1
|
Afshar Moghaddam N, Yekanipour Z, Akbarzadeh S, Molavi Nia S, Abarghooi Kahaki F, Kalantar MH, Gholizadeh O. Recent advances in treatment and detection of Rift Valley fever virus: a comprehensive overview. Virus Genes 2025:10.1007/s11262-025-02164-0. [PMID: 40348846 DOI: 10.1007/s11262-025-02164-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 04/28/2025] [Indexed: 05/14/2025]
Abstract
Rift Valley fever virus (RVFV) is a newly discovered arboviral pathogen that infects humans and livestock. Numerous outbreaks have occurred in Africa and the Arab Peninsula. Epizootics of RVFV are sporadic and frequently associated with ongoing floods and excessive rainfall. This leads to the development of infected Aedes mosquitoes, which then amplify transmission by other mosquito species (like Anopheles and Culex genera). In animals, it typically results in high rates of death and abortion. In humans, Rift Valley fever (RVF) manifests as clinical symptoms that may vary in intensity from minor to severe. Common symptoms include retinitis, hepatitis, delayed onset encephalitis, and hemorrhagic illness. The possibilities for containing RVFV outbreaks are limited due to the lack of authorized human vaccinations and treatments. Although molecular detection techniques are available, they can only recognize viral nucleic acids during the short viremic phase. There are currently no specific treatments for RVFV infection. Ribavirin is one of the few therapies for viral hemorrhagic fevers, but severe adverse effects restrict its use. Significant studies have been done in recent years on using Nanotechnology to diagnose and treat viruses. This review summarizes the common and recent diagnostic and therapeutic approaches for RVFV, including nanoparticles, intravenous immunoglobulin (IVIG), stem cells, vaccines, and antibody-based therapies.
Collapse
Affiliation(s)
| | - Zahra Yekanipour
- Microbiology, Department of Microbiology, Marand Branch, Islamic Azad University, Marand, Iran
| | - Sama Akbarzadeh
- Institute of Graduate Studies in Health Sciences, Istanbul University, Istanbul, Türkiye
- Department of Biophysics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Türkiye
| | - Sahar Molavi Nia
- Department of Medical Mycology, Faculty of Medical Sciences, Jundishapur University of Medical Sciences, Ahwaz, Iran
| | - Fatemeh Abarghooi Kahaki
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | |
Collapse
|
2
|
Mosidze E, Franci G, Dell'Annunziata F, Capuano N, Colella M, Salzano F, Galdiero M, Bakuridze A, Folliero V. Silver Nanoparticle-Mediated Antiviral Efficacy against Enveloped Viruses: A Comprehensive Review. GLOBAL CHALLENGES (HOBOKEN, NJ) 2025; 9:2400380. [PMID: 40352632 PMCID: PMC12065099 DOI: 10.1002/gch2.202400380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/19/2025] [Indexed: 05/14/2025]
Abstract
Viral infections continue to pose a significant challenge to global health, with increasing resistance to conventional antiviral therapies highlighting the urgent need for alternative treatment strategies. Silver nanoparticles (AgNPs) have attracted attention as broad-spectrum antiviral agents due to their unique physicochemical properties and ability to target multiple stages of viral infection. This review provides a comprehensive analysis of the antiviral mechanisms of AgNPs, highlighting their efficacy against clinically relevant enveloped viruses such as influenza, herpes simplex, hepatitis B, and coronaviruses. How key nanoparticle characteristics, including size, shape, surface functionalization, and synthesis methods, influence their antiviral performance is examined. Studies indicate that AgNPs exert their effects through direct interactions with viral particles, inhibition of viral adhesion, and entry into host cells with disruption of viral replication. Furthermore, their potential applications in therapeutic formulations, antiviral coatings, and nanomedicine-based strategies are explored. Despite their promise, challenges regarding cytotoxicity, stability, and large-scale production must be addressed to ensure their safe and effective clinical use. This review highlights the transformative potential of AgNPs in antiviral therapy and highlights the need for further investigation to facilitate their clinical translation in the fight against emerging and drug-resistant viral infections.
Collapse
Affiliation(s)
- Ekaterine Mosidze
- Department of Pharmaceutical Technology33 Vazha‐Pshavela AveTbilisi0178Georgia
| | - Gianluigi Franci
- Department of MedicineSurgery and Dentistry “Scuola Medica Salernitana”University of SalernoVia S. Allende 43Baronissi84081Italy
| | - Federica Dell'Annunziata
- Department of MedicineSurgery and Dentistry “Scuola Medica Salernitana”University of SalernoVia S. Allende 43Baronissi84081Italy
| | - Nicoletta Capuano
- Department of MedicineSurgery and Dentistry “Scuola Medica Salernitana”University of SalernoVia S. Allende 43Baronissi84081Italy
| | - Marica Colella
- Microbiology and Virology Unit, Interdisciplinary Department of MedicineUniversity of Bari “Aldo Moro”Piazza G. Cesare 11Bari70124Italy
- Department of Theoretical and Applied Sciences (DiSTA)eCampus UniversityNovedrate22060Italy
| | - Flora Salzano
- Department of MedicineSurgery and Dentistry “Scuola Medica Salernitana”University of SalernoVia S. Allende 43Baronissi84081Italy
| | - Massimiliano Galdiero
- Department of Experimental MedicineUniversity of Campania “Luigi Vanvitelli”NaplesItaly
| | - Aliosha Bakuridze
- Department of Pharmaceutical Technology33 Vazha‐Pshavela AveTbilisi0178Georgia
| | - Veronica Folliero
- Department of MedicineSurgery and Dentistry “Scuola Medica Salernitana”University of SalernoVia S. Allende 43Baronissi84081Italy
| |
Collapse
|
3
|
Pérez-Caselles C, Alburquerque N, Martín-Valmaseda M, Alfosea-Simón FJ, Faize L, Bogdanchikova N, Pestryakov A, Burgos L. Nanobiotechnology for efficient plum pox virus elimination from apricot plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 352:112358. [PMID: 39675387 DOI: 10.1016/j.plantsci.2024.112358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/13/2024] [Accepted: 12/12/2024] [Indexed: 12/17/2024]
Abstract
Metallic nanoparticles have antimicrobial, virucidal, and anticancer activities and have been widely applied in medicine. In plants, silver nanoparticles have been used as preventive treatments in the greenhouse to reduce viral titers and symptoms. This work investigates the effect of Argovit™ AgNP formulation on apricot plants infected with Plum pox virus or with Hop stunt viroid. Meristems were rescued from plants treated with different Argovit™ concentrations and two exposure times. Although viroid-free plants were not obtained, a very high efficiency in eliminating the sharka virus is reported with a maximum cleaning efficiency (75 %) after 8 weeks of exposure at 75 mg L-1 AgNP. To the best of our knowledge, this is the first time that silver nanoparticles application is used, combined with meristem culture, to produce virus-free plants and opens a new path to the elimination of viruses from plants.
Collapse
Affiliation(s)
- C Pérez-Caselles
- Group of Fruit Tree Biotechnology, Department of Plant Breeding, CEBAS-CSIC, Campus de Espinardo, Edif. 25, Murcia 30100, Spain.
| | - N Alburquerque
- Group of Fruit Tree Biotechnology, Department of Plant Breeding, CEBAS-CSIC, Campus de Espinardo, Edif. 25, Murcia 30100, Spain.
| | - M Martín-Valmaseda
- Group of Fruit Tree Biotechnology, Department of Plant Breeding, CEBAS-CSIC, Campus de Espinardo, Edif. 25, Murcia 30100, Spain.
| | - F J Alfosea-Simón
- Group of Fruit Tree Biotechnology, Department of Plant Breeding, CEBAS-CSIC, Campus de Espinardo, Edif. 25, Murcia 30100, Spain.
| | - L Faize
- Group of Fruit Tree Biotechnology, Department of Plant Breeding, CEBAS-CSIC, Campus de Espinardo, Edif. 25, Murcia 30100, Spain.
| | - N Bogdanchikova
- Center for Nanoscience and Nanotechnology (CNyN), Campus Ensenada, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico.
| | - A Pestryakov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russia.
| | - L Burgos
- Group of Fruit Tree Biotechnology, Department of Plant Breeding, CEBAS-CSIC, Campus de Espinardo, Edif. 25, Murcia 30100, Spain.
| |
Collapse
|
4
|
Liaqat I, Andleeb S, Naseem S, Ali A, Latif AA, Aftab MN, Ali S, Bibi A, Mubin M, Khalid A, Afzaal M, Yang GJ, Tufail S, Ahmad H. Exploring In Vitro Antibiofilm Potential and In Vivo Toxicity Assessment of Gold Nanoparticles. J Basic Microbiol 2025; 65:e2400329. [PMID: 39463071 DOI: 10.1002/jobm.202400329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/18/2024] [Accepted: 10/09/2024] [Indexed: 10/29/2024]
Abstract
In this study, biogenically synthesized AuNPs were first characterized via UV visible spectroscopy, SEM, XRD, and FTIR followed by toxicity evaluation using mice model. UV-visible spectroscopy of biogenic AuNPs showed peaks at 540-549 nm, while FTIR spectrum showed various functional groups involving O-H, Amide I, Amide II, O-H, C-H groups, and so on. SEM showed the size variation from 30 to 60 nm. Antibacterial potential against pathogenic isolates showed bigger ZOI (31.0 mm) against Pseudomonas aeruginosa AuNPs. Antibiofilm activity showing up to 100% inhibition at 90 µg mL-1 concentration of AuNPs. Toxicity evaluation showed LD50 as 70 mg kg-1. Exposure to AuNPs caused significant changes in the levels of serum AST (p < 0.05) at 100-150 mg kg-1 of AuNPs exposure. Histopathology of male albino mice kidney and liver revealed that mice exposed to maximum concentration of AuNPs showed necrosis, cell distortion, and hepatocytes detachment. Present study showed that biologically synthesized AuNPs possess effective antimicrobial and biofilm inhibitory potential. AuNPs strong bactericidal effect even at lower concentration suggest that NPs could have excellent potential for combating pathogens. In conclusion, nanotechnology may revolutionize human life and medical industry by developing innovative drugs with the potential to treat diseases in shorter and noninvasive time period. Hence, in vitro biosafety and experimental observations followed by in vivo outcomes are crucial in shifting the novel therapeutics into medical practice thus leading further into their future development.
Collapse
Affiliation(s)
- Iram Liaqat
- Microbiology Lab, Department of Zoology, Government College University, Lahore, Pakistan
| | - Saiqa Andleeb
- Department of Zoology, University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
| | - Sajida Naseem
- Department of Zoology, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Abid Ali
- Department of Zoology, Abdul Wali Khan University, Mardan, Khyber Pakhtonkhaw, Pakistan
| | - Asma Abdul Latif
- Department of Zoology, Lahore College for Women University, Lahore, Pakistan
| | - Muhamad Nauman Aftab
- Ikram ul Haq Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Sikander Ali
- Ikram ul Haq Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Asia Bibi
- Department of Zoology, The Women University, Multan, Multan, Pakistan
| | - Muhammad Mubin
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| | - Awais Khalid
- Department of Physics, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz, University, Al-Kharj, Saudi Arabia
| | - Muhammad Afzaal
- Sustainable Development Study Centre, Government College University, Lahore, Pakistan
| | - Guo-Jing Yang
- School of Public Health, Hainan Medical University, Haikou, China
| | - Shahzad Tufail
- Microbiology Lab, Department of Zoology, Government College University, Lahore, Pakistan
| | - Haroon Ahmad
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| |
Collapse
|
5
|
Saleh M, El-Moghazy A, Elgohary AH, Saber WIA, Helmy YA. Revolutionizing Nanovaccines: A New Era of Immunization. Vaccines (Basel) 2025; 13:126. [PMID: 40006673 PMCID: PMC11860605 DOI: 10.3390/vaccines13020126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/13/2025] [Accepted: 01/17/2025] [Indexed: 02/27/2025] Open
Abstract
Infectious diseases continue to pose a significant global health threat. To combat these challenges, innovative vaccine technologies are urgently needed. Nanoparticles (NPs) have unique properties and have emerged as a promising platform for developing next-generation vaccines. Nanoparticles are revolutionizing the field of vaccine development, offering a new era of immunization. They allow the creation of more effective, stable, and easily deliverable vaccines. Various types of NPs, including lipid, polymeric, metal, and virus-like particles, can be employed to encapsulate and deliver vaccine components, such as mRNA or protein antigens. These NPs protect antigens from degradation, target them to specific immune cells, and enhance antigen presentation, leading to robust and durable immune responses. Additionally, NPs can simultaneously deliver multiple vaccine components, including antigens, and adjuvants, in a single formulation, simplifying vaccine production and administration. Nanovaccines offer a promising approach to combat food- and water-borne bacterial diseases, surpassing traditional formulations. Further research is needed to address the global burden of these infections. This review highlights the potential of NPs to revolutionize vaccine platforms. We explore their mechanisms of action, current applications, and emerging trends. The review discusses the limitations of nanovaccines, innovative solutions and the potential role of artificial intelligence in developing more effective and accessible nanovaccines to combat infectious diseases.
Collapse
Affiliation(s)
- Mohammed Saleh
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food, and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Ahmed El-Moghazy
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, USA
| | - Adel H. Elgohary
- Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - WesamEldin I. A. Saber
- Microbial Activity Unit, Department of Microbiology, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza 12619, Egypt
| | - Yosra A. Helmy
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food, and Environment, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
6
|
Frippiat T, Art T, Delguste C. Silver Nanoparticles as Antimicrobial Agents in Veterinary Medicine: Current Applications and Future Perspectives. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:202. [PMID: 39940178 PMCID: PMC11820087 DOI: 10.3390/nano15030202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/23/2025] [Accepted: 01/26/2025] [Indexed: 02/14/2025]
Abstract
Silver nanoparticles (AgNPs) have gained significant attention in veterinary medicine due to their antimicrobial properties and potential therapeutic applications. Silver has long been recognized for its ability to combat a wide range of pathogens, and when engineered at the nanoscale, silver's surface area and reactivity are greatly enhanced, making it highly effective against bacteria, viruses, and fungi. This narrative review aimed to summarize the evidence on the antimicrobial properties of AgNPs and their current and potential clinical applications in veterinary medicine. The antimicrobial action of AgNPs involves several mechanisms, including, among others, the release of silver ions, disruption of cell membranes and envelopes, induction of oxidative stress, inhibition of pathogens' replication, and DNA damage. Their size, shape, surface charge, and concentration influence their efficacy against bacteria, viruses, and fungi. As a result, the use of AgNPs has been explored in animals for infection prevention and treatment in some areas, such as wound care, coating of surgical implants, animal reproduction, and airway infections. They have also shown promise in preventing biofilm formation, a major challenge in treating chronic bacterial infections. Additionally, AgNPs have been studied for their potential use in animal feed as a supplement to enhance animal health and growth. Research suggested that AgNPs could stimulate immune responses and improve the gut microbiota of livestock, potentially reducing the need for antibiotics in animal husbandry. Despite their promising applications, further research is necessary to fully understand the safety, efficacy, and long-term effects of AgNPs on animals, humans, and the environment.
Collapse
Affiliation(s)
- Thibault Frippiat
- Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
- Sportpaardenarts—Equine Sports Medicine, 1250AD Laren, The Netherlands
| | - Tatiana Art
- Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | - Catherine Delguste
- Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| |
Collapse
|
7
|
Castañeda-Yslas IY, Torres-Bugarín O, Arellano-García ME, Ruiz-Ruiz B, García-Ramos JC, Toledano-Magaña Y, Pestryakov A, Bogdanchikova N. Protective Effect of Silver Nanoparticles Against Cytosine Arabinoside Genotoxicity: An In Vivo Micronucleus Assay. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:1689. [PMID: 39767527 PMCID: PMC11675496 DOI: 10.3390/ijerph21121689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/05/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025]
Abstract
Cancer treatments have harmful side effects, including genotoxic ones. Our previous research discovered that a specific silver nanoparticle (AgNPs) formulation could reduce the genotoxic effects of an alkylating agent, cyclophosphamide. This study aims to evaluate if this protective effect is observed against an antimetabolite anticancer agent, cytosine arabinoside (Ara-C). An erythrocyte micronucleus assay was conducted on BALB/c mice. A most significant effect was observed after the application scheme, including three doses of Ara-C and three subsequent doses of AgNPs, resulting in a 3.7 and 2.0-fold decrease in the frequency of micronucleated reticulocytes and accumulated erythrocytes, respectively. Current and previous studies reveal that AgNPs could be used as a genoprotector against the genotoxic damage produced by the currently used antineoplastic antimetabolites and alkylating agents. It was revealed that AgNPs could be considered a new class of promising synthetic antineoplastic genoprotectants along with the known class of derivatives from natural sources.
