1
|
Wang Z, Sun S, Liu Q, Kranfli AA, Nemes J, Sullan M, Hoisington A, Brenner LA, Skotak M, LaValle CR, Ge Y, Carr W, Haghighi F. Impact of prior exposures on biomarkers of blast during military tactical training. Front Neurol 2025; 16:1589742. [PMID: 40433620 PMCID: PMC12106048 DOI: 10.3389/fneur.2025.1589742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Accepted: 04/23/2025] [Indexed: 05/29/2025] Open
Abstract
Introduction Blast injuries and subclinical effects are of significant concern among those Service Members (SMs) participating in military operations and tactical trainings. Studies of SMs repeatedly exposed during training find concussion-like symptomology with transient decrements in neurocognitive performance, and alterations in blood biomarkers. How prior mild TBI (mTBI) history interacts with low-level blast (LLB) exposure, however, remains unexplored, which we investigate in the present study, to identify interindividual biomarker changes from LLB exposures influenced by prior history of mTBI. Methods Gene transcript and amyloid-beta (Aβ40 and Aβ42) protein levels were assayed using timeseries blood specimens collected at pre-blast, post-blast (within ~1 h), and follow-up-blast (~16 h) after LLB exposure for 30 SMs (age 30.3 ± 7.5) via RNA-seq and Single Molecule Array (SIMOA). Statistical models with timepoint and mTBI status interaction adjusted for age were used, and p-values adjusted for multiple testing. Results We found enrichment of genes involved in blood brain barrier, inflammatory, and immune responses associated with blast exposure, with significant elevated expression of target genes among SMs with mTBI history. Levels of Aβ40 and Aβ42 did not differ pre-blast vs. post/follow-up-blast LLB exposure when comparing SMs by prior mTBI history. Aβ40 and Aβ42 levels were significantly decreased in response to blast at the follow-up (~16 h) LLB exposure timepoint, concomitant with elevated expression of genes involved in amyloid-beta regulation and clearance in SMs with mTBI. Conclusion Findings show inter-individual differences in biomarker levels following exposures to blast that may be attributed to prior mTBI history.
Collapse
Affiliation(s)
- Zhaoyu Wang
- James J. Peters VA Medical Center, Bronx, NY, United States
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Shengnan Sun
- James J. Peters VA Medical Center, Bronx, NY, United States
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Qingkun Liu
- James J. Peters VA Medical Center, Bronx, NY, United States
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Alis Askar Kranfli
- Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Jeffrey Nemes
- Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Molly Sullan
- Department of Physical Medicine and Rehabilitation, University of Colorado – Anschutz Medical Campus, Aurora, CO, United States
- Rocky Mountain Regional VA Medical Center, Aurora, CO, United States
| | - Andrew Hoisington
- Department of Physical Medicine and Rehabilitation, University of Colorado – Anschutz Medical Campus, Aurora, CO, United States
- Rocky Mountain Regional VA Medical Center, Aurora, CO, United States
- Air Force Institute of Technology, Wright-Patterson Airforce Base, OH, United States
| | - Lisa A. Brenner
- Department of Physical Medicine and Rehabilitation, University of Colorado – Anschutz Medical Campus, Aurora, CO, United States
- Rocky Mountain Regional VA Medical Center, Aurora, CO, United States
| | - Maciej Skotak
- Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | | | - Yongchao Ge
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Walter Carr
- Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Fatemeh Haghighi
- James J. Peters VA Medical Center, Bronx, NY, United States
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
2
|
Cousineau JP, Dawe AM, Alpaugh M. Investigating the Interplay between Cardiovascular and Neurodegenerative Disease. BIOLOGY 2024; 13:764. [PMID: 39452073 PMCID: PMC11505144 DOI: 10.3390/biology13100764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/18/2024] [Accepted: 09/21/2024] [Indexed: 10/26/2024]
Abstract
Neurological diseases, including neurodegenerative diseases (NDDs), are the primary cause of disability worldwide and the second leading cause of death. The chronic nature of these conditions and the lack of disease-modifying therapies highlight the urgent need for developing effective therapies. To accomplish this, effective models of NDDs are required to increase our understanding of underlying pathophysiology and for evaluating treatment efficacy. Traditionally, models of NDDs have focused on the central nervous system (CNS). However, evidence points to a relationship between systemic factors and the development of NDDs. Cardiovascular disease and related risk factors have been shown to modify the cerebral vasculature and the risk of developing Alzheimer's disease. These findings, combined with reports of changes to vascular density and blood-brain barrier integrity in other NDDs, such as Huntington's disease and Parkinson's disease, suggest that cardiovascular health may be predictive of brain function. To evaluate this, we explore evidence for disruptions to the circulatory system in murine models of NDDs, evidence of disruptions to the CNS in cardiovascular disease models and summarize models combining cardiovascular disruption with models of NDDs. In this study, we aim to increase our understanding of cardiovascular disease and neurodegeneration interactions across multiple disease states and evaluate the utility of combining model systems.
Collapse
Affiliation(s)
| | | | - Melanie Alpaugh
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada; (J.P.C.); (A.M.D.)
| |
Collapse
|
3
|
Wang L, Qu F, Yu X, Yang S, Zhao B, Chen Y, Li P, Zhang Z, Zhang J, Han X, Wei D. Cortical lipid metabolic pathway alteration of early Alzheimer's disease and candidate drugs screen. Eur J Med Res 2024; 29:199. [PMID: 38528586 DOI: 10.1186/s40001-024-01730-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 02/12/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND Lipid metabolism changes occur in early Alzheimer's disease (AD) patients. Yet little is known about metabolic gene changes in early AD cortex. METHODS The lipid metabolic genes selected from two datasets (GSE39420 and GSE118553) were analyzed with enrichment analysis. Protein-protein interaction network construction and correlation analyses were used to screen core genes. Literature analysis and molecular docking were applied to explore potential therapeutic drugs. RESULTS 60 lipid metabolic genes differentially expressed in early AD patients' cortex were screened. Bioinformatics analyses revealed that up-regulated genes were mainly focused on mitochondrial fatty acid oxidation and mediating the activation of long-chain fatty acids, phosphoproteins, and cholesterol metabolism. Down-regulated genes were mainly focused on lipid transport, carboxylic acid metabolic process, and neuron apoptotic process. Literature reviews and molecular docking results indicated that ACSL1, ACSBG2, ACAA2, FABP3, ALDH5A1, and FFAR4 were core targets for lipid metabolism disorder and had a high binding affinity with compounds including adenosine phosphate, oxidized Photinus luciferin, BMS-488043, and candidate therapeutic drugs especially bisphenol A, benzo(a)pyrene, ethinyl estradiol. CONCLUSIONS AD cortical lipid metabolism disorder was associated with the dysregulation of the PPAR signaling pathway, glycerophospholipid metabolism, adipocytokine signaling pathway, fatty acid biosynthesis, fatty acid degradation, ferroptosis, biosynthesis of unsaturated fatty acids, and fatty acid elongation. Candidate drugs including bisphenol A, benzo(a)pyrene, ethinyl estradiol, and active compounds including adenosine phosphate, oxidized Photinus luciferin, and BMS-488043 have potential therapeutic effects on cortical lipid metabolism disorder of early AD.
Collapse
Affiliation(s)
- Linshuang Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Fengxue Qu
- Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Xueyun Yu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Sixia Yang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Binbin Zhao
- Institute of Gerontology, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Yaojing Chen
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
- BABRI Centre, Beijing Normal University, Beijing, 100875, China
| | - Pengbo Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
- BABRI Centre, Beijing Normal University, Beijing, 100875, China
| | - Zhanjun Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
- BABRI Centre, Beijing Normal University, Beijing, 100875, China
| | - Junying Zhang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China.
- BABRI Centre, Beijing Normal University, Beijing, 100875, China.
| | - Xuejie Han
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Dongfeng Wei
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
4
|
de Oliveira J, Moreira ELG, de Bem AF. Beyond cardiovascular risk: Implications of Familial hypercholesterolemia on cognition and brain function. Ageing Res Rev 2024; 93:102149. [PMID: 38056504 DOI: 10.1016/j.arr.2023.102149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/20/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
Familial hypercholesterolemia (FH) is a metabolic condition caused mainly by a mutation in the low-density lipoprotein (LDL) receptor gene (LDLR), which is highly prevalent in the population. Besides being an important causative factor of cardiovascular diseases, FH has been considered an early risk factor for Alzheimer's disease. Cognitive and emotional behavioral impairments in LDL receptor knockout (LDLr-/-) mice are associated with neuroinflammation, blood-brain barrier dysfunction, impaired neurogenesis, brain oxidative stress, and mitochondrial dysfunction. Notably, today, LDLr-/- mice, a widely used animal model for studying cardiovascular diseases and atherosclerosis, are also considered an interesting tool for studying dementia. Here, we reviewed the main findings in LDLr-/- mice regarding the relationship between FH and brain dysfunctions and dementia development.
Collapse
Affiliation(s)
- Jade de Oliveira
- Laboratory of investigation on metabolic disorders and neurodegenerative diseases, Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, RS 90035-003, Brazil.
| | - Eduardo Luiz Gasnhar Moreira
- Neuroscience Coworking Lab, Department of Physiological Sciences, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil.
| | - Andreza Fabro de Bem
- Laboratory of Bioenergetics and Metabolism, Department of Physiological Sciences, University of Brasilia, Brasília, Federal District, DF 70910-900, Brazil; Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden; Brazilian National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Foundation, Rio de Janeiro, RJ 21040360, Brazil.
| |
Collapse
|
5
|
ApoE4 reduction: an emerging and promising therapeutic strategy for Alzheimer's disease. Neurobiol Aging 2022; 115:20-28. [DOI: 10.1016/j.neurobiolaging.2022.03.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 12/27/2022]
|
6
|
Parhizkar S, Holtzman DM. APOE mediated neuroinflammation and neurodegeneration in Alzheimer's disease. Semin Immunol 2022; 59:101594. [PMID: 35232622 PMCID: PMC9411266 DOI: 10.1016/j.smim.2022.101594] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/14/2022] [Indexed: 01/15/2023]
Abstract
Neuroinflammation is a central mechanism involved in neurodegeneration as observed in Alzheimer's disease (AD), the most prevalent form of neurodegenerative disease. Apolipoprotein E4 (APOE4), the strongest genetic risk factor for AD, directly influences disease onset and progression by interacting with the major pathological hallmarks of AD including amyloid-β plaques, neurofibrillary tau tangles, as well as neuroinflammation. Microglia and astrocytes, the two major immune cells in the brain, exist in an immune-vigilant state providing immunological defense as well as housekeeping functions that promote neuronal well-being. It is becoming increasingly evident that under disease conditions, these immune cells become progressively dysfunctional in regulating metabolic and immunoregulatory pathways, thereby promoting chronic inflammation-induced neurodegeneration. Here, we review and discuss how APOE and specifically APOE4 directly influences amyloid-β and tau pathology, and disrupts microglial as well as astroglial immunomodulating functions leading to chronic inflammation that contributes to neurodegeneration in AD.
Collapse
Affiliation(s)
- Samira Parhizkar
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer Disease, Research Center, Washington University, St. Louis, MO 63110, USA
| | - David M. Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer Disease, Research Center, Washington University, St. Louis, MO 63110, USA
| |
Collapse
|
7
|
Krishnan N, Chen X, Donnelly-Roberts D, Mohler EG, Holtzman DM, Gopalakrishnan SM. Small Molecule Phenotypic Screen Identifies Novel Regulators of LDLR Expression. ACS Chem Biol 2020; 15:3262-3274. [PMID: 33270420 DOI: 10.1021/acschembio.0c00851] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Alzheimer's Disease (AD) is a progressive neurodegenerative disease and the most common cause of dementia. The current treatment options for AD are limited to ameliorating cognitive decline temporarily and not reversing or preventing the progression of dementia. Hence, more effective therapeutic strategies are needed to combat this devastating disease. The low-density lipoprotein receptor has been shown to modulate the neuronal metabolism of cholesterol and apolipoprotein E, a major genetic risk factor for AD. LDLR overexpression in mice has been shown to increase amyloid-β clearance and reduce amyloid deposition. We conducted a phenotypic screen to identify novel signaling pathways and targets that regulate LDLR expression in glial cells using an annotated compound library of approximately 29 000 compounds. The screen identified novel targets such as polo like kinase 1 (PLK1), activin receptor like kinase 5 (ALK5), and serotonin transporter (SERT). We used genetic, chemical biology and pathway analysis to confirm the target hypothesis. This work highlights that phenotypic screening is a promising strategy to identify novel mechanisms and targets for therapeutic intervention of complex neurodegenerative disorders.
