1
|
Fernandez F, Griffiths LR, Sutherland HG, Cole MH, Fitton JH, Winberg P, Schweitzer D, Hopkins LN, Meyer BJ. Sirtuin Proteins and Memory: A Promising Target in Alzheimer's Disease Therapy? Nutrients 2024; 16:4088. [PMID: 39683482 DOI: 10.3390/nu16234088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Sirtuins (SIRTs), nicotine adenine dinucleotide (+)-dependent histone deacetylases, have emerged as critical regulators in many signalling pathways involved in a wide range of biological processes. Currently, seven mammalian SIRTs have been characterized and are found across a number of cellular compartments. There has been considerable interest in the role of SIRTs in the brain due to their role in a plethora of metabolic- and age-related diseases, including their involvement in learning and memory function in physiological and pathophysiological conditions. Although cognitive function declines over the course of healthy ageing, neurological disorders including Alzheimer's disease (AD) can be associated with progressive cognitive impairments. This review aimed to report and integrate recent advances in the understanding of the role of SIRTs in cognitive function and dysfunction in the context of AD. We have also reviewed the use of selective and/or natural SIRT activators as potential therapeutic agents and/or adjuvants for AD.
Collapse
Affiliation(s)
- Francesca Fernandez
- School of Behavioural and Health Sciences, Faculty of Heath Sciences, Australian Catholic University, Banyo, QLD 4014, Australia
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, 60 Musk Ave, Kelvin Grove, QLD 4059, Australia
- Healthy Brain and Mind Research Centre, Australian Catholic University, Fitzroy, VIC 3065, Australia
| | - Lyn R Griffiths
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, 60 Musk Ave, Kelvin Grove, QLD 4059, Australia
| | - Heidi G Sutherland
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, 60 Musk Ave, Kelvin Grove, QLD 4059, Australia
| | - Michael H Cole
- School of Behavioural and Health Sciences, Faculty of Heath Sciences, Australian Catholic University, Banyo, QLD 4014, Australia
- Healthy Brain and Mind Research Centre, Australian Catholic University, Fitzroy, VIC 3065, Australia
| | - J Helen Fitton
- Venus Shell Systems Pty Ltd., Huskisson, NSW 2540, Australia
| | - Pia Winberg
- Venus Shell Systems Pty Ltd., Huskisson, NSW 2540, Australia
- School of Medical, Indigenous and Health Science, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Daniel Schweitzer
- Mater Centre of Neuroscience, 53 Raymond Terrace, South Brisbane, QLD 4066, Australia
- Department of Neurology, Wesley Hospital, 451 Coronation Drive, Auchenflower, QLD 4066, Australia
| | - Lloyd N Hopkins
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, 60 Musk Ave, Kelvin Grove, QLD 4059, Australia
| | - Barbara J Meyer
- School of Medical, Indigenous and Health Science, University of Wollongong, Wollongong, NSW 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
2
|
Liu K, Zhou Y, Song X, Zeng J, Wang Z, Wang Z, Zhang H, Xu J, Li W, Gong Z, Wang M, Liu B, Xiao N, Liu K. Baicalin attenuates neuronal damage associated with SDH activation and PDK2-PDH axis dysfunction in early reperfusion. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155570. [PMID: 38579645 DOI: 10.1016/j.phymed.2024.155570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/13/2024] [Accepted: 03/25/2024] [Indexed: 04/07/2024]
Abstract
BACKGROUND Energy deficiency and oxidative stress are interconnected during ischemia/reperfusion (I/R) and serve as potential targets for the treatment of cerebral ischemic stroke. Baicalin is a neuroprotective antioxidant, but the underlying mechanisms are not fully revealed. PURPOSE This study explored whether and how baicalin rescued neurons against ischemia/reperfusion (I/R) attack by focusing on the regulation of neuronal pyruvate dehydrogenase kinase 2 (PDK2)-pyruvate dehydrogenase (PDH) axis implicated with succinate dehydrogenase (SDH)-mediated oxidative stress. STUDY DESIGN The effect of the tested drug was explored in vitro and in vivo with the model of oxygen-glucose deprivation/reoxygenation (OGD/R) and middle cerebral artery occlusion/reperfusion (MCAO/R), respectively. METHODS Neuronal damage was evaluated according to cell viability, infarct area, and Nissl staining. Protein levels were measured by western blotting and immunofluorescence. Gene expression was investigated by RT-qPCR. Mitochondrial status was also estimated by fluorescence probe labeling. RESULTS SDH activation-induced excessive production of reactive oxygen species (ROS) changed the protein expression of Lon protease 1 (LonP1) and hypoxia-inducible factor-1ɑ (HIF-1ɑ) in the early stage of I/R, leading to an upregulation of PDK2 and a decrease in PDH activity in neurons and cerebral cortices. Treatment with baicalin prevented these alterations and ameliorated neuronal ATP production and survival. CONCLUSION Baicalin improves the function of the neuronal PDK2-PDH axis via suppression of SDH-mediated oxidative stress, revealing a new signaling pathway as a promising target under I/R conditions and the potential role of baicalin in the treatment of acute ischemic stroke.
Collapse
Affiliation(s)
- Kaili Liu
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China
| | - Ying Zhou
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China
| | - Xianrui Song
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, PR China
| | - Jiahan Zeng
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China
| | - Zhuqi Wang
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China
| | - Ziqing Wang
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China
| | - Honglei Zhang
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China
| | - Jiaxing Xu
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China
| | - Wenting Li
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China
| | - Zixuan Gong
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China
| | - Min Wang
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China
| | - Baolin Liu
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China
| | - Na Xiao
- College of Agronomy, Shandong Agriculture University, Tai'an, Shandong 271018, PR China.
| | - Kang Liu
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China.
| |
Collapse
|
3
|
Prolo C, Piacenza L, Radi R. Peroxynitrite: a multifaceted oxidizing and nitrating metabolite. Curr Opin Chem Biol 2024; 80:102459. [PMID: 38723343 DOI: 10.1016/j.cbpa.2024.102459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/06/2024] [Accepted: 04/07/2024] [Indexed: 06/12/2024]
Abstract
Peroxynitrite, a short-lived and reactive oxidant, emerges from the diffusion-controlled reaction between the superoxide radical and nitric oxide. Evidence shows that peroxynitrite is a critical mediator in physiological and pathological processes such as the immune response, inflammation, cancer, neurodegeneration, vascular dysfunction, and aging. The biochemistry of peroxynitrite is multifaceted, involving one- or two-electron oxidations and nitration reactions. This minireview highlights recent findings of peroxynitrite acting as a metabolic mediator in processes ranging from oxidative killing to redox signaling. Selected examples of nitrated proteins (i.e., 3-nitrotyrosine) are surveyed to underscore the role of this post-translational modification on cell homeostasis. While accumulated evidence shows that large amounts of peroxynitrite participates of broad oxidation and nitration events in invading pathogens and host tissues, a closer look supports that low to moderate levels selectively trigger signal transduction cascades. Peroxynitrite probes and redox-based pharmacology are instrumental to further understand the biological actions of this reactive metabolite.
Collapse
Affiliation(s)
- Carolina Prolo
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Lucía Piacenza
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Rafael Radi
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
4
|
Piacenza L, Zeida A, Trujillo M, Radi R. The superoxide radical switch in the biology of nitric oxide and peroxynitrite. Physiol Rev 2022; 102:1881-1906. [PMID: 35605280 DOI: 10.1152/physrev.00005.2022] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Lucìa Piacenza
- Departamento de Bioquímica, Facultad de Medicina; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Uruguay
| | - Ari Zeida
- Departamento de Bioquímica, Facultad de Medicina; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| | - Madia Trujillo
- Departamento de Bioquímica, Facultad de Medicina; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| | - Rafael Radi
- Departamento de Bioquímica, Facultad de Medicina; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
5
|
Matsushima Y, Takahashi K, Yue S, Fujiyoshi Y, Yoshioka H, Aihara M, Setoyama D, Uchiumi T, Fukuchi S, Kang D. Mitochondrial Lon protease is a gatekeeper for proteins newly imported into the matrix. Commun Biol 2021; 4:974. [PMID: 34400774 PMCID: PMC8368198 DOI: 10.1038/s42003-021-02498-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/30/2021] [Indexed: 12/29/2022] Open
Abstract
Human ATP-dependent Lon protease (LONP1) forms homohexameric, ring-shaped complexes. Depletion of LONP1 causes aggregation of a broad range of proteins in the mitochondrial matrix and decreases the levels of their soluble forms. The ATP hydrolysis activity, but not protease activity, of LONP1 is critical for its chaperone-like anti-aggregation activity. LONP1 forms a complex with the import machinery and an incoming protein, and protein aggregation is linked with matrix protein import. LONP1 also contributes to the degradation of imported, aberrant, unprocessed proteins using its protease activity. Taken together, our results show that LONP1 functions as a gatekeeper for specific proteins imported into the mitochondrial matrix. Yuichi Matsushima et al. revealed that Human ATP-dependent Lon protease (LONP1), a mitochondrial protease with unfolding activity, serves as a gatekeeper for several mitochondrial matrix entering proteins: supporting the folding of required proteins and degrading the aberrant ones.
