:1 CuO/Cu2O with a half-maximal inhibitory concentration (IC50) of 0.39 mg/ml, an iron-containing reducing antioxidant power (FRAP) of 432 mg EFeSO4/100 mg NPs, and a total antioxidant capacity (TAC) of 65 mg EAA/gNPs. The results suggest that the synthesized CuO/Cu2O NPs are excellent antioxidants for therapeutic applications.
Graphical abstract
Collapse
|
23
|
Gong X, Jadhav ND, Lonikar VV, Kulkarni AN, Zhang H, Sankapal BR, Ren J, Xu BB, Pathan HM, Ma Y, Lin Z, Witherspoon E, Wang Z, Guo Z. An overview of green synthesized silver nanoparticles towards bioactive antibacterial, antimicrobial and antifungal applications. Adv Colloid Interface Sci 2024; 323:103053. [PMID: 38056226 DOI: 10.1016/j.cis.2023.103053] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/06/2023] [Accepted: 11/21/2023] [Indexed: 12/08/2023]
Abstract
Present review emphatically introduces the synthesis, biocompatibility, and applications of silver nanoparticles (AgNPs), including their antibacterial, antimicrobial, and antifungal properties. A comprehensive discussion of various synthesis methods for AgNPs, with a particular focus on green chemistry mediated by plant extracts has been made. Recent research has revealed that the optical properties of AgNPs, including surface plasmon resonance (SPR), depend on the particle size, as well as the synthesis methods, preparation synthesis parameters, and used reducing agents. The significant emphasis on the use of synthesized AgNPs as antibacterial, antimicrobial, and antifungal agents in various applications has been reviewed. Furthermore, the application areas have been thoroughly examined, providing a detailed discussion of the underlying mechanisms, which aids in determining the optimal control parameters during the synthesis process of AgNPs. Furthermore, the challenges encountered while utilizing AgNPs and the corresponding advancements to overcome them have also been addressed. This review not only summarizes the achievements and current status of plant-mediated green synthesis of AgNPs but also explores the future prospects of these materials and technology in diverse areas, including bioactive applications.
Collapse
Affiliation(s)
- Xianyun Gong
- School of Food Engineering, Department of Chemistry, Harbin University, Harbin 150086, China
| | - Nilesh D Jadhav
- Department of Physics, NTVS's G. T. Patil Arts, Commerce and Science College, Nandurbar 425412 (M.S.), India
| | - Vishal V Lonikar
- Department of Physics, MET's Bhujbal Academy of Science and Commerce, Nashik 422003 (M.S.), India
| | - Anil N Kulkarni
- Department of Physics, NTVS's G. T. Patil Arts, Commerce and Science College, Nandurbar 425412 (M.S.), India.
| | - Hongkun Zhang
- School of Food Engineering, Department of Chemistry, Harbin University, Harbin 150086, China
| | - Babasaheb R Sankapal
- Department of Physics, Visvesvaraya National Institute of Technology, South Ambazari Road, Nagpur 440010 (M.S.), India
| | - Juanna Ren
- College of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan, 030024, China; Integrated Composites Lab, Department of Mechanical and Construction Engineering, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK
| | - Ben Bin Xu
- Integrated Composites Lab, Department of Mechanical and Construction Engineering, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK
| | - Habib M Pathan
- Department of Physics, Savitribai Phule Pune University, Pune 411 007, India.
| | - Yong Ma
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Zhiping Lin
- College of Materials Science and Engineering, Taizhou University, Taizhou, Zhejiang 318000, China
| | | | - Zhe Wang
- Chemistry Department, Oakland University, Rochester 48309, USA.
| | - Zhanhu Guo
- Integrated Composites Lab, Department of Mechanical and Construction Engineering, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK.
| |
Collapse
|
24
|
Ahmadpour MR, Yousefi M, Rakhshandeh H, Darroudi M, Mousavi SH, Soukhtanloo M, Sabouri Z, Askari VR, Hashemzadeh A, Manjiri MA, Motavasselian M. Biosynthesis of Gold Nanoparticles Using Quince Seed Water Extract and Investigation of Their Anticancer Effect Against Cancer Cell Lines. IEEE Trans Nanobioscience 2024; 23:118-126. [PMID: 37379200 DOI: 10.1109/tnb.2023.3287805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
In this study, gold nanoparticles (Au-NPs) were synthesized using HAuCl4 and quince seed mucilage (QSM) extract, which was characterized by conventional methods including Fourier transforms electron microscopy (FTIR), UV-Visible spectroscopy (UV-Vis), Field emission electron microscopy (FESEM), Transmission electron microscopy (TEM), Dynamic light spectroscopy (DLS), and Zeta-potential. The QSM acted as reductant and stabilizing agents simultaneously. The NP's anticancer activity was also investigated against osteosarcoma cell lines (MG-63), which showed an IC50 of [Formula: see text]/mL.
Collapse
|
25
|
Ohiduzzaman M, Khan MNI, Khan KA, Paul B. Green synthesis of silver nanoparticles by using Allium sativum extract and evaluation of their electrical activities in bio-electrochemical cell. NANOTECHNOLOGY 2023; 35:095707. [PMID: 38029451 DOI: 10.1088/1361-6528/ad10e4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/29/2023] [Indexed: 12/01/2023]
Abstract
An electrical application of green synthesized silver nanoparticles (Ag NPs) by developing a unique bio-electrochemical cell (BEC) has been addressed in the report. Here, garlic extract (GE) has been used as a reducing agent to synthesize Ag NPs, and as a bio-electrolyte solution of BEC. Ag NPs successfully formed into face-centered cubic structures with average crystallite and particle sizes of 8.49 nm and 20.85 nm, respectively, according to characterization techniques such as the UV-vis spectrophotometer, XRD, FTIR, and FESEM. A broad absorption peak at 410 nm in the UV-visible spectra indicated that GE played a vital role as a reducing agent in the transformation of Ag+ions to Ag NPs. After that four types of BEC were developed by varying the concentration of GE, CuSO4. 5H2O, and Ag NPs electrolyte solution. The open circuit voltage and short circuit current of all cells were examined with the time duration. Moreover, different external loads (1 Ω, 2 Ω, 5 Ω, and 6 Ω) were used to investigate the load voltage and load current of BEC. The results demonstrated that the use of Ag NPs on BEC played a significant role in increasing the electrical performance of BEC. The use of GE-mediated Ag NPs integrated the power, capacity, voltage efficiency, and energy efficiency of BEC by decreasing the internal resistance and voltage regulation. These noteworthy results can take a frontier forward to the development of nanotechnology for renewable and low-cost power production applications.
Collapse
Affiliation(s)
- Md Ohiduzzaman
- Department of Physics, Jashore University of Science and Technology, Jashore 7408, Bangladesh
- Department of Physics, Jagannath University, Dhaka 1100, Bangladesh
| | - M N I Khan
- Materials Science Division, Atomic Energy Centre, Dhaka, Bangladesh
| | - K A Khan
- Department of Physics, Jagannath University, Dhaka 1100, Bangladesh
- Bangamata Sheikh Fojilatunnesa Mujib Science & Technology University, Jamalpur, Bangladesh
| | - Bithi Paul
- Department of Physics, American International University-Bangladesh, Dhaka, Bangladesh
| |
Collapse
|
26
|
Taheri-Ledari R, Ganjali F, Zarei-Shokat S, Dinmohammadi R, Asl FR, Emami A, Mojtabapour ZS, Rashvandi Z, Kashtiaray A, Jalali F, Maleki A. Plasmonic porous micro- and nano-materials based on Au/Ag nanostructures developed for photothermal cancer therapy: challenges in clinicalization. NANOSCALE ADVANCES 2023; 5:6768-6786. [PMID: 38059020 PMCID: PMC10696950 DOI: 10.1039/d3na00763d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/13/2023] [Indexed: 12/08/2023]
Abstract
Photothermal therapy (PTT) has developed in recent decades as a relatively safe method for the treatment of cancers. Recently, various species of gold and silver (Au and Ag) nanostructures have been developed and investigated to achieve PTT due to their highly localized surface plasmon resonance (LSPR) effect. Concisely, the collective oscillation of electrons on the surface of Au and Ag nanostructures upon exposure to a specific wavelength (depending on their size and shape) and further plasmonic resonance leads to the heating of the surface of these particles. Hence, porous species can be equipped with tiny plasmonic ingredients that add plasmonic properties to therapeutic cargoes. In this case, a precise review of the recent achievements is very important to figure out to what extent plasmonic photothermal therapy (PPTT) by Au/Ag-based plasmonic porous nanomedicines successfully treated cancers with satisfactory biosafety. Herein, we classify the various species of LSPR-active micro- and nano-materials. Moreover, the routes for the preparation of Ag/Au-plasmonic porous cargoes and related bench assessments are carefully reviewed. Finally, as the main aim of this study, principal requirements for the clinicalization of Ag/Au-plasmonic porous cargoes and their further challenges are discussed, which are critical for specialists in this field.
