1
|
González-Alonso A, Morales L, Sanz E, Medina L, Desfilis E. Expression of Sex-Steroid Receptors and Sex Differences of Otp Glutamatergic Neurons of the Medial Extended Amygdala. J Comp Neurol 2025; 533:e70047. [PMID: 40172086 DOI: 10.1002/cne.70047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 02/14/2025] [Accepted: 03/13/2025] [Indexed: 04/04/2025]
Abstract
The medial extended amygdala (EAme) is part of the social behavior network and its subdivisions show expression of sex-steroid receptors, which participate in the regulation of sexually dimorphic behaviors. However, EAme subdivisions are highly heterogeneous in terms of neuron subtypes, with different subpopulations being involved in regulation of different aspects of social and non-social behaviors. To further understand the role of the different EAme neurons and their contribution to sexual differences, here we studied one of its major subtypes of glutamatergic neurons, those derived from the telencephalon-opto-hypothalamic domain that coexpress Otp and Foxg1 genes during development. Our results showed that the vast majority of the Otp glutamatergic neurons of the medial amygdala and medial bed nucleus of the stria terminalis (BSTM) in both sexes express Ar, Esr1 (ERα), and Esr2 (ERβ) mRNA. Moreover, the high percentage of receptors expression in the Otp neurons (between 93% and 100%) indicates that probably the majority of the Otp neurons of EAme are coexpressing the three receptors. In addition, Otp neurons of the posterodorsal medial amygdala have a larger soma and occupy more space in males than in females. These and other features of the Otp neurons regarding their expression of sex-steroid receptors likely contribute to some of the sexually dimorphic behaviors regulated by EAme.
Collapse
Affiliation(s)
- Alba González-Alonso
- Department of Experimental Medicine, Universitat de Lleida, Lleida, Spain
- Laboratory of Evolutionary and Developmental Neurobiology, Lleida's Institute for Biomedical Research-Dr. Pifarré Foundation (IRBLleida), Lleida, Spain
| | - Lorena Morales
- Department of Experimental Medicine, Universitat de Lleida, Lleida, Spain
- Laboratory of Evolutionary and Developmental Neurobiology, Lleida's Institute for Biomedical Research-Dr. Pifarré Foundation (IRBLleida), Lleida, Spain
- Alimentary Pharmabiotic Centre Microbiome Ireland, University College Cork, Cork, Ireland
| | - Elisenda Sanz
- Institut de Neurociències and Department of Cell Biology, Physiology and Immunology, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Loreta Medina
- Department of Experimental Medicine, Universitat de Lleida, Lleida, Spain
- Laboratory of Evolutionary and Developmental Neurobiology, Lleida's Institute for Biomedical Research-Dr. Pifarré Foundation (IRBLleida), Lleida, Spain
| | - Ester Desfilis
- Department of Experimental Medicine, Universitat de Lleida, Lleida, Spain
- Laboratory of Evolutionary and Developmental Neurobiology, Lleida's Institute for Biomedical Research-Dr. Pifarré Foundation (IRBLleida), Lleida, Spain
| |
Collapse
|
2
|
McLamb F, Feng Z, Vu JP, Griffin L, Vasquez MF, Bozinovic G. Lagging Brain Gene Expression Patterns of Drosophila melanogaster Young Adult Males Confound Comparisons Between Sexes. Mol Neurobiol 2025; 62:2955-2972. [PMID: 39196495 PMCID: PMC11790743 DOI: 10.1007/s12035-024-04427-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024]
Abstract
Many species, including fruit flies (Drosophila melanogaster), are sexually dimorphic. Phenotypic variation in morphology, physiology, and behavior can affect development, reproduction, health, and aging. Therefore, designating sex as a variable and sex-blocking should be considered when designing experiments. The brain regulates phenotypes throughout the lifespan by balancing survival and reproduction, and sex-specific development at each life stage is likely. Changes in morphology and physiology are governed by differential gene expression, a quantifiable molecular marker for age- and sex-specific variations. We assessed the fruit fly brain transcriptome at three adult ages for gene expression signatures of sex, age, and sex-by-age: 6698 genes were differentially expressed between sexes, with the most divergence at 3 days. Between ages, 31.1% of 6084 differentially expressed genes (1890 genes) share similar expression patterns from 3 to 7 days in females, and from 7 to 14 days in males. Most of these genes (90.5%, 1712) were upregulated and enriched for chemical stimulus detection and/or cilium regulation. Our data highlight an important delay in male brain gene regulation compared to females. Because significant delays in expression could confound comparisons between sexes, studies of sexual dimorphism at phenotypically comparable life stages rather than chronological age should be more biologically relevant.
Collapse
Affiliation(s)
- Flannery McLamb
- Boz Life Science Research and Teaching Institute, La Jolla, CA, USA
- Division of Extended Studies, University of California San Diego, La Jolla, CA, USA
| | - Zuying Feng
- Boz Life Science Research and Teaching Institute, La Jolla, CA, USA
| | - Jeanne P Vu
- Boz Life Science Research and Teaching Institute, La Jolla, CA, USA
- Graduate School of Public Health, San Diego State University, San Diego, CA, USA
| | - Lindsey Griffin
- Boz Life Science Research and Teaching Institute, La Jolla, CA, USA
- Division of Extended Studies, University of California San Diego, La Jolla, CA, USA
| | - Miguel F Vasquez
- Boz Life Science Research and Teaching Institute, La Jolla, CA, USA
- National Center for Microscopy and Imaging Research, University of California San Diego, La Jolla, CA, USA
| | - Goran Bozinovic
- Boz Life Science Research and Teaching Institute, La Jolla, CA, USA.
- Graduate School of Public Health, San Diego State University, San Diego, CA, USA.
- Center for Life in Extreme Environments, Portland State University, Portland, OR, USA.
- School of Biological Sciences, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
3
|
Placzek M, Chinnaiya K, Kim DW, Blackshaw S. Control of tuberal hypothalamic development and its implications in metabolic disorders. Nat Rev Endocrinol 2025; 21:118-130. [PMID: 39313573 PMCID: PMC11864813 DOI: 10.1038/s41574-024-01036-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/29/2024] [Indexed: 09/25/2024]
Abstract
The tuberal hypothalamus regulates a range of crucial physiological processes, including energy homeostasis and metabolism. In this Review, we explore the intricate molecular mechanisms and signalling pathways that control the development of the tuberal hypothalamus, focusing on aspects that shape metabolic outcomes. Major developmental events are discussed in the context of their effect on the establishment of both functional hypothalamic neuronal circuits and brain-body interfaces that are pivotal to the control of metabolism. Emerging evidence indicates that aberrations in molecular pathways during tuberal hypothalamic development contribute to metabolic dysregulation. Understanding the molecular underpinnings of tuberal hypothalamic development provides a comprehensive view of neurodevelopmental processes and offers a promising avenue for future targeted interventions to prevent and treat metabolic disorders.
Collapse
Affiliation(s)
- Marysia Placzek
- School of Biosciences, University of Sheffield, Sheffield, UK.
- Bateson Centre, University of Sheffield, Sheffield, UK.
- Neuroscience Institute, University of Sheffield, Sheffield, UK.
| | | | - Dong Won Kim
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
4
|
Curi TZ, Passoni MT, Tolouei SEL, de Araújo Ramos AT, de Almeida SCF, Romano RM, de Oliveira JM, Dalsenter PR, Martino-Andrade AJ. In Utero and Lactational Exposure to an Environmentally Relevant Mixture of Phthalates Alters Hypothalamic Gene Expression and Sexual Preference in Rats. ENVIRONMENTAL TOXICOLOGY 2025; 40:54-65. [PMID: 39248502 DOI: 10.1002/tox.24414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/19/2024] [Accepted: 08/20/2024] [Indexed: 09/10/2024]
Abstract
Several phthalates, mainly used as plasticizers, are known for their adverse effects on the male genital system. Previously, we demonstrated that an environmentally relevant mixture of six antiandrogenic phthalates (PMix), derived from a biomonitoring study in pregnant Brazilian women, was able to disrupt the reproductive development in male rats. Experimental groups (control, 0.1, 0.5, and 500 mg PMix/kg/day) were established starting from the extrapolated human dose (0.1 mg/kg/day), followed by doses 5 times and 5000 times higher. Pregnant rats received daily oral gavage administration of either vehicle (control) or PMix from gestational day 13 to postnatal day 10. Here, we examined male and female offspring regarding changes in gene expression of key reproductive factors in the hypothalamus and pituitary gland at adulthood and conducted a battery of behavioral tests in males, including partner preference, sexual behavior, and male attractiveness tests. PMix induced some changes in mating-related behavior in males, as demonstrated by the absence of preference for females against males and a higher number of penetrations up to ejaculation in the 0.5 dose group. PMix decreased Esr2 expression in the male hypothalamus across all three doses, and in females at mid and high doses in both the hypothalamus and pituitary. In male hypothalamus, we also observed decreased Kiss1 transcripts in these groups and a reduction in AR at the 0.5 dose group. In summary, our results provide further evidence that phthalates in a mixture, even at low doses, may exert cumulative effects on the structures underlying sexual behavior, which seems to be more sensitive than reproductive endpoints for the same experimental design.
Collapse
Affiliation(s)
- Tatiana Zauer Curi
- Reproductive Toxicology Laboratory, Department of Pharmacology, Federal University of Paraná (UFPR), Curitiba, Brazil
| | - Marcella Tapias Passoni
- Reproductive Toxicology Laboratory, Department of Pharmacology, Federal University of Paraná (UFPR), Curitiba, Brazil
| | - Sara Emilia Lima Tolouei
- Reproductive Toxicology Laboratory, Department of Pharmacology, Federal University of Paraná (UFPR), Curitiba, Brazil
| | - Anderson Tadeu de Araújo Ramos
- Animal Endocrine and Reproductive Physiology Laboratory, Department of Physiology, Federal University of Paraná (UFPR), Curitiba, Brazil
| | - Samara Christina França de Almeida
- Animal Endocrine and Reproductive Physiology Laboratory, Department of Physiology, Federal University of Paraná (UFPR), Curitiba, Brazil
| | - Renata Marino Romano
- Reproductive Toxicology Laboratory, Department of Pharmacy, State University of Centro-Oeste, Guarapuava, Brazil
| | - Jeane Maria de Oliveira
- Reproductive Toxicology Laboratory, Department of Pharmacy, State University of Centro-Oeste, Guarapuava, Brazil
| | - Paulo Roberto Dalsenter
- Reproductive Toxicology Laboratory, Department of Pharmacology, Federal University of Paraná (UFPR), Curitiba, Brazil
| | - Anderson Joel Martino-Andrade
- Reproductive Toxicology Laboratory, Department of Pharmacology, Federal University of Paraná (UFPR), Curitiba, Brazil
- Animal Endocrine and Reproductive Physiology Laboratory, Department of Physiology, Federal University of Paraná (UFPR), Curitiba, Brazil
| |
Collapse
|
5
|
Ma J, Lin Y, Xiong W, Liu X, Pan M, Sun J, Sun Y, Li Y, Guo H, Pang G, Wang X, Ren F. The microRNA-29ab1/Zfp36/AR Axis in the Hypothalamus Regulates Male-Typical Behaviors in Mice. Int J Mol Sci 2024; 25:13089. [PMID: 39684798 DOI: 10.3390/ijms252313089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Male-typical behaviors such as aggression and mating, which reflect sexual libido in male mice, are regulated by the hypothalamus, a crucial part of the nervous system. Previous studies have demonstrated that microRNAs (miRNAs), especially miR-29, play a vital role in reproduction and the neural control of behaviors. However, it remains unclear whether miR-29 affects reproduction through the hypothalamus-mediated regulation of male-typical behaviors. Here, we constructed two mouse knockout models by ablating either the miR-29ab1 or miR-29b2c cluster. Compared to WT, the ablation of miR-29ab1 in male mice significantly reduced the incidence of aggression by 60% and the incidence of mating by 46.15%. Furthermore, the loss of miR-29ab1 in male mice led to the downregulation of androgen receptor (AR) in the ventromedial hypothalamus. Transcriptomic analysis of the hypothalamus of miR-29ab1-deficient mice revealed inflammatory activation and aberrant expression of genes associated with male-typical behaviors, including Ar, Pgr, Htr4, and Htr2c. Using bioinformatics analysis and dual-luciferase reporter assays, we identified zinc finger protein 36 (Zfp36) as a direct downstream target gene of miR-29ab1. We subsequently showed that ZFP36 colocalized with AR in GT1-7 cells. Furthermore, inhibition of Zfp36 or RelB in GT1-7 cells led to an increase in AR expression. Collectively, our results demonstrate that the miR-29ab1/Zfp36/AR axis in the hypothalamus plays a pivotal role in the regulation of aggression and mating in male mice, providing a potential therapeutic target for treating infertility caused by low libido.
Collapse
Affiliation(s)
- Jie Ma
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yingying Lin
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Wei Xiong
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Xiaoxue Liu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Minghui Pan
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Jiazeng Sun
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Yanan Sun
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Yixuan Li
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Huiyuan Guo
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Guofang Pang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Xiaoyu Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Fazheng Ren
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| |
Collapse
|
6
|
Dussenne M, Alward BA. Expression of novel androgen receptors in three GnRH neuron subtypes in the cichlid brain. J Neuroendocrinol 2024; 36:e13429. [PMID: 38986626 PMCID: PMC11563876 DOI: 10.1111/jne.13429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/28/2024] [Accepted: 06/12/2024] [Indexed: 07/12/2024]
Abstract
In teleosts, GnRH1 neurons stand at the apex of the Hypothalamo-Pituitary-Gonadal (HPG) axis, which is responsible for the production of sex steroids by the gonads (notably, androgens). To exert their actions, androgens need to bind to their specific receptors, called androgen receptors (ARs). Due to a teleost-specific whole genome duplication, A. burtoni possess two AR paralogs (ARα and ARβ) that are encoded by two different genes, ar1 and ar2, respectively. In A. burtoni, males stratify along dominance hierarchies, in which an individuals' social status determines its physiology and behavior. GnRH1 neurons have been strongly linked with dominance and circulating androgen levels. Similarly, GnRH3 neurons are implicated in the display of male specific behaviors. Some studies have shown that these GnRH neurons are responsive to fluctuations in circulating androgens levels, suggesting a link between GnRH neurons and ARs. While female A. burtoni do not naturally form a social hierarchy, their reproductive state is positively correlated to androgen levels and GnRH1 neuron size. Although there are reports related to the expression of ar genes in GnRH neurons in cichlid species, the expression of each ar gene remains inconclusive due to technical limitations. Here, we used immunohistochemistry, in situ hybridization chain reaction (HCR), and spatial transcriptomics to investigate ar1 and ar2 expression specifically in GnRH neurons. We find that all GnRH1 neurons intensely express ar1 but only a few of them express ar2, suggesting the presence of genetically-distinct GnRH1 subtypes. Very few ar1 and ar2 transcripts were found in GnRH2 neurons. GnRH3 neurons were found to express both ar genes. The presence of distinct ar genes within GnRH neuron subtypes, most clearly observed for GnRH1 neurons, suggests differential control of these neurons by androgenic signaling. These findings provide valuable insight for future studies aimed at disentangling the androgenic control of GnRH neuron plasticity and reproductive plasticity across teleosts.
