1
|
Morais RF, Sousa JM, Koba C, Andres L, Jesus T, Baldeiras I, Oliveira TG, Santana I. Differential involvement of neurotransmitter pathways in AD, bvFTD and MCI: Whole-brain MRI analysis. Neurobiol Dis 2025; 209:106897. [PMID: 40194635 DOI: 10.1016/j.nbd.2025.106897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/07/2025] [Accepted: 04/02/2025] [Indexed: 04/09/2025] Open
Abstract
BACKGROUND AND OBJECTIVES Neurodegenerative diseases, including Alzheimer's disease (AD), mild cognitive impairment (MCI), and frontotemporal dementia (FTD), are a growing public health challenge, with dementia incidence projected to triple in the coming decades. AD is associated with memory impairment, bvFTD with behavioral dysfunction, and MCI as a transitional stage between normal cognition and dementia. While structural brain changes have been widely studied, the role of neurotransmitter pathways remains underexplored. This study aims to correlate gray matter atrophy in AD, bvFTD, and MCI with neurotransmitter pathways to identify distinctive neurochemical impairments. METHODS We included 214 participants (89 CE, 74 bvFTD, 51 MCI) from a single-center cohort. MRI from 3 T scanners was segmented via FreeSurfer. Neurotransmitter maps were sourced from JuSpace. We performed volumetric and whole-brain correlation analyses to evaluate relationships between brain regional volumes (BRVs) and neurotransmitter pathways. Group differences were assessed with Kruskal-Wallis tests followed by post-hoc analyses. RESULTS Volumetric analysis showed expected atrophy patterns in each group. Correlation analysis indicated distinct neurotransmitter involvement: AD showed significant atrophy correlations with dopamine D2 and GABA A receptor distribution; bvFTD had significant negative correlations with the mu-opioid receptor; MCI exhibited early serotonergic dysregulation. CONCLUSIONS We identified distinct atrophy patterns linked to specific neurotransmitter systems, each showing unique neurochemical profiles. In AD, precuneus and inferior parietal lobules atrophy aligns with dopaminergic and GABAergic receptors, potentially impacting memory and executive functions. In bvFTD, medial orbitofrontal and temporal atrophy, is linked to mu-opioid receptor impairment, possibly contributing to behavioral symptoms. In MCI, early serotonergic dysregulation involving SERT occurs before detectable atrophy.
Collapse
Affiliation(s)
- Ricardo Félix Morais
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal; Instituto de Engenharia de Sistemas e Computadores, Tecnologia e Ciência (INESC TEC), Porto, Portugal; Centre for Innovative Biomedicine and Biotechnology (CIBB), Universidade de Coimbra, Coimbra, Portugal; Neuroradiology Department, ULS São João, Porto, Portugal.
| | | | - Cemal Koba
- Sano Centre for Computational Medicine, Computational Neuroscience Team, Kraków, Poland
| | - Leon Andres
- Department of Statistics, National University of Colombia, Bogotá, Colombia
| | - Tiago Jesus
- Center Algoritmi, LASI, University of Minho, Braga, Portugal; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Inês Baldeiras
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal; Centre for Innovative Biomedicine and Biotechnology (CIBB), Universidade de Coimbra, Coimbra, Portugal; Neurology Department, ULS de Coimbra, Coimbra, Portugal; Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Tiago Gil Oliveira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal; Department of Neuroradiology, Hospital de Braga, ULS, Braga, Braga, Portugal
| | - Isabel Santana
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal; Centre for Innovative Biomedicine and Biotechnology (CIBB), Universidade de Coimbra, Coimbra, Portugal; Neurology Department, ULS de Coimbra, Coimbra, Portugal; Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| |
Collapse
|
2
|
Britton MK, Jensen G, Edden RA, Puts NA, Nolin SA, Merritt SS, Rezaei RF, Forbes M, Johnson KJ, Bharadwaj PK, Franchetti MK, Raichlen DA, Jessup CJ, Hishaw GA, Van Etten EJ, Gudmundson AT, Murali-Manohar S, Cowart H, Trouard TP, Geldmacher DS, Wadley VG, Alperin N, Levin BE, Rundek T, Visscher KM, Woods AJ, Alexander GE, Cohen RA, Porges EC. "Surviving and Thriving": evidence for cortical GABA stabilization in cognitively-intact oldest-old adults. Transl Psychiatry 2025; 15:79. [PMID: 40082416 PMCID: PMC11906729 DOI: 10.1038/s41398-025-03302-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 11/15/2024] [Accepted: 02/26/2025] [Indexed: 03/16/2025] Open
Abstract
Age-related alterations in GABAergic function, including depletion of cortical GABA concentrations, is likely associated with declining cognitive performance in normative aging. However, the extent to which GABAergic function is perturbed in the highest-functioning stratum of the oldest-old (85+) population is unknown. For the first time, we report the stability of cortical GABA in this population. We extend our previously-reported Individual Participant Data Meta-Analysis of GABA levels across the lifespan, integrating four large cross-sectional datasets sampling cognitively-intact oldest-old adults. Within our lifespan model, the slope of age-related GABA differences in cognitively-intact oldest-old adults flattens after roughly age 80; within oldest-old adults only, inclusion of age does not improve the fit of models predicting GABA. We interpret these findings as an effect of survivorship: inclusion in the study required intact cognition, and too great a reduction of GABA levels may not be compatible with neurophysiological function needed for intact cognition. This work contributes to a growing body of evidence suggesting that successful cognitive aging may require intact GABAergic function, as well as further characterizing successful aging amongst oldest-old adults and emphasizing GABA as a potential target for interventions to prolong cognitive health in aging.
Collapse
Affiliation(s)
- Mark K Britton
- Department of Epidemiology, College of Public Health and Health Professions & College of Medicine, University of Florida, Gainesville, FL, USA.
- Center for Cognitive Aging and Memory, Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
| | - Greg Jensen
- Department of Psychology, Reed College, Portland, Oregon, USA
| | - Richard Ae Edden
- Russell H. Morgan Department of Radiology and Radiological Science, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Nicolaas Aj Puts
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Sara A Nolin
- Department of Neurology, College of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Stacy Suzanne Merritt
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, USA
- Evelyn F. McKnight Brain Institute, Miami, FL, USA
| | - Roxanne F Rezaei
- Center for Cognitive Aging and Memory, Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Megan Forbes
- Center for Cognitive Aging and Memory, Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Keyanni Joy Johnson
- Center for Cognitive Aging and Memory, Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Pradyumna K Bharadwaj
- Department of Psychology, College of Science, University of Arizona, Tucson, AZ, USA
- Evelyn F. McKnight Brain Institute, Tucson, AZ, USA
| | - Mary Kathryn Franchetti
- Department of Psychology, College of Science, University of Arizona, Tucson, AZ, USA
- Evelyn F. McKnight Brain Institute, Tucson, AZ, USA
- VA Boston Healthcare System, Boston, Massachusetts, USA
| | - David A Raichlen
- Department of Biological Sciences, College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, California, USA
| | - Cortney J Jessup
- Department of Psychology, College of Science, University of Arizona, Tucson, AZ, USA
- Evelyn F. McKnight Brain Institute, Tucson, AZ, USA
| | - G Alex Hishaw
- Evelyn F. McKnight Brain Institute, Tucson, AZ, USA
- Department of Neurology, College of Medicine, University of Arizona, Tucson, AZ, USA
- Department of Psychiatry, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Emily J Van Etten
- Department of Psychology, College of Science, University of Arizona, Tucson, AZ, USA
- Evelyn F. McKnight Brain Institute, Tucson, AZ, USA
| | - Aaron T Gudmundson
- Russell H. Morgan Department of Radiology and Radiological Science, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Saipavitra Murali-Manohar
- Russell H. Morgan Department of Radiology and Radiological Science, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Hannah Cowart
- Department of Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Evelyn F. McKnight Brain Institute, Birmingham, AL, USA
| | - Theodore P Trouard
- Evelyn F. McKnight Brain Institute, Tucson, AZ, USA
- Department of Biomedical Engineering, College of Engineering, University of Arizona, Tucson, AZ, USA
| | - David S Geldmacher
- Evelyn F. McKnight Brain Institute, Birmingham, AL, USA
- Department of Neurology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Virginia G Wadley
- Evelyn F. McKnight Brain Institute, Birmingham, AL, USA
- Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Noam Alperin
- Evelyn F. McKnight Brain Institute, Miami, FL, USA
- Department of Radiology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Bonnie E Levin
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, USA
- Evelyn F. McKnight Brain Institute, Miami, FL, USA
| | - Tatjana Rundek
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, USA
- Evelyn F. McKnight Brain Institute, Miami, FL, USA
| | - Kristina M Visscher
- Department of Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Evelyn F. McKnight Brain Institute, Birmingham, AL, USA
| | - Adam J Woods
- Department of Psychology, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA
- Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA
| | - Gene E Alexander
- Department of Psychology, College of Science, University of Arizona, Tucson, AZ, USA
- Evelyn F. McKnight Brain Institute, Tucson, AZ, USA
| | - Ronald A Cohen
- Center for Cognitive Aging and Memory, Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Eric C Porges
- Center for Cognitive Aging and Memory, Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| |
Collapse
|
3
|
Shen Y, Zhang X, Liu S, Xin L, Xuan W, Zhuang C, Chen Y, Chen B, Zheng X, Wu R, Lin Y. CEST imaging combined with 1H-MRS reveal the neuroprotective effects of riluzole by improving neurotransmitter imbalances in Alzheimer's disease mice. Alzheimers Res Ther 2025; 17:20. [PMID: 39806490 PMCID: PMC11726951 DOI: 10.1186/s13195-025-01672-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025]
Abstract
BACKGROUND The imbalance of glutamate (Glu) and gamma-aminobutyric acid (GABA) neurotransmitter system plays a crucial role in the pathogenesis of Alzheimer's disease (AD). Riluzole is a Glu modulator originally approved for amyotrophic lateral sclerosis that has shown potential neuroprotective effects in various neurodegenerative disorders. However, whether riluzole can improve Glu and GABA homeostasis in AD brain and its related mechanism of action remain unknown. This study utilized chemical exchange saturation transfer (CEST) imaging combined with proton magnetic resonance spectroscopy (1H-MRS) to monitor the dynamic changes of Glu and GABA in riluzole-treated AD mice, aiming to evaluate the efficacy and mechanism of riluzole in AD treatment. METHODS GluCEST, GABACEST and 1H-MRS were used to longitudinally monitor Glu and GABA levels in 3xTg AD mice treated with riluzole (12.5 mg/kg/day) or vehicle for 20 weeks. Magnetic resonance measurements were performed at baseline, 6, 12, and 20 weeks post-treatment. Cognitive performance was assessed using the Morris Water Maze (MWM) at baseline, 10, and 20 weeks. At the study endpoint, immunohistochemistry, Nissl staining, and Western blot were used to evaluate the brain pathology, neuronal survival, and protein expression. RESULTS GluCEST, GABACEST and 1H-MRS consistently revealed higher levels of Glu and GABA in the brain of riluzole-treated AD mice compared to untreated controls, which were associated with improvements in spatial learning and memory. The cognitive improvements significantly correlated with the increased GluCEST signals and Glu levels. Immunohistochemistry and Nissl staining demonstrated that riluzole treatment reduced amyloid-beta (Aβ) deposition, tau hyperphosphorylation, GFAP-positive astrocyte activation, and prevented neuronal loss. Moreover, riluzole upregulated the expression of excitatory amino acid transporter 2 (EAAT2), glutamic acid decarboxylase 65/67 (GAD65/67), and glutamine synthetase (GS), suggesting enhanced neurotransmitter metabolism. CONCLUSIONS CEST imaging combined with 1H-MRS demonstrated the effectiveness of riluzole in modulating Glu- and GABA-related changes and improving cognitive function in 3xTg AD mice, potentially through regulating key proteins involved in neurotransmitter metabolism. These findings suggest riluzole as a therapeutic agent for Alzheimer's disease and highlight the utility of multimodal MR imaging in monitoring treatment response and exploring disease mechanisms.
Collapse
Affiliation(s)
- Yuanyu Shen
- Radiology Department, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Xiaolei Zhang
- Radiology Department, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Siqi Liu
- Radiology Department, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Lijing Xin
- Center for Biomedical Imaging (CIBM), Lausanne, Switzerland
- Animal Imaging and Technology, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Physics (IPHYS), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Wentao Xuan
- Radiology Department, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Caiyu Zhuang
- Radiology Department, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Yue Chen
- Radiology Department, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Beibei Chen
- Radiology Department, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Xinhui Zheng
- Radiology Department, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Renhua Wu
- Radiology Department, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Yan Lin
- Radiology Department, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China.
| |
Collapse
|
4
|
Taube W, Lauber B. Changes in the cortical GABAergic inhibitory system with ageing and ageing-related neurodegenerative diseases. J Physiol 2024. [PMID: 39722574 DOI: 10.1113/jp285656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 12/04/2024] [Indexed: 12/28/2024] Open
Abstract
The human cortical inhibitory system is known to play a vital role for normal brain development, function, and plasticity. GABA is the most prominent inhibitory neurotransmitter in the CNS and is a key regulator not only for motor control and motor learning, but also for cognitive processes. With ageing and many neurodegenerative pathologies, a decline in GABAergic function in several cortical regions together with a reduced ability to task-specifically modulate and increase inhibition in the primary motor cortex has been observed. This decline in intracortical inhibition is associated with impaired motor control but also with diminished motor-cognitive (i.e. dual-tasking) and cognitive performance (e.g. executive functions). Furthermore, more general well-being such as sleep quality, stress resistance or non-specific pain perception are also associated with reduced GABA functioning. The current review highlights the interplay between changes in GABAergic function and changes in motor control, motor-cognitive and cognitive performance associated with healthy ageing, as well as in seniors with neurodegenerative diseases such as mild cognitive impairment. Furthermore, recent evidence highlighting the ability to up- or downregulate cortical inhibition by means of physical exercise programs is presented and discussed.
Collapse
Affiliation(s)
- Wolfgang Taube
- Department of Neuroscience and Movement Science, University of Fribourg, Fribourg, Switzerland
| | - Benedikt Lauber
- Department of Neuroscience and Movement Science, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
5
|
Chen MD, Deng CF, Chen PF, Li A, Wu HZ, Ouyang F, Hu XG, Liu JX, Wang SM, Tang D. Non-invasive metabolic biomarkers in initial cognitive impairment in patients with diabetes: A systematic review and meta-analysis. Diabetes Obes Metab 2024; 26:5519-5536. [PMID: 39233493 DOI: 10.1111/dom.15916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/05/2024] [Accepted: 08/15/2024] [Indexed: 09/06/2024]
Abstract
AIM Diabetic cognitive impairment (DCI), considered one of the most severe and commonly overlooked complications of diabetes, has shown inconsistent findings regarding the metabolic profiles in DCI patients. This systematic review and meta-analysis aimed to identify dysregulated metabolites as potential biomarkers for early DCI, providing valuable insights into the underlying pathophysiological mechanisms. MATERIALS AND METHODS A systematic search of four databases, namely PubMed, Embase, Web of Science and Cochrane, was conducted up to March 2024. Subsequently, a qualitative review of clinical studies was performed followed by a meta-analysis of metabolite markers. Finally, the sources of heterogeneity were explored through subgroup and sensitivity analyses. RESULTS A total of 774 unique publications involving 4357 participants and the identification of multiple metabolites were retrieved. Of these, 13 clinical studies reported metabolite differences between the DCI and control groups. Meta-analysis was conducted for six brain metabolites and two metabolite ratios. The results revealed a significant increase in myo-inositol (MI) concentration and decreases in glutamate (Glu), Glx (glutamate and glutamine) and N-acetylaspartate/creatine (NAA/Cr) ratios in DCI, which have been identified as the most sensitive metabolic biomarkers for evaluating DCI progression. Notably, brain metabolic changes associated with cognitive impairment are more pronounced in type 2 diabetes mellitus than in type 1 diabetes mellitus, and the hippocampus emerged as the most sensitive brain region regarding metabolic changes associated with DCI. CONCLUSIONS Our results suggest that MI, Glu, and Glx concentrations and NAA/Cr ratios within the hippocampus may serve as metabolic biomarkers for patients with early-stage DCI.
