1
|
Wang X, Hu M, Wu W, Lou X, Gao R, Ma T, Dheen ST, Cheng J, Xiong J, Chen X, Wang J. Indole derivatives ameliorated the methamphetamine-induced depression and anxiety via aryl hydrocarbon receptor along "microbiota-brain" axis. Gut Microbes 2025; 17:2470386. [PMID: 39996473 PMCID: PMC11864316 DOI: 10.1080/19490976.2025.2470386] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/24/2025] [Accepted: 02/17/2025] [Indexed: 02/26/2025] Open
Abstract
In addition to the high neurotoxicity, depression, and anxiety are the most prominent characteristics of methamphetamine (Meth) withdrawal. Studies to date on the issue of Meth-associated depression and anxiety are focused on the brain, however, whether peripheral homeostasis, especially the "microbiota-gut" axis participates in these adverse outcomes, remains poorly understood. In the current study, with the fecal microbiota transplantation (FMT) assay, the mice received microbiota from Meth withdrawal mice displayed marked depression and anxiety behaviors. The 16S rRNA sequencing results showed that Meth withdrawal contributed to a striking reduction of Akkermansia, Bacteroides, Faecalibaculum, Desulfovibrio, and Anaerostipes, which are known to be associated with tryptophan (TRP) metabolism. Noteworthily, the substantial decreases of the indole derivatives from the TRP metabolic pathway, including IAA, IPA, ILA, IET, IArA, IAld, and TRM were observed in the serum of both Meth abusing humans and mice during Meth withdrawal with the UHPLC-MS/MS analysis. Combining the high and low TRP diet mouse model, the mice with high TRP diet obviously impeded Meth-associated depression and anxiety behaviors, and these results were further strengthened by the evidence that administration of IPA, IAA, and indole dramatically ameliorated the Meth induced aberrant behaviors. Importantly, these protective effects were remarkably counteracted in aryl hydrocarbon receptor knockout (AhR KO) mice, underlining the key roles of microbiota-indoles-AhR signaling in Meth-associated depression and anxiety. Collectively, the important contribution of the present work is that we provide the first evidence that peripheral gut homeostasis disturbance but not limited to the brain, plays a key role in driving the Meth-induced depression and anxiety in the periods of withdrawal, especially the microbiota and the indole metabolic disturbance. Therefore, targeting AhR may provide novel insight into the therapeutic strategies for Meth-associated psychological disorders.
Collapse
Affiliation(s)
- Xi Wang
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Miaoyang Hu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Weilan Wu
- Department of Hygienic Analysis and Detection, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xinyu Lou
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Rong Gao
- Department of Hygienic Analysis and Detection, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Tengfei Ma
- Stem Cell and Neural Regeneration and Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - S Thameem Dheen
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jie Cheng
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jianping Xiong
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xufeng Chen
- Department of Emergency Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jun Wang
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
- Department of Emergency Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Organski AC, Rajwa B, Reddivari A, Jorgensen JS, Cross TWL. Gut microbiome-driven regulation of sex hormone homeostasis: a potential neuroendocrine connection. Gut Microbes 2025; 17:2476562. [PMID: 40071861 PMCID: PMC11913384 DOI: 10.1080/19490976.2025.2476562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/17/2024] [Accepted: 03/03/2025] [Indexed: 03/19/2025] Open
Abstract
The gut microbiome is known to have a bidirectional relationship with sex hormone homeostasis; however, its role in mediating interactions between the primary regulatory axes of sex hormones and their productions is yet to be fully understood. We utilized both conventionally raised and gnotobiotic mouse models to investigate the regulatory role of the gut microbiome on the hypothalamic-pituitary-gonadal (HPG) axis. Male and female conventionally raised mice underwent surgical modifications as follows: (1) hormonally intact controls; (2) gonadectomized males and females; (3) gonadectomized males and females supplemented with testosterone and estrogen, respectively. Fecal samples from these mice were used to colonize sex-matched, intact, germ-free recipient mice through fecal microbiota transplant (FMT). Serum gonadotropins, gonadal sex hormones, cecal microbiota, and the serum global metabolome were assessed. FMT recipients of gonadectomized-associated microbiota showed lower circulating gonadotropin levels than recipients of intact-associated microbiota, opposite to that of FMT donors. FMT recipients of gonadectomized-associated microbiota also had greater testicular weights compared to recipients of intact-associated microbiota. The gut microbiota composition of recipient mice differed significantly based on the FMT received, with the male microbiota having a more concerted impact in response to changes in the HPG axis. Network analyses showed that multiple metabolically unrelated pathways may be involved in driving differences in serum metabolites due to sex and microbiome received in the recipient mice. In sum, our findings indicate that the gut microbiome responds to the HPG axis and subsequently modulates its feedback mechanisms. A deeper understanding of interactions between the gut microbiota and the neuroendocrine-gonadal system may contribute to the development of therapies for sexually dimorphic diseases.
Collapse
Affiliation(s)
| | - Bartek Rajwa
- Bindley Bioscience, Purdue University, West Lafayette, IN, USA
| | - Anjali Reddivari
- Department of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA
| | - Joan S. Jorgensen
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Tzu-Wen L. Cross
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
3
|
Renesteen E, Boyajian JL, Islam P, Kassab A, Abosalha A, Makhlouf S, Santos M, Chen H, Shum-Tim C, Prakash S. Microbiome Engineering for Biotherapeutic in Alzheimer's Disease Through the Gut-Brain Axis: Potentials and Limitations. Int J Mol Sci 2025; 26:5351. [PMID: 40508160 PMCID: PMC12154405 DOI: 10.3390/ijms26115351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2025] [Revised: 05/21/2025] [Accepted: 05/27/2025] [Indexed: 06/16/2025] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative condition characterized by considerable cognitive decline and functional impairment, primarily due to the progressive alteration of neurons, microglia, and astrocytes. Pathological manifestations of AD include the loss of synaptic plasticity, reduction in synaptic strength by amyloid-beta, aggregation, and neurotoxicity from tau protein post-translational modifications, all contributing to the disruption of neural networks. Despite its current pharmacological treatment for AD, different approaches to treat such disease are being developed, from a microbiome perspective. The microbiome encompasses a diverse microorganism, including beneficial bacteria that create a positive impact to diminish AD pathogenesis. Growing evidence suggests that probiotic, prebiotic, synbiotic, and postbiotics can positively modulate the gut-brain axis, reducing systemic inflammation, restoring neurotransmitter balance, and improving gut health, thereby possibly mitigating AD pathogenesis. Moreover, there is paraprobiotics as the most recently developed biotherapeutic with beneficial effects. This review explores the correlation between AD and gut-brain axis as a novel biotherapeutic target. The underlying mechanism of the microbiota-gut-brain axis in AD is examined. Novel insights into the current applications as potential treatment and its limitations are highlighted.
Collapse
Affiliation(s)
- Editha Renesteen
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC H3A 2B4, Canada; (E.R.); (J.L.B.); (A.K.); (S.M.)
| | - Jacqueline L. Boyajian
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC H3A 2B4, Canada; (E.R.); (J.L.B.); (A.K.); (S.M.)
| | - Paromita Islam
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC H3A 2B4, Canada; (E.R.); (J.L.B.); (A.K.); (S.M.)
| | - Amal Kassab
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC H3A 2B4, Canada; (E.R.); (J.L.B.); (A.K.); (S.M.)
| | - Ahmed Abosalha
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC H3A 2B4, Canada; (E.R.); (J.L.B.); (A.K.); (S.M.)
- Pharmaceutical Technology Department, Faculty of Pharmacy, Tanta University, Tanta Al-Geish St., The Medical Campus, Tanta 31527, Egypt
| | - Stephanie Makhlouf
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC H3A 2B4, Canada; (E.R.); (J.L.B.); (A.K.); (S.M.)
| | - Madison Santos
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC H3A 2B4, Canada; (E.R.); (J.L.B.); (A.K.); (S.M.)
| | - Hongmei Chen
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC H3A 2B4, Canada; (E.R.); (J.L.B.); (A.K.); (S.M.)
| | - Cedrique Shum-Tim
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC H3A 2B4, Canada; (E.R.); (J.L.B.); (A.K.); (S.M.)
| | - Satya Prakash
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC H3A 2B4, Canada; (E.R.); (J.L.B.); (A.K.); (S.M.)
| |
Collapse
|
4
|
Rubab SL, Asad M, Khan HA, Al-Hussain SA, Irfan A, Zaki MEA. Exploring the toxicological and beneficial effects of 4,5,6-Trimethoxy-2,3-diphenyl indole on Labeo rohita fingerlings. Sci Rep 2025; 15:16206. [PMID: 40346157 PMCID: PMC12064714 DOI: 10.1038/s41598-025-01099-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 05/02/2025] [Indexed: 05/11/2025] Open
Abstract
The aim of this research was to examine the potential toxic or beneficial impacts of 4,5,6-Trimethoxy-2,3-diphenyl indole on fingerlings of Labeo rohita when administered in water. The study involved four groups of Labeo rohita fish (n = 40) exposed to varying water-borne concentrations (0.00, 32.08, 48.13 and 96.26 mg/L) of 4,5,6-Trimethoxy-2,3-diphenyl indole over a fourteen day period. The fish were maintained under standard living conditions to minimize stress. Histological examination of the brain and gills revealed abnormal tissue structure only in the high-concentration group. The high-concentration group displayed aneurysms, degenerative changes, blood vessel congestion, and structural degeneration in the gills, while the brain exhibited necrosis, pyknosis, hemorrhage, degenerative changes and vacuolization. Levels of glutathione (GSH) decreased in both gills and brain, malondialdehyde (MDA) increased in gills but decreased in the brain, catalase (CAT) decreased in gills but increased in the brain and lipid peroxidase (LPO) significantly increased in both gills and brain only in the high-concentration group. Serum proteins (total proteins, albumin, and globulins) were significantly reduced in the high concentration group. Overall, the study indicated that at a high concentration of 96.26 mg/L through water-borne exposure, 4,5,6-Trimethoxy-2,3-diphenyl indole exhibited toxic effects, while at medium and low concentrations, it demonstrated beneficial effects. The findings suggest that the compound has more beneficial than toxic effects and could be recommended for specific applications to leverage its beneficial properties.
Collapse
Affiliation(s)
- Syeda Laila Rubab
- Division of Science and Technology, Department of Chemistry, University of Education Lahore, Lahore, 54770, Pakistan.
| | - Muhammad Asad
- Division of Science and Technology, Department of Zoology, University of Education Lahore, Lahore, 54770, Pakistan
| | - Huraira Alam Khan
- Division of Science and Technology, Department of Chemistry, University of Education Lahore, Lahore, 54770, Pakistan
| | - Sami A Al-Hussain
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia
| | - Ali Irfan
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Magdi E A Zaki
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia.
| |
Collapse
|
5
|
Palladino P, Muscatello B, Minunni M. Colorimetric detection of indole-3-carbaldehyde in white cauliflower by self-condensation reaction giving urorosein. Talanta 2025; 294:128238. [PMID: 40318490 DOI: 10.1016/j.talanta.2025.128238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/14/2025] [Accepted: 04/29/2025] [Indexed: 05/07/2025]
Abstract
This work presents a spectrophotometric method for the determination of indole-3-carbaldehyde (I3A), a bioactive metabolite of tryptophan, in white cauliflower (Brassica oleracea L. var. botrytis). The colorimetric assay is based on the self-condensation of I3A under acidic conditions, forming di-indolylmethine salt (urorosein). The absorbance of urorosein at 490 nm was used for I3A quantification with a microplate reader. Key parameters, including acidity, solvent composition, temperature, and reaction time, were optimized to achieve the best analytical performance. This method exhibited a linear dynamic range up to 100 μM with excellent repeatability (avRSD 1.7 %) and a high coefficient of determination (R2 0.9975). The limit of detection and quantification were 0.469 ± 0.007 μM and 1.562 ± 0.023 μM, respectively. As proof of concept, the assay was applied to white cauliflower extract, achieving a 113 % recovery compared to LC-MS analysis. This method potentially offers a simple approach for the detection of I3A in foods.
Collapse
Affiliation(s)
- Pasquale Palladino
- Department of Chemistry 'Ugo Schiff', University of Florence, Via della Lastruccia, 3, Sesto Fiorentino, Florence, 50019, Italy.
| | - Beatrice Muscatello
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Maria Minunni
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| |
Collapse
|
6
|
Loganathan C, Kandasamy S, Sakayanathan P, Ameen F, Iruthayaraj A, Thayumanavan P. Amalgamation of experimental strategies, computational simulation, and computer-assisted-theoretical analysis to decipher the interaction of newly synthesized plumbagin-indole-3-propionic ester with cholinesterases. J Biomol Struct Dyn 2025:1-16. [PMID: 40235310 DOI: 10.1080/07391102.2025.2490058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/26/2024] [Indexed: 04/17/2025]
Abstract
Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) are important target proteins to treat cognitive dysfunction in neurodegenerative diseases, such as Alzheimer's disease and Parkinson disease. Hence identification of inhibitors against these proteins is ever-growing. To get a foresight on the potential of a molecule that could be forwarded as a drug candidate, the combinations of bioinformatics [including molecular docking and molecular dynamics (MD) simulation], computer-assisted-theoretical analysis and in vitro strategy were employed to gain knowledge on interaction/inhibition of newly synthesized ester of plumbagin (PLU) and indole-3-propionic acid (IPA) called PLU-IPA with/against AChE and BChE. Density functional theory and ADME analysis revealed the non-toxicity and chemical reactivity gained by the molecule due to esterification and drug-likeness of PLU-IPA. PLU-IPA inhibited AChE and BChE in micromolar concentration through non-competitive mode. In molecular docking, PLU-IPA interacted with amino acids present in sub-pockets near the catalytic site, anionic site, and PAS of electric eel AChE (eAChE), human AChE (hAChE), and hBChE. Through computer-assisted-theoretical analysis, the importance of non-covalent interactions for the proper orientation of PLU-IPA within the active site gorge of AChE/BChE was understood. Further MD simulation results also confirmed the stable interaction of PLU-IPA with AChE/BChE.