Collapse
Affiliation(s)
- Mélanie Dussenne
- University of Houston, Department of Psychology, United States of America
| | - Beau A. Alward
- University of Houston, Department of Psychology, United States of America
- University of Houston, Department of Biology and Biochemistry, United States of America
| |
Collapse
|
7
|
Zhu Z, Miao L, Li K, Ma Q, Pan L, Shen C, Ge Q, Du Y, Yin L, Yang H, Xu X, Zeng LH, Liu Y, Xu H, Li XM, Sun L, Yu YQ, Duan S. A hypothalamic-amygdala circuit underlying sexually dimorphic aggression. Neuron 2024; 112:3176-3191.e7. [PMID: 39019042 DOI: 10.1016/j.neuron.2024.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 05/13/2024] [Accepted: 06/20/2024] [Indexed: 07/19/2024]
Abstract
Male animals often display higher levels of aggression than females. However, the neural circuitry mechanisms underlying this sexually dimorphic aggression remain elusive. Here, we identify a hypothalamic-amygdala circuit that mediates male-biased aggression in mice. Specifically, the ventrolateral part of the ventromedial hypothalamus (VMHvl), a sexually dimorphic region associated with eliciting male-biased aggression, projects densely to the posterior substantia innominata (pSI), an area that promotes similar levels of attack in both sexes of mice. Although the VMHvl innervates the pSI unidirectionally through both excitatory and inhibitory connections, it is the excitatory VMHvl-pSI projections that are strengthened in males to promote aggression, whereas the inhibitory connections that reduce aggressive behavior are strengthened in females. Consequently, the convergent hypothalamic input onto the pSI leads to heightened pSI activity in males, resulting in male-biased aggression. Our findings reveal a sexually distinct excitation-inhibition balance of a hypothalamic-amygdala circuit that underlies sexually dimorphic aggression.
Collapse
Affiliation(s)
- Zhenggang Zhu
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science & Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Lu Miao
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science & Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Kaiyuan Li
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science & Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Qingqing Ma
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science & Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Lina Pan
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science & Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Chenjie Shen
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science & Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Qianqian Ge
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science & Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Yonglan Du
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science & Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Luping Yin
- Westlake Laboratory of Life Sciences and Biomedicine, Institute of Biology, School of Life Sciences, Westlake Institute for Advanced Study, Westlake University, Hangzhou 310024, China
| | - Hongbin Yang
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science & Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Xiaohong Xu
- Institute of Neuroscience and Key Laboratory of Primate Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ling-Hui Zeng
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, China
| | - Yijun Liu
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science & Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Han Xu
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiao-Ming Li
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Nanhu Brain-Computer Interface Institute, Hangzhou 311100, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Li Sun
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science & Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
| | - Yan-Qin Yu
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science & Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311121, China; Nanhu Brain-Computer Interface Institute, Hangzhou 311100, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, China.
| | - Shumin Duan
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science & Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, China; Research Units for Emotion and Emotion Disorders, Chinese Academy of Medical Sciences, Hangzhou, China.
| |
Collapse
|
8
|
Pavlinek A, Adhya D, Tsompanidis A, Warrier V, Vernon AC, Lancaster M, Mill J, Srivastava DP, Baron-Cohen S. Using Organoids to Model Sex Differences in the Human Brain. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100343. [PMID: 39092139 PMCID: PMC11292257 DOI: 10.1016/j.bpsgos.2024.100343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 08/04/2024] Open
Abstract
Sex differences are widespread during neurodevelopment and play a role in neuropsychiatric conditions such as autism, which is more prevalent in males than females. In humans, males have been shown to have larger brain volumes than females with development of the hippocampus and amygdala showing prominent sex differences. Mechanistically, sex steroids and sex chromosomes drive these differences in brain development, which seem to peak during prenatal and pubertal stages. Animal models have played a crucial role in understanding sex differences, but the study of human sex differences requires an experimental model that can recapitulate complex genetic traits. To fill this gap, human induced pluripotent stem cell-derived brain organoids are now being used to study how complex genetic traits influence prenatal brain development. For example, brain organoids from individuals with autism and individuals with X chromosome-linked Rett syndrome and fragile X syndrome have revealed prenatal differences in cell proliferation, a measure of brain volume differences, and excitatory-inhibitory imbalances. Brain organoids have also revealed increased neurogenesis of excitatory neurons due to androgens. However, despite growing interest in using brain organoids, several key challenges remain that affect its validity as a model system. In this review, we discuss how sex steroids and the sex chromosomes each contribute to sex differences in brain development. Then, we examine the role of X chromosome inactivation as a factor that drives sex differences. Finally, we discuss the combined challenges of modeling X chromosome inactivation and limitations of brain organoids that need to be taken into consideration when studying sex differences.
Collapse
Affiliation(s)
- Adam Pavlinek
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, United Kingdom
| | - Dwaipayan Adhya
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Alex Tsompanidis
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Varun Warrier
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Anthony C. Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, United Kingdom
| | | | - Jonathan Mill
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Deepak P. Srivastava
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, United Kingdom
| | - Simon Baron-Cohen
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
9
|
Trofimova AM, Amakhin DV, Postnikova TY, Tiselko VS, Alekseev A, Podoliak E, Gordeliy VI, Chizhov AV, Zaitsev AV. Light-Driven Sodium Pump as a Potential Tool for the Control of Seizures in Epilepsy. Mol Neurobiol 2024; 61:4691-4704. [PMID: 38114761 DOI: 10.1007/s12035-023-03865-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023]
Abstract
The marine flavobacterium Krokinobactereikastus light-driven sodium pump (KR2) generates an outward sodium ion current under 530 nm light stimulation, representing a promising optogenetic tool for seizure control. However, the specifics of KR2 application to suppress epileptic activity have not yet been addressed. In the present study, we investigated the possibility of KR2 photostimulation to suppress epileptiform activity in mouse brain slices using the 4-aminopyrindine (4-AP) model. We injected the adeno-associated viral vector (AAV-PHP.eB-hSyn-KR2-YFP) containing the KR2 sodium pump gene enhanced with appropriate trafficking tags. KR2 expression was observed in the lateral entorhinal cortex and CA1 hippocampus. Using whole-cell patch clamp in mouse brain slices, we show that KR2, when stimulated with LED light, induces a substantial hyperpolarization of entorhinal neurons. However, continuous photostimulation of KR2 does not interrupt ictal discharges in mouse entorhinal cortex slices induced by a solution containing 4-AP. KR2-induced hyperpolarization strongly activates neuronal HCN channels. Consequently, turning off photostimulation resulted in HCN channel-mediated rebound depolarization accompanied by a transient increase in spontaneous network activity. Using low-frequency pulsed photostimulation, we induced the generation of short HCN channel-mediated discharges that occurred in response to the light stimulus being turned off; these discharges reliably interrupt ictal activity. Thus, low-frequency pulsed photostimulation of KR2 can be considered as a potential tool for controlling epileptic seizures.
Collapse
Affiliation(s)
- Alina M Trofimova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Saint Petersburg, Russia
| | - Dmitry V Amakhin
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Saint Petersburg, Russia
| | - Tatyana Y Postnikova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Saint Petersburg, Russia
| | - Vasilii S Tiselko
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Saint Petersburg, Russia
| | - Alexey Alekseev
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| | - Elizaveta Podoliak
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
- Department of Ophthalmology, Universitäts-Augenklinik Bonn, University of Bonn, Bonn, Germany
| | - Valentin I Gordeliy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Anton V Chizhov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Saint Petersburg, Russia
- MathNeuro Team, Inria Centre at Université Côte d'Azur, Sophia Antipolis, France
| | - Aleksey V Zaitsev
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Saint Petersburg, Russia.
| |
Collapse
|
10
|
Plas SL, Oleksiak CR, Pitre C, Melton C, Moscarello JM, Maren S. Acute stress yields a sex-dependent facilitation of signaled active avoidance in rats. Neurobiol Stress 2024; 31:100656. [PMID: 38994219 PMCID: PMC11238190 DOI: 10.1016/j.ynstr.2024.100656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/09/2024] [Accepted: 06/12/2024] [Indexed: 07/13/2024] Open
Abstract
Post-traumatic stress disorder (PTSD) is a debilitating disorder characterized by excessive fear, hypervigilance, and avoidance of thoughts, situations or reminders of the trauma. Among these symptoms, relatively little is known about the etiology of pathological avoidance. Here we sought to determine whether acute stress influences avoidant behavior in adult male and female rats. We used a stress procedure (unsignaled footshock) that is known to induce long-term sensitization of fear and potentiate aversive learning. Rats were submitted to the stress procedure and, one week later, underwent two-way signaled active avoidance conditioning (SAA). In this task, rats learn to prevent an aversive outcome (shock) by performing a shuttling response when exposed to a warning signal (tone). We found that acute stress significantly enhanced SAA acquisition rate in females, but not males. Female rats exhibited significantly greater avoidance responding on the first day of training relative to controls, reaching similar levels of performance by the second day. Males that underwent the stress procedure showed similar rates of acquisition to controls but exhibited resistance to extinction. This was manifest as both elevated avoidance and intertrial responding across extinction days relative to non-stressed controls, an effect that was not observed in females. In a second experiment, acute stress sensitized footshock unconditioned responses in males, not females. However, males and females exhibited similar levels of stress-enhanced fear learning (SEFL), which was expressed as sensitized freezing to a shock-paired context. Together, these results reveal that acute stress facilitates SAA performance in both male and female rats, though the nature of this effect is different in the two sexes. We did not observe sex differences in SEFL, suggesting that the stress-induced sex difference in performance was selective for instrumental avoidance. Future work will elucidate the neurobiological mechanisms underlying the differential effect of stress on instrumental avoidance in male and female rats.
Collapse
Affiliation(s)
- Samantha L. Plas
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, United States
- Institute for Neuroscience, Texas A&M University, College Station, TX, United States
| | - Cecily R. Oleksiak
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, United States
- Institute for Neuroscience, Texas A&M University, College Station, TX, United States
| | - Claire Pitre
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, United States
| | - Chance Melton
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, United States
| | - Justin M. Moscarello
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, United States
- Institute for Neuroscience, Texas A&M University, College Station, TX, United States
| | - Stephen Maren
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, United States
- Institute for Neuroscience, Texas A&M University, College Station, TX, United States
| |
Collapse
|
11
|
Plas SL, Oleksiak CR, Pitre C, Melton C, Moscarello JM, Maren S. Acute stress yields a sex-dependent facilitation of signaled active avoidance in rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.27.591470. [PMID: 38746268 PMCID: PMC11092500 DOI: 10.1101/2024.04.27.591470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Post-traumatic stress disorder (PTSD) is a debilitating disorder characterized by excessive fear, hypervigilance, and avoidance of thoughts, situations or reminders of the trauma. Among these symptoms, relatively little is known about the etiology of pathological avoidance. Here we sought to determine whether acute stress influences avoidant behavior in adult male and female rats. We used a stress procedure (unsignaled footshock) that is known to induce long-term sensitization of fear and potentiate aversive learning. Rats were submitted to the stress procedure and, one week later, underwent two-way signaled active avoidance conditioning (SAA). In this task, rats learn to prevent an aversive outcome (shock) by performing a shuttling response when exposed to a warning signal (tone). We found that acute stress significantly enhanced SAA acquisition rate in females, but not males. Female rats exhibited significantly greater avoidance responding on the first day of training relative to controls, reaching similar levels of performance by the second day. Males that underwent the stress procedure showed similar rates of acquisition to controls but exhibited resistance to extinction. This was manifest as both elevated avoidance and intertrial responding across extinction days relative to non-stressed controls, an effect that was not observed in females. In a second experiment, acute stress sensitized footshock unconditioned responses in males, not females. However, males and females exhibited similar levels of stress-enhanced fear learning (SEFL), which was expressed as sensitized freezing to a shock-paired context. Together, these results reveal that acute stress facilitates SAA performance in both male and female rats, though the nature of this effect is different in the two sexes. We did not observe sex differences in SEFL, suggesting that the stress-induced sex difference in performance was selective for instrumental avoidance. Future work will elucidate the neurobiological mechanisms underlying the differential effect of stress on instrumental avoidance in male and female rats.
Collapse
Affiliation(s)
- Samantha L. Plas
- Department of Psychological and Brain Sciences, Texas A&M University, College Station
| | - Cecily R. Oleksiak
- Department of Psychological and Brain Sciences, Texas A&M University, College Station
| | - Claire Pitre
- Department of Psychological and Brain Sciences, Texas A&M University, College Station
| | - Chance Melton
- Department of Psychological and Brain Sciences, Texas A&M University, College Station
| | - Justin M. Moscarello
- Department of Psychological and Brain Sciences, Texas A&M University, College Station
| | - Stephen Maren
- Department of Psychological and Brain Sciences, Texas A&M University, College Station
| |
Collapse
|
12
|
Lafta MS, Mwinyi J, Affatato O, Rukh G, Dang J, Andersson G, Schiöth HB. Exploring sex differences: insights into gene expression, neuroanatomy, neurochemistry, cognition, and pathology. Front Neurosci 2024; 18:1340108. [PMID: 38449735 PMCID: PMC10915038 DOI: 10.3389/fnins.2024.1340108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/09/2024] [Indexed: 03/08/2024] Open
Abstract
Increased knowledge about sex differences is important for development of individualized treatments against many diseases as well as understanding behavioral and pathological differences. This review summarizes sex chromosome effects on gene expression, epigenetics, and hormones in relation to the brain. We explore neuroanatomy, neurochemistry, cognition, and brain pathology aiming to explain the current state of the art. While some domains exhibit strong differences, others reveal subtle differences whose overall significance warrants clarification. We hope that the current review increases awareness and serves as a basis for the planning of future studies that consider both sexes equally regarding similarities and differences.