Collapse
Affiliation(s)
- Yuichi Matsushima
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Kazuya Takahashi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Song Yue
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yuki Fujiyoshi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Hideaki Yoshioka
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Masamune Aihara
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Daiki Setoyama
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takeshi Uchiumi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Satoshi Fukuchi
- Department of Life Science and Informatics, Maebashi Institute of Technology, Maebashi, Gunma, Japan
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
6
|
Cardinale DA, Gejl KD, Petersen KG, Nielsen J, Ørtenblad N, Larsen FJ. Short-term intensified training temporarily impairs mitochondrial respiratory capacity in elite endurance athletes. J Appl Physiol (1985) 2021; 131:388-400. [PMID: 34110230 DOI: 10.1152/japplphysiol.00829.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The maintenance of healthy and functional mitochondria is the result of a complex mitochondrial turnover and herein quality-control program that includes both mitochondrial biogenesis and autophagy of mitochondria. The aim of this study was to examine the effect of an intensified training load on skeletal muscle mitochondrial quality control in relation to changes in mitochondrial oxidative capacity, maximal oxygen consumption, and performance in highly trained endurance athletes. Elite endurance athletes (n = 27) performed high-intensity interval exercise followed by moderate-intensity continuous exercise 3 days per week for 4 wk in addition to their usual volume of training. Mitochondrial oxidative capacity, abundance of mitochondrial proteins, markers of autophagy, and antioxidant capacity of skeletal muscle were assessed in skeletal muscle biopsies before and after the intensified training period. The intensified training period increased several autophagy markers suggesting an increased turnover of mitochondrial and cytosolic proteins. In permeabilized muscle fibers, mitochondrial respiration was ∼20% lower after training although some markers of mitochondrial density increased by 5%-50%, indicative of a reduced mitochondrial quality by the intensified training intervention. The antioxidative proteins UCP3, ANT1, and SOD2 were increased after training, whereas we found an inactivation of aconitase. In agreement with the lower aconitase activity, the amount of mitochondrial LON protease that selectively degrades oxidized aconitase was doubled. Together, this suggests that mitochondrial respiratory function is impaired during the initial recovery from a period of intensified endurance training whereas mitochondrial quality control is slightly activated in highly trained skeletal muscle.NEW & NOTEWORTHY We show that mitochondrial respiration is temporarily impaired after a period of intensified exercise training in elite athletes. In parallel, proteins involved in the antioxidative response including SOD2, UCP3, and ANT2 were upregulated, whereas mitochondrial biogenesis was slightly activated. Despite the mitochondrial respiratory impairments, physical performance was improved a few days after the intense training period.
Collapse
Affiliation(s)
- Daniele A Cardinale
- Åstrand Laboratory, Department of Physiology, Nutrition, and Biomechanics, The Swedish School of Sport and Health Sciences (GIH), Stockholm, Sweden.,Elite Performance Centre, Bosön-Swedish Sports Confederation, Lidingö, Sweden
| | - Kasper D Gejl
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Kristine G Petersen
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Joachim Nielsen
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Niels Ørtenblad
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Filip J Larsen
- Åstrand Laboratory, Department of Physiology, Nutrition, and Biomechanics, The Swedish School of Sport and Health Sciences (GIH), Stockholm, Sweden
| |
Collapse
|
7
|
Venkatesh S, Suzuki CK. Cell stress management by the mitochondrial LonP1 protease - Insights into mitigating developmental, oncogenic and cardiac stress. Mitochondrion 2019; 51:46-61. [PMID: 31756517 DOI: 10.1016/j.mito.2019.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/24/2019] [Accepted: 10/02/2019] [Indexed: 11/15/2022]
Abstract
Mitochondrial LonP1 is an essential stress response protease that mediates mitochondrial proteostasis, metabolism and bioenergetics. Homozygous and compound heterozygous variants in the LONP1 gene encoding the LonP1 protease have recently been shown to cause a diverse spectrum of human pathologies, ranging from classical mitochondrial disease phenotypes, profound neurologic impairment and multi-organ dysfunctions, some of which are uncommon to mitochondrial disorders. In this review, we focus primarily on human LonP1 and discuss findings, which demonstrate its multidimensional roles in maintaining mitochondrial proteostasis and adapting cells to metabolic flux and stress during normal physiology and disease processes. We also discuss emerging roles of LonP1 in responding to developmental, oncogenic and cardiac stress.
Collapse
Affiliation(s)
- Sundararajan Venkatesh
- Department of Microbiology, Biochemistry & Molecular Genetics, New Jersey Medical School - Rutgers, The State University of New Jersey, Newark, NJ, USA.
| | - Carolyn K Suzuki
- Department of Microbiology, Biochemistry & Molecular Genetics, New Jersey Medical School - Rutgers, The State University of New Jersey, Newark, NJ, USA.
| |
Collapse
|
8
|
Kudzhaev AM, Dubovtseva ES, Serova OV, Andrianova AG, Rotanova TV. Effect of the Deletion of the (173–280) Fragment of the Inserted α-Helical Domain on the Functional Properties of АТР-Dependent Lon Protease from E. coli. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2018. [DOI: 10.1134/s1068162018050084] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Kang F, Ai Y, Zhang Y, Huang Z. Design and synthesis of new hybrids from 2-cyano-3,12-dioxooleana- 9-dien-28-oic acid and O 2 -(2,4-dinitrophenyl) diazeniumdiolate for intervention of drug-resistant lung cancer. Eur J Med Chem 2018; 149:269-280. [DOI: 10.1016/j.ejmech.2018.02.062] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 02/17/2018] [Accepted: 02/19/2018] [Indexed: 01/11/2023]
|
10
|
Nitric Oxide and Mitochondrial Function in Neurological Diseases. Neuroscience 2018; 376:48-71. [DOI: 10.1016/j.neuroscience.2018.02.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/20/2018] [Accepted: 02/09/2018] [Indexed: 12/17/2022]
|
11
|
Mechanism of Protein Carbonylation in Glutathione-Depleted Rat Brain Slices. Neurochem Res 2017; 43:609-618. [PMID: 29264677 DOI: 10.1007/s11064-017-2456-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 11/27/2017] [Accepted: 12/16/2017] [Indexed: 10/18/2022]
Abstract
This study was conducted to further our understanding about the link between lipid peroxidation and protein carbonylation in rat brain slices incubated with the glutathione (GSH)-depletor diethyl maleate. Using this in vitro system of oxidative stress, we found that there is a significant lag between the appearance of carbonylated proteins and GSH depletion, which seems to be due to the removal of oxidized species early on in the incubation by the mitochondrial Lon protease. Upon acute GSH depletion, protein carbonyls accumulated mostly in mitochondria and to a lesser degree in other subcellular fractions that also contain high levels of polyunsaturated lipids. This result is consistent with our previous findings suggesting that lipid hydroperoxides mediate the oxidation of proteins in this system. However, these lipid hydroperoxides are not produced by oxidation of free arachidonic acid or other polyunsaturated free fatty acids by lipooxygenases or cyclooxygenases. Finally, γ-glutamyl semialdehyde and 2-amino-adipic semialdehyde were identified by HPLC as the carbonyl-containing amino acid residues, indicating that proteins are carbonylated by metal ion-catalyzed oxidation of lysine, arginine and proline residues. The present findings are important in the context of neurological disorders that exhibit increased lipid peroxidation and protein carbonylation, such as Parkinson's disease, Alzheimer's disease, and multiple sclerosis.
Collapse
|
12
|
Bulteau AL, Mena NP, Auchère F, Lee I, Prigent A, Lobsiger CS, Camadro JM, Hirsch EC. Dysfunction of mitochondrial Lon protease and identification of oxidized protein in mouse brain following exposure to MPTP: Implications for Parkinson disease. Free Radic Biol Med 2017; 108:236-246. [PMID: 28365360 DOI: 10.1016/j.freeradbiomed.2017.03.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 03/19/2017] [Accepted: 03/22/2017] [Indexed: 10/19/2022]
Abstract
Compelling evidence suggests that mitochondrial dysfunction leading to reactive oxygen species (ROS) production and protein oxidation could represent a critical event in the pathogenesis of Parkinson's disease (PD). Pioneering studies have shown that the mitochondrial matrix contains the Lon protease, which degrades oxidized, dysfunctional, and misfolded protein. Using the PD animal model of 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) intoxication in mice, we showed that Lon protease expression increased in the ventral mesencephalon of intoxicated animals, concomitantly with the appearance of oxidized proteins and dopaminergic cell loss. In addition, we report that Lon is inactivated by ROS. Moreover, proteomic experiments provide evidence of carbonylation in α-ketoglutarate dehydrogenase (KGDH), aconitase or subunits of respiratory chain complexes. Lon protease inactivation upon MPTP treatment in mice raises the possibility that Lon protease dysfunction is an early event in the pathogenesis of PD.