Collapse
Affiliation(s)
- Idalia Yazmin Castañeda-Yslas
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada 22860, Baja California, Mexico;
| | - Olivia Torres-Bugarín
- Medicina Interna II, Decanato Facultad de Medicina, Universidad Autónoma de Guadalajara, Zapopan 45129, Jalisco, Mexico;
| | | | - Balam Ruiz-Ruiz
- Escuela de Ciencias de la Salud Unidad Valle Dorado, Universidad Autónoma de Baja California, Ensenada 22890, Baja California, Mexico;
| | - Juan Carlos García-Ramos
- Instituto Tecnológico de Ensenada, Tecnológico Nacional de México, Ensenada 22780, Baja California, Mexico; (J.C.G.-R.); (Y.T.-M.)
- Centro de Bachillerato Tecnológico Industrial y de Servicios No. 41” Belisario Domínguez”, Dirección General de Educación Tecnológica Industrial, Ensenada 22785, Baja California, Mexico
| | - Yanis Toledano-Magaña
- Instituto Tecnológico de Ensenada, Tecnológico Nacional de México, Ensenada 22780, Baja California, Mexico; (J.C.G.-R.); (Y.T.-M.)
- Centro de Bachillerato Tecnológico Industrial y de Servicios No. 41” Belisario Domínguez”, Dirección General de Educación Tecnológica Industrial, Ensenada 22785, Baja California, Mexico
| | - Alexey Pestryakov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russia;
| | - Nina Bogdanchikova
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada 22860, Baja California, Mexico;
| |
Collapse
|
8
|
Ejaz M, Gul A, Ozturk M, Hafeez A, Turkyilmaz Unal B, Jan SU, Siddique MT. Nanotechnologies for environmental remediation and their ecotoxicological impacts. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1368. [PMID: 37875634 DOI: 10.1007/s10661-023-11661-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 08/01/2023] [Indexed: 10/26/2023]
Abstract
Environmental nanoremediation is an emerging technology that aims to rapidly and efficiently remove contaminants from the polluted sites using engineered nanomaterials (ENMs). Inorganic nanoparticles which are generally metallic, silica-based, carbon-based, or polymeric in nature serve to remediate through chemical reactions, filtration, or adsorption. Their greater surface area per unit mass and high reactivity enable them to treat groundwater, wastewater, oilfields, and toxic industrial contaminants. Despite the growing interest in nanotechnological solutions for bioremediation, the environmental and human hazard associated with their use is raising concerns globally. Nanoremediation techniques when compared to conventional remediation solutions show increased effectivity in terms of cost and time; however, the main challenge is the ability of ENMs to remove contaminants from different environmental mediums by safeguarding the ecosystem. ENMs improving the accretion of the pollutant and increasing their bioavailability should be rectified along with the vigilant management of their transfer to the upper levels of the food chain which subsequently causes biomagnification. The ecosystem-centered approach will help monitor the ecotoxicological impacts of nanoremediation considering the safety, sustainability, and proper disposal of ENMs. The environment and human health risk assessment of each novel engineered nanomaterial along with the regulation of life cycle assessment (LCA) tools of ENMs for nanoremediation can help investigate the possible environmental hazard. This review focuses on the currently available nanotechnological methods used for environmental remediation and their potential toxicological impacts on the ecosystem.
Collapse
Affiliation(s)
- Mahnoor Ejaz
- Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology, Islamabad, Pakistan
| | - Alvina Gul
- Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology, Islamabad, Pakistan.
| | - Munir Ozturk
- Botany Department and Centre for Environmental Studies, Ege University, Izmir, Türkiye.
| | - Ahmed Hafeez
- Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology, Islamabad, Pakistan
| | - Bengu Turkyilmaz Unal
- Biotechnology Department, Faculty of Arts and Science, Nigde Omer Halisdemir University, Nigde, Türkiye
| | - Sami Ullah Jan
- Department of Bioinformatics and Biosciences, Capital University of Science and Technology, Islamabad, 44000, Pakistan
| | | |
Collapse
|
9
|
Rodrigues MP, Pinto PN, Dias RRDS, Biscoto GL, Salvato LA, Millán RDS, Orlando RM, Keller KM. The Antimicrobial Applications of Nanoparticles in Veterinary Medicine: A Comprehensive Review. Antibiotics (Basel) 2023; 12:958. [PMID: 37370277 DOI: 10.3390/antibiotics12060958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Nanoparticles (NPs) are nanoscaled particles sized from 1-100 nm, which can be composed of inorganic or organic compounds. NPs have distinctive morphology, size, structure, and surface features, which give them specific properties. These particular attributes make them interesting for biological and medical applications. Due to these characteristics, researchers are studying the possible aptness of numerous nanoparticles in veterinary medicine, such as the capacity to act as a drug delivery system. The use of these NPs as a possible bactericidal or bacteriostatic medication has been studied against different bacteria, especially multiresistant strains and the ones that cause mastitis disease. The antibiofilm property of these nanostructures has also already been proved. The antiviral activity has also been shown for some important viral animal diseases; the antifungal activity had been demonstrated against both pathogenic and mycotoxigenic species. Therefore, this review aimed to elucidate the main clinical and preventive veterinary applications of inorganic and organic nanoparticles.
Collapse
Affiliation(s)
- Mariana Paiva Rodrigues
- Programa de Pós-Graduação em Ciência Animal, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte 30270-901, Brazil
| | - Priscila Natália Pinto
- Programa de Pós-Graduação em Ciência Animal, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte 30270-901, Brazil
| | - Raul Roque de Souza Dias
- Programa de Pós-Graduação em Ciência Animal, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte 30270-901, Brazil
| | - Gabriela Lago Biscoto
- Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte 30123-970, Brazil
| | - Lauranne Alves Salvato
- Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte 30123-970, Brazil
| | - Ruben Dario Sinisterra Millán
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte 30123-970, Brazil
| | - Ricardo Mathias Orlando
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte 30123-970, Brazil
| | - Kelly Moura Keller
- Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte 30123-970, Brazil
| |
Collapse
|
10
|
Pérez-Caselles C, Burgos L, Sánchez-Balibrea I, Egea JA, Faize L, Martín-Valmaseda M, Bogdanchikova N, Pestryakov A, Alburquerque N. The Effect of Silver Nanoparticle Addition on Micropropagation of Apricot Cultivars ( Prunus armeniaca L.) in Semisolid and Liquid Media. PLANTS (BASEL, SWITZERLAND) 2023; 12:1547. [PMID: 37050173 PMCID: PMC10097347 DOI: 10.3390/plants12071547] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 06/19/2023]
Abstract
Silver nanoparticles (AgNPs) are novel compounds used as antimicrobial and antiviral agents. In addition, AgNPs have been used to improve the growth of different plants, as well as the in vitro multiplication of plant material. In this work the effect of AgNPs on in vitro growth of 'Canino' and 'Mirlo Rojo' cultivars, as well as the leaf ion composition, are studied. Different concentrations of AgNPs (0, 25, 50, 75 and 100 mg L-1) were added to two culture systems: semisolid medium with agar (SSM) in jars and liquid medium in temporary immersion system (TIS). Proliferation (number of shoots), shoot length, productivity (number of shoot × average length), leaf surface, fresh and dry weight were measured. Additionally, the silver and other ion accumulation in the leaves were evaluated by inductively coupled plasma optical emission spectroscopy (ICP-OES) analysis. The productivity of 'Canino' and 'Mirlo Rojo' decreased when increasing the concentration of AgNPs in the semisolid medium. However, the use of AgNPs in the TIS improved the proliferation and productivity of 'Canino' and Mirlo Rojo', increasing biomass production, and the concentration of nutrients in the plants, although these effects are genotype-dependent. TISs are the best system for introducing silver into shoots, the optimum concentration being 50 mg L-1 for 'Canino' and 75 mg L-1 for 'Mirlo Rojo'. Principal component analysis, considering all the analyzed ions along the treatments, separates samples in two clear groups related to the culture system used. The use of bioreactors with a liquid medium has improved the productivity of 'Canino' and 'Mirlo Rojo' in the proliferation stage, avoiding hyperhydration and other disorders. The amount of metallic silver that penetrates apricot plant tissues depends on the culture system, cultivar and concentration of AgNPs added to the culture medium. Silver ion accumulation measured in the shoots grown in the TIS was higher than in shoots micropropagated in a semisolid medium, where it is barely detectable. Furthermore, AgNPs had a beneficial effect on plants grown in TIS. However, AgNPs had a detrimental effect when added to a semisolid medium.
Collapse
Affiliation(s)
- Cristian Pérez-Caselles
- Fruit Biotechnology Group, Department of Plant Breeding, CEBAS-CSIC, Campus Universitario de Espinardo, Edif. 25, 30100 Murcia, Spain; (C.P.-C.); (L.B.); (I.S.-B.); (L.F.); (M.M.-V.)
| | - Lorenzo Burgos
- Fruit Biotechnology Group, Department of Plant Breeding, CEBAS-CSIC, Campus Universitario de Espinardo, Edif. 25, 30100 Murcia, Spain; (C.P.-C.); (L.B.); (I.S.-B.); (L.F.); (M.M.-V.)
| | - Inmaculada Sánchez-Balibrea
- Fruit Biotechnology Group, Department of Plant Breeding, CEBAS-CSIC, Campus Universitario de Espinardo, Edif. 25, 30100 Murcia, Spain; (C.P.-C.); (L.B.); (I.S.-B.); (L.F.); (M.M.-V.)
| | - Jose A. Egea
- Fruit Breeding Group, Department of Plant Breeding, CEBAS-CSIC, Campus Universitario de Espinardo, Edif. 25, 30100 Murcia, Spain;
| | - Lydia Faize
- Fruit Biotechnology Group, Department of Plant Breeding, CEBAS-CSIC, Campus Universitario de Espinardo, Edif. 25, 30100 Murcia, Spain; (C.P.-C.); (L.B.); (I.S.-B.); (L.F.); (M.M.-V.)
| | - Marina Martín-Valmaseda
- Fruit Biotechnology Group, Department of Plant Breeding, CEBAS-CSIC, Campus Universitario de Espinardo, Edif. 25, 30100 Murcia, Spain; (C.P.-C.); (L.B.); (I.S.-B.); (L.F.); (M.M.-V.)
| | - Nina Bogdanchikova
- Center for Nanoscience and Nanotechnology (CNyN), Campus Ensenada, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico;
| | - Alexey Pestryakov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russia;
| | - Nuria Alburquerque
- Fruit Biotechnology Group, Department of Plant Breeding, CEBAS-CSIC, Campus Universitario de Espinardo, Edif. 25, 30100 Murcia, Spain; (C.P.-C.); (L.B.); (I.S.-B.); (L.F.); (M.M.-V.)
| |
Collapse
|
11
|
Luceri A, Francese R, Lembo D, Ferraris M, Balagna C. Silver Nanoparticles: Review of Antiviral Properties, Mechanism of Action and Applications. Microorganisms 2023; 11:microorganisms11030629. [PMID: 36985203 PMCID: PMC10056906 DOI: 10.3390/microorganisms11030629] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/05/2023] Open
Abstract
New antiviral drugs and new preventive antiviral strategies are a target of intense scientific interest. Thanks to their peculiar properties, nanomaterials play an important role in this field, and, in particular, among metallic materials, silver nanoparticles were demonstrated to be effective against a wide range of viruses, in addition to having a strong antibacterial effect. Although the mechanism of antiviral action is not completely clarified, silver nanoparticles can directly act on viruses, and on their first steps of interaction with the host cell, depending on several factors, such as size, shape, functionalization and concentration. This review provides an overview of the antiviral properties of silver nanoparticles, along with their demonstrated mechanisms of action and factors mainly influencing their properties. In addition, the fields of potential application are analyzed, demonstrating the versatility of silver nanoparticles, which can be involved in several devices and applications, including biomedical applications, considering both human and animal health, environmental applications, such as air filtration and water treatment, and for food and textile industry purposes. For each application, the study level of the device is indicated, if it is either a laboratory study or a commercial product.
Collapse
Affiliation(s)
- Angelica Luceri
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Turin, Italy
| | - Rachele Francese
- Laboratory of Molecular Virology and Antiviral Research, Department of Clinical and Biological Sciences, University of Turin, S. Luigi Gonzaga Hospital, 10043 Turin, Italy
| | - David Lembo
- Laboratory of Molecular Virology and Antiviral Research, Department of Clinical and Biological Sciences, University of Turin, S. Luigi Gonzaga Hospital, 10043 Turin, Italy
| | - Monica Ferraris
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Turin, Italy
| | - Cristina Balagna
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Turin, Italy
- Correspondence: ; Tel.: +39-(011)-090-4325
| |
Collapse
|
12
|
Jaleh B, Mousavi SS, Sajjadi M, Eslamipanah M, Maryaki MJ, Orooji Y, Varma RS. Synthesis of bentonite/Ag nanocomposite by laser ablation in air and its application in remediation. CHEMOSPHERE 2023; 315:137668. [PMID: 36581123 DOI: 10.1016/j.chemosphere.2022.137668] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/05/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
In this research, a simple, green, and efficient approach is described to produce novel bentonite/Ag nanocomposite wherein the preparation of Ag nanoparticles (Ag NPs) deployed the laser ablation method in air; Ag NPs are deposited on the bentonite via the magnetic stirring method. The structural and morphological characterization of the as-prepared bentonite/Ag nanocomposite (denoted as B/Ag30, 30 min being the laser ablation time) is accomplished using different methods. Additionally, the catalytic assessment of the ensued composite exhibited excellent catalytic reduction/degradation activity for common aqueous pollutants namely methyl orange (MO), congo red (CR) and 4-nitrophenol (4-NP) utilizing NaBH4 as reductant. Furthermore, the recycling tests displayed the high stability/reusability of B/Ag30 nanocomposite for at least 4 runs with retention of catalytic prowess.
Collapse
Affiliation(s)
- Babak Jaleh
- Department of Physics, Bu-Ali Sina University, 65174, Hamedan, Iran.
| | | | - Mohaddeseh Sajjadi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | | | - Motahar Jafari Maryaki
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yasin Orooji
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, P.O. Box 80207, Jeddah 21589, Saudi Arabia; Research & Development Department, Shandong Advanced Materials Industry Association, Jinan 250200, Shandong, China.
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Palacky University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| |
Collapse
|
13
|
Biswas P, Polash SA, Dey D, Kaium MA, Mahmud AR, Yasmin F, Baral SK, Islam MA, Rahaman TI, Abdullah A, Ema TI, Khan DA, Bibi S, Chopra H, Kamel M, Najda A, Fouda MMA, Rehan UM, Mheidat M, Alsaidalani R, Abdel-Daim MM, Hasan MN. Advanced implications of nanotechnology in disease control and environmental perspectives. Biomed Pharmacother 2023; 158:114172. [PMID: 36916399 DOI: 10.1016/j.biopha.2022.114172] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Nanotechnology encompasses a wide range of devices derived from biology, engineering, chemistry, and physics, and this scientific field is composed of great collaboration among researchers from several fields. It has diverse implications notably smart sensing technologies, effective disease diagnosis, and sometimes used in treatment. In medical science, the implications of nanotechnology include the development of elements and devices that interact with the body at subcellular (i.e., molecular) levels exhibiting high sensitivity and specificity. There is a plethora of new chances for medical science and disease treatment to be discovered and exploited in the rapidly developing field of nanotechnology. In different sectors, nanomaterials are used just because of their special characteristics. Their large surface area of them enables higher reactivity with greater efficiency. Furthermore, special surface chemistry is displayed by nanomaterials which compare to conventional materials and facilitate the nanomaterials to decrease pollutants efficiently. Recently, nanomaterials are used in some countries to reduce the levels of contaminants in water, air, and soil. Moreover, nanomaterials are used in the cosmetics and medical industry, and it develops the drug discovery (DD) system. Among a huge number of nanomaterials, Cu, Ag, TiO2, ZnO, Fe3O4, and carbon nanotubes (CNTs) are extensively used in different industries for various purposes. This extensive review study has introduced the major scientific and technical features of nanotechnology, as well as some possible clinical applications and positive feedback in environmental waste management and drug delivery systems.
