1
|
Song DE, Rawal D, Lee WJ, Shim WS. Sphingosylphosphorylcholine induces itch via activation of TRPM3 and TRPA1 in mice. Biochem Pharmacol 2025; 237:116952. [PMID: 40274130 DOI: 10.1016/j.bcp.2025.116952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 03/19/2025] [Accepted: 04/16/2025] [Indexed: 04/26/2025]
Abstract
Itch is a prevalent symptom in atopic dermatitis (AD), often leading to a strong urge to scratch. Elevated levels of sphingosylphosphorylcholine (SPC) are found in the stratum corneum of AD patients, and while SPC is known to induce itch, its molecular targets are not well understood. This study aims to identify the signaling pathway of SPC-induced itch under AD conditions. We demonstrate that SPC specifically activates the Transient Receptor Potential Melastatin 3 (TRPM3) channel in sensory neurons. In HEK293T cells expressing TRPM3, SPC treatment caused a significant increase in intracellular calcium, which was inhibited by TRPM3 antagonists. Among various TRP channels tested, TRPM3 exhibited the highest reactivity to SPC, followed by TRPA1. Molecular docking analysis also supported interactions between SPC and both TRPM3 and TRPA1. In an AD mouse model, SPC-induced responses were dependent on TRPM3 and TRPA1, and the expression of these channels increased in dorsal root ganglion neurons. SPC-induced scratching behaviors were significantly reduced by TRPM3 and TRPA1 antagonists, with TRPM3 playing a critical role in spontaneous scratching. This study identifies TRPM3 and TRPA1 as key mediators of SPC-induced itch, providing potential therapeutic targets for treating itch in AD patients.
Collapse
Affiliation(s)
- Da Eun Song
- College of Pharmacy, Gachon University, Incheon, South Korea; Gachon Institute of Pharmaceutical Sciences, Incheon, South Korea
| | - Diwas Rawal
- College of Pharmacy, Gachon University, Incheon, South Korea; Gachon Institute of Pharmaceutical Sciences, Incheon, South Korea
| | - Wook-Joo Lee
- College of Pharmacy, Gachon University, Incheon, South Korea; Gachon Institute of Pharmaceutical Sciences, Incheon, South Korea
| | - Won-Sik Shim
- College of Pharmacy, Gachon University, Incheon, South Korea; Gachon Institute of Pharmaceutical Sciences, Incheon, South Korea.
| |
Collapse
|
2
|
Aguilera-Lizarraga J, Lim TK, Pattison LA, Paine LW, Bulmer DC, Smith ESJ. Pro-inflammatory mediators sensitise transient receptor potential melastatin 3 cation channel (TRPM3) function in mouse sensory neurons. Neuropharmacology 2025; 271:110391. [PMID: 40024472 DOI: 10.1016/j.neuropharm.2025.110391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
Pro-inflammatory mediators can directly activate pain-sensing neurons, known as nociceptors. Additionally, these mediators can sensitise ion channels and receptors expressed by these cells through transcriptional and post-translational modulation, leading to nociceptor hypersensitivity. A well-characterised group of ion channels that subserve nociceptor sensitisation is the transient receptor potential (TRP) superfamily of cation channels. For example, the roles of TRP channels vanilloid 1 (TRPV1) and ankyrin 1 (TRPA1) in nociceptor sensitisation and inflammatory pain have been extensively documented. In the case of TRP melastatin 3 (TRPM3), however, despite the increasing recognition of this channel's role in inflammatory pain, the mediators driving its sensitisation during inflammation remain poorly characterised. Here, using Ca2+ imaging, we found that an inflammatory soup of bradykinin, interleukin 1β (IL-1β) and tumour necrosis factor α (TNFα) sensitised TRPM3 function in isolated mouse sensory neurons; IL-1β and TNFα, but not bradykinin, independently potentiated TRPM3 function. TRPM3 expression and translocation to the membrane remained unchanged upon individual or combined exposure to these inflammatory mediators, which suggests that post-translational modification might occur. Finally, using the complete Freund's adjuvant-induced model of knee inflammation, we found that systemic pharmacological blockade of TRPM3 does not alleviate inflammatory pain (as assessed through evaluation of digging behaviour and dynamic weight bearing), which contrasts with previous reports using different pain models. We propose that the nuances of the immune response may determine the relative contribution of TRPM3 to nociceptive signalling in different neuro-immune contexts. Collectively, our findings improve insight into the role of TRPM3 sensitisation in inflammatory pain.
Collapse
Affiliation(s)
| | - Tony K Lim
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Luke A Pattison
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Luke W Paine
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - David C Bulmer
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
3
|
Fofie CK, Granja-Vazquez R, Truong V, Walsh P, Price T, Biswas S, Dussor G, Pancrazio J, Kolber B. Profiling human iPSC-derived sensory neurons for analgesic drug screening using a multi-electrode array. CELL REPORTS METHODS 2025; 5:101051. [PMID: 40367946 DOI: 10.1016/j.crmeth.2025.101051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/16/2025] [Accepted: 04/21/2025] [Indexed: 05/16/2025]
Abstract
Chronic pain is a global health issue, yet effective treatments remain limited due to poor preclinical-to-human translation. To address this, we developed a high-content screening (HCS) platform using hiPSC-derived nociceptors to identify analgesics targeting the peripheral nervous system. These cells, cultured on multi-well microelectrode arrays, achieved nearly 100% active electrodes by week 2, maintaining stable activity for at least 2 weeks. After 28 days, we assessed drug effects on neuronal activity, achieving strong assay performance (robust Z' > 0.5). Pharmacological tests confirmed responses to key analgesic targets, including ion channels (Nav, Cav, Kv, and TRPV1), neurotransmitter receptors (AMPAR and GABA-R), and kinase inhibitors (tyrosine and JAK1/2). Transcriptomic analysis validated target expression, though levels differed from primary human DRG cells. The platform was used to screen over 700 natural compounds, demonstrating its potential for analgesic discovery. This HCS platform facilitates the rapid discovery of uncharacterized analgesics, reducing preclinical-to-human translation failure.
Collapse
Affiliation(s)
- Christian Kuete Fofie
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Rafael Granja-Vazquez
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | | | | | - Theodore Price
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Swati Biswas
- Department of Mathematical Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Gregory Dussor
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Joseph Pancrazio
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Benedict Kolber
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA.
| |
Collapse
|
4
|
Pardeshi GN, Ali N, Shirasath KR, Goyal SN, Nakhate KT, Awathale SN. Inhibition of TRPM3 channels in the medial prefrontal cortex mitigates OCD symptoms following traumatic brain injury. Inflammopharmacology 2025:10.1007/s10787-025-01763-5. [PMID: 40372651 DOI: 10.1007/s10787-025-01763-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2025] [Accepted: 04/17/2025] [Indexed: 05/16/2025]
Abstract
Although tumor necrosis factor-alpha (TNF-α) plays an important role in the development of obsessive-compulsive disorder (OCD), the pathogenesis remains unclear. Since transient receptor potential melastatin 3 (TRPM3) channels are activated during inflammatory conditions, crosstalk with TNF-α in the progression of OCD has not been investigated yet. We hypothesize that mild traumatic brain injury (mTBI) stimulates TRPM3 channels, thereby enhancing the level of TNF-α in the medial prefrontal cortex (mPFC), a key brain region implicated in OCD pathogenesis. The closed-head weight-drop method was used for mTBI-induced OCD in mice, and neurological assessment was carried out using rotarod and beam-walk tests. Marble-burying test, open-field test, dark-light emergence test, and nest-building behavior test were performed to examine OCD-like symptoms. The mPFC was isolated, and the TNF-α level and TRPM3 immunoreactivity were estimated using ELISA and immunohistochemistry techniques. Additionally, Golgi-Cox staining and HPLC were performed to quantify dendritic arbor and serotonin content. To validate our hypothesis, mTBI mice were treated with a selective TRPM3 inhibitor naringenin (50 mg/kg) via intraperitoneal route, and all the above parameters were screened. Marble-burying and nest-building behaviors were increased in mTBI mice. However, exploratory behavior and time spend in the light chamber were significantly reduced. Moreover, mTBI increases TNF-α concentration and TRPM3 immunoreactivity, while decreasing dendritic arbor and serotonin content. Notably, naringenin treatment reversed these behavioral, biochemical, and molecular abnormalities. Naringenin may inhibit TRPM3-mediated TNF-α production and serotonin transmission, thereby suppressing OCD symptoms. Thus, we propose a novel therapeutic approach for treating OCD associated with traumatic brain injury.
Collapse
Affiliation(s)
- Gajendra N Pardeshi
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, Maharashtra, 424001, India
| | - Noor Ali
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, Maharashtra, 424001, India
| | - Kamini R Shirasath
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, Maharashtra, 424001, India
| | - Sameer N Goyal
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, Maharashtra, 424001, India
| | - Kartik T Nakhate
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, Maharashtra, 424001, India
| | - Sanjay N Awathale
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, Maharashtra, 424001, India.
| |
Collapse
|
5
|
Yin Y, Park CG, Feng S, Guan Z, Lee HJ, Zhang F, Sharma K, Borgnia MJ, Im W, Lee SY. Molecular basis of neurosteroid and anticonvulsant regulation of TRPM3. Nat Struct Mol Biol 2025; 32:828-840. [PMID: 39809942 DOI: 10.1038/s41594-024-01463-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 11/29/2024] [Indexed: 01/16/2025]
Abstract
Transient receptor potential channel subfamily M member 3 (TRPM3) is a Ca2+-permeable cation channel activated by the neurosteroid pregnenolone sulfate (PregS) or heat, serving as a nociceptor in the peripheral sensory system. Recent discoveries of autosomal dominant neurodevelopmental disorders caused by gain-of-function mutations in TRPM3 highlight its role in the central nervous system. Notably, the TRPM3 inhibitor primidone, an anticonvulsant, has proven effective in treating patients with TRPM3-linked neurological disorders and in mouse models of thermal nociception. However, our understanding of neurosteroids, inhibitors and disease mutations on TRPM3 is limited. Here we present cryogenic electron microscopy structures of the mouse TRPM3 in complex with cholesteryl hemisuccinate, primidone and PregS with the synthetic agonist CIM 0216. Our studies identify the binding sites for the neurosteroid, synthetic agonist and inhibitor and offer insights into their effects and disease mutations on TRPM3 gating, aiding future drug development.
Collapse
Affiliation(s)
- Ying Yin
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - Cheon-Gyu Park
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - Shasha Feng
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA
| | - Ziqiang Guan
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - Hyuk-Joon Lee
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - Feng Zhang
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - Kedar Sharma
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Mario J Borgnia
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Wonpil Im
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA
| | - Seok-Yong Lee
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
6
|
Wang G. Pathway-dependent cold activation of heat-responsive TRPV channels. RESEARCH SQUARE 2025:rs.3.rs-6450204. [PMID: 40321781 PMCID: PMC12047967 DOI: 10.21203/rs.3.rs-6450204/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
The homotetrameric thermosensitive transient receptor potential vanilloid 1-4 (TRPV1-4) channels in sensory neurons are highly responsive to heat stimuli. However, their primary heat sensors or triggers for heat activation have not been examined for cold activation. In this study, cold activation of minimal TRPV1 without the pore turret was compared with that of full-length human TRPV3. The former followed a pathway from the putative heat activation starter, while the latter tracked a different pathway starting far from the assumed heat activation point. The results showed that the former shared temperature sensitivity with heat activation while the latter did not. Therefore, this mirrored thermosensitivity can be used to confirm the location of the primary thermal sensor for TRPV1 or TRPV3, and potentially define the primary thermal sensor of other thermosensitive proteins like TRPV2 or TRPV4 once the same heat capacity mechanism is applied.
Collapse
Affiliation(s)
- Guangyu Wang
- Department of Physiology and Membrane Biology, University of California School of Medicine, Davis, CA, USA
| |
Collapse
|
7
|
Thiel G, Rössler OG. Stimulus-Transcription Coupling of TRPM3 Channels: A Signaling Pathway from the Plasma Membrane to the Nucleus. Biomolecules 2025; 15:521. [PMID: 40305282 PMCID: PMC12025076 DOI: 10.3390/biom15040521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/30/2025] [Accepted: 04/01/2025] [Indexed: 05/02/2025] Open
Abstract
Transient receptor potential melastatin-3 (TRPM3) channels are cation channels activated by heat and chemical ligands. TRPM3 regulates heat sensation, secretion, neurotransmitter release, iris constriction, and tumor promotion. Stimulation of TRPM3 triggers an influx of Ca2+ ions into the cells and the initiation of an intracellular signaling cascade. TRPM3 channels are regulated by phosphatidylinositol 4,5-bisphosphate, the βγ subunit of G-protein-coupled receptors, phospholipase C, and calmodulin. Extracellular signal-regulated protein kinase ERK1/2 and c-Jun N-terminal protein kinase (JNK) function as signal transducers. The signaling cascade is negatively regulated by the protein phosphatases MKP-1 and calcineurin and increased concentrations of Zn2+. Stimulation of TRPM3 leads to the activation of stimulus-responsive transcription factors controlled by epigenetic regulators. Potential delayed response genes encoding the pro-inflammatory regulators interleukin-8, calcitonin gene-related peptide, and the prostaglandin-synthesizing enzyme prostaglandin endoperoxide synthase-2 have been identified. Elucidating the TRPM3-induced signaling cascade provides insights into how TRPM3 stimulation alters numerous biochemical and physiological parameters within the cell and throughout the organism and offers intervention points for manipulating TRPM3 signaling and function.
Collapse
Affiliation(s)
- Gerald Thiel
- Department of Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, Building 44, 66421 Homburg, Germany;
| | | |
Collapse
|
8
|
Tu L, Fang X, Yang Y, Yu M, Liu H, Liu H, Yin N, Bean JC, Conde KM, Wang M, Li Y, Ginnard OZ, Liu Q, Shi Y, Han J, Zhu Y, Fukuda M, Tong Q, Arenkiel B, Xue M, He Y, Wang C, Xu Y. Vestibular neurons link motion sickness, behavioural thermoregulation and metabolic balance in mice. Nat Metab 2025; 7:742-758. [PMID: 40119169 DOI: 10.1038/s42255-025-01234-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/06/2025] [Indexed: 03/24/2025]
Abstract
Motion sickness is associated with thermoregulation and metabolic control, but the underlying neural circuitry remains largely unknown. Here we show that neurons in the medial vestibular nuclei parvocellular part (MVePC) mediate the hypothermic responses induced by motion. Reactivation of motion-sensitive MVePC neurons recapitulates motion sickness in mice. We show that motion-activated neurons in the MVePC are glutamatergic (MVePCGlu), and that optogenetic stimulation of MVePCGlu neurons mimics motion-induced hypothermia by signalling to the lateral parabrachial nucleus (LPBN). Acute inhibition of MVePC-LPBN circuitry abrogates motion-induced hypothermia. Finally, we show that chronic inhibition of MVePCGlu neurons prevents diet-induced obesity and improves glucose homeostasis without suppressing food intake. Overall, these findings highlight MVePCGlu neurons as a potential target for motion-sickness treatment and obesity control.