Collapse
Affiliation(s)
- Anne-Laure Bulteau
- INSERM, U1127, The Brain and Spinal Cord Institute (ICM), Hôpital de la Salpêtrière, 75013 Paris, France; CNRS, UMR 7225, Centre de Recherche en neurosciences, ICM, Thérapeutique expérimentale de la neurodégénérescence, Hôpital de la Salpêtrière, Paris, F-75005 Paris, France; Sorbonne Universités, Université Pierre et Marie Curie, 75005 Paris, France.
| | - Natalia P Mena
- INSERM, U1127, The Brain and Spinal Cord Institute (ICM), Hôpital de la Salpêtrière, 75013 Paris, France; CNRS, UMR 7225, Centre de Recherche en neurosciences, ICM, Thérapeutique expérimentale de la neurodégénérescence, Hôpital de la Salpêtrière, Paris, F-75005 Paris, France; Sorbonne Universités, Université Pierre et Marie Curie, 75005 Paris, France; Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile; Millennium Institute of Cell Dynamics and Biotechnology, Santiago, Chile
| | - Françoise Auchère
- Laboratoire Mitochondries, Métaux et Stress Oxydatif, Département de Pathologie Moléculaire et Cellulaire, Institut Jacques Monod, Université Paris-Diderot/CNRS, Paris, France
| | - Irene Lee
- Case Western Reserve University Department of Chemistry, Cleveland, OH 44106, USA
| | - Annick Prigent
- INSERM, U1127, The Brain and Spinal Cord Institute (ICM), Hôpital de la Salpêtrière, 75013 Paris, France; CNRS, UMR 7225, Centre de Recherche en neurosciences, ICM, Thérapeutique expérimentale de la neurodégénérescence, Hôpital de la Salpêtrière, Paris, F-75005 Paris, France; Sorbonne Universités, Université Pierre et Marie Curie, 75005 Paris, France
| | - Christian S Lobsiger
- INSERM, U1127, The Brain and Spinal Cord Institute (ICM), Hôpital de la Salpêtrière, 75013 Paris, France; CNRS, UMR 7225, Centre de Recherche en neurosciences, ICM, Thérapeutique expérimentale de la neurodégénérescence, Hôpital de la Salpêtrière, Paris, F-75005 Paris, France; Sorbonne Universités, Université Pierre et Marie Curie, 75005 Paris, France
| | - Jean-Michel Camadro
- Laboratoire Mitochondries, Métaux et Stress Oxydatif, Département de Pathologie Moléculaire et Cellulaire, Institut Jacques Monod, Université Paris-Diderot/CNRS, Paris, France
| | - Etienne C Hirsch
- INSERM, U1127, The Brain and Spinal Cord Institute (ICM), Hôpital de la Salpêtrière, 75013 Paris, France; CNRS, UMR 7225, Centre de Recherche en neurosciences, ICM, Thérapeutique expérimentale de la neurodégénérescence, Hôpital de la Salpêtrière, Paris, F-75005 Paris, France; Sorbonne Universités, Université Pierre et Marie Curie, 75005 Paris, France.
| |
Collapse
|
13
|
Bonet-Costa V, Pomatto LCD, Davies KJA. The Proteasome and Oxidative Stress in Alzheimer's Disease. Antioxid Redox Signal 2016; 25:886-901. [PMID: 27392670 PMCID: PMC5124752 DOI: 10.1089/ars.2016.6802] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
SIGNIFICANCE Alzheimer's disease is a neurodegenerative disorder that is projected to exceed more than 100 million cases worldwide by 2050. Aging is considered the primary risk factor for some 90% of Alzheimer's cases but a significant 10% of patients suffer from aggressive, early-onset forms of the disease. There is currently no effective Alzheimer's treatment and this, coupled with a growing aging population, highlights the necessity to understand the mechanism(s) of disease initiation and propagation. A major hallmark of Alzheimer's disease pathology is the accumulation of amyloid-β (Aβ) aggregates (an early marker of Alzheimer's disease), and neurofibrillary tangles, comprising the hyper-phosphorylated microtubule-associated protein Tau. Recent Advances: Protein oxidation is frequently invoked as a potential factor in the progression of Alzheimer's disease; however, whether it is a cause or a consequence of the pathology is still being debated. The Proteasome complex is a major regulator of intracellular protein quality control and an essential proteolytic enzyme for the processing of both Aβ and Tau. Recent studies have indicated that both protein oxidation and excessive phosphorylation may limit Proteasomal processing of Aβ and Tau in Alzheimer's disease. CRITICAL ISSUES Thus, the Proteasome may be a key factor in understanding the development of Alzheimer's disease pathology; however, its significance is still very much under investigation. FUTURE DIRECTIONS Discovering how the proteasome is affected, regulated, or dysregulated in Alzheimer's disease could be a valuable tool in the efforts to understand and, ultimately, eradicate the disease. Antioxid. Redox Signal. 25, 886-901.
Collapse
Affiliation(s)
- Vicent Bonet-Costa
- Leonard Davis School of Gerontology, Ethel Percy Andrus Gerontology Center, The Division of Molecular and Computational Biology, Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, The University of Southern California , Los Angeles, California
| | - Laura Corrales-Diaz Pomatto
- Leonard Davis School of Gerontology, Ethel Percy Andrus Gerontology Center, The Division of Molecular and Computational Biology, Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, The University of Southern California , Los Angeles, California
| | - Kelvin J A Davies
- Leonard Davis School of Gerontology, Ethel Percy Andrus Gerontology Center, The Division of Molecular and Computational Biology, Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, The University of Southern California , Los Angeles, California
| |
Collapse
|
14
|
Bota DA, Davies KJA. Mitochondrial Lon protease in human disease and aging: Including an etiologic classification of Lon-related diseases and disorders. Free Radic Biol Med 2016; 100:188-198. [PMID: 27387767 PMCID: PMC5183306 DOI: 10.1016/j.freeradbiomed.2016.06.031] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/21/2016] [Accepted: 06/29/2016] [Indexed: 12/20/2022]
Abstract
The Mitochondrial Lon protease, also called LonP1 is a product of the nuclear gene LONP1. Lon is a major regulator of mitochondrial metabolism and response to free radical damage, as well as an essential factor for the maintenance and repair of mitochondrial DNA. Lon is an ATP-stimulated protease that cycles between being bound (at the inner surface of the inner mitochondrial membrane) to the mitochondrial genome, and being released into the mitochondrial matrix where it can degrade matrix proteins. At least three different roles or functions have been ascribed to Lon: 1) Proteolytic digestion of oxidized proteins and the turnover of specific essential mitochondrial enzymes such as aconitase, TFAM, and StAR; 2) Mitochondrial (mt)DNA-binding protein, involved in mtDNA replication and mitogenesis; and 3) Protein chaperone, interacting with the Hsp60-mtHsp70 complex. LONP1 orthologs have been studied in bacteria, yeast, flies, worms, and mammals, evincing the widespread importance of the gene, as well as its remarkable evolutionary conservation. In recent years, we have witnessed a significant increase in knowledge regarding Lon's involvement in physiological functions, as well as in an expanding array of human disorders, including cancer, neurodegeneration, heart disease, and stroke. In addition, Lon appears to have a significant role in the aging process. A number of mitochondrial diseases have now been identified whose mechanisms involve various degrees of Lon dysfunction. In this paper we review current knowledge of Lon's function, under normal conditions, and we propose a new classification of human diseases characterized by a either over-expression or decline or loss of function of Lon. Lon has also been implicated in human aging, and we review the data currently available as well as speculating about possible interactions of aging and disease. Finally, we also discuss Lon as potential therapeutic target in human disease.
Collapse
Affiliation(s)
- Daniela A Bota
- Department of Neurology and Chao Family Comprehensive Cancer Center, UC Irvine School of Medicine, 200 S. Manchester Ave., Suite 206, Orange, CA 92868, USA.
| | - Kelvin J A Davies
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, Los Angeles, CA 90089-0191, USA; Division of Molecular & Computational Biology, Department of Biological Sciences, Dornsife College of Letters, Arts, & Sciences, The University of Southern California, Los Angeles, CA 90089-0191, USA
| |
Collapse
|
15
|
Olsen RKJ, Cornelius N, Gregersen N. Redox signalling and mitochondrial stress responses; lessons from inborn errors of metabolism. J Inherit Metab Dis 2015; 38:703-19. [PMID: 26025548 PMCID: PMC4493798 DOI: 10.1007/s10545-015-9861-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 04/25/2015] [Accepted: 05/07/2015] [Indexed: 12/14/2022]
Abstract
Mitochondria play a key role in overall cell physiology and health by integrating cellular metabolism with cellular defense and repair mechanisms in response to physiological or environmental changes or stresses. In fact, dysregulation of mitochondrial stress responses and its consequences in the form of oxidative stress, has been linked to a wide variety of diseases including inborn errors of metabolism. In this review we will summarize how the functional state of mitochondria -- and especially the concentration of reactive oxygen species (ROS), produced in connection with the respiratory chain -- regulates cellular stress responses by redox regulation of nuclear gene networks involved in repair systems to maintain cellular homeostasis and health. Based on our own and other's studies we re-introduce the ROS triangle model and discuss how inborn errors of mitochondrial metabolism, by production of pathological amounts of ROS, may cause disturbed redox signalling and induce chronic cell stress with non-resolving or compromised cell repair responses and increased susceptibility to cell stress induced cell death. We suggest that this model may have important implications for those inborn errors of metabolism, where mitochondrial dysfunction plays a major role, as it allows the explanation of oxidative stress, metabolic reprogramming and altered signalling growth pathways that have been reported in many of the diseases. It is our hope that the model may facilitate novel ideas and directions that can be tested experimentally and used in the design of future new approaches for pre-symptomatic diagnosis and prognosis and perhaps more effective treatments of inborn errors of metabolism.