Collapse
Affiliation(s)
- Muataz S. Lafta
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Jessica Mwinyi
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
- Centre for Women’s Mental Health, Uppsala University, Uppsala, Sweden
| | - Oreste Affatato
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
- Centre for Women’s Mental Health, Uppsala University, Uppsala, Sweden
| | - Gull Rukh
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Junhua Dang
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Gerhard Andersson
- Department of Behavioural Sciences and Learning, Linköping University, Linköping, Sweden
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Helgi B. Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| |
Collapse
|
13
|
Dussenne M, Alward BA. Expression of novel androgen receptors in three GnRH neuron subtypes in the cichlid brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.02.578641. [PMID: 38352335 PMCID: PMC10862814 DOI: 10.1101/2024.02.02.578641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Within a social hierarchy, an individuals' social status determines its physiology and behavior. In A. burtoni, subordinate males can rise in rank to become dominant, which is accompanied by the upregulation of the entire HPG axis, including activation of GnRH1 neurons, a rise in circulating androgen levels and the display of specific aggressive and reproductive behaviors. Cichlids possess two other GnRH subtypes, GnRH2 and GnRH3, the latter being implicated in the display of male specific behaviors. Interestingly, some studies showed that these GnRH neurons are responsive to fluctuations in circulating androgen levels, suggesting a link between GnRH neurons and androgen receptors (ARs). Due to a teleost-specific whole genome duplication, A. burtoni possess two AR paralogs (ARα and ARβ) that are encoded by two different genes, ar1 and ar2, respectively. Even though social status has been strongly linked to androgens, whether ARα and/or ARβ are present in GnRH neurons remains unclear. Here, we used immunohistochemistry and in situ hybridization chain reaction (HCR) to investigate ar1 and ar2 expression specifically in GnRH neurons. We find that all GnRH1 neurons intensely express ar1 but only a few of them express ar2, suggesting the presence of genetically-distinct GnRH1 subtypes. Very few ar1 and ar2 transcripts were found in GnRH2 neurons. GnRH3 neurons were found to express both ar genes. The presence of distinct ar genes within GnRH neuron subtypes, most clearly observed for GnRH1 neurons, suggests differential control of these neurons by androgenic signaling. These findings provide valuable insight for future studies aimed at disentangling the androgenic control of GnRH neuron plasticity and reproductive plasticity across teleosts.
Collapse
Affiliation(s)
- Mélanie Dussenne
- University of Houston, Department of Psychology, United States of America
| | - Beau A. Alward
- University of Houston, Department of Psychology, United States of America
- University of Houston, Department of Biology and Biochemistry, United States of America
| |
Collapse
|
14
|
Inada K, Miyamichi K. Association between parental behaviors and structural plasticity in the brain of male rodents. Neurosci Res 2023; 196:1-10. [PMID: 37343600 DOI: 10.1016/j.neures.2023.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/10/2023] [Accepted: 06/16/2023] [Indexed: 06/23/2023]
Abstract
In recent decades, human fathers across the globe have shown a substantial increase in their engagement in paternal caregiving behaviors. Despite the growing interest, the precise neurobiological mechanisms underlying caregiving behaviors in males remain unclear. Neurobiological studies conducted on rodents have advanced our understanding of the molecular, cellular, and circuit-level mechanisms. Typically, sexually naïve males exhibit aggression toward offspring, while fathers display parental behaviors. This drastic behavioral plasticity may be associated with changes in connections among specific regions or cell types. Recent studies have begun to describe this structural plasticity by comparing neural connections before and after fatherhood. In this Perspective, we summarize the findings from four well-studied rodent species, namely prairie voles, California mice, laboratory rats, and laboratory mice, with a view toward integrating past and current progress. We then review recent advances in the understanding of structural plasticity for parental behaviors. Finally, we discuss remaining questions that require further exploration to gain a deeper understanding of the neural mechanisms underlying paternal behaviors in males, including their possible implications for the human brain.
Collapse
Affiliation(s)
- Kengo Inada
- RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.
| | - Kazunari Miyamichi
- RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.
| |
Collapse
|
15
|
Mariscal P, Bravo L, Llorca-Torralba M, Razquin J, Miguelez C, Suárez-Pereira I, Berrocoso E. Sexual differences in locus coeruleus neurons and related behavior in C57BL/6J mice. Biol Sex Differ 2023; 14:64. [PMID: 37770907 PMCID: PMC10540344 DOI: 10.1186/s13293-023-00550-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/13/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND In addition to social and cultural factors, sex differences in the central nervous system have a critical influence on behavior, although the neurobiology underlying these differences remains unclear. Interestingly, the Locus Coeruleus (LC), a noradrenergic nucleus that exhibits sexual dimorphism, integrates signals that are related to diverse activities, including emotions, cognition and pain. Therefore, we set-out to evaluate sex differences in behaviors related to LC nucleus, and subsequently, to assess the sex differences in LC morphology and function. METHODS Female and male C57BL/6J mice were studied to explore the role of the LC in anxiety, depressive-like behavior, well-being, pain, and learning and memory. We also explored the number of noradrenergic LC cells, their somatodendritic volume, as well as the electrophysiological properties of LC neurons in each sex. RESULTS While both male and female mice displayed similar depressive-like behavior, female mice exhibited more anxiety-related behaviors. Interestingly, females outperformed males in memory tasks that involved distinguishing objects with small differences and they also showed greater thermal pain sensitivity. Immunohistological analysis revealed that females had fewer noradrenergic cells yet they showed a larger dendritic volume than males. Patch clamp electrophysiology studies demonstrated that LC neurons in female mice had a lower capacitance and that they were more excitable than male LC neurons, albeit with similar action potential properties. CONCLUSIONS Overall, this study provides new insights into the sex differences related to LC nucleus and associated behaviors, which may explain the heightened emotional arousal response observed in females.
Collapse
Affiliation(s)
- Patricia Mariscal
- Neuropsychopharmacology & Psychobiology Research Group, Department of Neuroscience, University of Cádiz, 11003, Cádiz, Spain
- Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, 11009, Cádiz, Spain
| | - Lidia Bravo
- Neuropsychopharmacology & Psychobiology Research Group, Department of Neuroscience, University of Cádiz, 11003, Cádiz, Spain.
- Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), Instituto de Salud Carlos III, 28029, Madrid, Spain.
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, 11009, Cádiz, Spain.
| | - Meritxell Llorca-Torralba
- Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, 11009, Cádiz, Spain
- Neuropsychopharmacology & Psychobiology Research Group, Department of Cell Biology & Histology, University of Cádiz, 11003, Cádiz, Spain
| | - Jone Razquin
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain
- Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Institute, 48940, Barakaldo, Spain
| | - Cristina Miguelez
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain
- Neurodegenerative Diseases Group, Biocruces Bizkaia Health Research Institute, 48940, Barakaldo, Spain
| | - Irene Suárez-Pereira
- Neuropsychopharmacology & Psychobiology Research Group, Department of Neuroscience, University of Cádiz, 11003, Cádiz, Spain
- Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, 11009, Cádiz, Spain
| | - Esther Berrocoso
- Neuropsychopharmacology & Psychobiology Research Group, Department of Neuroscience, University of Cádiz, 11003, Cádiz, Spain.
- Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), Instituto de Salud Carlos III, 28029, Madrid, Spain.
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, 11009, Cádiz, Spain.
| |
Collapse
|
16
|
Guerra DP, Wang W, Souza KA, Moscarello JM. A sex-specific role for the bed nucleus of the stria terminalis in proactive defensive behavior. Neuropsychopharmacology 2023; 48:1234-1244. [PMID: 37142666 PMCID: PMC10267121 DOI: 10.1038/s41386-023-01581-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 05/06/2023]
Abstract
The bed nucleus of the stria terminalis (BNST) is a forebrain region implicated in aversive responses to uncertain threat. Much of the work on the role of BNST in defensive behavior has used Pavlovian paradigms in which the subject reacts to aversive stimuli delivered in a pattern determined entirely by the experimenter. Here, we explore the contribution of BNST to a task in which subjects learn a proactive response that prevents the delivery of an aversive outcome. To this end, male and female rats were trained to shuttle during a tone to avoid shock in a standard two-way signaled active avoidance paradigm. Chemogenetic inhibition (hM4Di) of BNST attenuated the expression of the avoidance response in male but not female rats. Inactivation of the neighboring medial septum in males produced no effect on avoidance, demonstrating that our effect was specific to BNST. A follow up study comparing hM4Di inhibition to hM3Dq activation of BNST in males replicated the effect of inhibition and demonstrated that activation of BNST extended the period of tone-evoked shuttling. These data support the novel conclusion that BNST mediates two-way avoidance behavior in male rats and suggest the intriguing possibility that the systems underlying proactive defensive behavior are sex-specific.
Collapse
Affiliation(s)
- Diana P Guerra
- Department of Psychological & Brain Sciences, Texas A&M University, College Station, TX, USA
| | - Wei Wang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Karienn A Souza
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Bryan, TX, USA
- Texas A&M Institute for Neuroscience (TAMIN), Texas A&M University, College Station, TX, USA
| | - Justin M Moscarello
- Department of Psychological & Brain Sciences, Texas A&M University, College Station, TX, USA.
- Texas A&M Institute for Neuroscience (TAMIN), Texas A&M University, College Station, TX, USA.
| |
Collapse
|
17
|
Gyawali U, Martin DA, Sun F, Li Y, Calu D. Dopamine in the dorsal bed nucleus of stria terminalis signals Pavlovian sign-tracking and reward violations. eLife 2023; 12:e81980. [PMID: 37232554 PMCID: PMC10219648 DOI: 10.7554/elife.81980] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 05/05/2023] [Indexed: 05/27/2023] Open
Abstract
Midbrain and striatal dopamine signals have been extremely well characterized over the past several decades, yet novel dopamine signals and functions in reward learning and motivation continue to emerge. A similar characterization of real-time sub-second dopamine signals in areas outside of the striatum has been limited. Recent advances in fluorescent sensor technology and fiber photometry permit the measurement of dopamine binding correlates, which can divulge basic functions of dopamine signaling in non-striatal dopamine terminal regions, like the dorsal bed nucleus of the stria terminalis (dBNST). Here, we record GRABDA signals in the dBNST during a Pavlovian lever autoshaping task. We observe greater Pavlovian cue-evoked dBNST GRABDA signals in sign-tracking (ST) compared to goal-tracking/intermediate (GT/INT) rats and the magnitude of cue-evoked dBNST GRABDA signals decreases immediately following reinforcer-specific satiety. When we deliver unexpected rewards or omit expected rewards, we find that dBNST dopamine signals encode bidirectional reward prediction errors in GT/INT rats, but only positive prediction errors in ST rats. Since sign- and goal-tracking approach strategies are associated with distinct drug relapse vulnerabilities, we examined the effects of experimenter-administered fentanyl on dBNST dopamine associative encoding. Systemic fentanyl injections do not disrupt cue discrimination but generally potentiate dBNST dopamine signals. These results reveal multiple dBNST dopamine correlates of learning and motivation that depend on the Pavlovian approach strategy employed.
Collapse
Affiliation(s)
- Utsav Gyawali
- Program in Neuroscience, University of Maryland School of MedicineBaltimoreUnited States
- Department of Anatomy and Neurobiology, University of Maryland School of MedicineBaltimoreUnited States
| | - David A Martin
- Department of Anatomy and Neurobiology, University of Maryland School of MedicineBaltimoreUnited States
| | - Fangmiao Sun
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences; PKU-IDG/McGovern Institute for Brain Research; Peking-Tsinghua Center for Life SciencesBeijingChina
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences; PKU-IDG/McGovern Institute for Brain Research; Peking-Tsinghua Center for Life SciencesBeijingChina
| | - Donna Calu
- Program in Neuroscience, University of Maryland School of MedicineBaltimoreUnited States
- Department of Anatomy and Neurobiology, University of Maryland School of MedicineBaltimoreUnited States
| |
Collapse
|
18
|
Berendzen KM, Manoli DS. Rethinking the Architecture of Attachment: New Insights into the Role for Oxytocin Signaling. AFFECTIVE SCIENCE 2022; 3:734-748. [PMID: 36519145 PMCID: PMC9743890 DOI: 10.1007/s42761-022-00142-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 07/12/2022] [Indexed: 11/06/2022]
Abstract
Social attachments, the enduring bonds between individuals and groups, are essential to health and well-being. The appropriate formation and maintenance of social relationships depend upon a number of affective processes, including stress regulation, motivation, reward, as well as reciprocal interactions necessary for evaluating the affective state of others. A genetic, molecular, and neural circuit level understanding of social attachments therefore provides a powerful substrate for probing the affective processes associated with social behaviors. Socially monogamous species form long-term pair bonds, allowing us to investigate the mechanisms underlying attachment. Now, molecular genetic tools permit manipulations in monogamous species. Studies using these tools reveal new insights into the genetic and neuroendocrine factors that design and control the neural architecture underlying attachment behavior. We focus this discussion on the prairie vole and oxytocinergic signaling in this and related species as a model of attachment behavior that has been studied in the context of genetic and pharmacological manipulations. We consider developmental processes that impact the demonstration of bonding behavior across genetic backgrounds, the modularity of mechanisms underlying bonding behaviors, and the distributed circuitry supporting these behaviors. Incorporating such theoretical considerations when interpreting reverse genetic studies in the context of the rich ethological and pharmacological data collected in monogamous species provides an important framework for studies of attachment behavior in both animal models and studies of human relationships.
Collapse
Affiliation(s)
- Kristen M. Berendzen
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA 95158 USA
- Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA 95158 USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 95158 USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 95158 USA
| | - Devanand S. Manoli
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA 95158 USA
- Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA 95158 USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 95158 USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 95158 USA
- Neurosciences Graduate Program, University of California, San Francisco, San Francisco, CA 95158 USA
| |
Collapse
|
19
|
Ni R, Shu Y, Luo P, Zhou J. Sexual dimorphism in the bed nucleus of the stria terminalis, medial preoptic area and suprachiasmatic nucleus in male and female tree shrews. J Anat 2022; 240:528-540. [PMID: 34642936 PMCID: PMC8819044 DOI: 10.1111/joa.13568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 02/05/2023] Open
Abstract
Sex differences in behaviour partly arise from the sexual dimorphism of brain anatomy between males and females. However, the sexual dimorphism of the tree shrew brain is unclear. In the present study, we examined the detailed distribution of vasoactive intestinal polypeptide-immunoreactive (VIP-ir) neurons and fibres in the suprachiasmatic nucleus (SCN) and VIP-ir fibres in the bed nucleus of the stria terminalis (BST) of male and female tree shrews. The overall volume of the SCN in male tree shrews was comparable with that in females. However, males showed a significantly higher density of VIP-ir cells and fibres in the SCN than females. The shape of the VIP-stained area in coronal sections was arched, elongated or oval in the lateral division (STL) and the anterior part of the medial division (STMA) of the BST and oval or round in the posterior part of the medial division of the BST (STMP). The volume of the VIP-stained BST in male tree shrews was similar to that in females. The overall distribution of VIP-ir fibres was similar between the sexes throughout the BST except within the STMA, where darkly stained fibres were observed in males, whereas lightly stained fibres were observed in females. Furthermore, male tree shrews showed a significantly higher intensity of Nissl staining in the medial preoptic area (MPA) and the ventral part of the medial division of the BST than females. These findings are the first to reveal sexual dimorphism in the SCN, BST and MPA of the tree shrew brain, providing neuroanatomical evidence of sexual dimorphism in these regions related to their roles in sex differences in physiology and behaviour.