Collapse
Affiliation(s)
- Longlong Tu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.
| | - Xing Fang
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Yongjie Yang
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Meng Yu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Hailan Liu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Hesong Liu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Na Yin
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Jonathan C Bean
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Kristine M Conde
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Mengjie Wang
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Yongxiang Li
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Olivia Z Ginnard
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Qingzhuo Liu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Yuhan Shi
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Junying Han
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Yi Zhu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Makoto Fukuda
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Qingchun Tong
- Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Benjamin Arenkiel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Mingshan Xue
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
| | - Yang He
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Chunmei Wang
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Yong Xu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
9
|
Takayama Y. Interaction between thermosensitive TRP channels and anoctamin 1. J Physiol Sci 2025; 75:100015. [PMID: 40184917 PMCID: PMC11999596 DOI: 10.1016/j.jphyss.2025.100015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 03/12/2025] [Accepted: 03/12/2025] [Indexed: 04/07/2025]
Abstract
Some thermosensitive transient receptor potential (TRP) channels form a protein complex with anoctamin 1 (ANO1, also called TMEM16A). TRP channels have high calcium permeability, and the calcium entering cells through TRP channel activation activates ANO1, a calcium-activated chloride channel, involved in many physiological and pathological conditions. The physiological significance of TRP channels is often mediated by their ability to activate ANO1, which controls chloride flux across the plasma membrane. This review summarizes the latest understanding on the interactions between ANO1 and thermosensitive TRP channels, including TRPV1, TRPV3, and TRPV4, which are involved in pain sensitization in primary sensory neurons, proliferation and migration of human keratinocytes, and fluid secretion such as sweat, respectively.
Collapse
Affiliation(s)
- Yasunori Takayama
- Department of Physiology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, Japan.
| |
Collapse
|
10
|
Lei J, Tominaga M. TRPV3 in skin thermosensation and temperature responses. J Physiol Sci 2025; 75:100005. [PMID: 39837134 PMCID: PMC11979661 DOI: 10.1016/j.jphyss.2025.100005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/23/2024] [Accepted: 01/07/2025] [Indexed: 01/23/2025]
Abstract
Human skin, as a sophisticated sensory organ, is able to detect subtle changes in ambient temperature. This thermosensory capability is primarily mediated by temperature-sensitive TRP channels expressed in both sensory neurons and keratinocytes. Among these, TRPV3, which responds to warm temperatures and plays a crucial role in various skin functions, is particularly notable. TRPV3 channels not only detect moderate warmth but are also sensitive to chemical ligands that evoke thermal sensations. The activation of TRPV3 by warm temperatures and compounds highlights its importance in the molecular mechanisms underlying skin thermosensation. This review mainly discusses the role of TRPV3, particularly its contribution to skin thermosensation and structural insights into its temperature sensitivity, providing an understanding of how TRPV3 modulates thermal perception at the molecular level.
Collapse
Affiliation(s)
- Jing Lei
- Laboratory of Cutaneous Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan; Department of Dermatology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
| | - Makoto Tominaga
- Thermal Biology Research Group, Nagoya Advanced Research and Development Center, Nagoya City University, Nagoya, Japan
| |
Collapse
|
11
|
Jolitz L, Helbig I, Fitzgerald MP, McKeown Ruggiero S, Cohen S, Angelini C, Vallespin E, Michaud V, Gerasimenko A, Cogne B, Isidor B, Keren B, Dyment D, Heron D, Karstensen HG, Cuppen I, Christodoulou J, Wilson M, Lake NJ, Biskup S, Syrbe S, Mori T, Becker L, Kaindl AM. Phenotype Spectrum of TRPM3-Associated Disorders. Ann Neurol 2025; 97:561-570. [PMID: 39749750 PMCID: PMC11831877 DOI: 10.1002/ana.27141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 01/04/2025]
Abstract
OBJECTIVE Monoallelic variants in the transient receptor potential melastatin-related type 3 gene (TRPM3) have been associated with neurodevelopmental manifestations, but knowledge on the clinical manifestations and treatment options is limited. We characterized the clinical spectrum, highlighting particularly the epilepsy phenotype, and the effect of treatments. METHODS We analyzed retrospectively the phenotypes and genotypes of 43 individuals with TRPM3 variants, acquired from GeneMatcher and collaborations (n = 21), and through a systematic literature search (n = 22). We included all patients with a pathogenic TRPM3 variant. RESULTS The median age at the time of the study was 10 years, with a preponderance of girls (60%) versus boys (40%). Frequent findings were developmental delay and/or intellectual disability (93%), global or axial hypotonia (77%), ocular involvement (70%), musculoskeletal anomalies (65%), and dysmorphic features (58%). Epilepsy was diagnosed in 31 patients (72%), classified in all as developmental and epileptic encephalopathy with or without spike wave activation in sleep (DEE/DEE-SWAS). Patients with the variant p.Val1002Met (n = 24) significantly more often had developmental delay and epilepsy. The most effective anti-seizure medication was primidone. All treated patients showed an improvement in seizure frequency, motor and speech development, and/or learning capability with this drug. INTERPRETATION Developmental delay/intellectual disability and epilepsy are dominant phenotypic features in patients with TRPM3 variants. Given that epilepsy can negatively impact development, screening for awake and sleep electroencephalogram abnormalities and other manifestations are essential to offer early intervention. The TRPM3 channel blocker primidone has shown promising effects and should be considered in every child with a TRPM3 gain-of-function variant. ANN NEUROL 2025;97:561-570.
Collapse
Affiliation(s)
- Laura Jolitz
- Department of Pediatric NeurologyCharité–Universitätsmedizin BerlinBerlinGermany
- Center for Chronically Sick ChildrenCharité–Universitätsmedizin BerlinBerlinGermany
- Institute for Cell Biology and NeurobiologyCharité–Universitätsmedizin BerlinBerlinGermany
- Section CNS Development and Neurologic DiseaseGerman Center for Child and Adolescent Health (DZKJ)partner site BerlinGermany
| | - Ingo Helbig
- Division of NeurologyChildren's Hospital of PhiladelphiaPhiladelphiaPAUSA
| | - Mark P. Fitzgerald
- Division of NeurologyChildren's Hospital of PhiladelphiaPhiladelphiaPAUSA
- Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaPAUSA
- Epilepsy Neurogenetics InitiativeChildren's Hospital of PhiladelphiaPhiladelphiaPAUSA
| | | | - Stacey Cohen
- Department of Medicine, Division of Translational Medicine and Human GeneticsUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Chloe Angelini
- Department of Medical GeneticsGroupe Hospitalier Pellegrin, CHU BordeauxBordeaux CedexFrance
| | - Elena Vallespin
- Medical and Molecular Genetics Institute (INGEMM) IdiPaz, CIBERERHospital Universitario La PazMadridSpain
| | - Vincent Michaud
- Service de Génétique MédicaleCHU de BordeauxBordeauxFrance
- INSERM U1211, Maladies Rares, Génétique et MétabolismeUniversité de BordeauxBordeauxFrance
| | - Anna Gerasimenko
- Institut du Cerveau – Paris Brain Institute – ICM, Inserm, CNRSSorbonne UniversitéParisFrance
- Département de Génétique, Centre de référence “déficiences intellectuelles de causes rares”APHP Sorbonne Université, GH Pitié Salpêtrière et TrousseauParisFrance
| | - Benjamin Cogne
- Service de Génétique MédicaleNantes Université, CHU de NantesNantesFrance
- Laboratoire de Biologie Médicale Multi‐Sites SeqOIA (laboratoire‐seqoia.fr)ParisFrance
| | - Bertrand Isidor
- Service de Génétique MédicaleNantes Université, CHU de NantesNantesFrance
| | - Boris Keren
- Département de génétique, Hôpital Pitié‐SalpêtrièreAssistance Publique‐Hôpitaux de ParisParisFrance
| | - David Dyment
- Children's Hospital of Eastern Ontario Research InstituteOttawaCanada
| | - Delphine Heron
- Département de Génétique, Centre de référence “déficiences intellectuelles de causes rares”APHP Sorbonne Université, GH Pitié Salpêtrière et TrousseauParisFrance
| | - Helena Gásdal Karstensen
- Dept. of Genetics, Center of DiagnosticsCopenhagen University Hospital – RigshospitaletCopenhagenDenmark
| | - Inge Cuppen
- Department of Child NeurologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - John Christodoulou
- Murdoch Children's Research Institute and Department of PaediatricsUniversity of MelbourneParkvilleAustralia
| | - Meredith Wilson
- Department of Clinical GeneticsThe Children's Hospital at WestmeadSydneyAustralia
- Discipline of Genomic MedicineUniversity of SydneySydneyAustralia
| | - Nicole J. Lake
- Department of GeneticsYale School of MedicineNew HavenCTUSA
| | - Saskia Biskup
- Center for Genomics and Transcriptomics (CeGaT)TübingenGermany
| | - Steffen Syrbe
- Heidelberg University, Medical Faculty of Heidelberg, Center for Child and Adolescent MedicineDivision of Pediatric EpileptologyHeidelbergGermany
| | - Takayasu Mori
- Department of NephrologyTokyo Medical and Dental UniversityTokyoJapan
| | - Lena‐Luise Becker
- Department of Pediatric NeurologyCharité–Universitätsmedizin BerlinBerlinGermany
- Center for Chronically Sick ChildrenCharité–Universitätsmedizin BerlinBerlinGermany
- Institute for Cell Biology and NeurobiologyCharité–Universitätsmedizin BerlinBerlinGermany
- Section CNS Development and Neurologic DiseaseGerman Center for Child and Adolescent Health (DZKJ)partner site BerlinGermany
| | - Angela M. Kaindl
- Department of Pediatric NeurologyCharité–Universitätsmedizin BerlinBerlinGermany
- Center for Chronically Sick ChildrenCharité–Universitätsmedizin BerlinBerlinGermany
- Institute for Cell Biology and NeurobiologyCharité–Universitätsmedizin BerlinBerlinGermany
- Section CNS Development and Neurologic DiseaseGerman Center for Child and Adolescent Health (DZKJ)partner site BerlinGermany
| |
Collapse
|
12
|
Li Y, Lock A, Fedele L, Zebochin I, Sabate A, Siddle M, Cainarca S, Röderer P, Montag K, Tarroni P, Brüstle O, Shaw T, Taams L, Denk F. Modelling inflammation-induced peripheral sensitization in a dish-more complex than expected? Pain 2025:00006396-990000000-00838. [PMID: 40009350 DOI: 10.1097/j.pain.0000000000003512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/15/2024] [Indexed: 02/27/2025]
Abstract
ABSTRACT Peripheral sensitization of nociceptors is believed to be a key driver of chronic pain states. Here, we sought to study the effects of a modified version of inflammatory soup on the excitability of human stem cell-derived sensory neurons. For this, we used a preexisting and a novel stem cell line, modified to stably express the calcium sensor GCamP6f. Upon treatment with inflammatory soup, we observed no changes in neuronal transcription or functional responses upon calcium imaging and only a very minor increase in resting membrane potential (RMP) via whole cell patch clamping: control RMP (-71.31 ± 1.1 mV) vs inflammatory soup RMP (-67.74 ± 1.29 mV), uncorrected 2-tailed independent samples t test, P = 0.0383. Similarly, small changes were observed when treating mouse primary sensory neurons with inflammatory soup. A semi-systematic reexamination of past literature further indicated that observed effects of inflammatory mediators on dissociated sensory neuron cultures are generally small. We conclude that modelling inflammation-induced peripheral sensitization in vitro is nontrivial and will require careful selection of mediators and/or more complex, longitudinal multicellular setups. Especially in the latter, our novel GCamP6f-induced pluripotent stem cell line may be of value.
Collapse
Affiliation(s)
- Yuening Li
- Wolfson Sensory, Pain and Regeneration Centre (SPaRC), Guy's Campus, King's College London, London, United Kingdom
- Centre for Inflammation Biology & Cancer Immunology, Department of Inflammation Biology, School of Immunology & Microbial Sciences, King's College London, London, United Kingdom
| | - Amy Lock
- Wolfson Sensory, Pain and Regeneration Centre (SPaRC), Guy's Campus, King's College London, London, United Kingdom
- Centre for Inflammation Biology & Cancer Immunology, Department of Inflammation Biology, School of Immunology & Microbial Sciences, King's College London, London, United Kingdom
| | - Laura Fedele
- Wolfson Sensory, Pain and Regeneration Centre (SPaRC), Guy's Campus, King's College London, London, United Kingdom
| | - Irene Zebochin
- Wolfson Sensory, Pain and Regeneration Centre (SPaRC), Guy's Campus, King's College London, London, United Kingdom
| | - Alba Sabate
- ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Matthew Siddle
- Institute of Liver Studies, School of Immunology & Microbial Sciences, King's College London, London, United Kingdom
| | | | - Pascal Röderer
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Bonn, Germany
- LIFE&BRAIN GmbH, Cellomics Unit, Bonn, Germany
| | | | | | - Oliver Brüstle
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Bonn, Germany
- LIFE&BRAIN GmbH, Cellomics Unit, Bonn, Germany
| | - Tanya Shaw
- Centre for Inflammation Biology & Cancer Immunology, Department of Inflammation Biology, School of Immunology & Microbial Sciences, King's College London, London, United Kingdom
| | - Leonie Taams
- Centre for Inflammation Biology & Cancer Immunology, Department of Inflammation Biology, School of Immunology & Microbial Sciences, King's College London, London, United Kingdom
| | - Franziska Denk
- Wolfson Sensory, Pain and Regeneration Centre (SPaRC), Guy's Campus, King's College London, London, United Kingdom
| |
Collapse
|
13
|
Jang IS, Nakamura M. Pregnenolone sulfate potentiates tetrodotoxin-resistant Na + channels to increase the excitability of dural afferent neurons in rats. J Headache Pain 2025; 26:42. [PMID: 40000932 PMCID: PMC11863801 DOI: 10.1186/s10194-025-01968-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Although peripheral administration of pregnenolone sulfate (PS) has been reported to produce pronociceptive effects, the mechanisms by which PS modulates the excitability of nociceptive neurons are poorly understood. Here, we report on the excitatory role of PS in peripheral nociceptive neurons, focusing on its effects on tetrodotoxin-resistant (TTX-R) Na+ channels. METHODS TTX-R Na+ current (INa) mediated by NaV1.8 was recorded from acutely isolated small-sized dural afferent neurons of rats, identified with the retrograde fluorescent dye DiI, using a whole-cell patch-clamp technique. RESULTS Transcripts for enzymes and transporters involved in PS biosynthesis were detected in the ophthalmic branch of the trigeminal ganglia. In voltage-clamp mode, PS preferentially potentiated the TTX-R persistent INa, a small non-inactivating current during sustained depolarization. PS shifted the voltage-inactivation relationship toward a depolarizing range. PS also delayed the onset of inactivation and accelerated the recovery from inactivation of TTX-R Na+ channels. Additionally, PS decreased the extent of use-dependent inhibition of TTX-R Na+ channels. In current-clamp mode, PS hyperpolarized dural afferent neurons by increasing the leak K+ conductance. Nevertheless, PS decreased the rheobase current-the minimum current required to generate action potentials-and increased the number of action potentials elicited by depolarizing current stimuli. CONCLUSION We have shown that the excitatory neurosteroid PS preferentially potentiates TTX-R persistent INa and reduces the inactivation of TTX-R Na+ channels, resulting in increased excitability of dural afferent neurons. The potential role of endogenous PS in migraine pathology warrants further investigation.