Collapse
Affiliation(s)
- Rikke K J Olsen
- Research Unit for Molecular Medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark,
| | | | | |
Collapse
|
16
|
Kong X, Kong W, Miao G, Zhao S, Chen M, Zheng X, Bai J. Pretreatment with scutellaria baicalensis stem-leaf total flavonoid protects against cerebral ischemia/reperfusion injury in hippocampal neurons. Neural Regen Res 2015; 9:2066-73. [PMID: 25657723 PMCID: PMC4316470 DOI: 10.4103/1673-5374.147933] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2014] [Indexed: 11/11/2022] Open
Abstract
Previous experimental studies have shown that cerebral infarction can be effectively reduced following treatment with scutellaria baicalensis stem-leaf total flavonoid (SSTF). However, the mechanism of action of SSTF as a preventive drug to treat cerebral infarction remains unclear. In this study, Sprague-Dawley rats were pretreated with 50, 100, 200 mg/kg SSTF via intragastric administration for 1 week prior to the establishment of focal cerebral ischemia/reperfusion injury. The results showed that pretreatment with SSTF effectively improved neurological function, reduced brain water content and the permeability of blood vessels, ameliorated ischemia-induced morphology changes in hippocampal microvessels, down-regulated Fas and FasL protein expression, elevated the activity of superoxide dismutase and glutathione peroxidase, and decreased malondialdehyde content. In contrast to low-dose SSTF pretreatment, the above changes were most obvious after pretreatment with moderate- and high-doses of SSTF. Experimental findings indicate that SSTF pretreatment can exert protective effects on the brain against cerebral ischemia/reperfusion injury. The underlying mechanisms may involve reducing brain water content, increasing microvascular recanalization, inhibiting the apoptosis of hippocampal neurons, and attenuating free radical damage.
Collapse
Affiliation(s)
- Xiangyu Kong
- Laboratory of Spinal Cord Injury and Rehabilitation, Chengde Medical College, Chengde, Hebei Province, China
| | - Wei Kong
- Laboratory of Spinal Cord Injury and Rehabilitation, Chengde Medical College, Chengde, Hebei Province, China
| | - Guangxin Miao
- Laboratory of Spinal Cord Injury and Rehabilitation, Chengde Medical College, Chengde, Hebei Province, China
| | - Shumin Zhao
- Laboratory of Spinal Cord Injury and Rehabilitation, Chengde Medical College, Chengde, Hebei Province, China
| | - Meng Chen
- Laboratory of Spinal Cord Injury and Rehabilitation, Chengde Medical College, Chengde, Hebei Province, China
| | - Xiaoying Zheng
- Laboratory of Spinal Cord Injury and Rehabilitation, Chengde Medical College, Chengde, Hebei Province, China
| | - Jiangtao Bai
- Laboratory of Spinal Cord Injury and Rehabilitation, Chengde Medical College, Chengde, Hebei Province, China
| |
Collapse
|
17
|
de Mello AH, Gassenferth A, Schraiber RDB, Souza LDR, Florentino D, Danielski LG, Cittadin-Soares EDC, Fortunato JJ, Petronilho F, Quevedo J, Rezin GT. Effects of omega-3 on behavioral and biochemical parameters in rats submitted to chronic mild stress. Metab Brain Dis 2014; 29:691-9. [PMID: 24964972 DOI: 10.1007/s11011-014-9577-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 06/13/2014] [Indexed: 10/25/2022]
Abstract
Major depression is a heterogeneous psychiatric disorder whose pathophysiology is not clearly established yet. Some studies have shown that oxidative stress and mitochondrial dysfunction are involved in the development of major depression. Since most depressed patients do not achieve complete remission of symptoms, new therapeutic alternatives are needed and omega-3 has been highlighted in this scenario. Therefore, we have investigated the effects of omega-3 on behavioral and biochemical parameters in rats submitted to chronic mild stress (CMS). Male Wistar rats were submitted to CMS for 40 days. After the CMS period, we administered a 500 mg/kg dose of omega-3 orally, once a day, for 7 days. The animals submitted to CMS presented anhedonia, had no significant weight gain, presented increased levels of lipid peroxidation and protein carbonylation, and inhibition of complex I and IV activities of the mitochondrial respiratory chain. The treatment with omega-3 did not reverse anhedonia; however, it reversed weight change, increased lipid peroxidation and protein carbonylation levels, and partially reversed the inhibition of mitochondrial respiratory chain complexes. The findings support studies that state that major depression is associated with mitochondrial dysfunction and oxidative stress, and that omega-3 supplementation could reverse some of these changes, probably due to its antioxidant properties.
Collapse
Affiliation(s)
- Aline Haas de Mello
- Laboratory of Clinical and Experimental Pathophysiology, Postgraduate Program in Health Sciences, Universidade do Sul de Santa Catarina, Av. José Acácio Moreira, 787, Tubarão, 88704-900, SC, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
BACKGROUND The World Health Organization estimates that major depression affects about 350 million people all over the world and reports this disorder as the major contributor to the global burden of diseases. Despite the well-defined symptomatology, major depression is a heterogeneous psychiatric disorder whose pathophysiology is not clearly established. Although several treatments are available, most depressed patients do not achieve the complete remission of symptoms. Factors linked to the persistence of the disorder have been investigated, particularly those related to the way of life. Moreover, it has been suggested that nutritional aspects may influence its development. Among them, a diet rich in ω-3 has been associated with a reduced risk of major depression, although its deficiency is associated with depressive disorders. METHODS This review provides a general view about evidences of the use of ω-3 in major depression cases. RESULTS Several studies have demonstrated beneficial effects of ω-3 in the prevention and treatment of major depression. However, not all the results have shown significant statistical benefits. CONCLUSIONS More studies are necessary to clarify detailed mechanisms of the antidepressant effects of ω-3 and may explain the source of contradictions in results published until the moment.
Collapse
|
19
|
Hoshino A, Okawa Y, Ariyoshi M, Kaimoto S, Uchihashi M, Fukai K, Iwai-Kanai E, Matoba S. Oxidative post-translational modifications develop LONP1 dysfunction in pressure overload heart failure. Circ Heart Fail 2014; 7:500-9. [PMID: 24740269 DOI: 10.1161/circheartfailure.113.001062] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Mitochondrial compromise is a fundamental contributor to heart failure. Recent studies have revealed that several surveillance systems maintain mitochondrial integrity. The present study evaluated the role of mitochondrial AAA+ protease in a mouse model of pressure overload heart failure. METHODS AND RESULTS The fluorescein isothiocyanate casein assay and immunoblotting for endogenous mitochondrial proteins revealed a marked reduction in ATP-dependent proteolytic activity in failing heart mitochondria. The level of reduced cysteine was decreased, and tyrosine nitration and protein carbonylation were promoted in Lon protease homolog (LONP1), the most abundant mitochondrial AAA+ protease, in heart failure. Comprehensive analysis revealed that electron transport chain protein levels were increased even with a reduction in the expression of their corresponding mRNAs in heart failure, which indicated decreased protein turnover and resulted in the accumulation of oxidative damage in the electron transport chain. The induction of mitochondria-targeted human catalase ameliorated proteolytic activity and protein homeostasis in the electron transport chain, leading to improvements in mitochondrial energetics and cardiac contractility even during the late stage of pressure overload. Moreover, the infusion of mitoTEMPO, a mitochondria-targeted superoxide dismutase mimetic, recovered oxidative modifications of LONP1 and improved mitochondrial respiration capacity and cardiac function. The in vivo small interfering RNA repression of LONP1 partially canceled the protective effects of mitochondria-targeted human catalase induction and mitoTEMPO infusion. CONCLUSIONS Oxidative post-translational modifications attenuate mitochondrial AAA+ protease activity, which is involved in impaired electron transport chain protein homeostasis, mitochondrial respiration deficiency, and left ventricular contractile dysfunction. Oxidatively inactivated proteases may be an endogenous target for mitoTEMPO treatment in pressure overload heart failure.
Collapse
Affiliation(s)
- Atsushi Hoshino
- From the Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan (A.H., Y.O., M.A., S.K., M.U., K.F., E.-I.K., S.M.); and the Department of Cardiovascular Medicine, Meiji University of Integrative Medicine, Kyoto, Japan (E.-I.K.)
| | - Yoshifumi Okawa
- From the Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan (A.H., Y.O., M.A., S.K., M.U., K.F., E.-I.K., S.M.); and the Department of Cardiovascular Medicine, Meiji University of Integrative Medicine, Kyoto, Japan (E.-I.K.)
| | - Makoto Ariyoshi
- From the Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan (A.H., Y.O., M.A., S.K., M.U., K.F., E.-I.K., S.M.); and the Department of Cardiovascular Medicine, Meiji University of Integrative Medicine, Kyoto, Japan (E.-I.K.)
| | - Satoshi Kaimoto
- From the Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan (A.H., Y.O., M.A., S.K., M.U., K.F., E.-I.K., S.M.); and the Department of Cardiovascular Medicine, Meiji University of Integrative Medicine, Kyoto, Japan (E.-I.K.)
| | - Motoki Uchihashi
- From the Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan (A.H., Y.O., M.A., S.K., M.U., K.F., E.-I.K., S.M.); and the Department of Cardiovascular Medicine, Meiji University of Integrative Medicine, Kyoto, Japan (E.-I.K.)
| | - Kuniyoshi Fukai
- From the Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan (A.H., Y.O., M.A., S.K., M.U., K.F., E.-I.K., S.M.); and the Department of Cardiovascular Medicine, Meiji University of Integrative Medicine, Kyoto, Japan (E.-I.K.)
| | - Eri Iwai-Kanai
- From the Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan (A.H., Y.O., M.A., S.K., M.U., K.F., E.-I.K., S.M.); and the Department of Cardiovascular Medicine, Meiji University of Integrative Medicine, Kyoto, Japan (E.-I.K.)