Collapse
Affiliation(s)
- Chitra Loganathan
- Bioinnov Solutions LLP, Research and Development Center, Salem, India
- Department of Prosthodontics and Implantology, Saveetha Dental College and Hospital, Saveetha Institute of Medical And Technical Sciences (SIMATS), Chennai, India
| | - Saravanan Kandasamy
- Faculty of Chemistry, Biological and Chemical Research Center, University of Warsaw, Warsaw, Poland
| | | | - Fuad Ameen
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ancy Iruthayaraj
- Bioinnov Solutions LLP, Research and Development Center, Salem, India
| | | |
Collapse
|
7
|
Aziz-Zadeh L, Ringold SM, Jayashankar A, Kilroy E, Butera C, Jacobs JP, Tanartkit S, Mahurkar-Joshi S, Bhatt RR, Dapretto M, Labus JS, Mayer EA. Relationships between brain activity, tryptophan-related gut metabolites, and autism symptomatology. Nat Commun 2025; 16:3465. [PMID: 40229237 PMCID: PMC11997199 DOI: 10.1038/s41467-025-58459-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 03/24/2025] [Indexed: 04/16/2025] Open
Abstract
While it has been suggested that alterations in the composition of gut microbial metabolites may play a causative role in the pathophysiology of autism spectrum disorder (ASD), it is not known how gut microbial metabolites are associated with ASD-specific brain alterations. In this cross-sectional, case-control observational study, (i) fecal metabolomics, (ii) task-based functional magnetic resonance imaging (fMRI), and (iii) behavioral assessments were obtained from 43 ASD and 41 neurotypical (NT) children, aged 8-17. The fMRI tasks used socio-emotional and sensory paradigms that commonly reveal strong evoked brain differences in ASD participants. Our results show that fecal levels of specific tryptophan-related metabolites, including kynurenate, were significantly lower in ASD compared to NT, and were associated with: 1) alterations in insular and cingulate cortical activity previously implicated in ASD; and 2) ASD severity and symptoms (e.g., ADOS scores, disgust propensity, and sensory sensitivities). Moreover, activity in the mid-insula and mid-cingulate significantly mediated relationships between the microbial tryptophan metabolites (indolelactate and tryptophan betaine) and ASD severity and disgust sensitivity. Thus, we identify associations between gut microbial tryptophan metabolites, ASD symptoms, and brain activity in humans, particularly in brain regions associated with interoceptive processing.
Collapse
Affiliation(s)
- Lisa Aziz-Zadeh
- Mrs. T.H. Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA, USA.
- Brain and Creativity Institute, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, USA.
| | - Sofronia M Ringold
- Mrs. T.H. Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA, USA
- Brain and Creativity Institute, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, USA
| | - Aditya Jayashankar
- Mrs. T.H. Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA, USA
- Brain and Creativity Institute, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, USA
| | - Emily Kilroy
- Mrs. T.H. Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA, USA
- Brain and Creativity Institute, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, USA
| | - Christiana Butera
- Mrs. T.H. Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA, USA
- Brain and Creativity Institute, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, USA
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, USA
| | - Jonathan P Jacobs
- Oppenheimer Center for the Neurobiology of Stress and Resilience, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Goodman-Luskin Microbiome Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Skylar Tanartkit
- Oppenheimer Center for the Neurobiology of Stress and Resilience, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Goodman-Luskin Microbiome Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Swapna Mahurkar-Joshi
- Oppenheimer Center for the Neurobiology of Stress and Resilience, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Goodman-Luskin Microbiome Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Ravi R Bhatt
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Mirella Dapretto
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
- Ahmanson-Lovelace Brain Mapping Center, University of California Los Angeles, Los Angeles, CA, USA
| | - Jennifer S Labus
- Oppenheimer Center for the Neurobiology of Stress and Resilience, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Goodman-Luskin Microbiome Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Emeran A Mayer
- Oppenheimer Center for the Neurobiology of Stress and Resilience, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Goodman-Luskin Microbiome Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
8
|
Sidhambaram J, Sakayanathan P, Loganathan C, Iruthayaraj A, Thayumanavan P. Esterified Indole-3-propionic Acid: A Novel Inhibitor against Cholinesterase Identified through Experimental and Computational Approaches. ACS OMEGA 2025; 10:9073-9087. [PMID: 40092751 PMCID: PMC11904713 DOI: 10.1021/acsomega.4c08149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/28/2024] [Accepted: 02/20/2025] [Indexed: 03/19/2025]
Abstract
Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) are targeted for designing drugs against cognitive dysfunction. Curcumin (CUR) and indole-3-propionic acid (IPA) are known for their neuroprotective activity. The clinical application of CUR is hindered due to poor absorption and bioavailability. Hence, CUR was conjugated with IPA to form the CUR-IPA diester. CUR-IPA inhibition against electric eel AChE (eAChE), human AChE (hAChE), and hBChE was carried out. In silico and molecular dynamics (MD) analyses of the interaction of CUR-IPA with hAChE and hBChE were done. UV-visible spectroscopy (λmax at 415 and 276 nm), NMR spectrum, and ESI/MS/MS [m/z = 711 (M + H)] confirmed CUR-IPA formation. CUR-IPA showed in vitro antioxidant activity. The IC50 values of eAChE, hAChE, and hBChE enzyme inhibition were 5.66, 59.30, and 60.66 μM, respectively. MD simulation-based analysis such as RMSD, RMSF, free-energy calculation, PCA, FEL, and DCCM confirmed the stable binding of CUR-IPA with hAChE and hBChE. Further QM/MM analysis confirmed the stable interaction of CUR-IPA with hAChE and hBChE. Since CUR-IPA showed in vitro inhibition against AChE and BChE, a further neuroprotective effect in in vivo could be studied.
Collapse
Affiliation(s)
| | | | - Chitra Loganathan
- Department
of Prosthodontics and Implantology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences
(SIMATS), Chennai600 077, India
| | - Ancy Iruthayaraj
- Bioinnov
Solutions LLP, Research and Development Center, Salem, Tamil Nadu 636009, India
| | | |
Collapse
|
9
|
Schaible P, Henschel J, Erny D. How the gut microbiota impacts neurodegenerative diseases by modulating CNS immune cells. J Neuroinflammation 2025; 22:60. [PMID: 40033338 PMCID: PMC11877772 DOI: 10.1186/s12974-025-03371-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 02/06/2025] [Indexed: 03/05/2025] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease worldwide. Amyloid-β (Aβ) accumulation and neurofibrillary tangles are two key histological features resulting in progressive and irreversible neuronal loss and cognitive decline. The macrophages of the central nervous system (CNS) belong to the innate immune system and comprise parenchymal microglia and CNS-associated macrophages (CAMs) at the CNS interfaces (leptomeninges, perivascular space and choroid plexus). Microglia and CAMs have received attention as they may play a key role in disease onset and progression e. g., by clearing amyloid beta (Aβ) through phagocytosis. Genome-wide association studies (GWAS) have revealed that human microglia and CAMs express numerous risk genes for AD, further highlighting their potentially critical role in AD pathogenesis. Microglia and CAMs are tightly controlled by environmental factors, such as the host microbiota. Notably, it was further reported that the composition of the gut microbiota differed between AD patients and healthy individuals. Hence, emerging studies have analyzed the impact of gut bacteria in different preclinical mouse models for AD as well as in clinical studies, potentially enabling promising new therapeutic options.
Collapse
Affiliation(s)
- Philipp Schaible
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Breisacher Str. 64, 79106, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
| | - Julia Henschel
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Breisacher Str. 64, 79106, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
| | - Daniel Erny
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Breisacher Str. 64, 79106, Freiburg, Germany.
| |
Collapse
|
10
|
Dallera CA, Placeres-Uray F, Mastromatteo-Alberga P, Dominguez-Torres M, Balleste AF, Gorthy AS, Rahimzadeh TS, Aliancin I, Dietrich WD, de Rivero Vaccari JP, Jacobs IC, Chlipala EA, Benton H, Zeligs MA, Atkins CM. 3,3'-Diindolylmethane improves pathology and neurological outcome following traumatic brain injury. Neurotherapeutics 2025; 22:e00531. [PMID: 39909809 PMCID: PMC12014418 DOI: 10.1016/j.neurot.2025.e00531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 01/15/2025] [Accepted: 01/15/2025] [Indexed: 02/07/2025] Open
Abstract
3,3'-Diindolylmethane (DIM), a naturally occurring bis-indole found in cruciferous vegetables and produced in small amounts in the normal flora of the human gut, has demonstrated neuroprotective benefits in models of CNS hypoxia and stroke. In the CNS, DIM modulates the activation of the aryl hydrocarbon receptor (AhR) and inhibits its pro-inflammatory effects. Although capable of crossing the blood brain barrier, DIM's bioavailability is limited by its low solubility. Dispersed BR4044 provides a nanoscale high-solubility DIM suspension with the potential for treating traumatic brain injury (TBI). The present study aimed to determine whether BR4044 treatment could reduce pathology and improve behavioral recovery following moderate TBI. Male Sprague Dawley rats received moderate fluid percussion injury or sham surgery followed by vehicle or BR4044 treatment in the acute recovery period. TBI BR4044 animals showed significantly reduced cortical and hippocampal edema and lower levels of serum-derived extracellular vesicles compared to TBI Vehicle animals. BR4044 treatment of TBI animals preserved sensorimotor function and associative fear memory. Cortical contusion size and neuronal loss in the parietal cortex and CA3 region of the hippocampus were also significantly reduced with BR4044 treatment. BR4044 also decreased microbleeding and nuclear AhR at the contusion site. This translational study demonstrates that BR4044 ameliorates pathology and improves neurological outcomes following TBI by reducing brain edema, lowering acute extracellular vesicle release, modulating AhR, preserving cortical and hippocampal neurons, reducing red blood cell (RBC) extravasation into the injured brain, and promoting behavioral recovery.
Collapse
Affiliation(s)
- Carlos A Dallera
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL, USA
| | - Fabiola Placeres-Uray
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL, USA
| | - Patrizzia Mastromatteo-Alberga
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL, USA
| | - Maria Dominguez-Torres
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL, USA
| | - Alyssa F Balleste
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL, USA
| | - Aditi S Gorthy
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL, USA
| | - Tyler S Rahimzadeh
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL, USA
| | - Isabelle Aliancin
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL, USA
| | - W Dalton Dietrich
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL, USA
| | - Juan Pablo de Rivero Vaccari
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL, USA
| | | | | | | | | | - Coleen M Atkins
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL, USA.
| |
Collapse
|
11
|
Chen X, Wang B, Al Mamun A, Du K, Wang S, Hu Q, Chen X, Lu Y, Du A, Wu Y, Shao J, Wang S, Jiang C, Zhou K, Hu S, Xiao J. Pectin-Zein-IPA nanoparticles promote functional recovery and alleviate neuroinflammation after spinal cord injury. J Nanobiotechnology 2025; 23:152. [PMID: 40016738 PMCID: PMC11869623 DOI: 10.1186/s12951-025-03224-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 02/11/2025] [Indexed: 03/01/2025] Open
Abstract
INTRODUCTION Spinal cord injury (SCI) impairs the balance of gut microbiomes, which further aggravates inflammation in the injured areas and inhibits axonal regeneration. The intestinal microbiome plays an important role in SCI and regulating intestinal microbiome promotes SCI repair. However, current studies have shown that indole-3 propionate (IPA), a metabolite of gut bacteria, can promote axonal regeneration. However, the short half-life of IPA limits its effectiveness. Gut microbiota plays a role in the progression of SCI, but the studies about diet regulates intestinal flora metabolites to improve SCI are still limited and lack guiding significance. RESULTS The results showed that Pectin-Zein-IPA NPs treatment improves motor function recovery, inhibits the activation of oxidative stress, enhances axonal regeneration and activates AKT/Nrf-2 signaling pathway following SCI. Further analysis showed that Pec-Zein-IPA NPs treatment reduced the intestinal flora metabolite accumulation of L-methionine, and alleviated neuroinflammation by improving autophagy and inhibiting pyroptosis. Pec-Zein-IPA may reduced neuroinflammation after SCI by decreasing the abundance of Clostridia-UCG-014, Clostridia-vadinBB60-group, Shewanella (positively correlated with L-Methionine) and increasing the abundance of Parasutterella (negatively correlated with L-Methionine). CONCLUSIONS Our findings provide a strategy for oral drug research in SCI. The results suggest that Pectin-Zein-IPA NPs have potential advantages for treatment and management of SCI. Reducing L-methionine intake may help reduce neuroinflammation after SCI.
Collapse
Affiliation(s)
- Xianghang Chen
- Department of Arthroplasty, The First People's Hospital of Wenling, The Affiliated Wenling Hospital of Wenzhou Medical University, Taizhou, Zhejiang, 317500, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- College of Nursing, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Beini Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Abdullah Al Mamun
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Kaiyi Du
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Shengfu Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Qianqian Hu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xinyuan Chen
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yang Lu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Anyu Du
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yueqi Wu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jiaqin Shao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Shuangshuang Wang
- Department of Arthroplasty, The First People's Hospital of Wenling, The Affiliated Wenling Hospital of Wenzhou Medical University, Taizhou, Zhejiang, 317500, China
| | - Chang Jiang
- Department of Arthroplasty, The First People's Hospital of Wenling, The Affiliated Wenling Hospital of Wenzhou Medical University, Taizhou, Zhejiang, 317500, China
| | - Kailiang Zhou
- Department of Orthopaedics, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
| | - Siwang Hu
- Department of Arthroplasty, The First People's Hospital of Wenling, The Affiliated Wenling Hospital of Wenzhou Medical University, Taizhou, Zhejiang, 317500, China.
| | - Jian Xiao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
- College of Nursing, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
- Department of Orthopaedics, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
12
|
Interino N, Vitagliano R, D’Amico F, Lodi R, Porru E, Turroni S, Fiori J. Microbiota-Gut-Brain Axis: Mass-Spectrometry-Based Metabolomics in the Study of Microbiome Mediators-Stress Relationship. Biomolecules 2025; 15:243. [PMID: 40001546 PMCID: PMC11853089 DOI: 10.3390/biom15020243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/26/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
The microbiota-gut-brain axis is a complex bidirectional communication system that involves multiple interactions between intestinal functions and the emotional and cognitive centers of the brain. These interactions are mediated by molecules (metabolites) produced in both areas, which are considered mediators. To shed light on this complex mechanism, which is still largely unknown, a reliable characterization of the mediators is essential. Here, we review the most studied metabolites in the microbiota-gut-brain axis, the metabolic pathways in which they are involved, and their functions. This review focuses mainly on the use of mass spectrometry for their determination, reporting on the latest analytical methods, their limitations, and future perspectives. The analytical strategy for the qualitative-quantitative characterization of mediators must be reliable in order to elucidate the molecular mechanisms underlying the influence of the above-mentioned axis on stress resilience or vulnerability.