Collapse
Affiliation(s)
- Rong‐Jun Ni
- Psychiatric Laboratory and Mental Health CenterWest China Hospital of Sichuan UniversityChengduChina
- Huaxi Brain Research CenterWest China Hospital of Sichuan UniversityChengduChina
| | - Yu‐Mian Shu
- School of Architecture and Civil EngineeringChengdu UniversityChengduChina
| | - Peng‐Hao Luo
- Chinese Academy of Science Key Laboratory of Brain Function and DiseasesSchool of Life SciencesUniversity of Science and Technology of ChinaHefeiChina
| | - Jiang‐Ning Zhou
- Chinese Academy of Science Key Laboratory of Brain Function and DiseasesSchool of Life SciencesUniversity of Science and Technology of ChinaHefeiChina
| |
Collapse
|
20
|
Tanaka K, Besson V, Rivagorda M, Oury F, Marazzi G, Sassoon DA. Paternally expressed gene 3 (Pw1/Peg3) promotes sexual dimorphism in metabolism and behavior. PLoS Genet 2022; 18:e1010003. [PMID: 35025875 PMCID: PMC8791484 DOI: 10.1371/journal.pgen.1010003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 01/26/2022] [Accepted: 12/20/2021] [Indexed: 01/06/2023] Open
Abstract
The paternally expressed gene 3 (Pw1/Peg3) is a mammalian-specific parentally imprinted gene expressed in stem/progenitor cells of the brain and endocrine tissues. Here, we compared phenotypic characteristics in Pw1/Peg3 deficient male and female mice. Our findings indicate that Pw1/Peg3 is a key player for the determination of sexual dimorphism in metabolism and behavior. Mice carrying a paternally inherited Pw1/Peg3 mutant allele manifested postnatal deficits in GH/IGF dependent growth before weaning, sex steroid dependent masculinization during puberty, and insulin dependent fat accumulation in adulthood. As a result, Pw1/Peg3 deficient mice develop a sex-dependent global shift of body metabolism towards accelerated adiposity, diabetic-like insulin resistance, and fatty liver. Furthermore, Pw1/Peg3 deficient males displayed reduced social dominance and competitiveness concomitant with alterations in the vasopressinergic architecture in the brain. This study demonstrates that Pw1/Peg3 provides an epigenetic context that promotes male-specific characteristics through sex steroid pathways during postnatal development. Pw1/Peg3 is under parental specific epigenetic regulation. We propose that Pw1/Peg3 confers a selective advantage in mammals by regulating sexual dimorphism. To address this question, we examined the consequences of Pw1/Peg3 loss of function in mice in an age- and sex-dependent context and found that Pw1/Peg3 mutants display reduced sexual dimorphism in growth, metabolism and behaviors. Our findings support the intralocus sexual conflict model of genomic imprinting where it contributes in sexual differentiation. Furthermore, our observations provide a unifying role of sex steroid signaling as a common property of Pw1/Peg3 expressing stem/progenitor cells and differentiated endocrine cells, both of which remain proliferative in response to gonadal hormones in adult life.
Collapse
Affiliation(s)
- Karo Tanaka
- Stem Cells and Regenerative Medicine, Institute of Cardiometabolism and Nutrition (ICAN), INSERM U1166, University of Pierre and Marie Curie Paris VI, Paris, France
| | - Vanessa Besson
- Stem Cells and Regenerative Medicine, Institute of Cardiometabolism and Nutrition (ICAN), INSERM U1166, University of Pierre and Marie Curie Paris VI, Paris, France
| | - Manon Rivagorda
- Hormonal Regulation of Brain Development and Functions, INSERM U1151, Institut Necker Enfants Malades, Paris, France
| | - Franck Oury
- Hormonal Regulation of Brain Development and Functions, INSERM U1151, Institut Necker Enfants Malades, Paris, France
| | - Giovanna Marazzi
- Stem Cells and Regenerative Medicine, Institute of Cardiometabolism and Nutrition (ICAN), INSERM U1166, University of Pierre and Marie Curie Paris VI, Paris, France
| | - David A. Sassoon
- Stem Cells and Regenerative Medicine, Institute of Cardiometabolism and Nutrition (ICAN), INSERM U1166, University of Pierre and Marie Curie Paris VI, Paris, France
- * E-mail:
| |
Collapse
|
21
|
Upadhyay J, Verrico CD, Cay M, Kodele S, Yammine L, Koob GF, Schreiber R. Neurocircuitry basis of the opioid use disorder-post-traumatic stress disorder comorbid state: conceptual analyses using a dimensional framework. Lancet Psychiatry 2022; 9:84-96. [PMID: 34774203 DOI: 10.1016/s2215-0366(21)00008-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/11/2020] [Accepted: 01/06/2021] [Indexed: 12/17/2022]
Abstract
Understanding the interface between opioid use disorder (OUD) and post-traumatic stress disorder (PTSD) is challenging. By use of a dimensional framework, such as research domain criteria, convergent and targetable neurobiological processes in OUD-PTSD comorbidity can be identified. We hypothesise that, in OUD-PTSD, circuitry that is implicated in two research domain criteria systems (ie, negative valence and cognitive control) underpins dysregulation of incentive salience, negative emotionality, and executive function. We also propose that the OUD-PTSD state might be systematically investigated with approaches outlined within a neuroclinical assessment framework for addictions and PTSD. Our dimensional analysis of the OUD-PTSD state shows how first-line therapeutic approaches (ie, partial μ-type opioid receptor [MOR1] agonism) modulate overlapping neurobiological and clinical features and also provides mechanistic rationale for evaluating polytherapeutic strategies (ie, partial MOR1 agonism, κ-type opioid receptor [KOR1] antagonism, and α-2A adrenergic receptor [ADRA2A] agonism). A combination of these therapeutic mechanisms is projected to facilitate recovery in patients with OUD-PTSD by mitigating negative valence states and enhancing executive control.
Collapse
Affiliation(s)
- Jaymin Upadhyay
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA.
| | - Christopher D Verrico
- Department of Psychiatry and Behavioral Sciences and Department of Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | - Mariesa Cay
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Sanda Kodele
- Faculty of Psychology and Neuroscience, Section Neuropsychology and Psychopharmacology, Maastricht University, Maastricht, Netherlands
| | - Luba Yammine
- Louis A Faillace Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - George F Koob
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, USA
| | - Rudy Schreiber
- Faculty of Psychology and Neuroscience, Section Neuropsychology and Psychopharmacology, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
22
|
Cara AL, Henson EL, Beekly BG, Elias CF. Distribution of androgen receptor mRNA in the prepubertal male and female mouse brain. J Neuroendocrinol 2021; 33:e13063. [PMID: 34866263 PMCID: PMC8711114 DOI: 10.1111/jne.13063] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 02/06/2023]
Abstract
Androgens are steroid hormones that play a critical role in brain development and sexual maturation by acting upon both androgen receptors (AR) and estrogen receptors (ERα/β) after aromatization. The contribution of estrogens from aromatized androgens in brain development and the central regulation of metabolism, reproduction, and behavior is well defined, but the role of androgens acting on AR has been unappreciated. Here, we map the sex specific expression of Ar in the adult and developing mouse brain. Postnatal days (PND) 12 and 21 were used to target a critical window of prepubertal development. Consistent with previous literature in adults, sex-specific differences in Ar expression were most profound in the bed nucleus of the stria terminalis (BST), medial amygdala (MEA) and medial preoptic area (MPO). Ar expression was also high in these areas at PND 12 and 21 in both sexes. In addition, we describe extra-hypothalamic and extra-limbic areas that show moderate, consistent and similar Ar expression in both sexes at both prepubertal time points. Briefly, Ar expression was observed in olfactory areas of the cerebral cortex, the hippocampus, several thalamic nuclei, and cranial nerve nuclei involved in autonomic sensory and motor function. To further characterize forebrain populations of Ar expressing neurons and determine whether they also coexpress estrogen receptors, we examined expression of Ar, Esr1 and Esr2 in prepubertal mice in selected nuclei. We found populations of neurons in the BST, MEA and MPO that coexpress Ar, but not Esr1 or Esr2, whereas others express a combination of the three receptors. Our findings indicate that various brain areas express Ar during prepubertal development and may play an important role in female neuronal development and physiology.
Collapse
Affiliation(s)
- Alexandra L. Cara
- Department of Molecular & Integrative PhysiologyUniversity of MichiganAnn ArborMIUSA
| | - Emily L. Henson
- Department of Molecular & Integrative PhysiologyUniversity of MichiganAnn ArborMIUSA
| | | | - Carol F. Elias
- Department of Molecular & Integrative PhysiologyUniversity of MichiganAnn ArborMIUSA
- Neuroscience Graduate ProgramUniversity of MichiganAnn ArborMIUSA
- Department of Obstetrics and GynaecologyUniversity of MichiganAnn ArborMIUSA
| |
Collapse
|
23
|
Zheng DJ, Singh A, Phelps SM. Conservation and dimorphism in androgen receptor distribution in Alston's singing mouse (Scotinomys teguina). J Comp Neurol 2021; 529:2539-2557. [PMID: 33576501 DOI: 10.1002/cne.25108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 12/25/2020] [Accepted: 12/28/2020] [Indexed: 12/19/2022]
Abstract
Because of their roles in courtship and intrasexual competition, sexual displays are often sexually dimorphic, but we know little about the mechanisms that produce such dimorphism. Among mammals, one example is the vocalization of Alston's singing mouse (Scotinomys teguina), which consists of a series of rapidly repeated, frequency-modulated notes. The rate and duration of songs is sexually dimorphic and androgen responsive. To understand the neuronal mechanisms underlying this sexual dimorphism, we map the sites of androgen sensitivity throughout the brain, focusing analysis along a pathway that spans from limbic structures to vocal motor regions. We find widespread expression of AR immunoreactivity (AR-ir) throughout limbic structures important for social behavior and vocalization, including the lateral septum, extended amygdala, preoptic area and hypothalamus. We also find extensive AR staining along previously documented vocal motor pathways, including the periaqueductal gray, parabrachial nucleus, and nucleus ambiguus, the last of which innervates intrinsic laryngeal muscles. Lastly, AR-ir is also evident in sensory areas such as the medial geniculate, inferior, and superior colliculi. A quantitative analysis revealed that males exhibited more AR-ir than females, a pattern that was most pronounced in the hypothalamus. Despite the elaboration of vocalization in singing mice, comparison with prior literature suggests that the broad pattern of AR-ir may be conserved across a wide range of rodents. Together these data identify brain nuclei well positioned to shape the sexually dimorphic vocalization of S. teguina and suggest that such androgen modulation of vocalization is evolutionary conserved among rodents.
Collapse
Affiliation(s)
- Da-Jiang Zheng
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Aditi Singh
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Steven M Phelps
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
24
|
Lee DH, Olson AW, Wang J, Kim WK, Mi J, Zeng H, Le V, Aldahl J, Hiroto A, Wu X, Sun Z. Androgen action in cell fate and communication during prostate development at single-cell resolution. Development 2021; 148:dev.196048. [PMID: 33318148 DOI: 10.1242/dev.196048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/30/2020] [Indexed: 01/10/2023]
Abstract
Androgens/androgen receptor (AR)-mediated signaling pathways are essential for prostate development, morphogenesis and regeneration. Specifically, stromal AR signaling has been shown to be essential for prostatic initiation. However, the molecular mechanisms underlying AR-initiated mesenchymal-epithelial interactions in prostate development remain unclear. Here, using a newly generated mouse model, we have directly addressed the fate and role of genetically marked AR-expressing cells during embryonic prostate development. Androgen signaling-initiated signaling pathways were identified in mesenchymal niche populations at single-cell transcriptomic resolution. The dynamic cell-signaling networks regulated by stromal AR were additionally characterized in relation to prostatic epithelial bud formation. Pseudotime analyses further revealed the differentiation trajectory and fate of AR-expressing cells in both prostatic mesenchymal and epithelial cell populations. Specifically, the cellular properties of Zeb1-expressing progenitors were assessed. Selective deletion of AR signaling in a subpopulation of mesenchymal rather than epithelial cells dysregulated the expression of the master regulators and significantly impaired prostatic bud formation. These data provide novel, high-resolution evidence demonstrating the important role of mesenchymal androgen signaling in the cellular niche controlling prostate early development by initiating dynamic mesenchyme-epithelia cell interactions.
Collapse
Affiliation(s)
- Dong-Hoon Lee
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Adam W Olson
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Jinhui Wang
- Integrative Genomics Core, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Won Kyung Kim
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Jiaqi Mi
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Hong Zeng
- Transgenic, Knockout and Tumor Model Center, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Vien Le
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Joseph Aldahl
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Alex Hiroto
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Xiwei Wu
- Integrative Genomics Core, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Zijie Sun
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
25
|
Adult Neural Plasticity in Naked Mole-Rats: Implications of Fossoriality, Longevity and Sociality on the Brain's Capacity for Change. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1319:105-135. [PMID: 34424514 DOI: 10.1007/978-3-030-65943-1_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Naked mole-rats (Heterocephalus glaber) are small African rodents that have many unique behavioral and physiological adaptations well-suited for testing hypotheses about mammalian neural plasticity. In this chapter, we focus on three features of naked mole-rat biology and how they impact neural plasticity in this species: (1) their fossorial lifestyle, (2) their extreme longevity with a lack of demonstrable senescence, and (3) their unusual social structure. Critically, each of these features requires some degree of biological flexibility. First, their fossorial habitat situates them in an environment with characteristics to which the central nervous system is particularly sensitive (e.g., oxygen content, photoperiod, spatial complexity). Second, their long lifespan requires adaptations to combat senescence and declines in neural functioning. Finally, their extreme reproductive skew and sustained ability for release from reproductive suppression indicates remarkable neural sensitivity to the sociosexual environment that is distinct from chronological age. These three features of naked mole-rat life are not mutually exclusive, but they do each offer unique considerations for the possibilities, constraints, and mechanisms associated with adult neural plasticity.