| | - Satoaki Matoba
- From the Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan (A.H., Y.O., M.A., S.K., M.U., K.F., E.-I.K., S.M.); and the Department of Cardiovascular Medicine, Meiji University of Integrative Medicine, Kyoto, Japan (E.-I.K.).
| |
Collapse
|
20
|
Cornelius N, Corydon TJ, Gregersen N, Olsen RKJ. Cellular consequences of oxidative stress in riboflavin responsive multiple acyl-CoA dehydrogenation deficiency patient fibroblasts. Hum Mol Genet 2014; 23:4285-301. [PMID: 24698980 DOI: 10.1093/hmg/ddu146] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Mitochondrial dysfunction and oxidative stress are central to the molecular pathology of many human diseases. Riboflavin responsive multiple acyl-CoA dehydrogenation deficiency (RR-MADD) is in most cases caused by variations in the gene coding for electron transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO). Currently, patients with RR-MADD are treated with high doses of riboflavin resulting in improvements of the clinical and biochemical profiles. However, in our recent studies of RR-MADD, we have shown that riboflavin treatment cannot fully correct the molecular defect in patient cells producing increased reactive oxygen species (ROS). In the current study, we aim to elucidate the cellular consequences of increased ROS by studying the cellular ROS adaption systems including antioxidant system, mitochondrial dynamics and metabolic reprogramming. We have included fibroblasts from six unrelated RR-MADD patients and two control fibroblasts cultivated under supplemented and depleted riboflavin conditions and with coenzyme Q10 (CoQ10) treatment. We demonstrated inhibition of mitochondrial fusion with increased fractionation and mitophagy in the patient fibroblasts. Furthermore, we indicated a shift in the energy metabolism by decreased protein levels of SIRT3 and decreased expression of fatty acid β-oxidation enzymes in the patient fibroblasts. Finally, we showed that CoQ10 treatment has a positive effect on the mitochondrial dynamic in the patient fibroblasts, indicated by increased mitochondrial fusion marker and reduced mitophagy. In conclusion, our results indicate that RR-MADD patient fibroblasts suffer from a general mitochondria dysfunction, probably initiated as a rescue mechanism for the patient cells to escape apoptosis as a result of the oxidative stress.
Collapse
Affiliation(s)
- Nanna Cornelius
- Research Unit for Molecular Medicine, Aarhus University Hospital and Department of Clinical Medicine, Aarhus University, Brendstrupgaardsvej 100, Aarhus 8200, Denmark and
| | - Thomas J Corydon
- Department of Biomedicine, Aarhus University, Aarhus 8000, Denmark
| | - Niels Gregersen
- Research Unit for Molecular Medicine, Aarhus University Hospital and Department of Clinical Medicine, Aarhus University, Brendstrupgaardsvej 100, Aarhus 8200, Denmark and
| | - Rikke K J Olsen
- Research Unit for Molecular Medicine, Aarhus University Hospital and Department of Clinical Medicine, Aarhus University, Brendstrupgaardsvej 100, Aarhus 8200, Denmark and
| |
Collapse
|
21
|
Goard CA, Schimmer AD. Mitochondrial matrix proteases as novel therapeutic targets in malignancy. Oncogene 2013; 33:2690-9. [PMID: 23770858 DOI: 10.1038/onc.2013.228] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 04/23/2013] [Accepted: 04/30/2013] [Indexed: 12/30/2022]
Abstract
Although mitochondrial function is often altered in cancer, it remains essential for tumor viability. Tight control of protein homeostasis is required for the maintenance of mitochondrial function, and the mitochondrial matrix houses several coordinated protein quality control systems. These include three evolutionarily conserved proteases of the AAA+ superfamily-the Lon, ClpXP and m-AAA proteases. In humans, these proteases are proposed to degrade, process and chaperone the assembly of mitochondrial proteins in the matrix and inner membrane involved in oxidative phosphorylation, mitochondrial protein synthesis, mitochondrial network dynamics and nucleoid function. In addition, these proteases are upregulated by a variety of mitochondrial stressors, including oxidative stress, unfolded protein stress and imbalances in respiratory complex assembly. Given that tumor cells must survive and proliferate under dynamic cellular stress conditions, dysregulation of mitochondrial protein quality control systems may provide a selective advantage. The association of mitochondrial matrix AAA+ proteases with cancer and their potential for therapeutic modulation therefore warrant further consideration. Although our current knowledge of the endogenous human substrates of these proteases is limited, we highlight functional insights gained from cultured human cells, protease-deficient mouse models and other eukaryotic model organisms. We also review the consequences of disrupting mitochondrial matrix AAA+ proteases through genetic and pharmacological approaches, along with implications of these studies on the potential of these proteases as anticancer therapeutic targets.
Collapse
Affiliation(s)
- C A Goard
- Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, Ontario, Canada
| | - A D Schimmer
- Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
22
|
Abstract
Recent findings in colon cancer cells indicate that inhibition of the mitochondrial H+-adenosine triphosphate (ATP) synthase by the ATPase inhibitory factor 1 (IF1) promotes aerobic glycolysis and a reactive oxygen species (ROS)-mediated signal that enhances proliferation and cell survival. Herein, we have studied the expression, biological relevance, mechanism of regulation and potential clinical impact of IF1 in some prevalent human carcinomas. We show that IF1 is highly overexpressed in most (>90%) of the colon (n=64), lung (n=30), breast (n=129) and ovarian (n=10) carcinomas studied as assessed by different approaches in independent cohorts of cancer patients. The expression of IF1 in the corresponding normal tissues is negligible. By contrast, the endometrium, stomach and kidney show high expression of IF1 in the normal tissue revealing subtle differences by carcinogenesis. The overexpression of IF1 also promotes the activation of aerobic glycolysis and a concurrent ROS signal in mitochondria of the lung, breast and ovarian cancer cells mimicking the activity of oligomycin. IF1-mediated ROS signaling activates cell-type specific adaptive responses aimed at preventing death in these cell lines. Remarkably, regulation of IF1 expression in the colon, lung, breast and ovarian carcinomas is exerted at post-transcriptional levels. We demonstrate that IF1 is a short-lived protein (t1/2 ∼100 min) strongly implicating translation and/or protein stabilization as main drivers of metabolic reprogramming and cell survival in these human cancers. Analysis of tumor expression of IF1 in cohorts of breast and colon cancer patients revealed its relevance as a predictive marker for clinical outcome, emphasizing the high potential of IF1 as therapeutic target.
Collapse
|
23
|
Lionaki E, Tavernarakis N. Oxidative stress and mitochondrial protein quality control in aging. J Proteomics 2013; 92:181-94. [PMID: 23563202 DOI: 10.1016/j.jprot.2013.03.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 02/22/2013] [Accepted: 03/25/2013] [Indexed: 12/17/2022]
Abstract
Mitochondrial protein quality control incorporates an elaborate network of chaperones and proteases that survey the organelle for misfolded or unfolded proteins and toxic aggregates. Repair of misfolded or aggregated protein and proteolytic removal of irreversibly damaged proteins are carried out by the mitochondrial protein quality control system. Initial maturation and folding of the nuclear or mitochondrial-encoded mitochondrial proteins are mediated by processing peptidases and chaperones that interact with the protein translocation machinery. Mitochondrial proteins are subjected to cumulative oxidative damage. Thus, impairment of quality control processes may cause mitochondrial dysfunction. Aging has been associated with a marked decline in the effectiveness of mitochondrial protein quality control. Here, we present an overview of the chaperones and proteases involved in the initial folding and maturation of new, incoming precursor molecules, and the subsequent repair and removal of oxidized aggregated proteins. In addition, we highlight the link between mitochondrial protein quality control mechanisms and the aging process. This article is part of a Special Issue entitled: Posttranslational Protein modifications in biology and Medicine.
Collapse
Affiliation(s)
- Eirini Lionaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 71110, Crete, Greece
| | | |
Collapse
|
24
|
Ngo JK, Pomatto LCD, Davies KJA. Upregulation of the mitochondrial Lon Protease allows adaptation to acute oxidative stress but dysregulation is associated with chronic stress, disease, and aging. Redox Biol 2013; 1:258-64. [PMID: 24024159 PMCID: PMC3757690 DOI: 10.1016/j.redox.2013.01.015] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 01/18/2013] [Indexed: 11/30/2022] Open
Abstract
The elimination of oxidatively modified proteins is a crucial process in maintaining cellular homeostasis, especially during stress. Mitochondria are protein-dense, high traffic compartments, whose polypeptides are constantly exposed to superoxide, hydrogen peroxide, and other reactive species, generated by 'electron leakage' from the respiratory chain. The level of oxidative stress to mitochondrial proteins is not constant, but instead varies greatly with numerous metabolic and environmental factors. Oxidized mitochondrial proteins must be removed rapidly (by proteolytic degradation) or they will aggregate, cross-link, and cause toxicity. The Lon Protease is a key enzyme in the degradation of oxidized proteins within the mitochondrial matrix. Under conditions of acute stress Lon is highly inducible, possibly with the oxidant acting as the signal inducer, thereby providing increased protection. It seems that under chronic stress conditions, however, Lon levels actually decline. Lon levels also decline with age and with senescence, and senescent cells even lose the ability to induce Lon during acute stress. We propose that the regulation of Lon is biphasic, in that it is up-regulated during transient stress and down-regulated during chronic stress and aging, and we suggest that the loss of Lon responsiveness may be a significant factor in aging, and in age-related diseases.