Collapse
Affiliation(s)
- Partha Biswas
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | | | - Dipta Dey
- Department of Biochemistry and Molecular Biology, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj 8100, Bangladesh
| | - Md Abu Kaium
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Aar Rafi Mahmud
- Department of Biochemistry and Molecular Biology, Faculty of Life Science, Mawlana Bhashani Science and Technology University (MBSTU), Tangail 1902, Bangladesh
| | - Farhana Yasmin
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram 4331, Bangladesh
| | - Sumit Kumar Baral
- Microbiology department, Jagannath University, Dhaka 1100, Bangladesh
| | - Md Aminul Islam
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Tanjim Ishraq Rahaman
- Department of Biotechnology and Genetic Engineering, Faculty of Life Science, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Asif Abdullah
- Department of Biomedical Engineering, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Tanzila Ismail Ema
- North South University, Department of Biochemistry and Microbiology, Dhaka 1229, Bangladesh
| | - Dhrubo Ahmed Khan
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Shabana Bibi
- Department of Bioscience, Shifa Tameer-e-Millat University, Islamabad, Pakistan; Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, China.
| | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt; Biology Department, College of Science, Jouf University, P.O. Box: 2014, Sakaka, Saudi Arabia
| | - Agnieszka Najda
- Department of Vegetable and Herbal Crops, University of Life Sciences in Lublin, 50 A Doświadczalna Street, 20-280 Lublin, Poland; Biology Department, College of Science, Jouf University, P.O. Box: 2014, Sakaka, Saudi Arabia
| | - Maged M A Fouda
- Biology Department, College of Science, Jouf University, P.O. Box: 2014, Sakaka, Saudi Arabia
| | - UmmeSalma M Rehan
- Department of Surgery, Medicine Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Mayyadah Mheidat
- Medicine Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Rawidh Alsaidalani
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt.
| | - Md Nazmul Hasan
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| |
Collapse
|
14
|
Yang Y, Wu S, Wang Y, Shao F, Lv P, Li R, Zhao X, Zhang J, Zhang X, Li J, Hou L, Xu J, Chen W. Lung-Targeted Transgene Expression of Nanocomplexed Ad5 Enhances Immune Response in the Presence of Preexisting Immunity. ENGINEERING (BEIJING, CHINA) 2023:S2095-8099(23)00010-3. [PMID: 36714358 PMCID: PMC9869631 DOI: 10.1016/j.eng.2022.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/26/2022] [Accepted: 12/12/2022] [Indexed: 06/18/2023]
Abstract
Recombinant adenovirus serotype 5 (Ad5) vector has been widely applied in vaccine development targeting infectious diseases, such as Ebola virus disease and coronavirus disease 2019 (COVID-19). However, the high prevalence of preexisting anti-vector immunity compromises the immunogenicity of Ad5-based vaccines. Thus, there is a substantial unmet need to minimize preexisting immunity while improving the insert-induced immunity of Ad5 vectors. Herein, we address this need by utilizing biocompatible nanoparticles to modulate Ad5-host interactions. We show that positively charged human serum albumin nanoparticles ((+)HSAnp), which are capable of forming a complex with Ad5, significantly increase the transgene expression of Ad5 in both coxsackievirus-adenovirus receptor-positive and -negative cells. Furthermore, in charge- and dose-dependent manners, Ad5/(+)HSAnp complexes achieve robust (up to 227-fold higher) and long-term (up to 60 days) transgene expression in the lungs of mice following intranasal instillation. Importantly, in the presence of preexisting anti-Ad5 immunity, complexed Ad5-based Ebola and COVID-19 vaccines significantly enhance antigen-specific humoral response and mucosal immunity. These findings suggest that viral aggregation and charge modification could be leveraged to engineer enhanced viral vectors for vaccines and gene therapies.
Collapse
Affiliation(s)
- Yilong Yang
- Beijing Institute of Biotechnology, Beijing 100071, China
| | - Shipo Wu
- Beijing Institute of Biotechnology, Beijing 100071, China
| | - Yudong Wang
- Beijing Institute of Biotechnology, Beijing 100071, China
| | - Fangze Shao
- Beijing Institute of Biotechnology, Beijing 100071, China
| | - Peng Lv
- Beijing Institute of Biotechnology, Beijing 100071, China
| | - Ruihua Li
- Beijing Institute of Biotechnology, Beijing 100071, China
| | - Xiaofan Zhao
- Beijing Institute of Biotechnology, Beijing 100071, China
| | - Jun Zhang
- Beijing Institute of Biotechnology, Beijing 100071, China
| | - Xiaopeng Zhang
- Beijing Institute of Biotechnology, Beijing 100071, China
| | - Jianmin Li
- Beijing Institute of Biotechnology, Beijing 100071, China
| | - Lihua Hou
- Beijing Institute of Biotechnology, Beijing 100071, China
| | - Junjie Xu
- Beijing Institute of Biotechnology, Beijing 100071, China
| | - Wei Chen
- Beijing Institute of Biotechnology, Beijing 100071, China
| |
Collapse
|
15
|
Hussain FS, Abro NQ, Ahmed N, Memon SQ, Memon N. Nano-antivirals: A comprehensive review. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.1064615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Nanoparticles can be used as inhibitory agents against various microorganisms, including bacteria, algae, archaea, fungi, and a huge class of viruses. The mechanism of action includes inhibiting the function of the cell membrane/stopping the synthesis of the cell membrane, disturbing the transduction of energy, producing toxic reactive oxygen species (ROS), and inhibiting or reducing RNA and DNA production. Various nanomaterials, including different metallic, silicon, and carbon-based nanomaterials and nanoarchitectures, have been successfully used against different viruses. Recent research strongly agrees that these nanoarchitecture-based virucidal materials (nano-antivirals) have shown activity in the solid state. Therefore, they are very useful in the development of several products, such as fabric and high-touch surfaces. This review thoroughly and critically identifies recently developed nano-antivirals and their products, nano-antiviral deposition methods on various substrates, and possible mechanisms of action. By considering the commercial viability of nano-antivirals, recommendations are made to develop scalable and sustainable nano-antiviral products with contact-killing properties.
Collapse
|
16
|
Romo Quiñonez CR, Alvarez-Ruiz P, Mejía-Ruiz CH, Bogdanchikova N, Pestryakov A, Gamez-Jimenez C, Valenzuela-Quiñonez W, Montoya-Mejía M, Nava Pérez E. Chronic toxicity of shrimp feed added with silver nanoparticles (Argovit-4®) in Litopenaeus vannamei and immune response to white spot syndrome virus infection. PeerJ 2022; 10:e14231. [PMID: 36438583 PMCID: PMC9695493 DOI: 10.7717/peerj.14231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/22/2022] [Indexed: 11/23/2022] Open
Abstract
In recent years, the application of silver nanoparticles (AgNPs) as antibacterial compounds has been widely used in human and veterinary medicine. In this work, we investigated the effects of AgNPs (Argovit-4®) as feed additives (feed-AgNPs) on shrimp (Litopenaeus vannamei) using three different methods: 1) chronic toxicity after 28 days of feeding, 2) Effects against white spot syndrome virus (WSSV) challenged by oral route, and 3) transcriptional responses of immune-related genes (PAP, ProPO, CTL-3, Crustin, PEN3, and PEN4) following WSSV infection. The results showed that the feed-AgNPs did not interfere with the growth and survival of shrimp. Also, mild lesions in the hepatopancreas were recorded, proportional to the frequency of the feed-AgNP supply. Challenge test versus WSSV showed that feeding every 7 days with feed-AgNPs reduced mortality, reaching a survival rate of 53%, compared to the survival rates observed in groups fed every 4 days, daily and control groups of feed-AgNPs for the 30%, 10%, and 7% groups, respectively. Feed-AgNPs negatively regulated the expression of PAP, ProPO, and Crustin genes after 28 days of treatment and altered the transcriptional responses of PAP, ProPO, CTL-3, and Crustin after WSSV exposure. The results showed that weekly feeding-AgNPs could partially prevent WSSV infection in shrimp culture. However, whether or not transcriptional responses against pathogens are advantageous remains to be elucidated.
Collapse
Affiliation(s)
- Carlos R. Romo Quiñonez
- Laboratorio de Biotecnología de Organismos Marinos, Centro de investigaciones Biológicas del Noroeste, La Paz, Baja California Sur, México
| | - Píndaro Alvarez-Ruiz
- Departamento de Acuacultura, Instituto Politécnico Nacional CIIDIR-Sinaloa, Guasave, Sinaloa, México
| | - Claudio H. Mejía-Ruiz
- Laboratorio de Biotecnología de Organismos Marinos, Centro de investigaciones Biológicas del Noroeste, La Paz, Baja California Sur, México
| | - Nina Bogdanchikova
- Fisicoquímica de nanomateriales, Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada, Baja California, México
| | - Alexey Pestryakov
- Research School of Chemistry & Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk, Russia
| | - Carina Gamez-Jimenez
- Departamento de Acuacultura, Instituto Politécnico Nacional CIIDIR-Sinaloa, Guasave, Sinaloa, México
| | | | - Magnolia Montoya-Mejía
- Departamento de Acuacultura, Instituto Politécnico Nacional CIIDIR-Sinaloa, Guasave, Sinaloa, México
| | - Eusebio Nava Pérez
- Departamento de Acuacultura, Instituto Politécnico Nacional CIIDIR-Sinaloa, Guasave, Sinaloa, México
| |
Collapse
|
17
|
Patel M, Mazumder R, Mishra R, Kant Kaushik K. Potential of Nanotechnology-based Formulations in Combating Pulmonary Infectious Diseases: A Current Scenario. Curr Pharm Des 2022; 28:3413-3427. [PMID: 36397631 DOI: 10.2174/1381612829666221116143138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/09/2022] [Accepted: 10/19/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND Pulmonary microbial infection is mainly caused by microbes like atypical bacteria, viruses, and fungi, on both the upper and lower respiratory tracts. One of the demands of the present is the use of nanotechnology-based treatments to fight various lung infections. AIM The main aim of the study is to explore all pulmonary infectious diseases and to compare the advanced and novel treatment approaches with the conventional methods which are available to treat infections. METHODS This work sheds light on pulmonary infectious diseases with their conventional and present treatment approaches along with a focus on the advantageous roles of nano-based formulations. In the literature, it has been reported that the respiratory system is the key target of various infectious diseases which gives rise to various challenges in the treatment of pulmonary infections. RESULTS The present review article describes the global situation of pulmonary infections and the different strategies which are available for their management, along with their limitations. The article also highlights the advantages and different examples of nanoformulations currently combating the limitations of conventional therapies. CONCLUSION The content of the present article further reflects on the summary of recently published research and review works on pulmonary infections, conventional methods of treatment with their limitations, and the role of nano-based approaches to combat the existing infectious diseases which will jointly help the researchers to produce effective drug formulations with desired pharmacological activities.
Collapse
Affiliation(s)
- Manisha Patel
- Pharmacy Institute, Noida Institute of Engineering and Technology, 19, Knowledge Park-II, Institutional Area, Greater Noida, Uttar Pradesh-201 306, India
| | - Rupa Mazumder
- Pharmacy Institute, Noida Institute of Engineering and Technology, 19, Knowledge Park-II, Institutional Area, Greater Noida, Uttar Pradesh-201 306, India
| | - Rakhi Mishra
- Pharmacy Institute, Noida Institute of Engineering and Technology, 19, Knowledge Park-II, Institutional Area, Greater Noida, Uttar Pradesh-201 306, India
| | - Kamal Kant Kaushik
- Pharmacy Institute, Noida Institute of Engineering and Technology, 19, Knowledge Park-II, Institutional Area, Greater Noida, Uttar Pradesh-201 306, India
| |
Collapse
|
18
|
Gastelum-Leyva F, Pena-Jasso A, Alvarado-Vera M, Plascencia-López I, Patrón-Romero L, Loera-Castañeda V, Gándara-Mireles JA, Lares-Asseff I, Leal-Ávila MÁ, Alvelais-Palacios JA, Almeida-Pérez J, Bogdanchikova N, Pestryakov A, Almanza-Reyes H. Evaluation of the Efficacy and Safety of Silver Nanoparticles in the Treatment of Non-Neurological and Neurological Distemper in Dogs: A Randomized Clinical Trial. Viruses 2022; 14:2329. [PMID: 36366427 PMCID: PMC9694365 DOI: 10.3390/v14112329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/14/2022] [Accepted: 10/19/2022] [Indexed: 02/01/2023] Open
Abstract
Canine distemper is caused by canine distemper virus (CDV), a multisystemic infectious disease with a high morbidity and mortality rate in dogs. Nanotechnology represents a development opportunity for new molecules with antiviral effects that may become effective treatments in veterinary medicine. This study evaluated the efficacy and safety of silver nanoparticles (AgNPs) in 207 CDV, naturally infected, mixed-breed dogs exhibiting clinical signs of the non-neurological and neurological phases of the disease. Group 1a included 52 dogs (experimental group) diagnosed with non-neurologic distemper treated with 3% oral and nasal AgNPs in addition to supportive therapy. Group 1b included 46 dogs (control group) diagnosed with non-neurological distemper treated with supportive therapy only. Group 2a included 58 dogs with clinical signs of neurological distemper treated with 3% oral and nasal AgNPs in addition to supportive therapy. Group 2b included 51 dogs (control group) diagnosed with clinical signs of neurological distemper treated with supportive therapy only. Efficacy was measured by the difference in survival rates: in Group 1a, the survival rate was 44/52 (84.6%), versus 7/46 in Group 1b (15.2%), while both showed clinical signs of non-neurological distemper. The survival rate of dogs with clinical signs of neurological distemper in Group 2a (38/58; 65.6%) was significantly higher than those in Control Group 2b (0/51; 0%). No adverse reactions were detected in experimental groups treated with AgNPs. AgNPs significantly improved survival in dogs with clinical signs of neurological and non-neurological distemper. The use of AgNPs in the treatment of neurological distemper led to a drastic increase in the proportion of dogs recovered without sequels compared to dogs treated without AgNPs. The evidence demonstrates that AgNP therapy can be considered as a targeted treatment in dogs severely affected by canine distemper virus.
Collapse
Affiliation(s)
| | | | | | - Ismael Plascencia-López
- Faculty of Accounting and Administration, Autonomous University of Baja California, Tijuana 22390, Mexico
| | - Leslie Patrón-Romero
- Faculty of Medicine and Psychology, Autonomous University of Baja California, Tijuana 22390, Mexico
| | | | | | | | - María Ángeles Leal-Ávila
- School of Heath Sciences, Valle de Las Palmas, Autonomous University of Baja California, Tijuana 22260, Mexico
| | - J. A. Alvelais-Palacios
- School of Heath Sciences, Valle de Las Palmas, Autonomous University of Baja California, Tijuana 22260, Mexico
| | | | - Nina Bogdanchikova
- Center of Nanoscience and Nanotechnology, UNAM (CNyN-UNAM), Ensenada 22860, Mexico
| | - Alexey Pestryakov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Horacio Almanza-Reyes
- Cluster de Bioeconomía de Baja California, A.C., Tijuana 22040, Mexico
- Faculty of Medicine and Psychology, Autonomous University of Baja California, Tijuana 22390, Mexico
| |
Collapse
|
19
|
Lishchynskyi O, Shymborska Y, Stetsyshyn Y, Raczkowska J, Skirtach AG, Peretiatko T, Budkowski A. Passive antifouling and active self-disinfecting antiviral surfaces. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2022; 446:137048. [PMID: 35601363 PMCID: PMC9113772 DOI: 10.1016/j.cej.2022.137048] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/01/2022] [Accepted: 05/15/2022] [Indexed: 05/15/2023]
Abstract
Viruses pose a serious threat to human health and society in general, as virus infections are one of the main causes of morbidity and mortality. Till May 2022, over 513 million people around the world have been confirmed to be infected and more than 6.2 million have died due to SARS-CoV-2. Although the COVID-19 pandemic will be defeated in the near future, we are likely to face new viral threats in the coming years. One of the important instruments to protect from viruses are antiviral surfaces, which are essentially capable of limiting their spread. The formulation of the concept of antiviral surfaces is relatively new. In general, five types of mechanism directed against virus spread can be proposed for antiviral surfaces; involving: direct and indirect actions, receptor inactivation, photothermal effect, and antifouling behavior. All antiviral surfaces can be classified into two main types - passive and active. Passive antiviral surfaces are based on superhydrophobic coatings that are able to repel virus contaminated droplets. In turn, viruses can become biologically inert (e.g., blocked or destroyed) upon contact with active antiviral surfaces, as they contain antiviral agents: metal atoms, synthetic or natural polymers, and small molecules. The functionality of antiviral surfaces can be significantly improved with additional properties, such as temperature- or pH-responsivity, multifunctionality, non-specific action on different virus types, long-term application, high antiviral efficiency and self-cleaning.
