1
|
Das S, Murumulla L, Ghosh P, Challa S. Heavy metal-induced disruption of the autophagy-lysosomal pathway: implications for aging and neurodegenerative disorders. Biometals 2025; 38:371-417. [PMID: 39960543 DOI: 10.1007/s10534-025-00665-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/19/2025] [Indexed: 04/03/2025]
Abstract
Heavy metals such as lead, mercury, cadmium, magnesium, manganese, arsenic, copper pose considerable threats to neuronal health and are increasingly recognized as factors contributing to aging-related neurodegeneration. Exposure to these environmental toxins disrupts cellular homeostasis, resulting in oxidative stress and compromising critical cellular processes, particularly the autophagy-lysosomal pathway. This pathway is vital for preserving cellular integrity by breaking down damaged proteins and organelles; however, toxicity from heavy metals can hinder this function, leading to the buildup of harmful substances, inflammation, and increased neuronal injury. As individuals age, the consequences of neurodegeneration become more significant, raising the likelihood of developing disorders like Alzheimer's and Parkinson's disease. This review explores the intricate relationship between heavy metal exposure, dysfunction of the autophagy-lysosomal pathway, and aging-related neurodegeneration, emphasizing the urgent need for a comprehensive understanding of these mechanisms. The insights gained from this analysis are crucial for creating targeted therapeutic approaches aimed at alleviating the harmful effects of heavy metals on neuronal health and improving cellular resilience in aging populations.
Collapse
Affiliation(s)
- Shrabani Das
- Cell Biology Division, National Institute of Nutrition, Indian Council of Medical Research (ICMR), Hyderabad, Hyderabad, Telangana, 500007, India
| | - Lokesh Murumulla
- Cell Biology Division, National Institute of Nutrition, Indian Council of Medical Research (ICMR), Hyderabad, Hyderabad, Telangana, 500007, India
| | - Pritha Ghosh
- Cell Biology Division, National Institute of Nutrition, Indian Council of Medical Research (ICMR), Hyderabad, Hyderabad, Telangana, 500007, India
| | - Suresh Challa
- Cell Biology Division, National Institute of Nutrition, Indian Council of Medical Research (ICMR), Hyderabad, Hyderabad, Telangana, 500007, India.
| |
Collapse
|
2
|
Santonocito R, Cavallaro A, Pappalardo A, Puglisi R, Marano A, Andolina M, Tuccitto N, Trusso Sfrazzetto G. Detection of human salivary stress biomarkers using an easy-to-use array sensor based on fluorescent organic molecules. Biosens Bioelectron 2025; 270:116986. [PMID: 39613512 DOI: 10.1016/j.bios.2024.116986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/01/2024]
Abstract
During stressful conditions, the human body synthesizes catecholamine neurotransmitters such as dopamine and adrenaline, and cortisol. The monitoring of these three molecules levels is crucial for stress management and holds significant medical applications. Here we developed an analytical device that incorporates a biomimetic (tongue-mimic) associated with an optical physico-chemical transducer, able to detect simultaneously cortisol, dopamine and adrenaline in human saliva without pre-treatments, using an array sensor based on fluorescent chemical receptors (BODIPY, Rhodamine, and Naphthylamides) able to interact by non-covalent interaction with cortisol, adrenaline and dopamine, leading to a change of the emission. Calibration, recovery and selectivity have been performed to validate the device. In particular, the linear responses of the array to concentration range of 1 pM-1 mM of the three analytes were demonstrated by PLS analysis, as well as the high selectivity by PLS-DA analysis performed with artificial saliva samples. Analyses in real human saliva samples, compared to the validated analytical methods, demonstrated that our prototype represents the first point-of-care device able to quantify these three analytes in human saliva with one single analysis in a wider concentration range respect to the other standard methods.
Collapse
Affiliation(s)
- Rossella Santonocito
- Department of Chemical Sciences, University of Catania, viale A. Doria 6, 95125, Catania, Italy
| | - Alessia Cavallaro
- Department of Chemical Sciences, University of Catania, viale A. Doria 6, 95125, Catania, Italy
| | - Andrea Pappalardo
- Department of Chemical Sciences, University of Catania, viale A. Doria 6, 95125, Catania, Italy; INSTM Udr of Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Roberta Puglisi
- Department of Chemical Sciences, University of Catania, viale A. Doria 6, 95125, Catania, Italy
| | - Angela Marano
- Centro servizi medici, Corso delle province 212, 95124, Catania, Italy
| | - Manuela Andolina
- Centro servizi medici, Corso delle province 212, 95124, Catania, Italy
| | - Nunzio Tuccitto
- Department of Chemical Sciences, University of Catania, viale A. Doria 6, 95125, Catania, Italy
| | - Giuseppe Trusso Sfrazzetto
- Department of Chemical Sciences, University of Catania, viale A. Doria 6, 95125, Catania, Italy; INSTM Udr of Catania, Viale Andrea Doria 6, 95125, Catania, Italy.
| |
Collapse
|
3
|
Garavaglia B, Vallino L, Ferraresi A, Amoruso A, Pane M, Isidoro C. Probiotic-Derived Metabolites from Lactiplantibacillus plantarum OC01 Reprogram Tumor-Associated Macrophages to an Inflammatory Anti-Tumoral Phenotype: Impact on Colorectal Cancer Cell Proliferation and Migration. Biomedicines 2025; 13:339. [PMID: 40002754 PMCID: PMC11853712 DOI: 10.3390/biomedicines13020339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 01/29/2025] [Accepted: 01/30/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Tumor-associated macrophages (TAMs) are key players in the colorectal cancer (CRC) tumor microenvironment (TME), representing the most abundant immune cells within it. The interplay between the intestinal microbiota, macrophages, and cancer cells significantly impacts tumor progression by driving macrophage polarization. Particularly, the polarization into the pro-tumoral M2-like TAM phenotype promotes the extracellular matrix remodeling, cancer cell proliferation, metastasis, immune suppression, and therapy resistance. Probiotic metabolites can disrupt this crosstalk, possibly reverting the TAM polarization toward a pro-inflammatory anti-tumoral phenotype, thus potentially benefiting the intestinal mucosa and opposing CRC progression. Previously, we showed that Lactiplantibacillus plantarum OC01 metabolites counter interleukin (IL)-6-induced CRC proliferation and migration. Methods: Here, we explore how probiotics affect CRC secretome and how this influences TAM polarization, which then impacts CRC malignancy. Results: The conditioning medium (CM) from CRC cells indeed promoted the polarization of macrophage toward the M2-like phenotype, whereas the CM from CRC pre-treated with L. plantarum OC01 metabolites induced a pro-inflammatory macrophage phenotype, characterized by NLRP3 inflammasome activation and reactive oxygen species (ROS) production, and by decreased expression of the M2 phenotype markers CD206 and CD163. Consistently, the expression of tumor growth factor (TGF)-β, a promoter of M2 macrophage polarization, was reduced in CRC cells treated with L. plantarum OC01. The pro-inflammatory macrophages inhibited CRC proliferation and migration. Conclusions: Overall, our study highlights the potential of metabolites from L. plantarum OC01 to reprogram the metabolism in cancer cells and thus reshape the TME by shifting TAMs toward a more inflammatory and anti-tumoral phenotype, emphasizing the promise of probiotics in advancing novel therapeutic approaches for CRC.
Collapse
Affiliation(s)
- Beatrice Garavaglia
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale, Via P. Solaroli 17, 28100 Novara, Italy; (B.G.); (L.V.); (A.F.)
| | - Letizia Vallino
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale, Via P. Solaroli 17, 28100 Novara, Italy; (B.G.); (L.V.); (A.F.)
| | - Alessandra Ferraresi
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale, Via P. Solaroli 17, 28100 Novara, Italy; (B.G.); (L.V.); (A.F.)
| | - Angela Amoruso
- Probiotical S.p.A., Via E. Mattei, 3, 28100 Novara, Italy; (A.A.); (M.P.)
| | - Marco Pane
- Probiotical S.p.A., Via E. Mattei, 3, 28100 Novara, Italy; (A.A.); (M.P.)
| | - Ciro Isidoro
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale, Via P. Solaroli 17, 28100 Novara, Italy; (B.G.); (L.V.); (A.F.)
| |
Collapse
|
4
|
Xu M, Li T, Liu X, Islam B, Xiang Y, Zou X, Wang J. Mechanism and Clinical Application Prospects of Mitochondrial DNA Single Nucleotide Polymorphism in Neurodegenerative Diseases. Neurochem Res 2024; 50:61. [PMID: 39673588 DOI: 10.1007/s11064-024-04311-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/12/2024] [Accepted: 12/03/2024] [Indexed: 12/16/2024]
Abstract
Mitochondrial dysfunction is well recognized as a critical component of the complicated pathogenesis of neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and Huntington's disease. This review investigates the influence of mitochondrial DNA single nucleotide polymorphisms on mitochondrial function, as well as their role in the onset and progression of these neurodegenerative diseases. Furthermore, the contemporary approaches to mitochondrial regulation in these disorders are discussed. Our objective is to uncover early diagnostic targets and formulate precision medicine strategies for neurodegenerative diseases, thereby offering new paths for preventing and treating these conditions.
Collapse
Affiliation(s)
- Mengying Xu
- Xiangya School of Public Health, Central South University, Changsha, 410078, China
| | - Tianjiao Li
- Xiangya School of Public Health, Central South University, Changsha, 410078, China
| | - Xuan Liu
- Xiangya School of Public Health, Central South University, Changsha, 410078, China
| | - Binish Islam
- Xiangya School of Public Health, Central South University, Changsha, 410078, China
| | - Yuyue Xiang
- Xiangya School of Public Health, Central South University, Changsha, 410078, China
| | - Xiyan Zou
- Xiangya School of Public Health, Central South University, Changsha, 410078, China
| | - Jianwu Wang
- Xiangya School of Public Health, Central South University, Changsha, 410078, China.
| |
Collapse
|
5
|
Khan S, Upadhyay S, Hassan MI. Novel prospects in targeting neurodegenerative disorders via autophagy. Eur J Pharmacol 2024; 984:177060. [PMID: 39426466 DOI: 10.1016/j.ejphar.2024.177060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/12/2024] [Accepted: 10/17/2024] [Indexed: 10/21/2024]
Abstract
Protein aggregation occurs as a consequence of dysfunction in the normal cellular proteostasis, which leads to the accumulation of toxic fibrillar aggregates of certain proteins in the cell. Enhancing the activity of proteolytic pathways may serve as a way of clearing these aggregates in a cell, and consequently, autophagy has surfaced as a promising target for the treatment of neurodegenerative disorders. Several strategies involving small molecule compounds that stimulate autophagic pathway of cell have been discovered. However, despite many compounds having demonstrated favorable outcomes in experimental disease models, the translation of these findings into clinical benefits for patient's remains limited. Consequently, alternative strategies are actively being explored to effectively target neurodegeneration via autophagy modulation. Recently, newer approaches such as modulation of expression of autophagic genes have emerged as novel and interesting areas of research in this field, which hold promising potential in neuroprotection. Similarly, as discussed for the first time in this review, the use of autophagy-inducing nanoparticles by utilizing their physicochemical properties to stimulate the autophagic process, rather than relying on their role as drug carriers, offers a completely fresh avenue for targeting neurodegeneration without the risk of drug-associated adverse effects. This review provides fresh perspectives on developing autophagy-targeted therapies for neurodegenerative disorders. Additionally, it discusses the challenges and impediments of implementing these strategies to alleviate the pathogenesis of neurodegenerative disorders in clinical settings and highlights the prospects and directions of future research in this context.
Collapse
Affiliation(s)
- Shumayila Khan
- International Health Division, Indian Council of Medical Research, Ansari Nagar, New Delhi, 110029, India
| | - Saurabh Upadhyay
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
6
|
Huang C, Zheng X, Yan S, Zhang Z. Advances in Clinical Therapies for Huntington's Disease and the Promise of Multi-Targeted/Functional Drugs Based on Clinicaltrials.gov. Clin Pharmacol Ther 2024; 116:1452-1471. [PMID: 38863261 DOI: 10.1002/cpt.3341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/27/2024] [Indexed: 06/13/2024]
Abstract
Huntington's disease (HD) is a dominantly inherited neurodegenerative disorder characterized by a triad of motor, cognitive, and psychiatric problems. Caused by CAG repeat expansion in the huntingtin gene (HTT), the disease involves a complex network of pathogenic mechanisms, including synaptic dysfunction, impaired autophagy, neuroinflammation, oxidative damage, mitochondrial dysfunction, and extrasynaptic excitotoxicity. Although current therapies targeting the pathogenesis of HD primarily aim to reduce mHTT levels by targeting HTT DNA, RNA, or proteins, these treatments only ameliorate downstream pathogenic effects. While gene therapies, such as antisense oligonucleotides, small interfering RNAs and gene editing, have emerged in the field of HD treatment, their safety and efficacy are still under debate. Therefore, pharmacological therapy remains the most promising breakthrough, especially multi-target/functional drugs, which have diverse pharmacological effects. This review summarizes the latest progress in HD drug development based on clinicaltrials.gov search results (Search strategy: key word "Huntington's disease" in HD clinical investigational drugs registered as of December 31, 2023), and highlights the key role of multi-target/functional drugs in HD treatment strategies.