Collapse
Affiliation(s)
- Navasona Krishnan
- AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Xiaoying Chen
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Hope Center for Neurological Disorders, Washington University, St. Louis, Missouri 63110, United States
| | | | - Eric G. Mohler
- AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - David M. Holtzman
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Hope Center for Neurological Disorders, Washington University, St. Louis, Missouri 63110, United States
- Charles F. and Joanne Knight Alzheimer’s Disease Research Center, Washington University, St. Louis, Missouri 63110, United States
| | | |
Collapse
|
8
|
Jaeschke A, Haller A, Cash JG, Nam C, Igel E, Roebroek AJM, Hui DY. Mutation in the distal NPxY motif of LRP1 alleviates dietary cholesterol-induced dyslipidemia and tissue inflammation. J Lipid Res 2020; 62:100012. [PMID: 33500241 PMCID: PMC7859857 DOI: 10.1194/jlr.ra120001141] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 12/01/2020] [Accepted: 12/09/2020] [Indexed: 12/23/2022] Open
Abstract
The impairment of LDL receptor-related protein-1 (LRP1) in numerous cell types is associated with obesity, diabetes, and fatty liver disease. Here, we compared the metabolic phenotype of C57BL/6J wild-type and LRP1 knock-in mice carrying an inactivating mutation in the distal NPxY motif after feeding a low-fat diet or high-fat (HF) diet with cholesterol supplementation (HFHC) or HF diet without cholesterol supplementation. In response to HF feeding, both groups developed hyperglycemia, hyperinsulinemia, hyperlipidemia, increased adiposity, and adipose tissue inflammation and liver steatosis. However, LRP1 NPxY mutation prevents HFHC diet-induced hypercholesterolemia, reduces adipose tissue and brain inflammation, and limits liver progression to steatohepatitis. Nevertheless, this mutation does not protect against HFHC diet-induced insulin resistance. The selective metabolic improvement observed in HFHC diet-fed LRP1 NPxY mutant mice is due to an apparent increase of hepatic LDL receptor levels, leading to an elevated rate of plasma lipoprotein clearance and lower hepatic cholesterol levels. The unique metabolic phenotypes displayed by LRP1 NPxY mutant mice indicate an LRP1-cholesterol axis in modulating tissue inflammation. The LRP1 NPxY mutant mouse phenotype differs from phenotypes observed in mice with tissue-specific LRP1 inactivation, thus highlighting the importance of an integrative approach to evaluate how global LRP1 dysfunction contributes to metabolic disease development.
Collapse
Affiliation(s)
- Anja Jaeschke
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Research Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - April Haller
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Research Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - James G Cash
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Research Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Christopher Nam
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Research Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Emily Igel
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Research Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Anton J M Roebroek
- Laboratory for Experimental Mouse Genetics, Center for Human Genetics, KU Leuven, Leuven, Belgium
| | - David Y Hui
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Research Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
9
|
Kim YK, Song J. Potential of Glucagon-Like Peptide 1 as a Regulator of Impaired Cholesterol Metabolism in the Brain. Adv Nutr 2020; 11:1686-1695. [PMID: 32627818 PMCID: PMC7666911 DOI: 10.1093/advances/nmaa080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/04/2020] [Accepted: 06/11/2020] [Indexed: 12/25/2022] Open
Abstract
Cerebral vascular diseases are the most common high-mortality diseases worldwide. Their onset and development are associated with glycemic imbalance, genetic background, alteration of atherosclerotic factors, severe inflammation, and abnormal cholesterol metabolism. Recently, the gut-brain axis has been highlighted as the key to the solution for cerebral vessel dysfunction in view of cholesterol metabolism and systemic lipid circulation. In particular, glucagon-like peptide 1 (GLP-1) is a cardinal hormone that regulates blood vessel function and cholesterol homeostasis and acts as a critical messenger between the brain and gut. GLP-1 plays a systemic regulatory role in cholesterol homeostasis and blood vessel function in various organs through blood vessels. Even though GLP-1 has potential in the treatment and prevention of cerebral vascular diseases, the importance of and relation between GLP-1 and cerebral vascular diseases are not fully understood. Herein, we review recent findings on the functions of GLP-1 in cerebral blood vessels in association with cholesterol metabolism.
Collapse
Affiliation(s)
- Young-Kook Kim
- Department of Biochemistry, Chonnam National University Medical School, Hwasun, Jeollanam-do, Republic of Korea
| | | |
Collapse
|
10
|
A Role of Low-Density Lipoprotein Receptor-Related Protein 4 (LRP4) in Astrocytic Aβ Clearance. J Neurosci 2020; 40:5347-5361. [PMID: 32457076 DOI: 10.1523/jneurosci.0250-20.2020] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/10/2020] [Accepted: 05/16/2020] [Indexed: 01/28/2023] Open
Abstract
Amyloid-β (Aβ) deposition occurs years before cognitive symptoms appear and is considered a cause of Alzheimer's disease (AD). The imbalance of Aβ production and clearance leads to Aβ accumulation and Aβ deposition. Increasing evidence indicates an important role of astrocytes, the most abundant cell type among glial cells in the brain, in Aβ clearance. We explored the role of low-density lipoprotein receptor-related protein 4 (LRP4), a member of the LDLR family, in AD pathology. We show that Lrp4 is specifically expressed in astrocytes and its levels in astrocytes were higher than those of Ldlr and Lrp1, both of which have been implicated in Aβ uptake. LRP4 was reduced in postmortem brain tissues of AD patients. Genetic deletion of the Lrp4 gene augmented Aβ plaques in 5xFAD male mice, an AD mouse model, and exacerbated the deficits in neurotransmission, synchrony between the hippocampus and PFC, and cognition. Mechanistically, LRP4 promotes Aβ uptake by astrocytes likely by interacting with ApoE. Together, our study demonstrates that astrocytic LRP4 plays an important role in Aβ pathology and cognitive function.SIGNIFICANCE STATEMENT This study investigates how astrocytes, a type of non-nerve cells in the brain, may contribute to Alzheimer's disease (AD) development. We demonstrate that the low-density lipoprotein receptor-related protein 4 (LRP4) is reduced in the brain of AD patients. Mimicking the reduced levels in an AD mouse model exacerbates cognitive impairment and increases amyloid aggregates that are known to damage the brain. We show that LRP4 could promote the clearance of amyloid protein by astrocytes. Our results reveal a previously unappreciated role of LRP4 in AD development.
Collapse
|
11
|
Gao J, Littman R, Diamante G, Xiao X, Ahn IS, Yang X, Cole TA, Tontonoz P. Therapeutic IDOL Reduction Ameliorates Amyloidosis and Improves Cognitive Function in APP/PS1 Mice. Mol Cell Biol 2020; 40:e00518-19. [PMID: 31964754 PMCID: PMC7108818 DOI: 10.1128/mcb.00518-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/09/2019] [Accepted: 01/11/2020] [Indexed: 01/10/2023] Open
Abstract
Brain lipoprotein receptors have been shown to regulate the metabolism of ApoE and β-amyloid (Aβ) and are potential therapeutic targets for Alzheimer's disease (AD). Previously, we identified E3 ubiquitin ligase IDOL as a negative regulator of brain lipoprotein receptors. Genetic ablation of Idol increases low-density lipoprotein receptor protein levels, which facilitates Aβ uptake and clearance by microglia. In this study, we utilized an antisense oligonucleotide (ASO) to reduce IDOL expression therapeutically in the brains of APP/PS1 male mice. ASO treatment led to decreased Aβ pathology and improved spatial learning and memory. Single-cell transcriptomic analysis of hippocampus revealed that IDOL inhibition upregulated lysosomal/phagocytic genes in microglia. Furthermore, clustering of microglia revealed that IDOL-ASO treatment shifted the composition of the microglia population by increasing the prevalence of disease-associated microglia. Our results suggest that reducing IDOL expression in the adult brain promotes the phagocytic clearance of Aβ and ameliorates Aβ-dependent pathology. Pharmacological inhibition of IDOL activity in the brain may represent a therapeutic strategy for the treatment of AD.
Collapse
Affiliation(s)
- Jie Gao
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Russell Littman
- Department of Integrative Biology and Physiology, University of California-Los Angeles, Los Angeles, California, USA
- Bioinformatics Interdepartmental Program, University of California-Los Angeles, Los Angeles, California, USA
| | - Graciel Diamante
- Department of Integrative Biology and Physiology, University of California-Los Angeles, Los Angeles, California, USA
| | - Xu Xiao
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California, USA
| | - In Sook Ahn
- Department of Integrative Biology and Physiology, University of California-Los Angeles, Los Angeles, California, USA
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California-Los Angeles, Los Angeles, California, USA
- Bioinformatics Interdepartmental Program, University of California-Los Angeles, Los Angeles, California, USA
- Institute for Computational and Quantitative Biosciences, University of California-Los Angeles, Los Angeles, California, USA
| | - Tracy A Cole
- Central Nervous System Group, Antisense Drug Discovery, Ionis Pharmaceuticals, Inc., Carlsbad, California, USA
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California, USA
| |
Collapse
|
12
|
de Oliveira J, Engel DF, de Paula GC, Melo HM, Lopes SC, Ribeiro CT, Delanogare E, Moreira JCF, Gelain DP, Prediger RD, Gabilan NH, Moreira ELG, Ferreira ST, de Bem AF. LDL Receptor Deficiency Does not Alter Brain Amyloid-β Levels but Causes an Exacerbation of Apoptosis. J Alzheimers Dis 2020; 73:585-596. [DOI: 10.3233/jad-190742] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Jade de Oliveira
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
- Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, Brasil
| | - Daiane F. Engel
- Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, Brasil
| | - Gabriela C. de Paula
- Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, Brasil
| | - Helen M. Melo
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Samantha C. Lopes
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brasil
| | - Camila T. Ribeiro
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - Eslen Delanogare
- Departamento de Ciências Fisiológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brasil
| | - José Claudio F. Moreira
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - Daniel P. Gelain
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - Rui D. Prediger
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brasil
| | - Nelson H. Gabilan
- Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, Brasil
| | - Eduardo Luiz G. Moreira
- Departamento de Ciências Fisiológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brasil
| | - Sergio T. Ferreira
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Andreza F. de Bem
- Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, Brasil
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Brasil
| |
Collapse
|
13
|
Zeng B, Zhao G, Liu HL. The Differential Effect of Treadmill Exercise Intensity on Hippocampal Soluble Aβ and Lipid Metabolism in APP/PS1 Mice. Neuroscience 2020; 430:73-81. [PMID: 31954827 DOI: 10.1016/j.neuroscience.2020.01.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 01/02/2020] [Accepted: 01/06/2020] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease (AD) is characterized clinically by progressive impairments in learning and memory. Accumulating evidence suggests that regular exercise plays a neuroprotective role in aging-associated memory loss. Our previous study has confirmed that long-term treadmill exercise initiated either before or during the onset of β-amyloid (Aβ) pathology, was beneficial for reducing the levels of soluble Aβ and further improved cognition. In this study, in APP/PS1 mice, we assessed changes in soluble Aβ, and various blood biochemistry and molecular biological indices to assess whether exercise modulated lipid metabolism and thereby decelerated AD progression. Our results show that long-term treadmill exercise reduced the total cholesterol, triglyceride, and low-density lipoprotein cholesterol levels, and increased the level of high-density lipoprotein cholesterol. Exercise also decreased the levels of soluble Aβ1-40 and Aβ1-42, down-regulated retinoid X receptor expression, and up-regulated liver X receptor, Apolipoprotein E, Low density lipoprotein receptor, Low density lipoprotein receptor-related protein 1, and ATP-binding cassette transporter A1 expression. This indicates that long-term treadmill exercise alters the lipoprotein content, increases lipid metabolism and cholesterol transportation, reduces the soluble Aβ, and therein plays an important neuroprotective role and delays AD progression. We further show that medium exercise intensity (60%-70% of maximal oxygen uptake) was more efficacious in increasing lipid metabolism and reducing blood lipid levels and soluble Aβ levels, than low-intensity exercise (45-55% of maximal oxygen uptake). This research has broad prospects and implications, and offers a theoretical basis for the prevention of AD.