Collapse
Affiliation(s)
- Ostap Lishchynskyi
- Lviv Polytechnic National University, St. George's Square 2, 79013 Lviv, Ukraine
- Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Yana Shymborska
- Lviv Polytechnic National University, St. George's Square 2, 79013 Lviv, Ukraine
- Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348, Kraków, Poland
| | - Yurij Stetsyshyn
- Lviv Polytechnic National University, St. George's Square 2, 79013 Lviv, Ukraine
- Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348, Kraków, Poland
| | - Joanna Raczkowska
- Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348, Kraków, Poland
| | - Andre G Skirtach
- Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Taras Peretiatko
- Ivan Franko National University of Lviv, Universytetska 1, 79000 Lviv, Ukraine
| | - Andrzej Budkowski
- Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348, Kraków, Poland
| |
Collapse
|
20
|
Pan X, Zhang Y, Zhao Y, Yao S, Guan C, Wang L, Chen L. Inhibitory activity and mechanism of silver nanoparticles against herpes simplex virus type 1. Arch Virol 2022; 167:1619-1636. [PMID: 35648293 DOI: 10.1007/s00705-022-05467-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 04/26/2022] [Indexed: 12/01/2022]
Abstract
Herpes simplex virus type 1 (HSV-1) is a common pathogen that infects 50-90% of the world's population and causes a variety of diseases, some of which can be life-threatening. Silver nanoparticles (AgNPs) have been shown to have broad-spectrum antiviral activity. In this study, we investigated the activity of AgNPs against HSV-1 and found that AgNPs effectively inhibited plaque formation and HSV-1 progeny production, reduced the genomic load, and interfered with HSV-1 mRNA expression and protein synthesis. Transmission electron microscopy showed that AgNPs interacted with HSV-1 and altered the shape of the viral particles. Furthermore, AgNPs affected the entry of HSV-1 into cells as well as their release and cell-to-cell spread. AgNPs were also found to downregulate the expression of pro-inflammatory cytokines upon HSV-1 infection. Combined treatment with AgNPs and acyclovir (ACV) confirmed that AgNPs significantly enhanced the inhibitory effect of ACV against HSV-1. Our findings may contribute to an understanding of the mechanism of the antiviral effect of AgNPs against HSV-1 and help to provide a theoretical basis for their clinical application.
Collapse
Affiliation(s)
- Xuanhe Pan
- Department of Clinical Laboratory, Liuzhou People's Hospital, Liuzhou, Guangxi, China
| | - Yapeng Zhang
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Yiming Zhao
- Department of Medical Microbiology, School of Basic Medical Sciences, Central South University, No. 172, Tongzipo road, Yuelu District, Changsha, 410013, Hunan, China
| | - Siqi Yao
- Department of Medical Microbiology, School of Basic Medical Sciences, Central South University, No. 172, Tongzipo road, Yuelu District, Changsha, 410013, Hunan, China
| | - Chaxiang Guan
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Linqian Wang
- Department of Clinical Laboratory, the Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, No. 283, Tongzipo Road, Yuelu District, Changsha, 410013, Hunan, China.
| | - Liyu Chen
- Department of Medical Microbiology, School of Basic Medical Sciences, Central South University, No. 172, Tongzipo road, Yuelu District, Changsha, 410013, Hunan, China.
| |
Collapse
|
21
|
Hypothetical Mechanism of Skin Argyria. COATINGS 2022. [DOI: 10.3390/coatings12040532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Introduction. Argyria is an acquired skin condition that appears after the exposure or consumption of silver, leading to blue or grey coloration of the skin and mucosa. The aim of the present work was to draw researchers’ attention to two aspects of the argyria that until now have not received enough consideration. They are: (1) the process of delivering silver compound from the gastrointestinal tract to the skin and (2) the possibility for silver chloride to participate in this process along with the silver proteinates. Methodology. Illustrative experiments included the observation of color change (visual and using UV-Vis spectrometry) under different light exposure conditions of silver chloride sol in a sweat-simulating solution, in vials and under pig skin (in direct contact). Results and Discussion. A hypothetical mechanism based on a perspiration system for delivering the silver compounds from the gastrointestinal tract to the skin for argyria was proposed. It was also proposed not to completely exclude the partial participation of silver chloride along with the silver proteinates in this process.
Collapse
|
22
|
Ghaffar N, Javad S, Farrukh MA, Shah AA, Gatasheh MK, Al-Munqedhi BMA, Chaudhry O. Metal nanoparticles assisted revival of Streptomycin against MDRS Staphylococcus aureus. PLoS One 2022; 17:e0264588. [PMID: 35324924 PMCID: PMC8947119 DOI: 10.1371/journal.pone.0264588] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 02/06/2022] [Indexed: 11/18/2022] Open
Abstract
The ability of microorganisms to generate resistance outcompetes with the generation of new and efficient antibiotics. Therefore, it is critically required to develop novel antibiotic agents and treatments to control bacterial infections. Green synthesized metallic and metal oxide nanoparticles are considered as the potential means to target bacteria as an alternative to antibiotics. Nanoconjugates have also attracted attention because of their increased biological activity as compared to free antibiotics. In the present investigation, silver nanoparticles (AgNPs), zinc oxide nanoparticles (ZnO NPs), copper oxide nanoparticles (CuO NPs), and iron oxide nanoparticles (FeO NPs) have been synthesized by using leaf extract of Ricinus communis. Characterization of nanoparticles was done by using UV-Vis Spectroscopy, Fourier Transform Infrared Spectroscopy, Scanning Electron Microscopy, Energy Dispersive X-Ray Analyzer, X-ray Diffraction Analysis, and Dynamic Light Scattering Particle Size Analyzer. Interestingly, Streptomycin when combined with AgNPs, ZnO NPs, CuO NPs, and FeO NPs showed enhanced antibacterial activity against clinical isolates of S. aureus which suggested synergism between the nanoparticles and antibiotics. The highest enhanced antibacterial potential of Streptomycin was observed in conjugation with ZnO NPs (11 ± 0.5 mm) against S. aureus. Minimum inhibitory concentration of conjugates of AgNPs, ZnO NPs, CuO NPs, and FeO NPs with streptomycin against S. aureus was found to be 3.12, 2.5,10, and 12.5 μg/mL respectively. The considerable point of the present investigation is that S. aureus, which was resistant to streptomycin becomes highly susceptible to the same antibiotic when combined with nanoparticles. This particular observation opens up windows to mitigate the current crisis due to antibiotic resistance to combat antimicrobial infections efficiently.
Collapse
Affiliation(s)
- Nadia Ghaffar
- Department of Botany, Lahore College for Women University, Lahore, Pakistan
| | - Sumera Javad
- Department of Botany, Lahore College for Women University, Lahore, Pakistan
| | - Muhammad Akhyar Farrukh
- Department of Chemistry, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Anis Ali Shah
- Department of Botany, University of Education, Lahore, Pakistan
| | - Mansour K Gatasheh
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Bander M A Al-Munqedhi
- Department Botony and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | |
Collapse
|
23
|
Ghosh U, Sayef Ahammed K, Mishra S, Bhaumik A. The Emerging Roles of Silver Nanoparticles to Target Viral Life Cycle and Detect Viral Pathogens. Chem Asian J 2022; 17:e202101149. [PMID: 35020270 PMCID: PMC9011828 DOI: 10.1002/asia.202101149] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/05/2022] [Indexed: 11/26/2022]
Abstract
Along the line of recent vaccine advancements, new antiviral therapeutics are compelling to combat viral infection-related public health crises. Several properties of silver nanoparticles (AgNPs) such as low level of cytotoxicity, ease of tunability of the AgNPs in the ultra-small nanoscale size and shape through different convenient bottom-up chemistry approaches, high penetration of the composite with drug formulations into host cells has made AgNPs, a promising candidate for developing antivirals. In this review, we have highlighted the recent advancements in the AgNPs based nano-formulations to target cellular mechanisms of viral propagation, immune modulation of the host, and the ability to synergistically enhance the activity of existing antiviral drugs. On the other hand, we have discussed the recent advancements on AgNPs based detection of viral pathogens from clinical samples using inherent physicochemical properties. This article will provide an overview of our current knowledge on AgNPs based formulations that has promising potential for developing a counteractive strategy against emerging and existing viruses.
Collapse
Affiliation(s)
- Ujjyani Ghosh
- Cancer & Inflammatory Disorder DivisionCSIR-Indian Institute of Chemical BiologyJadavpur, Kolkata700032India
- Present address: The University of UtahSalt Lake CityUT84112USA
| | - Khondakar Sayef Ahammed
- Cancer & Inflammatory Disorder DivisionCSIR-Indian Institute of Chemical BiologyJadavpur, Kolkata700032India
- Present address: The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical SciencesHoustonTX77030USA
| | - Snehasis Mishra
- Cancer & Inflammatory Disorder DivisionCSIR-Indian Institute of Chemical BiologyJadavpur, Kolkata700032India
| | - Asim Bhaumik
- School of Materials SciencesIndian Association for the Cultivation of ScienceJadavpur, Kolkata700 032India
| |
Collapse
|
24
|
Ayipo YO, Bakare AA, Badeggi UM, Jimoh AA, Lawal A, Mordi MN. Recent advances on therapeutic potentials of gold and silver nanobiomaterials for human viral diseases. CURRENT RESEARCH IN CHEMICAL BIOLOGY 2022; 2:100021. [PMID: 35815068 PMCID: PMC8806017 DOI: 10.1016/j.crchbi.2022.100021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Viral diseases are prominent among the widely spread infections threatening human well-being. Real-life clinical successes of the few available therapeutics are challenged by pathogenic resistance and suboptimal delivery to target sites. Nanotechnology has aided the design of functionalised and non-functionalised Au and Ag nanobiomaterials through physical, chemical and biological (green synthesis) methods with improved antiviral efficacy and delivery. In this review, innovative designs as well as interesting antiviral activities of the nanotechnology-inclined biomaterials of Au and Ag, reported in the last 5 years were critically overviewed against several viral diseases affecting man. These include influenza, respiratory syncytial, adenovirus, severe acute respiratory syndromes (SARS), rotavirus, norovirus, measles, chikungunya, HIV, herpes simplex virus, dengue, polio, enterovirus and rift valley fever virus. Notably identified among the nanotechnologically designed promising antiviral agents include AuNP-M2e peptide vaccine, AgNP of cinnamon bark extract and AgNP of oseltamivir for influenza, PVP coated AgNP for RSV, PVP-AgNPs for SARS-CoV-2, AuNRs of a peptide pregnancy-induce d hypertension and AuNP nanocarriers of antigen for MERS-CoV and SARS-CoV respectively. Others are AgNPs of collagen and Bacillus subtilis for rotavirus, AgNPs labelled Ag30-SiO 2 for murine norovirus in water, AuNPs of Allium sativum and AgNPs of ribavirin for measles, AgNPs of Citrus limetta and Andrographis Paniculata for Chikungunya, AuNPs of efavirenz and stavudine, and AgNPs-curcumin for HIV, NPAuG3-S8 for HSV, AgNPs of Moringa oleifera and Bruguiera cylindrica for dengue while AgNPs of polyethyleneimine and siRNA analogues displayed potency against enterovirus. The highlighted candidates are recommended for further translational studies towards antiviral therapeutic designs.
Collapse
Affiliation(s)
- Yusuf Oloruntoyin Ayipo
- Centre for Drug Research, Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia
- Department of Chemistry and Industrial Chemistry, Kwara State University, Malete, P. M. B. 1530, Ilorin 240001, Nigeria
| | - Ajibola Abdulahi Bakare
- Department of Materials and Environmental Technology, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
| | - Umar Muhammad Badeggi
- Department of Chemistry, Ibrahim Badamasi Babangida University Lapai, P. M. B. 11, Minna 4947, Nigeria
- Department of Chemistry, Cape Peninsula University of Technology, Symphony Rd., Bellville 7535, South Africa
| | - Akeem Adebayo Jimoh
- Department of Chemistry and Industrial Chemistry, Kwara State University, Malete, P. M. B. 1530, Ilorin 240001, Nigeria
| | - Amudat Lawal
- Department of Chemistry, University of Ilorin, P. M. B. 1515, Ilorin, Nigeria
| | - Mohd Nizam Mordi
- Centre for Drug Research, Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia
| |
Collapse
|
25
|
Jeevanandam J, Krishnan S, Hii YS, Pan S, Chan YS, Acquah C, Danquah MK, Rodrigues J. Synthesis approach-dependent antiviral properties of silver nanoparticles and nanocomposites. JOURNAL OF NANOSTRUCTURE IN CHEMISTRY 2022; 12:809-831. [PMID: 35070207 PMCID: PMC8760111 DOI: 10.1007/s40097-021-00465-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 12/02/2021] [Indexed: 02/05/2023]
Abstract
Numerous viral infections are common among humans, and some can lead to death. Even though conventional antiviral agents are beneficial in eliminating viral infections, they may lead to side effects or physiological toxicity. Silver nanoparticles and nanocomposites have been demonstrated to possess inhibitory properties against several pathogenic microbes, including archaea, bacteria, fungi, algae, and viruses. Its pronounced antimicrobial activity against various microbe-mediated diseases potentiates its use in combating viral infections. Notably, the appropriated selection of the synthesis method to fabricate silver nanoparticles is a major factor for consideration as it directly impacts antiviral efficacy, level of toxicity, scalability, and environmental sustainability. Thus, this article presents and discusses various synthesis approaches to produce silver nanoparticles and nanocomposites, providing technological insights into selecting approaches to generate antiviral silver-based nanoparticles. The antiviral mechanism of various formulations of silver nanoparticles and the evaluation of its propensity to combat specific viral infections as a potential antiviral agent are also discussed.
Collapse
Affiliation(s)
- Jaison Jeevanandam
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | | | - Yiik Siang Hii
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 639798 Singapore, Singapore
| | - Sharadwata Pan
- TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Yen San Chan
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University, CDT 250, 98009 Miri, Sarawak, Malaysia
| | - Caleb Acquah
- Department of Chemical Engineering, University of Tennessee, Chattanooga, TN 37403 USA
| | - Michael K. Danquah
- School of Materials Science and Engineering, Center for Nano Energy Materials, Northwestern Polytechnical University, Xi’an, 710072 China
| | - João Rodrigues
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
- School of Materials Science and Engineering, Center for Nano Energy Materials, Northwestern Polytechnical University, Xi’an, 710072 China
| |
Collapse
|
26
|
Tufail MS, Liaqat I, Andleeb S, Naseem S, Zafar U, Sadiqa A, Liaqat I, Ali NM, Bibi A, Arshad N, Saleem G. Biogenic Synthesis, Characterization and Antibacterial Properties of Silver Nanoparticles against Human Pathogens. J Oleo Sci 2022; 71:257-265. [PMID: 35034942 DOI: 10.5650/jos.ess21291] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Biogenic synthesis of silver nanoparticles (AgNPs) is more eco-friendly and cost-effective approach as compared to the conventional chemical synthesis. Biologically synthesized AgNPs have been proved as therapeutically effective and valuable compounds. In this study, the four bacterial strains Escherichia coli (MT448673), Pseudomonas aeruginosa (MN900691), Bacillus subtilis (MN900684) and Bacillus licheniformis (MN900686) were used for the biogenic synthesis of AgNPs. Agar well diffusion assay revealed to determine the antibacterial activity of all biogenically synthesized AGNPs showed that P. aeruginosa AgNPs possessed significantly high (p < 0.05) antibacterial potential against all tested isolates. The one-way ANOVA test showed that that P. aeruginosa AgNPs showed significantly (p < 0.05) larger zones of inhibition (ZOI: 19 to 22 mm) compared to the positive control (rifampicin: 50 µg/mL) while no ZOI was observed against negative control (Dimethyl sulfoxide: DMSO). Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) concentration against four test strains also showed that among all biogenically synthesized NPs, P. aeruginosa AgNPs showed effective MIC (3.3-3.6 µg/mL) and MBC (4.3-4.6 µg/mL). Hence, P. aeruginosa AGNPs were characterized using visual UV vis-spectroscopy, X ray diffractometer (XRD), fourier transform infrared (FTIR) and scanning electron microscopy (SEM). The formation of peak around 430 nm indicated the formation of AgNPs while the FTIR confirmed the involvement of biological molecules in the formation of nanoparticles (NPs). SEM revealed that the NPs were of approximately 40 nm. Overall, this study suggested that the biogenically synthesized nanoparticles could be utilized as effective antimicrobial agents for effective disease control.