Collapse
Affiliation(s)
- Il-Sung Jang
- Department of Pharmacology, School of Dentistry, Kyungpook National University, 2177 Dalgubeol-daero, Jung-gu, Daegu, 41940, Republic of Korea.
- Brain Science & Engineering Institute, Kyungpook National University, 2177 Dalgubeol-daero, Jung-gu, Daegu, 41940, Republic of Korea.
| | - Michiko Nakamura
- Brain Science & Engineering Institute, Kyungpook National University, 2177 Dalgubeol-daero, Jung-gu, Daegu, 41940, Republic of Korea.
| |
Collapse
|
14
|
Krivoshein G, Rivera-Mancilla E, MaassenVanDenBrink A, Giniatullin R, van den Maagdenberg AMJM. Sex difference in TRPM3 channel functioning in nociceptive and vascular systems: an emerging target for migraine therapy in females? J Headache Pain 2025; 26:40. [PMID: 39994546 PMCID: PMC11853570 DOI: 10.1186/s10194-025-01966-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 01/27/2025] [Indexed: 02/26/2025] Open
Abstract
Transient Receptor Potential Melastatin 3 (TRPM3) channels are Ca2+ permeable ion channels that act as polymodal sensors of mechanical, thermal, and various chemical stimuli. TRPM3 channels are highly expressed in the trigeminovascular system, including trigeminal neurons and the vasculature. Their presence in dural afferents suggests that they are potential triggers of migraine pain, which is originating from the meningeal area. This area is densely innervated by autonomous and trigeminal nerves that contain the major migraine mediator calcitonin gene-related peptide (CGRP) in peptidergic nerve fibers. Co-expression of TRPM3 channels and CGRP receptors in meningeal nerves suggests a potential interplay between both signalling systems. Compared to other members of the TRP family, TRPM3 channels have a high sensitivity to sex hormones and to the endogenous neurosteroid pregnenolone sulfate (PregS). The predominantly female sex hormones estrogen and progesterone, of which the levels drop during menses, act as natural inhibitors of TRPM3 channels, while PregS is a known endogenous agonist of these channels. A decrease in sex hormone levels has also been suggested as trigger for attacks of menstrually-related migraine. Notably, there is a remarkable sex difference in TRPM3-mediated effects in trigeminal nociceptive signalling and the vasculature. In line with this, the relaxation of human isolated meningeal arteries induced by the activation of TRPM3 channels is greater in females. Additionally, the sex-dependent vasodilatory responses to CGRP in meningeal arteries seem to be influenced by age-related hormonal changes, which could contribute to sex differences in migraine pathology. Consistent with these observations, activation of TRPM3 channels triggers nociceptive sensory firing much more prominently in female than male mouse meninges, suggesting that pain processing in female patients with migraine may differ. Overall, the combined TRPM3-related neuronal and vascular mechanisms could provide a possible explanation for the higher prevalence and even the more severe quality of migraine attacks in females. This narrative review summarizes recent data on the sex-dependent roles of TRPM3 channels in migraine pathophysiology, the potential interplay between TRPM3 and CGRP signalling, and highlights the prospects for translational therapies targeting TRPM3 channels, which may be of particular relevance for women with migraine.
Collapse
Affiliation(s)
- Georgii Krivoshein
- Departments of Human Genetics and Neurology, Leiden University Medical Center, PO Box 9600 2300 RC, Leiden, The Netherlands
| | - Eduardo Rivera-Mancilla
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Antoinette MaassenVanDenBrink
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Rashid Giniatullin
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Arn M J M van den Maagdenberg
- Departments of Human Genetics and Neurology, Leiden University Medical Center, PO Box 9600 2300 RC, Leiden, The Netherlands.
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
15
|
Chauhan S, Smith DR, Shariati-Ievari S, Srivastava A, Dhingra S, Aliani M, Fernyhough P. Muscarinic acetylcholine type 1 receptor antagonism activates TRPM3 to augment mitochondrial function and drive axonal repair in adult sensory neurons. Mol Metab 2025; 92:102083. [PMID: 39694091 PMCID: PMC11732569 DOI: 10.1016/j.molmet.2024.102083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/24/2024] [Accepted: 12/08/2024] [Indexed: 12/20/2024] Open
Abstract
OBJECTIVE Antagonism of the muscarinic acetylcholine type 1 receptor (M1R) promotes sensory axon repair and is protective in peripheral neuropathy, however, the mechanism remains elusive. We investigated the role of the heat-sensing transient receptor potential melastatin-3 (TRPM3) cation channel in M1R antagonism-mediated nerve regeneration and explored the potential of TRPM3 activation to facilitate axonal plasticity. METHODS Dorsal root ganglion (DRG) neurons from adult control or diabetic rats were cultured and treated with TRPM3 agonists (CIM0216, pregnenolone sulfate) and M1R antagonists pirenzepine (PZ) or muscarinic toxin 7 (MT7). Ca2+ transients, mitochondrial respiration, AMP-activated protein kinase (AMPK) expression, and mitochondrial inner membrane potential were analyzed. The effect of M1R activation or blockade on TRPM3 activity mediated by phosphatidylinositol 4,5-bisphosphate (PIP2) was studied. Metabolic profiling of DRG neurons and human neuroblastoma SH-SY5Y cells was conducted. RESULTS M1R antagonism induced by PZ or MT7 increased Ca2+ influx in DRG neurons and was inhibited by TRPM3 antagonists or in the absence of extracellular Ca2+. TRPM3 agonists elevated Ca2+ levels, augmented mitochondrial respiration, AMPK activation and neurite outgrowth. M1R antagonism stimulated TRPM3 channel activity through inhibition of PIP2 hydrolysis to activate Ca2+/calmodulin-dependent protein kinase kinase β (CaMKKβ)/AMPK, leading to augmented mitochondrial function and neuronal metabolism. DRG neurons with AAV-mediated shRNA knockdown of TRPM3 exhibited suppressed antimuscarinic drug-induced neurite outgrowth. TRPM3 agonists increased glycolysis and TCA cycle metabolites, indicating enhanced metabolism in DRG neurons and SH-SY5Y cells. CONCLUSIONS Activation of the TRPM3/CaMKKβ/AMPK pathway promoted collateral sprouting of sensory axons, positioning TRPM3 as a promising therapeutic target for peripheral neuropathy.
Collapse
Affiliation(s)
- Sanjana Chauhan
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, University of Manitoba, Winnipeg, Canada; Department of Pharmacology and Therapeutics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Darrell R Smith
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, University of Manitoba, Winnipeg, Canada
| | - Shiva Shariati-Ievari
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, University of Manitoba, Winnipeg, Canada; Department of Food and Human Nutritional Sciences, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, Canada
| | - Abhay Srivastava
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, University of Manitoba, Winnipeg, Canada; Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Sanjiv Dhingra
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, University of Manitoba, Winnipeg, Canada; Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Michel Aliani
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, University of Manitoba, Winnipeg, Canada; Department of Food and Human Nutritional Sciences, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, Canada
| | - Paul Fernyhough
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, University of Manitoba, Winnipeg, Canada; Department of Pharmacology and Therapeutics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
16
|
Kumar S, Jin F, Park SJ, Choi W, Keuning SI, Massimino RP, Vu S, Lü W, Du J. Convergent Agonist and Heat Activation of Nociceptor TRPM3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.23.634542. [PMID: 39896661 PMCID: PMC11785169 DOI: 10.1101/2025.01.23.634542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Detecting noxious heat is vital for survival, triggering pain responses that protect against harm1,2. The TRPM3 channel is a key nociceptor for sensing noxious heat and a promising therapeutic target for pain treatment and neurological disorders such as epilepsy3-11. Here, we functionally and structurally characterized TRPM3 in response to diverse stimuli: the synthetic superagonist CIM0216 Ref12, the anticonvulsant antagonist primidone13,14, and heat1,10,15. Our findings reveal that TRPM3 is intrinsically dynamic, with its intracellular domain (ICD) sampling both resting and activated states, though strongly favoring the resting state without stimulation. CIM0216 binds to the S1-S4 domain, inducing conformational changes in the ICD and shifting the equilibrium toward activation. Remarkably, heat induces similar ICD rearrangements, revealing a converged activation mechanism driven by chemical compounds and temperature. This mechanism is supported by functional data showing that mutations facilitating the ICD movement markedly increase the sensitivity of TRPM3 to both chemical and thermal signals. These findings establish a critical role of the ICD in temperature sensing in TRPM3, a mechanism likely conserved across the TRPM family. Finally, we show that primidone binds to the same site as CIM0216 but acts as an antagonist. This study provides a framework for understanding the thermal sensing mechanisms of temperature-sensitive ion channels and offers a structural foundation for developing TRPM3-target therapeutics for pain and neurological disorders.
Collapse
Affiliation(s)
- Sushant Kumar
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | | | - Sung Jin Park
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | | | - Sarah I. Keuning
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | | | | | - Wei Lü
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
- Department of Pharmacology, Northwestern University
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
| | - Juan Du
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
- Department of Pharmacology, Northwestern University
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
| |
Collapse
|
17
|
Mugo AN, Chou R, Qin F. Protein dynamics underlies strong temperature dependence of heat receptors. Proc Natl Acad Sci U S A 2025; 122:e2406318121. [PMID: 39793069 PMCID: PMC11725839 DOI: 10.1073/pnas.2406318121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 11/11/2024] [Indexed: 01/12/2025] Open
Abstract
Ion channels are generally allosteric proteins, involving specialized stimulus sensor domains conformationally linked to the gate to drive channel opening. Temperature receptors are a group of ion channels from the transient receptor potential family. They exhibit an unprecedentedly strong temperature dependence and are responsible for temperature sensing in mammals. Despite intensive studies, however, the nature of the temperature sensor domain in these channels remains elusive. By direct calorimetry of TRPV1 proteins, we have recently provided a proof of principle that temperature sensing by ion channels may diverge from the conventional allosterity theory; rather it is intimately linked to inherent thermal instability of channel proteins. Here, we tackle the generality of the hypothesis and provide key molecular pieces of evidence on the coupling of thermal transitions in the channels. We show that while wild-type channels possess a single concerted thermal transition peak, the chimera, in which strong temperature dependence becomes disrupted, results in multitransition peaks, and the activation enthalpies are accordingly reduced. The data show that the coupling with protein unfolding drives up the energy barrier of activation, leading to a strong temperature dependence of opening. Furthermore, we pinpoint the proximal N-terminus of the channels as a linchpin in coalescing different parts of the channels into concerted activation. Thus, we suggest that coupled interaction networks in proteins underlie the strong temperature dependence of temperature receptors.
Collapse
Affiliation(s)
- Andrew Njagi Mugo
- Department of Physiology and Biophysical Sciences, State University of New York at Buffalo, Buffalo, NY14214
| | - Ryan Chou
- Departments of Biology, Trinity College of Arts and Sciences, Duke University, Durham, NC27708
- Departments of Computer Science, Trinity College of Arts and Sciences, Duke University, Durham, NC27708
| | - Feng Qin
- Department of Physiology and Biophysical Sciences, State University of New York at Buffalo, Buffalo, NY14214
| |
Collapse
|
18
|
Kashio M. Thermo-TRP regulation by endogenous factors and its physiological function at core body temperature. Physiol Rep 2025; 13:e70164. [PMID: 39793986 PMCID: PMC11723785 DOI: 10.14814/phy2.70164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 11/01/2024] [Accepted: 12/10/2024] [Indexed: 01/13/2025] Open
Abstract
Transient receptor potential (TRP) channels with temperature sensitivities (thermo-TRPs) are involved in various physiological processes. Thermo-TRPs that detect temperature changes in peripheral sensory neurons possess indispensable functions in thermosensation, eliciting defensive behavior against noxious temperatures and driving autonomic/behavioral thermoregulatory responses to maintain body temperature in mammals. Moreover, most thermo-TRPs are functionally expressed in cells and tissues where the temperature is maintained at a constant core body temperature. To perform physiological functions, the activity of each thermo-TRP channel must be regulated by endogenous mechanisms at body temperature. Dysregulation of this process can lead to various diseases. This review highlights the endogenous factors regulating thermo-TRP activity and physiological functions at constant core body temperature.
Collapse
Affiliation(s)
- Makiko Kashio
- Department of Cell PhysiologyKumamoto UniversityKumamotoJapan
| |
Collapse
|
19
|
Kumamoto E. Anesthetic- and Analgesic-Related Drugs Modulating Both Voltage-Gated Na + and TRP Channels. Biomolecules 2024; 14:1619. [PMID: 39766326 PMCID: PMC11727300 DOI: 10.3390/biom14121619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Nociceptive information is transmitted by action potentials (APs) through primary afferent neurons from the periphery to the central nervous system. Voltage-gated Na+ channels are involved in this AP production, while transient receptor potential (TRP) channels, which are non-selective cation channels, are involved in receiving and transmitting nociceptive stimuli in the peripheral and central terminals of the primary afferent neurons. Peripheral terminal TRP vanilloid-1 (TRPV1), ankylin-1 (TRPA1) and melastatin-8 (TRPM8) activation produces APs, while central terminal TRP activation enhances the spontaneous release of L-glutamate from the terminal to spinal cord and brain stem lamina II neurons that play a pivotal role in modulating nociceptive transmission. There is much evidence demonstrating that chemical compounds involved in Na+ channel (or nerve AP conduction) inhibition modify TRP channel functions. Among these compounds are local anesthetics, anti-epileptics, α2-adrenoceptor agonists, antidepressants (all of which are used as analgesic adjuvants), general anesthetics, opioids, non-steroidal anti-inflammatory drugs and plant-derived compounds, many of which are involved in antinociception. This review mentions the modulation of Na+ channels and TRP channels including TRPV1, TRPA1 and TRPM8, both of which modulations are produced by pain-related compounds.