Collapse
Key Words
- 2D-PAGE, two-dimensional polyacrylamide gel electrophoresis
- AAA, ATPases associated with diverse cellular activities
- Aco1, Aconitase 1
- Adaptation
- CDDO, 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid
- CDDO-Me, methyl-2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oate
- COX, cytochrome c oxidase
- COX4-1, cytochrome c oxidase subunit IV isoform 1
- COX4-2, cytochrome c oxidase subunit IV isoform 2
- Ccp1, mitochondrial cytochrome-c peroxidase
- Clp, caseinolytic protease
- ClpP, core catalytic protease unit
- ERAD, endoplasmic reticulum-associated degradation
- FRDA, Friedreich's ataxia
- Fe/S, iron/SULFUR
- HAART, highly active antiretroviral therapy
- HIF-1, hypoxia inducible factor-1
- HSP104, heat shock protein 104
- HSP60, heat shock protein 60
- Hormesis
- HsIVU, bacterial ATP-dependent protease
- Lon Protease
- MELAS, mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes
- MPPβ, mitochondrial processing peptidase beta subunit
- Mitochondria
- NRF-2, nuclear factor (erythroid-derived 2)-like 2
- Nfκb, nuclear factor kappa-light-chain-enhancer of activated B csells
- Oxidative stress
- PRSS15, LON gene
- Pim1, ATP-dependent Lon protease from yeast
- Protease La, ATP-dependent protease
- Protein degradation and oxidation
- Prx1, mitochondrial peroxiredoxin 1
- SLLVY-AMC, N-succinyl-Leu-Leu-Val-Tyr-7-amino-4-methylcoumarin
- SOD, cytosolic superoxide dismutase
- SOD2, mitochondrial superoxide dismutase 2
- SPG13, hereditary spastic paraplegia
- WI-38, human lung fibroblast
- Yjl200c, mitochondrial aconitase isozyme
Collapse
Affiliation(s)
- Jenny K Ngo
- Ethel Percy Andrus Gerontology Center of the Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089-0191, USA
| | | | | |
Collapse
|
25
|
Tianeptine treatment induces antidepressive-like effects and alters BDNF and energy metabolism in the brain of rats. Behav Brain Res 2012; 233:526-35. [DOI: 10.1016/j.bbr.2012.05.039] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 05/09/2012] [Accepted: 05/23/2012] [Indexed: 11/22/2022]
|
26
|
Gonçalves CL, Rezin GT, Ferreira GK, Jeremias IC, Cardoso MR, Carvalho-Silva M, Zugno AI, Quevedo J, Streck EL. Differential effects of escitalopram administration on metabolic parameters of cortical and subcortical brain regions of Wistar rats. Acta Neuropsychiatr 2012; 24:147-54. [PMID: 26953007 DOI: 10.1111/j.1601-5215.2011.00592.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Considering that mitochondria may be drug targets and some characteristics of drug-mitochondria interactions may still be misjudged because of the difficulty in foreseeing and understanding all possible implications of the complex pathophysiology of mitochondria, our study aimed to investigate the effect of escitalopram on the activity of enzymes of mitochondrial energy metabolism. METHODS Animals received daily administration of escitalopram dissolved in saline [10 mg/kg, intraperitoneal (IP)] at 1.0 ml/kg volume for 14 days. Control rats received an equivalent volume of saline, 1.0 ml/kg (IP), for the same treatment period. Twelve hours after last injection, rats were killed by decapitation and brain areas were rapidly isolated. The samples were homogenised and the activities of mitochondrial respiratory chain complexes, some enzymes of Krebs cycle (citrate synthase, malate dehydrogenase and succinate dehydrogenase) and creatine kinase were measured. RESULTS We verified that chronic administration of escitalopram decreased the activities of complexes I and II-III in cerebellum, hippocampus, striatum and posterior cortex whereas prefrontal cortex was not affected. Complex II activity was decreased only in striatum without affecting prefrontal cortex, hippocampus, cerebellum and posterior cortex. However, chronic administration of escitalopram did not affect complex IV and enzymes of Krebs cycle activities as well as creatine kinase. CONCLUSION In this study we showed a decrease in the activities of complexes I and II-III in most of the brain structures analysed and complex II activity was decreased only in striatum. However, it remains to be determined if mitochondrial dysfunction is rather a causal or a consequential event of abnormal signalling.
Collapse
Affiliation(s)
- Cinara L Gonçalves
- Laboratório de Bioenergética, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Gislaine T Rezin
- Laboratório de Bioenergética, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Gabriela K Ferreira
- Laboratório de Bioenergética, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Isabela C Jeremias
- Laboratório de Bioenergética, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Mariane R Cardoso
- Laboratório de Bioenergética, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Milena Carvalho-Silva
- Laboratório de Bioenergética, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Alexandra I Zugno
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - João Quevedo
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Emilio L Streck
- Laboratório de Bioenergética, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| |
Collapse
|
27
|
Ferreira GK, Rezin GT, Cardoso MR, Gonçalves CL, Borges LS, Vieira JS, Gomes LM, Zugno AI, Quevedo J, Streck EL. Brain energy metabolism is increased by chronic administration of bupropion. Acta Neuropsychiatr 2012; 24:115-21. [PMID: 26952953 DOI: 10.1111/j.1601-5215.2011.00597.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVES Based on the hypothesis that energy impairment may be involved in the pathophysiology of depression, we evaluated the activities of citrate synthase, malate dehydrogenase, succinate dehydrogenase (SDH), mitochondrial respiratory chain complexes I, II, II-III, IV and creatine kinase (CK) in the brain of rats submitted to chronic administration of bupropion. METHODS Animals received daily administration of bupropion dissolved in saline (10 mg/kg, intraperitoneal) at 1.0 ml/kg body weight. The rats received injections once a day for 14 days; control rats received an equivalent volume of saline. Twelve hours after the last administration, the rats were killed by decapitation and brain was rapidly removed and kept on an ice plate. The activities of the enzymes were measured in different brain areas. RESULTS We observed that the activities of citrate synthase and malate dehydrogenase, mithocondrial respiratory chain complexes I, II-III and IV and CK were not altered after chronic administration of bupropion. However, SDH activity was increased in the prefrontal cortex and cerebellum. In the hippocampus, cerebellum and striatum the activity of complex II was increased after chronic administration of bupropion. CONCLUSIONS Our results demonstrated that bupropion increased some enzymes of brain energy metabolism. These findings are in accordance with other studies which showed that some antidepressants may improve energy metabolism. The present results reinforce the hypothesis that antidepressants modulate brain energy metabolism.
Collapse
Affiliation(s)
- Gabriela K Ferreira
- Laboratório de Bioenergética, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Gislaine T Rezin
- Laboratório de Bioenergética, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Mariane R Cardoso
- Laboratório de Bioenergética, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Cinara L Gonçalves
- Laboratório de Bioenergética, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Lislaine S Borges
- Laboratório de Bioenergética, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Júlia S Vieira
- Laboratório de Bioenergética, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Lara M Gomes
- Laboratório de Bioenergética, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Alexandra I Zugno
- Instituto Nacional de Ciência e Tecnologia em Medicina Translacional, do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - João Quevedo
- Instituto Nacional de Ciência e Tecnologia em Medicina Translacional, do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Emilio L Streck
- Laboratório de Bioenergética, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| |
Collapse
|
28
|
De Rasmo D, Signorile A, Larizza M, Pacelli C, Cocco T, Papa S. Activation of the cAMP cascade in human fibroblast cultures rescues the activity of oxidatively damaged complex I. Free Radic Biol Med 2012; 52:757-64. [PMID: 22198267 DOI: 10.1016/j.freeradbiomed.2011.11.030] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 11/16/2011] [Accepted: 11/23/2011] [Indexed: 10/14/2022]
Abstract
A study of the relationship between cAMP/PKA-dependent phosphorylation and oxidative damage of subunits of complex I of the mitochondrial respiratory chain is presented. It is shown that, in fibroblast cultures, PKA-mediated phosphorylation of the NDUFS4 subunit of complex I rescues the activity of the oxidatively damaged complex. Evidence is presented showing that this effect is mediated by phosphorylation-dependent exchange of carbonylated NDUFS4 subunit in the assembled complex with the de novo synthesized subunit. These results indicate a potential use for β-adrenoceptor agonists in preventing/reversing the detrimental effects of oxidative stress in the mitochondrial respiratory system.
Collapse
Affiliation(s)
- Domenico De Rasmo
- Section of Medical Biochemistry, Department of Basic Medical Sciences, University of Bari, Bari, Italy
| | | | | | | | | | | |
Collapse
|
29
|
Abelaira HM, Réus GZ, Ribeiro KF, Zappellini G, Ferreira GK, Gomes LM, Carvalho-Silva M, Luciano TF, Marques SO, Streck EL, Souza CT, Quevedo J. Effects of acute and chronic treatment elicited by lamotrigine on behavior, energy metabolism, neurotrophins and signaling cascades in rats. Neurochem Int 2011; 59:1163-74. [DOI: 10.1016/j.neuint.2011.10.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 10/13/2011] [Accepted: 10/15/2011] [Indexed: 12/29/2022]
|
30
|
Venkatesh S, Lee J, Singh K, Lee I, Suzuki CK. Multitasking in the mitochondrion by the ATP-dependent Lon protease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:56-66. [PMID: 22119779 DOI: 10.1016/j.bbamcr.2011.11.003] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 10/30/2011] [Accepted: 11/06/2011] [Indexed: 01/13/2023]
Abstract
The AAA(+) Lon protease is a soluble single-ringed homo-oligomer, which represents the most streamlined operational unit mediating ATP-dependent proteolysis. Despite its simplicity, the architecture of Lon proteases exhibits a species-specific diversity. Homology modeling provides insights into the structural features that distinguish bacterial and human Lon proteases as hexameric complexes from yeast Lon, which is uniquely heptameric. The best-understood functions of mitochondrial Lon are linked to maintaining proteostasis under normal metabolic conditions, and preventing proteotoxicity during environmental and cellular stress. An intriguing property of human Lon is its specific binding to G-quadruplex DNA, and its association with the mitochondrial genome in cultured cells. A fraction of Lon preferentially binds to the control region of mitochondrial DNA where transcription and replication are initiated. Here, we present an overview of the diverse functions of mitochondrial Lon, as well as speculative perspectives on its role in protein and mtDNA quality control.