Collapse
Affiliation(s)
| | - Iram Liaqat
- Microbiology Lab, Department of Zoology, GC University
| | - Saiqa Andleeb
- Department of Zoology, University of Azad Jammu and Kashmir
| | - Sajida Naseem
- Department of Zoology, University of Education, Lower Mall Campus
| | - Urooj Zafar
- Department of Microbiology, University of Karachi
| | | | - Irfana Liaqat
- Microbiology Lab, Department of Zoology, GC University
| | | | - Asia Bibi
- Department of Zoology, The Women University
| | | | - Gulbeena Saleem
- Department of Pathology, University of Veterinary and Animal Sciences
| |
Collapse
|
27
|
Tufail S, Liaqat I, Ali S, Ulfat M, Shafi A, Sadiqa A, Iqbal R, Ahsan F. <i>Bacillus licheniformis</i> (MN900686) Mediated Synthesis, Characterization and Antimicrobial Potential of Silver Nanoparticles. J Oleo Sci 2022; 71:701-708. [DOI: 10.5650/jos.ess21441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- Shahzad Tufail
- Microbiology Lab, Department of Zoology, Government College University
| | - Iram Liaqat
- Microbiology Lab, Department of Zoology, Government College University
| | - Sikander Ali
- Institute of Industrial Biotechnology, Government College University
| | - Mobina Ulfat
- Department of Botany, Lahore College for Women University
| | - Ayesha Shafi
- Riphah Institute of Pharmaceutical Aciences, Riphah International University
| | | | - Riffat Iqbal
- Microbiology Lab, Department of Zoology, Government College University
| | - Fatima Ahsan
- Department of Microbiology, University of Veterinary and Animal Sciences
| |
Collapse
|
28
|
Ratan ZA, Mashrur FR, Chhoan AP, Shahriar SM, Haidere MF, Runa NJ, Kim S, Kweon DH, Hosseinzadeh H, Cho JY. Silver Nanoparticles as Potential Antiviral Agents. Pharmaceutics 2021; 13:2034. [PMID: 34959320 PMCID: PMC8705988 DOI: 10.3390/pharmaceutics13122034] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 12/31/2022] Open
Abstract
Since the early 1990s, nanotechnology has led to new horizons in nanomedicine, which encompasses all spheres of science including chemistry, material science, biology, and biotechnology. Emerging viral infections are creating severe hazards to public health worldwide, recently, COVID-19 has caused mass human casualties with significant economic impacts. Interestingly, silver nanoparticles (AgNPs) exhibited the potential to destroy viruses, bacteria, and fungi using various methods. However, developing safe and effective antiviral drugs is challenging, as viruses use host cells for replication. Designing drugs that do not harm host cells while targeting viruses is complicated. In recent years, the impact of AgNPs on viruses has been evaluated. Here, we discuss the potential role of silver nanoparticles as antiviral agents. In this review, we focus on the properties of AgNPs such as their characterization methods, antiviral activity, mechanisms, applications, and toxicity.
Collapse
Affiliation(s)
- Zubair Ahmed Ratan
- Department of Biomedical Engineering, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh; (Z.A.R.); (F.R.M.); (A.P.C.)
- School of Health and Society, University of Wollongong, Wollongong, NSW 2500, Australia;
| | - Fazla Rabbi Mashrur
- Department of Biomedical Engineering, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh; (Z.A.R.); (F.R.M.); (A.P.C.)
| | - Anisha Parsub Chhoan
- Department of Biomedical Engineering, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh; (Z.A.R.); (F.R.M.); (A.P.C.)
| | - Sadi Md. Shahriar
- Department of Materials Science and Engineering, University of California-Davis, Davis, California, CA 95616, USA;
- Department of Materials Science and Engineering, Khulna University of Engineering and Technology, Khulna 9203, Bangladesh
| | | | | | - Sunggyu Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (S.K.); (D.-H.K.)
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Korea
| | - Dae-Hyuk Kweon
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (S.K.); (D.-H.K.)
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Korea
- Biomedical Institute for Convergence at SKKU (BICS), Suwon 16419, Korea
| | - Hassan Hosseinzadeh
- School of Health and Society, University of Wollongong, Wollongong, NSW 2500, Australia;
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (S.K.); (D.-H.K.)
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Korea
- Biomedical Institute for Convergence at SKKU (BICS), Suwon 16419, Korea
| |
Collapse
|
29
|
Nefedova E, Koptev V, Bobikova AS, Cherepushkina V, Mironova T, Afonyushkin V, Shkil N, Donchenko N, Kozlova Y, Sigareva N, Davidova N, Bogdanchikova N, Pestryakov A, Toledano-Magaña Y. The Infectious Bronchitis Coronavirus Pneumonia Model Presenting a Novel Insight for the SARS-CoV-2 Dissemination Route. Vet Sci 2021; 8:239. [PMID: 34679068 PMCID: PMC8540477 DOI: 10.3390/vetsci8100239] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/10/2021] [Accepted: 10/12/2021] [Indexed: 12/13/2022] Open
Abstract
Infectious bronchitis (IB) of chickens is a highly contagious disease characterized by damage of the respiratory system and reproductive organs in young animals caused by a virus of the genus Gamma coronavirus. The condition of the respiratory system caused by the IB virus in chickens has many similarities with the pathology of the respiratory system caused by SARS-CoV-2 in humans. The effectiveness of virucidal drugs (Argovit, Triviron, Ecocid, and lauric acid monoglyceride) was tested on chickens inoculated with a tenfold dose of a vaccine strain based on the attenuated virus H120 against IB of chickens. On the 6th day after inoculation, inflammatory changes in the intestines, lungs, and thymus were observed in the control group. The experimental groups were characterized by less pronounced inflammatory reactions and a lower proportion of thymus and lung probes containing genomic IB virus RNA. Since the virucidal activity of four orally administrated formulations was possible only in the intestine, the experimental data indirectly confirmed the hypothesis of the possibility of the predominant accumulation of coronaviruses in the intestine and subsequent lung damage due to the hematogenous redistribution of viral particles and IBV antigens. It was suggested that other coronaviruses including SARS-CoV-2 can implement a similar mechanism.
Collapse
Affiliation(s)
- Ekaterina Nefedova
- Siberian Federal Scientific Center of Agro-BioTechnologies of Russian Academy of Sciences, Novosibirsk Region, Novosibirsk District, 630501 Krasnoobsk, Russia; (E.N.); (V.K.); (A.S.B.); (V.C.); (T.M.); (V.A.); (N.S.); (N.D.); (N.D.)
| | - Vyacheslav Koptev
- Siberian Federal Scientific Center of Agro-BioTechnologies of Russian Academy of Sciences, Novosibirsk Region, Novosibirsk District, 630501 Krasnoobsk, Russia; (E.N.); (V.K.); (A.S.B.); (V.C.); (T.M.); (V.A.); (N.S.); (N.D.); (N.D.)
| | - Anna S. Bobikova
- Siberian Federal Scientific Center of Agro-BioTechnologies of Russian Academy of Sciences, Novosibirsk Region, Novosibirsk District, 630501 Krasnoobsk, Russia; (E.N.); (V.K.); (A.S.B.); (V.C.); (T.M.); (V.A.); (N.S.); (N.D.); (N.D.)
- Molecular Biology Department, Federal State Budgetary Educational Institution Higher Education Novosibirsk State Agrarian University, 630090 Novosibirsk, Russia;
| | - Viktoria Cherepushkina
- Siberian Federal Scientific Center of Agro-BioTechnologies of Russian Academy of Sciences, Novosibirsk Region, Novosibirsk District, 630501 Krasnoobsk, Russia; (E.N.); (V.K.); (A.S.B.); (V.C.); (T.M.); (V.A.); (N.S.); (N.D.); (N.D.)
| | - Tatyana Mironova
- Siberian Federal Scientific Center of Agro-BioTechnologies of Russian Academy of Sciences, Novosibirsk Region, Novosibirsk District, 630501 Krasnoobsk, Russia; (E.N.); (V.K.); (A.S.B.); (V.C.); (T.M.); (V.A.); (N.S.); (N.D.); (N.D.)
- Molecular Biology Department, Federal State Budgetary Educational Institution Higher Education Novosibirsk State Agrarian University, 630090 Novosibirsk, Russia;
| | - Vasily Afonyushkin
- Siberian Federal Scientific Center of Agro-BioTechnologies of Russian Academy of Sciences, Novosibirsk Region, Novosibirsk District, 630501 Krasnoobsk, Russia; (E.N.); (V.K.); (A.S.B.); (V.C.); (T.M.); (V.A.); (N.S.); (N.D.); (N.D.)
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia;
| | - Nikolai Shkil
- Siberian Federal Scientific Center of Agro-BioTechnologies of Russian Academy of Sciences, Novosibirsk Region, Novosibirsk District, 630501 Krasnoobsk, Russia; (E.N.); (V.K.); (A.S.B.); (V.C.); (T.M.); (V.A.); (N.S.); (N.D.); (N.D.)
| | - Nikolai Donchenko
- Siberian Federal Scientific Center of Agro-BioTechnologies of Russian Academy of Sciences, Novosibirsk Region, Novosibirsk District, 630501 Krasnoobsk, Russia; (E.N.); (V.K.); (A.S.B.); (V.C.); (T.M.); (V.A.); (N.S.); (N.D.); (N.D.)
| | - Yulia Kozlova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia;
| | - Natalia Sigareva
- Molecular Biology Department, Federal State Budgetary Educational Institution Higher Education Novosibirsk State Agrarian University, 630090 Novosibirsk, Russia;
| | - Natalia Davidova
- Siberian Federal Scientific Center of Agro-BioTechnologies of Russian Academy of Sciences, Novosibirsk Region, Novosibirsk District, 630501 Krasnoobsk, Russia; (E.N.); (V.K.); (A.S.B.); (V.C.); (T.M.); (V.A.); (N.S.); (N.D.); (N.D.)
| | - Nina Bogdanchikova
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada 22860, BC, Mexico
| | - Alexey Pestryakov
- Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia;
| | - Yanis Toledano-Magaña
- Escuela de Ciencias de la Salud Unidad Valle Dorado, Universidad Autónoma de Baja California, Ensenada 22890, BC, Mexico
| |
Collapse
|
30
|
Shah S, Chougule MB, Kotha AK, Kashikar R, Godugu C, Raghuvanshi RS, Singh SB, Srivastava S. Nanomedicine based approaches for combating viral infections. J Control Release 2021; 338:80-104. [PMID: 34375690 PMCID: PMC8526416 DOI: 10.1016/j.jconrel.2021.08.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 12/12/2022]
Abstract
Millions of people die each year from viral infections across the globe. There is an urgent need to overcome the existing gap and pitfalls of the current antiviral therapy which include increased dose and dosing frequency, bioavailability challenges, non-specificity, incidences of resistance and so on. These stumbling blocks could be effectively managed by the advent of nanomedicine. Current review emphasizes over an enhanced understanding of how different lipid, polymer and elemental based nanoformulations could be potentially and precisely used to bridle the said drawbacks in antiviral therapy. The dawn of nanotechnology meeting vaccine delivery, role of RNAi therapeutics in antiviral treatment regimen, various regulatory concerns towards clinical translation of nanomedicine along with current trends and implications including unexplored research avenues for advancing the current drug delivery have been discussed in detail.
Collapse
Affiliation(s)
- Saurabh Shah
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Mahavir Bhupal Chougule
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, MS, USA; Department Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| | - Arun K Kotha
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, MS, USA; Department Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| | - Rama Kashikar
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, MS, USA; Department Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| | - Chandraiah Godugu
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Rajeev Singh Raghuvanshi
- Indian Pharmacopoeia Commission, Ministry of Health & Family Welfare, Government of India, India
| | - Shashi Bala Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| |
Collapse
|
31
|
Pilaquinga F, Morey J, Torres M, Seqqat R, Piña MDLN. Silver nanoparticles as a potential treatment against SARS-CoV-2: A review. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1707. [PMID: 33638618 PMCID: PMC7995207 DOI: 10.1002/wnan.1707] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 12/12/2022]
Abstract
Several human coronaviruses (HCoVs) are distinguished by the ability to generate epidemics or pandemics, with their corresponding diseases characterized by severe respiratory illness, such as that which occurs in severe acute respiratory syndrome (SARS-CoV), Middle East respiratory syndrome (MERS-CoV), and, today, in SARS-CoV-2, an outbreak that has struck explosively and uncontrollably beginning in December 2019 and has claimed the lives of more than 1.9 M people worldwide as of January 2021. The development of vaccines has taken one year, which is why it is necessary to investigate whether some already-existing alternatives that have been successfully developed in recent years can mitigate the pandemic's advance. Silver nanoparticles (AgNPs) have proved effective in antiviral action. Thus, in this review, several in vitro and in vivo studies of the effect of AgNPs on viruses that cause respiratory diseases are analyzed and discussed to promote an understanding of the possible interaction of AgNPs with SARS-CoV-2. The study focuses on several in vivo toxicological studies of AgNPs and a dose extrapolation to humans to determine the chief avenue of exposure. It can be concluded that the use of AgNPs as a possible treatment for SARS-CoV-2 could be viable, based on comparing the virus' behavior to that of similar viruses in in vivo studies, and that the suggested route of administration in terms of least degree of adverse effects is inhalation. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Respiratory Disease Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials.
Collapse
Affiliation(s)
- Fernanda Pilaquinga
- School of Chemistry SciencesPontificia Universidad Católica del EcuadorQuitoEcuador
- Department of ChemistryUniversity of the Balearic IslandsPalma de MallorcaSpain
| | - Jeroni Morey
- Department of ChemistryUniversity of the Balearic IslandsPalma de MallorcaSpain
| | - Marbel Torres
- Immunology and Virology Laboratory, Nanoscience and Nanotechnology CenterUniversidad de las Fuerzas Armadas, ESPESangolquíEcuador
| | - Rachid Seqqat
- Immunology and Virology Laboratory, Nanoscience and Nanotechnology CenterUniversidad de las Fuerzas Armadas, ESPESangolquíEcuador
| | | |
Collapse
|
32
|
Almanza-Reyes H, Moreno S, Plascencia-López I, Alvarado-Vera M, Patrón-Romero L, Borrego B, Reyes-Escamilla A, Valencia-Manzo D, Brun A, Pestryakov A, Bogdanchikova N. Evaluation of silver nanoparticles for the prevention of SARS-CoV-2 infection in health workers: In vitro and in vivo. PLoS One 2021; 16:e0256401. [PMID: 34411199 PMCID: PMC8375774 DOI: 10.1371/journal.pone.0256401] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/05/2021] [Indexed: 12/19/2022] Open
Abstract
SARS-CoV-2 infection in hospital areas is of a particular concern, since the close interaction between health care personnel and patients diagnosed with COVID-19, which allows virus to be easily spread between them and subsequently to their families and communities. Preventing SARS-CoV-2 infection among healthcare personnel is essential to reduce the frequency of infections and outbreaks during the pandemic considering that they work in high-risk areas. In this research, silver nanoparticles (AgNPs) were tested in vitro and shown to have an inhibitory effect on SARS-CoV-2 infection in cultured cells. Subsequently, we assess the effects of mouthwash and nose rinse with ARGOVIT® silver nanoparticles (AgNPs), in the prevention of SARS-CoV-2 contagion in health workers consider as high-risk group of acquiring the infection in the General Tijuana Hospital, Mexico, a hospital for the exclusive recruitment of patients diagnosed with COVID-19. We present a prospective randomized study of 231 participants that was carried out for 9 weeks (during the declaration of a pandemic). The "experimental" group was instructed to do mouthwash and nose rinse with the AgNPs solution; the "control" group was instructed to do mouthwashes and nose rinse in a conventional way. The incidence of SARS-CoV-2 infection was significantly lower in the "experimental" group (two participants of 114, 1.8%) compared to the "control" group (thirty-three participants of 117, 28.2%), with an 84.8% efficiency. We conclude that the mouth and nasal rinse with AgNPs helps in the prevention of SARS-CoV-2 infection in health personnel who are exposed to patients diagnosed with COVID-19.