Collapse
Affiliation(s)
- Meng-Di Chen
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering and Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, China
| | - Chao-Fan Deng
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering and Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, China
| | - Peng-Fei Chen
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering and Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ao Li
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering and Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hua-Ze Wu
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering and Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, China
| | - Fan Ouyang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering and Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xu-Guang Hu
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering and Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jian-Xin Liu
- School of Pharmaceutical Sciences, China-Pakistan International Science and Technology Innovation Cooperation Base for Ethnic Medicine Development in Hunan Province, Hunan University of Medicine, Huaihua City, China
| | - Shu-Mei Wang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering and Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, China
| | - Dan Tang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering and Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
6
|
Fan X, Mao X, Yu P, Han D, Chen C, Wang H, Zhang X, Liu S, Chen W, Chen Z, Du X, Jin L, Song Y, Li H, Zhang N, Wu Y, Chang L, Wang C. Sleep disturbance impaired memory consolidation via lateralized disruption of metabolite in the thalamus and hippocampus: A cross-sectional proton magnetic resonance spectroscopy study. J Alzheimers Dis 2024; 102:1057-1073. [PMID: 39584303 DOI: 10.1177/13872877241295401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
BACKGROUND Memory consolidation in sleep-dependent individuals involves the circuitry connections of cortex, thalamus and hippocampus, regulating via neural metabolites. However, the disruption of metabolic pattern in thalamus and hippocampus remains unclear. OBJECTIVE We aim to explore the disruptive effects of insomnia on the metabolites during memory consolidation, particularly the underlying neurometabolic mechanisms in comorbidity of failed memory consolidation. METHODS This study integrates clinical research with animal experiment. In clinical research, 49 participants were divided into four groups: healthy controls (HC, n = 11), insomnia with normal cognition (IS, n = 14), mild cognitive impairment without insomnia (MCI, n = 10), and insomnia with mild cognitive impairment (IS-MCI, n = 14). Magnetic resonance spectroscopy (MRS) was used to evaluate the neural γ-aminobutyric acid (GABA) and glutamate-glutamine (Glx) in bilateral thalamus. In experimental studies, the rat model of sleep deprivation combined with amyloid-β (Aβ) injection was established, after behavior testing, the levels of Glx, choline (Cho) and N-acetyl aspartate (NAA) in the bilateral hippocampus were evaluated with MRS. RESULTS The patients in the IS-MCI group exhibited significantly lower GABA level than IS, MCI and HC groups. Results from rat studies showed that sleep deprivation exacerbated asymmetric alterations in Aβ-induced bilateral hippocampal metabolite abnormalities, which correlated with cognition. These neuro-metabolite disruption accompanied with synaptic loss and activation of astrocytes. CONCLUSIONS The lateralized decrease in GABA levels of thalamus and NAA, Cho, and Glx levels of hippocampus under conditions of sleep disturbance with cognitive decline may provide evidence for the neural metabolic mechanisms underlying the disruption of memory consolidation.
Collapse
Affiliation(s)
- Xiaowei Fan
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Beijing, China
| | - Xin Mao
- Department of Anatomy, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Ping Yu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Beijing, China
| | - Ding Han
- Department of Anatomy, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Chuxin Chen
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Beijing, China
| | - Hongqi Wang
- Department of Anatomy, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Xinyi Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Beijing, China
| | - Siyu Liu
- Department of Anatomy, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Weijing Chen
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Beijing, China
| | - Ziyan Chen
- Department of Anatomy, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Xiaoqiang Du
- Department of Anatomy, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Liangyun Jin
- Electron Microscope Room of Central Laboratory, Capital Medical University, Beijing, China
| | - Yizhi Song
- Department of Anatomy, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Hui Li
- Department of Anatomy, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Ning Zhang
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Beijing, China
- Department of Neuropsychiatry and Behavioral Neurology and Clinical Psychology, Capital Medical University, Beijing, China
| | - Yan Wu
- Department of Anatomy, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Lirong Chang
- Department of Anatomy, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Chunxue Wang
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Beijing, China
- Department of Neuropsychiatry and Behavioral Neurology and Clinical Psychology, Capital Medical University, Beijing, China
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Choles CM, Archibald J, Ortiz O, MacMillan EL, Zölch N, Kramer JLK. Regional variations in cingulate cortex glutamate levels: a magnetic resonance spectroscopy study at 3 T. J Neurophysiol 2024; 132:1520-1529. [PMID: 39412567 DOI: 10.1152/jn.00139.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/22/2024] [Accepted: 10/09/2024] [Indexed: 11/13/2024] Open
Abstract
Regional variations in glutamate levels across the cingulate cortex, decreasing rostral to caudal, have been observed previously in healthy volunteers with proton magnetic resonance spectroscopy (1H-MRS) at 7 T. This study sought to explore cingulate cortex glutamate trends further by investigating whether a similar gradient could be detected at 3 T, the effect of sex, as well as whether individual variations gave rise to more than one regional glutamate pattern. 1H-MRS at 3 T [Phillips Elition; semi-localization by adiabatic selective refocusing, echo time (TE)/repetition time (TR) = 32/5,000] was acquired in four cingulate regions: the anterior, midanterior, midposterior, and posterior cortices, in 50 healthy participants (26 F) scanned at a fixed time of day and with controlled food intake. K-means clustering was used to characterize the presence of distinct regional patterns, which were then compared between sex and clusters. In addition, cortical thickness was compared between clusters and in relation to glutamate. Aligned with 7 T findings, we demonstrated that average glutamate levels decreased rostral to caudal in the healthy cingulate cortex. No effect of sex was found, suggesting similar resting glutamate levels in both sexes. Interestingly, the majority of participants were characterized by glutamate levels that did not significantly change across the cingulate (65%). Different regional patterns in cortical thickness between clusters offer further evidence into these distinct glutamate variations and suggest that both a neuroanatomical and a functional role may lead to these findings. This study provides a much-needed foundation for further research to determine the implications of neurotransmission patterns in health and disease.NEW & NOTEWORTHY In a large, sex-balanced sample of healthy individuals, we demonstrate that average regional differences (rostral to caudal) in cingulate cortex glutamate exist, using optimized experimental conditions and 3 T magnetic resonance spectroscopy techniques. Results align with observations from 7 T. A novel clustering approach was introduced to determine the number of patterns for glutamate in the healthy adult brain for the first time. These findings demonstrate that regional differences are detectable at 3 T when present and suggest the occurrence of multiple glutamate metabolism patterns in the cingulate.
Collapse
Affiliation(s)
- Cassandra M Choles
- International Collaboration on Repair Discoveries (ICORD), Vancouver, British Columbia, Canada
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jessica Archibald
- International Collaboration on Repair Discoveries (ICORD), Vancouver, British Columbia, Canada
- Department of Experimental Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Oscar Ortiz
- International Collaboration on Repair Discoveries (ICORD), Vancouver, British Columbia, Canada
| | - Erin L MacMillan
- Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada
- UBC MRI Research Centre, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Center for Brain Health (DMCH), University of British Columbia, Vancouver, British Columbia, Canada
| | - Niklaus Zölch
- Institute of Forensic Medicine, Universität Zürich, Zürich, Switzerland
| | - John L K Kramer
- International Collaboration on Repair Discoveries (ICORD), Vancouver, British Columbia, Canada
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Center for Brain Health (DMCH), University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
8
|
Davies-Jenkins CW, Workman CI, Hupfeld KE, Zöllner HJ, Leoutsakos JM, Kraut MA, Barker PB, Smith GS, Oeltzschner G. Multimodal investigation of neuropathology and neurometabolites in mild cognitive impairment and late-life depression with 11C-PiB beta-amyloid PET and 7T magnetic resonance spectroscopy. Neurobiol Aging 2024; 142:27-40. [PMID: 39111221 PMCID: PMC11916921 DOI: 10.1016/j.neurobiolaging.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 09/02/2024]
Abstract
Positron emission tomography (PET) and magnetic resonance spectroscopy (1H-MRS) are complementary techniques that can be applied to study how proteinopathy and neurometabolism relate to cognitive deficits in preclinical stages of Alzheimer's disease (AD)-mild cognitive impairment (MCI) and late-life depression (LLD). We acquired beta-amyloid (Aβ) PET and 7 T 1H-MRS measures of GABA, glutamate, glutathione, N-acetylaspartate, N-acetylaspartylglutamate, myo-inositol, choline, and lactate in the anterior and posterior cingulate cortices (ACC, PCC) in 13 MCI and 9 LLD patients, and 13 controls. We used linear regression to examine associations between metabolites, Aβ, and cognitive scores, and whether metabolites and Aβ explained cognitive scores better than Aβ alone. In the ACC, higher Aβ was associated with lower GABA in controls but not MCI or LLD patients, but results depended upon MRS data quality control criteria. Greater variance in California Verbal Learning Test scores was better explained by a model that combined ACC glutamate and Aβ deposition than by models that only included one of these variables. These findings identify preliminary associations between Aβ, neurometabolites, and cognition.
Collapse
Affiliation(s)
- Christopher W Davies-Jenkins
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Clifford I Workman
- Division of Geriatric Psychiatry and Neuropsychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Division of Nuclear Medicine and Molecular Imaging, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kathleen E Hupfeld
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Helge J Zöllner
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Jeannie-Marie Leoutsakos
- Division of Geriatric Psychiatry and Neuropsychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Michael A Kraut
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter B Barker
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Gwenn S Smith
- Division of Geriatric Psychiatry and Neuropsychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Division of Nuclear Medicine and Molecular Imaging, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Georg Oeltzschner
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| |
Collapse
|
9
|
Hu J, Zhang M, Zhang Y, Zhuang H, Zhao Y, Li Y, Jin W, Qian X, Wang L, Ye G, Tang H, Liu J, Li B, Nachev P, Liang Z, Li Y. Neurometabolic topography and associations with cognition in Alzheimer's disease: A whole-brain high-resolution 3D MRSI study. Alzheimers Dement 2024; 20:6407-6422. [PMID: 39073196 PMCID: PMC11497670 DOI: 10.1002/alz.14137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/29/2024] [Accepted: 06/22/2024] [Indexed: 07/30/2024]
Abstract
INTRODUCTION Altered neurometabolism, detectable via proton magnetic resonance spectroscopic imaging (1H-MRSI), is spatially heterogeneous and underpins cognitive impairments in Alzheimer's disease (AD). However, the spatial relationships between neurometabolic topography and cognitive impairment in AD remain unexplored due to technical limitations. METHODS We used a novel whole-brain high-resolution 1H-MRSI technique, with simultaneously acquired 18F-florbetapir positron emission tomography (PET) imaging, to investigate the relationship between neurometabolic topography and cognitive functions in 117 participants, including 22 prodromal AD, 51 AD dementia, and 44 controls. RESULTS Prodromal AD and AD dementia patients exhibited spatially distinct reductions in N-acetylaspartate, and increases in myo-inositol. Reduced N-acetylaspartate and increased myo-inositol were associated with worse global cognitive performance, and N-acetylaspartate correlated with five specific cognitive scores. Neurometabolic topography provides biological insights into diverse cognitive dysfunctions. DISCUSSION Whole-brain high-resolution 1H-MRSI revealed spatially distinct neurometabolic topographies associated with cognitive decline in AD, suggesting potential for noninvasive brain metabolic imaging to track AD progression. HIGHLIGHTS Whole-brain high-resolution 1H-MRSI unveils neurometabolic topography in AD. Spatially distinct reductions in NAA, and increases in mI, are demonstrated. NAA and mI topography correlates with global cognitive performance. NAA topography correlates with specific cognitive performance.
Collapse
Affiliation(s)
- Jialin Hu
- National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy, School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
| | - Miao Zhang
- Department of Nuclear MedicineRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yaoyu Zhang
- National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy, School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
| | - Huixiang Zhuang
- National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy, School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
| | - Yibo Zhao
- Beckman Institute for Advanced Science and TechnologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
- Department of Electrical and Computer EngineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| | - Yudu Li
- Beckman Institute for Advanced Science and TechnologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
- National Center for Supercomputing ApplicationsUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| | - Wen Jin
- Beckman Institute for Advanced Science and TechnologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
- Department of Electrical and Computer EngineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| | - Xiao‐Hang Qian
- Department of GeriatricsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Medical Center on Aging of Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Department of Neurology and Institute of NeurologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Lijun Wang
- Department of Neurovascular CenterChanghai HospitalNaval Medical UniversityShanghaiChina
| | - Guanyu Ye
- Department of Neurology and Institute of NeurologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Huidong Tang
- Department of GeriatricsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Medical Center on Aging of Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jun Liu
- Department of Neurology and Institute of NeurologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Biao Li
- Department of Nuclear MedicineRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Parashkev Nachev
- High‐Dimensional Neurology GroupInstitute of NeurologyUniversity College LondonLondonUK
| | - Zhi‐Pei Liang
- Beckman Institute for Advanced Science and TechnologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
- Department of Electrical and Computer EngineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| | - Yao Li
- National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy, School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
- Institute of Medical RoboticsShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
10
|
Collée M, Rajkumar R, Farrher E, Hagen J, Ramkiran S, Schnellbächer GJ, Khudeish N, Shah NJ, Veselinović T, Neuner I. Predicting performance in attention by measuring key metabolites in the PCC with 7T MRS. Sci Rep 2024; 14:17099. [PMID: 39048626 PMCID: PMC11269673 DOI: 10.1038/s41598-024-67866-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 07/16/2024] [Indexed: 07/27/2024] Open
Abstract
The posterior cingulate cortex (PCC) is a key hub of the default mode network and is known to play an important role in attention. Using ultra-high field 7 Tesla magnetic resonance spectroscopy (MRS) to quantify neurometabolite concentrations, this exploratory study investigated the effect of the concentrations of myo-inositol (Myo-Ins), glutamate (Glu), glutamine (Gln), aspartate or aspartic acid (Asp) and gamma-amino-butyric acid (GABA) in the PCC on attention in forty-six healthy participants. Each participant underwent an MRS scan and cognitive testing, consisting of a trail-making test (TMT A/B) and a test of attentional performance. After a multiple regression analysis and bootstrapping for correction, the findings show that Myo-Ins and Asp significantly influence (p < 0.05) attentional tasks. On one hand, Myo-Ins shows it can improve the completion times of both TMT A and TMT B. On the other hand, an increase in aspartate leads to more mistakes in Go/No-go tasks and shows a trend towards enhancing reaction time in Go/No-go tasks and stability of alertness without signal. No significant (p > 0.05) influence of Glu, Gln and GABA was observed.
Collapse
Affiliation(s)
- M Collée
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - R Rajkumar
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
- JARA - BRAIN - Translational Medicine, Aachen, Germany
| | - E Farrher
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - J Hagen
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - S Ramkiran
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - G J Schnellbächer
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - N Khudeish
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - N J Shah
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
- JARA - BRAIN - Translational Medicine, Aachen, Germany
- Institute of Neuroscience and Medicine 11, INM-11, Forschungszentrum Jülich, Jülich, Germany
- Department of Neurology, RWTH Aachen University, Aachen, Germany
| | - T Veselinović
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
- JARA - BRAIN - Translational Medicine, Aachen, Germany
| | - I Neuner
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany.
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.
- JARA - BRAIN - Translational Medicine, Aachen, Germany.
| |
Collapse
|
11
|
Huang M, Yu H, Lyu X, Pu W, Yin J, Gao B. Region-specific Cerebral Metabolic Alterations in Parkinson's Disease Patients With/without Mild Cognitive Impairment. Neuroscience 2024; 551:254-261. [PMID: 38848776 DOI: 10.1016/j.neuroscience.2024.05.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/09/2024]
Abstract
N-acetylaspartate (NAA), choline (Cho) and creatine (Cr) are brain metabolites involved in some key neuronal functions within the brain, such as cognitive function. The aim of this study was to investigate whether Parkinson's disease (PD) with different cognitive status induces regional brain metabolite differences. 38 diagnosed PD patients, including 18 PD patients with normal cognitive (PDN), 20 PD subjects with cognitive impairment (PDMCI) and 25 healthy controls (HC) participated in this study. All subjects underwent a single-voxel proton MR spectroscopy (1H-MRS) on a 3T scanner. 1H-MRS were obtained from bilateral PCC, left thalamus and PFC regions in all subjects, respectively. Region-specific cerebral metabolic alterations existed in PD patients with different cognitive status. PDMCI patients showed a significant reduction of NAA, Cho and tCr in the PCC and left thalamus, compared to healthy controls; whereas lower levels of NAA and Cho in thalamus were found in PDN patients. Moreover, Cho and tCr levels were positively correlated with MMSE scores. Both NAA and tCr in PCC levels were positively correlated with MMSE and MoCA scores. The combination of thalamic and PCC metabolites showed a 75.6% accuracy in distinguishing PDMCI patients from PDN patients. This study provides preliminary evidence that thalamic, PCC and PFC neurometabolic alterations occur in PD patients with cognition decline. Findings of this study indicate that NAA and tCr abnormalities in PCC and thalamus might be used as a biomarker to track cognitive decline in Parkinson's disease in clinical settings.
