1
|
Wang H, Yang Y, Ni Z, Qiao X, Guo Y, Wang X, Cao D, Wang Y, Ruan C. Advances in the molecular mechanisms of zinc-finger transcription factors in neurodevelopmental disorders. IBRO Neurosci Rep 2025; 18:409-413. [PMID: 40124112 PMCID: PMC11930196 DOI: 10.1016/j.ibneur.2025.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 02/22/2025] [Indexed: 03/25/2025] Open
Abstract
Neurodevelopmental disorders (NDDs) constitute a heterogeneous group of early-onset brain dysfunction disorders, which may arise from genetic or acquired etiologies. These disorders are characterized by behavioral and cognitive deficits that predominantly manifest during childhood development, thereby potentially impairing an individual's performance in learning, sports, and social situations. A comprehensive understanding of the pathogenesis of NDDs is crucial for the development of targeted therapeutic interventions. Zinc-finger transcription factors (ZFPs) play a pivotal role in regulating gene expression by modulating the binding of RNA polymerase to DNA, thereby either activating or repressing gene transcription. In recent years, the BCL11 gene family of ZFPs has garnered significant attention due to its critical involvement in nervous system development. This review aims to elucidate the structure and molecular functions of the BCL11 gene family, discuss its impact on the development of the central nervous system, and explore its association with neurodevelopmental disorders.
Collapse
Affiliation(s)
- Hailin Wang
- Medical School of Yan’an University, Yan'an, Shaanxi 716000, China
| | - Ying Yang
- Shaanxi Institute for Pediatric Diseases, Xi'an Children's Hospital, Xi'an, China
- Xi'an Children's Hospital Research Institute, Xi'an, Shaanxi 710003, China
| | - Ziwei Ni
- Medical School of Yan’an University, Yan'an, Shaanxi 716000, China
| | - Xiaoting Qiao
- Medical School of Yan’an University, Yan'an, Shaanxi 716000, China
| | - Yaqian Guo
- Medical School of Yan’an University, Yan'an, Shaanxi 716000, China
| | - Xiaomin Wang
- Medical School of Yan’an University, Yan'an, Shaanxi 716000, China
| | - Duo Cao
- School of Life Sciences, Yan'an University, Yan'an, Shaanxi 716000, China
| | - Yayun Wang
- National Experimental Center of Air Force Medical University, Xi'an, Shaanxi 716000, China
| | - Cailian Ruan
- Medical School of Yan’an University, Yan'an, Shaanxi 716000, China
- Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710032, China
| |
Collapse
|
2
|
Horton JR, Yu M, Zhou J, Tran M, Anakal RR, Lu Y, Blumenthal RM, Zhang X, Huang Y, Zhang X, Cheng X. Multimeric transcription factor BCL11A utilizes two zinc-finger tandem arrays to bind clustered short sequence motifs. Nat Commun 2025; 16:3672. [PMID: 40246927 PMCID: PMC12006351 DOI: 10.1038/s41467-025-58998-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 04/08/2025] [Indexed: 04/19/2025] Open
Abstract
BCL11A, a transcription factor, is vital for hematopoiesis, including B and T cell maturation and the fetal-to-adult hemoglobin switch. Mutations in BCL11A are linked to neurodevelopmental disorders. BCL11A contains two DNA-binding zinc-finger arrays, low-affinity ZF2-3 and high-affinity ZF4-6, separated by a 300-amino-acid linker. ZF2-3 and ZF4-5 share 73% identity, including five out of six DNA base-interacting residues. These arrays bind similar short sequence motifs in clusters, with the linker enabling a broader binding span. Crystallographic structures of ZF4-6, in complex with oligonucleotides from the β-globin locus region, reveal DNA sequence recognition by residues Asn756 (ZF4), Lys784 and Arg787 (ZF5). A Lys784-to-Thr mutation, linked to a neurodevelopmental disorder with persistent fetal globin expression, reduces DNA binding over 10-fold but gains interaction with a variable base pair. BCL11A isoforms may form oligomers, enhancing chromatin occupancy and repressor functions by allowing multiple copies of both low- and high-affinity ZF arrays to bind DNA. These distinctive properties, apparently conserved among vertebrates, provide essential functional flexibility to this crucial regulator.