Collapse
|
26
|
Vihani A, Hu XS, Gundala S, Koyama S, Block E, Matsunami H. Semiochemical responsive olfactory sensory neurons are sexually dimorphic and plastic. eLife 2020; 9:e54501. [PMID: 33231170 PMCID: PMC7732343 DOI: 10.7554/elife.54501] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 11/22/2020] [Indexed: 01/21/2023] Open
Abstract
Understanding how genes and experience work in concert to generate phenotypic variability will provide a better understanding of individuality. Here, we considered this in the main olfactory epithelium, a chemosensory structure with over a thousand distinct cell types in mice. We identified a subpopulation of olfactory sensory neurons, defined by receptor expression, whose abundances were sexually dimorphic. This subpopulation of olfactory sensory neurons was over-represented in sex-separated mice and robustly responsive to sex-specific semiochemicals. Sex-combined housing led to an attenuation of the dimorphic representations. Single-cell sequencing analysis revealed an axis of activity-dependent gene expression amongst a subset of the dimorphic OSN populations. Finally, the pro-apoptotic gene Baxwas necessary to generate the dimorphic representations. Altogether, our results suggest a role of experience and activity in influencing homeostatic mechanisms to generate a robust sexually dimorphic phenotype in the main olfactory epithelium.
Collapse
Affiliation(s)
- Aashutosh Vihani
- Department of Neurobiology, Neurobiology Graduate Program, Duke University Medical CenterDurhamUnited States
| | - Xiaoyang Serene Hu
- Department of Molecular Genetics and Microbiology, Duke University Medical CenterDurhamUnited States
| | - Sivaji Gundala
- Department of Chemistry, University at Albany, State University of New YorkAlbanyUnited States
| | - Sachiko Koyama
- School of Medicine, Medical Sciences, Indiana UniversityBloomingtonUnited States
| | - Eric Block
- Department of Chemistry, University at Albany, State University of New YorkAlbanyUnited States
| | - Hiroaki Matsunami
- Department of Neurobiology, Neurobiology Graduate Program, Duke University Medical CenterDurhamUnited States
- Department of Molecular Genetics and Microbiology, Duke University Medical CenterDurhamUnited States
- Duke Institute for Brain Sciences, Duke UniversityDurhamUnited States
| |
Collapse
|
27
|
Bell BJ, Wang AA, Kim DW, Xiong J, Blackshaw S, Wu MN. Characterization of mWake expression in the murine brain. J Comp Neurol 2020; 529:1954-1987. [PMID: 33140455 DOI: 10.1002/cne.25066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 01/24/2023]
Abstract
Structure-function analyses of the mammalian brain have historically relied on anatomically-based approaches. In these investigations, physical, chemical, or electrolytic lesions of anatomical structures are applied, and the resulting behavioral or physiological responses assayed. An alternative approach is to focus on the expression pattern of a molecule whose function has been characterized and then use genetic intersectional methods to optogenetically or chemogenetically manipulate distinct circuits. We previously identified WIDE AWAKE (WAKE) in Drosophila, a clock output molecule that mediates the temporal regulation of sleep onset and sleep maintenance. More recently, we have studied the mouse homolog, mWAKE/ANKFN1, and our data suggest that its basic role in the circadian regulation of arousal is conserved. Here, we perform a systematic analysis of the expression pattern of mWake mRNA, protein, and cells throughout the adult mouse brain. We find that mWAKE labels neurons in a restricted, but distributed manner, in multiple regions of the hypothalamus (including the suprachiasmatic nucleus, dorsomedial hypothalamus, and tuberomammillary nucleus region), the limbic system, sensory processing nuclei, and additional specific brainstem, subcortical, and cortical areas. Interestingly, mWAKE is also observed in non-neuronal ependymal cells. In addition, to describe the molecular identities and clustering of mWake+ cells, we provide detailed analyses of single cell RNA sequencing data from the hypothalamus, a region with particularly significant mWAKE expression. These findings lay the groundwork for future studies into the potential role of mWAKE+ cells in the rhythmic control of diverse behaviors and physiological processes.
Collapse
Affiliation(s)
- Benjamin J Bell
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland, USA.,Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Annette A Wang
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Dong Won Kim
- Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jiali Xiong
- Biochemistry, Cellular and Molecular Biology Graduate Program, Johns Hopkins University, Baltimore, Maryland, USA
| | - Seth Blackshaw
- Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland, USA
| | - Mark N Wu
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA.,Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
28
|
Sun P, Wang J, Zhang M, Duan X, Wei Y, Xu F, Ma Y, Zhang YH. Sex-Related Differential Whole-Brain Input Atlas of Locus Coeruleus Noradrenaline Neurons. Front Neural Circuits 2020; 14:53. [PMID: 33071759 PMCID: PMC7541090 DOI: 10.3389/fncir.2020.00053] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 07/16/2020] [Indexed: 11/13/2022] Open
Abstract
As the most important organ in our bodies, the brain plays a critical role in deciding sex-related differential features; however, the underlying neural circuitry basis remains unclear. Here, we used a cell-type-specific rabies virus-mediated monosynaptic tracing system to generate a sex differences-related whole-brain input atlas of locus coeruleus noradrenaline (LC-NE) neurons. We developed custom pipelines for brain-wide comparisons of input sources in both sexes with the registration of the whole-brain data set to the Allen Mouse Brain Reference Atlas. Among 257 distinct anatomical regions, we demonstrated the differential proportions of inputs to LC-NE neurons in male and female mice at different levels. Locus coeruleus noradrenaline neurons of two sexes showed general similarity in the input patterns, but with differentiated input proportions quantitatively from major brain regions and diverse sub-regions. For instance, inputs to male LC-NE neurons were found mainly in the cerebrum, interbrain, and cerebellum, whereas inputs to female LC-NE neurons were found in the midbrain and hindbrain. We further found that specific subsets of nuclei nested within sub-regions contributed to overall sex-related differences in the input circuitry. Furthermore, among the totaled 123 anatomical regions with proportion of inputs >0.1%, we also identified 11 sub-regions with significant statistical differences of total inputs between male and female mice, and seven of them also showed such differences in ipsilateral hemispheres. Our study not only provides a structural basis to facilitate our understanding of sex differences at a circuitry level but also provides clues for future sexually differentiated functional studies related to LC-NE neurons.
Collapse
Affiliation(s)
- Pei Sun
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Huazhong University of Science and Technology (HUST), Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Junjun Wang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Huazhong University of Science and Technology (HUST), Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Meng Zhang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Huazhong University of Science and Technology (HUST), Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Xinxin Duan
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Huazhong University of Science and Technology (HUST), Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Yunfei Wei
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Huazhong University of Science and Technology (HUST), Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Fuqiang Xu
- Centre for Brain Science, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, CAS Centre for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Wuhan, China
| | - Yan Ma
- HUST-WHBC United Hematology Optical Imaging Center, Wuhan Blood Center (WHBC), Wuhan, China
| | - Yu-Hui Zhang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Huazhong University of Science and Technology (HUST), Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
29
|
Fernández R, Ramírez K, Gómez-Gil E, Cortés-Cortés J, Mora M, Aranda G, Zayas ED, Esteva I, Almaraz MC, Guillamon A, Pásaro E. Gender-Affirming Hormone Therapy Modifies the CpG Methylation Pattern of the ESR1 Gene Promoter After Six Months of Treatment in Transmen. J Sex Med 2020; 17:1795-1806. [PMID: 32636163 DOI: 10.1016/j.jsxm.2020.05.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/25/2020] [Accepted: 05/27/2020] [Indexed: 01/15/2023]
Abstract
BACKGROUND Brain sexual differentiation is a process that results from the effects of sex steroids on the developing brain. Evidence shows that epigenetics plays a main role in the formation of enduring brain sex differences and that the estrogen receptor α (ESR1) is one of the implicated genes. AIM To analyze whether the methylation of region III (RIII) of the ESR1 promoter is involved in the biological basis of gender dysphoria. METHODS We carried out a prospective study of the CpG methylation profile of RIII (-1,188 to -790 bp) of the ESR1 promoter using bisulfite genomic sequencing in a cisgender population (10 men and 10 women) and in a transgender population (10 trans men and 10 trans women), before and after 6 months of gender-affirming hormone treatment. Cisgender and transgender populations were matched by geographical origin, age, and sex. DNAs were treated with bisulfite, amplified, cloned, and sequenced. At least 10 clones per individual from independent polymerase chain reactions were sequenced. The analysis of 671 bisulfite sequences was carried out with the QUMA (QUantification tool for Methylation Analysis) program. OUTCOMES The main outcome of this study was RIII analysis using bisulfite genomic sequencing. RESULTS We found sex differences in RIII methylation profiles in cisgender and transgender populations. Cismen showed a higher methylation degree than ciswomen at CpG sites 297, 306, 509, and at the total fragment (P ≤ .003, P ≤ .026, P ≤ .001, P ≤ .006). Transmen showed a lower methylation level than trans women at sites 306, 372, and at the total fragment (P ≤ .0001, P ≤ .018, P ≤ .0107). Before the hormone treatment, transmen showed the lowest methylation level with respect to cisgender and transgender populations, whereas transwomen reached an intermediate methylation level between both the cisgender groups. After the hormone treatment, transmen showed a statistically significant methylation increase, whereas transwomen showed a non-significant methylation decrease. After the hormone treatment, the RIII methylation differences between transmen and transwomen disappeared, and both transgender groups reached an intermediate methylation level between both the cisgender groups. CLINICAL IMPLICATIONS Clinical implications in the hormonal treatment of trans people. STRENGTHS & LIMITATIONS Increasing the number of regions analyzed in the ESR1 promoter and increasing the number of tissues analyzed would provide a better understanding of the variation in the methylation pattern. CONCLUSIONS Our data showed sex differences in RIII methylation patterns in cisgender and transgender populations before the hormone treatment. Furthermore, before the hormone treatment, transwomen and transmen showed a characteristic methylation profile, different from both the cisgender groups. But the hormonal treatment modified RIII methylation in trans populations, which are now more similar to their gender. Therefore, our results suggest that the methylation of RIII could be involved in gender dysphoria. Fernández R, Ramírez K, Gómez-Gil E, et al. Gender-Affirming Hormone Therapy Modifies the CpG Methylation Pattern of the ESR1 Gene Promoter After Six Months of Treatment in Transmen. J Sex Med 2020;17:1795-1806.
Collapse
Affiliation(s)
- Rosa Fernández
- Departamento de Psicología, Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña (UDC), Campus de Elviña, A Coruña, Spain; Instituto de Investigación Biomédica de A Coruña (INIBIC), CHUAC, SERGAS, A Coruña, Spain.
| | - Karla Ramírez
- Departamento de Psicología, Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña (UDC), Campus de Elviña, A Coruña, Spain; Instituto de Investigación Biomédica de A Coruña (INIBIC), CHUAC, SERGAS, A Coruña, Spain
| | - Esther Gómez-Gil
- Unidad de Identidad de Género, Instituto de Neurociencias, Hospital Clínic, I.D.I.B.A.P.S., Barcelona, Spain
| | - Joselyn Cortés-Cortés
- Departamento de Psicología, Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña (UDC), Campus de Elviña, A Coruña, Spain; Instituto de Investigación Biomédica de A Coruña (INIBIC), CHUAC, SERGAS, A Coruña, Spain
| | - Mireia Mora
- Departmento de Endocrinología y Nutrición, Hospital Clínic, Barcelona, Spain
| | - Gloria Aranda
- Departmento de Endocrinología y Nutrición, Hospital Clínic, Barcelona, Spain
| | - Enrique Delgado Zayas
- Departamento de Psicología, Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña (UDC), Campus de Elviña, A Coruña, Spain; Instituto de Investigación Biomédica de A Coruña (INIBIC), CHUAC, SERGAS, A Coruña, Spain
| | - Isabel Esteva
- Servicio de Endocrinología y Nutrición, Unidad de Identidad de Género del Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Mari Cruz Almaraz
- Servicio de Endocrinología y Nutrición, Unidad de Identidad de Género del Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Antonio Guillamon
- Departamento de Psicobiología, Universidad Nacional de Educación a Distancia, Madrid, Spain
| | - Eduardo Pásaro
- Departamento de Psicología, Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña (UDC), Campus de Elviña, A Coruña, Spain; Instituto de Investigación Biomédica de A Coruña (INIBIC), CHUAC, SERGAS, A Coruña, Spain
| |
Collapse
|
30
|
Matas D, Doniger T, Sarid S, Asfur M, Yadid G, Khokhlova IS, Krasnov BR, Kam M, Degen AA, Koren L. Sex differences in testosterone reactivity and sensitivity in a non-model gerbil. Gen Comp Endocrinol 2020; 291:113418. [PMID: 32027878 DOI: 10.1016/j.ygcen.2020.113418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 01/28/2020] [Accepted: 02/01/2020] [Indexed: 11/28/2022]
Abstract
Although testosterone (T) is a key regulator in vertebrate development, physiology, and behaviour in both sexes, studies suggest that its regulation may be sex-specific. We measured circulating T levels in Baluchistan gerbils (Gerbillus nanus) in the field and in the lab all year round and found no significant sex differences. However, we observed sex differences in circulating T levels following gonadotropin-releasing hormone (GnRH) challenge and T implants in this non-model species. Whereas only males elevated T following a GnRH challenge, females had higher serum T concentrations following T implant insertion. These differences may be a result of different points of regulation along the hypothalamic-pituitary-gonadal (HPG) axis. Consequently, we examined sex differences in the mRNA expression of the androgen receptor (AR) in multiple brain regions. We identified AR and β-actin sequences in assembled genomic sequences of members of the Gerbillinae, which were analogous to rat sequences, and designed primers for them. The distribution of the AR in G. nanus brain regions was similar to documented expression profiles in rodents. We found lower AR mRNA levels in females in the striatum. Additionally, G. nanus that experienced housing in mixed-sex pairs had higher adrenal AR expression than G. nanus that were housed alone. Regulation of the gerbil HPG axis may reflect evolutionary sex differences in life-history strategies, with males ready to reproduce when receptive females are available, while the possible reproductive costs associated with female T direct its regulation upstream.