Collapse
Affiliation(s)
- Mingming Huang
- Department of Radiology, Affiliated Hospital of Guizhou Medical University, Guiyang, China; Key Laboratory of Brain Imaging, Guizhou Medical University, Guiyang, China.
| | - Hui Yu
- Department of Radiology, Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Xinyue Lyu
- Department of Radiology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Wei Pu
- Department of Radiology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jianhong Yin
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Bo Gao
- Department of Radiology, Affiliated Hospital of Guizhou Medical University, Guiyang, China; Key Laboratory of Brain Imaging, Guizhou Medical University, Guiyang, China.
| |
Collapse
|
12
|
Hu X, Pan K, Zhao M, Lv J, Wang J, Zhang X, Liu Y, Song Y, Gudmundson AT, Edden RA, Ren F, Zhang T, Gao F. Brain extended and closed forms glutathione levels decrease with age and extended glutathione is associated with visuospatial memory. Neuroimage 2024; 293:120632. [PMID: 38701994 PMCID: PMC11315812 DOI: 10.1016/j.neuroimage.2024.120632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 04/28/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024] Open
Abstract
During aging, the brain is subject to greater oxidative stress (OS), which is thought to play a critical role in cognitive impairment. Glutathione (GSH), as a major antioxidant in the brain, can be used to combat OS. However, how brain GSH levels vary with age and their associations with cognitive function is unclear. In this study, we combined point-resolved spectroscopy and edited spectroscopy sequences to investigate extended and closed forms GSH levels in the anterior cingulate cortex (ACC), posterior cingulate cortex (PCC), and occipital cortex (OC) of 276 healthy participants (extended form, 166 females, age range 20-70 years) and 15 healthy participants (closed form, 7 females, age range 26-56 years), and examined their relationships with age and cognitive function. The results revealed decreased extended form GSH levels with age in the PCC among 276 participants. Notably, the timecourse of extended form GSH level changes in the PCC and ACC differed between males and females. Additionally, positive correlations were observed between extended form GSH levels in the PCC and OC and visuospatial memory. Additionally, a decreased trend of closed form GSH levels with age was also observed in the PCC among 15 participants. Taken together, these findings enhance our understanding of the brain both closed and extended form GSH time course during normal aging and associations with sex and memory, which is an essential first step for understanding the neurochemical underpinnings of healthy aging.
Collapse
Affiliation(s)
- Xin Hu
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jing-wu Road No. 324, Jinan 250021, China
| | - Keyu Pan
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Min Zhao
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jing-wu Road No. 324, Jinan 250021, China
| | - Jiali Lv
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Jing Wang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jing-wu Road No. 324, Jinan 250021, China
| | - Xiaofeng Zhang
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yuxi Liu
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jing-wu Road No. 324, Jinan 250021, China
| | - Yulu Song
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Aaron T. Gudmundson
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Richard A.E. Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Fuxin Ren
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jing-wu Road No. 324, Jinan 250021, China
| | - Tao Zhang
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Fei Gao
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jing-wu Road No. 324, Jinan 250021, China
| |
Collapse
|
13
|
Wiseman RL, Bigos KL, Dastgheyb RM, Barker PB, Rubin LH, Slusher BS. Brain N -acetyl-aspartyl-glutamate is associated with cognitive function in older virally suppressed people with HIV. AIDS 2024; 38:1003-1011. [PMID: 38411600 PMCID: PMC11062820 DOI: 10.1097/qad.0000000000003871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 02/05/2024] [Accepted: 02/14/2024] [Indexed: 02/28/2024]
Abstract
OBJECTIVES Cognitive impairment persists in virally suppressed people with HIV (VS-PWH) especially in higher order domains. One cortical circuit, linked to these domains, is regulated by N -acetyl-aspartyl glutamate (NAAG), the endogenous agonist of the metabotropic glutamate receptor 3. The enzyme glutamate carboxypeptidase II (GCPII) catabolizes NAAG and is upregulated in aging and disease. Inhibition of GCPII increases brain NAAG and improves learning and memory in rodent and primate models. DESIGN As higher order cognitive impairment is present in VS-PWH, and NAAG has not been investigated in earlier magnetic resonance spectroscopy studies (MRS), we investigated if brain NAAG levels measured by MRS were associated with cognitive function. METHODS We conducted a retrospective analysis of 7-Tesla MRS data from a previously published study on cognition in older VS-PWH. The original study did not separately quantify NAAG, therefore, work for this report focused on relationships between regional NAAG levels in frontal white matter (FWM), left hippocampus, left basal ganglia and domain-specific cognitive performance in 40 VS-PWH after adjusting for confounds. Participants were older than 50 years, negative for affective and neurologic disorders, and had no prior 3-month psychoactive-substance use. RESULTS Higher NAAG levels in FWM were associated with better attention/working memory. Higher left basal ganglia NAAG related to better verbal fluency. There was a positive relationship between hippocampal NAAG and executive function which lost significance after correction for confounds. CONCLUSION These data suggest brain NAAG serves as a biomarker of cognition in VS-PWH. Pharmacological modulation of brain NAAG warrants investigation as a therapeutic approach for cognitive deficits in VS-PWH.
Collapse
Affiliation(s)
- Robyn L. Wiseman
- Department of Pharmacology and Molecular Sciences
- Johns Hopkins Drug Discovery
- Department of Medicine, Division of Clinical Pharmacology
| | - Kristin L. Bigos
- Department of Pharmacology and Molecular Sciences
- Department of Medicine, Division of Clinical Pharmacology
- Department of Psychiatry and Behavioral Sciences
| | | | - Peter B. Barker
- Russell H. Morgan Department of Radiology and Radiological Sciences
| | - Leah H. Rubin
- Department of Psychiatry and Behavioral Sciences
- Department of Neurology
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health
| | - Barbara S. Slusher
- Department of Pharmacology and Molecular Sciences
- Johns Hopkins Drug Discovery
- Department of Medicine, Division of Clinical Pharmacology
- Department of Psychiatry and Behavioral Sciences
- Department of Neurology
- Department of Oncology
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
14
|
Dounavi ME, McKiernan E, Langsen M, Gregory S, Muniz-Terrera G, Prats-Sedano MA, Mada MO, Williams GB, Lawlor B, Naci L, Mackay C, Koychev I, Malhotra P, Ritchie K, Ritchie CW, Su L, Waldman AD, O’ Brien JT. Investigating the brain's neurochemical profile at midlife in relation to dementia risk factors. Brain Commun 2024; 6:fcae138. [PMID: 38779354 PMCID: PMC11109818 DOI: 10.1093/braincomms/fcae138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 01/18/2024] [Accepted: 04/15/2024] [Indexed: 05/25/2024] Open
Abstract
Changes in the brain's physiology in Alzheimer's disease are thought to occur early in the disease's trajectory. In this study our aim was to investigate the brain's neurochemical profile in a midlife cohort in relation to risk factors for future dementia using single voxel proton magnetic resonance spectroscopy. Participants in the multi-site PREVENT-Dementia study (age range 40-59 year old) underwent 3T magnetic resonance spectroscopy with the spectroscopy voxel placed in the posterior cingulate/precuneus region. Using LCModel, we quantified the absolute concentrations of myo-inositol, total N-acetylaspartate, total creatine, choline, glutathione and glutamate-glutamine for 406 participants (mean age 51.1; 65.3% female). Underlying partial volume effects were accounted for by applying a correction for the presence of cerebrospinal fluid in the magnetic resonance spectroscopy voxel. We investigated how metabolite concentrations related to apolipoprotein ɛ4 genotype, dementia family history, a risk score (Cardiovascular Risk Factors, Aging and Incidence of Dementia -CAIDE) for future dementia including non-modifiable and potentially-modifiable factors and dietary patterns (adherence to Mediterranean diet). Dementia family history was associated with decreased total N-acetylaspartate and no differences were found between apolipoprotein ɛ4 carriers and non-carriers. A higher Cardiovascular Risk Factors, Aging, and Incidence of Dementia score related to higher myo-inositol, choline, total creatine and glutamate-glutamine, an effect which was mainly driven by older age and a higher body mass index. Greater adherence to the Mediterranean diet was associated with lower choline, myo-inositol and total creatine; these effects did not survive correction for multiple comparisons. The observed associations suggest that at midlife the brain demonstrates subtle neurochemical changes in relation to both inherited and potentially modifiable risk factors for future dementia.
Collapse
Affiliation(s)
- Maria-Eleni Dounavi
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0SP, UK
| | - Elizabeth McKiernan
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0SP, UK
| | - Michael Langsen
- Center for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Sarah Gregory
- Centre for Dementia Prevention, University of Edinburgh, Edinburgh, EH16 4UX, UK
| | - Graciela Muniz-Terrera
- Centre for Dementia Prevention, University of Edinburgh, Edinburgh, EH16 4UX, UK
- Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | | | - Marius Ovidiu Mada
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, CB2 7EF, UK
| | - Guy B Williams
- Department of Clinical Neurosciences and Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Brian Lawlor
- Institute of Neuroscience, Trinity College Dublin, University of Dublin, Dublin, D02 PX31, Ireland
| | - Lorina Naci
- Institute of Neuroscience, Trinity College Dublin, University of Dublin, Dublin, D02 PX31, Ireland
| | - Clare Mackay
- Department of Psychiatry, Oxford University, Oxford, OX3 7JX, UK
| | - Ivan Koychev
- Department of Psychiatry, Oxford University, Oxford, OX3 7JX, UK
| | - Paresh Malhotra
- Department of Brain Sciences, Imperial College Healthcare NHS Trust, London, W12 0NN, UK
| | - Karen Ritchie
- INM, Univ Montpellier, INSERM, Montpellier, 34090, France
| | - Craig W Ritchie
- Centre for Dementia Prevention, University of Edinburgh, Edinburgh, EH16 4UX, UK
| | - Li Su
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0SP, UK
- Sheffield Institute of Translational Neuroscience, University of Sheffield, Sheffield, S10 2HQ, UK
| | - Adam D Waldman
- Center for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
- Department of Brain Sciences, Imperial College Healthcare NHS Trust, London, W12 0NN, UK
| | - John T O’ Brien
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0SP, UK
| |
Collapse
|
15
|
Schreiner SJ, Van Bergen JMG, Gietl AF, Buck A, Hock C, Pruessmann KP, Henning A, Unschuld PG. Gray matter gamma-hydroxy-butyric acid and glutamate reflect beta-amyloid burden at old age. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2024; 16:e12587. [PMID: 38690510 PMCID: PMC11058481 DOI: 10.1002/dad2.12587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/05/2024] [Accepted: 03/10/2024] [Indexed: 05/02/2024]
Abstract
Gamma-hydroxy-butyric acid (GABA) and glutamate are neurotransmitters with essential importance for cognitive processing. Here, we investigate relationships between GABA, glutamate, and brain ß-amyloid (Aß) burden before clinical manifestation of Alzheimer's disease (AD). Thirty cognitively healthy adults (age 69.9 ± 6 years) received high-resolution atlas-based 1H-magnetic resonance spectroscopic imaging (MRSI) at ultra-high magnetic field strength of 7 Tesla for gray matter-specific assessment of GABA and glutamate. We assessed Aß burden with positron emission tomography and risk factors for AD. Higher gray matter GABA and glutamate related to higher Aß-burden (ß = 0.60, p < 0.05; ß = 0.64, p < 0.02), with positive effect modification by apolipoprotein-E-epsilon-4-allele (APOE4) (p = 0.01-0.03). GABA and glutamate negatively related to longitudinal change in verbal episodic memory performance (ß = -0.48; p = 0.02; ß = -0.50; p = 0.01). In vivo measures of GABA and glutamate reflect early AD pathology at old age, in an APOE4-dependent manner. GABA and glutamate may represent promising biomarkers and potential targets for early therapeutic intervention and prevention. Highlights Gray matter-specific metabolic imaging with high-resolution atlas-based MRSI at 7 Tesla.Higher GABA and glutamate relate to ß-amyloid burden, in an APOE4-dependent manner.Gray matter GABA and glutamate identify older adults with high risk of future AD.GABA and glutamate might reflect altered synaptic and neuronal activity at early AD.
Collapse
Affiliation(s)
- Simon J. Schreiner
- Institute for Regenerative MedicineUniversity of ZurichZurichSwitzerland
- Department of Psychogeriatric MedicinePsychiatric University Hospital Zurich (PUK)ZurichSwitzerland
- Department of NeurologyUniversity Hospital Zurich and University of ZurichZurichSwitzerland
| | | | - Anton F. Gietl
- Institute for Regenerative MedicineUniversity of ZurichZurichSwitzerland
- Department of Psychogeriatric MedicinePsychiatric University Hospital Zurich (PUK)ZurichSwitzerland
| | - Alfred Buck
- Department of Nuclear MedicineUniversity Hospital Zurich and University of ZurichZurichSwitzerland
| | - Christoph Hock
- Institute for Regenerative MedicineUniversity of ZurichZurichSwitzerland
- NeurimmuneSchlierenSwitzerland
| | - Klaas P. Pruessmann
- Institute for Biomedical EngineeringUniversity of Zurich and ETH ZurichZurichSwitzerland
| | - Anke Henning
- Institute for Biomedical EngineeringUniversity of Zurich and ETH ZurichZurichSwitzerland
- High‐Field MR CenterMax Planck Institute for Biological CyberneticsTübingenGermany
- Advanced Imaging Research CenterUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Paul G. Unschuld
- Geriatric Psychiatry ServiceUniversity Hospitals of Geneva (HUG)ThônexSwitzerland
- Department of PsychiatryUniversity of Geneva (UniGE)GenevaSwitzerland
| |
Collapse
|
16
|
Hupfeld KE, Zöllner HJ, Hui SCN, Song Y, Murali-Manohar S, Yedavalli V, Oeltzschner G, Prisciandaro JJ, Edden RAE. Impact of acquisition and modeling parameters on the test-retest reproducibility of edited GABA. NMR IN BIOMEDICINE 2024; 37:e5076. [PMID: 38091628 PMCID: PMC10947947 DOI: 10.1002/nbm.5076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 12/26/2023]
Abstract
Literature values vary widely for within-subject test-retest reproducibility of gamma-aminobutyric acid (GABA) measured with edited magnetic resonance spectroscopy (MRS). Reasons for this variation remain unclear. Here, we tested whether three acquisition parameters-(1) sequence complexity (two-experiment MEscher-GArwood Point RESolved Spectroscopy [MEGA-PRESS] vs. four-experiment Hadamard Encoding and Reconstruction of MEGA-Edited Spectroscopy [HERMES]); (2) editing pulse duration (14 vs. 20 ms); and (3) scanner frequency drift (interleaved water referencing [IWR] turned ON vs. OFF)-and two linear combination modeling variations-(1) three different coedited macromolecule models (called "1to1GABA", "1to1GABAsoft", and "3to2MM" in the Osprey software package); and (2) 0.55- versus 0.4-ppm spline baseline knot spacing-affected the within-subject coefficient of variation of GABA + macromolecules (GABA+). We collected edited MRS data from the dorsal anterior cingulate cortex from 20 participants (mean age: 30.8 ± 9.5 years; 10 males). Test and retest scans were separated by removing the participant from the scanner for 5-10 min. Each acquisition consisted of two MEGA-PRESS and two HERMES sequences with editing pulse durations of 14 and 20 ms (referred to here as MEGA-14, MEGA-20, HERMES-14, and HERMES-20; all TE = 80 ms, 224 averages). We identified the best test-retest reproducibility following postprocessing with a composite model of the 0.9- and 3-ppm macromolecules ("3to2MM"); this model performed particularly well for the HERMES data. Furthermore, sparser (0.55- compared with 0.4-ppm) spline baseline knot spacing yielded generally better test-retest reproducibility for GABA+. Replicating our prior results, linear combination modeling in Osprey compared with simple peak fitting in Gannet resulted in substantially better test-retest reproducibility. However, reproducibility did not consistently differ for MEGA-PRESS compared with HERMES, for 14- compared with 20-ms editing pulses, or for IWR-ON versus IWR-OFF. These results highlight the importance of model selection for edited MRS studies of GABA+, particularly for clinical studies that focus on individual patient differences in GABA+ or changes following an intervention.
Collapse
Affiliation(s)
- Kathleen E Hupfeld
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Helge J Zöllner
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Steve C N Hui
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Yulu Song
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Saipavitra Murali-Manohar
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Vivek Yedavalli
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Georg Oeltzschner
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - James J Prisciandaro
- Department of Psychiatry and Behavioral Sciences, Addiction Sciences Division, Center for Biomedical Imaging, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| |
Collapse
|
17
|
Shahid SS, Dzemidzic M, Butch ER, Jarvis EE, Snyder SE, Wu YC. Estimating the synaptic density deficit in Alzheimer's disease using multi-contrast CEST imaging. PLoS One 2024; 19:e0299961. [PMID: 38483851 PMCID: PMC10939256 DOI: 10.1371/journal.pone.0299961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/12/2024] [Indexed: 03/17/2024] Open
Abstract
In vivo noninvasive imaging of neurometabolites is crucial to improve our understanding of the underlying pathophysiological mechanism in neurodegenerative diseases. Abnormal changes in synaptic organization leading to synaptic degradation and neuronal loss is considered as one of the primary factors driving Alzheimer's disease pathology. Magnetic resonance based molecular imaging techniques such as chemical exchange saturation transfer (CEST) and magnetic resonance spectroscopy (MRS) can provide neurometabolite specific information which may relate to underlying pathological and compensatory mechanisms. In this study, CEST and short echo time single voxel MRS was performed to evaluate the sensitivity of cerebral metabolites to beta-amyloid (Aβ) induced synaptic deficit in the hippocampus of a mouse model of Alzheimer's disease. The CEST based spectra (Z-spectra) were acquired on a 9.4 Tesla small animal MR imaging system with two radiofrequency (RF) saturation amplitudes (1.47 μT and 5.9 μT) to obtain creatine-weighted and glutamate-weighted CEST contrasts, respectively. Multi-pool Lorentzian fitting and quantitative T1 longitudinal relaxation maps were used to obtain metabolic specific apparent exchange-dependent relaxation (AREX) maps. Short echo time (TE = 12 ms) single voxel MRS was acquired to quantify multiple neurometabolites from the right hippocampus region. AREX contrasts and MRS based metabolite concentration levels were examined in the ARTE10 animal model for Alzheimer's disease and their wild type (WT) littermate counterparts (age = 10 months). Using MRS voxel as a region of interest, group-wise analysis showed significant reduction in Glu-AREX and Cr-AREX in ARTE10, compared to WT animals. The MRS based results in the ARTE10 mice showed significant decrease in glutamate (Glu) and glutamate-total creatine (Glu/tCr) ratio, compared to WT animals. The MRS results also showed significant increase in total creatine (tCr), phosphocreatine (PCr) and glutathione (GSH) concentration levels in ARTE10, compared to WT animals. In the same ROI, Glu-AREX and Cr-AREX demonstrated positive associations with Glu/tCr ratio. These results indicate the involvement of neurotransmitter metabolites and energy metabolism in Aβ-mediated synaptic degradation in the hippocampus region. The study also highlights the feasibility of CEST and MRS to identify and track multiple competing and compensatory mechanisms involved in heterogeneous pathophysiology of Alzheimer's disease in vivo.