Collapse
Affiliation(s)
- Eiichi Kumamoto
- Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan
| |
Collapse
|
20
|
Payrits M, Zsidó BZ, Nehr-Majoros AK, Börzsei R, Helyes Z, Hetényi C, Szőke É. Lipid raft disruption inhibits the activation of Transient Receptor Potential Vanilloid 1, but not TRP Melastatin 3 and the voltage-gated L-type calcium channels in sensory neurons. Front Cell Dev Biol 2024; 12:1452306. [PMID: 39676793 PMCID: PMC11638188 DOI: 10.3389/fcell.2024.1452306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/18/2024] [Indexed: 12/17/2024] Open
Abstract
Transient Receptor Potential (TRP) ion channels like Vanilloid 1 (TRPV1) and Melastatin 3 (TRPM3) are nonselective cation channels expressed in primary sensory neurons and peripheral nerve endings, which are located in cholesterol- and sphingolipid-rich membrane lipid raft regions and have important roles in pain processing. Besides TRP ion channels a wide variety of voltage-gated ion channels were also described in the membrane raft regions of neuronal cells. Here we investigated the effects of lipid raft disruption by methyl-beta-cyclodextrin (MCD) and sphingomyelinase (SMase) on TRPV1, TRPM3 and voltage-gated L-type Ca2+ channel activation in cultured trigeminal neurons and sensory nerve terminals of the trachea. We also examined the mechanism of action of MCD by in silico modeling. Disruption of lipid rafts by MCD or SMase did not alter CIM0216-induced TRPM3 cation channel activation and the voltage-gated L-type Ca2+ channel activation by FPL 64126 or veratridine neither on trigeminal sensory neurons nor sensory nerve terminals. We provided the first structural explanation with in silico modeling that the activation of TRPV1, TRPM3 and voltage-gated L-type Ca2+ channels is affected differently by the cholesterol content surrounding them in the plasma membrane. It is concluded that modifying the hydrophobic interactions between lipid rafts and ion channels might provide a selective novel mechanism for peripheral analgesia.
Collapse
Affiliation(s)
- Maja Payrits
- Department of Pharmacology and Pharmacotherapy, Medical School and Centre for Neuroscience, University of Pécs, Pécs, Hungary
- National Laboratory for Drug Research and Development, Budapest, Hungary
- Hungarian Research Network, Chronic Pain Research Group, Pécs, Hungary
| | - Balázs Zoltán Zsidó
- National Laboratory for Drug Research and Development, Budapest, Hungary
- Pharmacoinformatics Unit, Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Andrea Kinga Nehr-Majoros
- Department of Pharmacology and Pharmacotherapy, Medical School and Centre for Neuroscience, University of Pécs, Pécs, Hungary
- National Laboratory for Drug Research and Development, Budapest, Hungary
- Hungarian Research Network, Chronic Pain Research Group, Pécs, Hungary
| | - Rita Börzsei
- National Laboratory for Drug Research and Development, Budapest, Hungary
- Pharmacoinformatics Unit, Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School and Centre for Neuroscience, University of Pécs, Pécs, Hungary
- National Laboratory for Drug Research and Development, Budapest, Hungary
- Hungarian Research Network, Chronic Pain Research Group, Pécs, Hungary
| | - Csaba Hetényi
- National Laboratory for Drug Research and Development, Budapest, Hungary
- Pharmacoinformatics Unit, Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Éva Szőke
- Department of Pharmacology and Pharmacotherapy, Medical School and Centre for Neuroscience, University of Pécs, Pécs, Hungary
- National Laboratory for Drug Research and Development, Budapest, Hungary
- Hungarian Research Network, Chronic Pain Research Group, Pécs, Hungary
| |
Collapse
|
21
|
Kuete CF, Granja-Vazquez R, Truong V, Walsh P, Price T, Biswas S, Dussor G, Pancrazio J, Kolber B. Profiling Human iPSC-Derived Sensory Neurons for Analgesic Drug Screening Using a Multi-Electrode Array. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.18.623405. [PMID: 39605708 PMCID: PMC11601878 DOI: 10.1101/2024.11.18.623405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Chronic pain is a major global health issue, yet effective treatments are limited by poor translation from preclinical studies to humans. To address this, we developed a high-content screening (HCS) platform for analgesic discovery using hiPSC-derived nociceptors. These cells were cultured on multi-well micro-electrode arrays to monitor activity, achieving nearly 100% active electrodes by week two, maintaining stable activity for at least two weeks. After maturation (28 days), we exposed the nociceptors to various drugs, assessing their effects on neuronal activity, with excellent assay performance (Z' values >0.5). Pharmacological tests showed responses to analgesic targets, including ion channels (Nav, Cav, Kv, TRPV1), neurotransmitter receptors (AMPAR, GABA-R), and kinase inhibitors (tyrosine, JAK1/2). Transcriptomic analysis confirmed the presence of these drug targets, although expression levels varied compared to primary human dorsal root ganglion cells. This HCS platform facilitates the rapid discovery of novel analgesics, reducing the risk of preclinical-to-human translation failure. Motivation Chronic pain affects approximately 1.5 billion people worldwide, yet effective treatments remain elusive. A significant barrier to progress in analgesic drug discovery is the limited translation of preclinical findings to human clinical outcomes. Traditional rodent models, although widely used, often fail to accurately predict human responses, while human primary tissues are limited by scarcity, technical difficulties, and ethical concerns. Recent advancements have identified human induced pluripotent stem cell (hiPSC)-derived nociceptors as promising alternatives; however, current differentiation protocols produce cells with inconsistent and physiologically questionable phenotypes.To address these challenges, our study introduces a novel high-content screening (HCS) platform using hiPSC-derived nociceptors cultured on multi-well micro-electrode arrays (MEAs). The "Anatomic" protocol, used to generate these nociceptors, ensures cells with transcriptomic profiles closely matching human primary sensory neurons. Our platform achieves nearly 100% active electrode yield within two weeks and demonstrates sustained, stable activity over time. Additionally, robust Z' factor analysis (exceeding 0.5) confirms the platform's reliability, while pharmacological validation establishes the functional expression of critical analgesic targets. This innovative approach improves both the efficiency and clinical relevance of analgesic drug screening, potentially bridging the translational gap between preclinical studies and human clinical trials, and offering new hope for effective pain management.
Collapse
|
22
|
Mugo AN, Chou R, Qin F. Protein Dynamics Underlies Strong Temperature Dependence of Heat Receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.04.621882. [PMID: 39574614 PMCID: PMC11580892 DOI: 10.1101/2024.11.04.621882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
Ion channels are generally allosteric proteins, involving specialized stimulus sensor domains conformationally linked to the gate to drive channel opening. Temperature receptors are a group of ion channels from the transient receptor potential (TRP) family. They exhibit an unprecedentedly strong temperature dependence and are responsible for temperature sensing in mammals. Despite intensive studies, however, the nature of the temperature sensor domain in these channels remains elusive. By direct calorimetry of TRPV1 proteins, we have recently provided a proof of principle that temperature sensing by ion channels may diverge from the conventional allosterity theory; rather it is intimately linked to inherent thermal instability of channel proteins. Here we tackle the generality of the hypothesis and provide key molecular evidences on the coupling of thermal transitions in the channels. We show that while wild-type channels possess a single concerted thermal transition peak, the chimera, in which strong temperature dependence becomes disrupted, results in multi-transition peaks, and the activation enthalpies are accordingly reduced. The data show that the coupling with protein unfolding drives up the energy barrier of activation, leading to a strong temperature dependence of opening. Furthermore, we pinpoint the proximal N-terminus of the channels as a linchpin in coalescing different parts of the channels into concerted activation. Thus, we suggest that coupled interaction networks in proteins underlie the strong temperature dependence of temperature receptors.
Collapse
Affiliation(s)
- Andrew Njagi Mugo
- Department of Physiology and Biophysical Sciences, State University of New York at Buffalo, Buffalo, NY 14214
| | - Ryan Chou
- Trinity College of Arts and Sciences, Duke University
| | - Feng Qin
- Department of Physiology and Biophysical Sciences, State University of New York at Buffalo, Buffalo, NY 14214
| |
Collapse
|
23
|
Leisengang S. Pain research in a petri dish? Advantages and limitations of neuro-glial primary cell cultures from structures of the nociceptive system. Brain Behav Immun Health 2024; 41:100854. [PMID: 39308957 PMCID: PMC11415590 DOI: 10.1016/j.bbih.2024.100854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/26/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024] Open
Abstract
How can we learn more about pain without causing pain in humans or animals? This short review focuses on neuro-glial primary cell cultures as models to study neuro-immune interactions in the context of pain and discusses their advantages and limitations. The field of basic pain research places scientists in an ethical dilemma. We aim to understand underlying mechanisms of pain for an improved pain therapy for humans and animals. At the same time, this regularly includes the induction of pain in model animals. Within the field of psychoneuroimmunology, the examination of the complexity of neuro-immune interactions in health and disease as well as the bi-directional communication between the brain and the periphery make animal experiments an inevitable part of pain research. To address ethical and legal considerations as well as the growing societal awareness for animal welfare, scientists push for the identification and characterization of complementary methods to implement the 3R principle of Russel and Burch. As such, methods to replace animal studies, reduce the number of animals used, and refine experiments are tested. Neuro-glial primary cell cultures of structures of the nociceptive system, such as dorsal root ganglia (DRG) or the spinal dorsal horn (SDH) represent useful in vitro tools, when research comes to a cellular and molecular level. They allow for studying mechanisms of neuronal sensitization, glial cell activation, or the role of specific inflammatory mediators and intracellular signaling cascades involved in the development of inflammatory and neuropathic pain. Moreover, DRG/SDH-cultures provide the opportunity to test novel strategies for interventions, such as pharmaceuticals or cell-based therapies targeting neuroinflammatory processes. Thereby, in vitro models contribute to a better understanding of neuron-glia-immune communication in the context of pain and in the advancement of pain therapies. However, this can only be one piece in a large puzzle. Our knowledge about the complexity of pain will depend on studies in humans and animals applied in vitro and in vivo and will benefit from clear and open-minded interdisciplinary communication and transparency in public outreach.
Collapse
Affiliation(s)
- Stephan Leisengang
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Frankfurter Strasse 100, 35392 Giessen, Germany
- Translational Neuroscience Network Giessen (TNNG), Justus Liebig University Giessen, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps University Marburg & Justus Liebig University Giessen, Germany
| |
Collapse
|
24
|
Huffer K, Denley MCS, Oskoui EV, Swartz KJ. Conservation of the cooling agent binding pocket within the TRPM subfamily. eLife 2024; 13:RP99643. [PMID: 39485376 PMCID: PMC11530238 DOI: 10.7554/elife.99643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024] Open
Abstract
Transient receptor potential (TRP) channels are a large and diverse family of tetrameric cation-selective channels that are activated by many different types of stimuli, including noxious heat or cold, organic ligands such as vanilloids or cooling agents, or intracellular Ca2+. Structures available for all subtypes of TRP channels reveal that the transmembrane domains are closely related despite their unique sensitivity to activating stimuli. Here, we use computational and electrophysiological approaches to explore the conservation of the cooling agent binding pocket identified within the S1-S4 domain of the Melastatin subfamily member TRPM8, the mammalian sensor of noxious cold, with other TRPM channel subtypes. We find that a subset of TRPM channels, including TRPM2, TRPM4, and TRPM5, contain pockets very similar to the cooling agent binding pocket in TRPM8. We then show how the cooling agent icilin modulates activation of mouse TRPM4 to intracellular Ca2+, enhancing the sensitivity of the channel to Ca2+ and diminishing outward-rectification to promote opening at negative voltages. Mutations known to promote or diminish activation of TRPM8 by cooling agents similarly alter activation of TRPM4 by icilin, suggesting that icilin binds to the cooling agent binding pocket to promote opening of the channel. These findings demonstrate that TRPM4 and TRPM8 channels share related ligand binding pockets that are allosterically coupled to opening of the pore.
Collapse
Affiliation(s)
- Kate Huffer
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaUnited States
| | - Matthew CS Denley
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaUnited States
| | - Elisabeth V Oskoui
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaUnited States
| | - Kenton J Swartz
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaUnited States
| |
Collapse
|
25
|
Behrendt M. Implications of TRPM3 and TRPM8 for sensory neuron sensitisation. Biol Chem 2024; 405:583-599. [PMID: 39417661 DOI: 10.1515/hsz-2024-0045] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024]
Abstract
Sensory neurons serve to receive and transmit a wide range of information about the conditions of the world around us as well as the external and internal state of our body. Sensitisation of these nerve cells, i.e. becoming more sensitive to stimuli or the emergence or intensification of spontaneous activity, for example in the context of inflammation or nerve injury, can lead to chronic diseases such as neuropathic pain. For many of these disorders there are only very limited treatment options and in order to find and establish new therapeutic approaches, research into the exact causes of sensitisation with the elucidation of the underlying mechanisms and the identification of the molecular components is therefore essential. These components include plasma membrane receptors and ion channels that are involved in signal reception and transmission. Members of the transient receptor potential (TRP) channel family are also expressed in sensory neurons and some of them play a crucial role in temperature perception. This review article focuses on the heat-sensitive TRPM3 and the cold-sensitive TRPM8 (and TRPA1) channels and their importance in sensitisation of dorsal root ganglion sensory neurons is discussed based on studies related to inflammation and injury- as well as chemotherapy-induced neuropathy.