Collapse
Affiliation(s)
- Devorah Matas
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Tirza Doniger
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Shani Sarid
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Mustafa Asfur
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Gal Yadid
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel; The Leslie and Susan Gonda (Goldschmidt) Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| | - Irina S Khokhlova
- Desert Animal Adaptations and Husbandry, Wyler Department of Dryland Agriculture, French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000 Midreshet Ben-Gurion, Israel
| | - Boris R Krasnov
- Mitrani Department of Desert Ecology, Swiss Institute of Dryland Environmental and Energy Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000 Midreshet Ben-Gurion, Israel
| | - Michael Kam
- Desert Animal Adaptations and Husbandry, Wyler Department of Dryland Agriculture, French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000 Midreshet Ben-Gurion, Israel
| | - A Allan Degen
- Desert Animal Adaptations and Husbandry, Wyler Department of Dryland Agriculture, French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000 Midreshet Ben-Gurion, Israel
| | - Lee Koren
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.
| |
Collapse
|
31
|
Luster BR, Cogan ES, Schmidt KT, Pati D, Pina MM, Dange K, McElligott ZA. Inhibitory transmission in the bed nucleus of the stria terminalis in male and female mice following morphine withdrawal. Addict Biol 2020; 25:e12748. [PMID: 30963693 DOI: 10.1111/adb.12748] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 02/13/2019] [Accepted: 02/22/2019] [Indexed: 01/15/2023]
Abstract
The United States is experiencing an opioid crisis imposing enormous fiscal and societal costs and driving the staggering overdose death rate. While prescription opioid analgesics are essential for treating acute pain, cessation of use in individuals with a physical dependence induces an aversive withdrawal syndrome that promotes continued drug use to alleviate/avoid these symptoms. Additionally, repeated bouts of withdrawal often lead to an increased propensity for relapse. Understanding the neurobiology underlying withdrawal is essential for providing novel treatment options to alleviate physiological and affective components accompanying the cessation of opiate use. Here, we administered morphine and precipitated withdrawal with naloxone to investigate behavioral and cellular responses in C57BL/6J male and female mice. Following 3 days of administration, both male and female mice demonstrated sensitized withdrawal symptoms. Since the bed nucleus of the stria terminalis (BNST) plays a role in mediating withdrawal-associated behaviors, we examined plastic changes in inhibitory synaptic transmission within this structure 24 hours following the final precipitated withdrawal. In male mice, morphine withdrawal increased spontaneous GABAergic signaling compared with controls. In contrast, morphine withdrawal decreased spontaneous GABAergic signaling in female mice. Intriguingly, these opposing GABAergic effects were contingent upon activity-dependent dynamics within the ex vivo slice. Our findings suggest that male and female mice exhibit some divergent cellular responses in the BNST following morphine withdrawal, and alterations in BNST inhibitory signaling may contribute to the expression of behaviors following opioid withdrawal.
Collapse
Affiliation(s)
- Brennon R. Luster
- Bowles Center for Alcohol StudiesUNC Chapel Hill School of Medicine Chapel Hill NC USA
- Department of PsychiatryUNC Chapel Hill School of Medicine Chapel Hill NC USA
| | - Elizabeth S. Cogan
- Bowles Center for Alcohol StudiesUNC Chapel Hill School of Medicine Chapel Hill NC USA
| | - Karl T. Schmidt
- Bowles Center for Alcohol StudiesUNC Chapel Hill School of Medicine Chapel Hill NC USA
| | - Dipanwita Pati
- Bowles Center for Alcohol StudiesUNC Chapel Hill School of Medicine Chapel Hill NC USA
- Department of PharmacologyUNC Chapel Hill School of Medicine Chapel Hill NC USA
| | - Melanie M. Pina
- Bowles Center for Alcohol StudiesUNC Chapel Hill School of Medicine Chapel Hill NC USA
- Department of PharmacologyUNC Chapel Hill School of Medicine Chapel Hill NC USA
| | - Kedar Dange
- Bowles Center for Alcohol StudiesUNC Chapel Hill School of Medicine Chapel Hill NC USA
| | - Zoé A. McElligott
- Bowles Center for Alcohol StudiesUNC Chapel Hill School of Medicine Chapel Hill NC USA
- Department of PsychiatryUNC Chapel Hill School of Medicine Chapel Hill NC USA
- Department of PharmacologyUNC Chapel Hill School of Medicine Chapel Hill NC USA
| |
Collapse
|
32
|
Goerzen D, Fowler C, Devenyi GA, Germann J, Madularu D, Chakravarty MM, Near J. An MRI-Derived Neuroanatomical Atlas of the Fischer 344 Rat Brain. Sci Rep 2020; 10:6952. [PMID: 32332821 PMCID: PMC7181609 DOI: 10.1038/s41598-020-63965-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 04/07/2020] [Indexed: 12/03/2022] Open
Abstract
This paper reports the development of a high-resolution 3-D MRI atlas of the Fischer 344 adult rat brain. The atlas is a 60 μm isotropic image volume composed of 256 coronal slices with 71 manually delineated structures and substructures. The atlas was developed using Pydpiper image registration pipeline to create an average brain image of 41 four-month-old male and female Fischer 344 rats. Slices in the average brain image were then manually segmented, individually and bilaterally, on the basis of image contrast in conjunction with Paxinos and Watson's (2007) stereotaxic rat brain atlas. Summary statistics (mean and standard deviation of regional volumes) are reported for each brain region across the sample used to generate the atlas, and a statistical comparison of a chosen subset of regional brain volumes between male and female rats is presented. On average, the coefficient of variation of regional brain volumes across all rats in our sample was 4%, with no individual brain region having a coefficient of variation greater than 13%. A full description of methods used, as well as the atlas, the template that the atlas was derived from, and a masking file, can be found on Zenodo at www.zenodo.org/record/3700210. To our knowledge, this is the first MRI atlas created using Fischer 344 rats and will thus provide an appropriate neuroanatomical model for researchers working with this strain.
Collapse
Affiliation(s)
- Dana Goerzen
- Department of Neuroscience, McGill University, H3A 0G4, Montreal, Canada.
| | - Caitlin Fowler
- Department of Biological and Biomedical Engineering, McGill University, H3A 0G4, Montreal, Canada
| | - Gabriel A Devenyi
- Centre d'Imagerie Cérébrale, Douglas Mental Health University Institute, H4H 1R3, Verdun, Canada
- Department of Psychiatry, McGill University, H3A 0G4, Montreal, Canada
| | - Jurgen Germann
- Centre d'Imagerie Cérébrale, Douglas Mental Health University Institute, H4H 1R3, Verdun, Canada
| | - Dan Madularu
- Centre d'Imagerie Cérébrale, Douglas Mental Health University Institute, H4H 1R3, Verdun, Canada
- Department of Psychiatry, McGill University, H3A 0G4, Montreal, Canada
- Centre for Translational Neuroimaging, Northeastern University, 02115, Boston, MA, USA
| | - M Mallar Chakravarty
- Department of Biological and Biomedical Engineering, McGill University, H3A 0G4, Montreal, Canada
- Centre d'Imagerie Cérébrale, Douglas Mental Health University Institute, H4H 1R3, Verdun, Canada
- Department of Psychiatry, McGill University, H3A 0G4, Montreal, Canada
| | - Jamie Near
- Department of Biological and Biomedical Engineering, McGill University, H3A 0G4, Montreal, Canada
- Centre d'Imagerie Cérébrale, Douglas Mental Health University Institute, H4H 1R3, Verdun, Canada
- Department of Psychiatry, McGill University, H3A 0G4, Montreal, Canada
| |
Collapse
|
33
|
Neubert da Silva G, Zauer Curi T, Lima Tolouei SE, Tapias Passoni M, Sari Hey GB, Marino Romano R, Martino-Andrade AJ, Dalsenter PR. Effects of diisopentyl phthalate exposure during gestation and lactation on hormone-dependent behaviours and hormone receptor expression in rats. J Neuroendocrinol 2019; 31:e12816. [PMID: 31758603 DOI: 10.1111/jne.12816] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 12/28/2022]
Abstract
Phthalates are found in different plastic materials, such as packaging, toys and medical devices. Some of these compounds are endocrine disruptors, comprising substances that are able to induce multiple hormonal disturbances and downstream developmental effects, including the disruption of androgen-dependent differentiation of the male reproductive tract and changes in pathways that regulate hormone-dependent behaviours. In a previous study, metabolites of diisopentyl phthalate (DiPeP), a potent anti-androgenic phthalate, were found in the urine of Brazilian pregnant women. Therefore, the present study aimed to evaluate the effects of DiPeP exposure during critical developmental periods on behaviours controlled by sex hormones in rats. Pregnant Wistar rats were treated with DiPeP (1, 10 or 100 mg kg day-1 ) or canola oil by oral gavage between gestational day 10 and post-natal day (PND) 21. Male offspring were tested in a behavioural battery, including the elevated plus maze task, play behaviour, partner preference and sexual behaviour. After the behavioural tests, the hypothalamus and pituitary of these animals were removed on PND 60-65 and PND 145-160 to quantify gene expression for aromatase, androgen receptor (Ar) and oestrogen receptors α (Esr1) and β (Esr2). Male rats exposed to 1 and 10 mg kg day-1 DiPeP displayed no preference for the female stimulus rat in the partner preference test and 1 mg kg day-1 DiPeP rats also showed a significant increase in mount and penetration latencies when mated with receptive females. A decrease in pituitary Esr1 expression was observed in all DiPeP treated groups regardless of age. A reduction in hypothalamic Esr1 expression in rats exposed to 10 mg kg day-1 DiPeP was also observed. No significant changes were found with respect to Ar, Esr2 and aromatase expression in the hypothalamus. These results suggest that DiPeP exposure during critical windows of development in rats may induce changes in behaviours related to mating and the sexual motivation of males.
Collapse
|
34
|
Ullah MF, Ahmad A, Bhat SH, Abu-Duhier FM, Barreto GE, Ashraf GM. Impact of sex differences and gender specificity on behavioral characteristics and pathophysiology of neurodegenerative disorders. Neurosci Biobehav Rev 2019; 102:95-105. [DOI: 10.1016/j.neubiorev.2019.04.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 01/24/2019] [Accepted: 04/04/2019] [Indexed: 01/06/2023]
|
35
|
Bayless DW, Yang T, Mason MM, Susanto AAT, Lobdell A, Shah NM. Limbic Neurons Shape Sex Recognition and Social Behavior in Sexually Naive Males. Cell 2019; 176:1190-1205.e20. [PMID: 30712868 PMCID: PMC6453703 DOI: 10.1016/j.cell.2018.12.041] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/13/2018] [Accepted: 12/21/2018] [Indexed: 12/18/2022]
Abstract
Sexually naive animals have to distinguish between the sexes because they show species-typical interactions with males and females without meaningful prior experience. However, central neural pathways in naive mammals that recognize sex of other individuals remain poorly characterized. We examined the role of the principal component of the bed nucleus of stria terminalis (BNSTpr), a limbic center, in social interactions in mice. We find that activity of aromatase-expressing BNSTpr (AB) neurons appears to encode sex of other animals and subsequent displays of mating in sexually naive males. Silencing these neurons in males eliminates preference for female pheromones and abrogates mating success, whereas activating them even transiently promotes male-male mating. Surprisingly, female AB neurons do not appear to control sex recognition, mating, or maternal aggression. In summary, AB neurons represent sex of other animals and govern ensuing social behaviors in sexually naive males.
Collapse
Affiliation(s)
- Daniel W Bayless
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Taehong Yang
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Matthew M Mason
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Albert A T Susanto
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Alexandra Lobdell
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Nirao M Shah
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Department of Neurobiology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
36
|
Barendse MEA, Simmons JG, Byrne ML, Patton G, Mundy L, Olsson CA, Seal ML, Allen NB, Whittle S. Associations between adrenarcheal hormones, amygdala functional connectivity and anxiety symptoms in children. Psychoneuroendocrinology 2018; 97:156-163. [PMID: 30036793 DOI: 10.1016/j.psyneuen.2018.07.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/24/2018] [Accepted: 07/11/2018] [Indexed: 02/05/2023]
Abstract
OBJECTIVE The transition from childhood to adolescence is a vulnerable period for the development of anxiety symptoms. There is some evidence that hormonal changes occurring during adrenarche, an early pubertal phase, might play a role in this increased vulnerability. Little is known about underlying brain mechanisms. Given the role of the amygdala-based fear circuit in anxiety, the current study aimed to investigate whether children's adrenarcheal hormone levels were associated with functional connectivity of the amygdala while processing fearful facial expressions, and how this in turn related to anxiety symptoms. METHOD Participants were 83 children (M age 9.53 years) who completed two morning saliva collections to measure levels of dehydroepiandrosterone (DHEA), its sulphate (DHEAS), and testosterone. They also completed the Spence Children's Anxiety Scale (SCAS), and viewed fearful and calm facial expressions while undergoing a functional MRI scan. Psychophysiological interaction (PPI) analyses were performed to examine amygdala connectivity and significant clusters were fed into a bootstrapping mediation model. RESULTS In boys, mediation analyses showed an indirect positive effect of testosterone on anxiety symptoms, which was mediated by amygdala-secondary visual cortex connectivity as well as amygdala-anterior cingulate connectivity. In girls, DHEAS showed a negative indirect association with anxiety symptoms mediated by amygdala connectivity to the fusiform face area and insula. CONCLUSION The results indicate unique roles for adrenarcheal hormones in anxiety and suggest that amygdala connectivity may represent an important neural mechanism in these associations. Importantly, results reveal prominent sex differences in the biological mechanisms associated with anxiety in children undergoing adrenarche.