Collapse
Affiliation(s)
- John R Horton
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Meigen Yu
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jujun Zhou
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Melody Tran
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Rithvi R Anakal
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology, and Program in Bioinformatics, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA
| | - Xiaotian Zhang
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center Houston, McGovern Medical School, Houston, TX, 77030, USA
| | - Yun Huang
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX, 77030, USA
| | - Xing Zhang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
3
|
Lu YP, Luo YL, Wu ZY, Han C, Jin YZ, Han JM, Chen SY, Teng F, Han F, Liu XX, Lu YM. Semaphorin 3s signaling in the central nervous system: Mechanisms and therapeutic implication for brain diseases. Pharmacol Ther 2025; 267:108800. [PMID: 39855276 DOI: 10.1016/j.pharmthera.2025.108800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/16/2024] [Accepted: 01/18/2025] [Indexed: 01/27/2025]
Abstract
Class 3 semaphorins (Sema3s), identified as secreted soluble proteins, present many therapeutic potentials. Recent evidence has suggested that Sema3s as molecular cue participate in neuroregulation, angiogenesis, and microenvironment homeostasis of the central nervous system. Moreover, Sema3s signaling pathways may be targeted for enhancing neural network connectivity, promoting neural regeneration and repair, and inhibiting pathological angiogenesis. Due to the complex co-expression patterns and crosstalk among Sema3s, new drugs targeting Sema3s-related signaling pathways are expected to be discovered to counter brain diseases. This review summarizes the specific roles of Sema3s in pathological processes of various brain diseases, and provides potential targeted strategies for the prevention and treatment.
Collapse
Affiliation(s)
- Ya-Ping Lu
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases of Ministry of Education, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; Gusu School, Nanjing Medical University, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 210019, China
| | - Yi-Ling Luo
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Zhou-Yue Wu
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases of Ministry of Education, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Chao Han
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Yin-Zhi Jin
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Jun-Ming Han
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Shu-Yang Chen
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases of Ministry of Education, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Fei Teng
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Feng Han
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases of Ministry of Education, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; Gusu School, Nanjing Medical University, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 210019, China; The affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Northern Jiangsu Institute of Clinical Medicine, Huaian 223300, China; International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Xiu-Xiu Liu
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases of Ministry of Education, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China.
| | - Ying-Mei Lu
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China; Institute of Brain Science, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
4
|
Peron A, D'Arco F, Aldinger KA, Smith-Hicks C, Zweier C, Gradek GA, Bradbury K, Accogli A, Andersen EF, Au PYB, Battini R, Beleford D, Bird LM, Bouman A, Bruel AL, Busk ØL, Campeau PM, Capra V, Carlston C, Carmichael J, Chassevent A, Clayton-Smith J, Bamshad MJ, Earl DL, Faivre L, Philippe C, Ferreira P, Graul-Neumann L, Green MJ, Haffner D, Haldipur P, Hanna S, Houge G, Jones WD, Kraus C, Kristiansen BE, Lespinasse J, Low KJ, Lynch SA, Maia S, Mao R, Kalinauskiene R, Melver C, McDonald K, Montgomery T, Morleo M, Motter C, Openshaw AS, Palumbos JC, Parikh AS, Perilla-Young Y, Powell CM, Person R, Desai M, Piard J, Pfundt R, Scala M, Serey-Gaut M, Shears D, Slavotinek A, Suri M, Turner C, Tvrdik T, Weiss K, Wentzensen IM, Zollino M, Hsieh TC, de Vries BBA, Guillemot F, Dobyns WB, Viskochil D, Dias C. BCL11A intellectual developmental disorder: defining the clinical spectrum and genotype-phenotype correlations. Eur J Hum Genet 2025; 33:312-324. [PMID: 39448799 PMCID: PMC11893779 DOI: 10.1038/s41431-024-01701-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/27/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
An increasing number of individuals with intellectual developmental disorder (IDD) and heterozygous variants in BCL11A are identified, yet our knowledge of manifestations and mutational spectrum is lacking. To address this, we performed detailed analysis of 42 individuals with BCL11A-related IDD (BCL11A-IDD, a.k.a. Dias-Logan syndrome) ascertained through an international collaborative network, and reviewed 35 additional previously reported patients. Analysis of 77 affected individuals identified 60 unique disease-causing variants (30 frameshift, 7 missense, 6 splice-site, 17 stop-gain) and 8 unique BCL11A microdeletions. We define the most prevalent features of BCL11A-IDD: IDD, postnatal-onset microcephaly, hypotonia, behavioral abnormalities, autism spectrum disorder, and persistence of fetal hemoglobin (HbF), and identify autonomic dysregulation as new feature. BCL11A-IDD is distinguished from 2p16 microdeletion syndrome, which has a higher incidence of congenital anomalies. Our results underscore BCL11A as an important transcription factor in human hindbrain development, identifying a previously underrecognized phenotype of a small brainstem with a reduced pons/medulla ratio. Genotype-phenotype correlation revealed an isoform-dependent trend in severity of truncating variants: those affecting all isoforms are associated with higher frequency of hypotonia, and those affecting the long (BCL11A-L) and extra-long (-XL) isoforms, sparing the short (-S), are associated with higher frequency of postnatal microcephaly. With the largest international cohort to date, this study highlights persistence of fetal hemoglobin as a consistent biomarker and hindbrain abnormalities as a common feature. It contributes significantly to our understanding of BCL11A-IDD through an extensive unbiased multi-center assessment, providing valuable insights for diagnosis, management and counselling, and into BCL11A's role in brain development.