Collapse
Affiliation(s)
- Chunhui Huang
- School of Medicine, Jinan University, Guangzhou, China
- Guangdong Key Laboratory of Non-Human Primate Models, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic, Constituents of TCM and New Drugs Research and Institute of New Drug Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Xiao Zheng
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Sen Yan
- School of Medicine, Jinan University, Guangzhou, China
- Guangdong Key Laboratory of Non-Human Primate Models, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic, Constituents of TCM and New Drugs Research and Institute of New Drug Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Zaijun Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic, Constituents of TCM and New Drugs Research and Institute of New Drug Research, College of Pharmacy, Jinan University, Guangzhou, China
| |
Collapse
|
7
|
Neha, Chaudhary S, Tiwari P, Parvez S. Amelioration of Phytanic Acid-Induced Neurotoxicity by Nutraceuticals: Mechanistic Insights. Mol Neurobiol 2024; 61:7303-7318. [PMID: 38374317 DOI: 10.1007/s12035-024-03985-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 01/22/2024] [Indexed: 02/21/2024]
Abstract
Phytanic acid (PA) (3,7,11,15-tetramethylhexadecanoic acid) is a methyl-branched fatty acid that enters the body through food consumption, primarily through red meat, dairy products, and fatty marine foods. The metabolic byproduct of phytol is PA, which is then oxidized by the ruminal microbiota and some marine species. The first methyl group at the 3-position prevents the β-oxidation of branched-chain fatty acid (BCFA). Instead, α-oxidation of PA results in the production of pristanic acid (2,10,14-tetramethylpentadecanoic acid) with CO2. This fatty acid (FA) builds up in individuals with certain peroxisomal disorders and is historically linked to neurological impairment. It also causes oxidative stress in synaptosomes, as demonstrated by an increase in the production of reactive oxygen species (ROS), which is a sign of oxidative stress. This review concludes that the nutraceuticals (melatonin, piperine, quercetin, curcumin, resveratrol, epigallocatechin-3-gallate (EGCG), coenzyme Q10, ω-3 FA) can reduce oxidative stress and enhanced the activity of mitochondria. Furthermore, the use of nutraceuticals completely reversed the neurotoxic effects of PA on NO level and membrane potential. Additionally, the review further emphasizes the urgent need for more research into dairy-derived BCFAs and their impact on human health.
Collapse
Affiliation(s)
- Neha
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110 062, India
| | - Shaista Chaudhary
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110 062, India
| | - Prachi Tiwari
- Department of Physiotherapy, School of Nursing Sciences and Allied Health, Jamia Hamdard, New Delhi, 110 062, India
| | - Suhel Parvez
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110 062, India.
| |
Collapse
|
8
|
Bhat AA, Moglad E, Afzal M, Thapa R, Almalki WH, Kazmi I, Alzarea SI, Ali H, Pant K, Singh TG, Dureja H, Singh SK, Dua K, Gupta G, Subramaniyan V. Therapeutic approaches targeting aging and cellular senescence in Huntington's disease. CNS Neurosci Ther 2024; 30:e70053. [PMID: 39428700 PMCID: PMC11491556 DOI: 10.1111/cns.70053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/09/2024] [Accepted: 09/06/2024] [Indexed: 10/22/2024] Open
Abstract
Huntington's disease (HD) is a devastating neurodegenerative disease that is manifested by a gradual loss of physical, cognitive, and mental abilities. As the disease advances, age has a major impact on the pathogenic signature of mutant huntingtin (mHTT) protein aggregation. This review aims to explore the intricate relationship between aging, mHTT toxicity, and cellular senescence in HD. Scientific data on the interplay between aging, mHTT, and cellular senescence in HD were collected from several academic databases, including PubMed, Google Scholar, Google, and ScienceDirect. The search terms employed were "AGING," "HUNTINGTON'S DISEASE," "MUTANT HUNTINGTIN," and "CELLULAR SENESCENCE." Additionally, to gather information on the molecular mechanisms and potential therapeutic targets, the search was extended to include relevant terms such as "DNA DAMAGE," "OXIDATIVE STRESS," and "AUTOPHAGY." According to research, aging leads to worsening HD pathophysiology through some processes. As a result of the mHTT accumulation, cellular senescence is promoted, which causes DNA damage, oxidative stress, decreased autophagy, and increased inflammatory responses. Pro-inflammatory cytokines and other substances are released by senescent cells, which may worsen the neuronal damage and the course of the disease. It has been shown that treatments directed at these pathways reduce some of the HD symptoms and enhance longevity in experimental animals, pointing to a new possibility of treating the condition. Through their amplification of the harmful effects of mHTT, aging and cellular senescence play crucial roles in the development of HD. Comprehending these interplays creates novel opportunities for therapeutic measures targeted at alleviating cellular aging and enhancing HD patients' quality of life.
Collapse
Affiliation(s)
- Asif Ahmad Bhat
- Uttaranchal Institute of Pharmaceutical SciencesUttaranchal UniversityDehradunIndia
| | - Ehssan Moglad
- Department of Pharmaceutics, College of PharmacyPrince Sattam Bin Abdulaziz UniversityAl KharjSaudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy ProgramBatterjee Medical CollegeJeddahSaudi Arabia
| | - Riya Thapa
- Uttaranchal Institute of Pharmaceutical SciencesUttaranchal UniversityDehradunIndia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of PharmacyUmm Al‐Qura UniversityMakkahSaudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
| | - Sami I. Alzarea
- Department of Pharmacology, College of PharmacyJouf UniversitySakakaAl‐JoufSaudi Arabia
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical SciencesSaveetha UniversityChennaiIndia
- Department of PharmacologyKyrgyz State Medical CollegeBishkekKyrgyzstan
| | - Kumud Pant
- Graphic Era (Deemed to be University), Dehradun, India
| | | | - Harish Dureja
- Department of Pharmaceutical SciencesMaharshi Dayanand UniversityRohtakIndia
| | - Sachin Kumar Singh
- School of Pharmaceutical SciencesLovely Professional UniversityPhagwaraPunjabIndia
- Faculty of Health, Australian Research Centre in Complementary and Integrative MedicineUniversity of Technology SydneyUltimoNew South WalesAustralia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative MedicineUniversity of Technology SydneyUltimoNew South WalesAustralia
- Discipline of Pharmacy, Graduate School of HealthUniversity of Technology SydneySydneyNew South WalesAustralia
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of PharmacyChitkara UniversityRajpuraPunjabIndia
- Centre of Medical and Bio‐Allied Health Sciences ResearchAjman UniversityAjmanUnited Arab Emirates
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health SciencesMonash UniversityBandar SunwaySelangor Darul EhsanMalaysia
- Department of Medical SciencesSchool of Medical and Life Sciences Sunway UniversityBandar SunwaySelangor Darul EhsanMalaysia
| |
Collapse
|
9
|
Puglisi R, Cavallaro A, Pappalardo A, Petroselli M, Santonocito R, Trusso Sfrazzetto G. A New BODIPY-Based Receptor for the Fluorescent Sensing of Catecholamines. Molecules 2024; 29:3714. [PMID: 39125116 PMCID: PMC11314322 DOI: 10.3390/molecules29153714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
The human body synthesizes catecholamine neurotransmitters, such as dopamine and noradrenaline. Monitoring the levels of these molecules is crucial for the prevention of important diseases, such as Alzheimer's, schizophrenia, Parkinson's, Huntington's, attention-deficit hyperactivity disorder, and paragangliomas. Here, we have synthesized, characterized, and functionalized the BODIPY core with picolylamine (BDPy-pico) in order to create a sensor capable of detecting these biomarkers. The sensing properties of the BDPy-pico probe in solution were studied using fluorescence titrations and supported by DFT studies. Catecholamine sensing was also performed in the solid state by a simple strip test, using an optical fiber as the detector of emissions. In addition, the selectivity and recovery of the sensor were assessed, suggesting the possibility of using this receptor to detect dopamine and norepinephrine in human saliva.
Collapse
Affiliation(s)
- Roberta Puglisi
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (R.P.); (A.C.); (A.P.)
| | - Alessia Cavallaro
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (R.P.); (A.C.); (A.P.)
| | - Andrea Pappalardo
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (R.P.); (A.C.); (A.P.)
- Research Unit of Catania, National Interuniversity Consortium for Materials Science and Technology (I.N.S.T.M.), Viale Andrea Doria 6, 95125 Catania, Italy
| | - Manuel Petroselli
- Institute of Chemical Research of Catalonia (ICIQ), Av. Països Catalans 16, 43007 Tarragona, Spain;
| | - Rossella Santonocito
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (R.P.); (A.C.); (A.P.)
| | - Giuseppe Trusso Sfrazzetto
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (R.P.); (A.C.); (A.P.)
- Research Unit of Catania, National Interuniversity Consortium for Materials Science and Technology (I.N.S.T.M.), Viale Andrea Doria 6, 95125 Catania, Italy
| |
Collapse
|
10
|
Li H, Sun J, Wu Y, Yang Y, Zhang W, Tian Y. Honokiol relieves hippocampal neuronal damage in Alzheimer's disease by activating the SIRT3-mediated mitochondrial autophagy. CNS Neurosci Ther 2024; 30:e14878. [PMID: 39097923 PMCID: PMC11298204 DOI: 10.1111/cns.14878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/03/2024] [Accepted: 07/12/2024] [Indexed: 08/06/2024] Open
Abstract
BACKGROUND This work elucidated the effect of honokiol (HKL) on hippocampal neuronal mitochondrial function in Alzheimer's disease (AD). METHODS APP/PS1 mice were used as AD mice models and exposed to HKL and 3-TYP. Morris water maze experiment was performed to appraise cognitive performance of mice. Hippocampal Aβ+ plaque deposition and neuronal survival was evaluated by immunohistochemistry and Nissl staining. Hippocampal neurons were dissociated from C57BL/6 mouse embryos. Hippocampal neuronal AD model was constructed by Aβ oligomers induction and treated with HKL, CsA and 3-TYP. Neuronal viability and apoptosis were detected by cell counting kit-8 assay and TUNEL staining. mRFP-eGFP-LC3 assay, MitoSOX Red, dichlorodihydrofluorescein diacetate, and JC-1 staining were performed to monitor neuronal autophagosomes, mitochondrial reactive oxygen species (ROS), neuronal ROS, and mitochondrial membrane potential. Autophagy-related proteins were detected by Western blot. RESULTS In AD mice, HKL improved cognitive function, relieved hippocampal Aβ1-42 plaque deposition, promoted hippocampal neuron survival, and activated hippocampal SIRT3 expression and mitochondrial autophagy. These effects of HKL on AD mice were abolished by 3-TYP treatment. In hippocampal neuronal AD model, HKL increased neuronal activity, attenuated neuronal apoptosis and Aβ aggregation, activated SIRT3 and mitochondrial autophagy, reduced mitochondrial and neuronal ROS, and elevated mitochondrial membrane potential. CsA treatment and 3-TYP treatment abrogated the protection of HKL on hippocampal neuronal AD model. The promotion of mitochondrial autophagy by HKL in hippocampal neuronal AD model was counteracted by 3-TYP. CONCLUSIONS HKL activates SIRT3-mediated mitochondrial autophagy to mitigate hippocampal neuronal damage in AD. HKL may be effective in treating AD.
Collapse
Affiliation(s)
- Haitao Li
- Department of Neurology, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| | - Jinmei Sun
- Department of Neurology, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| | - Yili Wu
- Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and The Affiliated Wenzhou Kangning Hospital, Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang ProvinceWenzhou Medical University, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)WenzhouChina
| | - Yishu Yang
- Department of Neurology, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| | - Wei Zhang
- Department of Neurology, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| | - Yuanruhua Tian
- Department of Neurology, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
11
|
Socała K, Żmudzka E, Lustyk K, Zagaja M, Brighenti V, Costa AM, Andres-Mach M, Pytka K, Martinelli I, Mandrioli J, Pellati F, Biagini G, Wlaź P. Therapeutic potential of stilbenes in neuropsychiatric and neurological disorders: A comprehensive review of preclinical and clinical evidence. Phytother Res 2024; 38:1400-1461. [PMID: 38232725 DOI: 10.1002/ptr.8101] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/01/2023] [Accepted: 12/12/2023] [Indexed: 01/19/2024]
Abstract
Neuropsychiatric disorders are anticipated to be a leading health concern in the near future, emphasizing an outstanding need for the development of new effective therapeutics to treat them. Stilbenes, with resveratrol attracting the most attention, are an example of multi-target compounds with promising therapeutic potential for a broad array of neuropsychiatric and neurological conditions. This review is a comprehensive summary of the current state of research on stilbenes in several neuropsychiatric and neurological disorders such as depression, anxiety, schizophrenia, autism spectrum disorders, epilepsy, traumatic brain injury, and neurodegenerative disorders. We describe and discuss the results of both in vitro and in vivo studies. The majority of studies concentrate on resveratrol, with limited findings exploring other stilbenes such as pterostilbene, piceatannol, polydatin, tetrahydroxystilbene glucoside, or synthetic resveratrol derivatives. Overall, although extensive preclinical studies show the potential benefits of stilbenes in various central nervous system disorders, clinical evidence on their therapeutic efficacy is largely missing.