Collapse
Affiliation(s)
- B Zeng
- Department of Sports Medicine, China Medical University, Shenyang 110122, PR China
| | - G Zhao
- Department of Sports Medicine, China Medical University, Shenyang 110122, PR China
| | - H L Liu
- Department of Sports Medicine, China Medical University, Shenyang 110122, PR China.
| |
Collapse
|
14
|
Hu N, Gao L, Jiang Y, Wei S, Shang S, Chen C, Dang L, Wang J, Huo K, Deng M, Wang J, Qu Q. The relationship between blood lipids and plasma amyloid beta is depend on blood pressure: a population-based cross-sectional study. Lipids Health Dis 2020; 19:8. [PMID: 31937307 PMCID: PMC6961265 DOI: 10.1186/s12944-020-1191-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 01/10/2020] [Indexed: 01/19/2023] Open
Abstract
Background It is believed that deposition of amyloid beta (Aβ) in the brain is the central pathological changes of Alzheimer’s disease (AD), which triggers a series of pathological processes. However, the relationship between dyslipidemia and AD is uncertain. Considering the peripheral Aβ levels are related to brain Aβ deposition, we explore the relationships between blood lipids and plasma Aβ. Methods Participants who lived in the selected village of Xi’an for more than 3 years were enrolled, aged 40–85 years (n = 1282, 37.9% male). Fasting blood lipid, plasma Aβ levels, basic information and living habits were measured. Multiple linear regressions were used. Results In total population, blood lipids were not associated with plasma Aβ. After stratified by blood pressure, serum total cholesterol (TC) and low-density lipoprotein (LDL-c) were positively associated with plasma Aβ42 levels (βTC = 0.666, PTC = 0.024; βLDL-c = 0.743, PLDL-c = 0.011, respectively) in normal blood pressure. LDL-c was negatively associated with plasma Aβ40 levels (β = − 0.986, P = 0.037) in high blood pressure. Conclusion Elevated plasma Aβ42 levels are associated with higher TC and LDL-c in normal blood pressure. Elevated plasma Aβ40 levels are associated with lower LDL-c in high blood pressure. This indicated that the relationships between blood lipids and plasma Aβ were confounded by blood pressure.
Collapse
Affiliation(s)
- Ningwei Hu
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Rd, Xi'an, 710061, China
| | - Ling Gao
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Rd, Xi'an, 710061, China
| | - Yu Jiang
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Rd, Xi'an, 710061, China
| | - Shan Wei
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Rd, Xi'an, 710061, China
| | - Suhang Shang
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Rd, Xi'an, 710061, China
| | - Chen Chen
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Rd, Xi'an, 710061, China
| | - Liangjun Dang
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Rd, Xi'an, 710061, China
| | - Jin Wang
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Rd, Xi'an, 710061, China
| | - Kang Huo
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Rd, Xi'an, 710061, China
| | - Meiying Deng
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Rd, Xi'an, 710061, China
| | - Jingyi Wang
- Huyi Hospital of Traditional Chinese Medicine, Xi'an, China
| | - Qiumin Qu
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Rd, Xi'an, 710061, China.
| |
Collapse
|
15
|
Apolipoprotein E and Alzheimer disease: pathobiology and targeting strategies. Nat Rev Neurol 2019; 15:501-518. [PMID: 31367008 DOI: 10.1038/s41582-019-0228-7] [Citation(s) in RCA: 844] [Impact Index Per Article: 140.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2019] [Indexed: 02/06/2023]
Abstract
Polymorphism in the apolipoprotein E (APOE) gene is a major genetic risk determinant of late-onset Alzheimer disease (AD), with the APOE*ε4 allele conferring an increased risk and the APOE*ε2 allele conferring a decreased risk relative to the common APOE*ε3 allele. Strong evidence from clinical and basic research suggests that a major pathway by which APOE4 increases the risk of AD is by driving earlier and more abundant amyloid pathology in the brains of APOE*ε4 carriers. The number of amyloid-β (Aβ)-dependent and Aβ-independent pathways that are known to be differentially modulated by APOE isoforms is increasing. For example, evidence is accumulating that APOE influences tau pathology, tau-mediated neurodegeneration and microglial responses to AD-related pathologies. In addition, APOE4 is either pathogenic or shows reduced efficiency in multiple brain homeostatic pathways, including lipid transport, synaptic integrity and plasticity, glucose metabolism and cerebrovascular function. Here, we review the recent progress in clinical and basic research into the role of APOE in AD pathogenesis. We also discuss how APOE can be targeted for AD therapy using a precision medicine approach.
Collapse
|
16
|
Pohlkamp T, Wasser CR, Herz J. Functional Roles of the Interaction of APP and Lipoprotein Receptors. Front Mol Neurosci 2017; 10:54. [PMID: 28298885 PMCID: PMC5331069 DOI: 10.3389/fnmol.2017.00054] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 02/16/2017] [Indexed: 11/24/2022] Open
Abstract
The biological fates of the key initiator of Alzheimer’s disease (AD), the amyloid precursor protein (APP), and a family of lipoprotein receptors, the low-density lipoprotein (LDL) receptor-related proteins (LRPs) and their molecular roles in the neurodegenerative disease process are inseparably interwoven. Not only does APP bind tightly to the extracellular domains (ECDs) of several members of the LRP group, their intracellular portions are also connected through scaffolds like the one established by FE65 proteins and through interactions with adaptor proteins such as X11/Mint and Dab1. Moreover, the ECDs of APP and LRPs share common ligands, most notably Reelin, a regulator of neuronal migration during embryonic development and modulator of synaptic transmission in the adult brain, and Agrin, another signaling protein which is essential for the formation and maintenance of the neuromuscular junction (NMJ) and which likely also has critical, though at this time less well defined, roles for the regulation of central synapses. Furthermore, the major independent risk factors for AD, Apolipoprotein (Apo) E and ApoJ/Clusterin, are lipoprotein ligands for LRPs. Receptors and ligands mutually influence their intracellular trafficking and thereby the functions and abilities of neurons and the blood-brain-barrier to turn over and remove the pathological product of APP, the amyloid-β peptide. This article will review and summarize the molecular mechanisms that are shared by APP and LRPs and discuss their relative contributions to AD.
Collapse
Affiliation(s)
- Theresa Pohlkamp
- Department of Molecular Genetics, UT Southwestern Medical CenterDallas, TX, USA; Center for Translational Neurodegeneration Research, UT Southwestern Medical CenterDallas, TX, USA
| | - Catherine R Wasser
- Department of Molecular Genetics, UT Southwestern Medical CenterDallas, TX, USA; Center for Translational Neurodegeneration Research, UT Southwestern Medical CenterDallas, TX, USA
| | - Joachim Herz
- Department of Molecular Genetics, UT Southwestern Medical CenterDallas, TX, USA; Center for Translational Neurodegeneration Research, UT Southwestern Medical CenterDallas, TX, USA; Department of Neuroscience, UT Southwestern Medical CenterDallas, TX, USA; Department of Neurology and Neurotherapeutics, UT Southwestern Medical CenterDallas, TX, USA
| |
Collapse
|
17
|
Ueno M. Elucidation of mechanism of blood-brain barrier damage for prevention and treatment of vascular dementia. Rinsho Shinkeigaku 2017; 57:95-109. [PMID: 28228623 DOI: 10.5692/clinicalneurol.cn-001004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
It is well-known that the blood-brain barrier (BBB) plays significant roles in transporting intravascular substances into the brain. The BBB in cerebral capillaries essentially impedes the influx of intravascular compounds from the blood to the brain, while nutritive substances, such as glucose, can be selectively transported through several types of influx transporters in endothelial cells. In the choroid plexus, intravascular substances can invade the parenchyma as fenestrations exist in endothelial cells of capillaries. However, the substances cannot invade the ventricles easily as there are tight junctions between epithelial cells in the choroid plexus. This restricted movement of the substances across the cytoplasm of the epithelial cells constitutes a blood-cerebrospinal fluid barrier (BCSFB). In the brain, there are circumventricular organs, in which the barrier function is imperfect in capillaries. Accordingly, it is reasonable to consider that intravascular substances can move in and around the parenchyma of the organs. Actually, it was reported in mice that intravascular substances moved in the corpus callosum, medial portions of the hippocampus, and periventricular areas via the subfornical organs or the choroid plexus. Regarding pathways of intracerebral interstitial and cerebrospinal fluids to the outside of the brain, two representative drainage pathways, or perivascular drainage and glymphatic pathways, are being established. The first is the pathway in a retrograde direction to the blood flow through the basement membrane in walls of cerebral capillaries, the tunica media of arteries, and the vessels walls of the internal carotid artery. The second is in an anterograde direction to blood flow through the para-arterial routes, aquaporin 4-dependent transport through the astroglial cytoplasm, and para-venous routes, and then the fluids drain into the subarachnoid CSF. These fluids are finally considered to drain into the cervical lymph nodes or veins. These clearance pathways may play a role in maintenance of the barrier in the entire brain. Obstruction of the passage of fluids through the perivascular drainage and glymphatic pathways as well as damage of the BBB and BCSFB may induce several kinds of brain disorders, such as vascular dementia. In this review, we focus on the relationship between damage of the barriers and the pathogenesis of vascular dementia and introduce recent findings including our experimental data using animal models.
Collapse
Affiliation(s)
- Masaki Ueno
- Inflammation Pathology, Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University
| |
Collapse
|
18
|
Shuang R, Rui X, Wenfang L. Phytosterols and Dementia. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2016; 71:347-354. [PMID: 27663717 DOI: 10.1007/s11130-016-0574-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
As the aging of the world's population is becoming increasingly serious, dementia-related diseases have become a hot topic in public health research. In recent years, human epidemiological studies have focused on lipid metabolism disorders and dementia. The efficacy of phytosterol intake as a cholesterol-lowering agent has been demonstrated. Phytosterols directly serve as ligands of the nuclear receptors, peroxisome proliferator-activated receptors (PPARs), activating Sirtuin 1 (SIRT-1), which are involved in the regulation of lipid metabolism and the pathogenesis of dementia. Moreover, phytosterols mediate cell and membrane cholesterol efflux or beta amyloid (Aβ) metabolism, which have preventative and therapeutic effects on dementia. Additionally, incorporation of plant sterols in lipid rafts can effectively reduce dietary fat and alter the dietary composition of fiber, fat and cholesterol to regulate appetite and calories. Overall, the objectives of this review are to explore whether phytosterols are a potentially effective target for the prevention of dementia and to discuss a possible molecular mechanism by which phytosterols play a role in the pathogenesis of dementia via the PPARs-SIRT-1 pathway.