Collapse
Affiliation(s)
- Angela Peron
- Division of Medical Genetics, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, USA.
- Medical Genetics, ASST Santi Paolo e Carlo, San Paolo Hospital, Milano, Italy.
- Department of Experimental and Clinical Biomedical Sciences, Università degli Studi di Firenze, Firenze, Italy.
- Medical Genetics, Meyer Children's Hospital IRCCS, Firenze, Italy.
| | - Felice D'Arco
- Department of Radiology, Great Ormond Street Hospital for Children, London, UK
| | - Kimberly A Aldinger
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Constance Smith-Hicks
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurogenetics, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Christiane Zweier
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Department of Human Genetics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Gyri A Gradek
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Kimberley Bradbury
- Department of Medical Genetics, Guy's and St. Thomas' NHS Foundation Trust, London, UK
- Wessex Regional Genetics Service, Princess Anne Hospital, Southampton, UK
| | - Andrea Accogli
- Genomics and Clinical Genetics, IRCCS Istituto Giannina Gaslini, Genova, Italy
- U.O.C. Genetica Medica, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Erica F Andersen
- ARUP Laboratories, Cytogenetics and Genomic Microarray, Salt Lake City, UT, USA
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Ping Yee Billie Au
- Department of Pediatrics, Division of Medical Genetics, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Roberta Battini
- IRCCS Fondazione Stella Maris, Pisa, Italy
- Dipartimento di Medicina Clinica e Sperimentale, University of Pisa, Pisa, Italy
| | - Daniah Beleford
- Division of Medical Genetics, Department of Pediatrics, Benioff Children's Hospital, University of California, San Francisco, CA, USA
- Department of Pediatrics and Physiology & Membrane Biology, University of California, Davis, CA, USA
| | - Lynne M Bird
- Department of Pediatrics, University of California San Diego, San Diego, CA, USA
- Division of Genetics/Dysmorphology, Rady Children's Hospital San Diego, San Diego, CA, USA
| | - Arjan Bouman
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Ange-Line Bruel
- INSERM UMR 1231 Equipe GAD, Université de Bourgogne, Dijon, France
- Unité Fonctionnelle d'Innovation diagnostique des maladies rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Øyvind Løvold Busk
- Department of Medical Genetics, Telemark Hospital Trust, 3710, Skien, Norway
| | - Philippe M Campeau
- Department of Pediatrics, CHU Sainte-Justine and University of Montreal, Montreal, QC, Canada
| | - Valeria Capra
- Genomics and Clinical Genetics, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Colleen Carlston
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
| | - Jenny Carmichael
- Department of Clinical Genetics, Addenbrooke's Hospital, Cambridge, UK
| | - Anna Chassevent
- Department of Neurogenetics, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Jill Clayton-Smith
- Division of Evolution and Genomic Sciences School of Biological Sciences University of Manchester, Manchester, UK
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Michael J Bamshad
- Division of Genetic Medicine, Seattle Children's Hospital, Seattle, WA, USA
- University of Washington, Seattle, WA, USA
| | - Dawn L Earl
- Division of Genetic Medicine, Seattle Children's Hospital, Seattle, WA, USA
- University of Washington, Seattle, WA, USA
| | - Laurence Faivre
- INSERM UMR 1231 Equipe GAD, Université de Bourgogne, Dijon, France
- Centre de Référence Maladies Rares Anomalies du développement et syndromes malformatifs, Centre de Génétique, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Christophe Philippe
- INSERM UMR 1231 Equipe GAD, Université de Bourgogne, Dijon, France
- Unité Fonctionnelle d'Innovation diagnostique des maladies rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Patrick Ferreira
- Department of Pediatrics, Division of Medical Genetics, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Luitgard Graul-Neumann
- Universitätsmedizin Berlin, Institut für Medizinische Genetik und Humangenetik, Berlin, Germany
| | - Mary J Green
- Experimental Histopathology Laboratory, The Francis Crick Institute, London, UK
| | - Darrah Haffner
- Department of Pediatrics, Division of Pediatric Neurology, Nationwide Children's Hospital and Ohio State University, Columbus, OH, USA
| | - Parthiv Haldipur
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Suhair Hanna