Collapse
Affiliation(s)
- Syed Salman Shahid
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Mario Dzemidzic
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Elizabeth R. Butch
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Erin E. Jarvis
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States of America
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Scott E. Snyder
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Yu-Chien Wu
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States of America
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States of America
- Weldon School of Biomedical Engineering at Purdue University, West Lafayette, IN, United States of America
| |
Collapse
|
18
|
Fu X, Sun P, Zhang X, Zhu D, Qin Q, Lu J, Wang J. GABA in the anterior cingulate cortex mediates the association of white matter hyperintensities with executive function: a magnetic resonance spectroscopy study. Aging (Albany NY) 2024; 16:4282-4298. [PMID: 38441529 PMCID: PMC10968699 DOI: 10.18632/aging.205585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/24/2024] [Indexed: 03/22/2024]
Abstract
White matter hyperintensities (WMH) and gamma-aminobutyric acid (GABA) are associated with executive function. Multiple studies suggested cortical alterations mediate WMH-related cognitive decline. The aim of this study was to investigate the crucial role of cortical GABA in the WMH patients. In the 87 WMH patients (46 mild and 41 moderate to severe) examined in this study, GABA levels in the anterior cingulate cortex (ACC) and posterior cingulate cortex (PCC) assessed by the Meshcher-Garwood point resolved spectroscopy (MEGA-PRESS) sequence, WMH volume and executive function were compared between the two groups. Partial correlation and mediation analyses were carried out to examine the GABA levels in mediating the association between WMH volume and executive function. Patients with moderate to severe WMH had lower GABA+/Cr in the ACC (p = 0.034) and worse executive function (p = 0.004) than mild WMH patients. In all WMH cases, the GABA+/Cr levels in the ACC mediated the negative correlation between WMH and executive function (ab: effect = -0.020, BootSE = 0.010, 95% CI: -0.042 to -0.004). This finding suggested GABA+/Cr levels in the ACC might serve as a protective factor or potential target for preventing the occurrence and progression of executive function decline in WMH people.
Collapse
Affiliation(s)
- Xiaona Fu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430030, China
| | - Peng Sun
- Clinical and Technical Support, Philips Healthcare, Beijing 100600, China
| | - Xinli Zhang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430030, China
| | - Dongyong Zhu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430030, China
| | - Qian Qin
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430030, China
| | - Jue Lu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430030, China
| | - Jing Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430030, China
| |
Collapse
|
19
|
Velu L, Pellerin L, Julian A, Paccalin M, Giraud C, Fayolle P, Guillevin R, Guillevin C. Early rise of glutamate-glutamine levels in mild cognitive impairment: Evidence for emerging excitotoxicity. J Neuroradiol 2024; 51:168-175. [PMID: 37777087 DOI: 10.1016/j.neurad.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 09/16/2023] [Accepted: 09/24/2023] [Indexed: 10/02/2023]
Abstract
BACKGROUND Use proton magnetic resonance spectroscopy (1H-MRS) non invasive technique to assess the modifications of glutamate-glutamine (Glx) and gammaaminobutyric acid (GABA) brain levels in patients reporting a cognitive complain METHODS: Posterior cingular cortex 1H-MRS spectra of 46 patients (19 male, 27 female) aged 57 to 87 years (mean : 73.32 ± 7.33 years) with a cognitive complaint were examined with a MEGA PRESS sequence at 3T, and compounds Glutamateglutamine (Glx), GABA, Creatine (Cr) and NAA were measured. From this data the metabolite ratios Glx/Cr, GABA/Cr and NAA/Cr were calculated. In addition, all patient performed the Mini Mental State Evaluation (MMSE) and 2 groups were realized with the clinical threshold of 24. RESULTS 16 patients with MMSE 〈 24 and 30 patients with MMSE 〉 24. Significant increase of Glx/Cr in PCC of patients with MMSE 〈 24 compared to patients with MMSE 〉 24. Moreover, GABA/Cr ratio exhibited a trend for a decrease in PCC between the two groups, while they showed a significant decrease NAA/Cr ratio. CONCLUSION Our results concerning Glx are in agreement with a physiopathological hypothesis involving a biphasic variation of glutamate levels associated with excitotoxicity, correlated with the clinical evolution of the disease. These observations suggest that MRS assessment of glutamate levels could be helpful for both diagnosis and classification of cognitive impairment in stage.
Collapse
Affiliation(s)
- Laura Velu
- University Hospital center of Poitiers, Department of Imaging, France
| | - Luc Pellerin
- University of Poitiers and University Hospital center of Poitiers, France
| | - Adrien Julian
- University Hospital Center of Poitiers, Department of neurology, France
| | - Marc Paccalin
- University Hospital Center of Poitiers, Department of neurology, France
| | - Clément Giraud
- University Hospital center of Poitiers, Department of Imaging, France
| | - Pierre Fayolle
- University Hospital center of Poitiers, Department of Imaging, France
| | - Rémy Guillevin
- University Hospital center of Poitiers, Department of Imaging, France
| | - Carole Guillevin
- University Hospital center of Poitiers, Department of Imaging, France.
| |
Collapse
|
20
|
Tang X, Guo Z, Chen G, Sun S, Xiao S, Chen P, Tang G, Huang L, Wang Y. A Multimodal Meta-Analytical Evidence of Functional and Structural Brain Abnormalities Across Alzheimer's Disease Spectrum. Ageing Res Rev 2024; 95:102240. [PMID: 38395200 DOI: 10.1016/j.arr.2024.102240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/18/2024] [Indexed: 02/25/2024]
Abstract
BACKGROUND Numerous neuroimaging studies have reported that Alzheimer's disease (AD) spectrum have been linked to alterations in intrinsic functional activity and cortical thickness (CT) of some brain areas. However, the findings have been inconsistent and the correlation with the transcriptional profile and neurotransmitter systems remain largely unknown. METHODS We conducted a meta-analysis to identify multimodal differences in the amplitude of low-frequency fluctuation (ALFF)/fractional ALFF (fALFF) and CT in patients with AD and preclinical AD compared to healthy controls (HCs), using the Seed-based d Mapping with Permutation of Subject Images software. Transcriptional data were retrieved from the Allen Human Brain Atlas. The atlas-based nuclear imaging-derived neurotransmitter maps were investigated by JuSpace toolbox. RESULTS We included 26 ALFF/fALFF studies comprising 884 patients with AD and 1,020 controls, along with 52 studies comprising 2,046 patients with preclinical AD and 2,336 controls. For CT, we included 11 studies comprising 353 patients with AD and 330 controls. Overall, compared to HCs, patients with AD showed decreased ALFF/fALFF in the bilateral posterior cingulate gyrus (PCC)/precuneus and right angular gyrus, as well as increased ALFF/fALFF in the bilateral parahippocampal gyrus (PHG). Patients with peclinical AD showed decreased ALFF/fALFF in the left precuneus. Additionally, patients with AD displayed decreased CT in the bilateral PHG, left PCC, bilateral orbitofrontal cortex, sensorimotor areas and temporal lobe. Furthermore, gene sets related to brain structural and functional changes in AD and preclincal AD were enriched for G protein-coupled receptor signaling pathway, ion gated channel activity, and components of biological membrane. Functional and structural alterations in AD and preclinical AD were spatially associated with dopaminergic, serotonergic, and GABAergic neurotransmitter systems. CONCLUSIONS The multimodal meta-analysis demonstrated that patients with AD exhibited convergent functional and structural alterations in the PCC/precuneus and PHG, as well as cortical thinning in the primary sensory and motor areas. Furthermore, patients with preclinical AD showed reduced functional activity in the precuneus. AD and preclinical AD showed genetic modulations/neurotransmitter deficits of brain functional and structural impairments. These findings may provide new insights into the pathophysiology of the AD spectrum.
Collapse
Affiliation(s)
- Xinyue Tang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Zixuan Guo
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Guanmao Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Shilin Sun
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Shu Xiao
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Pan Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Guixian Tang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Li Huang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Ying Wang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China.
| |
Collapse
|
21
|
Perera Molligoda Arachchige AS, Garner AK. Seven Tesla MRI in Alzheimer's disease research: State of the art and future directions: A narrative review. AIMS Neurosci 2023; 10:401-422. [PMID: 38188012 PMCID: PMC10767068 DOI: 10.3934/neuroscience.2023030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/29/2023] [Accepted: 12/04/2023] [Indexed: 01/09/2024] Open
Abstract
Seven tesla magnetic resonance imaging (7T MRI) is known to offer a superior spatial resolution and a signal-to-noise ratio relative to any other non-invasive imaging technique and provides the possibility for neuroimaging researchers to observe disease-related structural changes, which were previously only apparent on post-mortem tissue analyses. Alzheimer's disease is a natural and widely used subject for this technology since the 7T MRI allows for the anticipation of disease progression, the evaluation of secondary prevention measures thought to modify the disease trajectory, and the identification of surrogate markers for treatment outcome. In this editorial, we discuss the various neuroimaging biomarkers for Alzheimer's disease that have been studied using 7T MRI, which include morphological alterations, molecular characterization of cerebral T2*-weighted hypointensities, the evaluation of cerebral microbleeds and microinfarcts, biochemical changes studied with MR spectroscopy, as well as some other approaches. Finally, we discuss the limitations of the 7T MRI regarding imaging Alzheimer's disease and we provide our outlook for the future.
Collapse
|
22
|
Roy R, Mandal PK, Maroon JC. Oxidative Stress Occurs Prior to Amyloid Aβ Plaque Formation and Tau Phosphorylation in Alzheimer's Disease: Role of Glutathione and Metal Ions. ACS Chem Neurosci 2023; 14:2944-2954. [PMID: 37561556 PMCID: PMC10485904 DOI: 10.1021/acschemneuro.3c00486] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023] Open
Abstract
Alzheimer's disease (AD) is an insidious and progressive neurodegenerative disorder that affects millions of people worldwide. Although the pathogenesis remains obscure, there are two dominant causal hypotheses. Since last three decades, amyloid beta (Aβ) deposition was the most prominent hypothesis, and the other is the tau hyperphosphorylation hypothesis. The confirmed diagnostic criterion for AD is the presence of neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau and the deposition of toxic oligomeric Aβ in the autopsied brain. Consistent with these hypotheses, oxidative stress (OS) is garnering major attention in AD research. OS results from an imbalance of pro-oxidants and antioxidants. There is a considerable debate in the scientific community on which process occurs first, OS or plaque deposition/tau hyperphosphorylation. Based on recent scientific observations of various laboratories including ours along with critical analysis of those information, we believe that OS is the early event that leads to oligomeric Aβ deposition as well as dimerization of tau protein and its subsequent hyperphosphorylation. This OS hypothesis immediately suggests the consideration of novel therapeutic approaches to include antioxidants involving glutathione enrichment in the brain by supplementation with or without an iron chelator.
Collapse
Affiliation(s)
- Rimil
Guha Roy
- Neuroimaging
and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon 122052, India
| | - Pravat K Mandal
- Neuroimaging
and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon 122052, India
- Florey
Institute of Neuroscience and Mental Health, Melbourne School of Medicine Campus, Melbourne, 3052 VIC, Australia
| | - Joseph C. Maroon
- Department
of Neurosurgery, University of Pittsburgh
Medical School, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
23
|
Jones KT, Gallen CL, Ostrand AE, Rojas JC, Wais P, Rini J, Chan B, Lago AL, Boxer A, Zhao M, Gazzaley A, Zanto TP. Gamma neuromodulation improves episodic memory and its associated network in amnestic mild cognitive impairment: a pilot study. Neurobiol Aging 2023; 129:72-88. [PMID: 37276822 PMCID: PMC10583532 DOI: 10.1016/j.neurobiolaging.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 04/10/2023] [Accepted: 04/17/2023] [Indexed: 06/07/2023]
Abstract
Amnestic mild cognitive impairment (aMCI) is a predementia stage of Alzheimer's disease associated with dysfunctional episodic memory and limited treatment options. We aimed to characterize feasibility, clinical, and biomarker effects of noninvasive neurostimulation for aMCI. 13 individuals with aMCI received eight 60-minute sessions of 40-Hz (gamma) transcranial alternating current stimulation (tACS) targeting regions related to episodic memory processing. Feasibility, episodic memory, and plasma Alzheimer's disease biomarkers were assessed. Neuroplastic changes were characterized by resting-state functional connectivity (RSFC) and neuronal excitatory/inhibitory balance. Gamma tACS was feasible and aMCI participants demonstrated improvement in multiple metrics of episodic memory, but no changes in biomarkers. Improvements in episodic memory were most pronounced in participants who had the highest modeled tACS-induced electric fields and exhibited the greatest changes in RSFC. Increased RSFC was also associated with greater hippocampal excitability and higher baseline white matter integrity. This study highlights initial feasibility and the potential of gamma tACS to rescue episodic memory in an aMCI population by modulating connectivity and excitability within an episodic memory network.
Collapse
Affiliation(s)
- Kevin T Jones
- Department of Neurology, University of California-San Francisco, San Francisco, CA; Neuroscape, University of California-San Francisco, San Francisco, CA.
| | - Courtney L Gallen
- Department of Neurology, University of California-San Francisco, San Francisco, CA; Neuroscape, University of California-San Francisco, San Francisco, CA
| | - Avery E Ostrand
- Department of Neurology, University of California-San Francisco, San Francisco, CA; Neuroscape, University of California-San Francisco, San Francisco, CA
| | - Julio C Rojas
- Department of Neurology, University of California-San Francisco, San Francisco, CA; Weill Institute for Neurosciences, Memory and Aging Center, University of California-San Francisco, San Francisco, CA
| | - Peter Wais
- Department of Neurology, University of California-San Francisco, San Francisco, CA; Neuroscape, University of California-San Francisco, San Francisco, CA
| | - James Rini
- Department of Neurology, University of California-San Francisco, San Francisco, CA; Neuroscape, University of California-San Francisco, San Francisco, CA
| | - Brandon Chan
- Department of Neurology, University of California-San Francisco, San Francisco, CA; Weill Institute for Neurosciences, Memory and Aging Center, University of California-San Francisco, San Francisco, CA
| | - Argentina Lario Lago
- Department of Neurology, University of California-San Francisco, San Francisco, CA; Weill Institute for Neurosciences, Memory and Aging Center, University of California-San Francisco, San Francisco, CA
| | - Adam Boxer
- Department of Neurology, University of California-San Francisco, San Francisco, CA; Weill Institute for Neurosciences, Memory and Aging Center, University of California-San Francisco, San Francisco, CA
| | - Min Zhao
- Departments of Ophthalmology and Vision Science and Dermatology, Institute for Regenerative Cures, University of California-Davis, Davis, CA
| | - Adam Gazzaley
- Department of Neurology, University of California-San Francisco, San Francisco, CA; Neuroscape, University of California-San Francisco, San Francisco, CA; Departments of Physiology and Psychiatry, University of California-San Francisco, San Francisco, CA
| | - Theodore P Zanto
- Department of Neurology, University of California-San Francisco, San Francisco, CA; Neuroscape, University of California-San Francisco, San Francisco, CA.
| |
Collapse
|
24
|
Huang M, Yu H, Cai X, Zhang Y, Pu W, Gao B. A comparative study of posterior cingulate metabolism in patients with mild cognitive impairment due to Parkinson's disease or Alzheimer's disease. Sci Rep 2023; 13:14241. [PMID: 37648724 PMCID: PMC10469183 DOI: 10.1038/s41598-023-41569-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/29/2023] [Indexed: 09/01/2023] Open
Abstract
Few comparative studies have assessed metabolic brain changes in cognitive impairment among neurodegenerative disorders, and the posterior cingulate cortex (PCC) is a metabolically active brain region with high involvement in multiple cognitive processes. Therefore, in this study, metabolic abnormalities of the PCC were compared in patients with mild cognitive impairment (MCI) due to Parkinson's disease (PD) or Alzheimer's disease (AD), as examined by proton magnetic resonance spectroscopy (1H-MRS). Thirty-eight patients with idiopathic PD, including 20 with mild cognitive impairment (PDMCI) and 18 with normal cognitive function (PDN), 18 patients with probable mild cognitive impairment (ADMCI), and 25 healthy elderly controls (HCs) were recruited and underwent PCC 1H-MRS scans. Compared with HCs, patients with PDMCI exhibited significantly reduced concentrations of N-acetyl aspartate (NAA), total NAA (tNAA), choline (Cho), glutathione (GSH), glutamate + glutamine (Glx) and total creatine (tCr), while ADMCI cases exhibited significantly elevated levels of myo-inositol (Ins) and Ins/tCr ratio, as well as reduced NAA/Ins ratio. No significant metabolic changes were detected in PDN subjects. Compared with ADMCI, reduced NAA, Ins and tCr concentrations were detected in PDMCI. Besides, ROC curve analysis revealed that tCr concentration could differentiate PDMCI from PDN with an AUC of 0.71, and NAA/Ins ratio could differentiate patients with MCI from controls with normal cognitive function with an AUC of 0.74. Patients with PDMCI and ADMCI exhibited distinct PCC metabolic 1H-MRS profiles. The findings suggested cognitively normal PD patients with low NAA and tCr in the PCC might be at risk of preclinical PDMCI, and Ins and/or NAA/MI ratio in the PCC should be reconsidered a possible biomarker of preclinical MCI in clinical practice. So, comparing PCC's 1H-MRS profiles of cognitive impairment among neurodegenerative illnesses may provide useful information for better defining the disease process and elucidate possible treatment mechanisms.