Collapse
Affiliation(s)
- Reza Taheri-Ledari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98 2173021584 +98 21 77240640-50
| | - Fatemeh Ganjali
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98 2173021584 +98 21 77240640-50
| | - Simindokht Zarei-Shokat
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98 2173021584 +98 21 77240640-50
| | - Reihane Dinmohammadi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98 2173021584 +98 21 77240640-50
| | - Fereshteh Rasouli Asl
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98 2173021584 +98 21 77240640-50
| | - Ali Emami
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98 2173021584 +98 21 77240640-50
| | - Zahra Sadat Mojtabapour
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98 2173021584 +98 21 77240640-50
| | - Zahra Rashvandi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98 2173021584 +98 21 77240640-50
| | - Amir Kashtiaray
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98 2173021584 +98 21 77240640-50
| | - Farinaz Jalali
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98 2173021584 +98 21 77240640-50
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98 2173021584 +98 21 77240640-50
| |
Collapse
|
27
|
Naseer N, Mustafa MM, Latief N, Fazal N, Tariq M, Afreen A, Yaqub F, Riazuddin S. Sarcococca saligna fabricated gold nanoparticles alleviated in vitro oxidative stress and inflammation in human adipose-derived stem cells. J Biomed Mater Res B Appl Biomater 2023; 111:2032-2043. [PMID: 37560935 DOI: 10.1002/jbm.b.35303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 06/05/2023] [Accepted: 07/12/2023] [Indexed: 08/11/2023]
Abstract
Oxidative stress is a destructive phenomenon that affects various cell structures including membranes, proteins, lipoproteins, lipids, and DNA. Oxidative stress and inflammation owing to lifestyle changes may lead to serious diseases such as Cancers, Gout, and Arthritis etc. These disorders can be prevented using different therapeutic strategies including nanomedicine. Biosynthesized gold nanoparticles (GNPs) because of their anti-inflammatory and antioxidant bioactivities can be key player in reversal of these ailments. This study was carried out to evaluate the anti-inflammatory and antioxidant potential of bio fabricated GNPs with Sarcococca saligna (S. saligna) extract on injured human adipose-derived Mesenchymal stem cells (hADMSCs). GNPs were characterized by ultraviolet-visible (UV-Vis) spectroscopy, Scanning Electron Microscopy (SEM), x-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and energy dispersive x-ray (EDS). Phytochemical screening of biosynthesized GNPs exhibited a significant release of polyphenols, that is, total phenolic content (TPC) and total flavonoid content (TFC). GNPs priming amended the in vitro injury caused by Monosodium Iodoacetate (MIA) as exhibited by improved cell viability, wound closure response and superoxide dismutase activity (SOD). The anti-inflammatory conduct assessed through NF-κB pathway and other associated inflammatory markers reported down-regulation of TNF-α (0.644 ± 0.045), IL-1β (0.694 ± 0.147) and IL-6 (0.622 ± 0.112), apoptosis causing genes like Caspase-3 (0.734 ± 0.13) and BAX (0.830 ± 0.12), NF-κB pathway, p65 (0.672 ± 0.084) and p105 (0.539 ± 0.083) associated genes. High SOD activity (95 ± 5.25%) revealed by treated hADMSCs with GNPs also supported the antioxidant role of GNPs in vitro model. This study concludes that S. saligna bio fabricated GNPs priming may improve the therapeutic potential of hADMSCs against chronic inflammatory problems by regulating NF-κB pathway.
Collapse
Affiliation(s)
- Nadia Naseer
- Center of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Muhammad Munam Mustafa
- Center of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Noreen Latief
- Center of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Numan Fazal
- Center of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Muhammad Tariq
- Department of Biotechnology, Mirpur University of Science and Technology (MUST), Mirpur, Pakistan
| | - Afshan Afreen
- Department of Biotechnology, Mirpur University of Science and Technology (MUST), Mirpur, Pakistan
| | - Faiza Yaqub
- Center of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Sheikh Riazuddin
- Jinnah Burn and Reconstructive Surgery Center, Allama Iqbal Medical College (AIMC), Lahore, Punjab, Pakistan
| |
Collapse
|
28
|
Zughaibi TA, Jabir NR, Khan AU, Khan MS, Tabrez S. Screening of Cu 4 O 3 NPs efficacy and its anticancer potential against cervical cancer. Cell Biochem Funct 2023; 41:1174-1187. [PMID: 37691077 DOI: 10.1002/cbf.3850] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/31/2023] [Accepted: 08/26/2023] [Indexed: 09/12/2023]
Abstract
Cu4 O3 is the least explored copper oxide, and its nanoformulation is anticipated to have important therapeutic potential especially against cancer. The current study aimed to biosynthesize Cu4 O3 nanoparticles (NPs) using an aqueous extract of pumpkin seeds and evaluate its antiproliferative efficacy against cervical cells after screening on different cancer cell lines. The obtained NPs were characterized by different spectroscopic analyses, such as UV-vis, thermogravimetric, energy dispersive X-ray, and Fourier-transform infrared spectroscopy (FTIR). In addition, high-resolution transmission electron microscopes (HR-TEM) were used to observe the morphology of the biosynthesized NPs. The UV-vis spectra showed a peak at around 332 nm, confirming the formation of Cu4 O3 NPs. Moreover, FTIR and TAG analyses identified the presence of various bioactive phytoconstituents that might have worked as capping and stabilization agents and comparative stable NPs at very high temperatures, respectively. The HR-TEM data showed the spherical shape of Cu4 O3 NPs in the range of 100 nm. The Cu4 O3 NPs was screened on three different cancer cell lines viz., Hela, MDA-MB-231, and HCT-116 using cytotoxicity (MTT) reduction assay. In addition, Vero was taken as a normal epithelial (control) cell. The high responsive cell line in terms of least IC50 was further assessed for its anticancer potential using a battery of biological tests, including morphological alterations, induction of apoptosis/ROS generation, regulation of mitochondrial membrane potential (MMP), and suppression of cell adhesion/migration. Vero cells (control) showed a slight decline in % cell viability even at the highest tested Cu4 O3 NPs concentration. However, all the studied cancer cells viz., MDA-MB-231, HCT 116, and HeLa cells showed a dose-dependent decline in cell viability after the treatment with Cu4 O3 NPs with a calculated IC50 value of 10, 11, and 7.2 µg/mL, respectively. Based on the above data, Hela cells were chosen for further studies, that showed induction of apoptosis from 3.5 to 9-folds by three different staining techniques acridine orange/ethidium bromide (AO/EB), 4',6-diamidino-2-phenylindole (DAPI), and propidium iodide (PI). The enhanced production of reactive oxygen species (>3.5-fold), modulation in MMP, and suppression of cell adhesion/migration were observed in the cells treated with Cu4 O3 NPs. The current study obtained the significant antiproliferative potential of Cu4 O3 NPs against the cervical cancer cell line, which needs to be confirmed further in a suitable in vivo model. Based on our results, we also recommend the green-based, eco-friendly, and cost-effective alternative method for synthesizing novel nanoformulation.