Collapse
Affiliation(s)
- Nicolò Interino
- IRCCS Institute of Neurological Sciences of Bologna, 40139 Bologna, Italy; (N.I.); (R.V.); (R.L.)
| | - Rosalba Vitagliano
- IRCCS Institute of Neurological Sciences of Bologna, 40139 Bologna, Italy; (N.I.); (R.V.); (R.L.)
| | - Federica D’Amico
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy;
| | - Raffaele Lodi
- IRCCS Institute of Neurological Sciences of Bologna, 40139 Bologna, Italy; (N.I.); (R.V.); (R.L.)
| | - Emanuele Porru
- Occupational Medicine Unit, Department of Medical and Surgical Science, Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy;
| | - Silvia Turroni
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy;
| | - Jessica Fiori
- IRCCS Institute of Neurological Sciences of Bologna, 40139 Bologna, Italy; (N.I.); (R.V.); (R.L.)
- Department of Chemistry “G. Ciamician”, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
13
|
Szabó Á, Galla Z, Spekker E, Szűcs M, Martos D, Takeda K, Ozaki K, Inoue H, Yamamoto S, Toldi J, Ono E, Vécsei L, Tanaka M. Oxidative and Excitatory Neurotoxic Stresses in CRISPR/Cas9-Induced Kynurenine Aminotransferase Knockout Mice: A Novel Model for Despair-Based Depression and Post-Traumatic Stress Disorder. FRONT BIOSCI-LANDMRK 2025; 30:25706. [PMID: 39862084 DOI: 10.31083/fbl25706] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/24/2024] [Accepted: 11/18/2024] [Indexed: 01/27/2025]
Abstract
BACKGROUNDS Memory and emotion are especially vulnerable to psychiatric disorders such as post-traumatic stress disorder (PTSD), which is linked to disruptions in serotonin (5-HT) metabolism. Over 90% of the 5-HT precursor tryptophan (Trp) is metabolized via the Trp-kynurenine (KYN) metabolic pathway, which generates a variety of bioactive molecules. Dysregulation of KYN metabolism, particularly low levels of kynurenic acid (KYNA), appears to be linked to neuropsychiatric disorders. The majority of KYNA is produced by the aadat (kat2) gene-encoded mitochondrial kynurenine aminotransferase (KAT) isotype 2. Little is known about the consequences of deleting the KYN enzyme gene. METHODS In CRISPR/Cas9-induced aadat knockout (kat2-/-) mice, we examined the effects on emotion, memory, motor function, Trp and its metabolite levels, enzyme activities in the plasma and urine of 8-week-old males compared to wild-type mice. RESULTS Transgenic mice showed more depressive-like behaviors in the forced swim test, but not in the tail suspension, anxiety, or memory tests. They also had fewer center field and corner entries, shorter walking distances, and fewer jumping counts in the open field test. Plasma metabolite levels are generally consistent with those of urine: antioxidant KYNs, 5-hydroxyindoleacetic acid, and indole-3-acetic acid levels were lower; enzyme activities in KATs, kynureninase, and monoamine oxidase/aldehyde dehydrogenase were lower, but kynurenine 3-monooxygenase was higher; and oxidative stress and excitotoxicity indices were higher. Transgenic mice displayed depression-like behavior in a learned helplessness model, emotional indifference, and motor deficits, coupled with a decrease in KYNA, a shift of Trp metabolism toward the KYN-3-hydroxykynurenine pathway, and a partial decrease in the gut microbial Trp-indole pathway metabolite. CONCLUSIONS This is the first evidence that deleting the aadat gene induces depression-like behaviors uniquely linked to experiences of despair, which appear to be associated with excitatory neurotoxic and oxidative stresses. This may lead to the development of a double-hit preclinical model in despair-based depression, a better understanding of these complex conditions, and more effective therapeutic strategies by elucidating the relationship between Trp metabolism and PTSD pathogenesis.
Collapse
Affiliation(s)
- Ágnes Szabó
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, H-6725 Szeged, Hungary
- Doctoral School of Clinical Medicine, University of Szeged, H-6720 Szeged, Hungary
| | - Zsolt Galla
- Department of Pediatrics, Albert Szent-Györgyi Faculty of Medicine, University of Szeged, H-6725 Szeged, Hungary
| | - Eleonóra Spekker
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, H-6725 Szeged, Hungary
| | - Mónika Szűcs
- Department of Medical Physics and Informatics, Albert Szent-Györgyi Medical School, Faculty of Science and Informatics, University of Szeged, H-6720 Szeged, Hungary
| | - Diána Martos
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, H-6725 Szeged, Hungary
| | - Keiko Takeda
- Department of Biomedicine, Graduate School of Medical Sciences, Kyushu University, 812-8582 Fukuoka, Japan
| | - Kinuyo Ozaki
- Center of Biomedical Research, Research Center for Human Disease Modeling, Graduate School of Medical Sciences, Kyushu University, 812-8582 Fukuoka, Japan
| | - Hiromi Inoue
- Center of Biomedical Research, Research Center for Human Disease Modeling, Graduate School of Medical Sciences, Kyushu University, 812-8582 Fukuoka, Japan
| | - Sayo Yamamoto
- Center of Biomedical Research, Research Center for Human Disease Modeling, Graduate School of Medical Sciences, Kyushu University, 812-8582 Fukuoka, Japan
| | - József Toldi
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Etsuro Ono
- Department of Biomedicine, Graduate School of Medical Sciences, Kyushu University, 812-8582 Fukuoka, Japan
- Center of Biomedical Research, Research Center for Human Disease Modeling, Graduate School of Medical Sciences, Kyushu University, 812-8582 Fukuoka, Japan
| | - László Vécsei
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, H-6725 Szeged, Hungary
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, H-6725 Szeged, Hungary
| | - Masaru Tanaka
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, H-6725 Szeged, Hungary
| |
Collapse
|
14
|
Tsuru S, Sharma B, Hättig C, Marx D. Nuclear Quantum Effects Have a Significant Impact on UV/Vis Absorption Spectra of Chromophores in Water. Angew Chem Int Ed Engl 2025; 64:e202416058. [PMID: 39474981 DOI: 10.1002/anie.202416058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Indexed: 12/12/2024]
Abstract
Despite the broadly acknowledged importance of solvation effects on measured UV/Vis spectra in the context of solvatochromism or chemical reactions in solution, it is still an open challenge to calculate UV/Vis spectra with predictive accuracy. This is particularly true when it comes to the impact of nuclear quantum effects on these experimental observables. In the present work, we calculate the UV/Vis absorption spectrum of indole in aqueous solution with a combination of a correlated wavefunction method for computing electronic excitation energies and enhanced path integral simulations for rigorous sampling of nuclear configurations including the quantum effects in solution. After validating our approach based on gas-phase benchmarking, we demonstrate that the lineshape of the spectrum measured in aqueous solution is quantitatively recovered, without the application of any shifting, scaling, or broadening, only after including nuclear quantum effects in addition to thermal fluctuations and solvation at ambient conditions. Our findings demonstrate that nuclear quantum effects are "visible" in UV/Vis spectra of chromophores measured in solution even at room temperature and, therefore, that they must be considered computationally to achieve predictive accuracy.
Collapse
Affiliation(s)
- Shota Tsuru
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780, Bochum, Germany
- RIKEN Center for Computational Science, Minatojima-minami 7-1-26, 650-0047, Kobe, Japan
| | - Bikramjit Sharma
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780, Bochum, Germany
| | - Christof Hättig
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780, Bochum, Germany
| | - Dominik Marx
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780, Bochum, Germany
| |
Collapse
|
15
|
Zhang Y, Liu T, Pan F, Li Y, Wang D, Pang J, Sang H, Xi Y, Shi L, Liu Z. Dietary Methionine Restriction Alleviates Cognitive Impairment in Alzheimer's Disease Mice via Sex-Dependent Modulation on Gut Microbiota and Tryptophan Metabolism: A Multiomics Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:1356-1372. [PMID: 39745486 DOI: 10.1021/acs.jafc.4c09878] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Plant-based foods with low methionine contents have gained increasing interest for their potential health benefits, including neuroprotective effects. Methionine restriction (MR) linked to a plant-based diet has been shown to mitigate neurodegenerative diseases such as Alzheimer's disease (AD) through mechanisms that involve the gut microbiota. In this study, a 16-week MR diet (0.17% methionine, w/w) improved working memory and reduced neuronal damage exclusively in 4-month-old male APP/PS1 AD mice. Transcriptomic analysis revealed the activation of serum- and glucose-corticoid-regulated kinase 1 (SGK1) and peroxisome proliferator-activated receptor α (PPARα) pathways. Furthermore, metabolomics demonstrated increased serum indole-3-propionic acid (IPA) levels and an enhanced expression of gut barrier proteins Claudin-1 and MUC2 in male mice. MR significantly altered the gut microbiota composition, notably increasing indole-producing bacteria such as Lactobacillus reuteri (L. reuteri). Multiomics integration linked L. reuteri, IPA, and PPARα signaling to improved cognitive outcomes. Molecular docking and RT-qPCR analyses confirmed IPA's interaction with PPARα, leading to the activation of neuroprotective targets (Bdnf, Pparα, Acsbg1, Scd2, and Scd3). These results highlight the role of methionine restriction in modulating gut microbiota and metabolites, offering a promising dietary approach to managing neurodegenerative diseases with sex-specific effects.
Collapse
Affiliation(s)
- Yuyu Zhang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tianqi Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Fei Pan
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Yiju Li
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
- Agriculture/Forestry Centre, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G2P5, Canada
| | - Da Wang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jingxi Pang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Haojie Sang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yujia Xi
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lin Shi
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Zhigang Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
- Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong 518000, China
| |
Collapse
|
16
|
Kollaparampil Kishanchand D, K A AK, Chandrababu K, Philips CA, Sivan U, Pulikaparambil Sasidharan BC. The Intricate Interplay: Microbial Metabolites and the Gut-Liver-Brain Axis in Parkinson's Disease. J Neurosci Res 2025; 103:e70016. [PMID: 39754366 DOI: 10.1002/jnr.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 11/21/2024] [Accepted: 12/23/2024] [Indexed: 01/06/2025]
Abstract
Parkinson's Disease (PD) is a neurodegenerative disorder marked by the depletion of dopaminergic neurons. Recent studies highlight the gut-liver-brain (GLB) axis and its role in PD pathogenesis. The GLB axis forms a dynamic network facilitating bidirectional communication between the gastrointestinal tract, liver, and central nervous system. Dysregulation within this axis, encompassing gut dysbiosis and microbial metabolites, is emerging as a critical factor influencing PD progression. Our understanding of PD was traditionally centered on neurodegenerative processes within the brain. However, examining PD through the lens of the GLB axis provides new insights. This review provides a comprehensive analysis of microbial metabolites, such as short-chain fatty acids (SCFAs), trimethylamine-N-oxide (TMAO), kynurenine, serotonin, bile acids, indoles, and dopamine, which are integral to PD pathogenesis by modulation of the GLB axis. Our extensive research included a comprehensive literature review and database searches utilizing resources such as gutMGene and gutMDisorder. These databases have been instrumental in identifying specific microbes and their metabolites, shedding light on the intricate relationship between the GLB axis and PD. This review consolidates existing knowledge and underscores the potential for targeted therapeutic interventions based on the GLB axis and its components, which offer new avenues for future PD research and treatment strategies. While the GLB axis is not a novel concept, this review is the first to focus specifically on its role in PD, highlighting the importance of integrating the liver and microbial metabolites as central players in the PD puzzle.
Collapse
Affiliation(s)
| | - Athira Krishnan K A
- Centre for Neuroscience, Department of Biotechnology, Cochin University of Science and Technology, Kochi, Kerala, India
| | - Krishnapriya Chandrababu
- Centre for Neuroscience, Department of Biotechnology, Cochin University of Science and Technology, Kochi, Kerala, India
| | - Cyriac Abby Philips
- Clinical and Translational Hepatology, The Liver Institute, Centre of Excellence in Gastrointestinal Sciences, Rajagiri Hospital, Aluva, Kerala, India
| | - Unnikrishnan Sivan
- Department of FSQA, FFE, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, India
| | - Baby Chakrapani Pulikaparambil Sasidharan
- Centre for Neuroscience, Department of Biotechnology, Cochin University of Science and Technology, Kochi, Kerala, India
- Centre for Excellence in Neurodegeneration and Brain Health, Kochi, Kerala, India
| |
Collapse
|
17
|
Pan I, Issac PK, Rahman MM, Guru A, Arockiaraj J. Gut-Brain Axis a Key Player to Control Gut Dysbiosis in Neurological Diseases. Mol Neurobiol 2024; 61:9873-9891. [PMID: 37851313 DOI: 10.1007/s12035-023-03691-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/02/2023] [Indexed: 10/19/2023]
Abstract
Parkinson's disease is a chronic neuropathy characterised by the formation of Lewy bodies (misfolded alpha-synuclein) in dopaminergic neurons of the substantia nigra and other parts of the brain. Dopaminergic neurons play a vital role in generating both motor and non-motor symptoms. Finding therapeutic targets for Parkinson's disease (PD) is hindered due to an incomplete understanding of the disease's pathophysiology. Existing evidence suggests that the gut microbiota participates in the pathogenesis of PD via immunological, neuroendocrine, and direct neural mechanisms. Gut microbial dysbiosis triggers the loss of dopaminergic neurons via mitochondrial dysfunction. Gut dysbiosis triggers bacterial overgrowth in the small intestine, which increases the permeability barrier and induces systemic inflammation. It results in excessive stimulation of the innate immune system. In addition to that, activation of enteric neurons and enteric glial cells initiates the aggregation of alpha-synuclein. This alpha-synucleinopathy thus affects all levels of the brain-gut axis, including the central, autonomic, and enteric nervous systems. Though the neurobiological signaling cascade between the gut microbiome and the central nervous system is poorly understood, gut microbial metabolites may serve as a promising therapeutic strategy for PD. This article summarises all the known possible ways of bidirectional signal communication, i.e., the "gut-brain axis," where microbes from the middle gut interact with the brain and vice versa, and highlights a unique way to treat neurodegenerative diseases by maintaining homeostasis. The tenth cranial nerve (vagus nerve) plays a significant part in this signal communication. However, the leading regulatory factor for this axis is a diet that helps with microbial colonisation and brain function. Short-chain fatty acids (SCFAs), derived from microbially fermented dietary fibres, link host nutrition to maintain intestinal homeostasis. In addition to that, probiotics modulate cognitive function and the metabolic and behavioural conditions of the body. As technology advances, new techniques will emerge to study the tie-up between gut microbes and neuronal diseases.