Collapse
Affiliation(s)
- Mingming Huang
- Department of Radiology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China.
| | - Hui Yu
- General Practice Center and Department of Radiology, The Seventh Affiliated Hospital, Southern Medical University, Foshan, 528200, China
| | - Xi Cai
- Department of Radiology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Yong Zhang
- Department of Radiology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Wei Pu
- Department of Radiology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Bo Gao
- Department of Radiology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China.
| |
Collapse
|
25
|
Hu X, Pan K, Zhao M, Lv J, Wang J, Zhang X, Liu Y, Song Y, Gudmundson AT, Edden RAE, Ren F, Zhang T, Gao F. Reduced brain glutathione levels during normal aging are associated with visuospatial memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.13.553100. [PMID: 37645767 PMCID: PMC10462010 DOI: 10.1101/2023.08.13.553100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
During aging, the brain is subject to greater oxidative stress (OS), which is thought to play a critical role in cognitive impairment. Glutathione (GSH), as a major antioxidant in the brain, can be used to combatting OS. However, how brain GSH levels vary with age and their associations with cognitive function remain unclear. In this study, we combined point-resolved spectroscopy and edited spectroscopy sequences to investigate GSH levels in the anterior cingulate cortex (ACC), posterior cingulate cortex (PCC), and occipital cortex (OC) of 276 healthy participants (166 females, age range 20-70 years) and examined their relationships with age and cognitive function. The results revealed decreased GSH levels with age in the PCC among all participants. Notably, the timecourse of GSH level changes in the PCC and ACC differed between males and females. Additionally, positive correlations were observed between GSH levels in the PCC and OC and visuospatial memory. Taken together, these findings enhance our understanding of the brain GSH timecourse during normal aging and associations with sex and memory, which is an essential first step for understanding the neurochemical underpinnings of OS-related diseases.
Collapse
|
26
|
Fu X, Qin M, Liu X, Cheng L, Zhang L, Zhang X, Lei Y, Zhou Q, Sun P, Lin L, Su Y, Wang J. Decreased GABA levels of the anterior and posterior cingulate cortex are associated with executive dysfunction in mild cognitive impairment. Front Neurosci 2023; 17:1220122. [PMID: 37638325 PMCID: PMC10450953 DOI: 10.3389/fnins.2023.1220122] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/31/2023] [Indexed: 08/29/2023] Open
Abstract
Background and purpose Executive function impairment, a slight but noticeable cognitive deficit in mild cognitive impairment (MCI) patients, is influenced by gamma-aminobutyric acid (GABA) levels. Reduced cognitive function is accompanied by thinning of the cerebral cortex, which has higher GABA levels than white matter. However, the relationships among GABA levels, cortical thickness, and executive function in MCI patients have not yet been elucidated. We investigated the relationships among GABA levels, cortical thickness, and executive function in MCI patients. Methods In this study, a total of 36 MCI patients and 36 sex-, age-, and education-matched healthy controls (HC) were recruited. But 33 MCI patients and 35 HC were included because of head motion or poor data quality for three MCI patients and one HC. The levels of gamma-aminobutyric acid plus relative to creatine (GABA+/Cr) and glutamate-glutamine relative to creatine (Glx/Cr) in the anterior cingulate cortex (ACC) and posterior cingulate cortex (PCC) were measured using the Meshcher-Garwood point resolved spectroscopy (MEGA-PRESS) sequence. Metabolite ratios, cortical thickness, and executive function and their interrelationships were determined in the MCI and HC groups. Results Patients with MCI showed lower GABA+/Cr levels in the ACC and PCC. Combined levels of GABA+ and Glx in the ACC and GABA+ in the PCC showed good diagnostic efficacy for MCI (AUC: 0.82). But no differences in cortical thickness were found between the two groups. In the MCI group, lower GABA+/Cr level was correlated to worse performance on the digit span test backward, and the shape trail test-B. The cortical thickness was not associated with GABA+ levels and executive function in patients. Conclusion These results implied that decreased GABA levels in the ACC and PCC had a critical role in the early diagnosis of impaired executive function of MCI. Therefore, GABA in the ACC and PCC could be a potential diagnostic marker of the executive function decline of MCI.
Collapse
Affiliation(s)
- Xiaona Fu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Mengting Qin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoming Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Lan Cheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Lan Zhang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Xinli Zhang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Yu Lei
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Qidong Zhou
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Sun
- Clinical & Technical Solutions, Philips Healthcare, Beijing, China
| | - Liangjie Lin
- Clinical & Technical Solutions, Philips Healthcare, Beijing, China
| | - Ying Su
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| |
Collapse
|
27
|
Okada T, Kuribayashi H, Urushibata Y, Fujimoto K, Akasaka T, Seethamraju RT, Ahn S, Isa T. GABA, glutamate and excitatory-inhibitory ratios measured using short-TE STEAM MRS at 7-Tesla: Effects of macromolecule basis sets and baseline parameters. Heliyon 2023; 9:e18357. [PMID: 37539101 PMCID: PMC10393741 DOI: 10.1016/j.heliyon.2023.e18357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 08/05/2023] Open
Abstract
Rationale and objectives Macromolecules (MMs) affect the precision and accuracy of neurochemical quantification in magnetic resonance spectroscopy. A measured MM basis is increasingly used in LCModel analysis combined with a spline baseline, whose stiffness is controlled by a parameter named DKNTMN. The effects of measured MM basis and DKNTMN were investigated. Materials and methods Twenty-six healthy subjects were prospectively enrolled and scanned twice using a short echo-time Stimulated Echo Acquisition Mode (STEAM) at 7-T. Using LCModel, analyses were conducted using the simulated MM basis (MMsim) with DKNTMN 0.15 and an MM basis measured inhouse (MMmeas) with DKNTMN of 0.15, 0.30, 0.60 and 1.00. Cramér-Rao lower bound (CRLB) and the concentrations of gamma-aminobutyric acid (GABA), glutamate and excitatory-inhibitory ratio (EIR), in addition to MMs were statistically analyzed. Measurement stability was evaluated using coefficient of variation (CV). Results CRLBs of GABA were significantly lower when using MMsim than MMmeas; those of glutamate were 2-3. GABA concentrations were significantly higher in the analysis using MMsim than MMmeas where concentrations were significantly higher with DKNTMN of 0.15 or 0.30 than 0.60 or 1.00. Difference in glutamate concentration was not significant. EIRs showed the same difference as in GABA depending on the DKNTMN values. CVs between test-retest scans were relatively stable for glutamate but became larger as DKNTMN increased for GABA and EIR. Conclusion Neurochemical quantification depends on the parameters of the basis sets used for fitting. Analysis using MMmeas with DKNTMN of 0.30 conformed best to previous studies and is recommended.
Collapse
Affiliation(s)
| | | | | | - Koji Fujimoto
- Human Brain Research Center, Tokyo, Japan
- Department of Real World Data Research and Development, Graduate School of Medicine, Kyoto University, Japan
| | | | | | - Sinyeob Ahn
- Siemens Medical Solutions, Berkeley, California, USA
| | | |
Collapse
|
28
|
McKiernan E, Su L, O'Brien J. MRS in neurodegenerative dementias, prodromal syndromes and at-risk states: A systematic review of the literature. NMR IN BIOMEDICINE 2023; 36:e4896. [PMID: 36624067 DOI: 10.1002/nbm.4896] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 12/21/2022] [Accepted: 01/04/2023] [Indexed: 06/15/2023]
Abstract
BACKGROUND In recent years, MRS has benefited from increased MRI field strengths, new acquisition protocols and new processing techniques. This review aims to determine how this has altered our understanding of MRS neurometabolic markers in neurodegenerative dementias. METHODS Our systematic review of human in vivo MRS literature since 2002 pertains to Alzheimer's disease (AD), dementia with Lewy bodies (DLB), Parkinson's disease dementia, frontotemporal dementia (FTD), prodromal and 'at-risk' states. Studies using field strengths of 3 T or more were included. RESULTS Of 85 studies, AD and/or mild cognitive impairment (MCI) were the most common conditions of interest (58 papers, 68%). Only 14 (16%) studies included other dementia syndromes and 13 (15%) investigated 'at-risk' cohorts. Earlier findings of lower N-acetylaspartate and higher myo-inositol were confirmed. Additionally, lower choline and creatine in AD and MCI were reported, though inconsistently. Previously challenging-to-measure metabolites (glutathione, glutamate and gamma-aminobutyric acid) were reportedly lower in AD, FTD and DLB compared with controls. DISCUSSION Increasing field strength alongside targeted acquisition protocols has revealed additional metabolite changes. Most studies were small and regional metabolite differences between dementia types may not have been captured due to the predominant placement of voxels in the posterior cingulate cortex. The standard of data collection, quality control and analysis is improving due to greater consensus regarding acquisition and processing techniques. Ongoing harmonization of techniques, creation of larger and longitudinal cohorts, and placement of MRS voxels in more diverse regions will strengthen future research.
Collapse
Affiliation(s)
- Elizabeth McKiernan
- Department of Psychiatry, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Li Su
- Department of Psychiatry, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - John O'Brien
- Department of Psychiatry, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| |
Collapse
|
29
|
Prisciandaro JJ, Zöllner HJ, Murali-Manohar S, Oeltzschner G, Edden RAE. More than one-half of the variance in in vivo proton MR spectroscopy metabolite estimates is common to all metabolites. NMR IN BIOMEDICINE 2023; 36:e4907. [PMID: 36651918 PMCID: PMC10272046 DOI: 10.1002/nbm.4907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 05/12/2023]
Abstract
The present study characterized associations among brain metabolite levels, applying bivariate and multivariate (i.e., factor analysis) statistical methods to total creatine (tCr)-referenced estimates of the major Point RESolved Spectroscopy (PRESS) proton MR spectroscopy (1 H-MRS) metabolites (i.e., total NAA/tCr, total choline/tCr, myo-inositol/tCr, glutamate + glutamine/tCr) acquired at 3 T from medial parietal lobe in a large (n = 299), well-characterized international cohort of healthy volunteers. Results supported the hypothesis that 1 H-MRS-measured metabolite estimates are moderately intercorrelated (Mr = 0.42, SDr = 0.11, ps < 0.001), with more than one-half (i.e., 57%) of the total variability in metabolite estimates explained by a single common factor. Older age was significantly associated with lower levels of the identified common metabolite variance (CMV) factor (β = -0.09, p = 0.048), despite not being associated with levels of any individual metabolite. Holding CMV factor levels constant, females had significantly lower levels of total choline (i.e., unique metabolite variance; β = -0.19, p < 0.001), mirroring significant bivariate correlations between sex and total choline reported previously. Supplementary analysis of water-referenced metabolite estimates (i.e., including tCr/water) demonstrated lower, although still substantial, intercorrelations among metabolites, with 37% of total metabolite variance explained by a single common factor. If replicated, these results would suggest that applied 1 H-MRS researchers shift their analytical framework from examining bivariate associations between individual metabolites and specialty-dependent (e.g., clinical, research) variables of interest (e.g., using t-tests) to examining multivariable (i.e., covariate) associations between multiple metabolites and specialty-dependent variables of interest (e.g., using multiple regression).
Collapse
Affiliation(s)
- James J. Prisciandaro
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Helge J. Zöllner
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Saipavitra Murali-Manohar
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Georg Oeltzschner
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Richard A. E. Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| |
Collapse
|
30
|
Dang C, Wang Y, Li Q, Lu Y. Neuroimaging modalities in the detection of Alzheimer's disease-associated biomarkers. PSYCHORADIOLOGY 2023; 3:kkad009. [PMID: 38666112 PMCID: PMC11003434 DOI: 10.1093/psyrad/kkad009] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/04/2023] [Accepted: 06/20/2023] [Indexed: 04/28/2024]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia. Neuropathological changes in AD patients occur up to 10-20 years before the emergence of clinical symptoms. Specific diagnosis and appropriate intervention strategies are crucial during the phase of mild cognitive impairment (MCI) and AD. The detection of biomarkers has emerged as a promising tool for tracking the efficacy of potential therapies, making an early disease diagnosis, and prejudging treatment prognosis. Specifically, multiple neuroimaging modalities, including magnetic resonance imaging (MRI), positron emission tomography, optical imaging, and single photon emission-computed tomography, have provided a few potential biomarkers for clinical application. The MRI modalities described in this review include structural MRI, functional MRI, diffusion tensor imaging, magnetic resonance spectroscopy, and arterial spin labelling. These techniques allow the detection of presymptomatic diagnostic biomarkers in the brains of cognitively normal elderly people and might also be used to monitor AD disease progression after the onset of clinical symptoms. This review highlights potential biomarkers, merits, and demerits of different neuroimaging modalities and their clinical value in MCI and AD patients. Further studies are necessary to explore more biomarkers and overcome the limitations of multiple neuroimaging modalities for inclusion in diagnostic criteria for AD.
Collapse
Affiliation(s)
- Chun Dang
- Department of Periodical Press, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Yanchao Wang
- Department of Neurology, Chifeng University of Affiliated Hospital, Chifeng 024000, China
| | - Qian Li
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Yaoheng Lu
- Department of General Surgery, Chengdu Integrated Traditional Chinese Medicine and Western Medicine Hospital, Chengdu 610000, China
| |
Collapse
|
31
|
Gudmundson AT, Koo A, Virovka A, Amirault AL, Soo M, Cho JH, Oeltzschner G, Edden RA, Stark C. Meta-analysis and Open-source Database for In Vivo Brain Magnetic Resonance Spectroscopy in Health and Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.10.528046. [PMID: 37205343 PMCID: PMC10187197 DOI: 10.1101/2023.02.10.528046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Proton ( 1 H) Magnetic Resonance Spectroscopy (MRS) is a non-invasive tool capable of quantifying brain metabolite concentrations in vivo . Prioritization of standardization and accessibility in the field has led to the development of universal pulse sequences, methodological consensus recommendations, and the development of open-source analysis software packages. One on-going challenge is methodological validation with ground-truth data. As ground-truths are rarely available for in vivo measurements, data simulations have become an important tool. The diverse literature of metabolite measurements has made it challenging to define ranges to be used within simulations. Especially for the development of deep learning and machine learning algorithms, simulations must be able to produce accurate spectra capturing all the nuances of in vivo data. Therefore, we sought to determine the physiological ranges and relaxation rates of brain metabolites which can be used both in data simulations and as reference estimates. Using the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines, we've identified relevant MRS research articles and created an open-source database containing methods, results, and other article information as a resource. Using this database, expectation values and ranges for metabolite concentrations and T 2 relaxation times are established based upon a meta-analyses of healthy and diseased brains.