Collapse
Affiliation(s)
- Rong Shuang
- Department of Public Health School, Wuhan University of Science & Technology, Wuhan, 430065, China.
| | - Xu Rui
- Department of Public Health School, Wuhan University of Science & Technology, Wuhan, 430065, China
| | - Li Wenfang
- Department of Public Health School, Wuhan University of Science & Technology, Wuhan, 430065, China.
| |
Collapse
|
19
|
Choi J, Gao J, Kim J, Hong C, Kim J, Tontonoz P. The E3 ubiquitin ligase Idol controls brain LDL receptor expression, ApoE clearance, and Aβ amyloidosis. Sci Transl Med 2016; 7:314ra184. [PMID: 26582899 DOI: 10.1126/scitranslmed.aad1904] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Apolipoprotein E (ApoE) is an important modifier of Alzheimer's disease (AD) pathogenesis, and its abundance has been linked to the clearance of β-amyloid (Aβ) in the brain. The pathways that control the clearance of ApoE in the brain are incompletely understood. We report that Idol, an E3 ubiquitin ligase that targets the low-density lipoprotein receptor (LDLR) for degradation, is a critical determinant of brain ApoE metabolism and Aβ plaque biogenesis. Previous work has shown that Idol contributes minimally to the regulation of hepatic LDLR expression in mice. By contrast, we demonstrate that Idol is a primary physiological regulator of LDLR protein in the brain, controlling the clearance of both ApoE-containing high-density lipoprotein (HDL) particles and Aβ. We studied the consequences of loss of Idol expression in a transgenic mouse model of Aβ amyloidosis. Idol deficiency increased brain LDLR, decreased ApoE, decreased soluble and insoluble Aβ, reduced amyloid plaque burden, and ameliorated neuroinflammation. These findings identify Idol as a gatekeeper of LDLR-dependent ApoE and Aβ clearance in the brain and a potential enzyme target for therapeutic intervention in AD.
Collapse
Affiliation(s)
- Jinkuk Choi
- Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA. Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jie Gao
- Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA. Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jaekwang Kim
- Department of Neuroscience, Mayo Graduate School, Mayo Clinic College of Medicine, Jacksonville, FL 32224, USA
| | - Cynthia Hong
- Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA. Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jungsu Kim
- Department of Neuroscience, Mayo Graduate School, Mayo Clinic College of Medicine, Jacksonville, FL 32224, USA.
| | - Peter Tontonoz
- Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA. Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
20
|
Cooper SA, Ademola T, Caslake M, Douglas E, Evans J, Greenlaw N, Haig C, Hassiotis A, Jahoda A, McConnachie A, Morrison J, Ring H, Starr J, Stiles C, Sirisena C, Sullivan F. Towards onset prevention of cognition decline in adults with Down syndrome (The TOP-COG study): A pilot randomised controlled trial. Trials 2016; 17:370. [PMID: 27473843 PMCID: PMC4966871 DOI: 10.1186/s13063-016-1370-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 04/28/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Dementia is very common in Down syndrome (trisomy 21) adults. Statins may slow brain amyloid β (Aβ, coded on chromosome 21) deposition and, therefore, delay Alzheimer disease onset. One prospective cohort study with Down syndrome adults found participants on statins had reduced risk of incident dementia, but there are no randomised controlled trials (RCTs) on this issue. Evidence is sparse on the best instruments to detect longitudinal cognitive decline in older Down syndrome adults. METHODS TOP-COG was a feasibility/pilot, double-blind RCT of 12 months simvastatin 40 mg versus placebo for the primary prevention of dementia in Alzheimer disease in Down syndrome adults aged 50 years or older. Group allocation was stratified by age, apolipoprotein E (APOE) ε4 allele status, and cholesterol level. Recruitment was from multiple general community sources over 12 months. Adults with dementia, or simvastatin contraindications, were excluded. Main outcomes were recruitment and retention rates. Cognitive decline was measured with a battery of tests; secondary measures were adaptive behaviour skills, general health, and quality of life. Assessments were conducted pre randomisation and at 12 months post randomisation. Blood Aβ40/Aβ42 levels were investigated as a putative biomarker. Results were analysed on an intention-to-treat basis. A qualitative sub-study was conducted and analysed using the Framework Approach to determine recruitment motivators/barriers, and participation experience. RESULTS We identified 181 (78 %) of the likely eligible Down syndrome population, and recruited 21 (11.6 %), from an area with a general population size of 3,135,974. Recruitment was highly labour-intensive. Thirteen (62 %) participants completed the full year. Results favoured the simvastatin group. The most appropriate cognitive instrument (regarding ease of completion and detecting change over time) was the Memory for Objects test from the Neuropsychological Assessment of Dementia in Individuals with Intellectual Disabilities battery. Cognitive testing appeared more sensitive than proxy-rated adaptive behaviour, quality of life, or general health scores. Aβ40 levels changed less for the simvastatin group (not statistically significant). People mostly declined to participate because of not wanting to take medication, and not knowing if they would receive simvastatin or placebo. Participants reported enjoying taking part. CONCLUSION A full-scale RCT is feasible. It will need 37 % UK population coverage to recruit the required 160 participants. Information/education about the importance of RCT participation is needed for this population. TRIAL REGISTRATION ISRCTN67338640 .
Collapse
Affiliation(s)
- Sally-Ann Cooper
- Institute of Health and Wellbeing, University of Glasgow, Mental Health and Wellbeing Group, Gartnavel Royal Hospital, Administrative Building, 1055, Great Western Road, Glasgow, G12 0XH, UK.
| | - Temitope Ademola
- Community Learning Disability Psychiatry, The Gatehouse, Inverurie Hospital, Inverurie, AB51 3UL, UK
| | - Muriel Caslake
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, McGregor Building, 2nd floor, Western Infirmary, Glasgow, G11 6NT, UK
| | - Elizabeth Douglas
- Research and Development NHS Greater Glasgow and Clyde, 1st floor Tennent Institute, Western Infirmary Church Street, Glasgow, G11 6NT, UK
| | - Jonathan Evans
- Institute of Health and Wellbeing, University of Glasgow, Mental Health and Wellbeing Group, Gartnavel Royal Hospital, Administrative Building, 1055, Great Western Road, Glasgow, G12 0XH, UK
| | - Nicola Greenlaw
- Robertson Centre for Biostatistics, University of Glasgow, Boyd Orr Building, Glasgow, G12 8QQ, UK
| | - Caroline Haig
- Robertson Centre for Biostatistics, University of Glasgow, Boyd Orr Building, Glasgow, G12 8QQ, UK
| | - Angela Hassiotis
- University College London, Bloomsbury Campus, Charles Bell House, 67-73 Riding House Street, London, W1W 7EY, UK
| | - Andrew Jahoda
- Institute of Health and Wellbeing, University of Glasgow, Mental Health and Wellbeing Group, Gartnavel Royal Hospital, Administrative Building, 1055, Great Western Road, Glasgow, G12 0XH, UK
| | - Alex McConnachie
- Robertson Centre for Biostatistics, University of Glasgow, Boyd Orr Building, Glasgow, G12 8QQ, UK
| | - Jill Morrison
- Institute of Health and Wellbeing, University of Glasgow, General Practice and Primary Care, 1 Horselethill Road, Glasgow, G12 9LX, UK
| | - Howard Ring
- Department of Psychiatry, University of Cambridge, Douglas House, 18b Trumpington Road, Cambridge, CB2 2AH, UK
| | - John Starr
- Alzheimer Scotland Dementia Research Centre, 7 George Square, Edinburgh, EH8 9JZ, UK
| | - Ciara Stiles
- Institute of Health and Wellbeing, University of Glasgow, Mental Health and Wellbeing Group, Gartnavel Royal Hospital, Administrative Building, 1055, Great Western Road, Glasgow, G12 0XH, UK
| | - Chammy Sirisena
- Scottish Borders Learning Disability Service, Church Street, Earlson, TD4 6HR, UK
| | - Frank Sullivan
- Gordon F Cheesbrough Research Chair and Director of UTOPIAN, University of Toronto, North York General Hospital, 4001 Leslie Street, Toronto, ON, M2K 1E1, Canada
| |
Collapse
|
21
|
Yeh FL, Wang Y, Tom I, Gonzalez LC, Sheng M. TREM2 Binds to Apolipoproteins, Including APOE and CLU/APOJ, and Thereby Facilitates Uptake of Amyloid-Beta by Microglia. Neuron 2016; 91:328-40. [DOI: 10.1016/j.neuron.2016.06.015] [Citation(s) in RCA: 642] [Impact Index Per Article: 71.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 05/14/2016] [Accepted: 06/07/2016] [Indexed: 11/30/2022]
|
22
|
Foley AM, Ammar ZM, Lee RH, Mitchell CS. Systematic review of the relationship between amyloid-β levels and measures of transgenic mouse cognitive deficit in Alzheimer's disease. J Alzheimers Dis 2015; 44:787-95. [PMID: 25362040 PMCID: PMC4346318 DOI: 10.3233/jad-142208] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Amyloid-β (Aβ) is believed to directly affect memory and learning in Alzheimer’s disease (AD). It is widely suggested that there is a relationship between Aβ40 and Aβ42 levels and cognitive performance. In order to explore the validity of this relationship, we performed a meta-analysis of 40 peer-reviewed, published AD transgenic mouse studies that quantitatively measured Aβ levels in brain tissue after assessing cognitive performance. We examined the relationship between Aβ levels (Aβ40, Aβ42, or the ratio of Aβ42 to Aβ40) and cognitive function as measured by escape latency times in the Morris water maze or exploratory preference percentage in the novel object recognition test. Our systematic review examined five mouse models (Tg2576, APP, PS1, 3xTg, APP(OSK)-Tg), gender, and age. The overall result revealed no statistically significant correlation between quantified Aβ levels and experimental measures of cognitive function. However, enough of the trends were of the same sign to suggest that there probably is a very weak qualitative trend visible only across many orders of magnitude. In summary, the results of the systematic review revealed that mice bred to show elevated levels of Aβ do not perform significantly worse in cognitive tests than mice that do not have elevated Aβ levels. Our results suggest two lines of inquiry: 1) Aβ is a biochemical “side effect” of the AD pathology; or 2) learning and memory deficits in AD are tied to the presence of qualitatively “high” levels of Aβ but are not quantitatively sensitive to the levels themselves.
Collapse
Affiliation(s)
- Avery M Foley
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Zeena M Ammar
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Robert H Lee
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Cassie S Mitchell
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| |
Collapse
|
23
|
Immunohistochemical analysis of transporters related to clearance of amyloid-β peptides through blood–cerebrospinal fluid barrier in human brain. Histochem Cell Biol 2015; 144:597-611. [DOI: 10.1007/s00418-015-1366-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2015] [Indexed: 01/25/2023]
|
24
|
Viggiano A, Cacciola G, Widmer DAJ, Viggiano D. Anxiety as a neurodevelopmental disorder in a neuronal subpopulation: Evidence from gene expression data. Psychiatry Res 2015; 228:729-40. [PMID: 26089015 DOI: 10.1016/j.psychres.2015.05.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 05/14/2015] [Accepted: 05/26/2015] [Indexed: 12/20/2022]
Abstract
The relationship between genes and anxious behavior, is nor linear nor monotonic. To address this problem, we analyzed with a meta-analytic method the literature data of the behavior of knockout mice, retrieving 33 genes whose deletion was accompanied by increased anxious behavior, 34 genes related to decreased anxious behavior and 48 genes not involved in anxiety. We correlated the anxious behavior resulting from the deletion of these genes to their brain expression, using the Allen Brain Atlas and Gene Expression Omnibus (GEO) database. The main finding is that the genes accompanied, after deletion, by a modification of the anxious behavior, have lower expression in the cerebral cortex, the amygdala and the ventral striatum. The lower expression level was putatively due to their selective presence in a neuronal subpopulation. This difference was replicated also using a database of human gene expression, further showing that the differential expression pertained, in humans, a temporal window of young postnatal age (4 months up to 4 years) but was not evident at fetal or adult human stages. Finally, using gene enrichment analysis we also show that presynaptic genes are involved in the emergence of anxiety and postsynaptic genes in the reduction of anxiety after gene deletion.