Collapse
Affiliation(s)
- Ieshita Pan
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, Tamil Nadu, 602105, India.
| | - Praveen Kumar Issac
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, Tamil Nadu, 602105, India
| | - Md Mostafizur Rahman
- Laboratory of Environmental Health and Ecotoxicology, Department of Environmental Sciences, Jahangirnagar University, Dhaka, 1342, Bangladesh
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulatur, Chengalpattu District, Tamil Nadu, 603203, India.
| |
Collapse
|
18
|
Oluwagbemigun K, Anesi A, Vrhovsek U, Mattivi F, Martino Adami P, Pentzek M, Scherer M, Riedel-Heller SG, Weyerer S, Bickel H, Wiese B, Schmid M, Cryan JF, Ramirez A, Wagner M, Nöthlings U. An Investigation into the Relationship of Circulating Gut Microbiome Molecules and Inflammatory Markers with the Risk of Incident Dementia in Later Life. Mol Neurobiol 2024; 61:9776-9793. [PMID: 37605096 PMCID: PMC11584436 DOI: 10.1007/s12035-023-03513-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/15/2023] [Indexed: 08/23/2023]
Abstract
The gut microbiome may be involved in the occurrence of dementia primarily through the molecular mechanisms of producing bioactive molecules and promoting inflammation. Epidemiological evidence linking gut microbiome molecules and inflammatory markers to dementia risk has been mixed, and the intricate interplay between these groups of biomarkers suggests that their joint investigation in the context of dementia is warranted. We aimed to simultaneously investigate the association of circulating levels of selected gut microbiome molecules and inflammatory markers with dementia risk. This case-cohort epidemiological study included 805 individuals (83 years, 66% women) free of dementia at baseline. Plasma levels of 19 selected gut microbiome molecules comprising lipopolysaccharide, short-chain fatty acids, and indole-containing tryptophan metabolites as well as four inflammatory markers measured at baseline were linked to incident all-cause (ACD) and Alzheimer's disease dementia (AD) in binary outcomes and time-to-dementia analyses. Independent of several covariates, seven gut microbiome molecules, 5-hydroxyindole-3-acetic acid, indole-3-butyric acid, indole-3-acryloylglycine, indole-3-lactic acid, indole-3-acetic acid methyl ester, isobutyric acid, and 2-methylbutyric acid, but no inflammatory markers discriminated incident dementia cases from non-cases. Furthermore, 5-hydroxyindole-3-acetic acid (hazard ratio: 0.58; 0.36-0.94, P = 0.025) was associated with time-to-ACD. These molecules underpin gut microbiome-host interactions in the development of dementia and they may be crucial in its prevention and intervention strategies. Future larger epidemiological studies are needed to confirm our findings, specifically in exploring the repeatedly measured circulating levels of these molecules and investigating their causal relationship with dementia risk.
Collapse
Affiliation(s)
- Kolade Oluwagbemigun
- Nutritional Epidemiology, Department of Nutrition and Food Sciences, University of Bonn, 53115, Bonn, Germany.
| | - Andrea Anesi
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), 38098, San Michele all'Adige, Italy
| | - Urska Vrhovsek
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), 38098, San Michele all'Adige, Italy
| | - Fulvio Mattivi
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), 38098, San Michele all'Adige, Italy
| | - Pamela Martino Adami
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Medical Faculty, University of Cologne, 50924, Cologne, Germany
| | - Michael Pentzek
- Institute of General Practice, University Hospital Essen, 45147, Essen, Germany
| | - Martin Scherer
- Department of Primary Medical Care, Center for Psychosocial Medicine, University Medical Center, 20246, Hamburg-Eppendorf, Germany
| | - Steffi G Riedel-Heller
- Institute of Social Medicine, Occupational Health and Public Health, University of Leipzig, 04103, Leipzig, Germany
| | - Siegfried Weyerer
- Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Horst Bickel
- Department of Psychiatry, Technical University of Munich, 80336, Munich, Germany
| | - Birgitt Wiese
- Institute of General Practice, Hannover Medical School, 30625, Hannover, Germany
| | - Matthias Schmid
- Institute for Medical Biometry, Informatics and Epidemiology, Faculty of Medicine, University of Bonn, 53127, Bonn, Germany
- German Center for Neurodegenerative Diseases, 53127, Bonn, Germany
| | - John F Cryan
- Department of Anatomy and Neuroscience, Western Gateway Building, University College Cork, Cork, T12 XF62, Ireland
| | - Alfredo Ramirez
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Medical Faculty, University of Cologne, 50924, Cologne, Germany
- German Center for Neurodegenerative Diseases, 53127, Bonn, Germany
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, 53127, Bonn, Germany
- Department of Psychiatry and Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, San Antonio, TX, 78229, USA
- Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931, Cologne, Germany
| | - Michael Wagner
- German Center for Neurodegenerative Diseases, 53127, Bonn, Germany
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, 53127, Bonn, Germany
| | - Ute Nöthlings
- Nutritional Epidemiology, Department of Nutrition and Food Sciences, University of Bonn, 53115, Bonn, Germany
| |
Collapse
|
19
|
Qian X, Li Q, Zhu H, Chen Y, Lin G, Zhang H, Chen W, Wang G, Tian P. Bifidobacteria with indole-3-lactic acid-producing capacity exhibit psychobiotic potential via reducing neuroinflammation. Cell Rep Med 2024; 5:101798. [PMID: 39471819 PMCID: PMC11604549 DOI: 10.1016/j.xcrm.2024.101798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/24/2024] [Accepted: 09/29/2024] [Indexed: 11/01/2024]
Abstract
The escalating global prevalence of depression demands effective therapeutic strategies, with psychobiotics emerging as a promising solution. However, the molecular mechanisms governing the neurobehavioral impact of psychobiotics remain elusive. This study reveals a significant reduction in hippocampal indole-3-lactic acid (ILA) levels in depressed mice, which is ameliorated by the psychobiotic Bifidobacterium breve. In both human subjects and mice, the ILA increase in the circulatory system results from bifidobacteria supplementation. Further investigation identifies the key aromatic lactate dehydrogenase (Aldh) gene and pathway in bifidobacteria responsible for ILA production. Importantly, the antidepressant effects are nullified in the Aldh mutants compared to the wild-type strain. At the bifidobacteria species level, those with Aldh exhibit heightened antidepressant effects. Finally, this study emphasizes the antidepressant efficacy of psychobiotic-derived ILA, potentially mediated by aryl hydrocarbon receptor (AhR) signaling activation to alleviate neuroinflammation. This study unveils the molecular and genetic foundations of psychobiotics' antidepressant effects, offering insights for microbial therapies targeting mood disorders.
Collapse
Affiliation(s)
- Xin Qian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qing Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Huiyue Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ying Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Guopeng Lin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Gang Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Peijun Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
20
|
Kim H, Lee E, Park M, Min K, Diep YN, Kim J, Ahn H, Lee E, Kim S, Kim Y, Kang YJ, Jung JH, Byun MS, Joo Y, Jeong C, Lee DY, Cho H, Park H, Kim T. Microbiome-derived indole-3-lactic acid reduces amyloidopathy through aryl-hydrocarbon receptor activation. Brain Behav Immun 2024; 122:568-582. [PMID: 39197546 DOI: 10.1016/j.bbi.2024.08.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 07/30/2024] [Accepted: 08/24/2024] [Indexed: 09/01/2024] Open
Abstract
Alzheimer's disease (AD) pathogenesis has been associated with the gut microbiome and its metabolites, though the specific mechanisms have remained unclear. In our study, we used a multi-omics approach to identify specific microbial strains and metabolites that could potentially mitigate amyloidopathy in 5xFAD mice, a widely used model for AD research. Among the microbial strains tested, three showed promising results in reducing soluble amyloid-beta (Aβ) levels. Plasma metabolomics analysis revealed an enrichment of tryptophan (Trp) and indole-3-lactic acid (ILA) in mice with reduced soluble Aβ levels, suggesting a potential preventative role. The administration of a combined treatment of Trp and ILA prevented both Aβ accumulation and cognitive impairment in the 5xFAD mice. Our investigation into the mechanism revealed that ILA's effect on reducing Aβ levels was mediated through the activation of microglia and astrocytes, facilitated by the aryl hydrocarbon receptor (AhR) signaling pathway. These mechanisms were verified through experiments in 5xFAD mice that included an additional group with the administration of ILA alone, as well as in vitro experiments using an AhR inhibitor. Clinical data analysis revealed a greater abundance of Lactobacillus reuteri in the gut of healthy individuals compared to those at early stages of Aβ accumulation or with mild cognitive impairment. Additionally, human post-mortem brain analyses showed an increased expression of genes associated with the AhR signaling pathway in individuals without AD, suggesting a protective effect against AD progression. Our results indicate that ILA from gut microbes could inhibit the progression of amyloidopathy in 5xFAD mice through activation of AhR signaling in the brain.
Collapse
Affiliation(s)
- Hyun Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Eunkyung Lee
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Mincheol Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Kyungchan Min
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Yen N Diep
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Gyeonggi, Republic of Korea; Department of Biophysics, Sungkyunkwan University, Suwon, Gyeonggi, Republic of Korea; Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Gyeonggi, Republic of Korea
| | - Jinhong Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Hyeok Ahn
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Eulgi Lee
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Sujeong Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Yunjae Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - You Jung Kang
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Gyeonggi, Republic of Korea; Department of Biophysics, Sungkyunkwan University, Suwon, Gyeonggi, Republic of Korea
| | - Joon Hyung Jung
- Department of Psychiatry, Chungbuk National University Hospital, Cheongju, Republic of Korea
| | - Min Soo Byun
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea; Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yanghyun Joo
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Chanyeong Jeong
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Dong Young Lee
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea; Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Human Behavioral Medicine, Medical Research Center Seoul National University, Seoul, Republic of Korea
| | - Hansang Cho
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Gyeonggi, Republic of Korea; Department of Biophysics, Sungkyunkwan University, Suwon, Gyeonggi, Republic of Korea; Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Gyeonggi, Republic of Korea
| | - Hansoo Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea; Genome and Company, Gyeonggi-do, Republic of Korea.
| | - Tae Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea.
| |
Collapse
|
21
|
Fu Y, Gu Z, Cao H, Zuo C, Huang Y, Song Y, Jiang Y, Wang F. The role of the gut microbiota in neurodegenerative diseases targeting metabolism. Front Neurosci 2024; 18:1432659. [PMID: 39391755 PMCID: PMC11464490 DOI: 10.3389/fnins.2024.1432659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/04/2024] [Indexed: 10/12/2024] Open
Abstract
In recent years, the incidence of neurodegenerative diseases (NDs) has gradually increased over the past decades due to the rapid aging of the global population. Traditional research has had difficulty explaining the relationship between its etiology and unhealthy lifestyle and diets. Emerging evidence had proved that the pathogenesis of neurodegenerative diseases may be related to changes of the gut microbiota's composition. Metabolism of gut microbiota has insidious and far-reaching effects on neurodegenerative diseases and provides new directions for disease intervention. Here, we delineated the basic relationship between gut microbiota and neurodegenerative diseases, highlighting the metabolism of gut microbiota in neurodegenerative diseases and also focusing on treatments for NDs based on gut microbiota. Our review may provide novel insights for neurodegeneration and approach a broadly applicable basis for the clinical therapies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Yufeng Fu
- Department of Neurology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhongya Gu
- Department of Neurology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huan Cao
- Department of Neurology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chengchao Zuo
- Department of Rehabilitation, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yaqi Huang
- Department of Neurology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yu Song
- Department of Neurology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yongsheng Jiang
- Cancer Center of Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Furong Wang
- Department of Neurology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Vascular Aging (HUST), Ministry of Education, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
22
|
Datta S, Pasham S, Inavolu S, Boini KM, Koka S. Role of Gut Microbial Metabolites in Cardiovascular Diseases-Current Insights and the Road Ahead. Int J Mol Sci 2024; 25:10208. [PMID: 39337693 PMCID: PMC11432476 DOI: 10.3390/ijms251810208] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of premature morbidity and mortality globally. The identification of novel risk factors contributing to CVD onset and progression has enabled an improved understanding of CVD pathophysiology. In addition to the conventional risk factors like high blood pressure, diabetes, obesity and smoking, the role of gut microbiome and intestinal microbe-derived metabolites in maintaining cardiovascular health has gained recent attention in the field of CVD pathophysiology. The human gastrointestinal tract caters to a highly diverse spectrum of microbes recognized as the gut microbiota, which are central to several physiologically significant cascades such as metabolism, nutrient absorption, and energy balance. The manipulation of the gut microbial subtleties potentially contributes to CVD, inflammation, neurodegeneration, obesity, and diabetic onset. The existing paradigm of studies suggests that the disruption of the gut microbial dynamics contributes towards CVD incidence. However, the exact mechanistic understanding of such a correlation from a signaling perspective remains elusive. This review has focused upon an in-depth characterization of gut microbial metabolites and their role in varied pathophysiological conditions, and highlights the potential molecular and signaling mechanisms governing the gut microbial metabolites in CVDs. In addition, it summarizes the existing courses of therapy in modulating the gut microbiome and its metabolites, limitations and scientific gaps in our current understanding, as well as future directions of studies involving the modulation of the gut microbiome and its metabolites, which can be undertaken to develop CVD-associated treatment options. Clarity in the understanding of the molecular interaction(s) and associations governing the gut microbiome and CVD shall potentially enable the development of novel druggable targets to ameliorate CVD in the years to come.
Collapse
Affiliation(s)
- Sayantap Datta
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Sindhura Pasham
- Department of Pharmaceutical Sciences, Irma Lerma College of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA
| | - Sriram Inavolu
- Department of Pharmaceutical Sciences, Irma Lerma College of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA
| | - Krishna M Boini
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Saisudha Koka
- Department of Pharmaceutical Sciences, Irma Lerma College of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA
| |
Collapse
|
23
|
Kim Y, Lim J, Oh J. Taming neuroinflammation in Alzheimer's disease: The protective role of phytochemicals through the gut-brain axis. Biomed Pharmacother 2024; 178:117277. [PMID: 39126772 DOI: 10.1016/j.biopha.2024.117277] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive degenerative neurological condition characterized by cognitive decline, primarily affecting memory and logical thinking, attributed to amyloid-β plaques and tau protein tangles in the brain, leading to neuronal loss and brain atrophy. Neuroinflammation, a hallmark of AD, involves the activation of microglia and astrocytes in response to pathological changes, potentially exacerbating neuronal damage. The gut-brain axis is a bidirectional communication pathway between the gastrointestinal and central nervous systems, crucial for maintaining brain health. Phytochemicals, natural compounds found in plants with antioxidant and anti-inflammatory properties, such as flavonoids, curcumin, resveratrol, and quercetin, have emerged as potential modulators of this axis, suggesting implications for AD prevention. Intake of phytochemicals influences the gut microbial composition and its metabolites, thereby impacting neuroinflammation and oxidative stress in the brain. Consumption of phytochemical-rich foods may promote a healthy gut microbiota, fostering the production of anti-inflammatory and neuroprotective substances. Early dietary incorporation of phytochemicals offers a non-invasive strategy for modulating the gut-brain axis and potentially reducing AD risk or delaying its onset. The exploration of interventions targeting the gut-brain axis through phytochemical intake represents a promising avenue for the development of preventive or therapeutic strategies against AD initiation and progression.