Collapse
Affiliation(s)
- Sundararajan Venkatesh
- Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, 185 South Orange Avenue, MSB E-633, Newark, New Jersey 07103 USA
| | | | | | | | | |
Collapse
|
31
|
Signorile A, Sardaro N, De Rasmo D, Scacco S, Papa F, Borracci P, Carratù MR, Papa S. Rat embryo exposure to all-trans retinoic acid results in postnatal oxidative damage of respiratory complex I in the cerebellum. Mol Pharmacol 2011; 80:704-13. [PMID: 21752959 DOI: 10.1124/mol.111.073353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
The results of the present work show that the exposure of pregnant rats to low doses of all-trans-retinoic acid (ATRA) (2.5 mg/kg body weight) results in postnatal dysfunction of complex I of the respiratory chain in the cerebellum of the offspring. ATRA had no effect on the postnatal expression of complex I and did not exert any direct inhibitory effect on the enzymatic activity of the complex. The ATRA embryonic exposure resulted, however, in a marked increase in the level of carbonylated proteins in the mitochondrial fraction of the cerebellum, in particular of complex I subunits. The postnatal increase of the carbonylated proteins correlated directly with the inhibition of the activity of complex I. ATRA had, on the other hand, no effect on oxygen free-radical scavengers. It is proposed that embryonic exposure to ATRA results in impairment of protein surveillance in the cerebellum, which persists after birth and results in accumulation of oxidatively damaged complex I.
Collapse
Affiliation(s)
- Anna Signorile
- Department of Medical Biochemistry, Biology and Physics, University of Bari Aldo Moro, Bari, Italy
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Scaini G, Maggi DD, De-Nês BT, Gonçalves CL, Ferreira GK, Teodorak BP, Bez GD, Ferreira GC, Schuck PF, Quevedo J, Streck EL. Activity of mitochondrial respiratory chain is increased by chronic administration of antidepressants. Acta Neuropsychiatr 2011; 23:112-8. [PMID: 26952897 DOI: 10.1111/j.1601-5215.2011.00548.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Depressive disorders, including major depression, are serious and disabling for affected patients. Although the neurobiological understanding of major depressive disorder focuses mainly on the monoamine hypothesis, the exact pathophysiology of depression is not fully understood. METHODS Animals received daily intra-peritoneal injections of paroxetine (10 mg/kg), nortriptyline (15 mg/kg) or venlafaxine (10 mg/kg) in 1.0 ml/kg volume for 15 days. Twelve hours after the last injection, the rats were killed by decapitation, where the brain was removed and homogenised. The activities of mitochondrial respiratory chain complexes in different brain structures were measured. RESULTS We first verified that chronic administration of paroxetine increased complex I activity in prefrontal cortex, hippocampus, striatum and cerebral cortex. In addition, complex II activity was increased by the same drug in hippocampus, striatum and cerebral cortex and complex IV activity in prefrontal cortex. Furthermore, chronic administration of nortriptyline increased complex II activity in hippocampus and striatum and complex IV activity in prefrontal cortex, striatum and cerebral cortex. Finally, chronic administration of venlafaxine increased complex II activity in hippocampus, striatum and cerebral cortex and complex IV activity in prefrontal cortex. CONCLUSION On the basis of the present findings, it is tempting to speculate that an increase in brain energy metabolism by the antidepressant paroxetine, nortriptyline and venlafaxine could play a role in the mechanism of action of these drugs. These data corroborate with other studies suggesting that some antidepressants modulate brain energy metabolism.
Collapse
Affiliation(s)
- Giselli Scaini
- Laboratório de Fisiopatologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Débora D Maggi
- Laboratório de Fisiopatologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Bruna T De-Nês
- Laboratório de Fisiopatologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Cinara L Gonçalves
- Laboratório de Fisiopatologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Gabriela K Ferreira
- Laboratório de Fisiopatologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Brena P Teodorak
- Laboratório de Fisiopatologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Gisele D Bez
- Laboratório de Fisiopatologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Gustavo C Ferreira
- Programa de Pós-graduação em Ciências da Saúde, Universidade do Sul de Santa Catarina, Tubarão, SC, Brazil
| | - Patricia F Schuck
- Laboratório de Fisiopatologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - João Quevedo
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina
| | - Emilio L Streck
- Laboratório de Fisiopatologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| |
Collapse
|
33
|
Rezin GT, Gonçalves CL, Daufenbach JF, Carvalho-Silva M, Borges LS, Vieira JS, Hermani FV, Comim CM, Quevedo J, Streck EL. Effect of chronic administration of ketamine on the mitochondrial respiratory chain activity caused by chronic mild stress. Acta Neuropsychiatr 2010; 22:292-9. [PMID: 25385216 DOI: 10.1111/j.1601-5215.2010.00500.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
UNLABELLED Rezin GT, Gonçalves CL, Daufenbach JF, Carvalho-Silva M, Borges LS, Vieira JS, Hermani FV, Comim CM, Quevedo J, Streck EL. Effect of chronic administration of ketamine on the mitochondrial respiratory chain activity caused by chronic mild stress. OBJECTIVE Recently, we reported that mitochondrial respiratory chain complexes I, III and IV were inhibited in the cerebral cortex and cerebellum of rats submitted to chronic mild stress (CMS) and that acute ketamine administration reversed this effect. Therefore, we investigated whether the inhibition of these enzymes may be reversed by chronic administration of ketamine. METHODS Adult male Wistar rats were submitted to CMS and chronically treated with ketamine. After 40 days of CMS, consumption of sweet food, adrenal gland weight, body weight and enzymatic activity of the complexes were measured. RESULTS We verified that CMS decreased the intake of sweet food, increased the adrenal gland weight and the control group gained weight after 40 days but the stressed group did not; ketamine administration reversed these effects. We also verified that chronic administration of ketamine reversed the inhibition of complexes I, III and IV in cerebral cortex. However, in cerebellum, only complex IV inhibition was reversed. The chronic ketamine administration partially reverses the inhibition caused by CMS. CONCLUSION We hypothesise that CMS inhibits complexes I, III and IV activities and that chronic administration of ketamine administration partially reverses such an effect. Therefore, it seems reasonable to propose that ketamine administration might be a useful therapy for patients affected by major depression.
Collapse
Affiliation(s)
- Gislaine T Rezin
- 1Laboratório de Fisiopatologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Cinara L Gonçalves
- 1Laboratório de Fisiopatologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Juliana F Daufenbach
- 1Laboratório de Fisiopatologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Milena Carvalho-Silva
- 1Laboratório de Fisiopatologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Lislaine S Borges
- 1Laboratório de Fisiopatologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Julia S Vieira
- 1Laboratório de Fisiopatologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | | | - Clarissa M Comim
- 2Instituto Nacional de Ciência e Tecnologia Translacional em Medicina
| | - João Quevedo
- 2Instituto Nacional de Ciência e Tecnologia Translacional em Medicina
| | - Emilio L Streck
- 1Laboratório de Fisiopatologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| |
Collapse
|
34
|
Ugarte N, Petropoulos I, Friguet B. Oxidized mitochondrial protein degradation and repair in aging and oxidative stress. Antioxid Redox Signal 2010; 13:539-49. [PMID: 19958171 DOI: 10.1089/ars.2009.2998] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Proteins are main targets for oxidative damage that occurs during aging and in oxidative stress situations. Since the mitochondria is a major source of reactive oxygen species, mitochondrial proteins are especially exposed to oxidative modification, and elimination of oxidized proteins is crucial for maintaining the integrity of this organelle. Hence, enzymatic reversal of protein oxidation and protein degradation is critical for protein homeostasis while protein maintenance failure has been implicated in the age-related accumulation of oxidized proteins. Within the mitochondrial matrix, the ATP-stimulated mitochondrial Lon protease is believed to play an important role in the degradation of oxidized protein, and age-associated impairment of Lon-like protease activity has been suggested to contribute to oxidized protein buildup in the mitochondria. Oxidized protein repair is limited to certain oxidation products of the sulfur-containing amino acids cysteine and methionine. Oxidized protein repair systems, thioredoxin/thioredoxin reductase or glutaredoxin/glutathione/glutathione reductase that catalytically reduce disulfide bridges or sulfenic acids, and methionine sulfoxide reductase that reverses methionine sulfoxide back to methionine within proteins, are present in the mitochondrial matrix. Thus, the role of the mitochondrial Lon protease and the oxidized protein repair system methionine sulfoxide reductase is further addressed in the context of oxidative stress and aging.