Collapse
Affiliation(s)
- Marjolein E A Barendse
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Parkville, VIC, Australia.
| | - Julian G Simmons
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Parkville, VIC, Australia; Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, VIC, Australia
| | | | - George Patton
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia; Centre for Adolescent Health, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Lisa Mundy
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia; Centre for Adolescent Health, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Craig A Olsson
- Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, VIC, Australia; Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia; Centre for Adolescent Health, Murdoch Children's Research Institute, Parkville, VIC, Australia; Centre for Social and Early Emotional Development, School of Psychology, Deakin University, Geelong, VIC, Australia
| | - Marc L Seal
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia; Developmental Imaging, Murdoch Children's Research Institute, Parkville, VIC, 3052, Australia
| | - Nicholas B Allen
- Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, VIC, Australia; Department of Psychology, University of Oregon, Eugene, OR, USA
| | - Sarah Whittle
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Parkville, VIC, Australia; Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
37
|
Ishii KK, Touhara K. Neural circuits regulating sexual behaviors via the olfactory system in mice. Neurosci Res 2018; 140:59-76. [PMID: 30389572 DOI: 10.1016/j.neures.2018.10.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/25/2018] [Accepted: 10/15/2018] [Indexed: 01/17/2023]
Abstract
Reproduction is essential for any animal species. Reproductive behaviors, or sexual behaviors, are largely shaped by external sensory cues exchanged during sexual interaction. In many animals, including rodents, olfactory cues play a critical role in regulating sexual behavior. What exactly these olfactory cues are and how they impact animal behavior have been a central question in the field. Over the past few decades, many studies have dedicated to identifying an active compound that elicits sexual behavior from crude olfactory components. The identified substance has served as a tool to dissect the sensory processing mechanisms in the olfactory systems. In addition, recent advances in genetic engineering, and optics and microscopic techniques have greatly expanded our knowledge of the neural mechanisms underlying the control of sexual behavior in mice. This review summarizes our current knowledge about how sexual behaviors are controlled by olfactory cues.
Collapse
Affiliation(s)
- Kentaro K Ishii
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan; ERATO Touhara Chemosensory Signal Project, JST, The University of Tokyo, Tokyo 113-8657, Japan
| | - Kazushige Touhara
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan; ERATO Touhara Chemosensory Signal Project, JST, The University of Tokyo, Tokyo 113-8657, Japan.
| |
Collapse
|
38
|
Daghfous G, Auclair F, Clotten F, Létourneau JL, Atallah E, Millette JP, Derjean D, Robitaille R, Zielinski BS, Dubuc R. GABAergic modulation of olfactomotor transmission in lampreys. PLoS Biol 2018; 16:e2005512. [PMID: 30286079 PMCID: PMC6191151 DOI: 10.1371/journal.pbio.2005512] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 10/16/2018] [Accepted: 09/18/2018] [Indexed: 12/21/2022] Open
Abstract
Odor-guided behaviors, including homing, predator avoidance, or food and mate searching, are ubiquitous in animals. It is only recently that the neural substrate underlying olfactomotor behaviors in vertebrates was uncovered in lampreys. It consists of a neural pathway extending from the medial part of the olfactory bulb (medOB) to locomotor control centers in the brainstem via a single relay in the caudal diencephalon. This hardwired olfactomotor pathway is present throughout life and may be responsible for the olfactory-induced motor behaviors seen at all life stages. We investigated modulatory mechanisms acting on this pathway by conducting anatomical (tract tracing and immunohistochemistry) and physiological (intracellular recordings and calcium imaging) experiments on lamprey brain preparations. We show that the GABAergic circuitry of the olfactory bulb (OB) acts as a gatekeeper of this hardwired sensorimotor pathway. We also demonstrate the presence of a novel olfactomotor pathway that originates in the non-medOB and consists of a projection to the lateral pallium (LPal) that, in turn, projects to the caudal diencephalon and to the mesencephalic locomotor region (MLR). Our results indicate that olfactory inputs can induce behavioral responses by activating brain locomotor centers via two distinct pathways that are strongly modulated by GABA in the OB. The existence of segregated olfactory subsystems in lampreys suggests that the organization of the olfactory system in functional clusters may be a common ancestral trait of vertebrates.
Collapse
Affiliation(s)
- Gheylen Daghfous
- Groupe de Recherche sur le Système Nerveux Central, Département de neurosciences, Université de Montréal, Montréal, Québec, Canada
- Groupe de Recherche en Activité Physique Adaptée, Département des sciences de l'activité physique, Université du Québec à Montréal, Montréal, Québec, Canada
| | - François Auclair
- Groupe de Recherche sur le Système Nerveux Central, Département de neurosciences, Université de Montréal, Montréal, Québec, Canada
| | - Felix Clotten
- Groupe de Recherche sur le Système Nerveux Central, Département de neurosciences, Université de Montréal, Montréal, Québec, Canada
| | - Jean-Luc Létourneau
- Groupe de Recherche en Activité Physique Adaptée, Département des sciences de l'activité physique, Université du Québec à Montréal, Montréal, Québec, Canada
| | - Elias Atallah
- Groupe de Recherche sur le Système Nerveux Central, Département de neurosciences, Université de Montréal, Montréal, Québec, Canada
| | - Jean-Patrick Millette
- Groupe de Recherche sur le Système Nerveux Central, Département de neurosciences, Université de Montréal, Montréal, Québec, Canada
| | - Dominique Derjean
- Groupe de Recherche sur le Système Nerveux Central, Département de neurosciences, Université de Montréal, Montréal, Québec, Canada
- Groupe de Recherche en Activité Physique Adaptée, Département des sciences de l'activité physique, Université du Québec à Montréal, Montréal, Québec, Canada
| | - Richard Robitaille
- Groupe de Recherche sur le Système Nerveux Central, Département de neurosciences, Université de Montréal, Montréal, Québec, Canada
| | - Barbara S. Zielinski
- Department of Biological Sciences, University of Windsor, Windsor, Ontario, Canada
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, Canada
| | - Réjean Dubuc
- Groupe de Recherche sur le Système Nerveux Central, Département de neurosciences, Université de Montréal, Montréal, Québec, Canada
- Groupe de Recherche en Activité Physique Adaptée, Département des sciences de l'activité physique, Université du Québec à Montréal, Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|
39
|
The Neural Mechanisms of Sexually Dimorphic Aggressive Behaviors. Trends Genet 2018; 34:755-776. [PMID: 30173869 DOI: 10.1016/j.tig.2018.07.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/16/2018] [Accepted: 07/05/2018] [Indexed: 10/28/2022]
Abstract
Aggression is a fundamental social behavior that is essential for competing for resources and protecting oneself and families in both males and females. As a result of natural selection, aggression is often displayed differentially between the sexes, typically at a higher level in males than females. Here, we highlight the behavioral differences between male and female aggression in rodents. We further outline the aggression circuits in males and females, and compare their differences at each circuit node. Lastly, we summarize our current understanding regarding the generation of sexually dimorphic aggression circuits during development and their maintenance during adulthood. In both cases, gonadal steroid hormones appear to play crucial roles in differentiating the circuits by impacting on the survival, morphology, and intrinsic properties of relevant cells. Many other factors, such as environment and experience, may also contribute to sex differences in aggression and remain to be investigated in future studies.
Collapse
|
40
|
Congdon EE. Sex Differences in Autophagy Contribute to Female Vulnerability in Alzheimer's Disease. Front Neurosci 2018; 12:372. [PMID: 29988365 PMCID: PMC6023994 DOI: 10.3389/fnins.2018.00372] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/14/2018] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia, with over 5. 4 million cases in the US alone (Alzheimer's Association, 2016). Clinically, AD is defined by the presence of plaques composed of Aβ and neurofibrillary pathology composed of the microtubule associated protein tau. Another key feature is the dysregulation of autophagy at key steps in the pathway. In AD, disrupted autophagy contributes to disease progression through the failure to clear pathological protein aggregates, insulin resistance, and its role in the synthesis of Aβ. Like many psychiatric and neurodegenerative diseases, the risk of developing AD, and disease course are dependent on the sex of the patient. One potential mechanism through which these differences occur, is the effects of sex hormones on autophagy. In women, the loss of hormones with menopause presents both a risk factor for developing AD, and an obvious example of where sex differences in AD can stem from. However, because AD pathology can begin decades before menopause, this does not provide the full answer. We propose that sex-based differences in autophagy regulation during the lifespan contribute to the increased risk of AD, and greater severity of pathology seen in women.
Collapse
Affiliation(s)
- Erin E Congdon
- Neuroscience and Physiology, School of Medicine, New York University, New York City, NY, United States
| |
Collapse
|
41
|
Manoli DS, Tollkuhn J. Gene regulatory mechanisms underlying sex differences in brain development and psychiatric disease. Ann N Y Acad Sci 2018; 1420:26-45. [PMID: 29363776 PMCID: PMC5991992 DOI: 10.1111/nyas.13564] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 10/26/2017] [Accepted: 11/01/2017] [Indexed: 12/12/2022]
Abstract
The sexual differentiation of the mammalian nervous system requires the precise coordination of the temporal and spatial regulation of gene expression in diverse cell types. Sex hormones act at multiple developmental time points to specify sex-typical differentiation during embryonic and early development and to coordinate subsequent responses to gonadal hormones later in life by establishing sex-typical patterns of epigenetic modifications across the genome. Thus, mutations associated with neuropsychiatric conditions may result in sexually dimorphic symptoms by acting on different neural substrates or chromatin landscapes in males and females. Finally, as stress hormone signaling may directly alter the molecular machinery that interacts with sex hormone receptors to regulate gene expression, the contribution of chronic stress to the pathogenesis or presentation of mental illness may be additionally different between the sexes. Here, we review the mechanisms that contribute to sexual differentiation in the mammalian nervous system and consider some of the implications of these processes for sex differences in neuropsychiatric conditions.
Collapse
Affiliation(s)
- Devanand S. Manoli
- Department of Psychiatry and Weill Institute for Neuroscience, University of California, San Francisco, San Francisco, California
| | | |
Collapse
|
42
|
Morford JJ, Wu S, Mauvais-Jarvis F. The impact of androgen actions in neurons on metabolic health and disease. Mol Cell Endocrinol 2018; 465:92-102. [PMID: 28882554 PMCID: PMC5835167 DOI: 10.1016/j.mce.2017.09.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/25/2017] [Accepted: 09/01/2017] [Indexed: 01/03/2023]
Abstract
The male hormone testosterone exerts different effects on glucose and energy homeostasis in males and females. Testosterone deficiency predisposes males to visceral obesity, insulin resistance and type 2 diabetes. However, testosterone excess predisposes females to similar metabolic dysfunction. Here, we review the effects of testosterone actions in the central nervous system on metabolic function in males and females. In particular, we highlight changes within the hypothalamus that control glucose and energy homeostasis. We distinguish the organizational effects of testosterone in the programming of neural circuitry during development from the activational effects of testosterone during adulthood. Finally, we explore potential sites where androgen might be acting to impact metabolism within the central nervous system.
Collapse
Affiliation(s)
- Jamie J Morford
- Department of Medicine, Section of Endocrinology and Metabolism, Tulane University Health Sciences Center, School of Medicine, New Orleans, LA, USA
| | - Sheng Wu
- Department of Pediatrics and Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Franck Mauvais-Jarvis
- Department of Medicine, Section of Endocrinology and Metabolism, Tulane University Health Sciences Center, School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
43
|
Singh G, Singh V, Sobolewski M, Cory-Slechta DA, Schneider JS. Sex-Dependent Effects of Developmental Lead Exposure on the Brain. Front Genet 2018; 9:89. [PMID: 29662502 PMCID: PMC5890196 DOI: 10.3389/fgene.2018.00089] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/02/2018] [Indexed: 11/23/2022] Open
Abstract
The role of sex as an effect modifier of developmental lead (Pb) exposure has until recently received little attention. Lead exposure in early life can affect brain development with persisting influences on cognitive and behavioral functioning, as well as, elevated risks for developing a variety of diseases and disorders in later life. Although both sexes are affected by Pb exposure, the incidence, manifestation, and severity of outcomes appears to differ in males and females. Results from epidemiologic and animal studies indicate significant effect modification by sex, however, the results are not consistent across studies. Unfortunately, only a limited number of human epidemiological studies have included both sexes in independent outcome analyses limiting our ability to draw definitive conclusions regarding sex-differentiated outcomes. Additionally, due to various methodological differences across studies, there is still not a good mechanistic understanding of the molecular effects of lead on the brain and the factors that influence differential responses to Pb based on sex. In this review, focused on prenatal and postnatal Pb exposures in humans and animal models, we discuss current literature supporting sex differences in outcomes in response to Pb exposure and explore some of the ideas regarding potential molecular mechanisms that may contribute to sex-related differences in outcomes from developmental Pb exposure. The sex-dependent variability in outcomes from developmental Pb exposure may arise from a combination of complex factors, including, but not limited to, intrinsic sex-specific molecular/genetic mechanisms and external risk factors including sex-specific responses to environmental stressors which may act through shared epigenetic pathways to influence the genome and behavioral output.
Collapse
Affiliation(s)
- Garima Singh
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Vikrant Singh
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Marissa Sobolewski
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Deborah A. Cory-Slechta
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Jay S. Schneider
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
44
|
Adhya D, Annuario E, Lancaster MA, Price J, Baron‐Cohen S, Srivastava DP. Understanding the role of steroids in typical and atypical brain development: Advantages of using a "brain in a dish" approach. J Neuroendocrinol 2018; 30:e12547. [PMID: 29024164 PMCID: PMC5838783 DOI: 10.1111/jne.12547] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 09/14/2017] [Accepted: 10/03/2017] [Indexed: 01/02/2023]
Abstract
Steroids have an important role in growth, development, sexual differentiation and reproduction. All four classes of steroids, androgens, oestrogens, progestogens and glucocorticoids, have varying effects on the brain. Androgens and oestrogens are involved in the sexual differentiation of the brain, and also influence cognition. Progestogens such as progesterone and its metabolites have been shown to be involved in neuroprotection, although their protective effects are timing-dependent. Glucocorticoids are linked with stress and memory performance, also in a dose- and time-dependent manner. Importantly, dysfunction in steroid function has been implicated in the pathogenesis of disease. Moreover, regulating steroid-signalling has been suggested as potential therapeutic avenue for the treatment of a number of neurodevelopmental, psychiatric and neurodegenerative disorders. Therefore, clarifying the role of steroids in typical and atypical brain function is essential for understanding typical brain functions, as well as determining their potential use for pharmacological intervention in the atypical brain. However, the majority of studies have thus far have been conducted using animal models, with limited work using native human tissue or cells. Here, we review the effect of steroids in the typical and atypical brain, focusing on the cellular, molecular functions of these molecules determined from animal models, and the therapeutic potential as highlighted by human studies. We further discuss the promise of human-induced pluripotent stem cells, including advantages of using three-dimensional neuronal cultures (organoids) in high-throughput screens, in accelerating our understanding of the role of steroids in the typical brain, and also with respect to their therapeutic value in the understanding and treatment of the atypical brain.