Collapse
Affiliation(s)
- Aaron T. Gudmundson
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD
| | - Annie Koo
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA
| | - Anna Virovka
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA
| | - Alyssa L. Amirault
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA
| | - Madelene Soo
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA
| | - Jocelyn H. Cho
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA
| | - Georg Oeltzschner
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD
| | - Richard A.E. Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD
| | - Craig Stark
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA
| |
Collapse
|
32
|
Jett S, Boneu C, Zarate C, Carlton C, Kodancha V, Nerattini M, Battista M, Pahlajani S, Williams S, Dyke JP, Mosconi L. Systematic review of 31P-magnetic resonance spectroscopy studies of brain high energy phosphates and membrane phospholipids in aging and Alzheimer's disease. Front Aging Neurosci 2023; 15:1183228. [PMID: 37273652 PMCID: PMC10232902 DOI: 10.3389/fnagi.2023.1183228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/02/2023] [Indexed: 06/06/2023] Open
Abstract
Many lines of evidence suggest that mitochondria have a central role in aging-related neurodegenerative diseases, such as Alzheimer's disease (AD). Mitochondrial dysfunction, cerebral energy dysmetabolism and oxidative damage increase with age, and are early event in AD pathophysiology and may precede amyloid beta (Aβ) plaques. In vivo probes of mitochondrial function and energy metabolism are therefore crucial to characterize the bioenergetic abnormalities underlying AD risk, and their relationship to pathophysiology and cognition. A majority of the research conducted in humans have used 18F-fluoro-deoxygluose (FDG) PET to image cerebral glucose metabolism (CMRglc), but key information regarding oxidative phosphorylation (OXPHOS), the process which generates 90% of the energy for the brain, cannot be assessed with this method. Thus, there is a crucial need for imaging tools to measure mitochondrial processes and OXPHOS in vivo in the human brain. 31Phosphorus-magnetic resonance spectroscopy (31P-MRS) is a non-invasive method which allows for the measurement of OXPHOS-related high-energy phosphates (HEP), including phosphocreatine (PCr), adenosine triphosphate (ATP), and inorganic phosphate (Pi), in addition to potential of hydrogen (pH), as well as components of phospholipid metabolism, such as phosphomonoesters (PMEs) and phosphodiesters (PDEs). Herein, we provide a systematic review of the existing literature utilizing the 31P-MRS methodology during the normal aging process and in patients with mild cognitive impairment (MCI) and AD, with an additional focus on individuals at risk for AD. We discuss the strengths and limitations of the technique, in addition to considering future directions toward validating the use of 31P-MRS measures as biomarkers for the early detection of AD.
Collapse
Affiliation(s)
- Steven Jett
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
| | - Camila Boneu
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
| | - Camila Zarate
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
| | - Caroline Carlton
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
| | - Vibha Kodancha
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
| | - Matilde Nerattini
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
- Nuclear Medicine Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Michael Battista
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
| | - Silky Pahlajani
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
- Department of Radiology, Weill Cornell Medical College, New York, NY, United States
| | - Schantel Williams
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
| | - Jonathan P. Dyke
- Department of Radiology, Weill Cornell Medical College, New York, NY, United States
| | - Lisa Mosconi
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
- Department of Radiology, Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
33
|
Veeraiah P, Jansen JFA. Multinuclear Magnetic Resonance Spectroscopy at Ultra-High-Field: Assessing Human Cerebral Metabolism in Healthy and Diseased States. Metabolites 2023; 13:metabo13040577. [PMID: 37110235 PMCID: PMC10143499 DOI: 10.3390/metabo13040577] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/06/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
The brain is a highly energetic organ. Although the brain can consume metabolic substrates, such as lactate, glycogen, and ketone bodies, the energy metabolism in a healthy adult brain mainly relies on glucose provided via blood. The cerebral metabolism of glucose produces energy and a wide variety of intermediate metabolites. Since cerebral metabolic alterations have been repeatedly implicated in several brain disorders, understanding changes in metabolite levels and corresponding cell-specific neurotransmitter fluxes through different substrate utilization may highlight the underlying mechanisms that can be exploited to diagnose or treat various brain disorders. Magnetic resonance spectroscopy (MRS) is a noninvasive tool to measure tissue metabolism in vivo. 1H-MRS is widely applied in research at clinical field strengths (≤3T) to measure mostly high abundant metabolites. In addition, X-nuclei MRS including, 13C, 2H, 17O, and 31P, are also very promising. Exploiting the higher sensitivity at ultra-high-field (>4T; UHF) strengths enables obtaining unique insights into different aspects of the substrate metabolism towards measuring cell-specific metabolic fluxes in vivo. This review provides an overview about the potential role of multinuclear MRS (1H, 13C, 2H, 17O, and 31P) at UHF to assess the cerebral metabolism and the metabolic insights obtained by applying these techniques in both healthy and diseased states.
Collapse
Affiliation(s)
- Pandichelvam Veeraiah
- Scannexus (Ultra-High-Field MRI Center), 6229 EV Maastricht, The Netherlands
- Faculty of Health Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
| | - Jacobus F A Jansen
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
- School for Mental Health and Neuroscience, Maastricht University, 6229 ER Maastricht, The Netherlands
- Department of Electrical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
| |
Collapse
|
34
|
Hupfeld KE, Zöllner HJ, Oeltzschner G, Hyatt HW, Herrmann O, Gallegos J, Hui SCN, Harris AD, Edden RAE, Tsapkini K. Brain total creatine differs between primary progressive aphasia (PPA) subtypes and correlates with disease severity. Neurobiol Aging 2023; 122:65-75. [PMID: 36508896 PMCID: PMC9839619 DOI: 10.1016/j.neurobiolaging.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 11/18/2022]
Abstract
Primary progressive aphasia (PPA) is comprised of three subtypes: logopenic (lvPPA), non-fluent (nfvPPA), and semantic (svPPA). We used magnetic resonance spectroscopy (MRS) to measure tissue-corrected metabolite levels in the left inferior frontal gyrus (IFG) and right sensorimotor cortex (SMC) from 61 PPA patients. We aimed to: (1) characterize subtype differences in metabolites; and (2) test for metabolite associations with symptom severity. tCr differed by subtype across the left IFG and right SMC. tCr levels were lowest in lvPPA and highest in svPPA. tCr levels predicted lvPPA versus svPPA diagnosis. Higher IFG tCr and lower Glx correlated with greater disease severity. As tCr is involved in brain energy metabolism, svPPA pathology might involve changes in specific cellular energy processes. Perturbations to cellular energy homeostasis in language areas may contribute to symptoms. Reduced cortical excitatory capacity (i.e. lower Glx) in language regions may also contribute to symptoms. Thus, tCr may be useful for differentiating between PPA subtypes, and both tCr and Glx might have utility in understanding PPA mechanisms and tracking progression.
Collapse
Affiliation(s)
- Kathleen E Hupfeld
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Helge J Zöllner
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Georg Oeltzschner
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Hayden W Hyatt
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Olivia Herrmann
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jessica Gallegos
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Steve C N Hui
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Ashley D Harris
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Kyrana Tsapkini
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Cognitive Science, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
35
|
De Felice M, Chen C, Rodríguez-Ruiz M, Szkudlarek HJ, Lam M, Sert S, Whitehead SN, Yeung KKC, Rushlow WJ, Laviolette SR. Adolescent Δ-9-tetrahydrocannabinol exposure induces differential acute and long-term neuronal and molecular disturbances in dorsal vs. ventral hippocampal subregions. Neuropsychopharmacology 2023; 48:540-551. [PMID: 36402837 PMCID: PMC9852235 DOI: 10.1038/s41386-022-01496-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 11/21/2022]
Abstract
Chronic exposure to Δ-9-tetrahydrocannabinol (THC) during adolescence is associated with long-lasting cognitive impairments and enhanced susceptibility to anxiety and mood disorders. Previous evidence has revealed functional and anatomical dissociations between the posterior vs. anterior portions of the hippocampal formation, which are classified as the dorsal and ventral regions in rodents, respectively. Notably, the dorsal hippocampus is critical for cognitive and contextual processing, whereas the ventral region is critical for affective and emotional processing. While adolescent THC exposure can induce significant morphological disturbances and glutamatergic signaling abnormalities in the hippocampus, it is not currently understood how the dorsal vs. ventral hippocampal regions are affected by THC during neurodevelopment. In the present study, we used an integrative combination of behavioral, molecular, and neural assays in a neurodevelopmental rodent model of adolescent THC exposure. We report that adolescent THC exposure induces long-lasting memory deficits and anxiety like-behaviors concomitant with a wide range of differential molecular and neuronal abnormalities in dorsal vs. ventral hippocampal regions. In addition, using matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS), we show for the first time that adolescent THC exposure induces significant and enduring dysregulation of GABA and glutamate levels in dorsal vs. ventral hippocampus. Finally, adolescent THC exposure induced dissociable dysregulations of hippocampal glutamatergic signaling, characterized by differential glutamatergic receptor expression markers, profound alterations in pyramidal neuronal activity and associated oscillatory patterns in dorsal vs. ventral hippocampal subregions.
Collapse
Affiliation(s)
- Marta De Felice
- Addiction Research Group, Schulich School of Medicine & Dentistry, Western University, London, ON, N6A 3K7, Canada
- Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, Western University, London, ON, N6A 3K7, Canada
| | - Chaochao Chen
- Department of Chemistry, Western University, London, ON, N6A3K7, Canada
| | - Mar Rodríguez-Ruiz
- Addiction Research Group, Schulich School of Medicine & Dentistry, Western University, London, ON, N6A 3K7, Canada
- Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, Western University, London, ON, N6A 3K7, Canada
| | - Hanna J Szkudlarek
- Addiction Research Group, Schulich School of Medicine & Dentistry, Western University, London, ON, N6A 3K7, Canada
- Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, Western University, London, ON, N6A 3K7, Canada
| | - Michael Lam
- Department of Chemistry, Western University, London, ON, N6A3K7, Canada
| | - Selvi Sert
- Addiction Research Group, Schulich School of Medicine & Dentistry, Western University, London, ON, N6A 3K7, Canada
- Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, Western University, London, ON, N6A 3K7, Canada
| | - Shawn N Whitehead
- Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, Western University, London, ON, N6A 3K7, Canada
| | - Ken K-C Yeung
- Department of Chemistry, Western University, London, ON, N6A3K7, Canada
- Department of Biochemistry, Western University, London, ON, N6A 5C1, Canada
| | - Walter J Rushlow
- Addiction Research Group, Schulich School of Medicine & Dentistry, Western University, London, ON, N6A 3K7, Canada
- Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, Western University, London, ON, N6A 3K7, Canada
- Department of Psychiatry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, N6A 3K7, Canada
| | - Steven R Laviolette
- Addiction Research Group, Schulich School of Medicine & Dentistry, Western University, London, ON, N6A 3K7, Canada.
- Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, Western University, London, ON, N6A 3K7, Canada.
- Department of Psychiatry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, N6A 3K7, Canada.
- Lawson Health Research Institute, London, ON, N6A 4V2, Canada.
| |
Collapse
|
36
|
Hupfeld KE, Zöllner HJ, Hui SCN, Song Y, Murali-Manohar S, Yedavalli V, Oeltzschner G, Prisciandaro JJ, Edden RAE. Impact of acquisition and modeling parameters on test-retest reproducibility of edited GABA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.20.524952. [PMID: 36712103 PMCID: PMC9882325 DOI: 10.1101/2023.01.20.524952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Literature values for within-subject test-retest reproducibility of gamma-aminobutyric acid (GABA), measured with edited magnetic resonance spectroscopy (MRS), vary widely. Reasons for this variation remain unclear. Here we tested whether sequence complexity (two-experiment MEGA-PRESS versus four-experiment HERMES), editing pulse duration (14 versus 20 ms), scanner frequency drift (interleaved water referencing (IWR) turned ON versus OFF), and linear combination modeling variations (three different co-edited macromolecule models and 0.55 versus 0.4 ppm spline baseline knot spacing) affected the within-subject coefficient of variation of GABA + macromolecules (GABA+). We collected edited MRS data from the dorsal anterior cingulate cortex from 20 participants (30.8 ± 9.5 years; 10 males). Test and retest scans were separated by removing the participant from the scanner for 5-10 minutes. Each acquisition consisted of two MEGA-PRESS and two HERMES sequences with editing pulse durations of 14 and 20 ms (referred to here as: MEGA-14, MEGA-20, HERMES-14, and HERMES-20; all TE = 80 ms, 224 averages). Reproducibility did not consistently differ for MEGA-PRESS compared with HERMES or for 14 compared with 20 ms editing pulses. A composite model of the 0.9 and 3 ppm macromolecules (particularly for HERMES) and sparser (0.55 compared with 0.4 ppm) spline baseline knot spacing yielded generally better test-retest reproducibility for GABA+. Replicating our prior results, linear combination modeling in Osprey compared with simple peak fitting in Gannet resulted in substantially better test-retest reproducibility. These results highlight the importance of model selection for edited MRS studies of GABA+, particularly for clinical studies which focus on individual patient differences in GABA+ or changes following an intervention.
Collapse
|
37
|
Levin O, Vints WAJ, Ziv G, Katkutė G, Kušleikienė S, Valatkevičienė K, Sheoran S, Drozdova-Statkevičienė M, Gleiznienė R, Pääsuke M, Dudonienė V, Himmelreich U, Česnaitienė VJ, Masiulis N. Neurometabolic correlates of posturography in normal aging and older adults with mild cognitive impairment: Evidence from a 1H-MRS study. Neuroimage Clin 2023; 37:103304. [PMID: 36580713 PMCID: PMC9827054 DOI: 10.1016/j.nicl.2022.103304] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/03/2022] [Accepted: 12/22/2022] [Indexed: 12/25/2022]
Abstract
Proton magnetic resonance spectroscopy (1H-MRS) holds promise for revealing and understanding neurodegenerative processes associated with cognitive and functional impairments in aging. In the present study, we examined the neurometabolic correlates of balance performance in 42 cognitively intact older adults (healthy controls - HC) and 26 older individuals that were diagnosed with mild cognitive impairment (MCI). Neurometabolite ratios of total N-acetyl aspartate (tNAA), glutamate-glutamine complex (Glx), total choline (tCho) and myo-inositol (mIns) relative to total creatine (tCr) were assessed using single voxel 1H-MRS in four different brain regions. Regions of interest were the left hippocampus (HPC), dorsal posterior cingulate cortex (dPCC), left sensorimotor cortex (SM1), and right dorsolateral prefrontal cortex (dlPFC). Center-of-pressure velocity (Vcop) and dual task effect (DTE) were used as measures of balance performance. Results indicated no significant group differences in neurometabolite ratios and balance performance measures. However, our observations revealed that higher tCho/tCr and mIns/tCr in hippocampus and dPCC were generic predictors of worse balance performance, suggesting that neuroinflammatory processes in these regions might be a driving factor for impaired balance performance in aging. Further, we found that higher tNAA/tCr and mIns/tCr and lower Glx/tCr in left SM1 were predictors of better balance performance in MCI but not in HC. The latter observation hints at the possibility that individuals with MCI may upregulate balance control through recruitment of sensorimotor pathways.
Collapse
Affiliation(s)
- Oron Levin
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, LT-44221 Kaunas, Lithuania; Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Heverlee 3001, Belgium
| | - Wouter A J Vints
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, LT-44221 Kaunas, Lithuania; Department of Rehabilitation Medicine Research School CAPHRI, Maastricht University P.O. Box 616, 6200 MD Maastricht, the Netherlands; Centre of Expertise in Rehabilitation and Audiology, Adelante Zorggroep, Hoensbroek, The Netherlands.
| | - Gal Ziv
- The Academic College at Wingate, Netanya 4290200, Israel
| | - Gintarė Katkutė
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, LT-44221 Kaunas, Lithuania
| | - Simona Kušleikienė
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, LT-44221 Kaunas, Lithuania
| | - Kristina Valatkevičienė
- Department of Radiology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Samrat Sheoran
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, LT-44221 Kaunas, Lithuania; Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Canada
| | | | - Rymantė Gleiznienė
- Department of Radiology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Mati Pääsuke
- Institute of Sport Sciences and Physiotherapy, University of Tartu, Estonia
| | - Vilma Dudonienė
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, LT-44221 Kaunas, Lithuania
| | - Uwe Himmelreich
- Biomedical MRI Unit, Department of Imaging and Pathology, Group Biomedical Sciences, KU Leuven, Leuven 3000, Belgium
| | - Vida J Česnaitienė
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, LT-44221 Kaunas, Lithuania
| | - Nerijus Masiulis
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, LT-44221 Kaunas, Lithuania; Department of Rehabilitation, Physical and Sports Medicine, Institute of Health Science, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
38
|
Zwitterionic neurotransmitter-sensitive gadolinium complex as a potential MRI contrast agent for Alzheimer’s disease diagnosis. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2022.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
39
|
Cengiz S, Arslan DB, Kicik A, Erdogdu E, Yildirim M, Hatay GH, Tufekcioglu Z, Uluğ AM, Bilgic B, Hanagasi H, Demiralp T, Gurvit H, Ozturk-Isik E. Identification of metabolic correlates of mild cognitive impairment in Parkinson's disease using magnetic resonance spectroscopic imaging and machine learning. MAGMA (NEW YORK, N.Y.) 2022; 35:997-1008. [PMID: 35867235 DOI: 10.1007/s10334-022-01030-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To investigate metabolic changes of mild cognitive impairment in Parkinson's disease (PD-MCI) using proton magnetic resonance spectroscopic imaging (1H-MRSI). METHODS Sixteen healthy controls (HC), 26 cognitively normal Parkinson's disease (PD-CN) patients, and 34 PD-MCI patients were scanned in this prospective study. Neuropsychological tests were performed, and three-dimensional 1H-MRSI was obtained at 3 T. Metabolic parameters and neuropsychological test scores were compared between PD-MCI, PD-CN, and HC. The correlations between neuropsychological test scores and metabolic intensities were also assessed. Supervised machine learning algorithms were applied to classify HC, PD-CN, and PD-MCI groups based on metabolite levels. RESULTS PD-MCI had a lower corrected total N-acetylaspartate over total creatine ratio (tNAA/tCr) in the right precentral gyrus, corresponding to the sensorimotor network (p = 0.01), and a lower tNAA over myoinositol ratio (tNAA/mI) at a part of the default mode network, corresponding to the retrosplenial cortex (p = 0.04) than PD-CN. The HC and PD-MCI patients were classified with an accuracy of 86.4% (sensitivity = 72.7% and specificity = 81.8%) using bagged trees. CONCLUSION 1H-MRSI revealed metabolic changes in the default mode, ventral attention/salience, and sensorimotor networks of PD-MCI patients, which could be summarized mainly as 'posterior cortical metabolic changes' related with cognitive dysfunction.