Collapse
Affiliation(s)
- Adela Viggiano
- Department of Health Sciences, University of Molise, Campobasso 86100, Italy
| | - Giovanna Cacciola
- Department of Health Sciences, University of Molise, Campobasso 86100, Italy
| | | | - Davide Viggiano
- Department of Health Sciences, University of Molise, Campobasso 86100, Italy; Department of Cardio-Thoracic and Respiratory Science, Second University of Naples, Naples, Italy.
| |
Collapse
|
25
|
Ettcheto M, Petrov D, Pedrós I, de Lemos L, Pallàs M, Alegret M, Laguna JC, Folch J, Camins A. Hypercholesterolemia and neurodegeneration. Comparison of hippocampal phenotypes in LDLr knockout and APPswe/PS1dE9 mice. Exp Gerontol 2015; 65:69-78. [DOI: 10.1016/j.exger.2015.03.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Revised: 03/16/2015] [Accepted: 03/18/2015] [Indexed: 02/06/2023]
|
26
|
Huang CL, Hsiao IL, Lin HC, Wang CF, Huang YJ, Chuang CY. Silver nanoparticles affect on gene expression of inflammatory and neurodegenerative responses in mouse brain neural cells. ENVIRONMENTAL RESEARCH 2015; 136:253-263. [PMID: 25460644 DOI: 10.1016/j.envres.2014.11.006] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 11/03/2014] [Accepted: 11/05/2014] [Indexed: 06/04/2023]
Abstract
Silver nanoparticles (AgNPs) have antibacterial characteristics, and currently are applied in Ag-containing products. This study found neural cells can uptake 3-5 nm AgNPs, and investigated the potential effects of AgNPs on gene expression of inflammation and neurodegenerative disorder in murine brain ALT astrocytes, microglial BV-2 cells and neuron N2a cells. After AgNPs (5, 10, 12.5 μg/ml) exposure, these neural cells had obviously increased IL-1β secretion, and induced gene expression of C-X-C motif chemokine 13 (CXCL13), macrophage receptor with collagenous structure (MARCO) and glutathione synthetase (GSS) for inflammatory response and oxidative stress neutralization. Additionally, this study found amyloid-β (Aβ) plaques for pathological feature of Alzheimer's disease (AD) deposited in neural cells after AgNPs treatment. After AgNPs exposure, the gene expression of amyloid precursor protein (APP) was induced, and otherwise, neprilysin (NEP) and low-density lipoprotein receptor (LDLR) were reduced in neural cells as well as protein level. These results suggested AgNPs could alter gene and protein expressions of Aβ deposition potentially to induce AD progress in neural cells. It's necessary to take notice of AgNPs distribution in the environment.
Collapse
Affiliation(s)
- Chin-Lin Huang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | - I-Lun Hsiao
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | - Ho-Chen Lin
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | - Chu-Fang Wang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | - Yuh-Jeen Huang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan.
| | - Chun-Yu Chuang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan.
| |
Collapse
|
27
|
Wang SH, Huang Y, Yuan Y, Xia WQ, Wang P, Huang R. LDL receptor knock-out mice show impaired spatial cognition with hippocampal vulnerability to apoptosis and deficits in synapses. Lipids Health Dis 2014; 13:175. [PMID: 25413784 PMCID: PMC4258039 DOI: 10.1186/1476-511x-13-175] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 11/11/2014] [Indexed: 11/30/2022] Open
Abstract
Background Evidence from clinical studies support the fact that abnormal cholesterol metabolism in the brain leads to progressive cognitive dysfunction. The low-density lipoprotein receptor (LDLR) is well-known for its role in regulating cholesterol metabolism. Whether LDLR involved in this impaired cognition and the potential mechanisms that underlie this impairment are unknown. Methods Twelve-month-old Ldlr-/- mice (n = 10) and wild-type littermates C57BL/6 J (n = 14) were subjected to the Morris water maze test. At 1 week after completion of the behavioural testing, all of the animals were sacrificed for analysis of synaptic and apoptotic markers. Results The plasma cholesterol concentration of Ldlr-/- mice was increased moderately when compared with C57BL/6 J mice (P < 0.05). Behavioural testing revealed that Ldlr-/- mice displayed impaired spatial memory, and moreover, the expression levels of synaptophysin and the number of synaptophysin-immunoreactive presynaptic boutons in the hippocampal CA1 and dentate gyrus were decreased (all P < 0.05). Ultrastructural changes in the dentate gyrus were observed using transmission electron microscopy. Furthermore, apoptosis in the hippocampus of Ldlr-/- mice was revealed based on elevation, at both the mRNA and protein levels, of the ratio of Bax/Bcl-2 expression (all P < 0.05)and an increase in activated-caspase3 protein level (P < 0.05). Conclusion LDLR deficiency contributes to impaired spatial cognition. This most likely occurs via negative effects that promote apoptosis and synaptic deficits in the hippocampus.
Collapse
Affiliation(s)
- Shao-hua Wang
- Department of Endocrinology, ZhongDa Hospital of Southeast University, No,87 DingJiaQiao Road, Nanjing 210009, PR China.
| | | | | | | | | | | |
Collapse
|
28
|
Cooper SA, Caslake M, Evans J, Hassiotis A, Jahoda A, McConnachie A, Morrison J, Ring H, Starr J, Stiles C, Sullivan F. Toward onset prevention of cognitive decline in adults with Down syndrome (the TOP-COG study): study protocol for a randomized controlled trial. Trials 2014; 15:202. [PMID: 24888381 PMCID: PMC4061534 DOI: 10.1186/1745-6215-15-202] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 05/07/2014] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Early-onset dementia is common in Down syndrome adults, who have trisomy 21. The amyloid precursor protein gene is on chromosome 21, and so is over-expressed in Down syndrome, leading to amyloid β (Aβ) over-production, a major upstream pathway leading to Alzheimer disease (AD). Statins (microsomal 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors), have pleiotropic effects including potentially increasing brain amyloid clearance, making them plausible agents to reduce AD risk. Animal models, human observational studies, and small scale trials support this rationale, however, there are no AD primary prevention trials in Down syndrome adults. In this study we study aim to inform the design of a full-scale primary prevention trial. METHODS/DESIGN TOP-COG is a feasibility and pilot double-blind randomized controlled trial (RCT), with a nested qualitative study, conducted in the general community. About 60 Down syndrome adults, aged ≥50 will be included. The intervention is oral simvastatin 40 mg at night for 12 months, versus placebo. The primary endpoint is recruitment and retention rates. Secondary endpoints are (1) tolerability and safety; (2) detection of the most sensitive neurocognitive instruments; (3) perceptions of Down syndrome adults and caregivers on whether to participate, and assessment experiences; (4) distributions of cognitive decline, adaptive behavior, general health/quality of life, service use, caregiver strain, and sample size implications; (5) whether Aβ42/Aβ40 is a cognitive decline biomarker. We will describe percentages recruited from each source, the number of contacts to achieve this, plus recruitment rate by general population size. We will calculate summary statistics with 90% confidence limits where appropriate, for each study outcome as a whole, by treatment group and in relation to baseline age, cognitive function, cholesterol and other characteristics. Changes over time will be summarized graphically. The sample size for a definitive RCT will be estimated under alternative assumptions. DISCUSSION This study is important, as AD is a major problem for Down syndrome adults, for whom there are currently no effective preventions or treatments. It will also delineate the most suitable assessment instruments for this population. Recruitment of intellectually disabled adults is notoriously difficult, and we shall provide valuable information on this, informing future studies. TRIAL REGISTRATION Current Controlled Trials ISRCTN Register ID: ISRCTN67338640 (17 November 2011).
Collapse
Affiliation(s)
- Sally-Ann Cooper
- Institute of Health and Wellbeing, University of Glasgow, Mental Health and Wellbeing Unit, Gartnavel Royal Hospital, Administrative Building, 1055, Great Western Road, Glasgow G12 0XH, UK
| | - Muriel Caslake
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, McGregor Building, 2nd floor, Western Infirmary, Glasgow G11 6NT, UK
| | - Jonathan Evans
- Institute of Health and Wellbeing, University of Glasgow, Mental Health and Wellbeing Unit, Gartnavel Royal Hospital, Administrative Building, 1055, Great Western Road, Glasgow G12 0XH, UK
| | - Angela Hassiotis
- University College London, Bloomsbury Campus, Charles Bell House, 67-73 Riding House Street, London W1W 7EY, UK
| | - Andrew Jahoda
- Institute of Health and Wellbeing, University of Glasgow, Mental Health and Wellbeing Unit, Gartnavel Royal Hospital, Administrative Building, 1055, Great Western Road, Glasgow G12 0XH, UK
| | - Alex McConnachie
- Robertson Centre for Biostatistics, University of Glasgow, Boyd Orr Building, Glasgow G12 8QQ, UK
| | - Jill Morrison
- Institute of Health and Wellbeing, University of Glasgow, General Practice and Primary Care, 1 Horselethill Road, Glasgow G12 9LX, UK
| | - Howard Ring
- School of Clinical Medicine, University of Cambridge, Douglas House, 18b Trumpington Road, Cambridge CB2 2AH, UK
| | - John Starr
- Alzheimer Scotland Dementia Research Centre, 7 George Square, Edinburgh EH8 9JZ, UK
| | - Ciara Stiles
- Institute of Health and Wellbeing, University of Glasgow, Mental Health and Wellbeing Unit, Gartnavel Royal Hospital, Administrative Building, 1055, Great Western Road, Glasgow G12 0XH, UK
| | - Frank Sullivan
- Gordon F Cheesbrough Research Chair and Director of UTOPIAN, University of Toronto, North York General Hospital, 4001 Leslie Street, Toronto, ON M2K 1E1, Canada
| |
Collapse
|
29
|
Wong BX, Hung YH, Bush AI, Duce JA. Metals and cholesterol: two sides of the same coin in Alzheimer's disease pathology. Front Aging Neurosci 2014; 6:91. [PMID: 24860500 PMCID: PMC4030154 DOI: 10.3389/fnagi.2014.00091] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 04/28/2014] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's disease (AD) is a multifactorial neurodegenerative disease. It begins years prior to the onset of clinical symptoms, such as memory loss and cognitive decline. Pathological hallmarks of AD include the accumulation of β-amyloid in plaques and hyperphosphorylated tau in neurofibrillary tangles. Copper, iron, and zinc are abnormally accumulated and distributed in the aging brain. These metal ions can adversely contribute to the progression of AD. Dysregulation of cholesterol metabolism has also been implicated in the development of AD pathology. To date, large bodies of research have been carried out independently to elucidate the role of metals or cholesterol on AD pathology. Interestingly, metals and cholesterol affect parallel molecular and biochemical pathways involved in AD pathology. The possible links between metal dyshomeostasis and altered brain cholesterol metabolism in AD are reviewed.
Collapse
Affiliation(s)
- Bruce X Wong
- Oxidation Biology Unit, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne Parkville, VIC, Australia
| | - Ya Hui Hung
- Oxidation Biology Unit, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne Parkville, VIC, Australia
| | - Ashley I Bush
- Oxidation Biology Unit, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne Parkville, VIC, Australia
| | - James A Duce
- Oxidation Biology Unit, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne Parkville, VIC, Australia ; School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds Leeds, North Yorkshire, UK
| |
Collapse
|
30
|
Kanekiyo T, Xu H, Bu G. ApoE and Aβ in Alzheimer's disease: accidental encounters or partners? Neuron 2014; 81:740-54. [PMID: 24559670 DOI: 10.1016/j.neuron.2014.01.045] [Citation(s) in RCA: 459] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2014] [Indexed: 12/26/2022]
Abstract
Among the three human apolipoprotein E (apoE) isoforms, apoE4 increases the risk of Alzheimer's disease (AD). While transporting cholesterol is a primary function, apoE also regulates amyloid-β (Aβ) metabolism, aggregation, and deposition. Although earlier work suggests that different affinities of apoE isoforms to Aβ might account for their effects on Aβ clearance, recent studies indicate that apoE also competes with Aβ for cellular uptake through apoE receptors. Thus, several factors probably determine the variable effects apoE has on Aβ. In this Review, we examine biochemical, structural, and functional studies and propose testable models that address the complex mechanisms underlying apoE-Aβ interaction and how apoE4 may increase AD risk and also serve as a target pathway for therapy.