Collapse
Affiliation(s)
| | - Sandra Moreno
- National Research Institute for Agricultural and Food Technology, Valdeolmos, Madrid, Spain
| | - Ismael Plascencia-López
- Faculty of Accounting and Administration, Autonomous University of Baja California, Tijuana, Baja California, Mexico
| | - Martha Alvarado-Vera
- Cluster de Bioeconomía de Baja California, A.C., Tijuana, Baja California, Mexico
| | - Leslie Patrón-Romero
- Faculty of Medicine and Psychology, Autonomous University of Baja California, Tijuana, Baja California, Mexico
| | - Belén Borrego
- National Research Institute for Agricultural and Food Technology, Valdeolmos, Madrid, Spain
| | | | - Daniel Valencia-Manzo
- Tijuana General Hospital, Tijuana, Baja California, Mexico
- Nursing Postgraduate, Iberoamericana University, Tijuana, Baja California, México
| | - Alejandro Brun
- National Research Institute for Agricultural and Food Technology, Valdeolmos, Madrid, Spain
| | | | - Nina Bogdanchikova
- Center of Nanoscience and Nanotechnology, Autonomous University of Mexico, Ensenada, Baja California, Mexico
| |
Collapse
|
33
|
Castañeda-Yslas IY, Torres-Bugarín O, García-Ramos JC, Toledano-Magaña Y, Radilla-Chávez P, Bogdanchikova N, Pestryakov A, Ruiz-Ruiz B, Arellano-García ME. AgNPs Argovit™ Modulates Cyclophosphamide-Induced Genotoxicity on Peripheral Blood Erythrocytes In Vivo. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2096. [PMID: 34443926 PMCID: PMC8399516 DOI: 10.3390/nano11082096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/05/2021] [Accepted: 08/13/2021] [Indexed: 11/16/2022]
Abstract
Silver nanoparticles (AgNPs) have been studied worldwide for their potential biomedical applications. Specifically, they are proposed as a novel alternative for cancer treatment. However, the determination of their cytotoxic and genotoxic effects continues to limit their application. The commercially available silver nanoparticle Argovit™ has shown antineoplastic, antiviral, antibacterial, and tissue regenerative properties, activities triggered by its capacity to promote the overproduction of reactive oxygen species (ROS). Therefore, in this work, we evaluated the genotoxic and cytotoxic potential of the Argovit™ formulation (average size: 35 nm) on BALB/c mice using the micronucleus in a peripheral blood erythrocytes model. Besides, we evaluated the capability of AgNPs to modulate the genotoxic effect induced by cyclophosphamide (CP) after the administration of the oncologic agent. To achieve this, 5-6-week-old male mice with a mean weight of 20.11 ± 2.38 g were treated with water as negative control (Group 1), an single intraperitoneal dose of CP (50 mg/kg of body weight, Group 2), a daily oral dose of AgNPs (6 mg/kg of weight, Group 3) for three consecutive days, or a combination of these treatment schemes: one day of CP doses (50 mg/kg of body weight) followed by three doses of AgNPs (one dose per day, Group 4) and three alternate doses of CP and AgNPs (six days of exposure, Group 5). Blood samples were taken just before the first administration (0 h) and every 24 h for seven days. Our results show that Argovit™ AgNPs induced no significant cytotoxic or acute genotoxic damage. The observed cumulative genotoxic damage in this model could be caused by the accumulation of AgNPs due to administered consecutive doses. Furthermore, the administration of AgNPs after 24 h of CP seems to have a protective effect on bone marrow and reduces by up to 50% the acute genotoxic damage induced by CP. However, this protection is not enough to counteract several doses of CP. To our knowledge, this is the first time that the exceptional chemoprotective capacity produced by a non-cytotoxic silver nanoparticle formulation against CP genotoxic damage has been reported. These findings raise the possibility of using AgNPs as an adjuvant agent with current treatments, reducing adverse effects.
Collapse
Affiliation(s)
- Idalia Yazmin Castañeda-Yslas
- Programa de Maestría y Doctorado en Ciencias e Ingeniería (MyDCI), Facultad de Ciencias, Universidad Autónoma de Baja California, Ensenada 22860, Baja California, Mexico;
| | - Olivia Torres-Bugarín
- Departamento de Ciclo de Vida y Medicina Interna II, Decanato Ciencias de la Salud, Universidad Autónoma de Guadalajara, Zapopan 45129, Jalisco, Mexico;
| | - Juan Carlos García-Ramos
- Escuela de Ciencias de la Salud Unidad Valle Dorado, Universidad Autónoma de Baja California, Ensenada 22890, Baja California, Mexico; (Y.T.-M.); (P.R.-C.)
| | - Yanis Toledano-Magaña
- Escuela de Ciencias de la Salud Unidad Valle Dorado, Universidad Autónoma de Baja California, Ensenada 22890, Baja California, Mexico; (Y.T.-M.); (P.R.-C.)
| | - Patricia Radilla-Chávez
- Escuela de Ciencias de la Salud Unidad Valle Dorado, Universidad Autónoma de Baja California, Ensenada 22890, Baja California, Mexico; (Y.T.-M.); (P.R.-C.)
| | - Nina Bogdanchikova
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada 22860, Baja California, Mexico;
| | - Alexey Pestryakov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia;
| | - Balam Ruiz-Ruiz
- Departamento de Ciencias de la Salud, Unidad Regional Los Mochis, Universidad Autónoma de Occidente, Los Mochis 81223, Sinaloa, Mexico;
| | | |
Collapse
|
34
|
Ahmed SF, Mofijur M, Nuzhat S, Chowdhury AT, Rafa N, Uddin MA, Inayat A, Mahlia TMI, Ong HC, Chia WY, Show PL. Recent developments in physical, biological, chemical, and hybrid treatment techniques for removing emerging contaminants from wastewater. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125912. [PMID: 34492846 DOI: 10.1016/j.jhazmat.2021.125912] [Citation(s) in RCA: 201] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/07/2021] [Accepted: 04/14/2021] [Indexed: 05/25/2023]
Abstract
Emerging contaminants (ECs) in wastewater have recently attracted the attention of researchers as they pose significant risks to human health and wildlife. This paper presents the state-of-art technologies used to remove ECs from wastewater through a comprehensive review. It also highlights the challenges faced by existing EC removal technologies in wastewater treatment plants and provides future research directions. Many treatment technologies like biological, chemical, and physical approaches have been advanced for removing various ECs. However, currently, no individual technology can effectively remove ECs, whereas hybrid systems have often been found to be more efficient. A hybrid technique of ozonation accompanied by activated carbon was found significantly effective in removing some ECs, particularly pharmaceuticals and pesticides. Despite the lack of extensive research, nanotechnology may be a promising approach as nanomaterial incorporated technologies have shown potential in removing different contaminants from wastewater. Nevertheless, most existing technologies are highly energy and resource-intensive as well as costly to maintain and operate. Besides, most proposed advanced treatment technologies are yet to be evaluated for large-scale practicality. Complemented with techno-economic feasibility studies of the treatment techniques, comprehensive research and development are therefore necessary to achieve a full and effective removal of ECs by wastewater treatment plants.
Collapse
Affiliation(s)
- S F Ahmed
- Science and Math Program, Asian University for Women, Chattogram 4000, Bangladesh
| | - M Mofijur
- School of Information Systems and Modelling, Faculty of Engineering and Information Technology, University of Technology, Sydney, NSW 2007, Australia; Mechanical Engineering Department, Prince Mohammad Bin Fahd University, Al Khobar 31952, Saudi Arabia
| | - Samiha Nuzhat
- Environmental Sciences Program, Asian University for Women, Chattogram 4000, Bangladesh; Water and Life Bangladesh, Dhaka, Bangladesh
| | | | - Nazifa Rafa
- Environmental Sciences Program, Asian University for Women, Chattogram 4000, Bangladesh
| | - Md Alhaz Uddin
- Department of Civil Engineering, College of Engineering, Jouf University, Sakaka, Saudi Arabia
| | - Abrar Inayat
- Department of Sustainable and Renewable Energy Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates; Biomass & Bioenergy Research Group, Center for Sustainable Energy and Power Systems Research, Research Institute of Sciences and Engineering, University of Sharjah, 27272 Sharjah, United Arab Emirates
| | - T M I Mahlia
- School of Information Systems and Modelling, Faculty of Engineering and Information Technology, University of Technology, Sydney, NSW 2007, Australia
| | - Hwai Chyuan Ong
- School of Information Systems and Modelling, Faculty of Engineering and Information Technology, University of Technology, Sydney, NSW 2007, Australia
| | - Wen Yi Chia
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
35
|
Maduray K, Parboosing R. Metal Nanoparticles: a Promising Treatment for Viral and Arboviral Infections. Biol Trace Elem Res 2021; 199:3159-3176. [PMID: 33029761 PMCID: PMC7540915 DOI: 10.1007/s12011-020-02414-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/28/2020] [Indexed: 12/12/2022]
Abstract
Globally, viral diseases continue to pose a significant threat to public health. Recent outbreaks, such as influenza, coronavirus, Ebola, and dengue, have emphasized the urgent need for new antiviral therapeutics. Considerable efforts have focused on developing metal nanoparticles for the treatment of several pathogenic viruses. As a result of these efforts, metal nanoparticles are demonstrating promising antiviral activity against pathogenic surrogates and clinical isolates. This review summarizes the application of metal nanoparticles for the treatment of viral infections. It provides information on synthesis methods, size-related properties, nano-bio-interaction, and immunological effects of metal nanoparticles. This article also addresses critical criteria and considerations for developing clinically translatable nanosized metal particles to treat viral diseases.
Collapse
Affiliation(s)
- Kaminee Maduray
- Department of Virology, University of KwaZulu-Natal/National Health Laboratory Service, Durban, South Africa.
| | - Raveen Parboosing
- Department of Virology, University of KwaZulu-Natal/National Health Laboratory Service, Durban, South Africa
| |
Collapse
|
36
|
ELSaidy N, Kirella A, El-Kassas S, Dawood MAO, Abouelenien F. Reducing the Abundance of Harmful Bacteria of Rooftop Tank-Stored Drinking Water Using Silver Nanoparticles and Acetic Acid and Its Impact on Japanese Quail Growth Performances. Biol Trace Elem Res 2021; 199:3062-3072. [PMID: 33034010 DOI: 10.1007/s12011-020-02422-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/01/2020] [Indexed: 12/01/2022]
Abstract
This study evaluated the microbial diversity of rooftop tank-stored drinking water consumed by Japanese quail (Coturnix coturnix japonica) using silver nanoparticles (AgNPs) and acetic acid (AC) and their mixture. Japanese quails (2 weeks old) of two different plumage colors, white and brown, were divided into four groups. In group 1 (control), birds received rooftop tank-stored water. In groups 2, 3, and 4, birds received rooftop tank-stored water treated with AC (0.5 mL/L), AgNPs (0.1 mg/L), or both AC and AgNPs. A reduction in the total coliform count was observed for AgNP- and AC-treated water after 2 h, 24 h, 48 h, and 5 days (P < 0.05). Growth rates and feed intake in both white- and brown-feathered quails were also increased using both AC and AgNPs (P < 0.05). A significant decrease in water consumption was observed in the brown-feathered quails, whereas the white-feathered quails drank more water (P < 0.05). Meanwhile, serum parameters remained unchanged in the white-feathered quails using both AC or/and AgNP purifiers (P > 0.05), whereas brown-feathered quails receiving water treated with AC or both AC and AgNPs displayed a significant increase in serum total protein and hemoglobin compared with quails receiving water treated with AgNPs alone or non-treated water (P < 0.05). Cholesterol and triglycerides levels were significantly increased when using both AC or/and AgNP purifiers (P < 0.05). In conclusion, both AgNPs and AC are recommended as efficient purifiers to eliminate pathogenic bacteria and to increase the growth performance and health condition of white- and brown-feathered Japanese quail birds.
Collapse
Affiliation(s)
- Nagham ELSaidy
- Department of Hygiene and Preventive Medicine, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Shaikh, 33516, Egypt
| | - Abeer Kirella
- Poultry Physiology, Poultry Production Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Shaikh, 33516, Egypt
| | - Seham El-Kassas
- Animal, Poultry and Fish Breeding and Production, Department of Animal Wealth Development, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Shaikh, Egypt
| | - Mahmoud A O Dawood
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Shaikh, 33516, Egypt.
| | - Fatma Abouelenien
- Department of Hygiene and Preventive Medicine, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Shaikh, 33516, Egypt
| |
Collapse
|
37
|
Shehu IA, Auwal NM, Musa MK, Mukhtar A, Yusuf MS, Yau AA, Muhammad M, Baba Dala Y, Sani SA, Ahmad MS, Islam M. Innovative Nanotechnology a Boon for Fight Against Pandemic COVID–19. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2021.651308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
COVID – 19 is a contagious disease caused by severe acute respiratory syndrome (SARS-CoV2). The rate at which COVID – 19-virus spread from epidemic to pandemic within a short period is quite alarming. As of July 2020, the Dashboard of the World Health Organization (WHO) recorded over 15 million COVID – 19 cases across 213 countries, with mortality of over 620,000. The governments and healthcare agencies responsible for mitigating the virus's spread have adopted several strategies to end the pandemic. However, all hands were on deck to establish the standard treatment modalities of SARS-CoV-2 through inventing new drugs, vaccine candidates, or repurposing the existing medicines and robust diagnostic tools, in addition to other technological innovations. Therefore, nanotechnology’s employment would play a vital role in bringing multidisciplinary ways of developing affordable, reliable, and powerful tools for diagnosis, in addition to personal protection and effective medicines. Additionally, nanosensors' application would significantly aid the diagnoses of the COVID–19 even on asymptomatic patients, and thus would be an essential means for determining its prevalence. Likewise, nanoscale fibers can optimize personal equipment protection and allow their reusability for medical and economic benefits. Accordingly, the literature was intensively reviewed by searching for the combinations of the research keywords in the official scientific databases such as Science Direct, PubMed, and Google Scholar. Hence, this research highlighted the perspective contributions of nanotechnology in the war against the COVID-19 pandemic.
Collapse
|
38
|
Luna-Vázquez-Gómez R, Arellano-García ME, García-Ramos JC, Radilla-Chávez P, Salas-Vargas DS, Casillas-Figueroa F, Ruiz-Ruiz B, Bogdanchikova N, Pestryakov A. Hemolysis of Human Erythrocytes by Argovit™ AgNPs from Healthy and Diabetic Donors: An In Vitro Study. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2792. [PMID: 34073953 PMCID: PMC8197390 DOI: 10.3390/ma14112792] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/12/2021] [Accepted: 05/20/2021] [Indexed: 12/13/2022]
Abstract
The use of nanomaterials is becoming increasingly widespread, leading to substantial research focused on nanomedicine. Nevertheless, the lack of complete toxicity profiles limits nanomaterials' uses, despite their remarkable diagnostic and therapeutic results on in vitro and in vivo models. Silver nanoparticles (AgNPs), particularly Argovit™, have shown microbicidal, virucidal, and antitumoral effects. Among the first-line toxicity tests is the hemolysis assay. Here, the hemolytic effect of Argovit™ AgNPs on erythrocytes from one healthy donor (HDE) and one diabetic donor (DDE) is evaluated by the hemolysis assay against AgNO3. The results showed that Argovit™, in concentrations ≤24 µg/mL of metallic silver, did not show a hemolytic effect on the HDE or DDE. On the contrary, AgNO3 at the same concentration of silver ions produces more than 10% hemolysis in both the erythrocyte types. In all the experimental conditions assessed, the DDE was shown to be more prone to hemolysis than the HDE elicited by Ag+ ions or AgNPs, but much more evident with Ag+ ions. The results show that Argovit™ is the least hemolytic compared with the other twenty-two AgNP formulations previously reported, probably due to the polymer mass used to stabilize the Argovit™ formulation. The results obtained provide relevant information that contributes to obtaining a comprehensive toxicological profile to design safe and effective AgNP formulations.