Collapse
Affiliation(s)
- Katarzyna Socała
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Elżbieta Żmudzka
- Department of Social Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Klaudia Lustyk
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Mirosław Zagaja
- Department of Experimental Pharmacology, Institute of Rural Health, Lublin, Poland
| | - Virginia Brighenti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Anna Maria Costa
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Marta Andres-Mach
- Department of Experimental Pharmacology, Institute of Rural Health, Lublin, Poland
| | - Karolina Pytka
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Ilaria Martinelli
- Department of Neurosciences, Azienda Ospedaliero Universitaria di Modena, Modena, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Jessica Mandrioli
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Department of Neurosciences, Azienda Ospedaliero Universitaria di Modena, Modena, Italy
| | - Federica Pellati
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Giuseppe Biagini
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Piotr Wlaź
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| |
Collapse
|
12
|
Watchon M, Robinson KJ, Luu L, An Y, Yuan KC, Plenderleith SK, Cheng F, Don EK, Nicholson GA, Lee A, Laird AS. Treatment with sodium butyrate induces autophagy resulting in therapeutic benefits for spinocerebellar ataxia type 3. FASEB J 2024; 38:e23429. [PMID: 38258931 DOI: 10.1096/fj.202300963rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 12/21/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024]
Abstract
Spinocerebellar ataxia type 3 (SCA3, also known as Machado Joseph disease) is a fatal neurodegenerative disease caused by the expansion of the trinucleotide repeat region within the ATXN3/MJD gene. Mutation of ATXN3 causes formation of ataxin-3 protein aggregates, neurodegeneration, and motor deficits. Here we investigated the therapeutic potential and mechanistic activity of sodium butyrate (SB), the sodium salt of butyric acid, a metabolite naturally produced by gut microbiota, on cultured SH-SY5Y cells and transgenic zebrafish expressing human ataxin-3 containing 84 glutamine (Q) residues to model SCA3. SCA3 SH-SY5Y cells were found to contain high molecular weight ataxin-3 species and detergent-insoluble protein aggregates. Treatment with SB increased the activity of the autophagy protein quality control pathway in the SCA3 cells, decreased the presence of ataxin-3 aggregates and presence of high molecular weight ataxin-3 in an autophagy-dependent manner. Treatment with SB was also beneficial in vivo, improving swimming performance, increasing activity of the autophagy pathway, and decreasing the presence of insoluble ataxin-3 protein species in the transgenic SCA3 zebrafish. Co-treating the SCA3 zebrafish with SB and chloroquine, an autophagy inhibitor, prevented the beneficial effects of SB on zebrafish swimming, indicating that the improved swimming performance was autophagy-dependent. To understand the mechanism by which SB induces autophagy we performed proteomic analysis of protein lysates from the SB-treated and untreated SCA3 SH-SY5Y cells. We found that SB treatment had increased activity of Protein Kinase A and AMPK signaling, with immunoblot analysis confirming that SB treatment had increased levels of AMPK protein and its substrates. Together our findings indicate that treatment with SB can increase activity of the autophagy pathway process and that this has beneficial effects in vitro and in vivo. While our results suggested that this activity may involve activity of a PKA/AMPK-dependent process, this requires further confirmation. We propose that treatment with sodium butyrate warrants further investigation as a potential treatment for neurodegenerative diseases underpinned by mechanisms relating to protein aggregation including SCA3.
Collapse
Affiliation(s)
- Maxinne Watchon
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Katherine J Robinson
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Luan Luu
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Yousun An
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Kristy C Yuan
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Stuart K Plenderleith
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Flora Cheng
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Emily K Don
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Garth A Nicholson
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
- ANZAC Research Institute, Concord Repatriation Hospital, Concord, New South Wales, Australia
| | - Albert Lee
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Angela S Laird
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
13
|
Chandrasekaran V, Hediyal TA, Anand N, Kendaganna PH, Gorantla VR, Mahalakshmi AM, Ghanekar RK, Yang J, Sakharkar MK, Chidambaram SB. Polyphenols, Autophagy and Neurodegenerative Diseases: A Review. Biomolecules 2023; 13:1196. [PMID: 37627261 PMCID: PMC10452370 DOI: 10.3390/biom13081196] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Polyphenols are secondary metabolites from plant origin and are shown to possess a wide range of therapeutic benefits. They are also reported as regulators of autophagy, inflammation and neurodegeneration. The autophagy pathway is vital in degrading outdated organelles, proteins and other cellular wastes. The dysregulation of autophagy causes proteinopathies, mitochondrial dysfunction and neuroinflammation thereby contributing to neurodegeneration. Evidence reveals that polyphenols improve autophagy by clearing misfolded proteins in the neurons, suppress neuroinflammation and oxidative stress and also protect from neurodegeneration. This review is an attempt to summarize the mechanism of action of polyphenols in modulating autophagy and their involvement in pathways such as mTOR, AMPK, SIRT-1 and ERK. It is evident that polyphenols cause an increase in the levels of autophagic proteins such as beclin-1, microtubule-associated protein light chain (LC3 I and II), sirtuin 1 (SIRT1), etc. Although it is apparent that polyphenols regulate autophagy, the exact interaction of polyphenols with autophagy markers is not known. These data require further research and will be beneficial in supporting polyphenol supplementation as a potential alternative treatment for regulating autophagy in neurodegenerative diseases.
Collapse
Affiliation(s)
- Vichitra Chandrasekaran
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, India; (V.C.); (T.A.H.); (A.M.M.)
- Center for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education and Research, Mysuru 570015, India;
| | - Tousif Ahmed Hediyal
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, India; (V.C.); (T.A.H.); (A.M.M.)
- Center for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education and Research, Mysuru 570015, India;
| | - Nikhilesh Anand
- Department of Pharmacology, College of Medicine, American University of Antigua, Saint John’s P.O. Box W-1451, Antigua and Barbuda;
| | - Pavan Heggadadevanakote Kendaganna
- Center for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education and Research, Mysuru 570015, India;
| | | | - Arehally M. Mahalakshmi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, India; (V.C.); (T.A.H.); (A.M.M.)
- Center for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education and Research, Mysuru 570015, India;
| | - Ruchika Kaul Ghanekar
- Symbiosis Centre for Research and Innovation (SCRI), Symbiosis International (Deemed University), Pune 412115, India;
| | - Jian Yang
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada;
| | - Meena Kishore Sakharkar
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada;
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, India; (V.C.); (T.A.H.); (A.M.M.)
- Center for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education and Research, Mysuru 570015, India;
| |
Collapse
|
14
|
Taban Akça K, Çınar Ayan İ, Çetinkaya S, Miser Salihoğlu E, Süntar İ. Autophagic mechanisms in longevity intervention: role of natural active compounds. Expert Rev Mol Med 2023; 25:e13. [PMID: 36994671 PMCID: PMC10407225 DOI: 10.1017/erm.2023.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 11/14/2022] [Accepted: 03/06/2023] [Indexed: 03/31/2023]
Abstract
The term 'autophagy' literally translates to 'self-eating' and alterations to autophagy have been identified as one of the several molecular changes that occur with aging in a variety of species. Autophagy and aging, have a complicated and multifaceted relationship that has recently come to light thanks to breakthroughs in our understanding of the various substrates of autophagy on tissue homoeostasis. Several studies have been conducted to reveal the relationship between autophagy and age-related diseases. The present review looks at a few new aspects of autophagy and speculates on how they might be connected to both aging and the onset and progression of disease. Additionally, we go over the most recent preclinical data supporting the use of autophagy modulators as age-related illnesses including cancer, cardiovascular and neurodegenerative diseases, and metabolic dysfunction. It is crucial to discover important targets in the autophagy pathway in order to create innovative therapies that effectively target autophagy. Natural products have pharmacological properties that can be therapeutically advantageous for the treatment of several diseases and they also serve as valuable sources of inspiration for the development of possible new small-molecule drugs. Indeed, recent scientific studies have shown that several natural products including alkaloids, terpenoids, steroids, and phenolics, have the ability to alter a number of important autophagic signalling pathways and exert therapeutic effects, thus, a wide range of potential targets in various stages of autophagy have been discovered. In this review, we summarised the naturally occurring active compounds that may control the autophagic signalling pathways.
Collapse
Affiliation(s)
- Kevser Taban Akça
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara, Türkiye
| | - İlknur Çınar Ayan
- Department of Medical Biology, Medical Faculty, Necmettin Erbakan University, Meram, Konya, Türkiye
| | - Sümeyra Çetinkaya
- Biotechnology Research Center of Ministry of Agriculture and Forestry, Yenimahalle, Ankara, Türkiye
| | - Ece Miser Salihoğlu
- Biochemistry Department, Faculty of Pharmacy, Gazi University, Ankara, Türkiye
| | - İpek Süntar
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara, Türkiye
| |
Collapse
|
15
|
Sarkar P, Kumar A, Behera PS, Thirumurugan K. Phytotherapeutic targeting of the mitochondria in neurodegenerative disorders. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 136:415-455. [PMID: 37437986 DOI: 10.1016/bs.apcsb.2023.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Neurodegenerative diseases are characterized by degeneration or cellular atrophy within specific structures of the brain. Neurons are the major target of neurodegeneration. Neurons utilize 75-80% of the energy produced in the brain. This energy is either formed by utilizing the glucose provided by the cerebrovascular blood flow or by the in-house energy producers, mitochondria. Mitochondrial dysfunction has been associated with neurodegenerative diseases. But recently it has been noticed that neurodegenerative diseases are often associated with cerebrovascular diseases. Cerebral blood flow requires vasodilation which to an extent regulated by mitochondria. We hypothesize that when mitochondrial functioning is disrupted, it is not able to supply energy to the neurons. This disruption also affects cerebral blood flow, further reducing the possibilities of energy supply. Loss of sufficient energy leads to neuronal dysfunction, atrophy, and degeneration. In this chapter, we will discuss the metabolic modifications of mitochondria in aging-related neurological disorders and the potential of phytocompounds targeting them.
Collapse
Affiliation(s)
- Priyanka Sarkar
- Structural Biology Lab, Pearl Research Park, School of Bio Sciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Ashish Kumar
- Structural Biology Lab, Pearl Research Park, School of Bio Sciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Partha Sarathi Behera
- Structural Biology Lab, Pearl Research Park, School of Bio Sciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Kavitha Thirumurugan
- Structural Biology Lab, Pearl Research Park, School of Bio Sciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| |
Collapse
|
16
|
Dai Y, Wang H, Lian A, Li J, Zhao G, Hu S, Li B. A comprehensive perspective of Huntington's disease and mitochondrial dysfunction. Mitochondrion 2023; 70:8-19. [PMID: 36906250 DOI: 10.1016/j.mito.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/04/2023] [Accepted: 03/05/2023] [Indexed: 03/12/2023]
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disease. It is caused by the expansion of the CAG trinucleotide repeat sequence in the HTT gene. HD mainly manifests as involuntary dance-like movements and severe mental disorders. As it progresses, patients lose the ability to speak, think, and even swallow. Although the pathogenesis is unclear, studies have found that mitochondrial dysfunctions occupy an important position in the pathogenesis of HD. Based on the latest research advances, this review sorts out and discusses the role of mitochondrial dysfunction on HD in terms of bioenergetics, abnormal autophagy, and abnormal mitochondrial membranes. This review provides researchers with a more complete perspective on the mechanisms underlying the relationship between mitochondrial dysregulation and HD.
Collapse
Affiliation(s)
- Yinghong Dai
- National Clinical Research Center for Geriatrics Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China; Xiangya School of Medicine, Central South University, Changsha, China
| | - Haonan Wang
- Department of Physical Education and Research, Central South University, 932 Lushan South Rd., Changsha, China
| | - Aojie Lian
- National Health Commission Key Laboratory of Birth Defects Research, Prevention and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Jinchen Li
- National Clinical Research Center for Geriatrics Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Guihu Zhao
- National Clinical Research Center for Geriatrics Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Shenghui Hu
- The Second Xiangya Hospital of Central South University, China
| | - Bin Li
- National Clinical Research Center for Geriatrics Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
17
|
Vidoni C, Ferraresi A, Vallino L, Salwa A, Ha JH, Seca C, Garavaglia B, Dhanasekaran DN, Isidoro C. Glycolysis Inhibition of Autophagy Drives Malignancy in Ovarian Cancer: Exacerbation by IL-6 and Attenuation by Resveratrol. Int J Mol Sci 2023; 24:ijms24021723. [PMID: 36675246 PMCID: PMC9866176 DOI: 10.3390/ijms24021723] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Cancer cells drive the glycolytic process towards the fermentation of pyruvate into lactate even in the presence of oxygen and functioning mitochondria, a phenomenon known as the "Warburg effect". Although not energetically efficient, glycolysis allows the cancer cell to synthesize the metabolites needed for cell duplication. Autophagy, a macromolecular degradation process, limits cell mass accumulation and opposes to cell proliferation as well as to cell migration. Cancer cells corrupt cancer-associated fibroblasts to release pro-inflammatory cytokines, which in turn promote glycolysis and support the metastatic dissemination of cancer cells. In mimicking in vitro this condition, we show that IL-6 promotes ovarian cancer cell migration only in the presence of glycolysis. The nutraceutical resveratrol (RV) counteracts glucose uptake and metabolism, reduces the production of reactive oxygen species consequent to excessive glycolysis, rescues the mitochondrial functional activity, and stimulates autophagy. Consistently, the lack of glucose as well as its metabolically inert analogue 2-deoxy-D-glucose (2-DG), which inhibits hexokinase 2 (HK2), trigger autophagy through mTOR inhibition, and prevents IL-6-induced cell migration. Of clinical relevance, bioinformatic analysis of The Cancer Genome Atlas dataset revealed that ovarian cancer patients bearing mutated TP53 with low expression of glycolytic markers and IL-6 receptor, together with markers of active autophagy, display a longer overall survival and are more responsive to platinum therapy. Taken together, our findings demonstrate that RV can counteract IL-6-promoted ovarian cancer progression by rescuing glycolysis-mediated inhibition of autophagy and support the view that targeting Warburg metabolism can be an effective strategy to limit the risk for cancer metastasis.