Collapse
Affiliation(s)
- Torki A Zughaibi
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nasimudeen R Jabir
- Department of Biochemistry, Centre for Research and Development, PRIST University, Vallam Thanjavur, Tamil Nadu, India
| | - Azhar U Khan
- Department of Chemistry, School of Life and Basic Sciences, Siilas Campus, Jaipur National University, Jaipur, Rajasthan, India
| | - Mohd Shahnawaz Khan
- Protein Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
29
|
Kanwar A, Virmani M, Lal S, Chaudhary K, Kumar S, Magotra A, Pandey AK. Silver nanoparticle as an alternate to antibiotics in cattle semen during cryopreservation. Anim Reprod 2023; 20:e20220030. [PMID: 38026002 PMCID: PMC10681137 DOI: 10.1590/1984-3143-ar2022-0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 12/14/2022] [Indexed: 12/01/2023] Open
Abstract
The proposed study was to determine if the silver nanoparticles can be used as potential antimicrobial agents and can replace the use of conventional antibiotics in semen without affecting the motility and fertility of semen. The silver nanoparticles prepared by chemical reduction method were confirmed by determination of the wavelength of surface plasmon resonance peak and further characterized using Zetasizer by determining their size, polydispersity index, and zeta potential. The nanoparticles were assessed for antibacterial activity and their concentration was optimized for use in semen extender for cryopreservation. Cryopreserved semen was further evaluated for seminal parameters, antioxidant parameter, and microbial load. Prepared silver NPs showed a plasmon resonance peak at 417 nm wavelength. NPs were found to possess antibacterial activity and were supplemented in semen extender @ 125 and 250 µg/ml for semen cryopreservation. There was a significant increase in pre and post-freezing motility and other seminal parameters. The microbial load of frozen-thawed semen of control and supplemented groups were well within the permissible limits. Lipid peroxidation levels were reduced in NPs supplemented groups, and reactive oxygen species (ROS) levels were significantly reduced in semen supplemented with 125 µg/ml NPs. Thus it can be conclude that silver NPs can be successfully used as a substitute for antibiotics in cattle bull semen cryopreservation with good antimicrobial activity and no adverse effects on sperm characteristics.
Collapse
Affiliation(s)
- Arushi Kanwar
- Department of Veterinary Physiology and Biochemistry, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Meenakshi Virmani
- Department of Veterinary Physiology and Biochemistry, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Sant Lal
- Division of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, India
| | - Kartik Chaudhary
- Forest Department-Wildlife Wing, Paonta Sahib, Himachal Pradesh, India
| | - Sandeep Kumar
- Department of Veterinary Gynaecology and Obstetrics, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Ankit Magotra
- Department of Animal Genetics and Breeding, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Anand Kumar Pandey
- Department of Veterinary Gynaecology and Obstetrics, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| |
Collapse
|
30
|
Jalil PJ, Shnawa BH, Hamad SM, Hamad BS, Ahmed MH. The efficiency of fabricated Ag/ZnO nanocomposite using Ruta chalepensis L. leaf extract as a potent protoscolicidal and anti-hydatid cysts agent. J Biomater Appl 2023; 38:629-645. [PMID: 37844268 DOI: 10.1177/08853282231207236] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
BACKGROUND As a consequence of their eco-friendliness, simplicity and non-toxicity, the fabrication of metal and metal oxide nanoparticles using greener chemistry has been a highly attractive research area over the last decade. AIM In this study focused on the fabrication of silver-Zinc oxide nanocomposite (Ag-ZnO NCs) using Ruta chalepensis leaf extract and evaluating its potential biological activities, against Echinococcus granulosus in an in vitro and in vivo model using BALB/c mice. METHODS In this study, the synthesis of Ag-ZnO NCs was accomplished using local R. chalepensis leaf extracts. The synthesized nanocomposites were identified using UV-Vis, SEM-EDX, XRD, and FTIR. For a short-term assessment of acute toxicity, BALB/c mice were given the prepared NCs orally. Dual sets of mice were also intraperitoneally injected with protoscoleces for secondary echinococcosis infection. Furthermore, a blood compatibility test was carried out on the nanocomposites. RESULTS The synthesized Ag-ZnO NCs presented a surface plasmon peak at 329 and 422 nm. The XRD, SEM, and EDX confirmed the purity of the Ag-ZnO NCs. The FTIR spectra indicated the formation of Ag-ZnO NCs. Compared to the untreated infected mice, the treated-infected animals displayed an alteration in the appearance of the hepatic hydatid cysts from hyaline to whitish cloudy with a rough surface appearance. Lysis of RBCs at various doses of Ag-ZnONCs was significantly less than the positive contro,. CONCLUSION These findings revealed that the Ag-ZnO NCs didn't cause any adverse symptoms and no mortality was observed in all administered groups of mice. The obtained outcomes confirmed that concentrations of up to 40 μg/mL of the bio-fabricated Ag-ZnONCs induced no notable harm to the red blood cells.
Collapse
Affiliation(s)
- Parwin J Jalil
- Department of Biology, Faculty of Science, Soran University, Soran, Iraq
- Scientific Research Center, Soran University, Soran, Iraq
| | - Bushra H Shnawa
- Department of Biology, Faculty of Science, Soran University, Soran, Iraq
| | - Samir M Hamad
- Scientific Research Center, Soran University, Soran, Iraq
| | - Bnar Shahab Hamad
- Department of Biology, Faculty of Science, Soran University, Soran, Iraq
| | - Mukhtar H Ahmed
- SISAF Drug Delivery Nanotechnology, Ulster University, Belfast, UK
| |
Collapse
|
31
|
Lopez-Ayuso CA, Garcia-Contreras R, Manisekaran R, Figueroa M, Arenas-Arrocena MC, Hernandez-Padron G, Pozos-Guillén A, Acosta-Torres LS. Evaluation of the biological responses of silver nanoparticles synthesized using Pelargonium x hortorum extract. RSC Adv 2023; 13:29784-29800. [PMID: 37829709 PMCID: PMC10565737 DOI: 10.1039/d3ra00201b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023] Open
Abstract
Silver nanoparticles (AgNPs) are one of the widely studied nanomaterials for diverse biomedical applications, in particular, as antimicrobial agents to kill bacteria, fungi, and viruses. In this report, AgNPs were synthesized using a geranium (Pelargonium x hortorum) leaves extract and tested for their antimicrobial and cytotoxic activity and reactive oxygen species (ROS) production. Using green biosynthesis, the leaves extract was employed as a reducing and stabilizing agent. Synthesis parameters like reaction time and precursor (silver nitrate AgNO3) volume final were modified, and the products were tested against Streptococcus mutans. For the first time, the metabolomic analysis of extract, we have identified more than 50 metabolites. The UV-Vis analysis showed a peak ranging from 410-430 nm, and TEM confirmed their nearly spherical morphology for all NPs. The antimicrobial activity of the NPs revealed a minimum inhibitory concentration (MIC) of 10 μg mL-1. Concerning cytotoxicity, a dose-time-dependent effect was observed with a 50% cellular cytotoxicity concentration (CC50) of 4.51 μg mL-1 at 24 h. Interestingly, the cell nuclei were visualized using fluorescence microscopy, and no significant changes were observed. These results suggest that synthesized spherical AgNPs are promising potential candidates for medical applications.