Collapse
Affiliation(s)
- Yoonsu Kim
- Department of Integrative Biology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jinkyu Lim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Jisun Oh
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea.
| |
Collapse
|
24
|
Jung YH, Chae CW, Han HJ. The potential role of gut microbiota-derived metabolites as regulators of metabolic syndrome-associated mitochondrial and endolysosomal dysfunction in Alzheimer's disease. Exp Mol Med 2024; 56:1691-1702. [PMID: 39085351 PMCID: PMC11372123 DOI: 10.1038/s12276-024-01282-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/20/2024] [Accepted: 05/10/2024] [Indexed: 08/02/2024] Open
Abstract
Although the role of gut microbiota (GMB)-derived metabolites in mitochondrial and endolysosomal dysfunction in Alzheimer's disease (AD) under metabolic syndrome remains unclear, deciphering these host-metabolite interactions represents a major public health challenge. Dysfunction of mitochondria and endolysosomal networks (ELNs) plays a crucial role in metabolic syndrome and can exacerbate AD progression, highlighting the need to study their reciprocal regulation for a better understanding of how AD is linked to metabolic syndrome. Concurrently, metabolic disorders are associated with alterations in the composition of the GMB. Recent evidence suggests that changes in the composition of the GMB and its metabolites may be involved in AD pathology. This review highlights the mechanisms of metabolic syndrome-mediated AD development, focusing on the interconnected roles of mitochondrial dysfunction, ELN abnormalities, and changes in the GMB and its metabolites. We also discuss the pathophysiological role of GMB-derived metabolites, including amino acids, fatty acids, other metabolites, and extracellular vesicles, in mediating their effects on mitochondrial and ELN dysfunction. Finally, this review proposes therapeutic strategies for AD by directly modulating mitochondrial and ELN functions through targeting GMB metabolites under metabolic syndrome.
Collapse
Affiliation(s)
- Young Hyun Jung
- Department of Physiology, College of Medicine, Soonchunhyang University, Cheonan, 31151, Korea
| | - Chang Woo Chae
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 FOUR Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, South Korea
| | - Ho Jae Han
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 FOUR Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, South Korea.
| |
Collapse
|
25
|
Aziz-Zadeh L, Mayer E, Labus J, Ringold S, Jayashankar A, Kilroy E, Butera C, Jacobs J, Tanartkit S, Joshi S, Dapretto M. Relationships between tryptophan-related gut metabolites, brain activity, and autism symptomatology. RESEARCH SQUARE 2024:rs.3.rs-4559624. [PMID: 39108481 PMCID: PMC11302680 DOI: 10.21203/rs.3.rs-4559624/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
Gut microbial metabolites have been theorized to play a causative role in the pathophysiology of autism spectrum disorder (ASD). This hypothesis is based on results from mechanistic preclinical studies and several correlational studies showing differences in gut microbial composition between ASD subjects and neurotypical (NT) controls. However, alterations in how the human brain interacts with the gut microbiome in ASD have not been examined. In this cross-sectional, case-control observational study, fecal metabolomics, task-based functional magnetic resonance imaging (fMRI), and behavioral assessments were obtained from 43 ASD and 41 NT children aged 8-17. The fMRI tasks were based on socio-emotional and sensory paradigms that commonly show strong evoked brain differences in ASD participants. General linear models and mediational modeling were applied to examine the links between tryptophan metabolism and evoked brain activity and behavior. Results indicated that fecal levels of specific tryptophan-related metabolites were associated with: 1) brain activity atypicalities in regions previously implicated in ASD (i.e., insula and cingulate); and 2) ASD severity and symptomatology (i.e., ADOS scores, disgust propensity, and sensory sensitivities). Importantly, activity in the mid-insula and mid-cingulate significantly mediated relationships between the microbial tryptophan metabolites, indolelactate and tryptophan betaine, and ASD severity and disgust sensitivity. To our knowledge, this is the first study to elucidate how interactions between gut metabolites and brain activity may impact autism symptomatology, particularly in functional brain pathways associated with vagal and interoceptive/emotion processing.
Collapse
Affiliation(s)
| | - Emeran Mayer
- G. Oppenheimer Center for Neurobiology of Stress and Resilience at UCLA; Institute for Genomics and Bioinformatics, University of California, Irvine
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Sathyasaikumar KV, Blanco-Ayala T, Zheng Y, Schwieler L, Erhardt S, Tufvesson-Alm M, Poeggeler B, Schwarcz R. The Tryptophan Metabolite Indole-3-Propionic Acid Raises Kynurenic Acid Levels in the Rat Brain In Vivo. Int J Tryptophan Res 2024; 17:11786469241262876. [PMID: 38911967 PMCID: PMC11191616 DOI: 10.1177/11786469241262876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/22/2024] [Indexed: 06/25/2024] Open
Abstract
Alterations in the composition of the gut microbiota may be causally associated with several brain diseases. Indole-3-propionic acid (IPrA) is a tryptophan-derived metabolite, which is produced by intestinal commensal microbes, rapidly enters the circulation, and crosses the blood-brain barrier. IPrA has neuroprotective properties, which have been attributed to its antioxidant and bioenergetic effects. Here, we evaluate an alternative and/or complementary mechanism, linking IPrA to kynurenic acid (KYNA), another neuroprotective tryptophan metabolite. Adult Sprague-Dawley rats received an oral dose of IPrA (200 mg/kg), and both IPrA and KYNA were measured in plasma and frontal cortex 90 minutes, 6 or 24 hours later. IPrA and KYNA levels increased after 90 minutes and 6 hours (brain IPrA: ~56- and ~7-fold; brain KYNA: ~4- and ~3-fold, respectively). In vivo microdialysis, performed in the medial prefrontal cortex and in the striatum, revealed increased KYNA levels (~2.5-fold) following the administration of IPrA (200 mg/kg, p.o), but IPrA failed to affect extracellular KYNA when applied locally. Finally, treatment with 100 or 350 mg IPrA, provided daily to the animals in the chow for a week, resulted in several-fold increases of IPrA and KYNA levels in both plasma and brain. These results suggest that exogenously supplied IPrA may provide a novel strategy to affect the function of KYNA in the mammalian brain.
Collapse
Affiliation(s)
- Korrapati V Sathyasaikumar
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, USA
| | - Tonali Blanco-Ayala
- Neurobiochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez,” Mexico City, Mexico
| | - Yiran Zheng
- Departments of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Lilly Schwieler
- Departments of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Sophie Erhardt
- Departments of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | | | - Burkhard Poeggeler
- Department of Physiology, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, Georg-August-Universität Göttingen, Germany
| | - Robert Schwarcz
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, USA
| |
Collapse
|
27
|
Cahill CM, Sarang SS, Bakshi R, Xia N, Lahiri DK, Rogers JT. Neuroprotective Strategies and Cell-Based Biomarkers for Manganese-Induced Toxicity in Human Neuroblastoma (SH-SY5Y) Cells. Biomolecules 2024; 14:647. [PMID: 38927051 PMCID: PMC11201412 DOI: 10.3390/biom14060647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/24/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
Manganese (Mn) is an essential heavy metal in the human body, while excess Mn leads to neurotoxicity, as observed in this study, where 100 µM of Mn was administered to the human neuroblastoma (SH-SY5Y) cell model of dopaminergic neurons in neurodegenerative diseases. We quantitated pathway and gene changes in homeostatic cell-based adaptations to Mn exposure. Utilizing the Gene Expression Omnibus, we accessed the GSE70845 dataset as a microarray of SH-SY5Y cells published by Gandhi et al. (2018) and applied statistical significance cutoffs at p < 0.05. We report 74 pathway and 10 gene changes with statistical significance. ReactomeGSA analyses demonstrated upregulation of histones (5 out of 10 induced genes) and histone deacetylases as a neuroprotective response to remodel/mitigate Mn-induced DNA/chromatin damage. Neurodegenerative-associated pathway changes occurred. NF-κB signaled protective responses via Sirtuin-1 to reduce neuroinflammation. Critically, Mn activated three pathways implicating deficits in purine metabolism. Therefore, we validated that urate, a purine and antioxidant, mitigated Mn-losses of viability in SH-SY5Y cells. We discuss Mn as a hypoxia mimetic and trans-activator of HIF-1α, the central trans-activator of vascular hypoxic mitochondrial dysfunction. Mn induced a 3-fold increase in mRNA levels for antioxidant metallothionein-III, which was induced 100-fold by hypoxia mimetics deferoxamine and zinc.
Collapse
Affiliation(s)
- Catherine M. Cahill
- Neurochemistry Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA; (C.M.C.); (S.S.S.); (R.B.); (N.X.)
| | - Sanjan S. Sarang
- Neurochemistry Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA; (C.M.C.); (S.S.S.); (R.B.); (N.X.)
| | - Rachit Bakshi
- Neurochemistry Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA; (C.M.C.); (S.S.S.); (R.B.); (N.X.)
| | - Ning Xia
- Neurochemistry Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA; (C.M.C.); (S.S.S.); (R.B.); (N.X.)
| | - Debomoy K. Lahiri
- Department of Psychiatry and Medical & Molecular Genetics, Indiana Alzheimer’s Disease Research Center, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Jack T. Rogers
- Neurochemistry Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA; (C.M.C.); (S.S.S.); (R.B.); (N.X.)
| |
Collapse
|
28
|
Luo YX, Yang LL, Yao XQ. Gut microbiota-host lipid crosstalk in Alzheimer's disease: implications for disease progression and therapeutics. Mol Neurodegener 2024; 19:35. [PMID: 38627829 PMCID: PMC11020986 DOI: 10.1186/s13024-024-00720-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/18/2024] [Indexed: 04/19/2024] Open
Abstract
Trillions of intestinal bacteria in the human body undergo dynamic transformations in response to physiological and pathological changes. Alterations in their composition and metabolites collectively contribute to the progression of Alzheimer's disease. The role of gut microbiota in Alzheimer's disease is diverse and complex, evidence suggests lipid metabolism may be one of the potential pathways. However, the mechanisms that gut microbiota mediate lipid metabolism in Alzheimer's disease pathology remain unclear, necessitating further investigation for clarification. This review highlights the current understanding of how gut microbiota disrupts lipid metabolism and discusses the implications of these discoveries in guiding strategies for the prevention or treatment of Alzheimer's disease based on existing data.
Collapse
Affiliation(s)
- Ya-Xi Luo
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ling-Ling Yang
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiu-Qing Yao
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
- Chongqing Municipality Clinical Research Center for Geriatric Medicine, Chongqing, China.
- Department of Rehabilitation Therapy, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
29
|
Bon L, Banaś A, Dias I, Melo-Marques I, Cardoso SM, Chaves S, Santos MA. New Multitarget Rivastigmine-Indole Hybrids as Potential Drug Candidates for Alzheimer's Disease. Pharmaceutics 2024; 16:281. [PMID: 38399339 PMCID: PMC10892719 DOI: 10.3390/pharmaceutics16020281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia with no cure so far, probably due to the complexity of this multifactorial disease with diverse processes associated with its origin and progress. Several neuropathological hallmarks have been identified that encourage the search for new multitarget drugs. Therefore, following a multitarget approach, nine rivastigmine-indole (RIV-IND) hybrids (5a1-3, 5b1-3, 5c1-3) were designed, synthesized and evaluated for their multiple biological properties and free radical scavenging activity, as potential multitarget anti-AD drugs. The molecular docking studies of these hybrids on the active center of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) suggest their capacity to act as dual enzyme inhibitors with probable greater disease-modifying impact relative to AChE-selective FDA-approved drugs. Compounds 5a3 (IC50 = 10.9 µM) and 5c3 (IC50 = 26.8 µM) revealed higher AChE inhibition than the parent RIV drug. Radical scavenging assays demonstrated that all the hybrids containing a hydroxyl substituent in the IND moiety (5a2-3, 5b2-3, 5c2-3) have good antioxidant activity (EC50 7.8-20.7 µM). The most effective inhibitors of Aβ42 self-aggregation are 5a3, 5b3 and 5c3 (47.8-55.5%), and compounds 5b2 and 5c2 can prevent the toxicity induced by Aβ1-42 to cells. The in silico evaluation of the drug-likeness of the hybrids also showed that all the compounds seem to have potential oral availability. Overall, within this class of RIV-IND hybrids, 5a3 and 5c3 appear as lead compounds for anti-AD drug candidates, deserving further investigation.
Collapse
Affiliation(s)
- Leo Bon
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal; (L.B.); (A.B.); (I.D.)
| | - Angelika Banaś
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal; (L.B.); (A.B.); (I.D.)
| | - Inês Dias
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal; (L.B.); (A.B.); (I.D.)
| | - Inês Melo-Marques
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (I.M.-M.); (S.M.C.)
| | - Sandra M. Cardoso
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (I.M.-M.); (S.M.C.)
- Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Sílvia Chaves
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal; (L.B.); (A.B.); (I.D.)
| | - M. Amélia Santos
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal; (L.B.); (A.B.); (I.D.)
| |
Collapse
|
30
|
Dong TS, Mayer E. Advances in Brain-Gut-Microbiome Interactions: A Comprehensive Update on Signaling Mechanisms, Disorders, and Therapeutic Implications. Cell Mol Gastroenterol Hepatol 2024; 18:1-13. [PMID: 38336171 PMCID: PMC11126987 DOI: 10.1016/j.jcmgh.2024.01.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024]
Abstract
The complex, bidirectional interactions between the brain, the gut, and the gut microbes are best referred to as the brain gut microbiome system. Animal and clinical studies have identified specific signaling mechanisms within this system, with gut microbes communicating to the brain through neuronal, endocrine, and immune pathways. The brain, in turn, modulates the composition and function of the gut microbiota through the autonomic nervous system, regulating gut motility, secretion, permeability, and the release of hormones impacting microbial gene expression. Perturbations at any level of these interactions can disrupt the intricate balance, potentially contributing to the pathogenesis of intestinal, metabolic, neurologic, and psychiatric disorders. Understanding these interactions and their underlying mechanisms holds promise for identifying biomarkers, as well as novel therapeutic targets, and for developing more effective treatment strategies for these complex disorders. Continued research will advance our knowledge of this system, with the potential for improved understanding and management of a wide range of disorders. This review provides an update on the current state of knowledge regarding this system, with a focus on recent advancements and emerging research areas.