Collapse
Affiliation(s)
- Chiara Vidoni
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale “A. Avogadro”, Via Solaroli 17, 28100 Novara, Italy
| | - Alessandra Ferraresi
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale “A. Avogadro”, Via Solaroli 17, 28100 Novara, Italy
| | - Letizia Vallino
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale “A. Avogadro”, Via Solaroli 17, 28100 Novara, Italy
| | - Amreen Salwa
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale “A. Avogadro”, Via Solaroli 17, 28100 Novara, Italy
| | - Ji Hee Ha
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Christian Seca
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale “A. Avogadro”, Via Solaroli 17, 28100 Novara, Italy
| | - Beatrice Garavaglia
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale “A. Avogadro”, Via Solaroli 17, 28100 Novara, Italy
| | - Danny N. Dhanasekaran
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Ciro Isidoro
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale “A. Avogadro”, Via Solaroli 17, 28100 Novara, Italy
- Correspondence: ; Tel.: +39-0321-660-507; Fax: +39-0321-620-421
| |
Collapse
|
18
|
Pérez-Arancibia R, Cisternas-Olmedo M, Sepúlveda D, Troncoso-Escudero P, Vidal RL. Small molecules to perform big roles: The search for Parkinson's and Huntington's disease therapeutics. Front Neurosci 2023; 16:1084493. [PMID: 36699535 PMCID: PMC9868863 DOI: 10.3389/fnins.2022.1084493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/20/2022] [Indexed: 01/12/2023] Open
Abstract
Neurological motor disorders (NMDs) such as Parkinson's disease and Huntington's disease are characterized by the accumulation and aggregation of misfolded proteins that trigger cell death of specific neuronal populations in the central nervous system. Differential neuronal loss initiates the impaired motor control and cognitive function in the affected patients. Although major advances have been carried out to understand the molecular basis of these diseases, to date there are no treatments that can prevent, cure, or significantly delay the progression of the disease. In this context, strategies such as gene editing, cellular therapy, among others, have gained attention as they effectively reduce the load of toxic protein aggregates in different models of neurodegeneration. Nevertheless, these strategies are expensive and difficult to deliver into the patients' nervous system. Thus, small molecules and natural products that reduce protein aggregation levels are highly sought after. Numerous drug discovery efforts have analyzed large libraries of synthetic compounds for the treatment of different NMDs, with a few candidates reaching clinical trials. Moreover, the recognition of new druggable targets for NMDs has allowed the discovery of new small molecules that have demonstrated their efficacy in pre-clinical studies. It is also important to recognize the contribution of natural products to the discovery of new candidates that can prevent or cure NMDs. Additionally, the repurposing of drugs for the treatment of NMDs has gained huge attention as they have already been through clinical trials confirming their safety in humans, which can accelerate the development of new treatment. In this review, we will focus on the new advances in the discovery of small molecules for the treatment of Parkinson's and Huntington's disease. We will begin by discussing the available pharmacological treatments to modulate the progression of neurodegeneration and to alleviate the motor symptoms in these diseases. Then, we will analyze those small molecules that have reached or are currently under clinical trials, including natural products and repurposed drugs.
Collapse
Affiliation(s)
- Rodrigo Pérez-Arancibia
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
- Departamento de Ciencias Básicas, Faculty of Medicine and Science, Universidad San Sebastián, Santiago, Chile
| | - Marisol Cisternas-Olmedo
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Denisse Sepúlveda
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Paulina Troncoso-Escudero
- Molecular Diagnostic and Biomarkers Laboratory, Department of Pathology, Faculty of Medicine Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Rene L. Vidal
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| |
Collapse
|
19
|
Adsorption characteristics of dopamine by activated carbon: Experimental and theoretical approach. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.134964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
20
|
Zhang L, Liu Y, Lu Y, Wang G. Targeting epigenetics as a promising therapeutic strategy for treatment of neurodegenerative diseases. Biochem Pharmacol 2022; 206:115295. [DOI: 10.1016/j.bcp.2022.115295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022]
|
21
|
Autophagy and polyphenol intervention strategy in aging. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
22
|
Luchetti F, Nasoni MG, Burattini S, Mohammadi A, Pagliarini M, Canonico B, Ambrogini P, Balduini W, Reiter RJ, Carloni S. Melatonin Attenuates Ischemic-like Cell Injury by Promoting Autophagosome Maturation via the Sirt1/FoxO1/Rab7 Axis in Hippocampal HT22 Cells and in Organotypic Cultures. Cells 2022; 11:3701. [PMID: 36429130 PMCID: PMC9688641 DOI: 10.3390/cells11223701] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Dysfunctional autophagy is linked to neuronal damage in ischemia/reperfusion injury. The Ras-related protein 7 (Rab7), a member of the Rab family of small GTPases, appears crucial for the progression of the autophagic flux, and its activity is strictly interconnected with the histone deacetylase Silent information regulator 1 (Sirt1) and transcription factor Forkhead box class O1 (FoxO1). The present study assessed the neuroprotective role of melatonin in the modulation of the Sirt1/FoxO1/Rab7 axis in HT22 cells and organotypic hippocampal cultures exposed to oxygen-glucose deprivation followed by reoxygenation (OGD/R). The results showed that melatonin re-established physiological levels of autophagy and reduced propidium iodide-positive cells, speeding up autophagosome (AP) maturation and increasing lysosomal activity. Our study revealed that melatonin modulates autophagic pathways, increasing the expression of both Rab7 and FoxO1 and restoring the Sirt1 expression affected by OGD/R. In addition, the Sirt1 inhibitor EX-527 significantly reduced Rab7, Sirt1, and FoxO1 expression, as well as autolysosomes formation, and blocked the neuroprotective effect of melatonin. Overall, our findings provide, for the first time, new insights into the neuroprotective role of melatonin against ischemic injury through the activation of the Sirt1/FoxO1/Rab7 axis.
Collapse
Affiliation(s)
- Francesca Luchetti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Maria G. Nasoni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Sabrina Burattini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Atefeh Mohammadi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Marica Pagliarini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Barbara Canonico
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Patrizia Ambrogini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Walter Balduini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, Long School of Medicine, UT Health, San Antonio, TX 78229, USA
| | - Silvia Carloni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| |
Collapse
|
23
|
Santonocito R, Tuccitto N, Pappalardo A, Trusso Sfrazzetto G. Smartphone-Based Dopamine Detection by Fluorescent Supramolecular Sensor. Molecules 2022; 27:7503. [PMID: 36364331 PMCID: PMC9654496 DOI: 10.3390/molecules27217503] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 08/26/2023] Open
Abstract
Supramolecular recognition of dopamine by two quinoxaline cavitands was studied in solution by fluorescence titrations, ESI-MS and ROESY measurements. In addition, the tetraquinoxaline cavitand was dropped onto a siloxane-based polymeric solid support, obtaining a sensor able to detect dopamine in a linear range of concentrations 10 Mm-100 pM, with a detection limit of 1 pM, much lower than the normal concentration values in the common human fluids (plasma, urine and saliva), by using a simple smartphone as detector. This sensor shows also good selectivity for dopamine respect to the other common analytes contained in a saliva sample and can be reused after acid-base cycles, paving the way for the realization of real practical sensor for human dopamine detection.
Collapse
Affiliation(s)
- Rossella Santonocito
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95100 Catania, Italy
| | - Nunzio Tuccitto
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95100 Catania, Italy
- Laboratory for Molecular Surfaces and Nanotechnology—CSGI, 95125 Catania, Italy
| | - Andrea Pappalardo
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95100 Catania, Italy
- National Interuniversity Consortium for Materials Science and Technology (I.N.S.T.M.) Research Unit of Catania, 95125 Catania, Italy
| | - Giuseppe Trusso Sfrazzetto
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95100 Catania, Italy
- National Interuniversity Consortium for Materials Science and Technology (I.N.S.T.M.) Research Unit of Catania, 95125 Catania, Italy
| |
Collapse
|
24
|
Proteinopathies: Deciphering Physiology and Mechanisms to Develop Effective Therapies for Neurodegenerative Diseases. Mol Neurobiol 2022; 59:7513-7540. [PMID: 36205914 DOI: 10.1007/s12035-022-03042-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/13/2022] [Indexed: 10/10/2022]
Abstract
Neurodegenerative diseases (NDs) are a cluster of diseases marked by progressive neuronal loss, axonal transport blockage, mitochondrial dysfunction, oxidative stress, neuroinflammation, and aggregation of misfolded proteins. NDs are more prevalent beyond the age of 50, and their symptoms often include motor and cognitive impairment. Even though various proteins are involved in different NDs, the mechanisms of protein misfolding and aggregation are very similar. Recently, several studies have discovered that, like prions, these misfolded proteins have the inherent capability of translocation from one neuron to another, thus having far-reaching implications for understanding the processes involved in the onset and progression of NDs, as well as the development of innovative therapy and diagnostic options. These misfolded proteins can also influence the transcription of other proteins and form aggregates, tangles, plaques, and inclusion bodies, which then accumulate in the CNS, leading to neuronal dysfunction and neurodegeneration. This review demonstrates protein misfolding and aggregation in NDs, and similarities and differences between different protein aggregates have been discussed. Furthermore, we have also reviewed the disposal of protein aggregates, the various molecular machinery involved in the process, their regulation, and how these molecular mechanisms are targeted to build innovative therapeutic and diagnostic procedures. In addition, the landscape of various therapeutic interventions for targeting protein aggregation for the effective prevention or treatment of NDs has also been discussed.
Collapse
|
25
|
Inhibition of Autophagy Facilitates XY03-EA-Mediated Neuroprotection against the Cerebral Ischemia/Reperfusion Injury in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7013299. [PMID: 35401933 PMCID: PMC8986424 DOI: 10.1155/2022/7013299] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 03/04/2022] [Indexed: 12/22/2022]
Abstract
Objective. L-3-n-Butylphthalide (NBP) is used to treat moderate and severe acute ischemia stroke. A previous screening study indicates that XY03-EA, a novel derivative of NBP, is more potent than NBP in the oxyradical scavenging capacity. In this study, in vivo and in vitro ischemia/reperfusion (I/R) models were used to test whether the XY03-EA offered therapeutic benefits in the ischemic stroke and explore the underlying mechanism of action. Methods. For this purpose, behavioral scores, cerebral infarct volume, cerebral blood flow, oxidative stress levels, inflammatory factor expression, energy metabolism levels, and autophagy activation were estimated in the rat middle cerebral artery occlusion and reperfusion (MCAO/R) model. The nonhuman primate MCAO/R model was conducted to validate the therapeutic effect of XY03-EA applied for 3 weeks. The neurological deficit score (NDS) progression rate and the infarct volume were continuously recorded on days 3, 7, 14, and 21. The PC-12 cell OGD/R model was used to assess the cell survival rate, reactive oxygen species (ROS) levels, the expression of autophagy execution molecules, and the activation of autophagy-related signaling pathways. Results. XY03-EA decreased the cerebral injuries and NDS by increasing cerebral blood flow, improving brain energy metabolism, accelerating ROS clearance, suppressing inflammatory responses, and inhibiting autophagy in the MCAO/R model rats. In the nonhuman primate MCAO/R model, the treatment of XY03-EA for 3 weeks could significantly inhibit the NDS progression rate and indicate a positive trend to reduce the infarct volume in a dose-dependent way. Mechanistically, XY03-EA inhibited ROS-dependent autophagy activation and thereby protected the PC-12 cells from the autophagic cell death induced by OGD/R. Conclusions. In this study, we found that XY03-EA alleviated the cerebral I/R injuries in rats and nonhuman primates. Our results demonstrated that XY03-EA exerted neuroprotective effects against the ROS-mediated autophagic neurocyte death and had great potential for the treatment of ischemic stroke.