Collapse
Affiliation(s)
- Christian Andrea Lopez-Ayuso
- Programa de Doctorado en Ciencias Odontológicas, Universidad Nacional Autónoma de México (UNAM) Mexico
- Interdisciplinary Research Laboratory (LII), Nanostructures and Biomaterials Area, Escuela Nacional de Estudios Superiores (ENES) Unidad León, Universidad Nacional Autónoma de México Predio el Saucillo y el Potrero, Comunidad de los Tepetates 37684 León Mexico
| | - Rene Garcia-Contreras
- Interdisciplinary Research Laboratory (LII), Nanostructures and Biomaterials Area, Escuela Nacional de Estudios Superiores (ENES) Unidad León, Universidad Nacional Autónoma de México Predio el Saucillo y el Potrero, Comunidad de los Tepetates 37684 León Mexico
| | - Ravichandran Manisekaran
- Interdisciplinary Research Laboratory (LII), Nanostructures and Biomaterials Area, Escuela Nacional de Estudios Superiores (ENES) Unidad León, Universidad Nacional Autónoma de México Predio el Saucillo y el Potrero, Comunidad de los Tepetates 37684 León Mexico
| | | | - Ma Concepción Arenas-Arrocena
- Interdisciplinary Research Laboratory (LII), Nanostructures and Biomaterials Area, Escuela Nacional de Estudios Superiores (ENES) Unidad León, Universidad Nacional Autónoma de México Predio el Saucillo y el Potrero, Comunidad de los Tepetates 37684 León Mexico
| | - Genoveva Hernandez-Padron
- Centro de Física Aplicada y Tecnología Avanzada (CFATA), Departamento de Nanotecnología, Universidad Nacional Autónoma de México Campus Juriquilla Juriquilla 76230 Mexico
| | - Amaury Pozos-Guillén
- Basic Science Laboratory, Faculty of Stomatology, San Luis Potosí University Av. Dr. Manuel Nava #2, Zona Universitaria 78290 San Luis Potosí SLP Mexico
| | - Laura Susana Acosta-Torres
- Interdisciplinary Research Laboratory (LII), Nanostructures and Biomaterials Area, Escuela Nacional de Estudios Superiores (ENES) Unidad León, Universidad Nacional Autónoma de México Predio el Saucillo y el Potrero, Comunidad de los Tepetates 37684 León Mexico
| |
Collapse
|
32
|
Ghavam M. Antibacterial potential of biosynthesized silver nanoparticles using Nepeta sessilifolia Bunge and Salvia hydrangea DC. ex Benth. extracts from the natural habitats of Iran's Rangelands. BMC Complement Med Ther 2023; 23:299. [PMID: 37620931 PMCID: PMC10463634 DOI: 10.1186/s12906-023-04101-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/21/2023] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND Nowadays, the use of herbal extracts for the production of nanoparticles has attracted a lot of attention due to the fast reaction, economy, and compatibility with the environment. The aim of the present study is the biosynthesis of silver nanoparticles from the extracts of Nepeta sessilifolia Bunge and Salvia hydrangea DC. ex Benth. and their antibacterial activity was measured. METHODS For this purpose, the flowering branch of N. sessilifolia and the flower of S. hydrangea were randomly collected from three places, respectively, from the rangelands of Aqdash Mountain and Biabe in Isfahan province, Iran in May 2021. After extracting aqueous extracts by hot method, silver nanoparticles were synthesized by the biological method. Green synthesized silver nanoparticles were analyzed by UV-Vis spectroscopy, XRD, FTIR, and FESEM-EDAX. The antibacterial effect was evaluated by diffusion method in agar and determination of minimum growth inhibitory and lethal concentration (MIC and MBC) by dilution method in liquid culture medium. RESULTS Based on the results of UV-Vis spectroscopy, silver nanoparticles synthesized from N. sessilifolia and S. hydrangea had distinct absorption peaks at wavelengths of 407 to 424 nm and 414 to 415 nm, respectively. The crystalline nature of these synthetic silver nanoparticles was confirmed by XRD. FESEM analysis showed that the size of biosynthesized silver nanoparticles from N. sessilifolia and S. hydrangea extracts were 10-50 nm and 10-80 nm, respectively, and were cubic. The results of diffusion in agar showed that the largest diameter of the growth inhibition zone belonging to the synthetic silver nanoparticles from both extracts of N. sessilifolia (~ 26.00 mm) and S. hydrangea (~ 23.50 mm) was against Gram-positive bacteria Staphylococcus aureus. The most vigorous killing activity by synthetic silver nanoparticles from N. sessilifolia extract was against Klebsiella pneumoniae with a value of 250 μg/mL, two times stronger than rifampin. CONCLUSION Therefore, the studied extracts can be suitable options for fast and safe green synthesis of silver nanoparticles effective against some bacterial strains. These synthetic silver nanoparticles can be used as possible options and have strong potential for the production of natural antibiotics.
Collapse
Affiliation(s)
- Mansureh Ghavam
- Department of Nature Engineering, Faculty of Natural Resources and Earth Sciences, University of Kashan, Kashan, Iran.
| |
Collapse
|
33
|
Ajaykumar AP, Sabira O, Sebastian M, Varma SR, Roy KB, Binitha VS, Rasheed VA, Jayaraj KN, Vignesh AR. A novel approach for the biosynthesis of silver nanoparticles using the defensive gland extracts of the beetle, Luprops tristis Fabricius. Sci Rep 2023; 13:10186. [PMID: 37349362 PMCID: PMC10287683 DOI: 10.1038/s41598-023-37175-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/17/2023] [Indexed: 06/24/2023] Open
Abstract
Discovering novel natural resources for the biological synthesis of metal nanoparticles is one of the two key challenges facing by the field of nanoparticle synthesis. The second challenge is a lack of information on the chemical components needed for the biological synthesis and the chemical mechanism involved in the metal nanoparticles synthesis. In the current study, microwave-assisted silver nanoparticle (AgNP) synthesis employing the defensive gland extract of Mupli beetle, Luprops tristis Fabricius (Order: Coleoptera; Family: Tenebrionidae), addresses these two challenges. This study was conducted without killing the experimental insect. Earlier studies in our laboratory showed the presence of the phenolic compounds, 2,3-dimethyl-1,4-benzoquinone, 1,3-dihydroxy-2-methylbenzene, and 2,5-dimethylhydroquinone in the defensive gland extract of L. tristis. The results of the current study show that the phenolic compounds in the defensive gland extract of the beetle has the ability to reduce silver ions into AgNPs and also acts as a good capping and stabilizing agent. A possible mechanism for the reduction of silver nitrate (AgNO3) into AgNPs is suggested. The synthesized AgNPs were characterized by Ultraviolet-Visible (UV-Vis) spectroscopy, Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy energy-dispersive X-ray (SEM-EDX) analysis and high-resolution transmission electron microscopic (HR-TEM) techniques. The stability of biologically synthesized nanoparticles was studied by zeta potential analysis. The TEM analysis confirmed that AgNPs are well dispersed and almost round shaped. The average size of nanoparticle ranges from 10 to 20 nm. EDX analysis showed that silver is the prominent metal present in the nanomaterial solution. The AgNPs synthesized have antibacterial property against both Staphylococcus aureus and Escherichia coli. Radical scavenging (DPPH) assay was used to determine the antioxidant activity of the AgNPs. AgNPs exhibited anticancer activity in a cytotoxicity experiment against Dalton's lymphoma ascites (DLA) cell line.
Collapse
Affiliation(s)
- Anthyalam Parambil Ajaykumar
- Division of Bio-Nanomaterial, Department of Zoology, Sree Neelakanta Government Sanskrit College, Pattambi, Kerala, India.
| | - Ovungal Sabira
- Division of Bio-Nanomaterial, Department of Zoology, Sree Neelakanta Government Sanskrit College, Pattambi, Kerala, India
| | - Merin Sebastian
- Division of Bio-Nanomaterial, Department of Zoology, Sree Neelakanta Government Sanskrit College, Pattambi, Kerala, India
| | - Sudhir Rama Varma
- Clinical Sciences Department, Centre for Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Kanakkassery Balan Roy
- Division of Bio-Nanomaterial, Department of Zoology, Sree Neelakanta Government Sanskrit College, Pattambi, Kerala, India
- Department of Chemistry, Sree Neelakanta Government Sanskrit College, Pattambi, Kerala, India
| | | | - Vazhanthodi Abdul Rasheed
- Division of Bio-Nanomaterial, Department of Zoology, Sree Neelakanta Government Sanskrit College, Pattambi, Kerala, India
| | - Kodangattil Narayanan Jayaraj
- Basic Sciences Department, Centre for Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates.