Collapse
Affiliation(s)
- Tien S Dong
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California Los Angeles, Los Angeles, California; Goodman-Luskin Microbiome Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California; The Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Emeran Mayer
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California Los Angeles, Los Angeles, California; Goodman-Luskin Microbiome Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California; The Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California.
| |
Collapse
|
31
|
Forero-Rodríguez J, Zimmermann J, Taubenheim J, Arias-Rodríguez N, Caicedo-Narvaez JD, Best L, Mendieta CV, López-Castiblanco J, Gómez-Muñoz LA, Gonzalez-Santos J, Arboleda H, Fernandez W, Kaleta C, Pinzón A. Changes in Bacterial Gut Composition in Parkinson's Disease and Their Metabolic Contribution to Disease Development: A Gut Community Reconstruction Approach. Microorganisms 2024; 12:325. [PMID: 38399728 PMCID: PMC10893096 DOI: 10.3390/microorganisms12020325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 02/25/2024] Open
Abstract
Parkinson's disease (PD) is a chronic and progressive neurodegenerative disease with the major symptoms comprising loss of movement coordination (motor dysfunction) and non-motor dysfunction, including gastrointestinal symptoms. Alterations in the gut microbiota composition have been reported in PD patients vs. controls. However, it is still unclear how these compositional changes contribute to disease etiology and progression. Furthermore, most of the available studies have focused on European, Asian, and North American cohorts, but the microbiomes of PD patients in Latin America have not been characterized. To address this problem, we obtained fecal samples from Colombian participants (n = 25 controls, n = 25 PD idiopathic cases) to characterize the taxonomical community changes during disease via 16S rRNA gene sequencing. An analysis of differential composition, diversity, and personalized computational modeling was carried out, given the fecal bacterial composition and diet of each participant. We found three metabolites that differed in dietary habits between PD patients and controls: carbohydrates, trans fatty acids, and potassium. We identified six genera that changed significantly in their relative abundance between PD patients and controls, belonging to the families Lachnospiraceae, Lactobacillaceae, Verrucomicrobioaceae, Peptostreptococcaceae, and Streptococcaceae. Furthermore, personalized metabolic modeling of the gut microbiome revealed changes in the predicted production of seven metabolites (Indole, tryptophan, fructose, phenylacetic acid, myristic acid, 3-Methyl-2-oxovaleric acid, and N-Acetylneuraminic acid). These metabolites are associated with the metabolism of aromatic amino acids and their consumption in the diet. Therefore, this research suggests that each individual's diet and intestinal composition could affect host metabolism. Furthermore, these findings open the door to the study of microbiome-host interactions and allow us to contribute to personalized medicine.
Collapse
Affiliation(s)
- Johanna Forero-Rodríguez
- Bioinformatics and Systems Biology Research Group, Genetic Institute, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (J.F.-R.); (J.D.C.-N.); (J.L.-C.)
- Medical Systems Biology Research Group, Institute of Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24118 Kiel, Germany (J.T.)
| | - Johannes Zimmermann
- Medical Systems Biology Research Group, Institute of Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24118 Kiel, Germany (J.T.)
| | - Jan Taubenheim
- Medical Systems Biology Research Group, Institute of Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24118 Kiel, Germany (J.T.)
| | - Natalia Arias-Rodríguez
- Bioinformatics and Systems Biology Research Group, Genetic Institute, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (J.F.-R.); (J.D.C.-N.); (J.L.-C.)
| | - Juan David Caicedo-Narvaez
- Bioinformatics and Systems Biology Research Group, Genetic Institute, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (J.F.-R.); (J.D.C.-N.); (J.L.-C.)
- Neurosciences Research Group, Genetic Institute, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - Lena Best
- Medical Systems Biology Research Group, Institute of Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24118 Kiel, Germany (J.T.)
| | - Cindy V. Mendieta
- PhD Program in Clinical Epidemiology, Department of Clinical Epidemiology and Biostatistics, Faculty of Medicine, Pontificia Universidad Javeriana, Bogotá 110231, Colombia;
- Department of Nutrition and Biochemistry, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Julieth López-Castiblanco
- Bioinformatics and Systems Biology Research Group, Genetic Institute, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (J.F.-R.); (J.D.C.-N.); (J.L.-C.)
| | - Laura Alejandra Gómez-Muñoz
- Neurosciences Research Group, Genetic Institute, Universidad Nacional de Colombia, Bogotá 111321, Colombia
- Cell Death Research Group, Medical School and Genetic Institute, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - Janneth Gonzalez-Santos
- Structural Biochemistry and Bioinformatics Laboratory, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Humberto Arboleda
- Cell Death Research Group, Medical School and Genetic Institute, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - William Fernandez
- Neurosciences Research Group, Genetic Institute, Universidad Nacional de Colombia, Bogotá 111321, Colombia
- Cell Death Research Group, Medical School and Genetic Institute, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - Christoph Kaleta
- Medical Systems Biology Research Group, Institute of Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24118 Kiel, Germany (J.T.)
| | - Andrés Pinzón
- Bioinformatics and Systems Biology Research Group, Genetic Institute, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (J.F.-R.); (J.D.C.-N.); (J.L.-C.)
| |
Collapse
|
32
|
Wu J, Hu Q, Rao X, Zhao H, Tang H, Wang Y. Gut microbiome and metabolic profiles of mouse model for MeCP2 duplication syndrome. Brain Res Bull 2024; 206:110862. [PMID: 38145758 DOI: 10.1016/j.brainresbull.2023.110862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 12/27/2023]
Abstract
The extra copy of the methyl-CpG-binding protein 2 (MeCp2) gene causes MeCP2 duplication syndrome (MDS), a neurodevelopmental disorder characterized by intellectual disability and autistic phenotypes. However, the disturbed microbiome and metabolic profiling underlying the autistic-like behavioral deficits of MDS are rarely investigated. Here we aimed to understand the contributions of microbiome disruption and associated metabolic alterations, especially the disturbed neurotransmitters in MDS employing a transgenic mouse model with MeCP2 overexpression. We analyzed metabolic profiles of plasma, urine, and cecum content and microbiome profiles by both 16 s RNA and shotgun metagenomics sequence technology. We found the decreased levels of Firmicutes and increased levels of Bacteroides in the single MeCP2 gene mutation autism-like mouse model, demonstrating the importance of the host genome in a selection of microbiome, leading to the heterogeneity characteristics of microbiome in MDS. Furthermore, the changed levels of several neurotransmitters (such as dopamine, taurine, and glutamate) implied the excitatory-inhibitory imbalance caused by the single gene mutation. Concurrently, a range of microbial metabolisms of aromatic amino acids (such as tryptophan and phenylalanine) were identified in different biological matrices obtained from MeCP2 transgenic mice. Our investigation revealed the importance of genetic variation in accounting for the differences in microbiomes and confirmed the bidirectional regulatory axis of microbiota-gut-brain in studying the role of microbiome on MDS, which could be useful in deeply understanding the microbiome-based treatment in this autistic-like disease.
Collapse
Affiliation(s)
- Junfang Wu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430000, China.
| | - Qingyu Hu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xiaoping Rao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430000, China
| | - Hongyang Zhao
- Department of Pediatrics, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, China
| | - Huiru Tang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yulan Wang
- Singapore Phenome Center, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 639798, Singapore.
| |
Collapse
|
33
|
Tang X, de Vos P. Structure-function effects of different pectin chemistries and its impact on the gastrointestinal immune barrier system. Crit Rev Food Sci Nutr 2023; 65:1201-1215. [PMID: 38095591 DOI: 10.1080/10408398.2023.2290230] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
The gastrointestinal immune system is crucial for overall health, safeguarding the human body against harmful substances and pathogens. One key player in this defense is dietary fiber pectin, which supports the gut's immune barrier and fosters beneficial gut bacteria. Pectin's composition, including degree of methylation (DM), RG-I, and neutral sugar content, influences its health benefits. This review assesses how pectin composition impacts the gastrointestinal immune barrier and what advantages specific chemistries of pectin has for metabolic, cardiovascular, and immune health. We delve into recent findings regarding pectin's interactions with the immune system, including receptors like TLRs and galectin 3. Pectin is shown to fortify mucosal and epithelial layers, but the specific effects are structure dependent. Additionally, we explore potential strategies for enhancing the gut immune barrier function. Understanding how distinct pectin chemistries affect the gastrointestinal immune system is vital for developing preventive and therapeutic solutions for conditions related to microbiota imbalances and immune issues. Ultimately, this review offers insights into strategies to boost the gut immune barrier's effectiveness, fostering better overall health by using specific pectins in the diet.
Collapse
Affiliation(s)
- X Tang
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - P de Vos
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
34
|
Hochuli N, Kadyan S, Park G, Patoine C, Nagpal R. Pathways linking microbiota-gut-brain axis with neuroinflammatory mechanisms in Alzheimer's pathophysiology. MICROBIOME RESEARCH REPORTS 2023; 3:9. [PMID: 38455083 PMCID: PMC10917618 DOI: 10.20517/mrr.2023.39] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/03/2023] [Accepted: 11/30/2023] [Indexed: 03/09/2024]
Abstract
Disturbances in the local and peripheral immune systems are closely linked to a wide range of diseases. In the context of neurodegenerative disorders such as Alzheimer's disease (AD), inflammation plays a crucial role, often appearing as a common manifestation despite the variability in the occurrence of other pathophysiological hallmarks. Thus, combating neuroinflammation holds promise in treating complex pathophysiological diseases like AD. Growing evidence suggests the gut microbiome's crucial role in shaping the pathogenesis of AD by influencing inflammatory mediators. Gut dysbiosis can potentially activate neuroinflammatory pathways through bidirectional signaling of the gut-brain axis; however, the precise mechanisms of this complex interweaved network remain largely unclear. In these milieus, this review attempts to summarize the contributing role of gut microbiome-mediated neuroinflammatory signals in AD pathophysiology, while also pondering potential mechanisms through which commensal and pathogenic gut microbes affect neuroinflammation. While certain taxa such as Roseburia and Escherichia have been strongly correlated with AD, other clades such as Bacteroides and Faecalibacterium exhibit variations at the species and strain levels. In order to disentangle the inflammatory aspects of neurodegeneration attributed to the gut microbiome, it is imperative that future mechanistic studies investigate the species/strain-level dependency of commensals, opportunistic, and pathogenic gut microbes that consistently show correlations with AD patients across multiple associative studies.
Collapse
Affiliation(s)
| | | | | | | | - Ravinder Nagpal
- Department of Health, Nutrition, and Food Sciences, College of Education, Health, and Human Sciences, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
35
|
Furlong MA, Liu T, Snider JM, Tfaily MM, Itson C, Beitel S, Parsawar K, Keck K, Galligan J, Walker DI, Gulotta JJ, Burgess JL. Evaluating changes in firefighter urinary metabolomes after structural fires: an untargeted, high resolution approach. Sci Rep 2023; 13:20872. [PMID: 38012297 PMCID: PMC10682406 DOI: 10.1038/s41598-023-47799-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 11/18/2023] [Indexed: 11/29/2023] Open
Abstract
Firefighters have elevated rates of urinary tract cancers and other adverse health outcomes, which may be attributable to environmental occupational exposures. Untargeted metabolomics was applied to characterize this suite of environmental exposures and biological changes in response to occupational firefighting. 200 urine samples from 100 firefighters collected at baseline and two to four hours post-fire were analyzed using untargeted liquid-chromatography and high-resolution mass spectrometry. Changes in metabolite abundance after a fire were estimated with fixed effects linear regression, with false discovery rate (FDR) adjustment. Partial least squares discriminant analysis (PLS-DA) was also used, and variable important projection (VIP) scores were extracted. Systemic changes were evaluated using pathway enrichment for highly discriminating metabolites. Metabolome-wide-association-study (MWAS) identified 268 metabolites associated with firefighting activity at FDR q < 0.05. Of these, 20 were annotated with high confidence, including the amino acids taurine, proline, and betaine; the indoles kynurenic acid and indole-3-acetic acid; the known uremic toxins trimethylamine n-oxide and hippuric acid; and the hormone 7a-hydroxytestosterone. Partial least squares discriminant analysis (PLS-DA) additionally implicated choline, cortisol, and other hormones. Significant pathways included metabolism of urea cycle/amino group, alanine and aspartate, aspartate and asparagine, vitamin b3 (nicotinate and nicotinamide), and arginine and proline. Firefighters show a broad metabolic response to fires, including altered excretion of indole compounds and uremic toxins. Implicated pathways and features, particularly uremic toxins, may be important regulators of firefighter's increased risk for urinary tract cancers.
Collapse
Affiliation(s)
- Melissa A Furlong
- Environmental Health Sciences, Mel and Enid Zuckerman College of Public Health, University of Arizona, 1295 N Martin Ave, Tucson, AZ, 85724, USA.
| | - Tuo Liu
- Environmental Health Sciences, Mel and Enid Zuckerman College of Public Health, University of Arizona, 1295 N Martin Ave, Tucson, AZ, 85724, USA
| | - Justin M Snider
- School of Nutritional Sciences and Wellness, University of Arizona, Tucson, USA
- University of Arizona Cancer Center, Tucson, USA
| | - Malak M Tfaily
- Department of Environmental Science, University of Arizona, Tucson, USA
| | - Christian Itson
- Department of Environmental Science, University of Arizona, Tucson, USA
| | - Shawn Beitel
- Environmental Health Sciences, Mel and Enid Zuckerman College of Public Health, University of Arizona, 1295 N Martin Ave, Tucson, AZ, 85724, USA
| | - Krishna Parsawar
- Analytical and Biological Mass Spectrometry Core, University of Arizona, Tucson, USA
| | - Kristen Keck
- Analytical and Biological Mass Spectrometry Core, University of Arizona, Tucson, USA
| | | | - Douglas I Walker
- Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | | | - Jefferey L Burgess
- Environmental Health Sciences, Mel and Enid Zuckerman College of Public Health, University of Arizona, 1295 N Martin Ave, Tucson, AZ, 85724, USA
| |
Collapse
|
36
|
Zhou Y, Chen Y, He H, Peng M, Zeng M, Sun H. The role of the indoles in microbiota-gut-brain axis and potential therapeutic targets: A focus on human neurological and neuropsychiatric diseases. Neuropharmacology 2023; 239:109690. [PMID: 37619773 DOI: 10.1016/j.neuropharm.2023.109690] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/17/2023] [Accepted: 08/19/2023] [Indexed: 08/26/2023]
Abstract
At present, a large number of relevant studies have suggested that the changes in gut microbiota are related to the course of nervous system diseases, and the microbiota-gut-brain axis is necessary for the proper functioning of the nervous system. Indole and its derivatives, as the products of the gut microbiota metabolism of tryptophan, can be used as ligands to regulate inflammation and autoimmune response in vivo. In recent years, some studies have found that the levels of indole and its derivatives differ significantly between patients with central nervous system diseases and healthy individuals, suggesting that they may be important mediators for the involvement of the microbiota-gut-brain axis in the disease course. Tryptophan metabolites produced by gut microbiota are involved in multiple physiological reactions, take indole for example, it participates in the process of inflammation and anti-inflammatory effects through various cellular physiological activities mediated by aromatic hydrocarbon receptors (AHR), which can influence a variety of neurological and neuropsychiatric diseases. This review mainly explores and summarizes the relationship between indoles and human neurological and neuropsychiatric disorders, including ischemic stroke, Alzheimer's disease, Parkinson's disease, multiple sclerosis, cognitive impairment, depression and anxiety, and puts forward that the level of indoles can be regulated through various direct or indirect ways to improve the prognosis of central nervous system diseases and reverse the dysfunction of the microbiota-gut-brain axis. This article is part of the Special Issue on "Microbiome & the Brain: Mechanisms & Maladies".