Collapse
Affiliation(s)
- Roberto Luna-Vázquez-Gómez
- Facultad de Ciencias, Universidad Autónoma de Baja California (UABC), Ensenada 22860, Baja California, Mexico; (R.L.-V.-G.); (F.C.-F.)
| | - María Evarista Arellano-García
- Facultad de Ciencias, Universidad Autónoma de Baja California (UABC), Ensenada 22860, Baja California, Mexico; (R.L.-V.-G.); (F.C.-F.)
| | - Juan Carlos García-Ramos
- Escuela de Ciencias de la Salud, Unidad Valle Dorado, Ensenada 22890, Baja California, Mexico; (P.R.-C.); (D.S.S.-V.)
| | - Patricia Radilla-Chávez
- Escuela de Ciencias de la Salud, Unidad Valle Dorado, Ensenada 22890, Baja California, Mexico; (P.R.-C.); (D.S.S.-V.)
| | - David Sergio Salas-Vargas
- Escuela de Ciencias de la Salud, Unidad Valle Dorado, Ensenada 22890, Baja California, Mexico; (P.R.-C.); (D.S.S.-V.)
| | - Francisco Casillas-Figueroa
- Facultad de Ciencias, Universidad Autónoma de Baja California (UABC), Ensenada 22860, Baja California, Mexico; (R.L.-V.-G.); (F.C.-F.)
| | - Balam Ruiz-Ruiz
- Departamento de Ciencias de la Salud, Unidad Regional Los Mochis, Universidad Autónoma de Occidente, Los Mochis 81223, Sinaloa, Mexico;
| | - Nina Bogdanchikova
- Nanoscience and Nanotechnology Center (CNyN), National Autonomous University of Mexico (UNAM), Mexico City 58089, Distrito Federal, Mexico;
| | - Alexey Pestryakov
- Research School of Chemistry & Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
| |
Collapse
|
39
|
García-Serradilla M, Risco C. Light and electron microscopy imaging unveils new aspects of the antiviral capacity of silver nanoparticles in bunyavirus-infected cells. Virus Res 2021; 302:198444. [PMID: 33961898 DOI: 10.1016/j.virusres.2021.198444] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 04/21/2021] [Accepted: 05/01/2021] [Indexed: 10/21/2022]
Abstract
Drug repurposing is an important source of new antivirals because many compounds used to treat a variety of pathologies also hamper viral infections. Habitually, silver nanoparticles (AgNPs) have been used to treat bacterial and fungal infections and their antiviral properties have been also reported. In this work, we have studied the antiviral capacity of AgNPs in cells infected with Bunyamwera virus (BUNV), the prototype of the Bunyavirales order. This group of viruses contains important pathogens for humans, animals and plants. Incubation of BUNV-infected Vero cells with non-toxic concentrations of AgNPs, reduced the production of extracellular infectious viruses in up to three orders of magnitude. With a combination of imaging techniques, we have visualized the intracellular distribution of AgNPs in mock- and BUNV-infected cells and studied their effects on intracellular organelles. In mock-infected cells and at short times post-incubation, AgNPs were detected inside nuclei and mitochondria by transmission electron microscopy (TEM). At long times post-treatment, they accumulated inside lysosome-like organelles. Cell compartments did not exhibit any appreciable ultrastructural alterations after incubation with AgNPs. In BUNV-infected cells, AgNPs attached to extracellular virions, that showed a disrupted morphology. Inside cells, they were detected inside the nucleus, in mitochondria and around characteristic Golgi-associated, single-membrane spherules. These membranous structures are the replication organelles (ROs) of bunyaviruses and contain active viral replication complexes (VRCs). Compared to normal spherules that are round, compact and have an electron-dense core, spherules in AgNPs-treated cells were deformed and their core was electron-lucent. Interestingly, in BUNV-infected cells treated with the typical antiviral ribavirin (RBV), spherules with VRCs exhibit also an anomalous morphology and an electron-lucent core. Both AgNPs and RBV might interfere with BUNV-induced dismantling of cell nucleoli and with the intercellular propagation of large groups of virions, a mechanism of BUNV transmission observed for the first time in cultured cells. Our results point to silver nanoparticles as good candidates for antiviral therapy, either alone or in combination with other antiviral drugs, such as RBV-related compounds.
Collapse
Affiliation(s)
- Moisés García-Serradilla
- Cell Structure Laboratory, National Center for Biotechnology, CNB-CSIC, Campus UAM, Cantoblanco, 28049, Madrid, Spain
| | - Cristina Risco
- Cell Structure Laboratory, National Center for Biotechnology, CNB-CSIC, Campus UAM, Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
40
|
Chávez-Sánchez MC, Abad-Rosales S, Lozano-Olvera R, Montoya-Rodríguez L, Franco-Nava MÁ, Mejía-Ruíz CH, Pestryakov A, Bogdanchikova N. Silver nanoparticles induce histopathological alterations in juvenile Penaeus vannamei. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:8224-8234. [PMID: 33052563 DOI: 10.1007/s11356-020-11175-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
The objective of this study was to evaluate the histopathological alterations in juvenile Penaeus vannamei caused by silver nanoparticles (AgNPs) for two types of experiments: at sublethal concentrations of 3.6 to 7.1 μg/μL of metallic silver (Ag) for a short period up to 72 h and for 2.6 to 7.9 μg of Ag/μL for the long period up to 264 h. The severity degree of the changes was evaluated and the histopathological index (Hi) was determined in both experiments using the necrosis (cellular dead) as an indicator. The pathological changes in the striated muscle, gills, antennal gland, circulatory system, heart, lymphoid organ, and connective tissue are described. The histopathological effects were similar for the two experiments without a direct relationship with the concentrations. In the short-term experiment, the values of Hi were higher (2.34 ± 0.41 at 48 hpi and 1.91 ± 0.39 at 72 hpi) compared with the long-term experiment (values between 0.57 ± 0.36 to 1.74 ± 0.57 at 264 hpi). The observed pathologies are similar to those caused by other metals, with the exception of the agglomerations of black particles in the gills, lymphoid organ, and muscle, which has not been previously reported. This work shows that silver nanoparticles cause damage to shrimp in sublethal concentrations.
Collapse
Affiliation(s)
- María-Cristina Chávez-Sánchez
- Mazatlan Unit of the Research Center for Food and Development, Unidad Mazatlán del CIAD, A.C. Av. Sábalo-Cerritos s/n, 82112, Mazatlán, Sinaloa, Mexico.
| | - Selene Abad-Rosales
- Mazatlan Unit of the Research Center for Food and Development, Unidad Mazatlán del CIAD, A.C. Av. Sábalo-Cerritos s/n, 82112, Mazatlán, Sinaloa, Mexico
| | - Rodolfo Lozano-Olvera
- Mazatlan Unit of the Research Center for Food and Development, Unidad Mazatlán del CIAD, A.C. Av. Sábalo-Cerritos s/n, 82112, Mazatlán, Sinaloa, Mexico
| | - Leobardo Montoya-Rodríguez
- Mazatlan Unit of the Research Center for Food and Development, Unidad Mazatlán del CIAD, A.C. Av. Sábalo-Cerritos s/n, 82112, Mazatlán, Sinaloa, Mexico
| | - Miguel Ángel Franco-Nava
- Technological Institute of Mazatlán, Calle Corsario 1 No. 203 Col. Urías, A.P 757, 82070, Mazatlán, Sinaloa, Mexico
| | - Claudio Humberto Mejía-Ruíz
- The Northwestern Center of Biological Research, National Polytechnic Institute, s/n Playa Palo de Santa Rita, 23096, La Paz, Baja California, Mexico
| | | | - Nina Bogdanchikova
- Center of Nanosciences and Nanotechnology, National Autonomous University of México, Km 107 Carretera Tijuana-Ensenada, Ensenada, Baja California, Mexico
| |
Collapse
|
41
|
Minakshi P, Ghosh M, Kumar R, Brar B, Lambe UP, Banerjee S, Ranjan K, Kumar B, Goel P, Malik YS, Prasad G. An Insight into Nanomedicinal Approaches to Combat Viral Zoonoses. Curr Top Med Chem 2021; 20:915-962. [PMID: 32209041 DOI: 10.2174/1568026620666200325114400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/31/2019] [Accepted: 12/31/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Emerging viral zoonotic diseases are one of the major obstacles to secure the "One Health" concept under the current scenario. Current prophylactic, diagnostic and therapeutic approaches often associated with certain limitations and thus proved to be insufficient for customizing rapid and efficient combating strategy against the highly transmissible pathogenic infectious agents leading to the disastrous socio-economic outcome. Moreover, most of the viral zoonoses originate from the wildlife and poor knowledge about the global virome database renders it difficult to predict future outbreaks. Thus, alternative management strategy in terms of improved prophylactic vaccines and their delivery systems; rapid and efficient diagnostics and effective targeted therapeutics are the need of the hour. METHODS Structured literature search has been performed with specific keywords in bibliographic databases for the accumulation of information regarding current nanomedicine interventions along with standard books for basic virology inputs. RESULTS Multi-arrayed applications of nanomedicine have proved to be an effective alternative in all the aspects regarding the prevention, diagnosis, and control of zoonotic viral diseases. The current review is focused to outline the applications of nanomaterials as anti-viral vaccines or vaccine/drug delivery systems, diagnostics and directly acting therapeutic agents in combating the important zoonotic viral diseases in the recent scenario along with their potential benefits, challenges and prospects to design successful control strategies. CONCLUSION This review provides significant introspection towards the multi-arrayed applications of nanomedicine to combat several important zoonotic viral diseases.
Collapse
Affiliation(s)
- Prasad Minakshi
- Department of Animal Biotechnology, LLR University of Veterinary and Animal Sciences, Hisar-125001, Haryana, 125004, India
| | - Mayukh Ghosh
- Department of Veterinary Physiology and Biochemistry, RGSC, Banaras Hindu University, Mirzapur (UP) - 231001, India
| | - Rajesh Kumar
- Department of Veterinary Physiology and Biochemistry, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar-125001, Haryana, 125004, India
| | - Basanti Brar
- Department of Animal Biotechnology, LLR University of Veterinary and Animal Sciences, Hisar-125001, Haryana, 125004, India
| | - Upendra P Lambe
- Department of Animal Biotechnology, LLR University of Veterinary and Animal Sciences, Hisar-125001, Haryana, 125004, India
| | - Somesh Banerjee
- Department of Veterinary Microbiology, Immunology Section, LUVAS, Hisar-125004, India
| | - Koushlesh Ranjan
- Department of Veterinary Physiology and Biochemistry, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, 250110, India
| | | | - Parveen Goel
- Department of Veterinary Medicine, LLR University of Veterinary and Animal Sciences, Hisar, Haryana, 125004, India
| | - Yashpal S Malik
- Division of Standardisation, Indian Veterinary Research Institute Izatnagar - Bareilly (UP) - 243122, India
| | - Gaya Prasad
- Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, UP, 250110, India
| |
Collapse
|
42
|
New Protein-Coated Silver Nanoparticles: Characterization, Antitumor and Amoebicidal Activity, Antiproliferative Selectivity, Genotoxicity, and Biocompatibility Evaluation. Pharmaceutics 2021; 13:pharmaceutics13010065. [PMID: 33430184 PMCID: PMC7825588 DOI: 10.3390/pharmaceutics13010065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 02/06/2023] Open
Abstract
Nanomaterials quickly evolve to produce safe and effective biomedical alternatives, mainly silver nanoparticles (AgNPs). The AgNPs' antibacterial, antiviral, and antitumor properties convert them into a recurrent scaffold to produce new treatment options. This work reported the full characterization of a highly biocompatible protein-coated AgNPs formulation and their selective antitumor and amoebicidal activity. The protein-coated AgNPs formulation exhibits a half-inhibitory concentration (IC50) = 19.7 µM (2.3 µg/mL) that is almost 10 times more potent than carboplatin (first-line chemotherapeutic agent) to inhibit the proliferation of the highly aggressive human adenocarcinoma HCT-15. The main death pathway elicited by AgNPs on HCT-15 is apoptosis, which is probably stimulated by reactive oxygen species (ROS) overproduction on mitochondria. A concentration of 111 µM (600 µg/mL) of metallic silver contained in AgNPs produces neither cytotoxic nor genotoxic damage on human peripheral blood lymphocytes. Thus, the AgNPs formulation evaluated in this work improves both the antiproliferative potency on HCT-15 cultures and cytotoxic selectivity ten times more than carboplatin. A similar mechanism is suggested for the antiproliferative activity observed on HM1-IMSS trophozoites (IC50 = 69.2 µM; 7.4 µg/mL). There is no change in cell viability on mice primary cultures of brain, liver, spleen, and kidney exposed to an AgNPs concentration range from 5.5 µM to 5.5 mM (0.6 to 600 µg/mL). The lethal dose was determined following the OECD guideline 420 for Acute Oral Toxicity Assay, obtaining an LD50 = 2618 mg of Ag/Kg body weight. All mice survived the observational period; the histopathology and biochemical analysis show no differences compared with the negative control group. In summary, all results from toxicological evaluation suggest a Category 5 (practically nontoxic) of the Globally Harmonized System of Classification and Labelling of Chemicals for that protein-coated AgNPs after oral administration for a short period and urge the completion of its preclinical toxicological profile. These findings open new opportunities in the development of selective, safe, and effective AgNPs formulations for the treatment of cancer and parasitic diseases with a significant reduction of side effects.
Collapse
|
43
|
Nanoparticles as a novel and promising antiviral platform in veterinary medicine. Arch Virol 2021; 166:2673-2682. [PMID: 34297222 PMCID: PMC8298697 DOI: 10.1007/s00705-021-05177-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/31/2021] [Indexed: 02/07/2023]
Abstract
Traditional veterinary virus vaccines, such as inactivated and live-attenuated vaccines, have achieved tremendous success in controlling many viral diseases of livestock and chickens worldwide. However, many recent viral outbreaks caused by different emerging and re-emerging viruses continue to be reported annually worldwide. It is therefore necessary to develop new control regimens. Nanoparticle research has received considerable attention in the last two decades as a promising platform with significant success in veterinary medicine, replacing traditional viral vector vaccines. However, the field of nanoparticle applications is still in its initial phase of growth. Here, we discuss various preparation methods, characteristics, physical properties, antiviral effects, and pharmacokinetics of well-developed nanoparticles and the potential of nanoparticles or nano-vaccines as a promising antiviral platform for veterinary medicine.
Collapse
|
44
|
Patil VM, Singhal S, Masand N. A systematic review on use of aminoquinolines for the therapeutic management of COVID-19: Efficacy, safety and clinical trials. Life Sci 2020; 254:117775. [PMID: 32418894 PMCID: PMC7211740 DOI: 10.1016/j.lfs.2020.117775] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 05/07/2020] [Indexed: 01/08/2023]
Abstract
Recent global outbreak of the pandemic caused by coronavirus (COVID-19) emphasizes the urgent need for novel antiviral therapeutics. It can be supplemented by utilization of efficient and validated drug discovery approaches such as drug repurposing/repositioning. The well reported and clinically used anti-malarial aminoquinoline drugs (chloroquine and hydroxychloroquine) have shown potential to be repurposed to control the present pandemic by inhibition of COVID-19. The review elaborates the mechanism of action, safety (side effects, adverse effects, toxicity) and details of clinical trials for chloroquine and hydroxychloroquine to benefit the clinicians, medicinal chemist, pharmacologist actively involved in controlling the pandemic and to provide therapeutics for the treatment of COVID-19 infection.