| | - Attuvalappil Ravidas Vignesh
- Division of Bio-Nanomaterial, Department of Zoology, Sree Neelakanta Government Sanskrit College, Pattambi, Kerala, India
| |
Collapse
|
34
|
Kashyap BK, Singh VV, Solanki MK, Kumar A, Ruokolainen J, Kesari KK. Smart Nanomaterials in Cancer Theranostics: Challenges and Opportunities. ACS OMEGA 2023; 8:14290-14320. [PMID: 37125102 PMCID: PMC10134471 DOI: 10.1021/acsomega.2c07840] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/20/2023] [Indexed: 05/03/2023]
Abstract
Cancer is ranked as the second leading cause of death globally. Traditional cancer therapies including chemotherapy are flawed, with off-target and on-target toxicities on the normal cells, requiring newer strategies to improve cell selective targeting. The application of nanomaterial has been extensively studied and explored as chemical biology tools in cancer theranostics. It shows greater applications toward stability, biocompatibility, and increased cell permeability, resulting in precise targeting, and mitigating the shortcomings of traditional cancer therapies. The nanoplatform offers an exciting opportunity to gain targeting strategies and multifunctionality. The advent of nanotechnology, in particular the development of smart nanomaterials, has transformed cancer diagnosis and treatment. The large surface area of nanoparticles is enough to encapsulate many molecules and the ability to functionalize with various biosubstrates such as DNA, RNA, aptamers, and antibodies, which helps in theranostic action. Comparatively, biologically derived nanomaterials perceive advantages over the nanomaterials produced by conventional methods in terms of economy, ease of production, and reduced toxicity. The present review summarizes various techniques in cancer theranostics and emphasizes the applications of smart nanomaterials (such as organic nanoparticles (NPs), inorganic NPs, and carbon-based NPs). We also critically discussed the advantages and challenges impeding their translation in cancer treatment and diagnostic applications. This review concludes that the use of smart nanomaterials could significantly improve cancer theranostics and will facilitate new dimensions for tumor detection and therapy.
Collapse
Affiliation(s)
- Brijendra Kumar Kashyap
- Department of Biotechnology Engineering, Institute of Engineering and Technology, Bundelkhand University, Jhansi 284128, Uttar Pradesh, India
| | - Virendra Vikram Singh
- Defence Research and Development Establishment, DRDO, Gwalior 474002, Madhya Pradesh, India
| | - Manoj Kumar Solanki
- Faculty of Natural Sciences, Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland
| | - Anil Kumar
- Department of Life Sciences, School of Natural Sciences, Central University of Jharkhand, Cheri-Manatu, Karmre, Kanke 835222, Ranchi, India
| | - Janne Ruokolainen
- Department of Applied Physics, School of Science, Aalto University, 02150 Espoo, Finland
| | - Kavindra Kumar Kesari
- Department of Applied Physics, School of Science, Aalto University, 02150 Espoo, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Vikkinkaari 1, 00100 Helsinki, Finland
| |
Collapse
|
35
|
Mahalingam S, Govindaraji PK, Solomon VG, Kesavan H, Neelan YD, Bakthavatchalam S, Kim J, Bakthavatchalam P. Biogenic Synthesis and Characterization of Silver Nanoparticles: Evaluation of Their Larvicidal, Antibacterial, and Cytotoxic Activities. ACS OMEGA 2023; 8:11923-11930. [PMID: 37033866 PMCID: PMC10077534 DOI: 10.1021/acsomega.2c07531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
To explore the larvicidal activity of the silver nanoparticles (AgNPs) synthesized using the ethanolic Catharanthus roseus flower extract (CRE) against the larvae of Aedes aegypti (A. aegypti), AgNPs were synthesized by an eco-friendly method and characterized by Ultraviolet-Visible (UV-Vis) spectroscopy, Fourier Transform Infrared spectroscopy (FTIR), X-Ray Diffraction (XRD), Particle Size Analysis, Transmission Electron Microscopy (TEM), and Energy-Dispersive X-Ray spectrometry (EDX) analysis. The resultant AgNPs showed a spherically well-defined, highly stable, and monodispersed shape with an average particle size ranging from 15 to 25 nm. The absorbance of the AgNPs was measured by using a UV-Vis spectrophotometer at a wavelength of 416 nm. The presence and binding of the phenolic functional group with the AgNPs were confirmed using FTIR analysis. Particle size analysis revealed an average particle diameter of 90 nm with 80 % distribution. XRD analysis revealed the highly crystalline nature of the CRE-AgNPs. The LC50 and LC90 values of CRE-AgNPs and the extract were calculated. The mortality percentage of the extract and synthesized CRE-AgNPs was observed after 24 h. The maximum larvicidal activity with 100 % mortality of A. aegypti was observed in AgNPs synthesized using ethanolic CRE. The LC50 and LC90 values are 8.963 and 20.515 ppm for CRE-AgNPs against A. aegypti larvae, respectively. The CRE-AgNPs revealed superior antibacterial activity against human pathogenic bacteria; the zone of inhibition (ZOI) was measured for all of the pathogens, and the results revealed that different concentrations of CRE-AgNPs showed a remarkable ZOI of about (a) 10-14 mm for Salmonella typhimurium, (b) 6-11 mm for Bacillus subtilis, (c) 11-14 mm for Enterococcus faecalis, and (d) 9-10 mm for Shigella boydii. The maximum ZOI was observed in E. faecalis. Impeccably, the cytotoxicity of CRE-AgNPs at 250 μg/mL is 82% against the HaCaT cell lines. The synthesized CRE-AgNPs showed maximum effectiveness of paradoxical activity on mosquito larvae.
Collapse
Affiliation(s)
- Shanmugam Mahalingam
- Department
of Materials System Engineering, Pukyong
National University, Busan 48513, Republic
of Korea
| | - Praveen Kumar Govindaraji
- Department
of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Ramapuram Campus, Chennai 600089, India
| | - Vasthi Gnanarani Solomon
- Department
of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Ramapuram Campus, Chennai 600089, India
| | - Hema Kesavan
- Department
of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Ramapuram Campus, Chennai 600089, India
| | - Yalini Devi Neelan
- Department
of Materials Science and Engineering, Chungnam
National University, Daejeon 34134, Republic
of Korea
| | - Senthil Bakthavatchalam
- Department
of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Ramapuram Campus, Chennai 600089, India
| | - Junghwan Kim
- Department
of Materials System Engineering, Pukyong
National University, Busan 48513, Republic
of Korea
| | | |
Collapse
|
36
|
Green Synthesis of Silver Nanoparticles Using the Leaf Extract of the Medicinal Plant, Uvaria narum and Its Antibacterial, Antiangiogenic, Anticancer and Catalytic Properties. Antibiotics (Basel) 2023; 12:antibiotics12030564. [PMID: 36978431 PMCID: PMC10044571 DOI: 10.3390/antibiotics12030564] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/28/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
Silver nanoparticles (AgNPs) made by green synthesis offer a variety of biochemical properties and are an excellent alternative to traditional medications due to their low cost. In the current study, we synthesised AgNPs from the leaf extract of the medicinal plant Uvaria narum, commonly called narumpanal. The nanoparticles were characterised by ultraviolet-visible (UV-Vis) spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). SEM analysis showed AgNPs are highly crystalline and spherical with an average diameter of 7.13 nm. The outstanding catalytic activity of AgNPs was demonstrated by employing the reduction of 4-nitrophenol to 4-aminophenol. The AgNPs showed antiangiogenic activity in the chick chorioallantoic membrane (CAM) assay. AgNPs demonstrated anticancer activity against Dalton’s lymphoma ascites cells (DLA cells) in trypan blue assay and cytotoxicity against three fish cell lines: Oreochromis niloticus liver (onlL; National Repository of Fish Cell Lines, India (NRFC) Accession number—NRFC052) cells, Cyprinus carpio koi fin (CCKF; NRFC Accession number—NRFC007) cells and Cyprinus carpio gill (CyCKG; NRFC Accession number—NRFC064). Furthermore, the AgNPs demonstrated their ability to inhibit pathogenic microorganisms, Staphylococcus aureus, and Escherichia coli. The results from the study displayed green synthesised AgNPs exhibit antiangiogenic activity, cytotoxicity, antimicrobial and catalytic properties, which are crucial characteristics of a molecule with excellent clinical applications.