Collapse
Affiliation(s)
- Yi Zhou
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital and the Second Clinical Medical College, Southern Medical University, Guangzhou, 510280, China; Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Yue Chen
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital and the Second Clinical Medical College, Southern Medical University, Guangzhou, 510280, China; Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Hui He
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital and the Second Clinical Medical College, Southern Medical University, Guangzhou, 510280, China; Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Meichang Peng
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital and the Second Clinical Medical College, Southern Medical University, Guangzhou, 510280, China; Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Meiqin Zeng
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital and the Second Clinical Medical College, Southern Medical University, Guangzhou, 510280, China; Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Haitao Sun
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital and the Second Clinical Medical College, Southern Medical University, Guangzhou, 510280, China; Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China; Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, 510280, China.
| |
Collapse
|
37
|
Denman CR, Park SM, Jo J. Gut-brain axis: gut dysbiosis and psychiatric disorders in Alzheimer's and Parkinson's disease. Front Neurosci 2023; 17:1268419. [PMID: 38075261 PMCID: PMC10704039 DOI: 10.3389/fnins.2023.1268419] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 10/30/2023] [Indexed: 02/17/2025] Open
Abstract
Gut dysbiosis and psychiatric symptoms are common early manifestations of Alzheimer's disease (AD) and Parkinson's disease (PD). These diseases, characterised by progressive neuron loss and pathological protein accumulation, impose debilitating effects on patients. Recently, these pathological proteins have been linked with gut dysbiosis and psychiatric disorders. The gut-brain axis links the enteric and central nervous systems, acting as a bidirectional communication pathway to influence brain function and behavior. The relationship triad between gut dysbiosis, psychiatric disorders, and neurodegeneration has been investigated in pairs; however, evidence suggests that they are all interrelated and a deeper understanding is required to unravel the nuances of neurodegenerative diseases. Therefore, this review aims to summarise the current literature on the roles of gut dysbiosis and psychiatric disorders in pathological protein-related neurodegenerative diseases. We discussed how changes in the gut environment can influence the development of psychiatric symptoms and the progression of neurodegeneration and how these features overlap in AD and PD. Moreover, research on the interplay between gut dysbiosis, psychiatric disorders, and neurodegeneration remains in its early phase. In this review, we highlighted potential therapeutic approaches aimed at mitigating gastrointestinal problems and psychiatric disorders to alter the rate of neurodegeneration. Further research to assess the molecular mechanisms underlying AD and PD pathogenesis remains crucial for developing more effective treatments and achieving earlier diagnoses. Moreover, exploring non-invasive, early preventive measures and interventions is a relatively unexplored but important avenue of research in neurodegenerative diseases.
Collapse
Affiliation(s)
- Charlotte R. Denman
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Sang Myun Park
- Department of Pharmacology, Ajou University School of Medicine, Suwon, Republic of Korea
- Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, Republic of Korea
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Junghyun Jo
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- Department of Pharmacology, Ajou University School of Medicine, Suwon, Republic of Korea
- Center for Convergence Research of Neurological Disorders, Ajou University School of Medicine, Suwon, Republic of Korea
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
38
|
Gupta SK, Vyavahare S, Duchesne Blanes IL, Berger F, Isales C, Fulzele S. Microbiota-derived tryptophan metabolism: Impacts on health, aging, and disease. Exp Gerontol 2023; 183:112319. [PMID: 37898179 DOI: 10.1016/j.exger.2023.112319] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/05/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
The intricate interplay between gut microbiota and the host is pivotal in maintaining homeostasis and health. Dietary tryptophan (TRP) metabolism initiates a cascade of essential endogenous metabolites, including kynurenine, kynurenic acid, serotonin, and melatonin, as well as microbiota-derived Trp metabolites like tryptamine, indole propionic acid (IPA), and other indole derivatives. Notably, tryptamine and IPA, among the indole metabolites, exert crucial roles in modulating immune, metabolic, and neuronal responses at both local and distant sites. Additionally, these metabolites demonstrate potent antioxidant and anti-inflammatory activities. The levels of microbiota-derived TRP metabolites are intricately linked to the gut microbiota's health, which, in turn, can be influenced by age-related changes. This review aims to comprehensively summarize the cellular and molecular impacts of tryptamine and IPA on health and aging-related complications. Furthermore, we explore the levels of tryptamine and IPA and their corresponding bacteria in select diseased conditions, shedding light on their potential significance as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Sonu Kumar Gupta
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Sagar Vyavahare
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Ian L Duchesne Blanes
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Ford Berger
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Carlos Isales
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA; Centre for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Sadanand Fulzele
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA; Centre for Healthy Aging, Medical College of Georgia, Augusta University, Augusta, GA, USA; Department of Cell Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA; Department of Orthopedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
39
|
Arenas-Gómez CM, Garcia-Gutierrez E, Escobar JS, Cotter PD. Human gut homeostasis and regeneration: the role of the gut microbiota and its metabolites. Crit Rev Microbiol 2023; 49:764-785. [PMID: 36369718 DOI: 10.1080/1040841x.2022.2142088] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 08/18/2022] [Accepted: 10/26/2022] [Indexed: 11/13/2022]
Abstract
The healthy human gut is a balanced ecosystem where host cells and representatives of the gut microbiota interact and communicate in a bidirectional manner at the gut epithelium. As a result of these interactions, many local and systemic processes necessary for host functionality, and ultimately health, take place. Impairment of the integrity of the gut epithelium diminishes its ability to act as an effective gut barrier, can contribute to conditions associated to inflammation processes and can have other negative consequences. Pathogens and pathobionts have been linked with damage of the integrity of the gut epithelium, but other components of the gut microbiota and some of their metabolites can contribute to its repair and regeneration. Here, we review what is known about the effect of bacterial metabolites on the gut epithelium and, more specifically, on the regulation of repair by intestinal stem cells and the regulation of the immune system in the gut. Additionally, we explore the potential therapeutic use of targeted modulation of the gut microbiota to maintain and improve gut homeostasis as a mean to improve health outcomes.
Collapse
Affiliation(s)
- Claudia Marcela Arenas-Gómez
- Vidarium-Nutrition, Health and Wellness Research Center, Grupo Empresarial Nutresa, Medellin, Colombia
- Dirección Académica, Universidad Nacional de Colombia, Sede de La Paz, La Paz 202017, Colombia
| | - Enriqueta Garcia-Gutierrez
- Teagasc Food Research Centre Moorepark, Fermoy, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- VistaMilk SFI Research Centre, Moorepark, Fermoy, Ireland
| | - Juan S Escobar
- Vidarium-Nutrition, Health and Wellness Research Center, Grupo Empresarial Nutresa, Medellin, Colombia
| | - Paul D Cotter
- Teagasc Food Research Centre Moorepark, Fermoy, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- VistaMilk SFI Research Centre, Moorepark, Fermoy, Ireland
| |
Collapse
|
40
|
Liu A, Shen H, Li Q, He J, Wang B, Du W, Li G, Zhang M, Zhang X. Determination of tryptophan and its indole metabolites in follicular fluid of women with diminished ovarian reserve. Sci Rep 2023; 13:17124. [PMID: 37816920 PMCID: PMC10564947 DOI: 10.1038/s41598-023-44335-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/06/2023] [Indexed: 10/12/2023] Open
Abstract
Tryptophan (TRP) and its indole metabolites exhibit numerous biological effects, especially their antioxidant properties. This study used untargeted metabolomics in conjunction with targeted metabolomics to investigate the differential expression of tryptophan and its indole metabolites in follicular fluid (FF) of diminished ovarian reserve (DOR) and normal ovarian reserve (NOR) populations. This study included patients with DOR (n = 50) and females with NOR (n = 35) who received in vitro fertilization and embryo transfer. Untargeted metabolomics suggests that diminished ovarian reserve affects the metabolic profile of FF, TRP and indole metabolites were significantly down-regulated in the DOR group. Targeted metabolomics quantification revealed that the levels of TRP, IPA and IAA in the FF of the DOR group were significantly lower than those of the NOR group (P < 0.01). The concentration of TRP in FF is positively correlated with the available embryo rate in NOR females. These results provide data support to explore the pathogenesis of DOR and to look for new biomarkers and ovarian protectors. Additionally, alterations in TRP and its indole metabolites in FF may indirectly reflect the interaction between intestinal flora and the follicular microenvironment.
Collapse
Affiliation(s)
- Ahui Liu
- Lanzhou University, Lanzhou, Gansu, People's Republic of China
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, People's Republic of China
| | - Haofei Shen
- Lanzhou University, Lanzhou, Gansu, People's Republic of China
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, People's Republic of China
| | - Qiuyuan Li
- Lanzhou University, Lanzhou, Gansu, People's Republic of China
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, People's Republic of China
| | - Juanjuan He
- Lanzhou University, Lanzhou, Gansu, People's Republic of China
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, People's Republic of China
| | - Bin Wang
- Lanzhou University, Lanzhou, Gansu, People's Republic of China
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, People's Republic of China
| | - Wenjing Du
- Lanzhou University, Lanzhou, Gansu, People's Republic of China
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, People's Republic of China
- The First Hospital of Lanzhou University, Chengguan District, No. 1 Dong Gang Xi Road, Lanzhou, 730000, Gansu, People's Republic of China
- Key Laboratory for Reproductive Medicine and Embryo of Gansu Province, Lanzhou, People's Republic of China
| | | | - Mingtong Zhang
- Gansu Inspection and Testing Technical Engineering Laboratory for Chinese Herbal and Tibetan Medicine, NMPA Key Laboratory for Quality Control of TCM, Gansu Institute for Drug Control, No.7 Yin'an Road, An Ning District, Lanzhou, 730070, Gansu, People's Republic of China.
| | - Xuehong Zhang
- The First Hospital of Lanzhou University, Chengguan District, No. 1 Dong Gang Xi Road, Lanzhou, 730000, Gansu, People's Republic of China.
- Key Laboratory for Reproductive Medicine and Embryo of Gansu Province, Lanzhou, People's Republic of China.
| |
Collapse
|
41
|
Poeggeler B, Singh SK, Sambamurti K, Pappolla MA. Nitric Oxide as a Determinant of Human Longevity and Health Span. Int J Mol Sci 2023; 24:14533. [PMID: 37833980 PMCID: PMC10572643 DOI: 10.3390/ijms241914533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
The master molecular regulators and mechanisms determining longevity and health span include nitric oxide (NO) and superoxide anion radicals (SOR). L-arginine, the NO synthase (NOS) substrate, can restore a healthy ratio between the dangerous SOR and the protective NO radical to promote healthy aging. Antioxidant supplementation orchestrates protection against oxidative stress and damage-L-arginine and antioxidants such as vitamin C increase NO production and bioavailability. Uncoupling of NO generation with the appearance of SOR can be induced by asymmetric dimethylarginine (ADMA). L-arginine can displace ADMA from the site of NO formation if sufficient amounts of the amino acid are available. Antioxidants such as ascorbic acids can scavenge SOR and increase the bioavailability of NO. The topics of this review are the complex interactions of antioxidant agents with L-arginine, which determine NO bioactivity and protection against age-related degeneration.
Collapse
Affiliation(s)
- Burkhard Poeggeler
- Department of Physiology, Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, Faculty of Biology and Psychology, Georg August University Göttingen, Zappenburg 2, D-38524 Sassenburg, Germany
| | - Sandeep Kumar Singh
- Indian Scientific Education and Technology Foundation, Lucknow 226002, India;
| | - Kumar Sambamurti
- Department of Neurobiology, Medical University of South Carolina, 173 Ashley Avenue, BSB 403, Charleston, SC 29425, USA;
| | - Miguel A. Pappolla
- Department of Neurology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA;
| |
Collapse
|
42
|
Choi H, Mook-Jung I. Functional effects of gut microbiota-derived metabolites in Alzheimer's disease. Curr Opin Neurobiol 2023; 81:102730. [PMID: 37236067 DOI: 10.1016/j.conb.2023.102730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/28/2023] [Accepted: 04/30/2023] [Indexed: 05/28/2023]
Abstract
The precise causation of Alzheimer's disease (AD) is unknown, and the factors that contribute to its etiology are highly complicated. Numerous research has been conducted to investigate the potential impact of various factors to the risk of AD development or prevention against it. A growing body of evidence suggests to the importance of the gut microbiota-brain axis in the modulation of AD, which is characterized by altered gut microbiota composition. These changes can alter the production of microbial-derived metabolites, which may play a detrimental role in disease progression by being involved in cognitive decline, neurodegeneration, neuroinflammation, and accumulation of Aβ and tau. The focus of this review is on the relationship between the key metabolic products of the gut microbiota and AD pathogenesis in the brain. Understanding the action of microbial metabolites can open up new avenues for the development of AD treatment targets.