Collapse
Affiliation(s)
- D. Adhya
- Department of PsychiatryAutism Research CentreUniversity of CambridgeCambridgeUK
- Department of Basic and Clinical NeuroscienceMaurice Wohl Clinical Neuroscience InstituteInstitute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
- MRC Laboratory of Molecular BiologyCambridgeUK
| | - E. Annuario
- Department of Basic and Clinical NeuroscienceMaurice Wohl Clinical Neuroscience InstituteInstitute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
| | | | - J. Price
- Department of Basic and Clinical NeuroscienceMaurice Wohl Clinical Neuroscience InstituteInstitute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
- MRC Centre for Neurodevelopmental DisordersKing's College LondonLondonUK
- National Institute for Biological Standards and ControlSouth MimmsUK
| | - S. Baron‐Cohen
- Department of PsychiatryAutism Research CentreUniversity of CambridgeCambridgeUK
| | - D. P. Srivastava
- Department of Basic and Clinical NeuroscienceMaurice Wohl Clinical Neuroscience InstituteInstitute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
- MRC Centre for Neurodevelopmental DisordersKing's College LondonLondonUK
| |
Collapse
|
45
|
Delwig A, Chaney SY, Bertke AS, Verweij J, Quirce S, Larsen DD, Yang C, Buhr E, VAN Gelder R, Gallar J, Margolis T, Copenhagen DR. Melanopsin expression in the cornea. Vis Neurosci 2018; 35:E004. [PMID: 29905117 PMCID: PMC6203320 DOI: 10.1017/s0952523817000359] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A unique class of intrinsically photosensitive retinal ganglion cells in mammalian retinae has been recently discovered and characterized. These neurons can generate visual signals in the absence of inputs from rods and cones, the conventional photoreceptors in the visual system. These light sensitive ganglion cells (mRGCs) express the non-rod, non-cone photopigment melanopsin and play well documented roles in modulating pupil responses to light, photoentrainment of circadian rhythms, mood, sleep and other adaptive light functions. While most research efforts in mammals have focused on mRGCs in retina, recent studies reveal that melanopsin is expressed in non-retinal tissues. For example, light-evoked melanopsin activation in extra retinal tissue regulates pupil constriction in the iris and vasodilation in the vasculature of the heart and tail. As another example of nonretinal melanopsin expression we report here the previously unrecognized localization of this photopigment in nerve fibers within the cornea. Surprisingly, we were unable to detect light responses in the melanopsin-expressing corneal fibers in spite of our histological evidence based on genetically driven markers and antibody staining. We tested further for melanopsin localization in cell bodies of the trigeminal ganglia (TG), the principal nuclei of the peripheral nervous system that project sensory fibers to the cornea, and found expression of melanopsin mRNA in a subset of TG neurons. However, neither electrophysiological recordings nor calcium imaging revealed any light responsiveness in the melanopsin positive TG neurons. Given that we found no light-evoked activation of melanopsin-expressing fibers in cornea or in cell bodies in the TG, we propose that melanopsin protein might serve other sensory functions in the cornea. One justification for this idea is that melanopsin expressed in Drosophila photoreceptors can serve as a temperature sensor.
Collapse
Affiliation(s)
- Anton Delwig
- Department of Ophthalmology,School of Medicine,University of California San Francisco,San Francisco,California
| | - Shawnta Y Chaney
- Department of Ophthalmology,School of Medicine,University of California San Francisco,San Francisco,California
| | - Andrea S Bertke
- Proctor Foundation,School of Medicine,University of California San Francisco,San Francisco,California
| | - Jan Verweij
- Department of Ophthalmology,School of Medicine,University of California San Francisco,San Francisco,California
| | - Susana Quirce
- Instituto de Neurociencias de Alicante,Universidad Miguel Hernandez-CSIC,San Juan de Alicante,Spain
| | - Delaine D Larsen
- Department of Ophthalmology,School of Medicine,University of California San Francisco,San Francisco,California
| | - Cindy Yang
- Department of Anatomy,School of Medicine,University of California San Francisco,San Francisco,California
| | - Ethan Buhr
- Department of Ophthalmology,School of Medicine,University of Washington,Seattle,Washington
| | - Russell VAN Gelder
- Department of Ophthalmology,School of Medicine,University of Washington,Seattle,Washington
| | - Juana Gallar
- Instituto de Neurociencias de Alicante,Universidad Miguel Hernandez-CSIC,San Juan de Alicante,Spain
| | - Todd Margolis
- Department of Ophthalmology,School of Medicine,University of California San Francisco,San Francisco,California
| | - David R Copenhagen
- Department of Ophthalmology,School of Medicine,University of California San Francisco,San Francisco,California
| |
Collapse
|
46
|
Meyer CE, Kurth F, Lepore S, Gao JL, Johnsonbaugh H, Oberoi MR, Sawiak SJ, MacKenzie-Graham A. In vivo magnetic resonance images reveal neuroanatomical sex differences through the application of voxel-based morphometry in C57BL/6 mice. Neuroimage 2017; 163:197-205. [PMID: 28923275 PMCID: PMC5716897 DOI: 10.1016/j.neuroimage.2017.09.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 09/07/2017] [Accepted: 09/14/2017] [Indexed: 12/22/2022] Open
Abstract
Behaviorally relevant sex differences are often associated with structural differences in the brain and many diseases are sexually dimorphic in prevalence and progression. Characterizing sex differences is imperative to gaining a complete understanding of behavior and disease which will, in turn, allow for a balanced approach to scientific research and the development of therapies. In this study, we generated novel tissue probability maps (TPMs) based on 30 male and 30 female in vivo C57BL/6 mouse brain magnetic resonance images and used voxel-based morphometry (VBM) to analyze sex differences. Females displayed larger anterior hippocampus, basolateral amygdala, and lateral cerebellar cortex volumes, while males exhibited larger cerebral cortex, medial amygdala, and medial cerebellar cortex volumes. Atlas-based morphometry (ABM) revealed a statistically significant sex difference in cortical volume and no difference in whole cerebellar volume. This validated our VBM findings that showed a larger cerebral cortex in male mice and a pattern of dimorphism in the cerebellum where the lateral portion was larger in females and the medial portion was larger in males. These results are consonant with previous ex vivo studies examining sex differences, but also suggest further regions of interest.
Collapse
Affiliation(s)
- Cassandra E Meyer
- Department of Neurology, David Geffen School of Medicine at University of California, Los Angeles, 635 Charles Young Drive South, Los Angeles, CA, USA
| | - Florian Kurth
- Department of Neurology, David Geffen School of Medicine at University of California, Los Angeles, 635 Charles Young Drive South, Los Angeles, CA, USA
| | - Stefano Lepore
- Department of Neurology, David Geffen School of Medicine at University of California, Los Angeles, 635 Charles Young Drive South, Los Angeles, CA, USA
| | - Josephine L Gao
- Department of Neurology, David Geffen School of Medicine at University of California, Los Angeles, 635 Charles Young Drive South, Los Angeles, CA, USA
| | - Hadley Johnsonbaugh
- Department of Neurology, David Geffen School of Medicine at University of California, Los Angeles, 635 Charles Young Drive South, Los Angeles, CA, USA
| | - Mandavi R Oberoi
- Department of Neurology, David Geffen School of Medicine at University of California, Los Angeles, 635 Charles Young Drive South, Los Angeles, CA, USA
| | - Stephen J Sawiak
- Wolfson Brain Imaging Centre, University of Cambridge, Box 65 Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Allan MacKenzie-Graham
- Department of Neurology, David Geffen School of Medicine at University of California, Los Angeles, 635 Charles Young Drive South, Los Angeles, CA, USA.
| |
Collapse
|
47
|
Reber J, Tranel D. Sex differences in the functional lateralization of emotion and decision making in the human brain. J Neurosci Res 2017; 95:270-278. [PMID: 27870462 DOI: 10.1002/jnr.23829] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 06/16/2016] [Accepted: 06/20/2016] [Indexed: 11/12/2022]
Abstract
Dating back to the case of Phineas Gage, decades of neuropsychological research have shown that the ventromedial prefrontal cortex (vmPFC) is crucial to both real-world social functioning and abstract decision making in the laboratory (see, e.g., Stuss et al., ; Bechara et al., 1994; Damasio et al., ). Previous research has shown that the relationship between the laterality of individuals' vmPFC lesions and neuropsychological performance is moderated by their sex, whereby there are more severe social, emotional, and decision-making impairments in men with right-side vmPFC lesions and in women with left-side vmPFC lesions (Tranel et al., 2005; Sutterer et al., 2015). We conducted a selective review of studies examining the effect of vmPFC lesions on emotion and decision making and found further evidence of sex-related differences in the lateralization of function not only in the vmPFC but also in other neurological structures associated with decision making and emotion. This Mini-Review suggests that both sex and laterality effects warrant more careful consideration in the scientific literature. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Justin Reber
- Departments of Psychological and Brain Sciences and Neurology, University of Iowa, Iowa City, Iowa
| | - Daniel Tranel
- Departments of Psychological and Brain Sciences and Neurology, University of Iowa, Iowa City, Iowa
| |
Collapse
|
48
|
Aarif O, Aggarwal A, Sheikh AA. Evaporative cooling in late gestation heat-stressed Murrah buffaloes increases efficiency of next reproductive cycle. Reprod Domest Anim 2017; 53:249-255. [PMID: 29110348 DOI: 10.1111/rda.13100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 08/06/2017] [Indexed: 11/29/2022]
Abstract
Evaporative cooling during late gestation period improves post-partum reproductive performance in Murrah buffaloes. To prove this hypothesis, sixteen pregnant dry Murrah buffaloes at sixty days pre-partum were selected and divided into two groups of eight animals each. Group 1 of buffaloes (Cooled/CL) was managed under fan and mist cooling during dry period, whereas second group of buffaloes (non-cooled/NCL) remained without the provision of cooling. After parturition, all the animals were managed under evaporative cooling till the end of experimental period. Reproductive performance in cooled (CL) and non-cooled (NCL) groups, respectively, viz. 1st and 2nd ovulation from calving (48.63 ± 2.41, 69.25 ± 2.34 days and 57.75 ± 3.35, 93.63 ± 2.84 days); calving to conception interval (117.88 ± 4.21 days and 117.88± 4.21 days); conception rate (87.5% ± 2.16% and 57% ± 2.26%); and follicular diameter at the time of 1st and 2nd ovulation (14.84 ± 0.16, 15.75 ± 0.13 mm and 12.65 ± 0.13, 13.35 ± 0.11 mm) varied significantly (p < .05). Total peak oestrogen concentration was significantly (p < .05) higher in cooled (26.7 ± 1.32 pg/ml) relative to non-cooled (20.7 ± 1.22 pg/ml) buffaloes. Time from onset of oestrus to ovulation varied significantly (p < .05) in cooled (32 ± 2.22 hr) and non-cooled (40 ± 2.86 hr) buffaloes. The peak progesterone concentration reached to (4.25 ng/ml) in cooled group and (4.16 ng/ml) in non-cooled group after first ovulation.
Collapse
Affiliation(s)
- O Aarif
- Animal Physiology Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - A Aggarwal
- Animal Physiology Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - A A Sheikh
- Animal Physiology Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| |
Collapse
|
49
|
Arambula SE, Jima D, Patisaul HB. Prenatal bisphenol A (BPA) exposure alters the transcriptome of the neonate rat amygdala in a sex-specific manner: a CLARITY-BPA consortium study. Neurotoxicology 2017; 65:207-220. [PMID: 29097150 DOI: 10.1016/j.neuro.2017.10.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 12/11/2022]
Abstract
Bisphenol A (BPA) is a widely recognized endocrine disruptor prevalent in many household items. Because experimental and epidemiological data suggest links between prenatal BPA exposure and altered affective behaviors in children, even at levels below the current US FDA No Observed Adverse Effect Level (NOAEL) of 5mg/kg body weight (bw)/day, there is concern that early life exposure may alter neurodevelopment. The current study was conducted as part of the CLARITY-BPA (Consortium Linking Academic and Regulatory Insights on BPA Toxicity) program and examined the full amygdalar transcriptome on postnatal day (PND) 1, with the hypothesis that prenatal BPA exposure would alter the expression of genes and pathways fundamental to sex-specific affective behaviors. NCTR Sprague-Dawley dams were gavaged from gestational day 6 until parturition with BPA (2.5, 25, 250, 2500, or 25000μg/kg bw/day), a reference estrogen (0.05 or 0.5μg ethinyl estradiol (EE2)/kg bw/day), or vehicle. PND 1 amygdalae were microdissected and gene expression was assessed with qRT-PCR (all exposure groups) and RNAseq (vehicle, 25 and 250μg BPA, and 0.5μg EE2 groups only). Our results demonstrate that that prenatal BPA exposure can disrupt the transcriptome of the neonate amygdala, at doses below the FDA NOAEL, in a sex-specific manner and indicate that the female amygdala may be more sensitive to BPA exposure during fetal development. We also provide additional evidence that developmental BPA exposure can interfere with estrogen, oxytocin, and vasopressin signaling pathways in the developing brain and alter signaling pathways critical for synaptic organization and transmission.
Collapse
Affiliation(s)
- Sheryl E Arambula
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA; WM Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Dereje Jima
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695, USA; Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695
| | - Heather B Patisaul
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA; WM Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC 27695, USA; Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
50
|
Morford J, Mauvais-Jarvis F. Sex differences in the effects of androgens acting in the central nervous system on metabolism. DIALOGUES IN CLINICAL NEUROSCIENCE 2017. [PMID: 28179813 PMCID: PMC5286727 DOI: 10.31887/dcns.2016.18.4/fmauvais] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
One of the most sexually dimorphic aspects of metabolic regulation is the bidirectional modulation of glucose and energy homeostasis by testosterone in males and females. Testosterone deficiency predisposes men to metabolic dysfunction, with excess adiposity, insulin resistance, and type 2 diabetes, whereas androgen excess predisposes women to insulin resistance, adiposity, and type 2 diabetes. This review discusses how testosterone acts in the central nervous system, and especially the hypothalamus, to promote metabolic homeostasis or dysfunction in a sexually dimorphic manner. We compare the organizational actions of testosterone, which program the hypothalamic control of metabolic homeostasis during development, and the activational actions of testosterone, which affect metabolic function after puberty. We also discuss how the metabolic effect of testosterone is centrally mediated via the androgen receptor.
Collapse
Affiliation(s)
- Jamie Morford
- Department of Medicine, Section of Endocrinology and Metabolism, Tulane University Health Sciences Center, School of Medicine, New Orleans, Louisiana, USA
| | - Franck Mauvais-Jarvis
- Department of Medicine, Section of Endocrinology and Metabolism, Tulane University Health Sciences Center, School of Medicine, New Orleans, Louisiana, USA
| |
Collapse
|