Collapse
|
37
|
Das BK, Ghosh S, Gomes A, De UC. Synthesis of silver nanoparticles using aqueous leaf extract of Premna esculenta and in vivo evaluation of its hepatoprotective activity in Swiss albino male mice. INORG NANO-MET CHEM 2023. [DOI: 10.1080/24701556.2023.2181821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Affiliation(s)
- Bijoy Krishna Das
- Department of Chemistry, Tripura University, Suryamaninagar, India
- Department of Chemistry, Iswar Chandra Vidyasagar College, Belonia, India
| | - Sourav Ghosh
- Department of Physiology, University of Calcutta, Kolkata, India
| | - Antony Gomes
- Department of Physiology, University of Calcutta, Kolkata, India
| | - Utpal Chandra De
- Department of Chemistry, Tripura University, Suryamaninagar, India
| |
Collapse
|
38
|
Anigol LB, Sajjan VP, Gurubasavaraj PM, Ganachari SV, Patil D. Study on the effect of pH on the biosynthesis of silver nanoparticles using Capparis moonii fruit extract: their applications in anticancer activity, biocompatibility and photocatalytic degradation. CHEMICAL PAPERS 2023. [DOI: 10.1007/s11696-023-02707-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
39
|
Oves M, Rauf MA, Qari HA. Therapeutic Applications of Biogenic Silver Nanomaterial Synthesized from the Paper Flower of Bougainvillea glabra (Miami, Pink). NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13030615. [PMID: 36770576 PMCID: PMC9920917 DOI: 10.3390/nano13030615] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/30/2023] [Accepted: 01/30/2023] [Indexed: 05/29/2023]
Abstract
In this research, Bougainvillea glabra paper flower extract was used to quickly synthesize biogenic silver nanoparticles (BAgNPs) utilizing green chemistry. Using the flower extract as a biological reducing agent, silver nanoparticles were generated by the conversion of Ag+ cations to Ag0 ions. Data patterns obtained from physical techniques for characterizing BAgNPs, employing UV-visible, scattering electron microscope (SEM), transmission electron microscope (TEM), dynamic light scattering (DLS), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR), suggested that the nanoparticles have a spherical to oval form with size ranging from 10 to 50 nm. Spectroscopy and microscopic analysis were used to learn more about the antibacterial properties of the biologically produced BAgNPs from Bougainvillea glabra. Further, the potential mechanism of action of nanoparticles was investigated by studying their interactions in vitro with several bacterial strains and mammalian cancer cell systems. Finally, we can conclude that BAgNPs can be functionalized to dramatically inhibit bacterial growth and the growth of cancer cells in culture conditions, suggesting that biologically produced nanomaterials will provide new opportunities for a wide range of biomedical applications in the near future.
Collapse
Affiliation(s)
- Mohammad Oves
- Centre of Excellence in Environmental Studies, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| | - Mohd Ahmar Rauf
- Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Huda A. Qari
- Biological Science Department, Faculty of Science, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| |
Collapse
|
40
|
Asam Raza M, Farwa U, Waseem Mumtaz M, Kainat J, Sabir A, Al-Sehemi AG. Green synthesis of gold and silver nanoparticles as antidiabetic and anticancerous agents. GREEN CHEMISTRY LETTERS AND REVIEWS 2023; 16. [DOI: 10.1080/17518253.2023.2275666] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 10/21/2023] [Indexed: 01/05/2025]
Affiliation(s)
| | - Umme Farwa
- Department of Chemistry, University of Gujrat, Gujrat, Pakistan
| | | | - Javeria Kainat
- Department of Chemistry, University of Gujrat, Gujrat, Pakistan
| | - Areej Sabir
- Department of Chemistry, University of Gujrat, Gujrat, Pakistan
| | | |
Collapse
|
41
|
Chirumamilla P, Dharavath SB, Taduri S. Eco-friendly Green Synthesis of Silver Nanoparticles from Leaf Extract of Solanum khasianum: Optical Properties and Biological Applications. Appl Biochem Biotechnol 2023; 195:353-368. [PMID: 36083433 DOI: 10.1007/s12010-022-04156-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2022] [Indexed: 01/13/2023]
Abstract
The green synthesis of silver nanoparticles (AgNPs) was considered to be efficacious over other approaches due to their eco-friendliness, cost-effectiveness, and high stability. The biosynthesis of AgNPs was achieved by the reduction of silver nitrate using the aqueous leaf extract of Solanum khasianum. The biosynthesized AgNPs were examined by a color change and UV-Vis spectroscopy with an absorption spectrum at 440 nm. The biomolecules existing in S. khasianum leaf extract accountable for bioreduction and capping of AgNPs were analyzed by FTIR analysis and confirmed the presence of alcohols, phenols, alkanes, carboxylic acid, nitro compounds, and amines. The crystalline nature of Sk-AgNPs with face-centered cubic lattice was confirmed by X-ray diffraction (XRD) spectrum. The average crystallite size of Sk-AgNPs was computed as 15.96 nm. The lattice constant, unit cell volume, and spacing values of Sk-AgNPs were parallel to the values indexed in the Joint Committee on Powder Diffraction Standard of silver (JCPDS-04-0783). Scanning electron microscope (SEM) imaging witnessed the spherical structure of synthesized AgNPs. Energy dispersive X-ray (EDX) spectrum acknowledged the AgNPs fabrication with strong signals of silver atoms at 3 keV energy. The biofabricated Sk-AgNPs showed a photoluminescence (PL) emission spectrum of 445 nm with an excitation at 330 nm. Sk-AgNPs showed considerable DPPH radical scavenging activity (87.98%) than BHT (86.14%) and also exhibited significant antidiabetic activity compared to acarbose. Sk-AgNPs revealed antibacterial potentiality against B. sphaericus, E. coli, S. aureus, and P. fluorescens. Moreover, Sk-AgNPs showed dose-dependent cytotoxicity against MCF-7 cell line. This method of green synthesis would support the eco-friendly fabrication of AgNPs from S. khasianum leaf extract with considerable therapeutic activities.
Collapse
Affiliation(s)
- Pavani Chirumamilla
- Department of Biotechnology, Kakatiya University, Warangal, 506009, TS, India
- Department of Biotechnology, Singareni Collieries Women's College, Khammam, Telangana State, India
| | | | - Shasthree Taduri
- Department of Biotechnology, Kakatiya University, Warangal, 506009, TS, India.
| |
Collapse
|
42
|
Deng H, Wang Y, Zhou Y, Zhai D, Chen J, Hao S, Chen X. In vitro and in vivo Evaluation of Folic Acid Modified DOX-Loaded 32P-nHA Nanoparticles in Prostate Cancer Therapy. Int J Nanomedicine 2023; 18:2003-2015. [PMID: 37077940 PMCID: PMC10108875 DOI: 10.2147/ijn.s403887] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/24/2023] [Indexed: 04/21/2023] Open
Abstract
Background Prostate cancer (PCa) ranks second in the incidence of all malignancies in male worldwide. The presence of multi-organ metastases and tumor heterogeneity often leads to unsatisfactory outcomes of conventional radiotherapy treatments. This study aimed to develop a novel folate-targeted nanohydroxyapatite (nHA) coupling to deliver adriamycin (Doxorubicin, DOX), 32P, and 99mTc simultaneously for the diagnosis and treatment of prostate-specific membrane antigen (PSMA) positive prostate cancer. Methods The spherical nHA was prepared by the biomimetic method and characterized. Folic acid (FA) was coupled to nHA with polyethylene glycol (PEG), and the grafting ratio of PEG-nHA and FA-PEG-nHA was determined by the thermogravimetric analysis (TGA) method. In addition, 32P, 99mTc, and DOX were loaded on nHA by physisorption. And the labeling rate and stability of radionuclides were measured by a γ-counter. The loading and release of DOX at different pH were determined by the dialysis method. Targeting of FA-PEG-nHA loaded with 99mTc was verified by in vivo SPECT imaging. In vitro anti-tumor effect of 32P/DOX-FA-PEG-nHA was assessed with apoptosis assay. The safety of the nano-drugs was verified by histopathological analysis. Results The SEM images showed that the synthesized nHA was spherical with uniform particle size (average diameter of about 100nm). The grafting ratio is about 10% for PEG and about 20% for FA. The drug loading and the delayed release of DOX at different pH confirmed its long-term therapeutic ability. The labeling of 32P and 99mTc was stable and the labeling rate was great. SPECT showed that FA-PEG-nHA showed well in vivo tumor targeting and less damage to normal tissues. Conclusion FA-targeted nHA loaded with 32P, 99mTc, and DOX may be a new diagnostic and therapeutic strategy for targeting PSMA-positive prostate cancer tumors, which may achieve better therapeutic results while circumventing the severe toxic side effects of conventional chemotherapeutic agents.