Collapse
|
26
|
Talebi M, Mohammadi Vadoud SA, Haratian A, Talebi M, Farkhondeh T, Pourbagher-Shahri AM, Samarghandian S. The interplay between oxidative stress and autophagy: focus on the development of neurological diseases. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2022; 18:3. [PMID: 35093121 PMCID: PMC8799983 DOI: 10.1186/s12993-022-00187-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 01/17/2022] [Indexed: 12/12/2022]
Abstract
Regarding the epidemiological studies, neurological dysfunctions caused by cerebral ischemia or neurodegenerative diseases (NDDs) have been considered a pointed matter. Mount-up shreds of evidence support that both autophagy and reactive oxygen species (ROS) are involved in the commencement and progression of neurological diseases. Remarkably, oxidative stress prompted by an increase of ROS threatens cerebral integrity and improves the severity of other pathogenic agents such as mitochondrial damage in neuronal disturbances. Autophagy is anticipated as a cellular defending mode to combat cytotoxic substances and damage. The recent document proposes that the interrelation of autophagy and ROS creates a crucial function in controlling neuronal homeostasis. This review aims to overview the cross-talk among autophagy and oxidative stress and its molecular mechanisms in various neurological diseases to prepare new perceptions into a new treatment for neurological disorders. Furthermore, natural/synthetic agents entailed in modulation/regulation of this ambitious cross-talk are described.
Collapse
Affiliation(s)
- Marjan Talebi
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyyed Ali Mohammadi Vadoud
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Haratian
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Talebi
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX, 76019, USA
- Viatris Pharmaceuticals Inc, 3300 Research Plaza, San Antonio, TX, 78235, USA
| | - Tahereh Farkhondeh
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran
- Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
27
|
Vidoni C, Ferraresi A, Esposito A, Maheshwari C, Dhanasekaran DN, Mollace V, Isidoro C. Calorie Restriction for Cancer Prevention and Therapy: Mechanisms, Expectations, and Efficacy. J Cancer Prev 2021; 26:224-236. [PMID: 35047448 PMCID: PMC8749320 DOI: 10.15430/jcp.2021.26.4.224] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 12/18/2021] [Indexed: 12/13/2022] Open
Abstract
Cancer is one of the most frequently diagnosed diseases, and despite the continuous efforts in searching for new and more effective treatments, its morbidity and mortality remain a significant health problem worldwide. Calorie restriction, a dietary manipulation that consists in a reduction of the calorie intake, is gaining attention as a potential adjuvant intervention for preventing and/or fighting cancer. Several forms of energy reduction intake, which includes caloric restriction tout-court, dietary restrictions, and intermittent fasting, are being explored for their ability to prevent or slow down cancer progression. Additionally, another anti-cancer approach being under investigation relies on the use of nutraceuticals known as “Caloric Restriction Mimetics” that can provide caloric restriction-mediated benefits without subjecting the patients to a strict diet. Preclinical in vitro and in vivo studies consistently show that diet modifiers reducing the calorie have impact on tumor microenvironment and cancer metabolism, resulting in reduced growth and progression of cancer. Preliminary clinical studies show that patients subjected to a reduced nutrient/energy intake experience improved outcomes from chemo- and radiotherapy while better tolerating the side effects. Here, we review the state of the art on the therapeutic potential of calorie restriction and of caloric restriction mimetics in preventing or retarding tumor development by modulating a subset of cellular processes. The most recent clinical progresses with caloric restriction mimetics in the clinical practice are also discussed.
Collapse
Affiliation(s)
- Chiara Vidoni
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Alessandra Ferraresi
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Andrea Esposito
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Chinmay Maheshwari
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Danny N Dhanasekaran
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Vincenzo Mollace
- Department of Health Sciences, Università degli Studi di Catanzaro "Magna Graecia", Catanzaro, Italy
| | - Ciro Isidoro
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| |
Collapse
|
28
|
Mishra S, Singh VJ, Chawla PA, Chawla V. Neuroprotective Role of Nutritional Supplementation in Athletes. Curr Mol Pharmacol 2021; 15:129-142. [PMID: 34886789 DOI: 10.2174/1874467214666211209144721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 06/22/2021] [Accepted: 08/31/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Neurodegenerative disorders belong to different classes of progressive/chronic conditions that affect the peripheral/central nervous system. It has been shown through studies that athletes who play sports involving repeated head trauma and sub-concussive impacts are more likely to experience neurological impairments and neurodegenerative disorders in the long run. AIMS The aim of the current narrative review article is to provide a summary of various nutraceuticals that offer promise in the prevention or management of sports-related injuries, especially concussions and mild traumatic brain injuries. METHODS This article reviews the various potential nutraceutical agents and their possible mechanisms in providing a beneficial effect in the injury recovery process. A thorough survey of the literature was carried out in the relevant databases to identify studies published in recent years. In the present article, we have also highlighted the major neurological disorders along with the associated nutraceutical(s) therapy in the management of disorders. RESULTS The exact pathological mechanism behind neurodegenerative conditions is complex as well as idiopathic. However, mitochondrial dysfunction, oxidative stress as well as intracellular calcium overload are some common reasons responsible for the progression of these neurodegenerative disorders. Owing to the multifaceted effects of nutraceuticals (complementary medicine), these supplements have gained importance as neuroprotective. These diet-based approaches inhibit different pathways in a physiological manner without eliciting adverse effects. Food habits and lifestyle of an individual also affect neurodegeneration. CONCLUSION Studies have shown nutraceuticals (such as resveratrol, omega-3-fatty acids) to be efficacious in terms of their neuroprotection against several neurodegenerative disorders and to be used as supplements in the management of traumatic brain injuries. Protection prior to injuries is needed since concussions or sub-concussive impacts may trigger several pathophysiological responses or cascades that can lead to long-term complications associated with CNS. Thus, the use of nutraceuticals as prophylactic treatment for neurological interventions has been proposed.
Collapse
Affiliation(s)
- Supriya Mishra
- Department of Pharmacology, SRM College of Pharmacy, Delhi-NCR. India
| | - Vikram Jeet Singh
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Moga-142001, Punjab. India
| | - Pooja A Chawla
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Moga-142001, Punjab. India
| | - Viney Chawla
- Department of Pharmaceutics, University Institute of Pharmaceutical Sciences and Research, Baba Farid University of Health Sciences, Faridkot-151203, Punjab. India
| |
Collapse
|
29
|
Sawant N, Morton H, Kshirsagar S, Reddy AP, Reddy PH. Mitochondrial Abnormalities and Synaptic Damage in Huntington's Disease: a Focus on Defective Mitophagy and Mitochondria-Targeted Therapeutics. Mol Neurobiol 2021; 58:6350-6377. [PMID: 34519969 DOI: 10.1007/s12035-021-02556-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/05/2021] [Indexed: 12/12/2022]
Abstract
Huntington's disease (HD) is a fatal and pure genetic disease with a progressive loss of medium spiny neurons (MSN). HD is caused by expanded polyglutamine repeats in the exon 1 of HD gene. Clinically, HD is characterized by chorea, seizures, involuntary movements, dystonia, cognitive decline, intellectual impairment, and emotional disturbances. Several years of intense research revealed that multiple cellular changes, including defective axonal transport, protein-protein interactions, defective bioenergetics, calcium dyshomeostasis, NMDAR activation, synaptic damage, mitochondrial abnormalities, and selective loss of medium spiny neurons are implicated in HD. Recent research on mutant huntingtin (mHtt) and mitochondria has found that mHtt interacts with the mitochondrial division protein, dynamin-related protein 1 (DRP1), enhances GTPase DRP1 enzymatic activity, and causes excessive mitochondrial fragmentation and abnormal distribution, leading to defective axonal transport of mitochondria and selective synaptic degeneration. Recent research also revealed that failure to remove dead and/or dying mitochondria is an early event in the disease progression. Currently, efforts are being made to reduce abnormal protein interactions and enhance synaptic mitophagy as therapeutic strategies for HD. The purpose of this article is to discuss recent research in HD progression. This article also discusses recent developments of cell and mouse models, cellular changes, mitochondrial abnormalities, DNA damage, bioenergetics, oxidative stress, mitophagy, and therapeutics strategies in HD.
Collapse
Affiliation(s)
- Neha Sawant
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Hallie Morton
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Sudhir Kshirsagar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Arubala P Reddy
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, 1301 Akron Ave, Lubbock, TX, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
- Neuroscience & Pharmacology, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
- Neurology, Department of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
- Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
- Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
- Department of Internal Medicine, Cell Biology & Biochemistry, Public Health and School of Health Professions, Texas Tech University Health Sciences Center, Neuroscience & Pharmacology3601 4th Street, NeurologyLubbock, TX, 79430, USA.
| |
Collapse
|
30
|
Riccardi C, Napolitano F, Montesarchio D, Sampaolo S, Melone MAB. Nanoparticle-Guided Brain Drug Delivery: Expanding the Therapeutic Approach to Neurodegenerative Diseases. Pharmaceutics 2021; 13:1897. [PMID: 34834311 PMCID: PMC8623286 DOI: 10.3390/pharmaceutics13111897] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 10/31/2021] [Accepted: 11/04/2021] [Indexed: 02/07/2023] Open
Abstract
Neurodegenerative diseases (NDs) represent a heterogeneous group of aging-related disorders featured by progressive impairment of motor and/or cognitive functions, often accompanied by psychiatric disorders. NDs are denoted as 'protein misfolding' diseases or proteinopathies, and are classified according to their known genetic mechanisms and/or the main protein involved in disease onset and progression. Alzheimer's disease (AD), Parkinson's disease (PD) and Huntington's disease (HD) are included under this nosographic umbrella, sharing histopathologically salient features, including deposition of insoluble proteins, activation of glial cells, loss of neuronal cells and synaptic connectivity. To date, there are no effective cures or disease-modifying therapies for these NDs. Several compounds have not shown efficacy in clinical trials, since they generally fail to cross the blood-brain barrier (BBB), a tightly packed layer of endothelial cells that greatly limits the brain internalization of endogenous substances. By engineering materials of a size usually within 1-100 nm, nanotechnology offers an alternative approach for promising and innovative therapeutic solutions in NDs. Nanoparticles can cross the BBB and release active molecules at target sites in the brain, minimizing side effects. This review focuses on the state-of-the-art of nanoengineered delivery systems for brain targeting in the treatment of AD, PD and HD.
Collapse
Affiliation(s)
- Claudia Riccardi
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, I-80126 Naples, Italy; (C.R.); (D.M.)
| | - Filomena Napolitano
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, Via Sergio Pansini, 5, I-80131 Naples, Italy; (F.N.); (S.S.)
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, I-80126 Naples, Italy; (C.R.); (D.M.)
| | - Simone Sampaolo
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, Via Sergio Pansini, 5, I-80131 Naples, Italy; (F.N.); (S.S.)
| | - Mariarosa Anna Beatrice Melone
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, Via Sergio Pansini, 5, I-80131 Naples, Italy; (F.N.); (S.S.)
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University, Philadelphia, PA 19122-6078, USA
| |
Collapse
|
31
|
Hu M, Wang R, Chen X, Zheng M, Zheng P, Boz Z, Tang R, Zheng K, Yu Y, Huang XF. Resveratrol prevents haloperidol-induced mitochondria dysfunction through the induction of autophagy in SH-SY5Y cells. Neurotoxicology 2021; 87:231-242. [PMID: 34688786 DOI: 10.1016/j.neuro.2021.10.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 10/12/2021] [Accepted: 10/19/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Haloperidol is a commonly used antipsychotic drug and may increase neuronal oxidative stress associated with the side effects, including tardive dyskinesia and neurite withdraw. Autophagy plays a protective role in response to the accumulated reactive oxygen species (ROS) induced mitochondria damage. Resveratrol is an antioxidant compound having neuroprotective effects; however, it is unknown if resveratrol may stimulate autophagy and decrease mitochondria damage induced by haloperidol. HYPOTHESIS We hypothesis that resveratrol stimulates the autophagic process and protects mitochondria lesion induced by haloperidol. METHODS MitoSOX™ Red Mitochondrial Superoxide Indicator and MitoTracker™ Green FM staining were used to measure the amount of the mitochondria ROS production and mitochondria mass in human SH-SY5Y cells treated with haloperidol and/or resveratrol. Autophagic related dyes and Western blot were applied to study the autophagic process and related protein expression. Besides, tandem monomeric mRFP-GFP-LC3 was used to investigate the fusion of autophagosome and lysosome. Transmission electron microscopy was used to investigate the mitochondrial and autophagic ultrastructures with or without haloperidol and resveratrol treatment. RESULTS Haloperidol administration significantly increased mitochondria ROS and mitochondrial mass, indicating the increase of mitochondria dysfunction. Although haloperidol increased the autophagosomes and lysosome formation, the autophagosome-lysosome fusion and degradation were impaired. This was because we found an increased p62 after haloperidol treatment, an indication of autophagy incompletion. Importantly, resveratrol promoted the degradation of p62, upregulated the formation of autophagolysosome, and reversed haloperidol-induced mitochondria damage. CONCLUSION These results collectively suggest that resveratrol may be introduced as a protective compound against haloperidol-induced mitochondria impairment and aberrant autophagy.