- Department of Pediatric Immunology, Rappaport Children's Hospital, Rambam Health Care Campus, Haifa, Israel
- Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Gunnar Houge
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Wendy D Jones
- North East Thames Regional Genetics Service, Great Ormond Street Hospital for Children, Great Ormond Street, London, UK
| | - Cornelia Kraus
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | | | - James Lespinasse
- HDR - Service de Génétique Médicale, Centre Hospitalier Métropole Savoie, Chambery, France
| | - Karen J Low
- Clinical Genetics Service, University Hospitals Bristol and Weston NHS trust, Bristol, UK
| | - Sally Ann Lynch
- Department of Clinical Genetics, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Sofia Maia
- Medical Genetics Unit, Hospital Pediátrico, Centro Hospitalar Universidade de Coimbra, Coimbra, Portugal
| | - Rong Mao
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Ruta Kalinauskiene
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
- Department of Medical Genetics, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Catherine Melver
- Division of Medical Genetics, Akron Children's Hospital, Akron, OH, USA
| | | | - Tara Montgomery
- Northern Genetics Service, Institute of Genetic Medicine, Newcastle upon Tyne NHS Foundation Trust, Newcastle, UK
| | - Manuela Morleo
- Telethon Institute of Genetics and Medicine, Pozzuoli, Napoli, Italy
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Constance Motter
- Division of Medical Genetics, Akron Children's Hospital, Akron, OH, USA
| | - Amanda S Openshaw
- ARUP Laboratories, Cytogenetics and Genomic Microarray, Salt Lake City, UT, USA
| | - Janice Cox Palumbos
- Division of Medical Genetics, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Aditi Shah Parikh
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
- Center for Human Genetics, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Yezmin Perilla-Young
- Division of Pediatric Genetics and Metabolism, University of North Carolina, Chapel Hill, NC, USA
| | - Cynthia M Powell
- Division of Pediatric Genetics and Metabolism, University of North Carolina, Chapel Hill, NC, USA
| | | | | | - Juliette Piard
- Centre de Génétique Humaine, Université de Franche-Comté, CHU, Besançon, France
| | - Rolph Pfundt
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Marcello Scala
- U.O.C. Genetica Medica, IRCCS Istituto Giannina Gaslini, Genova, Italy
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Margaux Serey-Gaut
- Centre de Génétique Humaine, Université de Franche-Comté, CHU, Besançon, France
- Centre de Recherche en Audiologie, Hôpital Necker, AP-HP. CUP, Paris, France
| | - Deborah Shears
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Anne Slavotinek
- Division of Medical Genetics, Department of Pediatrics, Benioff Children's Hospital, University of California, San Francisco, CA, USA
- Division of Human Genetics, Cincinnati Children's Hospital, and Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Mohnish Suri
- Nottingham Clinical Genetics Service; Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Claire Turner
- Clinical Genetics, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Tatiana Tvrdik
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Karin Weiss
- Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
- Genetics Institute, Rambam Health Care Campus, Haifa, Israel
| | | | - Marcella Zollino
- Dipartimento Universitario Scienze della Vita e Sanità Pubblica, Sezione di Medicina Genomica, Università Cattolica Sacro Cuore, Roma, Italy
- Genetica Medica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Tzung-Chien Hsieh
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Bert B A de Vries
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Francois Guillemot
- Neural Stem Cell Biology Laboratory, The Francis Crick Institute, London, UK
| | - William B Dobyns
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
- Division of Genetics and Metabolism, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - David Viskochil
- Division of Medical Genetics, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Cristina Dias
- Department of Medical Genetics, Guy's and St. Thomas' NHS Foundation Trust, London, UK.
- North East Thames Regional Genetics Service, Great Ormond Street Hospital for Children, Great Ormond Street, London, UK.
- Neural Stem Cell Biology Laboratory, The Francis Crick Institute, London, UK.
- Department of Medical & Molecular Genetics, School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, UK.