Collapse
Affiliation(s)
- Takahisa Kanekiyo
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Huaxi Xu
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, College of Medicine, Xiamen University, Xiamen 361005, China
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, College of Medicine, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
31
|
Liu Q, Zhang J. Lipid metabolism in Alzheimer's disease. Neurosci Bull 2014; 30:331-45. [PMID: 24733655 DOI: 10.1007/s12264-013-1410-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 02/25/2014] [Indexed: 12/14/2022] Open
Abstract
Lipids play crucial roles in cell signaling and various physiological processes, especially in the brain. Impaired lipid metabolism in the brain has been implicated in neurodegenerative diseases, such as Alzheimer's disease (AD), and other central nervous system insults. The brain contains thousands of lipid species, but the complex lipid compositional diversity and the function of each of lipid species are currently poorly understood. This review integrates current knowledge about major lipid changes with the molecular mechanisms that underlie AD pathogenesis.
Collapse
Affiliation(s)
- Qiang Liu
- CAS Key Laboratory of Brain Function and Disease and School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China,
| | | |
Collapse
|
32
|
Lathe R, Sapronova A, Kotelevtsev Y. Atherosclerosis and Alzheimer--diseases with a common cause? Inflammation, oxysterols, vasculature. BMC Geriatr 2014; 14:36. [PMID: 24656052 PMCID: PMC3994432 DOI: 10.1186/1471-2318-14-36] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 02/26/2014] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Aging is accompanied by increasing vulnerability to pathologies such as atherosclerosis (ATH) and Alzheimer disease (AD). Are these different pathologies, or different presentations with a similar underlying pathoetiology? DISCUSSION Both ATH and AD involve inflammation, macrophage infiltration, and occlusion of the vasculature. Allelic variants in common genes including APOE predispose to both diseases. In both there is strong evidence of disease association with viral and bacterial pathogens including herpes simplex and Chlamydophila. Furthermore, ablation of components of the immune system (or of bone marrow-derived macrophages alone) in animal models restricts disease development in both cases, arguing that both are accentuated by inflammatory/immune pathways. We discuss that amyloid β, a distinguishing feature of AD, also plays a key role in ATH. Several drugs, at least in mouse models, are effective in preventing the development of both ATH and AD. Given similar age-dependence, genetic underpinnings, involvement of the vasculature, association with infection, Aβ involvement, the central role of macrophages, and drug overlap, we conclude that the two conditions reflect different manifestations of a common pathoetiology. MECHANISM Infection and inflammation selectively induce the expression of cholesterol 25-hydroxylase (CH25H). Acutely, the production of 'immunosterol' 25-hydroxycholesterol (25OHC) defends against enveloped viruses. We present evidence that chronic macrophage CH25H upregulation leads to catalyzed esterification of sterols via 25OHC-driven allosteric activation of ACAT (acyl-CoA cholesterol acyltransferase/SOAT), intracellular accumulation of cholesteryl esters and lipid droplets, vascular occlusion, and overt disease. SUMMARY We postulate that AD and ATH are both caused by chronic immunologic challenge that induces CH25H expression and protection against particular infectious agents, but at the expense of longer-term pathology.
Collapse
Affiliation(s)
- Richard Lathe
- State University of Pushchino, Prospekt Nauki, Pushchino 142290, Moscow Region, Russia
- Pushchino Branch of the Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino 142290 Moscow Region, Russia
- Pieta Research, PO Box 27069, Edinburgh EH10 5YW, UK
| | - Alexandra Sapronova
- State University of Pushchino, Prospekt Nauki, Pushchino 142290, Moscow Region, Russia
- Pushchino Branch of the Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino 142290 Moscow Region, Russia
- Optical Research Group, Laboratory of Evolutionary Biophysics of Development, Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Yuri Kotelevtsev
- State University of Pushchino, Prospekt Nauki, Pushchino 142290, Moscow Region, Russia
- Pushchino Branch of the Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino 142290 Moscow Region, Russia
- Biomedical Centre for Research Education and Innovation (CREI), Skolkovo Institute of Science and Technology, Skolkovo 143025, Russia
- Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Little France, Edinburgh EH16 4TJ, UK
| |
Collapse
|
33
|
Jasmin SB, Pearson V, Lalonde D, Domenger D, Théroux L, Poirier J. Differential regulation of ABCA1 and ABCG1 gene expressions in the remodeling mouse hippocampus after entorhinal cortex lesion and liver-X receptor agonist treatment. Brain Res 2014; 1562:39-51. [PMID: 24661912 DOI: 10.1016/j.brainres.2014.03.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 03/14/2014] [Accepted: 03/15/2014] [Indexed: 12/30/2022]
Abstract
Entorhinal cortex lesioning (ECL) causes an extensive deafferentation of the hippocampus that is classically followed by a compensatory reinnervation, where apolipoprotein E, the main extracellular lipid-carrier in the CNS, has been shown to play a crucial role by shuttling cholesterol to reconstructing neurons terminals. Hence, we investigated whether the ATP-binding cassette (ABC) transporters -A1 and -G1, known to regulate cellular cholesterol efflux and lipidation of the apolipoprotein E-containing lipoprotein complex are actively involved in this context of brain׳s plastic response to neurodegeneration and deafferentation. We assessed ABCA1 and ABCG1 mRNA and protein levels throughout the degenerative phase and the reinnervation process and evaluated the associated cholinergic sprouting following ECL in the adult mouse brain. We subsequently tested the effect of the pharmacological activation of the nuclear receptor LXR, prior to versus after ECL, on hippocampal ABCA1 and G1 expression and on reinnervation. ECL induced a time-dependent up-regulation of ABCA1, but not G1, that coincided with a significant increase in acetylcholine esterase (AChE) activity in the ipsilateral hippocampus. Pre-ECL, but not post-ECL i.p. treatment with the LXR agonist TO901317 also led to a significant increase solely in hippocampal ABCA1 expression, paralleled by increases in both AchE and synaptophysin protein levels in the deafferented hippocampus. Thus, ABCA1 and -G1 are differentially regulated in the lesioned brain and upon treatment with an LXR agonist. Further, TO901317-induced up-regulation of ABCA1 appears to be more beneficial in a prevention (pre-lesion) than rescue (post-lesion) treatment; both findings support a central role for ABC transporters in brain plasticity.
Collapse
Affiliation(s)
- Stéphanie Bélanger Jasmin
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada H4A 2B4; Douglas Mental Health University Institute, 6875 LaSalle Blvd, Verdun, Quebec, Canada H4H 1R3
| | - Vanessa Pearson
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada H4A 2B4; Douglas Mental Health University Institute, 6875 LaSalle Blvd, Verdun, Quebec, Canada H4H 1R3
| | - Daphnée Lalonde
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada H4A 2B4; Douglas Mental Health University Institute, 6875 LaSalle Blvd, Verdun, Quebec, Canada H4H 1R3
| | - Dorothée Domenger
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada H4A 2B4; Douglas Mental Health University Institute, 6875 LaSalle Blvd, Verdun, Quebec, Canada H4H 1R3
| | - Louise Théroux
- Douglas Mental Health University Institute, 6875 LaSalle Blvd, Verdun, Quebec, Canada H4H 1R3
| | - Judes Poirier
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada H4A 2B4; Douglas Mental Health University Institute, 6875 LaSalle Blvd, Verdun, Quebec, Canada H4H 1R3.
| |
Collapse
|
34
|
Segatto M, Di Giovanni A, Marino M, Pallottini V. Analysis of the protein network of cholesterol homeostasis in different brain regions: an age and sex dependent perspective. J Cell Physiol 2013; 228:1561-7. [PMID: 23280554 DOI: 10.1002/jcp.24315] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 12/19/2012] [Indexed: 01/03/2023]
Abstract
Although a great knowledge about the patho-physiological roles of cholesterol metabolism perturbation in several organs has been reached, scarce information is available on the regulation of cholesterol homeostasis in the brain where this lipid is involved in the maintenance of several of neuronal processes. Currently, no study is available in literature dealing how and if sex and age may modulate the major proteins involved in the regulatory network of cholesterol levels in different brain regions. Here, we investigated the behavior of 3-hydroxy 3-methylglutaryl coenzyme A reductase (HMGR) and low-density lipoprotein receptor (LDLr) in adult (3-month-old) and aged (12-month-old) male and female rats. The analyses were performed in four different brain regions: cortex, brain stem, hippocampus, and cerebellum which represent brain areas characterized by different neuronal cell types, metabolism, cytoarchitecture and white matter composition. The results show that in hippocampus HMGR is lower (30%) in adult female rats than in age-matched males. Differences in LDLr expression are also observable in old females with respect to age-matched males: the protein levels increase (40%) in hippocampus and decrease (20%) in cortex, displaying different mechanisms of regulation. The mechanism underlying the observed modifications are ascribable to Insig-1 and SREBP-1 modulation. The obtained data demonstrate that age- and sex-related differences in cholesterol homeostasis maintenance exist among brain regions, such as the hippocampus and the prefrontal cortex, important for learning, memory and affection. Some of these differences could be at the root of marked gender disparities observed in clinical disease incidence, manifestation, and prognosis.
Collapse
Affiliation(s)
- Marco Segatto
- Department of Sciences, University of Roma Tre, Rome, Italy
| | | | | | | |
Collapse
|
35
|
Kurata T, Miyazaki K, Morimoto N, Kawai H, Ohta Y, Ikeda Y, Abe K. Atorvastatin and pitavastatin reduce oxidative stress and improve IR/LDL-R signals in Alzheimer’s disease. Neurol Res 2013; 35:193-205. [DOI: 10.1179/1743132812y.0000000127] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Affiliation(s)
- Tomoko Kurata
- Department of NeurologyGraduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kazunori Miyazaki
- Department of NeurologyGraduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Nobutoshi Morimoto
- Department of NeurologyGraduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hiromi Kawai
- Department of NeurologyGraduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yasuyuki Ohta
- Department of NeurologyGraduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yoshio Ikeda
- Department of NeurologyGraduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Koji Abe
- Department of NeurologyGraduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
36
|
Bink DI, Ritz K, Aronica E, van der Weerd L, Daemen MJAP. Mouse models to study the effect of cardiovascular risk factors on brain structure and cognition. J Cereb Blood Flow Metab 2013; 33:1666-84. [PMID: 23963364 PMCID: PMC3824184 DOI: 10.1038/jcbfm.2013.140] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 06/24/2013] [Accepted: 07/16/2013] [Indexed: 12/13/2022]
Abstract
Recent clinical data indicates that hemodynamic changes caused by cardiovascular diseases such as atherosclerosis, heart failure, and hypertension affect cognition. Yet, the underlying mechanisms of the resulting vascular cognitive impairment (VCI) are poorly understood. One reason for the lack of mechanistic insights in VCI is that research in dementia primarily focused on Alzheimer's disease models. To fill in this gap, we critically reviewed the published data and various models of VCI. Typical findings in VCI include reduced cerebral perfusion, blood-brain barrier alterations, white matter lesions, and cognitive deficits, which have also been reported in different cardiovascular mouse models. However, the tests performed are incomplete and differ between models, hampering a direct comparison between models and studies. Nevertheless, from the currently available data we conclude that a few existing surgical animal models show the key features of vascular cognitive decline, with the bilateral common carotid artery stenosis hypoperfusion mouse model as the most promising model. The transverse aortic constriction and myocardial infarction models may be good alternatives, but these models are as yet less characterized regarding the possible cerebral changes. Mixed models could be used to study the combined effects of different cardiovascular diseases on the deterioration of cognition during aging.