Collapse
Affiliation(s)
- Minmin Hu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China; Illawarra Health and Medical Research Institute and School of Medicine, University of Wollongong, NSW, 2522, Australia
| | - Ruiqi Wang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Xi Chen
- Illawarra Health and Medical Research Institute and School of Medicine, University of Wollongong, NSW, 2522, Australia
| | - Mingxuan Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Peng Zheng
- Illawarra Health and Medical Research Institute and School of Medicine, University of Wollongong, NSW, 2522, Australia
| | - Zehra Boz
- Illawarra Health and Medical Research Institute and School of Medicine, University of Wollongong, NSW, 2522, Australia
| | - Renxian Tang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Kuiyang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Yinghua Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| | - Xu-Feng Huang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China; Illawarra Health and Medical Research Institute and School of Medicine, University of Wollongong, NSW, 2522, Australia.
| |
Collapse
|
32
|
Zhang LX, Li CX, Kakar MU, Khan MS, Wu PF, Amir RM, Dai DF, Naveed M, Li QY, Saeed M, Shen JQ, Rajput SA, Li JH. Resveratrol (RV): A pharmacological review and call for further research. Biomed Pharmacother 2021; 143:112164. [PMID: 34649335 DOI: 10.1016/j.biopha.2021.112164] [Citation(s) in RCA: 198] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/27/2021] [Accepted: 09/03/2021] [Indexed: 12/27/2022] Open
Abstract
Resveratrol (RV) is a well-known polyphenolic compound in various plants, including grape, peanut, and berry fruits, which is quite famous for its association with several health benefits such as anti-obesity, cardioprotective neuroprotective, antitumor, antidiabetic, antioxidants, anti-age effects, and glucose metabolism. Significantly, promising therapeutic properties have been reported in various cancer, neurodegeneration, and atherosclerosis and are regulated by several synergistic pathways that control oxidative stress, cell death, and inflammation. Similarly, RV possesses a strong anti-adipogenic effect by inhibiting fat accumulation processes and activating oxidative and lipolytic pathways, exhibiting their cardioprotective effects by inhibiting platelet aggregation. The RV also shows significant antibacterial effects against various food-borne pathogens (Listeria, Campylobacter, Staphylococcus aureus, and E. coli) by inhibiting an electron transport chain (ETC) and F0F1-ATPase, which decreases the production of cellular energy that leads to the spread of pathogens. After collecting and analyzing scientific literature, it may be concluded that RV is well tolerated and favorably affects cardiovascular, neurological, and diabetic disorders. As such, it is possible that RV can be considered the best nutritional additive and a complementary drug, especially a therapeutic candidate. Therefore, this review would increase knowledge about the blend of RV as well as inspire researchers around the world to consider RV as a pharmaceutical drug to combat future health crises against various inhumane diseases. In the future, this article will be aware of discoveries about the potential of this promising natural compound as the best nutraceuticals and therapeutic drugs in medicine.
Collapse
Affiliation(s)
- Li-Xue Zhang
- School of Medicine, Northwest Minzu University, Lanzhou 730030, China
| | - Chang-Xing Li
- Department of Human Anatomy, Medical College of Qinghai University, 810000 Xining, China
| | - Mohib Ullah Kakar
- Faculty of Marine Sciences, Lasbela University of Agriculture Water and Marine Sciences, Uthal 90150, Balochistan, Pakistan
| | - Muhammad Sajjad Khan
- The Cholistan University of Veterinary and Animal Sciences, Bahawalpur 6300, Pakistan.
| | - Pei-Feng Wu
- Department of Human Anatomy, Medical College of Qinghai University, 810000 Xining, China
| | - Rai Muhammad Amir
- Institute of Food and Nutritional Sciences, PMAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Dong-Fang Dai
- Department of Human Anatomy, Medical College of Qinghai University, 810000 Xining, China
| | - Muhammad Naveed
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Qin-Yuan Li
- Department of Human Anatomy, Medical College of Qinghai University, 810000 Xining, China
| | - Muhammad Saeed
- The Cholistan University of Veterinary and Animal Sciences, Bahawalpur 6300, Pakistan
| | - Ji-Qiang Shen
- Department of Human Anatomy, Medical College of Qinghai University, 810000 Xining, China
| | - Shahid Ali Rajput
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jian-Hua Li
- Department of Human Anatomy, Medical College of Qinghai University, 810000 Xining, China.
| |
Collapse
|
33
|
Gkekas I, Gioran A, Boziki MK, Grigoriadis N, Chondrogianni N, Petrakis S. Oxidative Stress and Neurodegeneration: Interconnected Processes in PolyQ Diseases. Antioxidants (Basel) 2021; 10:antiox10091450. [PMID: 34573082 PMCID: PMC8471619 DOI: 10.3390/antiox10091450] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 12/16/2022] Open
Abstract
Neurodegenerative polyglutamine (polyQ) disorders are caused by trinucleotide repeat expansions within the coding region of disease-causing genes. PolyQ-expanded proteins undergo conformational changes leading to the formation of protein inclusions which are associated with selective neuronal degeneration. Several lines of evidence indicate that these mutant proteins are associated with oxidative stress, proteasome impairment and microglia activation. These events may correlate with the induction of inflammation in the nervous system and disease progression. Here, we review the effect of polyQ-induced oxidative stress in cellular and animal models of polyQ diseases. Furthermore, we discuss the interplay between oxidative stress, neurodegeneration and neuroinflammation using as an example the well-known neuroinflammatory disease, Multiple Sclerosis. Finally, we review some of the pharmaceutical interventions which may delay the onset and progression of polyQ disorders by targeting disease-associated mechanisms.
Collapse
Affiliation(s)
- Ioannis Gkekas
- Institute of Applied Biosciences/Centre for Research and Technology Hellas, 57001 Thessaloniki, Greece;
| | - Anna Gioran
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (A.G.); (N.C.)
| | - Marina Kleopatra Boziki
- 2nd Neurological Department, AHEPA University General Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (M.K.B.); (N.G.)
| | - Nikolaos Grigoriadis
- 2nd Neurological Department, AHEPA University General Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (M.K.B.); (N.G.)
| | - Niki Chondrogianni
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (A.G.); (N.C.)
| | - Spyros Petrakis
- Institute of Applied Biosciences/Centre for Research and Technology Hellas, 57001 Thessaloniki, Greece;
- Correspondence: ; Tel.: +30-2311257525
| |
Collapse
|
34
|
Natural compounds modulate the autophagy with potential implication of stroke. Acta Pharm Sin B 2021; 11:1708-1720. [PMID: 34386317 PMCID: PMC8343111 DOI: 10.1016/j.apsb.2020.10.018] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/12/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022] Open
Abstract
Stroke is considered a leading cause of mortality and neurological disability, which puts a huge burden on individuals and the community. To date, effective therapy for stroke has been limited by its complex pathological mechanisms. Autophagy refers to an intracellular degrading process with the involvement of lysosomes. Autophagy plays a critical role in maintaining the homeostasis and survival of cells by eliminating damaged or non-essential cellular constituents. Increasing evidence support that autophagy protects neuronal cells from ischemic injury. However, under certain circumstances, autophagy activation induces cell death and aggravates ischemic brain injury. Diverse naturally derived compounds have been found to modulate autophagy and exert neuroprotection against stroke. In the present work, we have reviewed recent advances in naturally derived compounds that regulate autophagy and discussed their potential application in stroke treatment.
Collapse
Key Words
- AD, Alzheimer's disease
- ALS, amyotrophic lateral sclerosis
- AMPK, 5′-adenosine monophosphate-activated protein kinase
- ATF6, activating transcription factor 6
- ATG, autophagy related genes
- Autophagy
- BCL-2, B-cell lymphoma 2
- BNIP3L, BCL2/adenovirus
- COPII, coat protein complex II
- Cerebral ischemia
- ER, endoplasmic reticulum
- FOXO, forkhead box O
- FUNDC1, FUN14 domain containing 1
- GPCR, G-protein coupled receptor
- HD, Huntington's disease
- IPC, ischemic preconditioning
- IRE1, inositol-requiring enzyme 1
- JNK, c-Jun N-terminal kinase
- LAMP, lysosomal-associated membrane protein
- LC3, light chain 3
- LKB1, liver kinase B1
- Lysosomal activation
- Mitochondria
- Mitophagy
- Natural compounds
- Neurological disorders
- Neuroprotection
- OGD/R, oxygen and glucose deprivation-reperfusion
- PD, Parkinson's disease
- PERK, protein kinase R (PKR)-like endoplasmic reticulum kinase
- PI3K, phosphatidylinositol 3-kinase
- ROS, reactive oxygen species
- SQSTM1, sequestosome 1
- TFEB, transcription factor EB
- TIGAR, TP53-induced glycolysis and apoptosis regulator
- ULK, Unc-51- like kinase
- Uro-A, urolithin A
- eIF2a, eukaryotic translation-initiation factor 2
- mTOR, mechanistic target of rapamycin
- ΔΨm, mitochondrial membrane potential
Collapse
|
35
|
Lizama BN, Chu CT. Neuronal autophagy and mitophagy in Parkinson's disease. Mol Aspects Med 2021; 82:100972. [PMID: 34130867 DOI: 10.1016/j.mam.2021.100972] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 05/18/2021] [Accepted: 05/29/2021] [Indexed: 12/11/2022]
Abstract
Autophagy is the process by which cells can selectively or non-selectively remove damaged proteins and organelles. As the cell's main means of sequestering damaged mitochondria for removal, mitophagy is central to cellular function and survival. Research on autophagy and mitochondrial quality control has increased exponentially in relation to the pathogenesis of numerous disease conditions, from cancer and immune diseases to chronic neurodegenerative diseases like Parkinson's disease (PD). Understanding how components of the autophagic/mitophagic machinery are affected during disease, as well as the contextual relationship of autophagy with determining neuronal health and function, is essential to the goal of designing therapies for human disease. In this review, we will summarize key signaling molecules that consign damaged mitochondria for autophagic degradation, describe the relationship of genes linked to PD to autophagy/mitophagy dysfunction, and discuss additional roles of both mitochondrial and cytosolic pools of PTEN-induced kinase 1 (PINK1) in mitochondrial homeostasis, dendritic morphogenesis and inflammation.
Collapse
Affiliation(s)
- Britney N Lizama
- Dept of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Charleen T Chu
- Dept of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA; Pittsburgh Institute for Neurodegenerative Diseases, McGowan Institute for Regenerative Medicine, Center for Protein Conformational Diseases and Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
36
|
Kumar MJV, Shah D, Giridharan M, Yadav N, Manjithaya R, Clement JP. Spatiotemporal analysis of soluble aggregates and autophagy markers in the R6/2 mouse model. Sci Rep 2021; 11:96. [PMID: 33420088 PMCID: PMC7794371 DOI: 10.1038/s41598-020-78850-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/17/2020] [Indexed: 01/29/2023] Open
Abstract
Maintenance of cellular proteostasis is vital for post-mitotic cells like neurons to sustain normal physiological function and homeostasis, defects in which are established hallmarks of several age-related conditions like AD, PD, HD, and ALS. The Spatio-temporal accumulation of aggregated proteins in the form of inclusion bodies/plaques is one of the major characteristics of many neurodegenerative diseases, including Huntington's disease (HD). Toxic accumulation of HUNTINGTIN (HTT) aggregates in neurons bring about the aberrant phenotypes of HD, including severe motor dysfunction, dementia, and cognitive impairment at the organismal level, in an age-dependent manner. In several cellular and animal models, aggrephagy induction has been shown to clear aggregate-prone proteins like HTT and ameliorate disease pathology by conferring neuroprotection. In this study, we used the mouse model of HD, R6/2, to understand the pathogenicity of mHTT aggregates, primarily focusing on autophagy dysfunction. We report that basal autophagy is not altered in R6/2 mice, whilst being functional at a steady-state level in neurons. Moreover, we tested the efficacy of a known autophagy modulator, Nilotinib (Tasigna™), presently in clinical trials for PD, and HD, in curbing mHTT aggregate growth and their potential clearance, which was ineffective in both inducing autophagy and rescuing the pathological phenotypes in R6/2 mice.
Collapse
Affiliation(s)
- M J Vijay Kumar
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | - Devanshi Shah
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | - Mridhula Giridharan
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | - Niraj Yadav
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | - Ravi Manjithaya
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India.
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India.
| | - James P Clement
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India.
| |
Collapse
|
37
|
Yeong KY, Berdigaliyev N, Chang Y. Sirtuins and Their Implications in Neurodegenerative Diseases from a Drug Discovery Perspective. ACS Chem Neurosci 2020; 11:4073-4091. [PMID: 33280374 DOI: 10.1021/acschemneuro.0c00696] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Sirtuins are class III histone deacetylase (HDAC) enzymes that target both histone and non-histone substrates. They are linked to different brain functions and the regulation of different isoforms of these enzymes is touted to be an emerging therapy for the treatment of neurodegenerative diseases (NDs), including Parkinson's disease (PD), Alzheimer's disease (AD), and amyotrophic lateral sclerosis (ALS). The level of sirtuins affects brain health as many sirtuin-regulated pathways are responsible for the progression of NDs. Certain sirtuins are also implicated in aging, which is a risk factor for many NDs. In addition to SIRT1-3, it has been suggested that the less studied sirtuins (SIRT4-7) also play critical roles in brain health. This review delineates the role of each sirtuin isoform in NDs from a disease centric perspective and provides an up-to-date overview of sirtuin modulators and their potential use as therapeutics in these diseases. Furthermore, the future perspectives for sirtuin modulator development and their therapeutic application in neurodegeneration are outlined in detail, hence providing a research direction for future studies.