Collapse
Affiliation(s)
- Sevim Cengiz
- Institute of Biomedical Engineering, Bogazici University, 34684, Istanbul, Turkey
| | - Dilek Betul Arslan
- Institute of Biomedical Engineering, Bogazici University, 34684, Istanbul, Turkey
| | - Ani Kicik
- Neuroimaging Unit, Hulusi Behcet Life Sciences Research Center, Istanbul University, Istanbul, Turkey
- Department of Physiology, Faculty of Medicine, Demiroglu Bilim University, Istanbul, Turkey
| | - Emel Erdogdu
- Neuroimaging Unit, Hulusi Behcet Life Sciences Research Center, Istanbul University, Istanbul, Turkey
- Department of Psychology, Faculty of Economics and Administrative Sciences, Isik University, Istanbul, Turkey
| | - Muhammed Yildirim
- Institute of Biomedical Engineering, Bogazici University, 34684, Istanbul, Turkey
| | - Gokce Hale Hatay
- Institute of Biomedical Engineering, Bogazici University, 34684, Istanbul, Turkey
| | - Zeynep Tufekcioglu
- Behavioral Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
- Department of Neurology, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey
| | - Aziz Müfit Uluğ
- Institute of Biomedical Engineering, Bogazici University, 34684, Istanbul, Turkey
- CorTechs Labs, San Diego, CA, USA
| | - Basar Bilgic
- Behavioral Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Hasmet Hanagasi
- Behavioral Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Tamer Demiralp
- Neuroimaging Unit, Hulusi Behcet Life Sciences Research Center, Istanbul University, Istanbul, Turkey
- Department of Physiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Hakan Gurvit
- Behavioral Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Esin Ozturk-Isik
- Institute of Biomedical Engineering, Bogazici University, 34684, Istanbul, Turkey.
| |
Collapse
|
40
|
Gozdas E, Hinkley L, Fingerhut H, Dacorro L, Gu M, Sacchet MD, Hurd R, Hosseini SMH. 1H-MRS neurometabolites and associations with neurite microstructures and cognitive functions in amnestic mild cognitive impairment. Neuroimage Clin 2022; 36:103159. [PMID: 36063758 PMCID: PMC9450331 DOI: 10.1016/j.nicl.2022.103159] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/04/2022] [Accepted: 08/18/2022] [Indexed: 01/16/2023]
Abstract
Alzheimer's disease (AD) pathogenesis is associated with alterations in neurometabolites and cortical microstructure. However, our understanding of alterations in neurochemicals in the prefrontal cortex and their relationship with changes in cortical microstructure in AD remains unclear. Here, we studied the levels of neurometabolites in the left dorsolateral prefrontal cortex (DLPFC) in healthy older adults and patients with amnestic Mild Cognitive Impairments (aMCI) using single-voxel proton-magnetic resonance spectroscopy (1H-MRS). N-acetyl aspartate (NAA), glutamate+glutamate (Glx), Myo-inositol (mI), and γ-aminobutyric acid (GABA) brain metabolite levels were quantified relative to total creatine (tCr = Cr + PCr). aMCI had significantly decreased NAA/tCr, Glx/tCr, NAA/mI, and increased mI/tCr levels compared with healthy controls. Further, we leveraged advanced diffusion MRI to extract neurite properties in the left DLPFC and found a significant positive correlation between NAA/tCr, related to neuronal intracellular compartment, and neurite density (ICVF, intracellular volume fraction), and a negative correlation between mI/tCr and neurite orientation (ODI) only in healthy older adults. These data suggest a potential decoupling in the relationship between neurite microstructures and NAA and mI concentrations in DLPFC in the early stage of AD. Together, our results confirm altered DLPFC neurometabolites in prodromal phase of AD and provide unique evidence regarding the imbalance in the association between neurometabolites and neurite microstructure in early stage of AD.
Collapse
Affiliation(s)
- Elveda Gozdas
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA.
| | - Lauren Hinkley
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Hannah Fingerhut
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Lauren Dacorro
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Meng Gu
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Matthew D Sacchet
- Center for Depression, Anxiety, and Stress Research, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Ralph Hurd
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - S M Hadi Hosseini
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
41
|
Mai W, Zhang A, Liu Q, Tang L, Wei Y, Su J, Duan G, Teng J, Nong X, Yu B, Li C, Shao L, Deng D, Chen S, Zhao L. Effects of Moxa Cone Moxibustion Therapy on Cognitive Function and Brain Metabolic Changes in MCI Patients: A Pilot 1H-MRS Study. Front Aging Neurosci 2022; 14:773687. [PMID: 35721029 PMCID: PMC9204283 DOI: 10.3389/fnagi.2022.773687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
Objective To explore the effect of moxa cone moxibustion on N-acetyl aspartate/total creatinine (NAA/tCr) and choline/total creatinine (Cho/tCr) in the bilateral hippocampus (HIP) and bilateral posterior cingulate gyrus (PCG) in patients with mild cognitive impairment (MCI) using hydrogen proton magnetic resonance spectroscopy (1H-MRS) and to provide imaging basis for moxa cone moxibustion treatment for MCI. Methods One hundred eight patients with MCI were served as the MCI group, and 67 age-matched subjects were enrolled as the normal control group. The MCI group was randomized and allocated into acupoint group, drug group, and sham acupoint group, with 36 cases in each group. Some patients in each group withdrew. Finally, 25 cases were included in the acupoint group, 24 cases in the drug group, and 20 cases in the sham acupoint group. The drug group was treated with oral donepezil hydrochloride. The acupoint group and sham acupoint group received moxa cone moxibustion treatment. Mini-mental state exam (MMSE) and Montreal cognitive assessment (MoCA) scores were recorded before intervention, at the end of the first and the second months of intervention, and in the 5th month of follow-up. The NAA/tCr and Cho/tCr ratios in the HIP and PCG were bilaterally measured by 1H-MRS before and after intervention. Results Before intervention, compared with the normal control group, the MMSE and MoCA scores, the Cho/tCr ratio in the right HIP, the NAA/tCr ratio in the bilateral HIP, and the NAA/tCr ratio in the left PCG in the three treatment groups decreased significantly (both p < 0.01), and the NAA/tCr ratio in the right PCG significantly reduced in the acupoint and drug groups (p < 0.05). After two months of treatment, compared with the normal control group, there were no differences in the MoCA scores, the NAA/tCr, and Cho/tCr ratios in the bilateral PCG and bilateral HIP in the three treatment groups (p > 0.05). However, the MMSE scores in the drug group decreased when compared with the acupoint group and normal control group (p < 0.05, p < 0.01). The scores of MMSE and MoCA in the acupoint group and sham acupoint group at all time points were better than those in the drug group, which were similar to those in the normal control group. Conclusion Our findings suggest that moxibustion could improve the cognitive function of patients with MCI. The mechanism may be related to the improvement of abnormal brain metabolism in HIP and PCG.
Collapse
Affiliation(s)
- Wei Mai
- Guangxi University of Chinese Medicine, Nanning, China
- Department of Traditional Chinese Medicine, Guangxi Tumour Hospital, Nanning, China
| | | | - Qiang Liu
- Xinghu Outpatient Department, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Liying Tang
- Xinghu Outpatient Department, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yichen Wei
- Department of Radiology, The First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, China
| | - Jiahui Su
- Department of Acupuncture, The First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, China
| | - Gaoxiong Duan
- Department of Radiology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jinlong Teng
- Department of Acupuncture, The First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, China
| | - Xiucheng Nong
- Department of Acupuncture, The First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, China
| | - Bihan Yu
- Department of Acupuncture, The First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, China
| | - Chong Li
- Department of Acupuncture, The First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, China
| | - Lijuan Shao
- Department of Acupuncture, The First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, China
| | - Demao Deng
- Department of Radiology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Demao Deng,
| | - Shangjie Chen
- Department of Rehabilitation, The Second Affiliated Hospital of Shenzhen University, Shenzhen, China
- Shangjie Chen,
| | - Lihua Zhao
- Department of Acupuncture, The First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, China
- *Correspondence: Lihua Zhao,
| |
Collapse
|
42
|
Attention-Guided Neural Network for Early Dementia Detection Using MRS data. Comput Med Imaging Graph 2022; 99:102074. [DOI: 10.1016/j.compmedimag.2022.102074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/25/2022] [Accepted: 05/12/2022] [Indexed: 11/17/2022]
|
43
|
Li H, Heise KF, Chalavi S, Puts NAJ, Edden RAE, Swinnen SP. The role of MRS-assessed GABA in human behavioral performance. Prog Neurobiol 2022; 212:102247. [PMID: 35149113 DOI: 10.1016/j.pneurobio.2022.102247] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 01/25/2022] [Accepted: 02/04/2022] [Indexed: 01/16/2023]
Abstract
Understanding the neurophysiological mechanisms that drive human behavior has been a long-standing focus of cognitive neuroscience. One well-known neuro-metabolite involved in the creation of optimal behavioral repertoires is GABA, the main inhibitory neurochemical in the human brain. Converging evidence from both animal and human studies indicates that individual variations in GABAergic function are associated with behavioral performance. In humans, one increasingly used in vivo approach to measuring GABA levels is through Magnetic Resonance Spectroscopy (MRS). However, the implications of MRS measures of GABA for behavior remain poorly understood. In this respect, it is yet to be determined how GABA levels within distinct task-related brain regions of interest account for differences in behavioral performance. This review summarizes findings from cross-sectional studies that determined baseline MRS-assessed GABA levels and examined their associations with performance on various behaviors representing the perceptual, motor and cognitive domains, with a particular focus on healthy participants across the lifespan. Overall, the results indicate that MRS-assessed GABA levels play a pivotal role in various domains of behavior. Even though some converging patterns emerge, it is challenging to draw comprehensive conclusions due to differences in behavioral task paradigms, targeted brain regions of interest, implemented MRS techniques and reference compounds used. Across all studies, the effects of GABA levels on behavioral performance point to generic and partially independent functions that refer to distinctiveness, interference suppression and cognitive flexibility. On one hand, higher baseline GABA levels may support the distinctiveness of neural representations during task performance and better coping with interference and suppression of preferred response tendencies. On the other hand, lower baseline GABA levels may support a reduction of inhibition, leading to higher cognitive flexibility. These effects are task-dependent and appear to be mediated by age. Nonetheless, additional studies using emerging advanced methods are required to further clarify the role of MRS-assessed GABA in behavioral performance.
Collapse
Affiliation(s)
- Hong Li
- Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Belgium; KU Leuven Brain Institute (LBI), KU Leuven, Belgium.
| | - Kirstin-Friederike Heise
- Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Belgium; KU Leuven Brain Institute (LBI), KU Leuven, Belgium; Department of Health Sciences and Research, Medical University of South Carolina, Charleston, SC, USA.
| | - Sima Chalavi
- Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Belgium; KU Leuven Brain Institute (LBI), KU Leuven, Belgium.
| | - Nicolaas A J Puts
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK; Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK; Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA.
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Stephan P Swinnen
- Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Belgium; KU Leuven Brain Institute (LBI), KU Leuven, Belgium.
| |
Collapse
|
44
|
Chen JJ, Thiyagarajah M, Song J, Chen C, Herrmann N, Gallagher D, Rapoport MJ, Black SE, Ramirez J, Andreazza AC, Oh P, Marzolini S, Graham SJ, Lanctôt KL. Altered central and blood glutathione in Alzheimer's disease and mild cognitive impairment: a meta-analysis. Alzheimers Res Ther 2022; 14:23. [PMID: 35123548 PMCID: PMC8818133 DOI: 10.1186/s13195-022-00961-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 01/06/2022] [Indexed: 01/01/2023]
Abstract
BACKGROUND Increasing evidence implicates oxidative stress (OS) in Alzheimer disease (AD) and mild cognitive impairment (MCI). Depletion of the brain antioxidant glutathione (GSH) may be important in OS-mediated neurodegeneration, though studies of post-mortem brain GSH changes in AD have been inconclusive. Recent in vivo measurements of the brain and blood GSH may shed light on GSH changes earlier in the disease. AIM To quantitatively review in vivo GSH in AD and MCI compared to healthy controls (HC) using meta-analyses. METHOD Studies with in vivo brain or blood GSH levels in MCI or AD with a HC group were identified using MEDLINE, PsychInfo, and Embase (1947-June 2020). Standardized mean differences (SMD) and 95% confidence intervals (CI) were calculated for outcomes using random effects models. Outcome measures included brain GSH (Meshcher-Garwood Point Resolved Spectroscopy (MEGA-PRESS) versus non-MEGA-PRESS) and blood GSH (intracellular versus extracellular) in AD and MCI. The Q statistic and Egger's test were used to assess heterogeneity and risk of publication bias, respectively. RESULTS For brain GSH, 4 AD (AD=135, HC=223) and 4 MCI (MCI=213, HC=211) studies were included. For blood GSH, 26 AD (AD=1203, HC=1135) and 7 MCI (MCI=434, HC=408) studies were included. Brain GSH overall did not differ in AD or MCI compared to HC; however, the subgroup of studies using MEGA-PRESS reported lower brain GSH in AD (SMD [95%CI] -1.45 [-1.83, -1.06], p<0.001) and MCI (-1.15 [-1.71, -0.59], z=4.0, p<0.001). AD had lower intracellular and extracellular blood GSH overall (-0.87 [-1. 30, -0.44], z=3.96, p<0.001). In a subgroup analysis, intracellular GSH was lower in MCI (-0.66 [-1.11, -0.21], p=0.025). Heterogeneity was observed throughout (I2 >85%) and not fully accounted by subgroup analysis. Egger's test indicated risk of publication bias. CONCLUSION Blood intracellular GSH decrease is seen in MCI, while both intra- and extracellular decreases were seen in AD. Brain GSH is decreased in AD and MCI in subgroup analysis. Potential bias and heterogeneity suggest the need for measurement standardization and additional studies to explore sources of heterogeneity.
Collapse
Affiliation(s)
- Jinghan Jenny Chen
- Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Room FG52, Toronto, ON, M4N 3M5, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Mathura Thiyagarajah
- Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Room FG52, Toronto, ON, M4N 3M5, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Jianmeng Song
- Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Room FG52, Toronto, ON, M4N 3M5, Canada
| | - Clara Chen
- Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Room FG52, Toronto, ON, M4N 3M5, Canada
| | - Nathan Herrmann
- Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Room FG52, Toronto, ON, M4N 3M5, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Geriatric Psychiatry, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Damien Gallagher
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Geriatric Psychiatry, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Mark J Rapoport
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Geriatric Psychiatry, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Sandra E Black
- Evaluative Clinical Sciences, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
- KITE-Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada
| | - Joel Ramirez
- Evaluative Clinical Sciences, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Ana C Andreazza
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Paul Oh
- KITE-Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada
| | - Susan Marzolini
- KITE-Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada
| | - Simon J Graham
- Physical Sciences, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Krista L Lanctôt
- Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Room FG52, Toronto, ON, M4N 3M5, Canada.
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
- Geriatric Psychiatry, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.
- Evaluative Clinical Sciences, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada.
| |
Collapse
|
45
|
Hone-Blanchet A, Bohsali A, Krishnamurthy LC, Shahid SS, Lin Q, Zhao L, Bisht AS, John SE, Loring D, Goldstein F, Levey A, Lah J, Qiu D, Crosson B. Frontal Metabolites and Alzheimer's Disease Biomarkers in Healthy Older Women and Women Diagnosed with Mild Cognitive Impairment. J Alzheimers Dis 2022; 87:1131-1141. [PMID: 35431238 PMCID: PMC9795460 DOI: 10.3233/jad-215431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Women account for two thirds of the prevalence and incidence of Alzheimer's disease (AD) and mild cognitive impairment (MCI). Evidence suggest that sex may differently influence the expression of proteins amyloid-beta (Aβ1-42) and tau, for which early detection is crucial in prevention of the disease. OBJECTIVE We investigated the effect of aging and cerebrospinal fluid (CSF) levels of Aβ1-42 and tau on frontal metabolites measured with proton magnetic resonance spectroscopy (MRS) in a cohort of cognitively normal older women and women with MCI. METHODS 3T single-voxel MRS was performed on the medial frontal cortex, using Point Resolved Spectroscopy (PRESS) and Mescher-Garwood Point Resolved Spectroscopy (MEGA-PRESS) in 120 women (age range 50-85). CSF samples of Aβ1-42 and tau and scores of general cognition were also obtained. RESULTS Levels of frontal gamma aminobutyric acid (GABA+) were predicted by age, independently of disease and CSF biomarkers. Importantly, levels of GABA+ were reduced in MCI patients. Additionally, we found that levels of N-acetylaspartate relative to myo-inositol (tNAA/mI) predicted cognition in MCI patients only and were not related to CSF biomarkers. CONCLUSION This study is the first to demonstrate a strong association between frontal GABA+ levels and neurological aging in a sample consisting exclusively of healthy older women with various levels of CSF tau and Aβ1-42 and women with MCI. Importantly, our results show no correlation between CSF biomarkers and MRS metabolites in this sample.