Collapse
Affiliation(s)
- Marc Behrendt
- Experimental Pain Research, Medical Faculty Mannheim, Heidelberg University, MCTN, Tridomus, Building C, Ludolf-Krehl-Straße 13-17, D-68167 Mannheim, Germany
| |
Collapse
|
26
|
Yevshin IS, Shagimardanova EI, Ryabova AS, Pintus SS, Kolpakov FA, Gusev OA. Genome of Russian Snow-White Chicken Reveals Genetic Features Associated with Adaptations to Cold and Diseases. Int J Mol Sci 2024; 25:11066. [PMID: 39456845 PMCID: PMC11508066 DOI: 10.3390/ijms252011066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/01/2024] [Accepted: 10/05/2024] [Indexed: 10/28/2024] Open
Abstract
Russian Snow White (RSW) chickens are characterized by high egg production, extreme resistance to low temperatures, disease resistance, and by the snow-white color of the day-old chicks. Studying the genome of this unique chicken breed will reveal its evolutionary history and help to understand the molecular genetic mechanisms underlying the unique characteristics of this breed, which will open new breeding opportunities and support future studies. We have sequenced and made a de novo assembly of the whole RSW genome using deep sequencing (250×) by the short reads. The genome consists of 40 chromosomes with a total length of 1.1 billion nucleotide pairs. Phylogenetic analysis placed the RSW near the White Leghorn, Fayoumi, and Houdan breeds. Comparison with other chicken breeds revealed a wide pool of mutations unique to the RSW. The functional annotation of these mutations showed the adaptation of genes associated with the development of the nervous system, thermoreceptors, purine receptors, and the TGF-beta pathway, probably caused by selection for low temperatures. We also found adaptation of the immune system genes, likely driven by selection for resistance to viral diseases. Integration with previous genome-wide association studies (GWAS) suggested several causal single nucleotide polymorphisms (SNPs). Specifically, we identified an RSW-specific missense mutation in the RALYL gene, presumably causing the snow-white color of the day-old chicks, and an RSW-specific missense mutation in the TLL1 gene, presumably affecting the egg weight.
Collapse
Affiliation(s)
| | - Elena I. Shagimardanova
- Life Improvement by Future Technologies (LIFT) Center, 121205 Moscow, Russia
- Center of Genomics and Bioimaging Core Facility, 121205 Moscow, Russia
| | | | - Sergey S. Pintus
- Sirius University of Science and Technology, 354340 Sirius, Russia; (S.S.P.)
| | - Fedor A. Kolpakov
- Sirius University of Science and Technology, 354340 Sirius, Russia; (S.S.P.)
| | - Oleg A. Gusev
- Life Improvement by Future Technologies (LIFT) Center, 121205 Moscow, Russia
- Regulatory Genomics Research Center, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo 13-8421, Japan
| |
Collapse
|
27
|
Sankina P, Lal R, Khare P, von Hörsten S, Fester L, Aggarwal V, Zimmermann K, Bishnoi M. Topical menthol, a pharmacological cold mimic, induces cold sensitivity, adaptive thermogenesis and brown adipose tissue activation in mice. Diabetes Obes Metab 2024; 26:4329-4345. [PMID: 39044311 DOI: 10.1111/dom.15781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/25/2024]
Abstract
AIM Brown adipose tissue (BAT) thermogenesis has profound energy-expanding potential, which makes it an attractive target tissue to combat ever-increasing obesity and its other associated metabolic complications. Although it is fairly accepted that cold is a potent inducer of BAT activation and function, there are limited studies on the mechanisms of pharmacological cold-mimicking agents, such as the TRPM8 agonist, menthol, on BAT thermogenesis and activation. METHODS Herein, we sought to determine the effect of topical application of menthol (10% w/v [4 g/kg] cream formulation/day for 15 days) on temperature sensitivity behaviour (thermal gradient assay, nesting behaviour), adaptive thermogenesis (infrared thermography, core body temperature), BAT sympathetic innervation (tyrosine hydroxylase immunohistochemistry) and activation (18F-FDG PET-CT analysis, Uncoupling Protein 1 immunohistochemistry and BAT gene expression), whole-body energy expenditure (indirect calorimetry) and other metabolic variables in male C57BL/6N mice. RESULTS We show that male C57BL/6N mice: (a) develop a warm-seeking and cold-avoiding thermal preference phenotype; (b) display increased locomotor activity and adaptive thermogenesis; (c) show augmented sympathetic innervation in BAT and its activation; (d) exhibit enhanced gluconeogenic capacity (increased glucose excursion in response to pyruvate) and insulin sensitivity; and (e) show enhanced whole-body energy expenditure and induced lipid-utilizing phenotype after topical menthol application. CONCLUSIONS Taken together, our findings highlight that pharmacological cold mimicking using topical menthol application presents a potential therapeutic strategy to counter weight gain and related complications.
Collapse
Affiliation(s)
- Polina Sankina
- Department of Anesthesiology, University Hospital Erlangen, Friedrich-Alexander-Universität, Erlangen, Germany
| | - Roshan Lal
- TR(i)P for Health Laboratory, Centre for Excellence in Functional Foods, Department of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Nagar, India
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Pragyanshu Khare
- Department of Anesthesiology, University Hospital Erlangen, Friedrich-Alexander-Universität, Erlangen, Germany
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani, India
| | - Stephan von Hörsten
- Department of Experimental Therapy, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Lars Fester
- Department of Anatomy and Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | | | - Katharina Zimmermann
- Department of Anesthesiology, University Hospital Erlangen, Friedrich-Alexander-Universität, Erlangen, Germany
| | - Mahendra Bishnoi
- Department of Anesthesiology, University Hospital Erlangen, Friedrich-Alexander-Universität, Erlangen, Germany
- TR(i)P for Health Laboratory, Centre for Excellence in Functional Foods, Department of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Nagar, India
| |
Collapse
|
28
|
do Nascimento THO, Pereira-Figueiredo D, Veroneze L, Nascimento AA, De Logu F, Nassini R, Campello-Costa P, Faria-Melibeu ADC, Souza Monteiro de Araújo D, Calaza KC. Functions of TRPs in retinal tissue in physiological and pathological conditions. Front Mol Neurosci 2024; 17:1459083. [PMID: 39386050 PMCID: PMC11461470 DOI: 10.3389/fnmol.2024.1459083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/27/2024] [Indexed: 10/12/2024] Open
Abstract
The Transient Receptor Potential (TRP) constitutes a family of channels subdivided into seven subfamilies: Ankyrin (TRPA), Canonical (TRPC), Melastatin (TRPM), Mucolipin (TRPML), no-mechano-potential C (TRPN), Polycystic (TRPP), and Vanilloid (TRPV). Although they are structurally similar to one another, the peculiarities of each subfamily are key to the response to stimuli and the signaling pathway that each one triggers. TRPs are non-selective cation channels, most of which are permeable to Ca2+, which is a well-established second messenger that modulates several intracellular signaling pathways and is involved in physiological and pathological conditions in various cell types. TRPs depolarize excitable cells by increasing the influx of Ca2+, Na+, and other cations. Most TRP families are activated by temperature variations, membrane stretching, or chemical agents and, therefore, are defined as polymodal channels. All TPRs are expressed, at some level, in the central nervous system (CNS) and ocular-related structures, such as the retina and optic nerve (ON), except the TRPP in the ON. TRPC, TRPM, TRPV, and TRPML are found in the retinal pigmented cells, whereas only TRPA1 and TRPM are detected in the uvea. Accordingly, several studies have focused on the search to unravel the role of TRPs in physiological and pathological conditions related to the eyes. Thus, this review aims to shed light on endogenous and exogenous modulators, triggered cell signaling pathways, and localization and roles of each subfamily of TRP channels in physiological and pathological conditions in the retina, optic nerve, and retinal pigmented epithelium of vertebrates.
Collapse
Affiliation(s)
- Thaianne Hanah Oliveira do Nascimento
- Laboratory Neurobiology of the Retina, Department of Neurobiology and Program of Biomedical Sciences, Biology Institute, Fluminense Federal University Niterói, Rio de Janeiro, Brazil
| | - Danniel Pereira-Figueiredo
- Laboratory Neurobiology of the Retina, Department of Neurobiology and Program of Neurosciences, Biology Institute, Fluminense Federal University, Rio de Janeiro, Brazil
| | - Louise Veroneze
- Laboratory Neurobiology of the Retina, Department of Neurobiology and Program of Neurosciences, Biology Institute, Fluminense Federal University, Rio de Janeiro, Brazil
| | - Amanda Alves Nascimento
- Laboratory Neurobiology of the Retina, Department of Neurobiology and Program of Neurosciences, Biology Institute, Fluminense Federal University, Rio de Janeiro, Brazil
| | - Francesco De Logu
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | - Romina Nassini
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | - Paula Campello-Costa
- Laboratory of Neuroplasticity, Program of Neurosciences, Department of Neurobiology, Biology Institute, Niteroi, Brazil
| | - Adriana da Cunha Faria-Melibeu
- Laboratory of Neurobiology of Development, Program of Neurosciences, Department of Neurobiology, Biology Institute, Niteroi, Brazil
| | | | - Karin Costa Calaza
- Laboratory Neurobiology of the Retina, Department of Neurobiology and Program of Biomedical Sciences, Biology Institute, Fluminense Federal University Niterói, Rio de Janeiro, Brazil
- Laboratory Neurobiology of the Retina, Department of Neurobiology and Program of Neurosciences, Biology Institute, Fluminense Federal University, Rio de Janeiro, Brazil
| |
Collapse
|
29
|
Gandini MA, Zamponi GW. Navigating the Controversies: Role of TRPM Channels in Pain States. Int J Mol Sci 2024; 25:10284. [PMID: 39408620 PMCID: PMC11476983 DOI: 10.3390/ijms251910284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/17/2024] [Accepted: 09/22/2024] [Indexed: 10/20/2024] Open
Abstract
Chronic pain is a debilitating condition that affects up to 1.5 billion people worldwide and bears a tremendous socioeconomic burden. The success of pain medicine relies on our understanding of the type of pain experienced by patients and the mechanisms that give rise to it. Ion channels are among the key targets for pharmacological intervention in chronic pain conditions. Therefore, it is important to understand how changes in channel properties, trafficking, and molecular interactions contribute to pain sensation. In this review, we discuss studies that have demonstrated the involvement of transient receptor potential M2, M3, and M8 channels in pain generation and transduction, as well as the controversies surrounding these findings.
Collapse
Affiliation(s)
- Maria A. Gandini
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada;
- Department of Clinical Neurosciences, Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Gerald W. Zamponi
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada;
- Department of Clinical Neurosciences, Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
30
|
Uchida K. TRPM3, TRPM4, and TRPM5 as thermo-sensitive channels. J Physiol Sci 2024; 74:43. [PMID: 39294615 PMCID: PMC11409758 DOI: 10.1186/s12576-024-00937-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/01/2024] [Indexed: 09/20/2024]
Abstract
Temperature detection is essential for the survival and perpetuation of any species. Thermoreceptors in the skin sense body temperature as well as the temperatures of ambient air and objects. Since Dr. David Julius and his colleagues discovered that TRPV1 is expressed in small-diameter primary sensory neurons, and activated by temperatures above 42 °C, 11 of thermo-sensitive TRP channels have been identified. TRPM3 expressed in sensory neurons acts as a sensor for noxious heat. TRPM4 and TRPM5 are Ca2⁺-activated monovalent cation channels, and their activity is drastically potentiated by temperature increase. This review aims to summarize the expression patterns, electrophysiological properties, and physiological roles of TRPM3, TRPM4, and TRPM5 associated with thermosensation.
Collapse
Affiliation(s)
- Kunitoshi Uchida
- Laboratory of Functional Physiology, Department of Environmental and Life Sciences, School of Food and Nutritional Sciences, University of Shizuoka, Yada 52-1, Suruga-Ku, Shizuoka, Shizuoka, 422-8526, Japan.
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan.
| |
Collapse
|
31
|
Mandlem VKK, Rivera A, Khan Z, Quazi SH, Deba F. TLR4 induced TRPM2 mediated neuropathic pain. Front Pharmacol 2024; 15:1472771. [PMID: 39329114 PMCID: PMC11424904 DOI: 10.3389/fphar.2024.1472771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/02/2024] [Indexed: 09/28/2024] Open
Abstract
Ion channels play an important role in mediating pain through signal transduction, regulation, and control of responses, particularly in neuropathic pain. Transient receptor potential channel superfamily plays an important role in cation permeability and cellular signaling. Transient receptor potential channel Melastatin 2 (TRPM2) subfamily regulates Ca2+ concentration in response to various chemicals and signals from the surrounding environment. TRPM2 has a role in several physiological functions such as cellular osmosis, temperature sensing, cellular proliferation, as well as the manifestation of many disease processes such as pain process, cancer, apoptosis, endothelial dysfunction, angiogenesis, renal and lung fibrosis, and cerebral ischemic stroke. Toll-like Receptor 4 (TLR4) is a critical initiator of the immune response to inflammatory stimuli, particularly those triggered by Lipopolysaccharide (LPS). It activates downstream pathways leading to the production of oxidative molecules and inflammatory cytokines, which are modulated by basal and store-operated calcium ion signaling. The cytokine production and release cause an imbalance of antioxidant enzymes and redox potential in the Endoplasmic Reticulum and mitochondria due to oxidative stress, which results from TLR-4 activation and consequently induces the production of inflammatory cytokines in neuronal cells, exacerbating the pain process. Very few studies have reported the role of TRPM2 and its association with Toll-like receptors in the context of neuropathic pain. However, the molecular mechanism underlying the interaction between TRPM2 and TLR-4 and the quantum of impact in acute and chronic neuropathic pain remains unclear. Understanding the link between TLR-4 and TRPM2 will provide more insights into pain regulation mechanisms for the development of new therapeutic molecules to address neuropathic pain.