Collapse
Affiliation(s)
- Keng Yoon Yeong
- School of Science, Monash University Malaysia Campus, Jalan Lagoon Selatan, Bandar Sunway, 47500 Selangor, Malaysia
| | - Nurken Berdigaliyev
- School of Science, Monash University Malaysia Campus, Jalan Lagoon Selatan, Bandar Sunway, 47500 Selangor, Malaysia
| | - Yuin Chang
- Faculty of Applied Sciences, Tunku Abdul Rahman University College (TARUC), Jalan Genting Kelang, 53300 Kuala Lumpur, Malaysia
| |
Collapse
|
38
|
Xia F, Liu P, Li M. The regulatory factors and pathological roles of autophagy-related protein 4 in diverse diseases: Recent research advances. Med Res Rev 2020; 41:1644-1675. [PMID: 33314291 DOI: 10.1002/med.21772] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 12/12/2022]
Abstract
Macroautophagy (autophagy) is an evolutionarily conserved and dynamic degradation/recycling pathway in which portions of the cytoplasm, such as dysfunctional proteins and surplus organelles, are engulfed by double-membrane bound vesicles through a lysosome-dependent process. As the only proteolytic enzyme of the core mammalian autophagy proteins, autophagy-related protein 4 (ATG4) primes newly synthesized pro-light chain 3 (LC3) to form LC3-I that attaches to phosphatidylethanolamine and delipidates LC3-PE to LC3-I for recycling. Besides autophagy, ATG4 has been shown to be involved in regulating various biological and pathological processes. The roles of ATG4 in cancer therapy, a methodology for ATG4 activity detection, and the discovery of chemical modulators have been well-reviewed. However, a comprehensive summary on how ATG4 is regulated by multiple factors and, thereby, how ATG4 influences autophagy or other pathways remains lacking. In this paper, we summarize multiple processes and molecules that regulate the activity of ATG4, such as micro-RNAs, posttranslational modifications, and small molecules. Additionally, we focus on the relationship between ATG4 and diverse diseases, including cancer, neurodegeneration, microbial infection, and other diseases. It provides insight regarding potential ATG4-targeted therapeutic opportunities, which could be beneficial for future studies and human health.
Collapse
Affiliation(s)
- Fan Xia
- Department of Pharmacology and Toxicology, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Peiqing Liu
- Department of Pharmacology and Toxicology, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Min Li
- Department of Pharmacology and Toxicology, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
39
|
Limanaqi F, Biagioni F, Mastroiacovo F, Polzella M, Lazzeri G, Fornai F. Merging the Multi-Target Effects of Phytochemicals in Neurodegeneration: From Oxidative Stress to Protein Aggregation and Inflammation. Antioxidants (Basel) 2020; 9:antiox9101022. [PMID: 33092300 PMCID: PMC7589770 DOI: 10.3390/antiox9101022] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 02/08/2023] Open
Abstract
Wide experimental evidence has been provided in the last decade concerning the neuroprotective effects of phytochemicals in a variety of neurodegenerative disorders. Generally, the neuroprotective effects of bioactive compounds belonging to different phytochemical classes are attributed to antioxidant, anti-aggregation, and anti-inflammatory activity along with the restoration of mitochondrial homeostasis and targeting alterations of cell-clearing systems. Far from being independent, these multi-target effects represent interconnected events that are commonly implicated in the pathogenesis of most neurodegenerative diseases, independently of etiology, nosography, and the specific misfolded proteins being involved. Nonetheless, the increasing amount of data applying to a variety of neurodegenerative disorders joined with the multiple effects exerted by the wide variety of plant-derived neuroprotective agents may rather confound the reader. The present review is an attempt to provide a general guideline about the most relevant mechanisms through which naturally occurring agents may counteract neurodegeneration. With such an aim, we focus on some popular phytochemical classes and bioactive compounds as representative examples to design a sort of main highway aimed at deciphering the most relevant protective mechanisms which make phytochemicals potentially useful in counteracting neurodegeneration. In this frame, we emphasize the potential role of the cell-clearing machinery as a kernel in the antioxidant, anti-aggregation, anti-inflammatory, and mitochondrial protecting effects of phytochemicals.
Collapse
Affiliation(s)
- Fiona Limanaqi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy;
| | - Francesca Biagioni
- Istituto di Ricovero e Cura a Carattere Scientifico Neuromed, Via Atinense 18, 86077 Pozzilli, Italy; (F.B.); (F.M.)
| | - Federica Mastroiacovo
- Istituto di Ricovero e Cura a Carattere Scientifico Neuromed, Via Atinense 18, 86077 Pozzilli, Italy; (F.B.); (F.M.)
| | - Maico Polzella
- Aliveda Laboratories, Viale Karol Wojtyla 19, 56042 Crespina Lorenzana, Italy;
| | - Gloria Lazzeri
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy;
- Correspondence: (G.L.); (F.F.)
| | - Francesco Fornai
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy;
- Istituto di Ricovero e Cura a Carattere Scientifico Neuromed, Via Atinense 18, 86077 Pozzilli, Italy; (F.B.); (F.M.)
- Correspondence: (G.L.); (F.F.)
| |
Collapse
|
40
|
Stacchiotti A, Corsetti G. Natural Compounds and Autophagy: Allies Against Neurodegeneration. Front Cell Dev Biol 2020; 8:555409. [PMID: 33072744 PMCID: PMC7536349 DOI: 10.3389/fcell.2020.555409] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 09/01/2020] [Indexed: 12/12/2022] Open
Abstract
Prolonging the healthy life span and limiting neurological illness are imperative goals in gerontology. Age-related neurodegeneration is progressive and leads to severe diseases affecting motility, memory, cognitive function, and social life. To date, no effective treatments are available for neurodegeneration and irreversible neuronal loss. Bioactive phytochemicals could represent a natural alternative to ensure active aging and slow onset of neurodegenerative diseases in elderly patients. Autophagy or macroautophagy is an evolutionarily conserved clearing process that is needed to remove aggregate-prone proteins and organelles in neurons and glia. It also is crucial in synaptic plasticity. Aberrant autophagy has a key role in aging and neurodegeneration. Recent evidence indicates that polyphenols like resveratrol and curcumin, flavonoids, like quercetin, polyamine, like spermidine and sugars, like trehalose, limit brain damage in vitro and in vivo. Their common mechanism of action leads to restoration of efficient autophagy by dismantling misfolded proteins and dysfunctional mitochondria. This review focuses on the role of dietary phytochemicals as modulators of autophagy to fight Alzheimer's and Parkinson's diseases, fronto-temporal dementia, amyotrophic lateral sclerosis, and psychiatric disorders. Currently, most studies have involved in vitro or preclinical animal models, and the therapeutic use of phytochemicals in patients remains limited.
Collapse
Affiliation(s)
- Alessandra Stacchiotti
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.,Interdepartmental University Center of Research "Adaptation and Regeneration of Tissues and Organs (ARTO)," University of Brescia, Brescia, Italy
| | - Giovanni Corsetti
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| |
Collapse
|
41
|
Chiu HF, Venkatakrishnan K, Wang CK. The role of nutraceuticals as a complementary therapy against various neurodegenerative diseases: A mini-review. J Tradit Complement Med 2020; 10:434-439. [PMID: 32953558 PMCID: PMC7484964 DOI: 10.1016/j.jtcme.2020.03.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/30/2020] [Accepted: 03/30/2020] [Indexed: 02/06/2023] Open
Abstract
In recent times, many scientists have given great attention to nutraceuticals (complementary medicine) as it widely used for promoting health status. In particular for the prevention and treatment of various neurological diseases or disorders without or less adverse effects. The current mini-review was intended to compile all popular (major) nutraceuticals against various neurodegenerative diseases (NDDs) including Parkinson's disease (PD), Alzheimer's disease (AD), Huntington's disease (HD) with special reference to clinical trials. Preliminary reviews indicated that nutraceuticals like curcumin, resveratrol, Epigallocatechin-3-gallate (EGCG), Coenzyme Q10, ω-3 FA (DHA/EPA/ALA), showed better neuroprotective activity against various NDDs in human setting (clinical trial). Hence this contribution will focus only on those popular nutraceuticals with proposed brief mechanisms (antioxidant, anti-inflammatory, mitochondrial homeostasis, autophagy regulation, promote neurogenesis) and its recommendation. This mini-review would aid common people to choose better nutraceuticals to combat various NDDs along with standard neuroprotective agents and modified lifestyle pattern.
Collapse
Key Words
- AD, Alzheimer’s disease
- ATP, Adenosine triphosphate
- BBB, Blood-brain barrier
- Clinical trial
- HD, Huntington’s disease
- HO-1, Heme Oxygenase-1
- JNK, c-Jun N-terminal Kinase
- MAPK, Mitogen-activated protein kinase
- NDDs, neurodegenerative diseases
- NF-κB, Nuclear factor Kappa B
- Neurodegenerative diseases
- Neuroprotective agents
- Nrf2, Nuclear factor-E2-related factor
- Nutraceutical
- PD, Parkinson’s disease
- PI3K, Phosphatidylinositol-3-kinase
- SIRT1, Sirtuin 1
Collapse
Affiliation(s)
- Hui-Fang Chiu
- Department of Chinese Medicine, Taichung Hospital Ministry of Health and Well-being, Taichung, ROC, Taiwan
| | - Kamesh Venkatakrishnan
- School OfNutrition, Chung Shan Medical University, 110, Sec. 1, Jianguo North Road, Taichung City, ROC, Taiwan
| | - Chin-Kun Wang
- School OfNutrition, Chung Shan Medical University, 110, Sec. 1, Jianguo North Road, Taichung City, ROC, Taiwan
| |
Collapse
|
42
|
Rintz E, Pierzynowska K, Podlacha M, Węgrzyn G. Has resveratrol a potential for mucopolysaccharidosis treatment? Eur J Pharmacol 2020; 888:173534. [PMID: 32877657 DOI: 10.1016/j.ejphar.2020.173534] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 12/18/2022]
Abstract
Mucopolysaccharidoses (MPS) represent a devastating group of lysosomal storage diseases (LSD) affecting approximately 1 in 25,000 individuals, where degradation of glycosaminoglycans (GAG) by lysosomal enzymes is impaired due to mutations causing defects in one of GAG-degrading enzymes. The most commonly used therapy for MPS is enzyme replacement therapy, consisting of application of an active form of the missing enzyme. However, supply of the missing enzyme is not enough in case of MPS types whose symptoms are expressed in central nervous system (CNS), as enzyme does not cross the blood-brain barrier. Moreover, even though enzyme replacement therapy for non-neuronopathic MPS IVA type is approved, it has a limited impact on bone abnormalities, that are one of main symptoms in the disease. Therefore, research into alternative therapeutic approaches for these types of MPS is highly desirable. One such alternative strategy is accelerated degradation of GAG by induction of autophagy. Autophagy is a process of lysosomal degradation of macromolecules that become abnormal or unnecessary for cells. One of the latest discoveries is that GAGs can also be such molecules. Potential drug should also cross blood-brain barrier and be safe in long-term therapy. It seems that one of the polyphenols, resveratrol, can meet the requirements. The mechanism of its action in autophagy stimulation is pleiotropic. Therefore, in this review, we will briefly discuss potential of resveratrol treatment for mucopolysaccharidosis through autophagy stimulation based on research in diseases with similar outcome.
Collapse
Affiliation(s)
- Estera Rintz
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza, 59, 80-308, Gdansk, Poland
| | - Karolina Pierzynowska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza, 59, 80-308, Gdansk, Poland
| | - Magdalena Podlacha
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza, 59, 80-308, Gdansk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza, 59, 80-308, Gdansk, Poland.
| |
Collapse
|
43
|
Khan A, Jahan S, Imtiyaz Z, Alshahrani S, Antar Makeen H, Mohammed Alshehri B, Kumar A, Arafah A, Rehman MU. Neuroprotection: Targeting Multiple Pathways by Naturally Occurring Phytochemicals. Biomedicines 2020; 8:E284. [PMID: 32806490 PMCID: PMC7459826 DOI: 10.3390/biomedicines8080284] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/27/2020] [Accepted: 08/05/2020] [Indexed: 12/16/2022] Open
Abstract
With the increase in the expectancy of the life span of humans, neurodegenerative diseases (NDs) have imposed a considerable burden on the family, society, and nation. In defiance of the breakthroughs in the knowledge of the pathogenesis and underlying mechanisms of various NDs, very little success has been achieved in developing effective therapies. This review draws a bead on the availability of the nutraceuticals to date for various NDs (Alzheimer's disease, Parkinson's disease, Amyotrophic lateral sclerosis, Huntington's disease, vascular cognitive impairment, Prion disease, Spinocerebellar ataxia, Spinal muscular atrophy, Frontotemporal dementia, and Pick's disease) focusing on their various mechanisms of action in various in vivo and in vitro models of NDs. This review is distinctive in its compilation to critically review preclinical and clinical studies of the maximum phytochemicals in amelioration and prevention of almost all kinds of neurodegenerative diseases and address their possible mechanism of action. PubMed, Embase, and Cochrane Library searches were used for preclinical studies, while ClinicalTrials.gov and PubMed were searched for clinical updates. The results from preclinical studies demonstrate the efficacious effects of the phytochemicals in various NDs while clinical reports showing mixed results with promise for phytochemical use as an adjunct to the conventional treatment in various NDs. These studies together suggest that phytochemicals can significantly act upon different mechanisms of disease such as oxidative stress, inflammation, apoptotic pathways, and gene regulation. However, further clinical studies are needed that should include the appropriate biomarkers of NDs and the effect of phytochemicals on them as well as targeting the appropriate population.