Collapse
Affiliation(s)
- Hao Deng
- Department of Nuclear Medicine, Chongqing University Cancer Hospital, Chongqing, 400030, People’s Republic of China
| | - Yumei Wang
- Department of Nuclear Medicine, Chongqing University Cancer Hospital, Chongqing, 400030, People’s Republic of China
| | - Yue Zhou
- Department of Nuclear Medicine, Chongqing University Cancer Hospital, Chongqing, 400030, People’s Republic of China
| | - Dongliang Zhai
- Department of Nuclear Medicine, Chongqing University Cancer Hospital, Chongqing, 400030, People’s Republic of China
| | - Jie Chen
- Department of Nuclear Medicine, Chongqing University Cancer Hospital, Chongqing, 400030, People’s Republic of China
| | - Shilei Hao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, People’s Republic of China
- Shilei Hao, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, 174 Shazhengjie, Shapingba District, Chongqing, 400030, People’s Republic of China, Tel +86023-135 9463 5765, Email
| | - Xiaoliang Chen
- Department of Nuclear Medicine, Chongqing University Cancer Hospital, Chongqing, 400030, People’s Republic of China
- Correspondence: Xiaoliang Chen, Department of Nuclear Medicine, Chongqing University Cancer Hospital, No. 181 HanYu St, Shapingba District, Chongqing, 400030, People’s Republic of China, Tel/Fax +86 023-65079156, Email
| |
Collapse
|
43
|
Zhong M, Zhang R, He X, Fu Y, Cao Y, Li Y, Zhai Q. Oxidative damage induced by combined exposure of titanium dioxide nanoparticles and cypermethrin in rats for 90 days. Toxicol Ind Health 2023; 39:10-22. [PMID: 36398892 DOI: 10.1177/07482337221138949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Titanium dioxide nanoparticles (TiO2NPs) and cypermethrin (CPM) are widely used in various fields, and they can enter the environment in different ways. Combined exposure of TiO2NPs and CPM may increase the accumulation of pollutants in organisms and affect human health. This study was undertaken to evaluate the oxidative and inflammatory parameters associated with the combined exposure of TiO2NPs and CPM in rats. Twenty-four healthy male adult SD rats were randomly divided into four groups. The first group served as the control, while groups 2, 3, and 4 were treated with TiO2NPs (450 mg/m3); CPM (6.67 mg/m3) or combined exposure of TiO2NPs and CPM by inhalation for 90 days. We investigated the oxidative damage induced through combined exposure of TiO2NPs and CPM in rats by evaluating hematology of the rats and determining the blood biochemical index. Our results demonstrated that inhalation of TiO2NPs and CPM increased the levels of oxidative stress markers such as malondialdehyde and alkaline phosphatase in the serum of rats. These were accompanied by a decreased glutathione peroxidase and total superoxide dismutase levels. Furthermore, the level of glutathione peroxidase was further decreased while malondialdehyde was increased in the combined exposure of TiO2NPs and CPM. Interestingly, pathological sections showed that different degrees of tissue injury could be seen in the liver and lung tissues of each exposure group. In summary, the combined exposure of TiO2NPs and CPM can cause increased oxidative damage in rats and damage the tissue structure of the liver and lung.
Collapse
Affiliation(s)
- Mingqing Zhong
- School of Public Health, 372527Weifang Medical University, Weifang, China
| | - Ruoyu Zhang
- School of Public Health, 372527Weifang Medical University, Weifang, China
| | - Xianzhi He
- School of Public Health, 372527Weifang Medical University, Weifang, China
| | - Yu Fu
- School of Public Health, 372527Weifang Medical University, Weifang, China
| | - Yuqing Cao
- School of Public Health, 372527Weifang Medical University, Weifang, China
| | - Yuanyuan Li
- Department of Neonatology, Weifang Maternal and Child Health Hospital, Weifang, China
| | - Qingfeng Zhai
- School of Public Health, 372527Weifang Medical University, Weifang, China
| |
Collapse
|
44
|
Rahmah MI. Study the effect of graphene and silver nanoparticles on the structural, morphological, optical, and antibacterial properties of commercial titanium oxide. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
45
|
Brindhadevi K, Garalleh HAL, Alalawi A, Al-Sarayreh E, Pugazhendhi A. Carbon nanomaterials: Types, synthesis strategies and their application as drug delivery system for Cancer therapy. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
46
|
Yadav SA, Suvathika G, Alghuthaymi MA, Abd-Elsalam KA. Fungal-derived nanoparticles for the control of plant pathogens and pests. FUNGAL CELL FACTORIES FOR SUSTAINABLE NANOMATERIALS PRODUCTIONS AND AGRICULTURAL APPLICATIONS 2023:755-784. [DOI: 10.1016/b978-0-323-99922-9.00009-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
47
|
Jini D, Sharmila S, Anitha A, Pandian M, Rajapaksha RMH. In vitro and in silico studies of silver nanoparticles (AgNPs) from Allium sativum against diabetes. Sci Rep 2022; 12:22109. [PMID: 36543812 PMCID: PMC9772310 DOI: 10.1038/s41598-022-24818-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 11/21/2022] [Indexed: 12/24/2022] Open
Abstract
In the present study, the silver nanoparticles (AgNPs) were synthesized from the bulbs of Allium sativum, characterized by UV-visible spectroscopy, FT-IR, SEM, HR-TEM, EDAX analysis and investigated its action on the inhibition of starch digestion. The results proved that the biosynthesized nanoparticles were uniformly dispersed, spherical shaped with the size ranging from 10 to 30 nm. The phytochemical and FT-IR analysis showed the presence of phenols, terpenoids, and amino acids in the synthesized AgNPs. The cytotoxicity analysis revealed that the synthesized AgNPs were non-toxic to the normal cells. The synthesized AgNPs exhibited significant free radical scavenging activity. The in vitro antidiabetic activity showed that the synthesized AgNPs increased glucose utilization, decreased hepatic glucose production, inhibited the activity of starch digestive enzymes such as α-amylase and α-glucosidase, and were not involved in the stimulation of pancreatic cells for the secretion of insulin. The in silico antidiabetic activity analysis (molecular docking) also revealed that the silver atoms of the AgNPs interacted with the amino acid residues of α-amylase, α-glucosidase, and insulin. The present study proved that the AgNPs synthesized from A. sativum have prominent antidiabetic activity in terms of reducing the hyperglycemia through the increased glucose utilization, decreased hepatic glucose production, and the inhibition of α-amylase and α-glucosidase enzymes. So it can be used as a promising nanomedicine for the treatment of diabetes.