Collapse
Affiliation(s)
- Antoine Hone-Blanchet
- Department of Neurology, School of Medicine, Emory University, Atlanta, GA, USA,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Anastasia Bohsali
- Department of Neurology, School of Medicine, Emory University, Atlanta, GA, USA
| | - Lisa C. Krishnamurthy
- Department of Physics & Astronomy, Georgia State University, Atlanta, GA, USA,Center for Visual and Neurocognitive Rehabilitation, Atlanta VAMC, Decatur, GA, USA
| | - Salman S. Shahid
- Department of Neurology, School of Medicine, Emory University, Atlanta, GA, USA,Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Qixiang Lin
- Department of Neurology, School of Medicine, Emory University, Atlanta, GA, USA
| | - Liping Zhao
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Aditya S. Bisht
- Department of Neurology, School of Medicine, Emory University, Atlanta, GA, USA
| | - Samantha E. John
- Department of Brain Health, Population Health & Health Equity Initiative, University of Nevada, Las Vegas, NV, USA
| | - David Loring
- Department of Neurology, School of Medicine, Emory University, Atlanta, GA, USA
| | - Felicia Goldstein
- Department of Neurology, School of Medicine, Emory University, Atlanta, GA, USA
| | - Allan Levey
- Department of Neurology, School of Medicine, Emory University, Atlanta, GA, USA
| | - James Lah
- Department of Neurology, School of Medicine, Emory University, Atlanta, GA, USA
| | - Deqiang Qiu
- Department of Radiology and Imaging Sciences, School of Medicine, Emory University, Atlanta, GA, USA,Joint Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA,Correspondence to: Deqiang Qiu, Department of Radiology and Imaging Sciences, School of Medicine, Emory University, 100 Woodruff Circle, Atlanta, GA, 30322, USA. Tel.: +1 404 712 0356;
| | - Bruce Crosson
- Department of Neurology, School of Medicine, Emory University, Atlanta, GA, USA,Center for Visual and Neurocognitive Rehabilitation, Atlanta VAMC, Decatur, GA, USA,Department of Radiology and Imaging Sciences, School of Medicine, Emory University, Atlanta, GA, USA
| |
Collapse
|
46
|
Vints WAJ, Kušleikiene S, Sheoran S, Šarkinaite M, Valatkevičiene K, Gleizniene R, Kvedaras M, Pukenas K, Himmelreich U, Cesnaitiene VJ, Levin O, Verbunt J, Masiulis N. Inflammatory Blood Biomarker Kynurenine Is Linked With Elevated Neuroinflammation and Neurodegeneration in Older Adults: Evidence From Two 1H-MRS Post-Processing Analysis Methods. Front Psychiatry 2022; 13:859772. [PMID: 35479493 PMCID: PMC9035828 DOI: 10.3389/fpsyt.2022.859772] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/11/2022] [Indexed: 12/21/2022] Open
Abstract
RATIONALE AND OBJECTIVES Pro-inflammatory processes have been argued to play a role in conditions associated with cognitive decline and neurodegeneration, like aging and obesity. Only a limited number of studies have tried to measure both peripheral and central biomarkers of inflammation and examined their interrelationship. The primary aim of this study was to examine the hypothesis that chronic peripheral inflammation would be associated with neurometabolic changes that indicate neuroinflammation (the combined elevation of myoinositol and choline), brain gray matter volume decrease, and lower cognitive functioning in older adults. MATERIALS AND METHODS Seventy-four older adults underwent bio-impedance body composition analysis, cognitive testing with the Montreal Cognitive Assessment (MoCA), blood serum analysis of inflammatory markers interleukin-6 (IL-6) and kynurenine, magnetic resonance imaging (MRI), and proton magnetic resonance spectroscopy (1H-MRS) of the brain. Neurometabolic findings from both Tarquin and LCModel 1H-MRS post-processing software packages were compared. The regions of interest for MRI and 1H-MRS measurements were dorsal posterior cingulate cortex (DPCC), left hippocampal cortex (HPC), left medial temporal cortex (MTC), left primary sensorimotor cortex (SM1), and right dorsolateral prefrontal cortex (DLPFC). RESULTS Elevated serum kynurenine levels were associated with signs of neuroinflammation, specifically in the DPCC, left SM1 and right DLPFC, and signs of neurodegeneration, specifically in the left HPC, left MTC and left SM1, after adjusting for age, sex and fat percentage (fat%). Elevated serum IL-6 levels were associated with increased Glx levels in left HPC, left MTC, and right DLPFC, after processing the 1H-MRS data with Tarquin. Overall, the agreement between Tarquin and LCModel results was moderate-to-strong for tNAA, tCho, mIns, and tCr, but weak to very weak for Glx. Peripheral inflammatory markers (IL-6 and kynurenine) were not associated with older age, higher fat%, decreased brain gray matter volume loss or decreased cognitive functioning within a cohort of older adults. CONCLUSION Our results suggest that serum kynurenine may be used as a peripheral inflammatory marker that is associated with neuroinflammation and neurodegeneration, although not linked to cognition. Future studies should consider longitudinal analysis to assess the causal inferences between chronic peripheral and neuroinflammation, brain structural and neurometabolic changes, and cognitive decline in aging.
Collapse
Affiliation(s)
- Wouter A J Vints
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, Kaunas, Lithuania.,Department of Rehabilitation Medicine Research School Caphri, Maastricht University, Maastricht, Netherlands.,Centre of Expertise in Rehabilitation and Audiology, Adelante Zorggroep, Hoensbroek, Netherlands
| | - Simona Kušleikiene
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, Kaunas, Lithuania
| | - Samrat Sheoran
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, Kaunas, Lithuania
| | - Milda Šarkinaite
- Department of Radiology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Kristina Valatkevičiene
- Department of Radiology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Rymante Gleizniene
- Department of Radiology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Mindaugas Kvedaras
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, Kaunas, Lithuania
| | - Kazimieras Pukenas
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, Kaunas, Lithuania
| | - Uwe Himmelreich
- Biomedical MRI Unit, Department of Imaging and Pathology, Group Biomedical Sciences, Catholic University Leuven, Leuven, Belgium
| | - Vida J Cesnaitiene
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, Kaunas, Lithuania
| | - Oron Levin
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, Kaunas, Lithuania.,Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, Catholic University Leuven, Heverlee, Belgium
| | - Jeanine Verbunt
- Department of Rehabilitation Medicine Research School Caphri, Maastricht University, Maastricht, Netherlands.,Centre of Expertise in Rehabilitation and Audiology, Adelante Zorggroep, Hoensbroek, Netherlands
| | - Nerijus Masiulis
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, Kaunas, Lithuania.,Department of Rehabilitation, Physical and Sports Medicine, Institute of Health Science, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
47
|
Song T, Song X, Zhu C, Patrick R, Skurla M, Santangelo I, Green M, Harper D, Ren B, Forester BP, Öngür D, Du F. Mitochondrial dysfunction, oxidative stress, neuroinflammation, and metabolic alterations in the progression of Alzheimer's disease: A meta-analysis of in vivo magnetic resonance spectroscopy studies. Ageing Res Rev 2021; 72:101503. [PMID: 34751136 PMCID: PMC8662951 DOI: 10.1016/j.arr.2021.101503] [Citation(s) in RCA: 159] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/19/2021] [Accepted: 10/25/2021] [Indexed: 12/13/2022]
Abstract
Accumulating evidence demonstrates that metabolic changes in the brain associated with neuroinflammation, oxidative stress, and mitochondrial dysfunction play an important role in the pathophysiology of mild cognitive impairment (MCI) and Alzheimer's disease (AD). However, the neural signatures associated with these metabolic alterations and underlying molecular mechanisms are still elusive. Accordingly, we reviewed the literature on in vivo human brain 1H and 31P-MRS studies and use meta-analyses to identify patterns of brain metabolic alterations in MCI and AD. 40 and 39 studies on MCI and AD, respectively, were classified according to brain regions. Our results indicate decreased N-acetyl aspartate and creatine but increased myo-inositol levels in both MCI and AD, decreased glutathione level in MCI as well as disrupted energy metabolism in AD. In addition, the hippocampus shows the strongest alterations in most of these metabolites. This meta-analysis also illustrates progressive metabolite alterations from MCI to AD. Taken together, it suggests that 1) neuroinflammation and oxidative stress may occur in the early stages of AD, and likely precede neuron loss in its progression; 2) the hippocampus is a sensitive region of interest for early diagnosis and monitoring the response of interventions; 3) targeting bioenergetics associated with neuroinflammation/oxidative stress is a promising approach for treating AD.
Collapse
Affiliation(s)
- Tao Song
- Psychotic Disorders Division, McLean Hospital, 02478, USA; McLean Imaging Center, McLean Hospital, 02478, USA; Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Xiaopeng Song
- Psychotic Disorders Division, McLean Hospital, 02478, USA; McLean Imaging Center, McLean Hospital, 02478, USA; Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Chenyawen Zhu
- Psychotic Disorders Division, McLean Hospital, 02478, USA; McLean Imaging Center, McLean Hospital, 02478, USA
| | - Regan Patrick
- Division of Geriatric Psychiatry, McLean Hospital, 02478, USA; Department of Neuropsychology, McLean Hospital, 02478, USA; Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Miranda Skurla
- Division of Geriatric Psychiatry, McLean Hospital, 02478, USA
| | | | - Morgan Green
- Division of Geriatric Psychiatry, McLean Hospital, 02478, USA
| | - David Harper
- Division of Geriatric Psychiatry, McLean Hospital, 02478, USA; Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Boyu Ren
- Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Brent P Forester
- Division of Geriatric Psychiatry, McLean Hospital, 02478, USA; Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Dost Öngür
- Psychotic Disorders Division, McLean Hospital, 02478, USA; Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Fei Du
- Psychotic Disorders Division, McLean Hospital, 02478, USA; McLean Imaging Center, McLean Hospital, 02478, USA; Harvard Medical School, Boston, Massachusetts 02115, USA.
| |
Collapse
|
48
|
Costigan A, Umla-Runge K, Evans C, Raybould R, Graham K, Lawrence A. Evidence against altered excitatory/inhibitory balance in the posteromedial cortex of young adult APOE E4 carriers: A resting state 1H-MRS study. NEUROIMAGE. REPORTS 2021; 1:100059. [PMID: 36896169 PMCID: PMC9986794 DOI: 10.1016/j.ynirp.2021.100059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/09/2021] [Accepted: 10/04/2021] [Indexed: 11/20/2022]
Abstract
A strategy to gain insight into early changes that may predispose people to Alzheimer's disease (AD) is to study the brains of younger cognitively healthy people that are at increased genetic risk of AD. The Apolipoprotein (APOE) E4 allele is the strongest genetic risk factor for AD, and several neuroimaging studies comparing APOE E4 carriers with non-carriers at age ∼20-30 years have detected hyperactivity (or reduced deactivation) in posteromedial cortex (PMC), a key hub of the default network (DN), which has a high susceptibility to early amyloid deposition in AD. Transgenic mouse models suggest such early network activity alterations may result from altered excitatory/inhibitory (E/I) balance, but this is yet to be examined in humans. Here we test the hypothesis that PMC fMRI hyperactivity could be underpinned by altered levels of excitatory (glutamate) and/or inhibitory (GABA) neurotransmitters in this brain region. Forty-seven participants (20 APOE E4 carriers and 27 non-carriers) aged 18-25 years underwent resting-state proton magnetic resonance spectroscopy (1H-MRS), a non-invasive neuroimaging technique to measure glutamate and GABA in vivo. Metabolites were measured in a PMC voxel of interest and in a comparison voxel in the occipital cortex (OCC). There was no difference in either glutamate or GABA between the E4 carriers and non-carriers in either MRS voxel, or in the ratio of glutamate to GABA, a measure of E/I balance. Default Bayesian t-tests revealed evidence in support of this null finding. Our findings suggest that PMC hyperactivity in APOE E4 carriers is unlikely to be associated with, or possibly may precede, alterations in local resting-state PMC neurotransmitters, thus informing our understanding of the spatio-temporal sequence of early network alterations underlying APOE E4 related AD risk.
Collapse
Affiliation(s)
- A.G. Costigan
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK
| | - K. Umla-Runge
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK
| | - C.J. Evans
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK
| | - R. Raybould
- UK Dementia Research Institute, Cardiff, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - K.S. Graham
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK
| | - A.D. Lawrence
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK
| |
Collapse
|
49
|
Liu H, Zhang D, Lin H, Zhang Q, Zheng L, Zheng Y, Yin X, Li Z, Liang S, Huang S. Meta-Analysis of Neurochemical Changes Estimated via Magnetic Resonance Spectroscopy in Mild Cognitive Impairment and Alzheimer's Disease. Front Aging Neurosci 2021; 13:738971. [PMID: 34744689 PMCID: PMC8569809 DOI: 10.3389/fnagi.2021.738971] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/26/2021] [Indexed: 11/18/2022] Open
Abstract
The changes of neurochemicals in mild cognitive impairment (MCI) and Alzheimer's disease (AD) patients has been observed via magnetic resonance spectroscopy in several studies. However, whether it exists the consistent pattern of changes of neurochemicals in the encephalic region during the progression of MCI to AD were still not clear. The study performed meta-analysis to investigate the patterns of neurochemical changes in the encephalic region in the progress of AD. We searched the PubMed, Embase, Cochrane Library, and Web of Science databases, and finally included 63 studies comprising 1,086 MCI patients, 1,256 AD patients, and 1,907 healthy controls. It showed that during the progression from MCI to AD, N-acetyl aspartate (NAA) decreased continuously in the posterior cingulate (PC) (SMD: −0.42 [95% CI: −0.62 to −0.21], z = −3.89, P < 0.05), NAA/Cr (creatine) was consistently reduced in PC (SMD: −0.58 [95% CI: −0.86 to −0.30], z = −4.06, P < 0.05) and hippocampus (SMD: −0.65 [95% CI: −1.11 to −0.12], z = −2.44, P < 0.05), while myo-inositol (mI) (SMD: 0.44 [95% CI: 0.26–0.61], z = 4.97, P < 0.05) and mI/Cr (SMD: 0.43 [95% CI: 0.17–0.68], z = 3.30, P < 0.05) were raised in PC. Furthermore, these results were further verified by a sustained decrease in the NAA/mI of PC (SMD: −0.94 [95% CI: −1.24 to −0.65], z = −6.26, P < 0.05). Therefore, the levels of NAA and mI were associated with the cognitive decline and might be used as potentially biomarkers to predict the possible progression from MCI to AD. Systematic Review Registration:https://www.crd.york.ac.uk/PROSPERO/, identifier: CRD42020200308.
Collapse
Affiliation(s)
- Huanhuan Liu
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Dandan Zhang
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Huawei Lin
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Qi Zhang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Ling Zheng
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yuxin Zheng
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xiaolong Yin
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Zuanfang Li
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, China
| | - Shengxiang Liang
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Traditional Chinese Medicine Rehabilitation Research Center of State Administration of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Saie Huang
- Department of Neurological Rehabilitation, Fujian University of Traditional Chinese Medicine Subsidiary Rehabilitation Hospital, Fuzhou, China
| |
Collapse
|
50
|
Platt T, Ladd ME, Paech D. 7 Tesla and Beyond: Advanced Methods and Clinical Applications in Magnetic Resonance Imaging. Invest Radiol 2021; 56:705-725. [PMID: 34510098 PMCID: PMC8505159 DOI: 10.1097/rli.0000000000000820] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/07/2021] [Accepted: 08/07/2021] [Indexed: 12/15/2022]
Abstract
ABSTRACT Ultrahigh magnetic fields offer significantly higher signal-to-noise ratio, and several magnetic resonance applications additionally benefit from a higher contrast-to-noise ratio, with static magnetic field strengths of B0 ≥ 7 T currently being referred to as ultrahigh fields (UHFs). The advantages of UHF can be used to resolve structures more precisely or to visualize physiological/pathophysiological effects that would be difficult or even impossible to detect at lower field strengths. However, with these advantages also come challenges, such as inhomogeneities applying standard radiofrequency excitation techniques, higher energy deposition in the human body, and enhanced B0 field inhomogeneities. The advantages but also the challenges of UHF as well as promising advanced methodological developments and clinical applications that particularly benefit from UHF are discussed in this review article.
Collapse
Affiliation(s)
- Tanja Platt
- From the Medical Physics in Radiology, German Cancer Research Center (DKFZ)
| | - Mark E. Ladd
- From the Medical Physics in Radiology, German Cancer Research Center (DKFZ)
- Faculty of Physics and Astronomy
- Faculty of Medicine, University of Heidelberg, Heidelberg
- Erwin L. Hahn Institute for MRI, University of Duisburg-Essen, Essen
| | - Daniel Paech
- Division of Radiology, German Cancer Research Center (DKFZ), Heidelberg
- Clinic for Neuroradiology, University of Bonn, Bonn, Germany
| |
Collapse
|