| |
Collapse
|
5
|
Sreepada A, Khasanov R, Elkrewi EZ, de la Torre C, Felcht J, Al Abdulqader AA, Martel R, Hoyos-Celis NA, Boettcher M, Wessel LM, Schäfer KH, Tapia-Laliena MÁ. Urine miRNA signature as potential non-invasive diagnostic biomarker for Hirschsprung's disease. Front Mol Neurosci 2025; 17:1504424. [PMID: 39872605 PMCID: PMC11770682 DOI: 10.3389/fnmol.2024.1504424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 11/28/2024] [Indexed: 01/30/2025] Open
Abstract
Hirschsprung's disease (HSCR) is characterized by congenital absence of ganglion cells in the gastrointestinal tract, which leads to impaired defecation, constipation and intestinal obstruction. The current diagnosis of HSCR is based on Rectal Suction Biopsies (RSBs), which could be complex in newborns. Occasionally, there is a delay in diagnosis that can increase the risk of clinical complications. Consequently, there is room for new non-invasive diagnostic methods that are objective, more logistically feasible and also deliver a far earlier base for a potential surgical intervention. In recent years, microRNA (miRNA) has come into the focus as a relevant early marker that could provide more insights into the etiology and progression of diseases. Therefore, in the search of a non-invasive HSCR biomarker, we analyzed miRNA expression in urine samples of HSCR patients. Results from 5 HSCR patients using microarrays, revealed hsa-miR-378 h, hsa-miR-210-5p, hsa-miR-6876-3p, hsa-miR-634 and hsa-miR-6883-3p as the most upregulated miRNAs; while hsa-miR-4443, hsa-miR-22-3p, hsa-miR-4732-5p, hsa-miR-3187-5p, and hsa-miR-371b-5p where the most downregulated miRNAs. Further search in miRNAwalk and miRDB databases showed that certainly most of these dysregulated miRNAs identified target HSCR associated genes, such as RET, GDNF, BDNF, EDN3, EDNRB, ERBB, NRG1, SOX10; and other genes implied in neuronal migration and neurogenesis. Finally, we could also validate some of these miRNA changes in HSCR urine by RT-qPCR. Altogether, our analyzed HSCR cohort presents a dysregulated miRNA expression presents that can be detected in urine. Our findings open the possibility of using specific urine miRNA signatures as non-invasive HSCR diagnosis method in the future.
Collapse
Affiliation(s)
- Abhijit Sreepada
- Translational Medical Research/International Master in Innovative Medicine Master Program, Medical Faculty of Mannheim, University of Heidelberg, Mannheim, Germany
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Rasul Khasanov
- Department of Pediatric Surgery, Medical Faculty of Mannheim, University of Heidelberg, Mannheim, Germany
| | - Enas Zoheer Elkrewi
- Translational Medical Research/International Master in Innovative Medicine Master Program, Medical Faculty of Mannheim, University of Heidelberg, Mannheim, Germany
- Department of Pediatric Surgery, Medical Faculty of Mannheim, University of Heidelberg, Mannheim, Germany
| | - Carolina de la Torre
- NGS Core Facility, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Judith Felcht
- Department of Pediatric Surgery, Medical Faculty of Mannheim, University of Heidelberg, Mannheim, Germany
| | - Ahmad A. Al Abdulqader
- Department of Pediatric Surgery, Medical Faculty of Mannheim, University of Heidelberg, Mannheim, Germany
- Department of Surgery, College of Medicine, King Faisal University, Al Hofuf, Saudi Arabia
| | - Richard Martel
- Department of Pediatric Surgery, Medical Faculty of Mannheim, University of Heidelberg, Mannheim, Germany
| | - Nicolás Andrés Hoyos-Celis
- Department of Pediatric Surgery, Medical Faculty of Mannheim, University of Heidelberg, Mannheim, Germany
| | - Michael Boettcher
- Department of Pediatric Surgery, Medical Faculty of Mannheim, University of Heidelberg, Mannheim, Germany
| | - Lucas M. Wessel
- Department of Pediatric Surgery, Medical Faculty of Mannheim, University of Heidelberg, Mannheim, Germany
| | - Karl-Herbert Schäfer
- Working Group Enteric Nervous Systems (AGENS), University of Applied Sciences Kaiserslautern, Campus Zweibrücken, Kaiserslautern, Germany
| | | |
Collapse
|
6
|
Vinci E, Beretta S, Colombo V, Zippo A, Catanese A, Wiegreffe C, Britsch S, Boeckers T, Verpelli C, Sala C. Regulation of Dendrite and Dendritic Spine Formation by TCF20. J Neurochem 2025; 169:e16297. [PMID: 39801227 PMCID: PMC11725998 DOI: 10.1111/jnc.16297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/24/2024] [Accepted: 12/11/2024] [Indexed: 01/16/2025]
Abstract
Mutations in the Transcription Factor 20 (TCF20) have been identified in patients with autism spectrum disorders (ASDs), intellectual disabilities (IDs), and other neurological issues. Recently, a new syndrome called TCF20-associated neurodevelopmental disorders (TAND) has been described, with specific clinical features. While TCF20's role in the neurogenesis of mouse embryos has been reported, little is known about its molecular function in neurons. In this study, we demonstrate that TCF20 is expressed in all analyzed brain regions in mice, and its expression increases during brain development but decreases in muscle tissue. Our findings suggest that TCF20 plays a central role in dendritic arborization and dendritic spine formation processes. RNA sequencing analysis revealed a downregulation of pre- and postsynaptic pathways in TCF20 knockdown neurons. We also found decreased levels of GABRA1, BDNF, PSD-95, and c-Fos in total homogenates and in synaptosomal preparations of knockdown TCF20 rat cortical cultures. Furthermore, synaptosomal preparations of knockdown TCF20 rat cortical cultures showed significant downregulation of GluN2B and GABRA5, while GluA2 was significantly upregulated. Overall, our data suggest that TCF20 plays an essential role in neuronal development and function by modulating the expression of proteins involved in dendrite and synapse formation and function.