Collapse
Affiliation(s)
- Nicolas Ugarte
- Laboratoire de Biologie Cellulaire du Vieillissement, Université Pierre et Marie Paris, France
| | | | | |
Collapse
|
35
|
Activation of the mitochondrial protein quality control system and actin cytoskeletal alterations in cells harbouring the MELAS mitochondrial DNA mutation. J Neurol Sci 2010; 295:46-52. [PMID: 20570288 DOI: 10.1016/j.jns.2010.05.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 05/11/2010] [Accepted: 05/17/2010] [Indexed: 01/22/2023]
Abstract
Point mutations in the mitochondrial genome are associated with a variety of metabolic disorders. The myopathy, encephalopathy, lactic acidosis, stroke-like episodes syndrome (MELAS), is most frequently associated with an A to G transition at position 3243 of the mitochondrial tRNA(Leu(UUR)) gene, and is characterized by biochemical and structural alterations of mitochondria. In the present study, we analyzed proteomic changes in an immortalized B-cell line harbouring the MELAS A3243G mutation by two-dimensional difference gel electrophoresis and immunoblot analysis. Although the cell line contained only 10% mutated mitochondrial genomes, we detected significant alterations in numerous proteins associated with the actin cytoskeleton and in nuclear-encoded subunits of mitochondrial respiratory chain complexes. Notably, mitochondrial Lon protease and Hsp60 were deregulated in MELAS cells, indicating an effect on the mitochondrial protein quality control system. By immunofluorescence microscopy, we detected mitochondrial Lon protease accumulation and changes in actin-binding proteins preferentially in MELAS cells containing numerous mitochondria with mutated genomes. Enzymatic assays revealed that Lon protease activity is increased in MELAS cell lysates. Although Lon protease has been shown to degrade misfolded proteins and to stabilize respiratory chain complexes within mitochondria, our MELAS cell line exhibited a higher sensitivity to mitochondrial stress. These findings provide novel insights into the cellular response to dysfunctional mitochondria containing mutated genomes.
Collapse
|
36
|
Evaluation of mitochondrial respiratory chain in the brain of rats after pneumococcal meningitis. Brain Res Bull 2010; 82:302-7. [PMID: 20576495 DOI: 10.1016/j.brainresbull.2010.05.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Accepted: 05/20/2010] [Indexed: 01/07/2023]
Abstract
The brain is highly dependent on ATP and most cell energy is obtained through oxidative phosphorylation, a process requiring the action of various respiratory enzyme complexes located in a special structure of the inner mitochondrial membrane. Bacterial meningitis due to Streptococcus pneumoniae is associated with a significant mortality rate and persisting neurologic sequelae including sensory-motor deficits, seizures, and impairments of learning and memory. In this context, we evaluated the activities of mitochondrial respiratory chain complexes in the brain of rats submitted to meningitis by S. pneumoniae inoculation into the cisterna magna. Our results demonstrated that complex I activity was not altered in cerebral cortex after meningitis; complexes II, III and IV were increased 24 and 48h after meningitis. We have also verified that complex I was inhibited in prefrontal cortex 48h after meningitis; complexes II, III and IV were not altered. Our results also demonstrated that complex I activity was inhibited in striatum, hippocampus and cerebellum 24h after meningitis. Moreover, complex II activity was increased in hippocampus and striatum 24 and 48h after meningitis; complexes III and IV activity were increased in striatum, hippocampus and cerebellum 48h after meningitis. Taking together previous reports and our present findings, we speculate that oxidative stress and metabolism impairment might contribute, at least in part, for the pathogenesis of pneumococcal meningitis.
Collapse
|
37
|
Scaini G, Santos PM, Benedet J, Rochi N, Gomes LM, Borges LS, Rezin GT, Pezente DP, Quevedo J, Streck EL. Evaluation of Krebs cycle enzymes in the brain of rats after chronic administration of antidepressants. Brain Res Bull 2010; 82:224-7. [DOI: 10.1016/j.brainresbull.2010.03.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Accepted: 03/22/2010] [Indexed: 11/29/2022]
|
38
|
Mitochondrial DNA Mutation-Elicited Oxidative Stress, Oxidative Damage, and Altered Gene Expression in Cultured Cells of Patients with MERRF Syndrome. Mol Neurobiol 2010; 41:256-66. [DOI: 10.1007/s12035-010-8123-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Accepted: 03/23/2010] [Indexed: 12/12/2022]
|
39
|
Trujillo M, Alvarez B, Souza JM, Romero N, Castro L, Thomson L, Radi R. Mechanisms and Biological Consequences of Peroxynitrite-Dependent Protein Oxidation and Nitration. Nitric Oxide 2010. [DOI: 10.1016/b978-0-12-373866-0.00003-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
40
|
|
41
|
Calabrese V, Cornelius C, Rizzarelli E, Owen JB, Dinkova-Kostova AT, Butterfield DA. Nitric oxide in cell survival: a janus molecule. Antioxid Redox Signal 2009; 11:2717-39. [PMID: 19558211 DOI: 10.1089/ars.2009.2721] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Nitric oxide (NO), plays multiple roles in the nervous system. In addition to regulating proliferation, survival and differentiation of neurons, NO is involved in synaptic activity, neural plasticity, and memory function. Nitric oxide promotes survival and differentiation of neural cells and exerts long-lasting effects through regulation of transcription factors and modulation of gene expression. Signaling by reactive nitrogen species is carried out mainly by targeted modifications of critical cysteine residues in proteins, including S-nitrosylation and S-oxidation, as well as by lipid nitration. NO and other reactive nitrogen species are also involved in neuroinflammation and neurodegeneration, such as in Alzheimer disease, amyotrophic lateral sclerosis, Parkinson disease, multiple sclerosis, Friedreich ataxia, and Huntington disease. Susceptibility to NO and peroxynitrite exposure may depend on factors such as the intracellular reduced glutathione and cellular stress resistance signaling pathways. Thus, neurons, in contrast to astrocytes, appear particularly vulnerable to the effects of nitrosative stress. This article reviews the current understanding of the cytotoxic versus cytoprotective effects of NO in the central nervous system, highlighting the Janus-faced properties of this small molecule. The significance of NO in redox signaling and modulation of the adaptive cellular stress responses and its exciting future perspectives also are discussed.
Collapse
Affiliation(s)
- Vittorio Calabrese
- Department of Chemistry, Biochemistry and Molecular Biology Section, Faculty of Medicine, University of Catania , Catania, Italy.
| | | | | | | | | | | |
Collapse
|
42
|
Santos PM, Scaini G, Rezin GT, Benedet J, Rochi N, Jeremias GC, Carvalho-Silva M, Quevedo J, Streck EL. Brain creatine kinase activity is increased by chronic administration of paroxetine. Brain Res Bull 2009; 80:327-30. [PMID: 19772902 DOI: 10.1016/j.brainresbull.2009.09.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 09/12/2009] [Accepted: 09/14/2009] [Indexed: 01/09/2023]
Abstract
Major depression is a serious and recurrent disorder often manifested with symptoms at the psychological, behavioral, and physiological levels. In addition, several works also suggest brain metabolism impairment as a mechanism underlying depression. Creatine kinase (CK) plays a central role in the metabolism of high-energy consuming tissues such as brain, where it functions as an effective buffering system of cellular ATP levels. Considering that CK plays an important role in brain energy homeostasis and that some antidepressants may modulate energy metabolism, we decided to investigate CK activity from rat brain after chronic administration of paroxetine (selective serotonin reuptake inhibitor), nortriptiline (tricyclic antidepressant) and venlafaxine (selective serotonin-norepinephrine reuptake inhibitor). Adult male Wistar rats received daily injections of paroxetine (10 mg/kg), nortriptiline (15 mg/kg), venlafaxine (10 mg/kg) or saline in 1.0 mL/kg volume for 15 days. Twelve hours after the last administration, the rats were killed by decapitation, the hippocampus, striatum and prefrontal cortex were immediately removed, and activity of CK was measured. Our results demonstrated that chronic administration of paroxetine increased CK activity in the prefrontal cortex, hippocampus and striatum of adult rats. On the other hand, nortriptiline and venlafaxine chronic administration did not affect CK activity in these brain areas. In order to verify whether the effect of paroxetine on CK is direct or indirect, we also measured the in vitro effect of this drug on the activity of the enzyme. We verified that paroxetine did not affect CK activity in vitro. Considering that metabolism impairment is probably involved in the pathophysiology of depressive disorders, an increase in CK activity by antidepressants may be an important mechanism of action of these drugs.
Collapse
Affiliation(s)
- Patricia M Santos
- Laboratório de Fisiopatologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Rezin GT, Gonçalves CL, Daufenbach JF, Fraga DB, Santos PM, Ferreira GK, Hermani FV, Comim CM, Quevedo J, Streck EL. Acute administration of ketamine reverses the inhibition of mitochondrial respiratory chain induced by chronic mild stress. Brain Res Bull 2009; 79:418-21. [DOI: 10.1016/j.brainresbull.2009.03.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 03/18/2009] [Accepted: 03/23/2009] [Indexed: 12/21/2022]
|
44
|
Rezin GT, Cardoso MR, Gonçalves CL, Scaini G, Fraga DB, Riegel RE, Comim CM, Quevedo J, Streck EL. Inhibition of mitochondrial respiratory chain in brain of rats subjected to an experimental model of depression. Neurochem Int 2008; 53:395-400. [DOI: 10.1016/j.neuint.2008.09.012] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2008] [Revised: 09/19/2008] [Accepted: 09/22/2008] [Indexed: 12/27/2022]
|