Collapse
Affiliation(s)
- Hyunjung Choi
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea; Convergence Dementia Research Center, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Inhee Mook-Jung
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea; Convergence Dementia Research Center, College of Medicine, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
43
|
Shaw C, Hess M, Weimer BC. Microbial-Derived Tryptophan Metabolites and Their Role in Neurological Disease: Anthranilic Acid and Anthranilic Acid Derivatives. Microorganisms 2023; 11:1825. [PMID: 37512997 PMCID: PMC10384668 DOI: 10.3390/microorganisms11071825] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
The gut microbiome provides the host access to otherwise indigestible nutrients, which are often further metabolized by the microbiome into bioactive components. The gut microbiome can also shift the balance of host-produced compounds, which may alter host health. One precursor to bioactive metabolites is the essential aromatic amino acid tryptophan. Tryptophan is mostly shunted into the kynurenine pathway but is also the primary metabolite for serotonin production and the bacterial indole pathway. Balance between tryptophan-derived bioactive metabolites is crucial for neurological homeostasis and metabolic imbalance can trigger or exacerbate neurological diseases. Alzheimer's, depression, and schizophrenia have been linked to diverging levels of tryptophan-derived anthranilic, kynurenic, and quinolinic acid. Anthranilic acid from collective microbiome metabolism plays a complex but important role in systemic host health. Although anthranilic acid and its metabolic products are of great importance for host-microbe interaction in neurological health, literature examining the mechanistic relationships between microbial production, host regulation, and neurological diseases is scarce and at times conflicting. This narrative review provides an overview of the current understanding of anthranilic acid's role in neurological health and disease, with particular focus on the contribution of the gut microbiome, the gut-brain axis, and the involvement of the three major tryptophan pathways.
Collapse
Affiliation(s)
- Claire Shaw
- Department of Population Health and Reproduction, 100K Pathogen Genome Project, University of California Davis, Davis, CA 95616, USA
- Department of Animal Science, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA 95616, USA
| | - Matthias Hess
- Department of Animal Science, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA 95616, USA
| | - Bart C Weimer
- Department of Population Health and Reproduction, 100K Pathogen Genome Project, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
44
|
Azmy EM, Nassar IF, Hagras M, Fawzy IM, Hegazy M, Mokhtar MM, Yehia AM, Ismail NS, Lashin WH. New indole derivatives as multitarget anti-Alzheimer's agents: synthesis, biological evaluation and molecular dynamics. Future Med Chem 2023; 15:473-495. [PMID: 37125532 DOI: 10.4155/fmc-2022-0228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Background: Alzheimer's disease is a neurological disorder that causes brain cells to shrink and die. Aim: Thirteen novel 'oxathiolanyl', 'pyrazolyl' and 'pyrimidinyl' indole derivatives were designed and synthesized as anti-Alzheimer's disease treatment. Method: In vitro enzyme assay was performed against both AChE and BChE enzymes. In addition, antioxidant assay and cytotoxicity on a normal cell line were determined. Molecular docking and dynamic simulations were conducted to confirm the binding mode in both esterases' active sites. In silico absorption, distribution, metabolism, excretion and toxicity studies were also carried out. Results & conclusion: Compounds 5, 7 and 11 exhibited superior inhibitory activity against acetylcholinesterase and butyrylcholinesterase, with IC50 values of 0.042 and 3.003 μM, 2.54 and 0.207 μM and 0.052 and 2.529 μM, respectively, compared with donepezil.
Collapse
Affiliation(s)
- Eman M Azmy
- Department of Chemistry, Faculty of Women, Ain Shams University, Heliopolis, Cairo, 11457, Egypt
| | - Ibrahim F Nassar
- Faculty of Specific Education, Ain Shams University, 365 Ramsis Street, Abassia, Cairo, Egypt
| | - Mohamed Hagras
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Iten M Fawzy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Future University in Egypt, Cairo, 11835, Egypt
| | - Maghawry Hegazy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Mahmoud Mohamed Mokhtar
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Amr Mohamed Yehia
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Nasser Sm Ismail
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Future University in Egypt, Cairo, 11835, Egypt
| | - Walaa H Lashin
- Department of Chemistry, Faculty of Women, Ain Shams University, Heliopolis, Cairo, 11457, Egypt
| |
Collapse
|
45
|
Van den Abbeele P, Detzel C, Rose A, Deyaert S, Baudot A, Warner C. Serum-Derived Bovine Immunoglobulin Stimulates SCFA Production by Specific Microbes in the Ex Vivo SIFR ® Technology. Microorganisms 2023; 11:659. [PMID: 36985232 PMCID: PMC10053870 DOI: 10.3390/microorganisms11030659] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 02/16/2023] [Indexed: 03/08/2023] Open
Abstract
Serum-derived bovine immunoglobulins (SBI) exert health benefits mediated by their ability to bind microbial components, thereby preventing translocation and subsequent inflammation. While in vivo studies have shown that a fraction of SBI also reaches the colon, little is known about the impact of SBI on the dense colonic microbiota that has great potential to impact human health. This study, therefore, investigated the impact of three bovine plasma protein fractions (SBI, bovine plasma (BP) and albumin-enriched bovine plasma (ABP)) on the gut microbiota of six human adults using the novel ex vivo SIFR® technology, recently demonstrated to generate predictive findings for clinical studies. When dosed at an equivalent of 5 g/day, all protein fractions significantly increased health-related metabolites-acetate, propionate, and butyrate. Upon simulating small intestinal absorption, SBI still markedly increased acetate and propionate, demonstrating that SBI is more resistant to small intestinal digestion and absorption compared to the other protein sources. Despite noticeable interindividual differences in microbiota composition among human adults, SBI consistently stimulated a narrow spectrum of gut microbes, which largely differed from the ones that are typically involved in carbohydrate fermentation. The SBI-fermenting consortium included B. vulgatus and L. edouardi (correlating with acetate and propionate) along with Dorea longicatena, Coprococcus comes and the butyrate-producing bacterium SS3/4 (correlating with butyrate). Overall, this study revealed that protein bovine fractions can contribute to health benefits by specifically modulating the human gut microbiota. While health benefits could follow from the production of SCFA, a broader range of protein-derived metabolites could also be produced. This study also confirms that the concept of prebiotics (substrates selectively utilized by host microorganisms conferring a health benefit) could go beyond the use of ingestible carbohydrates and extend to partially indigestible proteins.
Collapse
Affiliation(s)
| | | | - Alexis Rose
- Proliant Health & Biologicals, LLC., Des Moines, IA 50021, USA
| | - Stef Deyaert
- Cryptobiotix SA, Technologiepark-Zwijnaarde 82, 9052 Ghent, Belgium
| | - Aurélien Baudot
- Cryptobiotix SA, Technologiepark-Zwijnaarde 82, 9052 Ghent, Belgium
| | | |
Collapse
|
46
|
Song S, Wood TK. Manipulating indole symbiont signalling. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:691-696. [PMID: 35667868 DOI: 10.1111/1758-2229.13100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Sooyeon Song
- Department of Animal Science, Jeonbuk National University, Jeonju-si, Jeollabuk-do, Republic of Korea
- Agricultural Convergence Technology, Jeonbuk National University, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Thomas K Wood
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
47
|
Tarawneh R, Penhos E. The gut microbiome and Alzheimer's disease: Complex and bidirectional interactions. Neurosci Biobehav Rev 2022; 141:104814. [PMID: 35934087 PMCID: PMC9637435 DOI: 10.1016/j.neubiorev.2022.104814] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/16/2022] [Accepted: 08/01/2022] [Indexed: 11/20/2022]
Abstract
Structural and functional alterations to the gut microbiome, referred to as gut dysbiosis, have emerged as potential key mediators of neurodegeneration and Alzheimer disease (AD) pathogenesis through the "gut -brain" axis. Emerging data from animal and clinical studies support an important role for gut dysbiosis in mediating neuroinflammation, central and peripheral immune dysregulation, abnormal brain protein aggregation, and impaired intestinal and brain barrier permeability, leading to neuronal loss and cognitive impairment. Gut dysbiosis has also been shown to directly influence various mechanisms involved in neuronal growth and repair, synaptic plasticity, and memory and learning functions. Aging and lifestyle factors including diet, exercise, sleep, and stress influence AD risk through gut dysbiosis. Furthermore, AD is associated with characteristic gut microbial signatures which offer value as potential markers of disease severity and progression. Together, these findings suggest the presence of a complex bidirectional relationship between AD and the gut microbiome and highlight the utility of gut modulation strategies as potential preventative or therapeutic strategies in AD. We here review the current literature regarding the role of the gut-brain axis in AD pathogenesis and its potential role as a future therapeutic target in AD treatment and/or prevention.
Collapse
Affiliation(s)
- Rawan Tarawneh
- Department of Neurology, Center for Memory and Aging, Alzheimer Disease Research Center, The University of New Mexico, Albuquerque, NM 87106, USA.
| | - Elena Penhos
- College of Medicine, The Ohio State University, Columbus, OH, USA 43210
| |
Collapse
|
48
|
Zhang H, Wang Y, Wang Y, Li X, Wang S, Wang Z. Recent advance on carbamate-based cholinesterase inhibitors as potential multifunctional agents against Alzheimer's disease. Eur J Med Chem 2022; 240:114606. [PMID: 35858523 DOI: 10.1016/j.ejmech.2022.114606] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD), as the fourth leading cause of death among the elderly worldwide, has brought enormous challenge to the society. Due to its extremely complex pathogeneses, the development of multi-target directed ligands (MTDLs) becomes the major strategy for combating AD. Carbamate moiety, as an essential building block in the development of MTDLs, exhibits structural similarity to neurotransmitter acetylcholine (ACh) and has piqued extensive attention in discovering multifunctional cholinesterase inhibitors. To date, numerous preclinical studies demonstrate that carbamate-based cholinesterase inhibitors can prominently increase the level of ACh and improve cognition impairments and behavioral deficits, providing a privileged strategy for the treatment of AD. Based on the recent research focus on the novel cholinesterase inhibitors with multiple biofunctions, this review aims at summarizing and discussing the most recent studies excavating the potential carbamate-based MTDLs with cholinesterase inhibition efficacy, to accelerate the pace of pleiotropic cholinesterase inhibitors for coping AD.
Collapse
Affiliation(s)
- Honghua Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Yuying Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Yuqing Wang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Xuelin Li
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Shuzhi Wang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Zhen Wang
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
49
|
George N, Jawaid Akhtar M, Al Balushi KA, Alam Khan S. Rational drug design strategies for the development of promising multi-target directed indole hybrids as Anti-Alzheimer agents. Bioorg Chem 2022; 127:105941. [PMID: 35714473 DOI: 10.1016/j.bioorg.2022.105941] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 11/26/2022]
Abstract
Alzheimer's disease (AD) is a neurological disorder that leads to dementia i.e., progressive memory loss accompanied with worsening of thinking ability of an individual. The cause of AD is not fully understood but it progresses with age where brain cells gradually die over time. According to the World Health Organization (WHO), currently 50 million people worldwide are affected by dementia and 60-70% of the cases belong to AD. Cumulative research over the past few decades have shown that molecules that act at a single target possess limited efficacy since these investigational drugs are not able to act against complex pathologies and thus do not provide permanent cure. Designing of multi-target directed ligands (MTDLs) appears to be more beneficial and a rational approach to treat chronic complex diseases including neurodegenerative diseases. Recently, MTDLs are being extensively researched by the medicinal chemists for the development of drugs for the treatment of various multifactorial diseases. Indole is one of the privileged scaffolds which is considered as an essential mediator between the gut-brain axis because of its neuroprotective, anti-inflammatory, β-amyloid anti-aggregation and antioxidant activities. Herein, we have reviewed the potential of some indole-hybrids acting at multiple targets in the pathogenesis of AD. We have reviewed research articles from the year 2014-2021 from various scientific databases and highlighted the synthetic strategies, mechanisms of neuroprotection, toxicity, structure activity relationships and molecular docking studies of various indole-hybrid derivatives. This literature review of published data on indole derivatives indicated that developing indole hybrids have improved the pharmacokinetic profile with lower toxicity, provided synergistic effect, helped to develop more potent compounds and prevented drug-drug interactions. It is evident that this class of compounds have potential to inhibit multiple enzymes targets involved in the pathogenesis of AD and therefore indole hybrids as MTDLs may play an important role in the development of anti-AD molecules.
Collapse
Affiliation(s)
- Namy George
- College of Pharmacy, National University of Science and Technology, PO Box 620, PC 130, Muscat, Oman
| | - Md Jawaid Akhtar
- College of Pharmacy, National University of Science and Technology, PO Box 620, PC 130, Muscat, Oman
| | - Khalid A Al Balushi
- College of Pharmacy, National University of Science and Technology, PO Box 620, PC 130, Muscat, Oman
| | - Shah Alam Khan
- College of Pharmacy, National University of Science and Technology, PO Box 620, PC 130, Muscat, Oman.
| |
Collapse
|
50
|
Chen SJ, Chen CC, Liao HY, Wu YW, Liou JM, Wu MS, Kuo CH, Lin CH. Alteration of Gut Microbial Metabolites in the Systemic Circulation of Patients with Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2022; 12:1219-1230. [PMID: 35342048 DOI: 10.3233/jpd-223179] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Emerging evidence suggests that gut dysbiosis contributes to Parkinson's disease (PD) by signaling through microbial metabolites. Hippuric acid (HA), indole derivatives, and secondary bile acids are among the most common gut metabolites. OBJECTIVE To examine the relationship of systemic concentrations of these microbial metabolites associated with changes of gut microbiota, PD status, and severity of PD. METHODS We enrolled 56 patients with PD and 43 age- and sex-matched healthy participants. Motor and cognitive severity were assessed with Movement Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS) part III motor score and the Mini-Mental State Examination (MMSE), respectively. Plasma concentrations of targeted gut metabolites were measured with liquid chromatography-tandem mass spectrometry. Gut microbiota was analyzed with shotgun metagenomic sequencing. RESULTS Compared with controls, PD patients had significantly higher plasma levels of HA, indole-3-propionic acid (IPA), deoxycholic acid (DCA), and glycodeoxycholic acid (GDCA). After adjustment for age and sex in a multivariate logistic regression analysis, plasma levels of HA (odds ratio [OR] 3.21, p < 0.001), IPA (OR 2.59, p = 0.031), and GDCA (OR 2.82, p = 0.036) were associated with positive PD status. Concentrations of these gut metabolites did not correlate with MDS-UPDRS part III score or MMSE after adjustment for confounders. Microbial metabolite levels were associated with the relative abundance of pro-inflammatory gut bacteria. CONCLUSION Aberrant gut microbial metabolites of HA, indole derivatives and secondary bile acids associated with specific gut microbiota changes were observed in patients with PD.
Collapse
Affiliation(s)
- Szu-Ju Chen
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Neurology, National Taiwan University Hospital Bei-Hu Branch, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chieh-Chang Chen
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsin-Yu Liao
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Wei Wu
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Jyh-Ming Liou
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ming-Shiang Wu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ching-Hua Kuo
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan.,The Metabolomics Core Laboratory, NTU Centers of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan.,Department of Pharmacy, National Taiwan University Hospital, Taipei, Taiwan
| | - Chin-Hsien Lin
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|