Collapse
Affiliation(s)
- Ersilia Vinci
- CNR Neuroscience Institute, MilanoVedano al LambroItaly
| | | | | | - Antonio Zippo
- CNR Neuroscience Institute, MilanoVedano al LambroItaly
| | - Alberto Catanese
- Institute of Anatomy and Cell BiologyUniversity of UlmUlmGermany
- German Center for Neurodegenerative Diseases (DZNE)UlmGermany
| | | | - Stefan Britsch
- Institute of Molecular and Cellular AnatomyUniversity of UlmUlmGermany
| | - Tobias Boeckers
- Institute of Anatomy and Cell BiologyUniversity of UlmUlmGermany
- German Center for Neurodegenerative Diseases (DZNE)UlmGermany
| | | | - Carlo Sala
- CNR Neuroscience Institute, MilanoVedano al LambroItaly
| |
Collapse
|
7
|
Okuyama K, Yamashita M, Koumoundourou A, Wiegreffe C, Ohno-Oishi M, Murphy SJH, Zhao X, Yoshida H, Ebihara T, Satoh-Takayama N, Kojo S, Ohno H, Morio T, Wu Y, Puck J, Xue HH, Britsch S, Taniuchi I. A mutant BCL11B-N440K protein interferes with BCL11A function during T lymphocyte and neuronal development. Nat Immunol 2024; 25:2284-2296. [PMID: 39487351 DOI: 10.1038/s41590-024-01997-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 09/30/2024] [Indexed: 11/04/2024]
Abstract
Genetic studies in mice have shown that the zinc finger transcription factor BCL11B has an essential role in regulating early T cell development and neurogenesis. A de novo heterozygous missense BCL11B variant, BCL11BN441K, was isolated from a patient with T cell deficiency and neurological disorders. Here, we show that mice harboring the corresponding Bcl11bN440K mutation show the emergence of natural killer (NK)/group 1 innate lymphoid cell (ILC1)-like NKp46+ cells in the thymus and reduction in TBR1+ neurons in the neocortex, which are observed with loss of Bcl11a but not Bcl11b. Thus, the mutant BCL11B-N440K protein interferes with BCL11A function upon heterodimerization. Mechanistically, the Bcl11bN440K mutation dampens the interaction of BCL11B with T cell factor 1 (TCF1) in thymocytes, resulting in weakened antagonism against TCF1 activity that supports the differentiation of NK/ILC1-like cells. Collectively, our results shed new light on the function of BCL11A in suppressing non-T lymphoid developmental potential and uncover the pathogenic mechanism by which BCL11B-N440K interferes with partner BCL11 family proteins.
Collapse
Affiliation(s)
- Kazuki Okuyama
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Motoi Yamashita
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | - Michiko Ohno-Oishi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Samuel J H Murphy
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
- Medical Scientist Training Program, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Xin Zhao
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ, USA
| | - Hideyuki Yoshida
- YCI Laboratory for Immunological Transcriptomics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Takashi Ebihara
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
- Department of Medical Biology, Akita University Graduate School of Medicine, Akita, Japan
| | - Naoko Satoh-Takayama
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Satoshi Kojo
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
- Department of Immunology and Stem Cell Biology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yibo Wu
- YCI Laboratory for Next-Generation Proteomics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
- Chemical Biology Mass Spectrometry Platform, Faculty of Science, University of Geneva, Geneva, Switzerland
| | - Jennifer Puck
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Hai-Hui Xue
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ, USA
| | - Stefan Britsch
- Institute of Molecular and Cellular Anatomy, Ulm University, Ulm, Germany
| | - Ichiro Taniuchi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan.
| |
Collapse
|
8
|
Yin L, Xu X, Conacher B, Lin Y, Carrillo GL, Cun Y, Fox MA, Lu X, Xie H. Elevated EGR1 Binding at Enhancers in Excitatory Neurons Correlates with Neuronal Subtype-Specific Epigenetic Regulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.21.624733. [PMID: 39605670 PMCID: PMC11601525 DOI: 10.1101/2024.11.21.624733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Brain development and neuronal cell specification are accompanied with epigenetic changes to achieve diverse gene expression regulation. Interacting with cell-type specific epigenetic marks, transcription factors bind to different sets of cis-regulatory elements in different types of cells. Currently, it remains largely unclear how cell-type specific gene regulation is achieved for neurons. In this study, we generated epigenetic maps to perform comparative histone modification analysis between excitatory and inhibitory neurons. We found that neuronal cell-type specific histone modifications are enriched in super enhancer regions containing abundant EGR1 motifs. Further CUT&RUN data validated that more EGR1 binding sites can be detected in excitatory neurons and primarily located in enhancers. Integrative analysis revealed that EGR1 binding is strongly correlated with various epigenetic markers for open chromatin regions and associated with distinct gene pathways with neuronal subtype-specific functions. In inhibitory neurons, the majority of genomic regions hosting EGR1 binding sites become accessible at early embryonic stages. In contrast, the super enhancers in excitatory neurons hosting EGR1 binding sites gained their accessibility during postnatal stages. This study highlights the significance of transcription factor binding to enhancer regions, which may play a crucial role in establishing cell-type specific gene regulation in neurons.