Collapse
Affiliation(s)
- Venkata Kiran Kumar Mandlem
- Departmental of Pharmaceutical Sciences and Health Outcomes, The Ben and Maytee Fisch College of Pharmacy, University of Texas at Tyler, Tyler, TX, United States
| | - Ana Rivera
- Departmental of Pharmaceutical Sciences and Health Outcomes, The Ben and Maytee Fisch College of Pharmacy, University of Texas at Tyler, Tyler, TX, United States
| | - Zaina Khan
- Departmental of Pharmaceutical Sciences and Health Outcomes, The Ben and Maytee Fisch College of Pharmacy, University of Texas at Tyler, Tyler, TX, United States
- Departmental of Neuroscience, University of Texas at Dallas, Richardson, TX, United States
| | - Sohel H Quazi
- Departmental of Pharmaceutical Sciences and Health Outcomes, The Ben and Maytee Fisch College of Pharmacy, University of Texas at Tyler, Tyler, TX, United States
- Department of Biology, Division of Natural and Computation Sciences, Texas College, Tyler, TX, United States
| | - Farah Deba
- Departmental of Pharmaceutical Sciences and Health Outcomes, The Ben and Maytee Fisch College of Pharmacy, University of Texas at Tyler, Tyler, TX, United States
| |
Collapse
|
32
|
Liu L, Liu H, Zhao M, Wen J, Liu J, Lv G, Xiao Z, Wang W, Zu S, Sun W, Zhang X, Gong L. Functional Upregulation of TRPM3 Channels Contributes to Acute Pancreatitis-associated Pain and Inflammation. Inflammation 2024:10.1007/s10753-024-02138-8. [PMID: 39259394 DOI: 10.1007/s10753-024-02138-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/11/2024] [Accepted: 08/27/2024] [Indexed: 09/13/2024]
Abstract
Transient receptor potential melastatin M3 (TRPM3) channels have been recognized as a pain transducer in dorsal root ganglion (DRG) neurons in recent years. TRPM3 activation initiates neurogenic inflammation and is required for the development of inflammatory hyperalgesia. We aimed to evaluate the role of TRPM3 in pancreas sensory afferents in pancreatic nociception, neurogenic inflammation, and acute pancreatitis (AP)-associated pain. AP was induced by intraperitoneal (i.p.) injection of L-arginine in rats. TRPM3 expression in pancreatic DRG neurons, spontaneous or mechanical-stimulation-evoked pain behaviors, and the extent of inflammation were evaluated. We found that TRPM3 channels were expressed on pancreatic primary afferent nerve terminals containing calcitonin gene-related peptide (CGRP). Activation of TRPM3 in the pancreas by injection of its specific agonist CIM0216 (10 μM) induced pain, CGRP and substance P release, and neurogenic inflammation, as evidenced by edema, plasma extravasation, and inflammatory cell accumulation in the pancreas. Increased TRPM3 functional expression was detected in pancreatic DRG neurons from AP rats, and blocking TRPM3 activity with its antagonist (Primidone, 5 mg/kg, i.p.) attenuated AP-associated pain behaviors and pancreatic inflammation. Pre-incubation of pancreatic DRG neurons with nerve growth factor (NGF) enhanced the increase in intracellular Ca2+ induced by the TRPM3 agonist (CIM0216, 1 μM). Our findings indicate that, in addition to TRPV1 and TRPA1 channels, TRPM3 is another pain channel that has a critical role in pancreatic nociception, neurogenic inflammation, and AP-associated pain behaviors. TRPM3 may be a promising pharmaceutical target for AP pain treatment.
Collapse
Affiliation(s)
- Lei Liu
- Department of Urology, The Second Hospital of Shandong University, Shandong, PR, China
| | - Hanwen Liu
- Department of Urology, The Second Hospital of Shandong University, Shandong, PR, China
| | - Mengmeng Zhao
- Department of Urology, The Second Hospital of Shandong University, Shandong, PR, China
| | - Jiliang Wen
- Department of Urology, The Second Hospital of Shandong University, Shandong, PR, China
| | - Jiaxin Liu
- Department of Urology, The Second Hospital of Shandong University, Shandong, PR, China
| | - Guangda Lv
- Department of Urology, The Second Hospital of Shandong University, Shandong, PR, China
| | - Zhiying Xiao
- Department of Urology, The Second Hospital of Shandong University, Shandong, PR, China
| | - Wenzhen Wang
- Department of Urology, The Second Hospital of Shandong University, Shandong, PR, China
| | - Shulu Zu
- Department of Urology, The Second Hospital of Shandong University, Shandong, PR, China
| | - Wendong Sun
- Department of Urology, The Second Hospital of Shandong University, Shandong, PR, China
| | - Xiulin Zhang
- Department of Urology, The Second Hospital of Shandong University, Shandong, PR, China
| | - Liping Gong
- Department of Academic Research, The Second Hospital of Shandong University, Shandong, PR, China.
| |
Collapse
|
33
|
Heber S, Resch F, Ciotu CI, Gleiss A, Heber UM, Macher-Beer A, Bhuiyan S, Gold-Binder M, Kain R, Sator S, Fischer MJM. Human heat sensation: A randomized crossover trial. SCIENCE ADVANCES 2024; 10:eado3498. [PMID: 39231217 PMCID: PMC11373589 DOI: 10.1126/sciadv.ado3498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/30/2024] [Indexed: 09/06/2024]
Abstract
Sensing of noxious heat has been reported to be mediated by TRPV1, TRPA1, TRPM3, and ANO1 in mice, and this is redundant so that the loss of one receptor is at least partially compensated for by others. We have established an infusion-based human heat pain model. Heat-induced pain probed with antagonists for the four receptors did not match the redundancy found in mice. In healthy participants, only TRPV1 contributes to the detection of noxious heat; none of the other three receptors are involved. TRPV1 inhibition reduced the pain at all noxious temperatures, which can also be seen as an increase in the temperature that causes a particular level of pain. However, even if the TRPV1-dependent shift in heat detection is about 1°C, at the end of the temperature ramp to 52°C, most heat-induced pain remains unexplained. This difference between species reopens the quest for the molecular safety net for the detection of noxious heat in humans.
Collapse
Affiliation(s)
- Stefan Heber
- Institute of Physiology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Felix Resch
- Institute of Physiology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Cosmin I Ciotu
- Institute of Physiology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Andreas Gleiss
- Institute of Clinical Biometrics, Center for Medical Data Science, Medical University of Vienna, Vienna, Austria
| | - Ulrike M Heber
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | | | - Samantha Bhuiyan
- Institute of Physiology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Markus Gold-Binder
- Institute of Physiology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Renate Kain
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Sabine Sator
- Division of Special Anesthesia and Pain Medicine, Department of Anesthesia, Intensive Care and Pain Medicine, Medical University of Vienna, Vienna, Austria
| | - Michael J M Fischer
- Institute of Physiology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
34
|
Curry HN, Huynh R, Rouhana L. Melastatin subfamily Transient Receptor Potential channels support spermatogenesis in planarian flatworms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.01.610670. [PMID: 39282438 PMCID: PMC11398416 DOI: 10.1101/2024.09.01.610670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
The Transient Receptor Potential superfamily of proteins (TRPs) form cation channels that are abundant in animal sensory systems. Amongst TRPs, the Melastatin-related subfamily (TRPMs) is composed of members that respond to temperature, pH, sex hormones, and various other stimuli. Some TRPMs exhibit enriched expression in gonads of vertebrate and invertebrate species, but their contributions to germline development remain to be determined. We identified twenty-one potential TRPMs in the planarian flatworm Schmidtea mediterranea and analyzed their anatomical distribution of expression by whole-mount in situ hybridization. Enriched expression of two TRPMs (Smed-TRPM-c and Smed-TRPM-l) was detected in testis, whereas eight TRPM genes had detectable expression in patterns representative of neuronal and/or sensory cell types. Functional analysis of TRPM homologs by RNA-interference (RNAi) revealed that disruption of Smed-TRPM-c expression results in reduced sperm development, indicating a role for this receptor in supporting spermatogenesis. Smed-TRPM-l RNAi did not result in a detectable phenotype, but it increased sperm development deficiencies when combined with Smed-TRPM-c RNAi. Fluorescence in situ hybridization revealed expression of Smed-TRPM-c in early spermatogenic cells within testes, suggesting cell-autonomous regulatory functions in germ cells for this gene. In addition, Smed-TRPM-c RNAi resulted in reduced numbers of presumptive germline stem cell clusters in asexual planarians, suggesting that Smed-TRPM-c supports establishment, maintenance, and/or expansion of spermatogonial germline stem cells. While further research is needed to identify the factors that trigger Smed-TRPM-c activity, these findings reveal one of few known examples for TRPM function in direct regulation of sperm development.
Collapse
Affiliation(s)
- Haley Nicole Curry
- Department of Biological Sciences, Wright State University, 3640 Colonel Glenn Hwy., Dayton, OH 45435, USA
| | - Roger Huynh
- Department of Biology, University of Massachusetts Boston, 100 William T. Morrissey Blvd., Boston, MA 02125-3393, USA
| | - Labib Rouhana
- Department of Biology, University of Massachusetts Boston, 100 William T. Morrissey Blvd., Boston, MA 02125-3393, USA
| |
Collapse
|
35
|
Huffer K, Denley MC, Oskoui EV, Swartz KJ. Conservation of the cooling agent binding pocket within the TRPM subfamily. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.20.595003. [PMID: 38826484 PMCID: PMC11142142 DOI: 10.1101/2024.05.20.595003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Transient Receptor Potential (TRP) channels are a large and diverse family of tetrameric cation selective channels that are activated by many different types of stimuli, including noxious heat or cold, organic ligands such as vanilloids or cooling agents, or intracellular Ca2+. Structures available for all subtypes of TRP channels reveal that the transmembrane domains are closely related despite their unique sensitivity to activating stimuli. Here we use computational and electrophysiological approaches to explore the conservation of the cooling agent binding pocket identified within the S1-S4 domain of the Melastatin subfamily member TRPM8, the mammalian sensor of noxious cold, with other TRPM channel subtypes. We find that a subset of TRPM channels, including TRPM2, TRPM4 and TRPM5, contain pockets very similar to the cooling agent binding pocket in TRPM8. We then show how the cooling agent icilin modulates activation of TRPM4 to intracellular Ca2+, enhancing the sensitivity of the channel to Ca2+ and diminishing outward-rectification to promote opening at negative voltages. Mutations known to promote or diminish activation of TRPM8 by cooling agents similarly alter activation of TRPM4 by icilin, suggesting that icilin binds to the cooling agent binding pocket to promote opening of the channel. These findings demonstrate that TRPM4 and TRPM8 channels share related ligand binding pockets that are allosterically coupled to opening of the pore.
Collapse
Affiliation(s)
- Kate Huffer
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Matthew C.S. Denley
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Elisabeth V. Oskoui
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
- Present Address: Imperial College London, Exhibition Rd, South Kensington, London SW7 2AZ, UK
| | - Kenton J. Swartz
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
36
|
Suito T, Tominaga M. Functional relationship between peripheral thermosensation and behavioral thermoregulation. Front Neural Circuits 2024; 18:1435757. [PMID: 39045140 PMCID: PMC11263211 DOI: 10.3389/fncir.2024.1435757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 06/27/2024] [Indexed: 07/25/2024] Open
Abstract
Thermoregulation is a fundamental mechanism for maintaining homeostasis in living organisms because temperature affects essentially all biochemical and physiological processes. Effector responses to internal and external temperature cues are critical for achieving effective thermoregulation by controlling heat production and dissipation. Thermoregulation can be classified as physiological, which is observed primarily in higher organisms (homeotherms), and behavioral, which manifests as crucial physiological functions that are conserved across many species. Neuronal pathways for physiological thermoregulation are well-characterized, but those associated with behavioral regulation remain unclear. Thermoreceptors, including Transient Receptor Potential (TRP) channels, play pivotal roles in thermoregulation. Mammals have 11 thermosensitive TRP channels, the functions for which have been elucidated through behavioral studies using knockout mice. Behavioral thermoregulation is also observed in ectotherms such as the fruit fly, Drosophila melanogaster. Studies of Drosophila thermoregulation helped elucidate significant roles for thermoreceptors as well as regulatory actions of membrane lipids in modulating the activity of both thermosensitive TRP channels and thermoregulation. This review provides an overview of thermosensitive TRP channel functions in behavioral thermoregulation based on results of studies involving mice or Drosophila melanogaster.
Collapse
Affiliation(s)
- Takuto Suito
- Division of Cell Signaling, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Japan
| | - Makoto Tominaga
- Division of Cell Signaling, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Japan
- Nagoya Advanced Research and Development Center, Nagoya City University, Nagoya, Japan
| |
Collapse
|
37
|
Löhn M, Wirth KJ. Potential pathophysiological role of the ion channel TRPM3 in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and the therapeutic effect of low-dose naltrexone. J Transl Med 2024; 22:630. [PMID: 38970055 PMCID: PMC11227206 DOI: 10.1186/s12967-024-05412-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/17/2024] [Indexed: 07/07/2024] Open
Abstract
Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a debilitating disease with a broad overlap of symptomatology with Post-COVID Syndrome (PCS). Despite the severity of symptoms and various neurological, cardiovascular, microvascular, and skeletal muscular findings, no biomarkers have been identified. The Transient receptor potential melastatin 3 (TRPM3) channel, involved in pain transduction, thermosensation, transmitter and neuropeptide release, mechanoregulation, vasorelaxation, and immune defense, shows altered function in ME/CFS. Dysfunction of TRPM3 in natural killer (NK) cells, characterized by reduced calcium flux, has been observed in ME/CFS and PCS patients, suggesting a role in ineffective pathogen clearance and potential virus persistence and autoimmunity development. TRPM3 dysfunction in NK cells can be improved by naltrexone in vitro and ex vivo, which may explain the moderate clinical efficacy of low-dose naltrexone (LDN) treatment. We propose that TRPM3 dysfunction may have a broader involvement in ME/CFS pathophysiology, affecting other organs. This paper discusses TRPM3's expression in various organs and its potential impact on ME/CFS symptoms, with a focus on small nerve fibers and the brain, where TRPM3 is involved in presynaptic GABA release.
Collapse
Affiliation(s)
- Matthias Löhn
- Institute for General Pharmacology and Toxicology, University Hospital, Goethe University, Frankfurt am Main, Germany.
| | - Klaus Josef Wirth
- Institute for General Pharmacology and Toxicology, University Hospital, Goethe University, Frankfurt am Main, Germany.
- Mitodicure GmbH, D-65830, Kriftel, Germany.
| |
Collapse
|
38
|
Gutiérrez-Guerrero YT, Phifer-Rixey M, Nachman MW. Across two continents: The genomic basis of environmental adaptation in house mice (Mus musculus domesticus) from the Americas. PLoS Genet 2024; 20:e1011036. [PMID: 38968323 PMCID: PMC11253941 DOI: 10.1371/journal.pgen.1011036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 07/17/2024] [Accepted: 06/10/2024] [Indexed: 07/07/2024] Open
Abstract
Replicated clines across environmental gradients can be strong evidence of adaptation. House mice (Mus musculus domesticus) were introduced to the Americas by European colonizers and are now widely distributed from Tierra del Fuego to Alaska. Multiple aspects of climate, such as temperature, vary predictably across latitude in the Americas. Past studies of North American populations across latitudinal gradients provided evidence of environmental adaptation in traits related to body size, metabolism, and behavior and identified candidate genes using selection scans. Here, we investigate genomic signals of environmental adaptation on a second continent, South America, and ask whether there is evidence of parallel adaptation across multiple latitudinal transects in the Americas. We first identified loci across the genome showing signatures of selection related to climatic variation in mice sampled across a latitudinal transect in South America, accounting for neutral population structure. Consistent with previous results, most candidate SNPs were in putatively regulatory regions. Genes that contained the most extreme outliers relate to traits such as body weight or size, metabolism, immunity, fat, eye function, and the cardiovascular system. We then compared these results with the results of analyses of published data from two transects in North America. While most candidate genes were unique to individual transects, we found significant overlap among candidate genes identified independently in the three transects. These genes are diverse, with functions relating to metabolism, immunity, cardiac function, and circadian rhythm, among others. We also found parallel shifts in allele frequency in candidate genes across latitudinal gradients. Finally, combining data from all three transects, we identified several genes associated with variation in body weight. Overall, our results provide strong evidence of shared responses to selection and identify genes that likely underlie recent environmental adaptation in house mice across North and South America.