Collapse
Affiliation(s)
- Diewertje I Bink
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Katja Ritz
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Eleonora Aronica
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- SEIN—Stichting Epilepsie Instellingen Nederland, Heemstede, The Netherlands
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | - Louise van der Weerd
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Mat JAP Daemen
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
37
|
Holtzman DM, Herz J, Bu G. Apolipoprotein E and apolipoprotein E receptors: normal biology and roles in Alzheimer disease. Cold Spring Harb Perspect Med 2013; 2:a006312. [PMID: 22393530 DOI: 10.1101/cshperspect.a006312] [Citation(s) in RCA: 599] [Impact Index Per Article: 49.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Apolipoprotein E (APOE) genotype is the major genetic risk factor for Alzheimer disease (AD); the ε4 allele increases risk and the ε2 allele is protective. In the central nervous system (CNS), apoE is produced by glial cells, is present in high-density-like lipoproteins, interacts with several receptors that are members of the low-density lipoprotein receptor (LDLR) family, and is a protein that binds to the amyloid-β (Aβ) peptide. There are a variety of mechanisms by which apoE isoform may influence risk for AD. There is substantial evidence that differential effects of apoE isoform on AD risk are influenced by the ability of apoE to affect Aβ aggregation and clearance in the brain. Other mechanisms are also likely to play a role in the ability of apoE to influence CNS function as well as AD, including effects on synaptic plasticity, cell signaling, lipid transport and metabolism, and neuroinflammation. ApoE receptors, including LDLRs, Apoer2, very low-density lipoprotein receptors (VLDLRs), and lipoprotein receptor-related protein 1 (LRP1) appear to influence both the CNS effects of apoE as well as Aβ metabolism and toxicity. Therapeutic strategies based on apoE and apoE receptors may include influencing apoE/Aβ interactions, apoE structure, apoE lipidation, LDLR receptor family member function, and signaling. Understanding the normal and disease-related biology connecting apoE, apoE receptors, and AD is likely to provide novel insights into AD pathogenesis and treatment.
Collapse
Affiliation(s)
- David M Holtzman
- Department of Neurology, Alzheimer's Disease Research Center, Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | |
Collapse
|
38
|
Park SH, Kim JH, Choi KH, Jang YJ, Bae SS, Choi BT, Shin HK. Hypercholesterolemia accelerates amyloid β-induced cognitive deficits. Int J Mol Med 2013; 31:577-82. [PMID: 23314909 DOI: 10.3892/ijmm.2013.1233] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 12/14/2012] [Indexed: 11/05/2022] Open
Abstract
Hypercholesterolemia is a known risk factor for Alzheimer's disease (AD). In the present study, we investigated whether diet-induced hypercholesterolemia affects AD-like pathologies such as amyloid β-peptide (Aβ) deposition, tau pathology, inflammation and cognitive impairment, using an Aβ25-35-injected AD-like pathological mouse model. Hypercholesterolemia was induced by providing apolipoprotein E knock out (Apo E KO) mice with a high-fat diet for 4 weeks prior to Aβ25-35 injection and for 4 weeks following Aβ25-35 injection, for a total of 8 weeks of treatment. Our data showed that intracerebroventricular injection of C57BL/6J mice with Aβ25-35 resulted in increased immunoreactivity of Aβ and phosphorylated-tau (p-tau), which was accompanied by enhanced microglial CD11b-like immunoreactivity in the brain. Moreover, hypercholesterolemia slightly increased Aβ and p-tau levels and microglial activation in the vehicle group, while further increasing the Aβ and p-tau levels and microglial activation in Aβ25-35-injected mice. Consistent with the neuropathological analysis, hypercholesterolemia resulted in significant spatial learning and memory deficits in Aβ25-35-injected mice as revealed by water maze testing. Collectively, these findings demonstrated that hypercholesterolemia accelerated Aβ accumulation and tau pathology, which was accompanied by microglial activation and subsequent aggravation of memory impairment induced by Aβ25-35. Thus, we suggest that the modulation of cholesterol can be used to reduce the risk of developing AD.
Collapse
Affiliation(s)
- Sun Haeng Park
- Division of Meridian and Structural Medicine, School of Korean Medicine, Pusan National University, Yangsan-si, Gyeongsangnam-do 626-870, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
39
|
Sun N, Funke SA, Willbold D. A survey of peptides with effective therapeutic potential in Alzheimer's disease rodent models or in human clinical studies. Mini Rev Med Chem 2012; 12:388-98. [PMID: 22303971 PMCID: PMC3426789 DOI: 10.2174/138955712800493942] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 06/21/2011] [Accepted: 07/07/2011] [Indexed: 11/29/2022]
Abstract
Alzheimer’s disease (AD) is a devastating neurodegenerative disorder and the most common cause of dementia. Today, only palliative therapies are available. The pathological hallmarks of AD are the presence of neurofibrillary tangles and amyloid plaques, mainly composed of the amyloid-β peptide (Aβ), in the brains of the patients. Several lines of evidence suggest that the increased production and/or decreased cleavage of Aβ and subsequent accumulation of Aβ oligomers and aggregates play a fundamental role in the disease progress. Therefore, substances which bind to Aβ and influence aggregation thereof are of great interest. A wide range of Aβ binding peptides were investigated to date for therapeutic purposes. Only very few were shown to be effective in rodent AD models or in clinical studies. Here, we review those peptides and discuss their possible mechanisms of action.
Collapse
Affiliation(s)
- N Sun
- ICS-6, Forschungszentrum Jülich, 52425 Jülich, Germany
| | | | | |
Collapse
|
40
|
Maulik M, Westaway D, Jhamandas JH, Kar S. Role of cholesterol in APP metabolism and its significance in Alzheimer's disease pathogenesis. Mol Neurobiol 2012; 47:37-63. [PMID: 22983915 DOI: 10.1007/s12035-012-8337-y] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 08/19/2012] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease (AD) is a complex multifactorial neurodegenerative disorder believed to be initiated by accumulation of amyloid β (Aβ)-related peptides derived from proteolytic processing of amyloid precursor protein (APP). Research over the past two decades provided a mechanistic link between cholesterol and AD pathogenesis. Genetic polymorphisms in genes regulating the pivotal points in cholesterol metabolism have been suggested to enhance the risk of developing AD. Altered neuronal membrane cholesterol level and/or subcellular distribution have been implicated in aberrant formation, aggregation, toxicity, and degradation of Aβ-related peptides. However, the results are somewhat contradictory and we still do not have a complete understanding on how cholesterol can influence AD pathogenesis. In this review, we summarize our current understanding on the role of cholesterol in regulating the production/function of Aβ-related peptides and also examine the therapeutic potential of regulating cholesterol homeostasis in the treatment of AD pathology.
Collapse
Affiliation(s)
- M Maulik
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada, T6G 2M8
| | | | | | | |
Collapse
|
41
|
Low-density lipoprotein receptor overexpression enhances the rate of brain-to-blood Aβ clearance in a mouse model of β-amyloidosis. Proc Natl Acad Sci U S A 2012; 109:15502-7. [PMID: 22927427 DOI: 10.1073/pnas.1206446109] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The apolipoprotein E (APOE)-ε4 allele is the strongest genetic risk factor for late-onset, sporadic Alzheimer's disease, likely increasing risk by altering amyloid-β (Aβ) accumulation. We recently demonstrated that the low-density lipoprotein receptor (LDLR) is a major apoE receptor in the brain that strongly regulates amyloid plaque deposition. In the current study, we sought to understand the mechanism by which LDLR regulates Aβ accumulation by altering Aβ clearance from brain interstitial fluid. We hypothesized that increasing LDLR levels enhances blood-brain barrier-mediated Aβ clearance, thus leading to reduced Aβ accumulation. Using the brain Aβ efflux index method, we found that blood-brain barrier-mediated clearance of exogenously administered Aβ is enhanced with LDLR overexpression. We next developed a method to directly assess the elimination of centrally derived, endogenous Aβ into the plasma of mice using an anti-Aβ antibody that prevents degradation of plasma Aβ, allowing its rate of appearance from the brain to be measured. Using this plasma Aβ accumulation technique, we found that LDLR overexpression enhances brain-to-blood Aβ transport. Together, our results suggest a unique mechanism by which LDLR regulates brain-to-blood Aβ clearance, which may serve as a useful therapeutic avenue in targeting Aβ clearance from the brain.
Collapse
|
42
|
Kline A. Apolipoprotein E, amyloid-ß clearance and therapeutic opportunities in Alzheimer's disease. ALZHEIMERS RESEARCH & THERAPY 2012; 4:32. [PMID: 22929359 PMCID: PMC3506946 DOI: 10.1186/alzrt135] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterised by extracellular amyloid-ß (Aß) and intraneuronal tau protein brain pathologies. The most significant risk factor for non-familial AD is the presence of the E4 isoform of the cholesterol transporter apolipoprotein E (apoE). Despite extensive basic research, the exact role of apoE in disease aetiology remains unclear. Correspondingly, therapeutic targeting of apoE in AD is at an early preclinical stage. In this review, I discuss the key interactions of apoE and Aß pathology, the current progress of preclinical animal models and the caveats of existing therapeutic approaches targeting apoE. Finally, novel Alzheimer's genetics and Aß-independent disease mechanisms are highlighted.
Collapse
Affiliation(s)
- Adam Kline
- Biopharmacology, Eisai Limited, European Knowledge Centre, Mosquito Way, Hartfield, Hertfordshire, AL10 9SN, UK
| |
Collapse
|
43
|
Basak JM, Verghese PB, Yoon H, Kim J, Holtzman DM. Low-density lipoprotein receptor represents an apolipoprotein E-independent pathway of Aβ uptake and degradation by astrocytes. J Biol Chem 2012; 287:13959-71. [PMID: 22383525 DOI: 10.1074/jbc.m111.288746] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Accumulation of the amyloid β (Aβ) peptide within the brain is hypothesized to be one of the main causes underlying the pathogenic events that occur in Alzheimer disease (AD). Consequently, identifying pathways by which Aβ is cleared from the brain is crucial for better understanding of the disease pathogenesis and developing novel therapeutics. Cellular uptake and degradation by glial cells is one means by which Aβ may be cleared from the brain. In the current study, we demonstrate that modulating levels of the low-density lipoprotein receptor (LDLR), a cell surface receptor that regulates the amount of apolipoprotein E (apoE) in the brain, altered both the uptake and degradation of Aβ by astrocytes. Deletion of LDLR caused a decrease in Aβ uptake, whereas increasing LDLR levels significantly enhanced both the uptake and clearance of Aβ. Increasing LDLR levels also enhanced the cellular degradation of Aβ and facilitated the vesicular transport of Aβ to lysosomes. Despite the fact that LDLR regulated the uptake of apoE by astrocytes, we found that the effect of LDLR on Aβ uptake and clearance occurred in the absence of apoE. Finally, we provide evidence that Aβ can directly bind to LDLR, suggesting that an interaction between LDLR and Aβ could be responsible for LDLR-mediated Aβ uptake. Therefore, these results identify LDLR as a receptor that mediates Aβ uptake and clearance by astrocytes, and provide evidence that increasing glial LDLR levels may promote Aβ degradation within the brain.
Collapse
Affiliation(s)
- Jacob M Basak
- Department of Neurology, Hope Center for Neurological Disorders, Charles F and Joanne Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
44
|
Neurodegeneration in Alzheimer disease: role of amyloid precursor protein and presenilin 1 intracellular signaling. J Toxicol 2012; 2012:187297. [PMID: 22496686 PMCID: PMC3306972 DOI: 10.1155/2012/187297] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 10/14/2011] [Accepted: 10/26/2011] [Indexed: 01/02/2023] Open
Abstract
Alzheimer disease (AD) is a heterogeneous neurodegenerative disorder characterized by (1) progressive loss of synapses and neurons, (2) intracellular neurofibrillary tangles, composed of hyperphosphorylated Tau protein, and (3) amyloid plaques. Genetically, AD is linked to mutations in few proteins amyloid precursor protein (APP) and presenilin 1 and 2 (PS1 and PS2). The molecular mechanisms underlying neurodegeneration in AD as well as the physiological function of APP are not yet known. A recent theory has proposed that APP and PS1 modulate intracellular signals to induce cell-cycle abnormalities responsible for neuronal death and possibly amyloid deposition. This hypothesis is supported by the presence of a complex network of proteins, clearly involved in the regulation of signal transduction mechanisms that interact with both APP and PS1. In this review we discuss the significance of novel finding related to cell-signaling events modulated by APP and PS1 in the development of neurodegeneration.