Collapse
Affiliation(s)
- Liduo Yin
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Yunnan Key Laboratory of Biodiversity Information, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Epigenomics and Computational Biology Lab, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - Xiguang Xu
- Epigenomics and Computational Biology Lab, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - Benjamin Conacher
- Epigenomics and Computational Biology Lab, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - Yu Lin
- Epigenomics and Computational Biology Lab, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - Gabriela L. Carrillo
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia, 24016, USA
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, 24061, Virginia, USA
| | - Yupeng Cun
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Michael A. Fox
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia, 24016, USA
- School of Neuroscience, College of Science, Virginia Tech, Blacksburg, Virginia, 24061, USA
- Department of Biological Sciences, College of Science, Virginia Tech, Blacksburg, Virginia, 24061, USA
- Department of Pediatrics, Virginia Tech Carilion School of Medicine, Roanoke, Virginia, 24016, USA
| | - Xuemei Lu
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Yunnan Key Laboratory of Biodiversity Information, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hehuang Xie
- Epigenomics and Computational Biology Lab, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, 24061, Virginia, USA
- School of Neuroscience, College of Science, Virginia Tech, Blacksburg, Virginia, 24061, USA
- Genetics, Bioinformatics and Computational Biology program, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
9
|
Li Q, Yu ZP, Li YG, Tang ZH, Hu YF, Wang MJ, Shen HW. Single-nucleus RNA-sequencing of orbitofrontal cortex in rat model of methamphetamine-induced sensitization. Neurosci Lett 2024; 841:137953. [PMID: 39214331 DOI: 10.1016/j.neulet.2024.137953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/15/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
The behavioral sensitization, characterized by escalated behavioral responses triggered by recurrent exposure to psychostimulants, involves neurobiological mechanisms that are brain-region and cell-type specific. Enduring neuroadaptive changes have been observed in response to methamphetamine (METH) within the orbitofrontal cortex (OFC), the cell-type specific transcriptional alterations in response to METH sensitization remain understudied. In this study, we utilized Single-nucleus RNA-sequencing (snRNA-seq) to profile the gene expression changes in the OFC of a rat METH sensitization model. The analyses of differentially expressed genes (DEGs) unveiled cell-type specific transcriptional reactions associated with METH sensitization, with the most significant alterations documented in microglial cells. Bioinformatic investigations revealed that distinct functional and signaling pathways enriched in microglia-specific DEGs majorly involved in macroautophagy processes and the activation of N-methyl-D-aspartate ionotropic glutamate receptors (NMDAR). To validate the translational relevance of our findings, we analyzed our snRNA-seq data in conjunction with a transcriptomic study of individuals with opioid use disorder (OUD) and a large-scale Genome-Wide Association Studies (GWAS) from multiple externalizing phenotypes related to drug addiction. The validation analysis confirmed the consistent expression changes of key microglial DEGs in human METH addiction. Moreover, the integration with GWAS data revealed associations between addiction risk genes and the DEGs observed in specific cell types, particularly microglia and excitatory neurons. Our study highlights the importance of cell-type specific transcriptional alterations in the OFC in the context of METH sensitization and their potential translational relevance to human drug addiction.
Collapse
Affiliation(s)
- Qiong Li
- Department of Pharmacology, Health Science Center, Ningbo University, 818 Fenghua Rd, Ningbo, Zhejiang 315211, China
| | - Zhi-Peng Yu
- Department of Pharmacology, Health Science Center, Ningbo University, 818 Fenghua Rd, Ningbo, Zhejiang 315211, China; Faculty of Electrical Engineering and Computer Science, Ningbo University, 818 Fenghua Rd, Ningbo, Zhejiang 315211, China
| | - Yan-Guo Li
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Zi-Hang Tang
- Department of Pharmacology, Health Science Center, Ningbo University, 818 Fenghua Rd, Ningbo, Zhejiang 315211, China
| | - Yong-Feng Hu
- Department of Pharmacology, Health Science Center, Ningbo University, 818 Fenghua Rd, Ningbo, Zhejiang 315211, China
| | - Ma-Jie Wang
- Department of psychiatry, Affiliated Kangning Hospital of Ningbo University, Ningbo, Zhejiang 315201, China
| | - Hao-Wei Shen
- Department of Pharmacology, Health Science Center, Ningbo University, 818 Fenghua Rd, Ningbo, Zhejiang 315211, China; Department of psychiatry, Affiliated Kangning Hospital of Ningbo University, Ningbo, Zhejiang 315201, China.