Collapse
Affiliation(s)
- Yocelyn T. Gutiérrez-Guerrero
- Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, California, United States of America
| | - Megan Phifer-Rixey
- Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, California, United States of America
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Michael W. Nachman
- Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, California, United States of America
| |
Collapse
|
39
|
Sur S, Sharma A. Understanding the role of temperature in seasonal timing: Effects on behavioural, physiological and molecular phenotypes. Mol Ecol 2024:e17447. [PMID: 38946196 DOI: 10.1111/mec.17447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 04/26/2024] [Accepted: 06/14/2024] [Indexed: 07/02/2024]
Abstract
Organisms adapt to daily and seasonal environmental changes to maximise their metabolic and reproductive fitness. For seasonally breeding animals, photoperiod is considered the most robust cue to drive these changes. It, however, does not explain the interannual variations in different seasonal phenotypes. Several studies have repeatedly shown the influence of ambient temperature on the timing of different seasonal physiologies including the timing of migration, reproduction and its associated behaviours, etc. In the present review, we have discussed the effects of changes in ambient temperature on different seasonal events in endotherms with a focus on migratory birds as they have evolved to draw benefits from distinct but largely predictable seasonal patterns of natural resources. We have further discussed the physiological and molecular mechanisms by which temperature affects seasonal timings. The primary brain area involved in detecting temperature changes is the hypothalamic preoptic area. This area receives thermal inputs via sensory neurons in the peripheral ganglia that measure changes in thermoregulatory tissues such as the skin and spinal cord. For the input signals, several thermal sensory TRP (transient receptor potential ion channels) channels have been identified across different classes of vertebrates. These channels are activated at specific thermal ranges. Once perceived, this information should activate an effector function. However, the link between temperature sensation and the effector pathways is not properly understood yet. Here, we have summarised the available information that may help us understand how temperature information is translated into seasonal timing.
Collapse
Affiliation(s)
- Sayantan Sur
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Aakansha Sharma
- Department of Zoology, University of Lucknow, Lucknow, India
| |
Collapse
|
40
|
Seldeslachts A, Undheim EAB, Vriens J, Tytgat J, Peigneur S. Exploring oak processionary caterpillar induced lepidopterism (part 2): ex vivo bio-assays unmask the role of TRPV1. Cell Mol Life Sci 2024; 81:281. [PMID: 38940922 PMCID: PMC11335206 DOI: 10.1007/s00018-024-05318-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/30/2024] [Accepted: 06/12/2024] [Indexed: 06/29/2024]
Abstract
As human skin comes into contact with the tiny hairs or setae of the oak processionary caterpillar, Thaumetopoea processionea, a silent yet intense chemical confrontation occurs. The result is a mix of issues: skin rashes and an intense itching that typically lasts days and weeks after the contact. This discomfort poses a significant health threat not only to humans but also to animals. In Western Europe, the alarming increase in outbreaks extends beyond areas near infested trees due to the dispersion of the setae. Predictions indicate a sustained rise in outbreaks, fueled by global changes favoring the caterpillar's survival and distribution. Currently, the absence of an efficient treatment persists due to significant gaps in our comprehension of the pathophysiology associated with this envenomation. Here, we explored the interaction between the venom extract derived from the setae of T. processionea and voltage- and ligand-gated ion channels and receptors. By conducting electrophysiological analyses, we discovered ex vivo evidence highlighting the significant role of TPTX1-Tp1, a peptide toxin from T. processionea, in modulating TRPV1. TPTX1-Tp1 is a secapin-like peptide and demonstrates a unique ability to modulate TRPV1 channels in the presence of capsaicin, leading to cell depolarization, itch and inflammatory responses. This discovery opens new avenues for developing a topical medication, suggesting the incorporation of a TRPV1 blocker as a potential solution for the local effects caused by T. processionea.
Collapse
Affiliation(s)
- Andrea Seldeslachts
- Toxicology and Pharmacology, Department Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Vlaams-Brabant, Belgium
| | | | - Joris Vriens
- Laboratory of Endometrium, Endometriosis and Reproductive Medicine, Department of Development and Regeneration, KU Leuven, Leuven, Vlaams-Brabant, Belgium
| | - Jan Tytgat
- Toxicology and Pharmacology, Department Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Vlaams-Brabant, Belgium.
| | - Steve Peigneur
- Toxicology and Pharmacology, Department Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Vlaams-Brabant, Belgium.
| |
Collapse
|
41
|
Huang J, Wang X, Guo X, Liu Q, Li J. Transient receptor potential (TRP) channels in Sebastes schlegelii: Genome-wide identification and ThermoTRP expression analysis under high-temperature. Gene 2024; 910:148317. [PMID: 38423141 DOI: 10.1016/j.gene.2024.148317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/02/2024]
Abstract
Transient Receptor Potential (TRP) channels, essential for sensing environmental stimuli, are widely distributed. Among them, thermosensory TRP channels play a crucial role in temperature sensing and regulation. Sebastes schlegelii, a significant aquatic economic species, exhibits sensitivity to temperature across multiple aspects. In this study, we identified 18 SsTRP proteins using whole-genome scanning. Motif analysis revealed motif 2 in all TRP proteins, with conserved motifs in subfamilies. TRP-related domains, anchored repeats, and ion-transmembrane domains were found. Chromosome analysis showed 18 TRP genes on 11 chromosomes and a scaffold. Phylogenetics classified SsTRPs into four subfamilies: TRPM, TRPA, TRPV, and TRPC. In diverse organisms, four monophyletic subfamilies were identified. Additionally, we identified key TRP genes with significantly upregulated transcription levels under short-term (30 min) and long-term (3 days) exposure at 24 °C (optimal elevated temperature) and 27 °C (critical high temperature). We propose that genes upregulated at 30 min may be involved in the primary response process of temperature sensing, while genes upregulated at 3 days may participate in the secondary response process of temperature perception. This study lays the foundation for understanding the regulatory mechanisms of TRPs responses to environmental stimuli in S. schlegelii and other fishes.
Collapse
Affiliation(s)
- Jinwei Huang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xueying Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Xiaoyang Guo
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Qinghua Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jun Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
42
|
Hu J, Park SJ, Walter T, Orozco IJ, O'Dea G, Ye X, Du J, Lü W. Physiological temperature drives TRPM4 ligand recognition and gating. Nature 2024; 630:509-515. [PMID: 38750366 PMCID: PMC11168932 DOI: 10.1038/s41586-024-07436-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/17/2024] [Indexed: 06/14/2024]
Abstract
Temperature profoundly affects macromolecular function, particularly in proteins with temperature sensitivity1,2. However, its impact is often overlooked in biophysical studies that are typically performed at non-physiological temperatures, potentially leading to inaccurate mechanistic and pharmacological insights. Here we demonstrate temperature-dependent changes in the structure and function of TRPM4, a temperature-sensitive Ca2+-activated ion channel3-7. By studying TRPM4 prepared at physiological temperature using single-particle cryo-electron microscopy, we identified a 'warm' conformation that is distinct from those observed at lower temperatures. This conformation is driven by a temperature-dependent Ca2+-binding site in the intracellular domain, and is essential for TRPM4 function in physiological contexts. We demonstrated that ligands, exemplified by decavanadate (a positive modulator)8 and ATP (an inhibitor)9, bind to different locations of TRPM4 at physiological temperatures than at lower temperatures10,11, and that these sites have bona fide functional relevance. We elucidated the TRPM4 gating mechanism by capturing structural snapshots of its different functional states at physiological temperatures, revealing the channel opening that is not observed at lower temperatures. Our study provides an example of temperature-dependent ligand recognition and modulation of an ion channel, underscoring the importance of studying macromolecules at physiological temperatures. It also provides a potential molecular framework for deciphering how thermosensitive TRPM channels perceive temperature changes.
Collapse
Affiliation(s)
- Jinhong Hu
- Van Andel Institute, Grand Rapids, MI, USA
| | | | - Tyler Walter
- Van Andel Institute, Grand Rapids, MI, USA
- Zoetis, Kalamazoo, MI, USA
| | - Ian J Orozco
- Van Andel Institute, Grand Rapids, MI, USA
- AnaBios, San Diego, CA, USA
| | | | - Xinyu Ye
- Van Andel Institute, Grand Rapids, MI, USA
| | - Juan Du
- Van Andel Institute, Grand Rapids, MI, USA.
| | - Wei Lü
- Van Andel Institute, Grand Rapids, MI, USA.
| |
Collapse
|
43
|
Thiel G, Rössler OG. Signal Transduction of Transient Receptor Potential TRPM8 Channels: Role of PIP5K, Gq-Proteins, and c-Jun. Molecules 2024; 29:2602. [PMID: 38893478 PMCID: PMC11174004 DOI: 10.3390/molecules29112602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/24/2024] [Accepted: 05/26/2024] [Indexed: 06/21/2024] Open
Abstract
Transient receptor potential melastatin-8 (TRPM8) is a cation channel that is activated by cold and "cooling agents" such as menthol and icilin, which induce a cold sensation. The stimulation of TRPM8 activates an intracellular signaling cascade that ultimately leads to a change in the gene expression pattern of the cells. Here, we investigate the TRPM8-induced signaling pathway that links TRPM8 channel activation to gene transcription. Using a pharmacological approach, we show that the inhibition of phosphatidylinositol 4-phosphate 5 kinase α (PIP5K), an enzyme essential for the biosynthesis of phosphatidylinositol 4,5-bisphosphate, attenuates TRPM8-induced gene transcription. Analyzing the link between TRPM8 and Gq proteins, we show that the pharmacological inhibition of the βγ subunits impairs TRPM8 signaling. In addition, genetic studies show that TRPM8 requires an activated Gα subunit for signaling. In the nucleus, the TRPM8-induced signaling cascade triggers the activation of the transcription factor AP-1, a complex consisting of a dimer of basic region leucine zipper (bZIP) transcription factors. Here, we identify the bZIP protein c-Jun as an essential component of AP-1 within the TRPM8-induced signaling cascade. In summary, with PIP5K, Gq subunits, and c-Jun, we identified key molecules in TRPM8-induced signaling from the plasma membrane to the nucleus.
Collapse
Affiliation(s)
- Gerald Thiel
- Department of Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, 66421 Homburg, Germany;
| | | |
Collapse
|
44
|
Roelens R, Peigneur ANF, Voets T, Vriens J. Neurodevelopmental disorders caused by variants in TRPM3. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119709. [PMID: 38522727 DOI: 10.1016/j.bbamcr.2024.119709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024]
Abstract
Developmental and epileptic encephalopathies (DEE) are a broad and varied group of disorders that affect the brain and are characterized by epilepsy and comorbid intellectual disability (ID). These conditions have a broad spectrum of symptoms and can be caused by various underlying factors, including genetic mutations, infections, and other medical conditions. The exact cause of DEE remains largely unknown in the majority of cases. However, in around 25 % of patients, rare nonsynonymous coding variants in genes encoding ion channels, cell-surface receptors, and other neuronally expressed proteins are identified. This review focuses on a subgroup of DEE patients carrying variations in the gene encoding the Transient Receptor Potential Melastatin 3 (TRPM3) ion channel, where recent data indicate that gain-of-function of TRPM3 channel activity underlies a spectrum of dominant neurodevelopmental disorders.
Collapse
Affiliation(s)
- Robbe Roelens
- Laboratory of Endometrium, Endometriosis and Reproductive Medicine, Department of Development and Regeneration, KU Leuven, Leuven, Belgium; Laboratory of Ion Channel Research, Department of Molecular Medicine, KU Leuven, Leuven, Belgium; VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
| | - Ana Nogueira Freitas Peigneur
- Laboratory of Ion Channel Research, Department of Molecular Medicine, KU Leuven, Leuven, Belgium; VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
| | - Thomas Voets
- Laboratory of Ion Channel Research, Department of Molecular Medicine, KU Leuven, Leuven, Belgium; VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.
| | - Joris Vriens
- Laboratory of Endometrium, Endometriosis and Reproductive Medicine, Department of Development and Regeneration, KU Leuven, Leuven, Belgium; Laboratory of Ion Channel Research, Department of Molecular Medicine, KU Leuven, Leuven, Belgium.
| |
Collapse
|
45
|
Carstens MI, Mahroke A, Selescu T, Carstens E. Role of thermosensitive transient receptor potential (TRP) channels in thermal preference of male and female mice. J Therm Biol 2024; 122:103868. [PMID: 38852485 PMCID: PMC11185440 DOI: 10.1016/j.jtherbio.2024.103868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 02/14/2024] [Accepted: 04/26/2024] [Indexed: 06/11/2024]
Abstract
Transient Receptor Potential (TRP) ion channels are important for sensing environmental temperature. In rodents, TRPV4 senses warmth (25-34 °C), TRPV1 senses heat (>42 °C), TRPA1 putatively senses cold (<17 °C), and TRPM8 senses cool-cold (18-26 °C). We investigated if knockout (KO) mice lacking these TRP channels exhibited changes in thermal preference. Thermal preference was tested using a dual hot-cold plate with one thermoelectric surface set at 30 °C and the adjacent surface at a temperature of 15-45 °C in 5 °C increments. Blinded observers counted the number of times mice crossed through an opening between plates and the percentage of time spent on the 30 °C plate. In a separate experiment, observers blinded as to genotype also assessed the temperature at the location on a thermal gradient (1.83 m, 4-50 °C) occupied by the mouse at 5- or 10-min intervals over 2 h. Male and female wildtype mice preferred 30 °C and significantly avoided colder (15-20 °C) and hotter (40-45 °C) temperatures. Male TRPV1KOs and TRPA1KOs, and TRPV4KOs of both sexes, were similar, while female WTs, TRPV1KOs, TRPA1KOs and TRPM8KOs did not show significant thermal preferences across the temperature range. Male and female TRPM8KOs did not significantly avoid the coldest temperatures. Male mice (except for TRPM8KOs) exhibited significantly fewer plate crossings at hot and cold temperatures and more crossings at thermoneutral temperatures, while females exhibited a similar but non-significant trend. Occupancy temperatures along the thermal gradient exhibited a broad distribution that shrank somewhat over time. Mean occupancy temperatures (recorded at 90-120 min) were significantly higher for females (30-34 °C) compared to males (26-27 °C) of all genotypes, except for TRPA1KOs which exhibited no sex difference. The results indicate (1) sex differences with females (except TRPA1KOs) preferring warmer temperatures, (2) reduced thermosensitivity in female TRPV1KOs, and (3) reduced sensitivity to cold and innocuous warmth in male and female TRPM8KOs consistent with previous studies.