Collapse
Affiliation(s)
- Andleeb Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia;
| | - Sadaf Jahan
- Medical Laboratories Department, College of Applied Medical Sciences, Majmaah University, Majmaah 15341, Saudi Arabia; (S.J.); (B.M.A.)
| | - Zuha Imtiyaz
- Clinical Drug Development, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan;
| | - Saeed Alshahrani
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia;
| | - Hafiz Antar Makeen
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia;
| | - Bader Mohammed Alshehri
- Medical Laboratories Department, College of Applied Medical Sciences, Majmaah University, Majmaah 15341, Saudi Arabia; (S.J.); (B.M.A.)
| | - Ajay Kumar
- Institute of Nano Science and Technology, Habitat Centre, Phase-10, Sector-64, Mohali 160062, India;
| | - Azher Arafah
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.); (M.U.R.)
| | - Muneeb U. Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.); (M.U.R.)
| |
Collapse
|
44
|
Isidoro C. Nutraceuticals and diet in human health and disease. The special issue at a glance. J Tradit Complement Med 2020; 10:175-179. [PMID: 32670811 PMCID: PMC7340978 DOI: 10.1016/j.jtcme.2020.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
This first Special Issue collects fifteen original research and up-to-date review articles addressing the beneficial properties of herbal products, nutrient supplements, dietary regimens, and functional food for the complementary therapy of human pathologies. In these articles, renowned scholars present and discuss the curative effects and the molecular mechanisms of action of nutraceuticals, medicinal herbs, and dietary regimens that have been proven effective in the treatment of cancers, metabolic syndrome, fatty liver disease, hearth arrythmia and neurodegenerative disorders.
Collapse
Affiliation(s)
- Ciro Isidoro
- Università Del Piemonte Orientale, Department of Health Sciences, Novara, Italy
| |
Collapse
|
45
|
Yessenkyzy A, Saliev T, Zhanaliyeva M, Masoud AR, Umbayev B, Sergazy S, Krivykh E, Gulyayev A, Nurgozhin T. Polyphenols as Caloric-Restriction Mimetics and Autophagy Inducers in Aging Research. Nutrients 2020; 12:E1344. [PMID: 32397145 PMCID: PMC7285205 DOI: 10.3390/nu12051344] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 02/06/2023] Open
Abstract
It has been thought that caloric restriction favors longevity and healthy aging where autophagy plays a vital role. However, autophagy decreases during aging and that can lead to the development of aging-associated diseases such as cancer, diabetes, neurodegeneration, etc. It was shown that autophagy can be induced by mechanical or chemical stress. In this regard, various pharmacological compounds were proposed, including natural polyphenols. Apart from the ability to induce autophagy, polyphenols, such as resveratrol, are capable of modulating the expression of pro- and anti-apoptotic factors, neutralizing free radical species, affecting mitochondrial functions, chelating redox-active transition metal ions, and preventing protein aggregation. Moreover, polyphenols have advantages compared to chemical inducers of autophagy due to their intrinsic natural bio-compatibility and safety. In this context, polyphenols can be considered as a potential therapeutic tool for healthy aging either as a part of a diet or as separate compounds (supplements). This review discusses the epigenetic aspect and the underlying molecular mechanism of polyphenols as an anti-aging remedy. In addition, the recent advances of studies on NAD-dependent deacetylase sirtuin-1 (SIRT1) regulation of autophagy, the role of senescence-associated secretory phenotype (SASP) in cells senescence and their regulation by polyphenols have been highlighted as well. Apart from that, the review also revised the latest information on how polyphenols can help to improve mitochondrial function and modulate apoptosis (programmed cell death).
Collapse
Affiliation(s)
- Assylzhan Yessenkyzy
- Research Institute of Fundamental and Applied Medicine named after B. Atchabarov, S.D. Asfendiyarov Kazakh National Medical University, Almaty 050000, Kazakhstan; (A.Y.); (T.N.)
| | - Timur Saliev
- Research Institute of Fundamental and Applied Medicine named after B. Atchabarov, S.D. Asfendiyarov Kazakh National Medical University, Almaty 050000, Kazakhstan; (A.Y.); (T.N.)
| | - Marina Zhanaliyeva
- Department of Human Anatomy, NSC “Medical University of Astana”, Nur-Sultan 010000, Kazakhstan;
| | - Abdul-Razak Masoud
- Department of Biological Sciences, Louisiana Tech University, Ruston, LA 71270, USA;
| | - Bauyrzhan Umbayev
- National Laboratory Astana, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (B.U.); (S.S.); (A.G.)
| | - Shynggys Sergazy
- National Laboratory Astana, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (B.U.); (S.S.); (A.G.)
| | - Elena Krivykh
- Khanty-Mansiysk State Medical Academy, Tyumen Region, Khanty-Mansiysk Autonomous Okrug—Ugra, Khanty-Mansiysk 125438, Russia;
| | - Alexander Gulyayev
- National Laboratory Astana, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (B.U.); (S.S.); (A.G.)
| | - Talgat Nurgozhin
- Research Institute of Fundamental and Applied Medicine named after B. Atchabarov, S.D. Asfendiyarov Kazakh National Medical University, Almaty 050000, Kazakhstan; (A.Y.); (T.N.)
| |
Collapse
|
46
|
Dias R, Oliveira H, Fernandes I, Simal-Gandara J, Perez-Gregorio R. Recent advances in extracting phenolic compounds from food and their use in disease prevention and as cosmetics. Crit Rev Food Sci Nutr 2020; 61:1130-1151. [PMID: 32338035 DOI: 10.1080/10408398.2020.1754162] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Phenolic compounds in plants are essential components of human nutrition, which provide various health benefits. However, some missing links became the research in phenolic compounds structures and potential applications in a challenging work. Despite universal extraction methods with mixtures of different organic solvents are generally adopted in the analysis of phenolic compounds, a need for establish a specific procedure is still open. The great heterogeneity in food and food by-products matrices and the lack of standardized methods which combine chromatographic with spectrophotometric techniques to calculate the amount of phenolic compounds joined with the absence of specific standards hamper to accurate know the real amount of phenolic compounds. Indeed, the high complexity in nature and chemistry of phenolic compounds clearly difficult to establish a daily intake to obtain certain healthy outcomes. Hence, despite the potential of phenolic compounds to use them in cosmetic and healthy applications have been widely analyzed, some concerns must be considered. The chemical complexity, the interactions between phenolic compounds and other food components and the structural changes induced by food processing joined with the lack in the understanding of phenolic compounds metabolism and bioavailability undergo the need to conduct a comprehensive review of each factors influencing the final activity of phenolic compounds. This paper summarizes the potential of phenolic compounds for disease prevention and cosmetics production, as well as their many other uses derived from their antioxidant activity. This paper illustrates the potential of phenolic compounds for disease prevention and cosmetics production, as well as their many other uses derived from their antioxidant activity.
Collapse
Affiliation(s)
- Ricardo Dias
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| | - Helder Oliveira
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| | - Iva Fernandes
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Rosa Perez-Gregorio
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| |
Collapse
|
47
|
Polydatin protects SH-SY5Y in models of Parkinson's disease by promoting Atg5-mediated but parkin-independent autophagy. Neurochem Int 2020; 134:104671. [DOI: 10.1016/j.neuint.2020.104671] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 12/31/2019] [Accepted: 01/06/2020] [Indexed: 02/04/2023]
|
48
|
Suresh SN, Chakravorty A, Giridharan M, Garimella L, Manjithaya R. Pharmacological Tools to Modulate Autophagy in Neurodegenerative Diseases. J Mol Biol 2020; 432:2822-2842. [PMID: 32105729 DOI: 10.1016/j.jmb.2020.02.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/03/2020] [Accepted: 02/12/2020] [Indexed: 12/11/2022]
Abstract
Considerable evidences suggest a link between autophagy dysfunction, protein aggregation, and neurodegenerative diseases. Given that autophagy is a conserved intracellular housekeeping process, modulation of autophagy flux in various model organisms have highlighted its importance for maintaining proteostasis. In postmitotic cells such as neurons, compromised autophagy is sufficient to cause accumulation of ubiquitinated aggregates, neuronal dysfunction, degeneration, and loss of motor coordination-all hallmarks of neurodegenerative diseases. Reciprocally, enhanced autophagy flux augments cellular and organismal health, in addition to extending life span. These genetic studies not-withstanding a plethora of small molecule modulators of autophagy flux have been reported that alleviate disease symptoms in models of neurodegenerative diseases. This review summarizes the potential of such molecules to be, perhaps, one of the first autophagy drugs for treating these currently incurable diseases.
Collapse
Affiliation(s)
- S N Suresh
- Centre for Brain Research, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Anushka Chakravorty
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, Karnataka, India
| | - Mridhula Giridharan
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, Karnataka, India
| | - Lakshmi Garimella
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, Karnataka, India
| | - Ravi Manjithaya
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, Karnataka, India; Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, Karnataka, India.
| |
Collapse
|
49
|
Regulation of Autophagy in Neurodegenerative Diseases by Natural Products. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1207:725-730. [PMID: 32671789 DOI: 10.1007/978-981-15-4272-5_54] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Neurodegenerative diseases mainly include Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD). It is now found that these diseases may be related to autophagic dysfunction. The mechanism is due to abnormalities in autophagy, which lead to abnormal or misfolded proteins accumulating in the cytoplasm, nucleus, and extracellular inclusion bodies, causing neuronal organelle damage and synaptic dysfunction. Since these diseases are much complex, the effect of monotherapy is not significantly affected. There is still a need to strengthen the study of anti-neurodegenerative drugs. Natural products should be a good source for the new drug discovery since most of natural products are multiple-target compounds. In this chapter, we reviewed some progress on studying resveratrol, curcumin, tripterine, and paeoniflorin. These natural products can eliminate abnormal protein aggregates by regulating autophagy, and thereby these compounds are promising to be used in prevention and treatment of neurodegenerative diseases in the future.
Collapse
|
50
|
Yang ZY, Zhou L, Meng Q, Shi H, Li YH. An appropriate level of autophagy reduces emulsified isoflurane-induced apoptosis in fetal neural stem cells. Neural Regen Res 2020; 15:2278-2285. [PMID: 32594049 PMCID: PMC7749471 DOI: 10.4103/1673-5374.285004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Autophagy plays essential roles in cell survival. However, the functions and regulation of the autophagy-related proteins Atg5, LC3B, and Beclin 1 during anesthetic-induced developmental neurotoxicity remain unclear. This study aimed to understand the autophagy pathways and mechanisms that affect neurotoxicity, induced by the anesthetic emulsified isoflurane, in rat fetal neural stem cells. Fetal neural stem cells were cultured, in vitro, and neurotoxicity was induced by emulsified isoflurane treatment. The effects of pretreatment with the autophagy inhibitors 3-methyladenine and bafilomycin and the effects of transfection with small interfering RNA against ATG5 (siRNA-Atg5) were observed. Cell viability was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, and apoptosis was assessed using flow cytometry. Ultrastructural changes were analyzed through transmission electron microscopy. The levels of the autophagy-related proteins LC3B, Beclin 1, Atg5, and P62 and the pro-apoptosis-related protein caspase-3 were analyzed using western blot assay. The inhibition of cell proliferation and that of apoptosis rate increased after treatment with emulsified isoflurane. Autophagolysosomes, monolayer membrane formation due to lysosomal degradation, were observed. The autophagy-related proteins LC3B, Beclin 1, Atg5, and P62 and caspase-3 were upregulated. These results confirm that emulsified isoflurane can induce toxicity and autophagy in fetal neural stem cells. Pre-treatment with 3-methyladenine and bafilomycin increased the apoptosis rate in emulsified isoflurane-treated fetal neural stem cells, which indicated that the complete inhibition of autophagy does not alleviate emulsified isoflurane-induced fetal neural stem cell toxicity. Atg5 expression was decreased significantly by siRNA-Atg5 transfection, and cell proliferation was inhibited. These results verify that the Atg5 autophagy pathway can be regulated to maintain appropriate levels of autophagy, which can inhibit the neurotoxicity induced by emulsified isoflurane anesthetic in fetal neural stem cells.
Collapse
Affiliation(s)
- Ze-Yong Yang
- Department of Anesthesiology, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Embryo Original Disease, Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Lei Zhou
- Department of Anesthesiology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Qiong Meng
- Department of Anesthesiology, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Embryo Original Disease, Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Hong Shi
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Yuan-Hai Li
- Department of Anesthesiology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| |
Collapse
|