Collapse
Affiliation(s)
- Vaishali M Patil
- Computer Aided Drug Design Lab, KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, India.
| | - Shipra Singhal
- Computer Aided Drug Design Lab, KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, India
| | - Neeraj Masand
- Department of Pharmacy, Lala Lajpat Rai Memorial Medical College, Meerut, Uttar Pradesh, India
| |
Collapse
|
45
|
Casillas-Figueroa F, Arellano-García ME, Leyva-Aguilera C, Ruíz-Ruíz B, Luna Vázquez-Gómez R, Radilla-Chávez P, Chávez-Santoscoy RA, Pestryakov A, Toledano-Magaña Y, García-Ramos JC, Bogdanchikova N. Argovit™ Silver Nanoparticles Effects on Allium cepa: Plant Growth Promotion without Cyto Genotoxic Damage. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1386. [PMID: 32708646 PMCID: PMC7408422 DOI: 10.3390/nano10071386] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/05/2020] [Accepted: 07/13/2020] [Indexed: 12/15/2022]
Abstract
Due to their antibacterial and antiviral effects, silver nanoparticles (AgNP) are one of the most widely used nanomaterials worldwide in various industries, e.g., in textiles, cosmetics and biomedical-related products. Unfortunately, the lack of complete physicochemical characterization and the variety of models used to evaluate its cytotoxic/genotoxic effect make comparison and decision-making regarding their safe use difficult. In this work, we present a systematic study of the cytotoxic and genotoxic activity of the commercially available AgNPs formulation Argovit™ in Allium cepa. The evaluated concentration range, 5-100 µg/mL of metallic silver content (85-1666 µg/mL of complete formulation), is 10-17 times higher than the used for other previously reported polyvinylpyrrolidone (PVP)-AgNP formulations and showed no cytotoxic or genotoxic damage in Allium cepa. Conversely, low concentrations (5 and 10 µg/mL) promote growth without damage to roots or bulbs. Until this work, all the formulations of PVP-AgNP evaluated in Allium cepa regardless of their size, concentration, or the exposure time had shown phytotoxicity. The biological response observed in Allium cepa exposed to Argovit™ is caused by nanoparticles and not by silver ions. The metal/coating agent ratio plays a fundamental role in this response and must be considered within the key physicochemical parameters for the design and manufacture of safer nanomaterials.
Collapse
Affiliation(s)
- Francisco Casillas-Figueroa
- Escuela de Ciencias de la Salud, UABC, Blvd. Zertuche y Blvd., De los Lagos S/N Fracc, Valle Dorado, 22890 Ensenada, Baja California, Mexico; (F.C.-F.); (R.L.V.-G.); (P.R.-C.); (Y.T.-M.)
| | - María Evarista Arellano-García
- Facultad de Ciencias, UABC, Carretera Transpeninsular Ensenada-Tijuana No. 3917 Col. Playitas, 22860 Ensenada, Baja California, Mexico;
| | - Claudia Leyva-Aguilera
- Facultad de Ciencias, UABC, Carretera Transpeninsular Ensenada-Tijuana No. 3917 Col. Playitas, 22860 Ensenada, Baja California, Mexico;
| | - Balam Ruíz-Ruíz
- Facultad de Medicina extensión los Mochis, Universidad Autónoma de Sinaloa, Av. Ángel Flores s/n, Ciudad Universitaria, 81223 Los Mochis, Sinaloa, Mexico;
| | - Roberto Luna Vázquez-Gómez
- Escuela de Ciencias de la Salud, UABC, Blvd. Zertuche y Blvd., De los Lagos S/N Fracc, Valle Dorado, 22890 Ensenada, Baja California, Mexico; (F.C.-F.); (R.L.V.-G.); (P.R.-C.); (Y.T.-M.)
| | - Patricia Radilla-Chávez
- Escuela de Ciencias de la Salud, UABC, Blvd. Zertuche y Blvd., De los Lagos S/N Fracc, Valle Dorado, 22890 Ensenada, Baja California, Mexico; (F.C.-F.); (R.L.V.-G.); (P.R.-C.); (Y.T.-M.)
| | - Rocío Alejandra Chávez-Santoscoy
- Centro de Biotecnología-FEMSA, Escuela de Ingeniería y Ciencias, ITESM, Monterrey, Eugenio Garza Sada, 2501 Sur, 64849 Monterrey, Nuevo León, Mexico;
| | - Alexey Pestryakov
- Department of Technology of Organic Substances and Polymer Materials, Tomsk Polytechnic University, 634050 Tomsk, Russia;
| | - Yanis Toledano-Magaña
- Escuela de Ciencias de la Salud, UABC, Blvd. Zertuche y Blvd., De los Lagos S/N Fracc, Valle Dorado, 22890 Ensenada, Baja California, Mexico; (F.C.-F.); (R.L.V.-G.); (P.R.-C.); (Y.T.-M.)
| | - Juan Carlos García-Ramos
- Escuela de Ciencias de la Salud, UABC, Blvd. Zertuche y Blvd., De los Lagos S/N Fracc, Valle Dorado, 22890 Ensenada, Baja California, Mexico; (F.C.-F.); (R.L.V.-G.); (P.R.-C.); (Y.T.-M.)
| | - Nina Bogdanchikova
- Centro de Nanociencias y Nanotecnología, UNAM, Carretera Tijuana-Ensenada Km 107, 22860 Ensenada, Baja California, Mexico;
| |
Collapse
|
46
|
Ruiz-Ruiz B, Arellano-García ME, Radilla-Chávez P, Salas-Vargas DS, Toledano-Magaña Y, Casillas-Figueroa F, Luna Vazquez-Gomez R, Pestryakov A, García-Ramos JC, Bogdanchikova N. Cytokinesis-Block Micronucleus Assay Using Human Lymphocytes as a Sensitive Tool for Cytotoxicity/Genotoxicity Evaluation of AgNPs. ACS OMEGA 2020; 5:12005-12015. [PMID: 32548379 PMCID: PMC7271025 DOI: 10.1021/acsomega.0c00149] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
Silver nanoparticles (AgNPs) are the most used nanomaterials worldwide due to their excellent antibacterial, antiviral, and antitumor activities, among others. However, there is scarce information regarding their genotoxic potential measured using human peripheral blood lymphocytes. In this work, we present the cytotoxic and genotoxic behavior of two commercially available poly(vinylpyrrolidone)-coated silver nanoparticle (PVP-AgNPs) formulations that can be identified as noncytotoxic and nongenotoxic by just evaluating micronuclei (MNi) induction and the mitotic index, but present enormous differences when other parameters such as cytostasis, apoptosis, necrosis, and nuclear damage (nuclear buds (NBUDs) and nucleoplasmic bridges (NPBs)) are analyzed. The results show that Argovit (35 nm PVP-AgNPs) and nanoComposix (50 nm PVP-AgNPs), at concentrations from 0.012 to 12 μg/mL, produce no changes in the nuclear division index (NDI) or micronuclei (MNi) frequency compared with the values found on control cultures of human blood peripheral lymphocytes from a healthy donor. Still, 50 nm PVP-AgNPs significantly decrease the replication index and significantly increase cytostasis, apoptosis, necrosis, and the frequencies of nuclear buds (NBUDs) and nucleoplasmic bridges (NPBs). These results provide evidence that the cytokinesis-block micronucleus (CBMN) assay using human lymphocytes and evaluating the eight parameters provided by the technique is a sensitive, fast, accurate, and inexpensive detection tool to support or discard AgNPs or other nanomaterials, which is worthwhile for continued testing of their effectiveness and toxicity for biomedical applications. In addition, it provides very important information about the role played by the [coating agent]/[metal] ratio in the design of nanomaterials that could reduce adverse effects as much as possible while retaining their therapeutic capabilities.
Collapse
Affiliation(s)
- Balam Ruiz-Ruiz
- Laboratorio
de Genotoxicología Ambiental, Facultad de Ciencias, Universidad Autónoma de Baja California, C.P. 22860 Ensenada, Baja California, México
| | - María Evarista Arellano-García
- Laboratorio
de Genotoxicología Ambiental, Facultad de Ciencias, Universidad Autónoma de Baja California, C.P. 22860 Ensenada, Baja California, México
| | - Patricia Radilla-Chávez
- Escuela
de Ciencias de la Salud, Universidad Autónoma
de Baja California, C.P.
22890 Ensenada, Baja California, México
| | - David Sergio Salas-Vargas
- Escuela
de Ciencias de la Salud, Universidad Autónoma
de Baja California, C.P.
22890 Ensenada, Baja California, México
| | - Yanis Toledano-Magaña
- Escuela
de Ciencias de la Salud, Universidad Autónoma
de Baja California, C.P.
22890 Ensenada, Baja California, México
| | - Francisco Casillas-Figueroa
- Escuela
de Ciencias de la Salud, Universidad Autónoma
de Baja California, C.P.
22890 Ensenada, Baja California, México
| | - Roberto Luna Vazquez-Gomez
- Escuela
de Ciencias de la Salud, Universidad Autónoma
de Baja California, C.P.
22890 Ensenada, Baja California, México
| | - Alexey Pestryakov
- Department
of Technology of Organic Substances and Polymer Materials, Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Juan Carlos García-Ramos
- Escuela
de Ciencias de la Salud, Universidad Autónoma
de Baja California, C.P.
22890 Ensenada, Baja California, México
| | - Nina Bogdanchikova
- Centro
de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, C.P. 22879 Ensenada, Baja California, México
| |
Collapse
|
47
|
Gonzalez-Valdivieso J, Borrego B, Girotti A, Moreno S, Brun A, Bermejo-Martin JF, Arias FJ. A DNA Vaccine Delivery Platform Based on Elastin-Like Recombinamer Nanosystems for Rift Valley Fever Virus. Mol Pharm 2020; 17:1608-1620. [PMID: 32233501 DOI: 10.1021/acs.molpharmaceut.0c00054] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This work analyzes the immunogenicity of six genetically engineered constructs based on elastin-like recombinamers (ELRs) fused to the Gn glycoprotein from Rift Valley fever virus (RVFV). Upon transfection, all constructs showed no effect on cell viability. While fusion constructs including ELR blocks containing hydrophobic amino acids (alanine or isoleucine) did not increase the expression of viral Gn in eukaryotic cells, glutamic acid- or valine-rich fusion proteins showed enhanced expression levels compared with the constructs encoding the viral antigen alone. However, in vivo DNA plasmid immunization assays determined that the more hydrophobic constructs reduced viremia levels after RVFV challenge to a higher extent than glutamic- or valine-rich encoding plasmids and were better inducers of cellular immunity as judged by in vitro restimulation experiments. Although the Gn-ELR fusion constructs did not surpass the protective efficacy of a plasmid vaccine expressing nonfused Gn, our results warrant further experiments directed to take advantage of the immunomodulatory potential of ELR biomaterials for improving vaccines against infectious diseases.
Collapse
Affiliation(s)
- Juan Gonzalez-Valdivieso
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology), CIBER-BBN, University of Valladolid, Paseo de Belén 19, 47011, Valladolid, Spain
| | - Belen Borrego
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Centro de Investigación en Sanidad Animal (CISA), Valdeolmos, 28130 Madrid, Spain
| | - Alessandra Girotti
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology), CIBER-BBN, University of Valladolid, Paseo de Belén 19, 47011, Valladolid, Spain
| | - Sandra Moreno
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Centro de Investigación en Sanidad Animal (CISA), Valdeolmos, 28130 Madrid, Spain
| | - Alejandro Brun
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Centro de Investigación en Sanidad Animal (CISA), Valdeolmos, 28130 Madrid, Spain
| | - Jesus F Bermejo-Martin
- Laboratory of Biomedical Research in Sepsis (BioSepsis), Hospital Universitario Río Hortega, Calle Dulzaina, 2, 47012 Valladolid, Spain.,Institute for Biomedical Research of Salamanca (IBSAL), Paseo de San Vicente, 58-182, 37007 Salamanca, Spain
| | - F Javier Arias
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology), CIBER-BBN, University of Valladolid, Paseo de Belén 19, 47011, Valladolid, Spain
| |
Collapse
|
48
|
Pfaff F, Glück B, Hoyer T, Rohländer D, Sauerbrei A, Zell R. Tungsten carbide nanoparticles show a broad spectrum virucidal activity against enveloped and nonenveloped model viruses using a guideline-standardized in vitro test. Lett Appl Microbiol 2019; 69:302-309. [PMID: 31436888 DOI: 10.1111/lam.13208] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/15/2019] [Accepted: 08/15/2019] [Indexed: 12/12/2022]
Abstract
Five tungsten carbide nanoparticle preparations (denoted WC1-WC5) were investigated for broad spectrum virucidal activity against four recommended model viruses. These are modified vaccinia virus Ankara (MVA), human adenovirus type 5 (HAdV-5), poliovirus type 1 (PV-1) and murine norovirus (MNV). All virucidal tests were performed two to five times using the quantitative suspension test, which is a highly standardized test method to evaluate the virucidal efficacy of disinfectants in accordance with the European norm EN 14476+A1 and the German DVV/RKI guidelines. Quantitative detection of viruses was conducted by endpoint titration and quantitative real-time PCR. Results showed that three of the five tested compounds (WC1-WC3) were able to reduce the infectivity of all model viruses by at least four log10 of tissue culture infective dose 50% per ml after 15 min, whereas the other two compounds exhibited only limited efficacy (WC4) or showed cytotoxicity (WC5). Virucidal activity of nanoparticles increased with incubation time and a dose-effect curve showed dependence of virucidal activity with particle concentration. Whereas WC1-WC4 showed little cytotoxicity, WC5 which was doped with copper exhibited a significant cytotoxic effect. These findings propose tungsten carbide nanoparticles to be very promising in terms of new disinfection techniques. SIGNIFICANCE AND IMPACT OF THE STUDY: The present study investigates the virucidal activity of tungsten carbide nanoparticles using the quantitative suspension test in accordance with the European norm EN 14476+A1 and the German DVV/RKI guidelines. Due to highly standardized assay conditions, results of this test are considered very reliable for evaluation of the virucidal activity of disinfectants. Broad-spectrum activity and high efficacy of three different tungsten carbide nanoparticles preparations is concluded.
Collapse
Affiliation(s)
- F Pfaff
- Section of Experimental Virology, Institute for Medical Microbiology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - B Glück
- Section of Experimental Virology, Institute for Medical Microbiology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - T Hoyer
- Fraunhofer-Institute for Ceramic Technologies and Systems, IKTS Hermsdorf, Hermsdorf, Germany
| | - D Rohländer
- Fraunhofer-Institute for Ceramic Technologies and Systems, IKTS Hermsdorf, Hermsdorf, Germany
| | - A Sauerbrei
- Section of Experimental Virology, Institute for Medical Microbiology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - R Zell
- Section of Experimental Virology, Institute for Medical Microbiology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
49
|
Vazquez-Muñoz R, Meza-Villezcas A, Fournier PGJ, Soria-Castro E, Juarez-Moreno K, Gallego-Hernández AL, Bogdanchikova N, Vazquez-Duhalt R, Huerta-Saquero A. Enhancement of antibiotics antimicrobial activity due to the silver nanoparticles impact on the cell membrane. PLoS One 2019; 14:e0224904. [PMID: 31703098 PMCID: PMC6839893 DOI: 10.1371/journal.pone.0224904] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/23/2019] [Indexed: 12/03/2022] Open
Abstract
The ability of microorganisms to generate resistance outcompetes with the generation of new and efficient antibiotics; therefore, it is critical to develop novel antibiotic agents and treatments to control bacterial infections. An alternative to this worldwide problem is the use of nanomaterials with antimicrobial properties. Silver nanoparticles (AgNPs) have been extensively studied due to their antimicrobial effect in different organisms. In this work, the synergistic antimicrobial effect of AgNPs and conventional antibiotics was assessed in Gram-positive and Gram-negative bacteria. AgNPs minimal inhibitory concentration was 10–12 μg mL-1 in all bacterial strains tested, regardless of their different susceptibility against antibiotics. Interestingly, a synergistic antimicrobial effect was observed when combining AgNPs and kanamycin according to the fractional inhibitory concentration index, FICI: <0.5), an additive effect by combining AgNPs and chloramphenicol (FICI: 0.5 to 1), whereas no effect was found with AgNPs and β-lactam antibiotics combinations. Flow cytometry and TEM analysis showed that sublethal concentrations of AgNPs (6–7 μg mL-1) altered the bacterial membrane potential and caused ultrastructural damage, increasing the cell membrane permeability. No chemical interactions between AgNPs and antibiotics were detected. We propose an experimental supported mechanism of action by which combinatorial effect of antimicrobials drives synergy depending on their specific target, facilitated by membrane alterations generated by AgNPs. Our results provide a deeper understanding about the synergistic mechanism of AgNPs and antibiotics, aiming to combat antimicrobial infections efficiently, especially those by multi-drug resistant microorganisms, in order to mitigate the current crisis due to antibiotic resistance.
Collapse
Affiliation(s)
- R. Vazquez-Muñoz
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada, Baja California, México
- Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, México
| | - A. Meza-Villezcas
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada, Baja California, México
- Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, México
| | - P. G. J. Fournier
- Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, México
| | - E. Soria-Castro
- Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
| | - K. Juarez-Moreno
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada, Baja California, México
| | | | - N. Bogdanchikova
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada, Baja California, México
| | - R. Vazquez-Duhalt
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada, Baja California, México
| | - A. Huerta-Saquero
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada, Baja California, México
- * E-mail:
| |
Collapse
|
50
|
|