Collapse
|
45
|
Haploinsufficiency of human APOE reduces amyloid deposition in a mouse model of amyloid-β amyloidosis. J Neurosci 2012; 31:18007-12. [PMID: 22159114 DOI: 10.1523/jneurosci.3773-11.2011] [Citation(s) in RCA: 159] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The ε4 allele of the apolipoprotein E (APOE) gene is the strongest genetic risk factor for Alzheimer's disease (AD). Evidence suggests that the effect of apoE isoforms on amyloid-β (Aβ) accumulation in the brain plays a critical role in AD pathogenesis. Like in humans, apoE4 expression in animal models that develop Aβ amyloidosis results in greater Aβ and amyloid deposition than with apoE3 expression. However, whether decreasing levels of apoE3 or apoE4 would promote or attenuate Aβ-related pathology has not been directly addressed. To determine the effect of decreasing human apoE levels on Aβ accumulation in vivo, we generated human APOE isoform haploinsufficient mouse models by crossing APPPS1-21 mice with APOE isoform knock-in mice. By genetically manipulating APOE gene dosage, we demonstrate that decreasing human apoE levels, regardless of isoform status, results in significantly decreased amyloid plaque deposition and microglial activation. These differences in amyloid load between apoE3- and apoE4-expressing mice were not due to apoE4 protein being present at lower levels than apoE3. These data suggest that current therapeutic strategies to increase apoE levels without altering its lipidation state may actually worsen Aβ amyloidosis, while increasing apoE degradation or inhibiting its synthesis may be a more effective treatment approach.
Collapse
|
46
|
Funke SA, Willbold D. Peptides for therapy and diagnosis of Alzheimer's disease. Curr Pharm Des 2012; 18:755-67. [PMID: 22236121 PMCID: PMC3426787 DOI: 10.2174/138161212799277752] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Accepted: 12/09/2011] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder with devastating effects. The greatest risk factor to develop AD is age. Today, only symptomatic therapies are available. Additionally, AD can be diagnosed with certainty only post mortem, whereas the diagnosis "probable AD" can be established earliest when severe clinical symptoms appear. Specific neuropathological changes like neurofibrillary tangles and amyloid plaques define AD. Amyloid plaques are mainly composed of the amyloid-βpeptide (Aβ). Several lines of evidence suggest that the progressive concentration and subsequent aggregation and accumulation of Aβ play a fundamental role in the disease progress. Therefore, substances which bind to Aβ and influence aggregation thereof are of great interest. An enormous number of organic substances for therapeutic purposes are described. This review focuses on peptides developed for diagnosis and therapy of AD and discusses the pre- and disadvantages of peptide drugs.
Collapse
Affiliation(s)
| | - Dieter Willbold
- Forschungszentrum Jülich, ICS-6, 52425 Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| |
Collapse
|
47
|
Ueno M, Nakagawa T, Nagai Y, Nishi N, Kusaka T, Kanenishi K, Onodera M, Hosomi N, Huang C, Yokomise H, Tomimoto H, Sakamoto H. The expression of CD36 in vessels with blood-brain barrier impairment in a stroke-prone hypertensive model. Neuropathol Appl Neurobiol 2011; 37:727-37. [DOI: 10.1111/j.1365-2990.2011.01172.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
48
|
Ramírez C, Sierra S, Tercero I, Vázquez JA, Pineda A, Manrique T, Burgos JS. ApoB100/LDLR-/- hypercholesterolaemic mice as a model for mild cognitive impairment and neuronal damage. PLoS One 2011; 6:e22712. [PMID: 21829488 PMCID: PMC3144244 DOI: 10.1371/journal.pone.0022712] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 06/28/2011] [Indexed: 11/19/2022] Open
Abstract
Recent clinical findings support the notion that the progressive deterioration of cholesterol homeostasis is a central player in Alzheimer's disease (AD). Epidemiological studies suggest that high midlife plasma total cholesterol levels are associated with an increased risk of AD. This paper reports the plasma cholesterol concentrations, cognitive performance, locomotor activity and neuropathological signs in a murine model (transgenic mice expressing apoB100 but knockout for the LDL receptor [LDLR]) of human familial hypercholesterolaemia (FH). From birth, these animals have markedly elevated LDL-cholesterol and apolipoprotein B100 (apoB100) levels. These transgenic mice were confirmed to have higher plasma cholesterol concentrations than wild-type mice, an effect potentiated by aging. Further, 3-month-old transgenic mice showed cholesterol (total and fractions) concentrations considerably higher than those of 18-month-old wild-type mice. The hypercholesterolaemia of the transgenic mice was associated with a clear locomotor deficit (as determined by rotarod, grip strength and open field testing) and impairment of the episodic-like memory (determined by the integrated memory test). This decline in locomotor activity and cognitive status was associated with neuritic dystrophy and/or the disorganization of the neuronal microtubule network, plus an increase in astrogliosis and lipid peroxidation in the brain regions associated with AD, such as the motor and lateral entorhinal cortex, the amygdaloid basal nucleus, and the hippocampus. Aortic atherosclerotic lesions were positively correlated with age, although potentiated by the transgenic genotype, while cerebral β-amyloidosis was positively correlated with genetic background rather than with age. These findings confirm hypercholesterolaemia as a key biomarker for monitoring mild cognitive impairment, and shows these transgenic mice can be used as a model for cognitive and psycho-motor decline.
Collapse
|
49
|
Lack of LDL receptor enhances amyloid deposition and decreases glial response in an Alzheimer's disease mouse model. PLoS One 2011; 6:e21880. [PMID: 21755005 PMCID: PMC3130747 DOI: 10.1371/journal.pone.0021880] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 06/11/2011] [Indexed: 02/03/2023] Open
Abstract
Background Apolipoprotein E (ApoE), a cholesterol carrier associated with atherosclerosis, is a major risk factor for Alzheimer's disease (AD). The low-density lipoprotein receptor (LDLR) regulates ApoE levels in the periphery and in the central nervous system. LDLR has been identified on astrocytes and a number of studies show that it modulates amyloid deposition in AD transgenic mice. However these findings are controversial on whether LDLR deletion is beneficial or detrimental on the AD-like phenotype of the transgenic mice. Methodology/Principal Findings To investigate the role of LDLR in the development of the amyloid related phenotype we used an APP/PS1 transgenic mouse (5XFAD) that develops an AD-like pathology with amyloid plaques, astrocytosis and microgliosis. We found that 4 months old 5XFAD transgenic mice on the LDLR deficient background (LDLR-/-) have increased amyloid plaque deposition. This increase is associated with a significant decrease in astrocytosis and microgliosis in the 5XFAD/LDLR-/- mice. To further elucidate the role of LDLR in relation with ApoE we have generated 5XFAD transgenic mice on the ApoE deficient (ApoE-/-) or the ApoE/LDLR double deficient background (ApoE-/-/LDLR -/-). We have found that ApoE deletion in the 4 months old 5XFAD/ApoE-/- mice decreases amyloid plaque formation as expected, but has no effect on astrocytosis or microgliosis. By comparison 5XFAD/ApoE-/-LDLR -/- double deficient mice of the same age have increased amyloid deposition with decreased astrocytosis and microgliosis. Conclusions Our analysis shows that LDL deficiency regulates astrocytosis and microgliosis in an AD mouse model. This effect is independent of ApoE, as both 5XFAD/LDLR -/- and 5XFAD/ApoE-/- LDLR -/- mice show reduction in inflammatory response and increase in amyloid deposition compared to control mice. These results demonstrate that LDLR regulates glial response in this mouse model independently of ApoE and modifies amyloid deposition.
Collapse
|
50
|
Lewis TL, Cao D, Lu H, Mans RA, Su YR, Jungbauer L, Linton MF, Fazio S, LaDu MJ, Li L. Overexpression of human apolipoprotein A-I preserves cognitive function and attenuates neuroinflammation and cerebral amyloid angiopathy in a mouse model of Alzheimer disease. J Biol Chem 2010; 285:36958-68. [PMID: 20847045 PMCID: PMC2978624 DOI: 10.1074/jbc.m110.127829] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 09/13/2010] [Indexed: 02/02/2023] Open
Abstract
To date there is no effective therapy for Alzheimer disease (AD). High levels of circulating high density lipoprotein (HDL) and its main protein, apolipoprotein A-I (apoA-I), reduce the risk of cardiovascular disease. Clinical studies show that plasma HDL cholesterol and apoA-I levels are low in patients with AD. To investigate if increasing plasma apoA-I/HDL levels ameliorates AD-like memory deficits and amyloid-β (Aβ) deposition, we generated a line of triple transgenic (Tg) mice overexpressing mutant forms of amyloid-β precursor protein (APP) and presenilin 1 (PS1) as well as human apoA-I (AI). Here we show that APP/PS1/AI triple Tg mice have a 2-fold increase of plasma HDL cholesterol levels. When tested in the Morris water maze for spatial orientation abilities, whereas APP/PS1 mice develop age-related learning and memory deficits, APP/PS1/AI mice continue to perform normally during aging. Interestingly, no significant differences were found in the total level and deposition of Aβ in the brains of APP/PS1 and APP/PS1/AI mice, but cerebral amyloid angiopathy was reduced in APP/PS1/AI mice. Also, consistent with the anti-inflammatory properties of apoA-I/HDL, glial activation was reduced in the brain of APP/PS1/AI mice. In addition, Aβ-induced production of proinflammatory chemokines/cytokines was decreased in mouse organotypic hippocampal slice cultures expressing human apoA-I. Therefore, we conclude that overexpression of human apoA-I in the circulation prevents learning and memory deficits in APP/PS1 mice, partly by attenuating neuroinflammation and cerebral amyloid angiopathy. These findings suggest that elevating plasma apoA-I/HDL levels may be an effective approach to preserve cognitive function in patients with AD.
Collapse
MESH Headings
- Amyloid beta-Peptides
- Amyloid beta-Protein Precursor/physiology
- Animals
- Apolipoprotein A-I/genetics
- Apolipoprotein A-I/metabolism
- Behavior, Animal
- Blotting, Western
- Brain/metabolism
- Brain/pathology
- Cells, Cultured
- Cerebral Amyloid Angiopathy/etiology
- Cerebral Amyloid Angiopathy/prevention & control
- Cholesterol/blood
- Cognition Disorders/etiology
- Cognition Disorders/prevention & control
- Disease Models, Animal
- Embryo, Mammalian/cytology
- Embryo, Mammalian/metabolism
- Enzyme-Linked Immunosorbent Assay
- Humans
- Immunoenzyme Techniques
- Inflammasomes
- Inflammation/etiology
- Inflammation/prevention & control
- Lipoproteins/blood
- Maze Learning
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Microglia
- Mutation/genetics
- Myocytes, Smooth Muscle/metabolism
- Presenilin-1/physiology
- RNA, Messenger/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Deletion
- Signal Transduction
Collapse
Affiliation(s)
| | - Dongfeng Cao
- From the Departments of Medicine
- the Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota 55455
| | | | - Robert A. Mans
- From the Departments of Medicine
- Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Yan Ru Su
- the Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, and
| | - Lisa Jungbauer
- the Department of Anatomy and Cell Biology, University of Illinois, Chicago, Illinois 60612
| | - MacRae F. Linton
- the Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, and
| | - Sergio Fazio
- the Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, and
| | - Mary Jo LaDu
- the Department of Anatomy and Cell Biology, University of Illinois, Chicago, Illinois 60612
| | - Ling Li
- From the Departments of Medicine
- Pathology, and
- Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama 35294
- the Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|