Collapse
Affiliation(s)
- Mirela Iodi Carstens
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA, 95616, USA
| | - Avina Mahroke
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA, 95616, USA
| | - Tudor Selescu
- Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - E Carstens
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
46
|
Horváth Á, Steib A, Nehr-Majoros A, Kántás B, Király Á, Racskó M, Tóth BI, Szánti-Pintér E, Kudová E, Skoda-Földes R, Helyes Z, Szőke É. Anti-Nociceptive Effects of Sphingomyelinase and Methyl-Beta-Cyclodextrin in the Icilin-Induced Mouse Pain Model. Int J Mol Sci 2024; 25:4637. [PMID: 38731855 PMCID: PMC11083984 DOI: 10.3390/ijms25094637] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
The thermo- and pain-sensitive Transient Receptor Potential Melastatin 3 and 8 (TRPM3 and TRPM8) ion channels are functionally associated in the lipid rafts of the plasma membrane. We have already described that cholesterol and sphingomyelin depletion, or inhibition of sphingolipid biosynthesis decreased the TRPM8 but not the TRPM3 channel opening on cultured sensory neurons. We aimed to test the effects of lipid raft disruptors on channel activation on TRPM3- and TRPM8-expressing HEK293T cells in vitro, as well as their potential analgesic actions in TRPM3 and TRPM8 channel activation involving acute pain models in mice. CHO cell viability was examined after lipid raft disruptor treatments and their effects on channel activation on channel expressing HEK293T cells by measurement of cytoplasmic Ca2+ concentration were monitored. The effects of treatments were investigated in Pregnenolone-Sulphate-CIM-0216-evoked and icilin-induced acute nocifensive pain models in mice. Cholesterol depletion decreased CHO cell viability. Sphingomyelinase and methyl-beta-cyclodextrin reduced the duration of icilin-evoked nocifensive behavior, while lipid raft disruptors did not inhibit the activity of recombinant TRPM3 and TRPM8. We conclude that depletion of sphingomyelin or cholesterol from rafts can modulate the function of native TRPM8 receptors. Furthermore, sphingolipid cleavage provided superiority over cholesterol depletion, and this method can open novel possibilities in the management of different pain conditions.
Collapse
Affiliation(s)
- Ádám Horváth
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti Str. 12., H-7624 Pécs, Hungary; (Á.H.); (A.S.); (A.N.-M.); (B.K.); (Á.K.); (Z.H.)
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus Str. 2., H-7624 Pécs, Hungary
| | - Anita Steib
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti Str. 12., H-7624 Pécs, Hungary; (Á.H.); (A.S.); (A.N.-M.); (B.K.); (Á.K.); (Z.H.)
| | - Andrea Nehr-Majoros
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti Str. 12., H-7624 Pécs, Hungary; (Á.H.); (A.S.); (A.N.-M.); (B.K.); (Á.K.); (Z.H.)
- National Laboratory for Drug Research and Development, Magyar Tudósok Cct. 2., H-1117 Budapest, Hungary
- Hungarian Research Network, Chronic Pain Research Group, University of Pécs, Szigeti Str. 12., H-7624 Pécs, Hungary
| | - Boglárka Kántás
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti Str. 12., H-7624 Pécs, Hungary; (Á.H.); (A.S.); (A.N.-M.); (B.K.); (Á.K.); (Z.H.)
- Department of Obstetrics and Gynaecology, University of Pécs, Édesanyák Str. 17., H-7624 Pécs, Hungary
| | - Ágnes Király
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti Str. 12., H-7624 Pécs, Hungary; (Á.H.); (A.S.); (A.N.-M.); (B.K.); (Á.K.); (Z.H.)
- National Laboratory for Drug Research and Development, Magyar Tudósok Cct. 2., H-1117 Budapest, Hungary
- Hungarian Research Network, Chronic Pain Research Group, University of Pécs, Szigeti Str. 12., H-7624 Pécs, Hungary
| | - Márk Racskó
- Department of Physiology, Faculty of Medicine, University of Debrecen, Nagyerdei Cct. 98., H-4032 Debrecen, Hungary; (M.R.); (B.I.T.)
| | - Balázs István Tóth
- Department of Physiology, Faculty of Medicine, University of Debrecen, Nagyerdei Cct. 98., H-4032 Debrecen, Hungary; (M.R.); (B.I.T.)
| | - Eszter Szánti-Pintér
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Namesti 2, 166 10 Prague, Czech Republic; (E.S.-P.); (E.K.)
| | - Eva Kudová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Namesti 2, 166 10 Prague, Czech Republic; (E.S.-P.); (E.K.)
| | - Rita Skoda-Földes
- Institute of Chemistry, Department of Organic Chemistry, University of Pannonia, Egyetem Str. 10., H-8200 Veszprém, Hungary;
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti Str. 12., H-7624 Pécs, Hungary; (Á.H.); (A.S.); (A.N.-M.); (B.K.); (Á.K.); (Z.H.)
- National Laboratory for Drug Research and Development, Magyar Tudósok Cct. 2., H-1117 Budapest, Hungary
- Hungarian Research Network, Chronic Pain Research Group, University of Pécs, Szigeti Str. 12., H-7624 Pécs, Hungary
- PharmInVivo Ltd., Szondy György Str. 10., H-7629 Pécs, Hungary
| | - Éva Szőke
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti Str. 12., H-7624 Pécs, Hungary; (Á.H.); (A.S.); (A.N.-M.); (B.K.); (Á.K.); (Z.H.)
- National Laboratory for Drug Research and Development, Magyar Tudósok Cct. 2., H-1117 Budapest, Hungary
- Hungarian Research Network, Chronic Pain Research Group, University of Pécs, Szigeti Str. 12., H-7624 Pécs, Hungary
| |
Collapse
|
47
|
Liénard MA, Baez-Nieto D, Tsai CC, Valencia-Montoya WA, Werin B, Johanson U, Lassance JM, Pan JQ, Yu N, Pierce NE. TRPA5 encodes a thermosensitive ankyrin ion channel receptor in a triatomine insect. iScience 2024; 27:109541. [PMID: 38577108 PMCID: PMC10993193 DOI: 10.1016/j.isci.2024.109541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/28/2024] [Accepted: 03/18/2024] [Indexed: 04/06/2024] Open
Abstract
As ectotherms, insects need heat-sensitive receptors to monitor environmental temperatures and facilitate thermoregulation. We show that TRPA5, a class of ankyrin transient receptor potential (TRP) channels absent in dipteran genomes, may function as insect heat receptors. In the triatomine bug Rhodnius prolixus (order: Hemiptera), a vector of Chagas disease, the channel RpTRPA5B displays a uniquely high thermosensitivity, with biophysical determinants including a large channel activation enthalpy change (72 kcal/mol), a high temperature coefficient (Q10 = 25), and in vitro temperature-induced currents from 53°C to 68°C (T0.5 = 58.6°C), similar to noxious TRPV receptors in mammals. Monomeric and tetrameric ion channel structure predictions show reliable parallels with fruit fly dTRPA1, with structural uniqueness in ankyrin repeat domains, the channel selectivity filter, and potential TRP functional modulator regions. Overall, the finding of a member of TRPA5 as a temperature-activated receptor illustrates the diversity of insect molecular heat detectors.
Collapse
Affiliation(s)
- Marjorie A. Liénard
- Department of Biology, Lund University, 22362 Lund, Sweden
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
- Broad Institute, Cambridge, MA 02142, USA
| | - David Baez-Nieto
- Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA 02142, USA
| | - Cheng-Chia Tsai
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027, USA
| | - Wendy A. Valencia-Montoya
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - Balder Werin
- Division of Biochemistry and Structural Biology, Department of Chemistry, Lund University, 22362 Lund, Sweden
| | - Urban Johanson
- Division of Biochemistry and Structural Biology, Department of Chemistry, Lund University, 22362 Lund, Sweden
| | - Jean-Marc Lassance
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
- Laboratory of Evolutionary Neuroethology, GIGA Institute, University of Liège, 4000 Liège, Belgium
| | - Jen Q. Pan
- Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA 02142, USA
| | - Nanfang Yu
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027, USA
| | - Naomi E. Pierce
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
48
|
Yosipovitch G, Kim B, Luger T, Lerner E, Metz M, Adiri R, Canosa JM, Cha A, Ständer S. Similarities and differences in peripheral itch and pain pathways in atopic dermatitis. J Allergy Clin Immunol 2024; 153:904-912. [PMID: 38103700 DOI: 10.1016/j.jaci.2023.10.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/22/2023] [Accepted: 10/12/2023] [Indexed: 12/19/2023]
Abstract
Atopic dermatitis (AD) is predominantly characterized by intense itching, but concomitant skin pain is experienced by more than 40% of patients. Patients with AD display considerable somatosensory aberrations, including increased nerve sensitivity to itch stimuli (hyperknesis), perception of itch from innocuous stimuli (alloknesis), or perception of pain from innocuous stimuli (allodynia). This review summarizes the current understanding of the similarities and differences in the peripheral mechanisms underlying itch and pain in AD. These distinct yet reciprocal sensations share many similarities in the peripheral nervous system, including common mediators (such as serotonin, endothelin-1, IL-33, and thymic stromal lymphopoietin), receptors (such as members of the G protein-coupled receptor family and Toll-like receptors), and ion channels for signal transduction (such as certain members of the transient receptor potential [TRP] cation channels). Itch-responding neurons are also sensitive to pain stimuli. However, there are distinct differences between itch and pain signaling. For example, specific immune responses are associated with pain (type 1 and/or type 3 cytokines and certain chemokine C-C [CCL2, CCL5] and C-X-C [CXCL] motif ligands) and itch (type 2 cytokines, including IL-31, and periostin). The TRP melastatin channels TRPM2 and TRPM3 have a role in pain but no known role in itch. Activation of μ-opioid receptors is known to alleviate pain but exacerbate itch. Understanding the connection between itch and pain mechanisms may offer new insights into the treatment of chronic pain and itch in AD.
Collapse
Affiliation(s)
- Gil Yosipovitch
- Miami Itch Center, Miller School of Medicine, University of Miami, Miami, Fla.
| | - Brian Kim
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St Louis, Mo
| | | | - Ethan Lerner
- Massachusetts General Hospital, Charlestown, Mass
| | - Martin Metz
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Berlin, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Roni Adiri
- Pfizer Pharmaceuticals Israel Ltd, Herzliya Pituach, Israel
| | | | | | - Sonja Ständer
- Center for Chronic Pruritus, Münster University Hospital, Münster, Germany
| |
Collapse
|
49
|
Koivisto AP, Voets T, Iadarola MJ, Szallasi A. Targeting TRP channels for pain relief: A review of current evidence from bench to bedside. Curr Opin Pharmacol 2024; 75:102447. [PMID: 38471384 DOI: 10.1016/j.coph.2024.102447] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/06/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024]
Abstract
Several decades of research support the involvement of transient receptor potential (TRP) channels in nociception. Despite the disappointments of early TRPV1 antagonist programs, the TRP family remains a promising therapeutic target in pain disorders. High-dose capsaicin patches are already in clinical use to relieve neuropathic pain. At present, localized injections of the side-directed TRPV1 agonist capsaicin and resiniferatoxin are undergoing clinical trials in patients with osteoarthritis and bone cancer pain. TRPA1, TRPM3, and TRPC5 channels are also of significant interest. This review discusses the role of TRP channels in human pain conditions.
Collapse
Affiliation(s)
| | - Thomas Voets
- Laboratory of Ion Channel Research, VIB-KU Leuven Center for Brain and Disease Research & KU Leuven Department of Cellular and Molecular Medicine, Leuven, Belgium
| | - Michael J Iadarola
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Arpad Szallasi
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
50
|
Nehr-Majoros AK, Király Á, Helyes Z, Szőke É. Lipid raft disruption as an opportunity for peripheral analgesia. Curr Opin Pharmacol 2024; 75:102432. [PMID: 38290404 DOI: 10.1016/j.coph.2024.102432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/17/2023] [Accepted: 01/02/2024] [Indexed: 02/01/2024]
Abstract
Chronic pain conditions are unmet medical needs, since the available drugs, opioids, non-steroidal anti-inflammatory/analgesic drugs and adjuvant analgesics do not provide satisfactory therapeutic effect in a great proportion of patients. Therefore, there is an urgent need to find novel targets and novel therapeutic approaches that differ from classical pharmacological receptor antagonism. Most ion channels and receptors involved in pain sensation and processing such as Transient Receptor Potential ion channels, opioid receptors, P2X purinoreceptors and neurokinin 1 receptor are located in the lipid raft regions of the plasma membrane. Targeting the membrane lipid composition and structure by sphingolipid or cholesterol depletion might open future perspectives for the therapy of chronic inflammatory, neuropathic or cancer pain, most importantly acting at the periphery.
Collapse
Affiliation(s)
- Andrea Kinga Nehr-Majoros
- Department of Pharmacology and Pharmacotherapy, Medical School & Centre for Neuroscience, University of Pécs, 12 Szigeti Street, H-7624, Pécs, Hungary; National Laboratory for Drug Research and Development, Budapest, Hungary; Hungarian Research Network, Chronic Pain Research Group, Pécs, Hungary
| | - Ágnes Király
- Department of Pharmacology and Pharmacotherapy, Medical School & Centre for Neuroscience, University of Pécs, 12 Szigeti Street, H-7624, Pécs, Hungary; National Laboratory for Drug Research and Development, Budapest, Hungary; Hungarian Research Network, Chronic Pain Research Group, Pécs, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School & Centre for Neuroscience, University of Pécs, 12 Szigeti Street, H-7624, Pécs, Hungary; National Laboratory for Drug Research and Development, Budapest, Hungary; Hungarian Research Network, Chronic Pain Research Group, Pécs, Hungary
| | - Éva Szőke
- Department of Pharmacology and Pharmacotherapy, Medical School & Centre for Neuroscience, University of Pécs, 12 Szigeti Street, H-7624, Pécs, Hungary; National Laboratory for Drug Research and Development, Budapest, Hungary; Hungarian Research Network, Chronic Pain Research Group, Pécs, Hungary.
| |
Collapse
|