Collapse
Affiliation(s)
- D Jini
- Department of Biotechnology, Malankara Catholic College, Mariagiri, Kanyakumari, Tamil Nadu, India.
| | - S Sharmila
- Department of Chemical Engineering, Hindustan Institute of Technology and Science, Chennai, Tamil Nadu, India
| | - A Anitha
- Department of Chemical Engineering, Hindustan Institute of Technology and Science, Chennai, Tamil Nadu, India
| | - Mahalakshmi Pandian
- Center for Nanosciencesand Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - R M H Rajapaksha
- Department of Chemistry, Faculty of Science, University of Kelaniya, Kelaniya, Sri Lanka
| |
Collapse
|
48
|
Gupta P, Rai N, Verma A, Saikia D, Singh SP, Kumar R, Singh SK, Kumar D, Gautam V. Green-Based Approach to Synthesize Silver Nanoparticles Using the Fungal Endophyte Penicillium oxalicum and Their Antimicrobial, Antioxidant, and In Vitro Anticancer Potential. ACS OMEGA 2022; 7:46653-46673. [PMID: 36570288 PMCID: PMC9774420 DOI: 10.1021/acsomega.2c05605] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
A green-based approach for the synthesis of silver nanoparticles has gained tremendous attention in biomedical applications. Fungal endophytes have been recognized as a remarkable biological source for the synthesis of potential nanodrugs. The present study focuses on the fabrication of silver nanoparticles using the fungal endophyte Penicillium oxalicum (POAgNPs) associated with the leaf of the Amoora rohituka plant. Sharp UV-visible spectra at 420 nm appeared due to the surface plasmon resonance of POAgNPs and the reduction of silver salt. FT-IR analysis revealed the presence of functional groups of bioactive compounds of P. oxalicum responsible for the reduction of silver salt and validated the synthesis of POAgNPs. A high degree of crystallinity was revealed through XRD analysis, and microscopy-based characterizations such as AFM, TEM, and FESEM showed uniformly distributed, and spherically shaped nanoparticles. Furthermore, POAgNPs showed a potential inhibitory effect against bacterial and fungal strains of pathogenic nature. POAgNPs also exhibited potential antioxidant activity against the synthetically generated free radicals such as DPPH, superoxide, hydroxyl, and nitric oxide with EC50 values of 9.034 ± 0.449, 56.378 ± 1.137, 34.094 ± 1.944, and 61.219 ± 0.69 μg/mL, respectively. Moreover, POAgNPs exhibited cytotoxic potential against the breast cancer cell lines, MDA-MB-231 and MCF-7 with IC50 values of 20.080 ± 0.761 and 40.038 ± 1.022 μg/mL, respectively. POAgNPs showed anticancer potential through inhibition of wound closure and by altering the nuclear morphology of MDA-MB-231 and MCF-7 cells. Further anticancer activity revealed that POAgNPs induced apoptosis in MDA-MB-231 and MCF-7 cells by differential expression of genes related to apoptosis, tumor suppression, and cell cycle arrest and increased the level of Caspase-3. The novel study showed that P. oxalicum-mediated silver nanoparticles exhibit potential biological activity, which can be exploited as nanodrugs in clinical applications.
Collapse
Affiliation(s)
- Priyamvada Gupta
- Centre
of Experimental Medicine and Surgery, Institute
of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Nilesh Rai
- Centre
of Experimental Medicine and Surgery, Institute
of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Ashish Verma
- Centre
of Experimental Medicine and Surgery, Institute
of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Dimple Saikia
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Dharwad, Dharwad 580011, India
| | - Surya Pratap Singh
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Dharwad, Dharwad 580011, India
| | - Rajiv Kumar
- Centre
of Experimental Medicine and Surgery, Institute
of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Santosh Kumar Singh
- Centre
of Experimental Medicine and Surgery, Institute
of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Deepak Kumar
- Department
of Botany, Institute of Science, Banaras
Hindu University, Varanasi 221005, India
| | - Vibhav Gautam
- Centre
of Experimental Medicine and Surgery, Institute
of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
49
|
Green route synthesis and characterization of β-Bi2O3/SiO2 and β-Bi2O3/Bi2O2.75/SiO2 using Juglans regia L. shell aqueous extract and photocatalytic properties for the degradation of RB-5. J Anal Sci Technol 2022. [DOI: 10.1186/s40543-022-00355-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Abstract
Background
Photocatalyst oxides added with silicon improve their photocatalytic properties. In this research, nanostructured β-Bi2O3/SiO2 and β-Bi2O3/Bi2O2.75/SiO2 were obtained by means of a green method mediated by the using the aqueous extract of J. regia shell as the source of reducing biomolecules and as a natural source of plant silicon.
Method
The β-Bi2O3/SiO2 and β-Bi2O3/Bi2O2.75/SiO2 nanostructures were characterized by Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, X-ray diffraction, high-resolution transmission electron microscopy (HR-TEM), field emission scanning electron microscopy, X-ray photoelectron spectroscopy (XPS), ultraviolet–visible diffuse reflectance spectroscopy (UV–Vis DRS), and photoluminescence spectroscopy. The photocatalytic activity was measured by the degradation of Reactive Black 5 dye (RB-5).
Results
FT-IR and XPS demonstrated the presence of plant silicon in the bismuth oxide photocatalysts. HR-TEM showed that the crystal size of the as-synthesized materials is ~ 25 nm and revealed that the β-Bi2O3 synthesized with ground shell extract and heat-treated at 300 °C contains the Bi2O2.75 phase. Good photocatalytic activity was found in all the studied materials; particularly, the heat-treated nanostructures showed excellent properties resulting in 92% degradation of RB-5 under UV–Vis light after 15 min of exposure, and 98% after 180 min.
Conclusions
The findings of this research suggest that the metabolites coating the Bi2O3, which generate a large amount of hydroxyl radicals, the plant silicon content, and the crystalline defects conferred by the synthesis medium, all contribute to the improved degradation of the azo dye, providing the nanostructures with better photocatalytic activity.
Collapse
|
50
|
Das G, Shin HS, Patra JK. Comparative Bio-Potential Effects of Fresh and Boiled Mountain Vegetable (Fern) Extract Mediated Silver Nanoparticles. PLANTS (BASEL, SWITZERLAND) 2022; 11:3575. [PMID: 36559687 PMCID: PMC9786859 DOI: 10.3390/plants11243575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/01/2022] [Accepted: 12/08/2022] [Indexed: 06/01/2023]
Abstract
This current investigation was designed to synthesize Ag nanoparticles (AgNPs) using both the fresh (Fbf) and boiled (Bbf) Korean mountain vegetable fern (named Gosari) extracts and make a comparative evaluation of its multi-therapeutic potentials. The screening of phytochemicals in the fern extract was undertaken. The synthesized fern-mediated silver nanoparticles are characterized and investigated for their bio-potential like α-glucosidase inhibition, antioxidant, and cytotoxicity prospects. The obtained AgNPs were characterized by the UV-Vis Spectra, SEM, EDS, XRD, FTIR, DLS, Zeta potential analysis, etc. The synthesis of the Fbf-AgNPs was very fast and started within 1 h of the reaction whereas the synthesis of the Bbf-AgNPs synthesis was slow and it started around 18 h of incubation. The UV-Vis spectra displayed the absorption maxima of 424 nm for Fbf-AgNPs and in the case of Bbf-AgNPs, it was shown at 436 nm. The current research results demonstrated that both Fbf-AgNPs and Bbf-AgNPs displayed a strong α-glucosidase inhibition effect with more than 96% effect at 1 µg/mL concentration, but the Bbf-AgNPs displayed a slightly higher effect with IC50 value slightly lower than the Fbf-AgNPs. Both Fbf-AgNPs and Bbf-AgNPs displayed good antioxidant effects concerning the in vitro antioxidant assays. In the case of the cytotoxicity potential assay also, among both the investigated Fbf-AgNPs and Bbf-AgNPs nanoparticles, the Bbf-AgNPs showed stronger effects with lower IC50 value as compared to the Fbf-AgNPs. In conclusion, both the fern-mediated AgNPs displayed promising multi-therapeutic potential and could be beneficial in the cosmetics and pharmaceutical sectors. Though the synthesis process is rapid in Fbf-AgNPs, but it is concluded from the results of all the tested bio-potential assays, Bbf-AgNPs is slightly better than Fbf-AgNPs.
Collapse
Affiliation(s)
- Gitishree Das
- Research Institute of Integrative Life Sciences, Dongguk University-Seoul, Seoul 10326, Gyeonggi-do, Republic of Korea
| | - Han-Seung Shin
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Seoul 10326, Gyeonggi-do, Republic of Korea
| | - Jayanta Kumar Patra
- Research Institute of Integrative Life Sciences, Dongguk University-Seoul, Seoul 10326, Gyeonggi-do, Republic of Korea
| |
Collapse
|