| |
Collapse
|
10
|
Zhang F, Ye J, Zhu J, Qian W, Wang H, Luo C. Key Cell-in-Cell Related Genes are Identified by Bioinformatics and Experiments in Glioblastoma. Cancer Manag Res 2024; 16:1109-1130. [PMID: 39253064 PMCID: PMC11382672 DOI: 10.2147/cmar.s475513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/27/2024] [Indexed: 09/11/2024] Open
Abstract
Purpose This study aimed to explore the roles of cell-in-cell (CIC)-related genes in glioblastoma (GBM) using bioinformatics and experimental strategies. Patients and Methods The ssGSEA algorithm was used to calculate the CIC score for each patient. Subsequently, differentially expressed genes (DEGs) between the CIClow and CIChigh groups and between the tumor and control samples were screened using the limma R package. Key CIC-related genes (CICRGs) were further filtered using univariate Cox and LASSO analyses, followed by the construction of a CIC-related risk score model. The performance of the risk score model in predicting GBM prognosis was evaluated using ROC curves and an external validation cohort. Moreover, their location and differentiation trajectory in GBM were analyzed at the single-cell level using the Seurat R package. Finally, the expression of key CICRGs in clinical samples was examined by qPCR. Results In the current study, we found that CIC scorelow group had a significantly better survival in the TCGA-GBM cohort, supporting the important role of CICRGs in GBM. Using univariate Cox and LASSO analyses, PTX3, TIMP1, IGFBP2, SNCAIP, LOXL1, SLC47A2, and LGALS3 were identified as key CICRGs. Based on this data, a CIC-related prognostic risk score model was built using the TCGA-GBM cohort and validated in the CGGA-GBM cohort. Further mechanistic analyses showed that the CIC-related risk score is closely related to immune and inflammatory responses. Interestingly, at the single-cell level, key CICRGs were expressed in the neurons and myeloids of tumor tissues and exhibited unique temporal dynamics of expression changes. Finally, the expression of key CICRGs was validated by qPCR using clinical samples from GBM patients. Conclusion We identified novel CIC-related genes and built a reliable prognostic prediction model for GBM, which will provide further basic clues for studying the exact molecular mechanisms of GBM pathogenesis from a CIC perspective.
Collapse
Affiliation(s)
- Fenglin Zhang
- Department of Neurosurgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Jingliang Ye
- Department of Neurosurgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Junle Zhu
- Department of Neurosurgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Wenbo Qian
- Department of Neurosurgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Haoheng Wang
- Department of Neurosurgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Chun Luo
- Department of Neurosurgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| |
Collapse
|
11
|
Loupe JM, Anderson AG, Rizzardi LF, Rodriguez-Nunez I, Moyers B, Trausch-Lowther K, Jain R, Bunney WE, Bunney BG, Cartagena P, Sequeira A, Watson SJ, Akil H, Cooper GM, Myers RM. Multiomic profiling of transcription factor binding and function in human brain. Nat Neurosci 2024; 27:1387-1399. [PMID: 38831039 DOI: 10.1038/s41593-024-01658-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 04/19/2024] [Indexed: 06/05/2024]
Abstract
Transcription factors (TFs) orchestrate gene expression programs crucial for brain function, but we lack detailed information about TF binding in human brain tissue. We generated a multiomic resource (ChIP-seq, ATAC-seq, RNA-seq, DNA methylation) on bulk tissues and sorted nuclei from several postmortem brain regions, including binding maps for more than 100 TFs. We demonstrate improved measurements of TF activity, including motif recognition and gene expression modeling, upon identification and removal of high TF occupancy regions. Further, predictive TF binding models demonstrate a bias for these high-occupancy sites. Neuronal TFs SATB2 and TBR1 bind unique regions depleted for such sites and promote neuronal gene expression. Binding sites for TFs, including TBR1 and PKNOX1, are enriched for risk variants associated with neuropsychiatric disorders, predominantly in neurons. This work, titled BrainTF, is a powerful resource for future studies seeking to understand the roles of specific TFs in regulating gene expression in the human brain.
Collapse
Affiliation(s)
- Jacob M Loupe
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | | | - Lindsay F Rizzardi
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
- Department of Biochemistry and Molecular Biology, The University of Alabama in Birmingham, Birmingham, AL, USA
| | | | - Belle Moyers
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | | | - Rashmi Jain
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - William E Bunney
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA, USA
| | - Blynn G Bunney
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA, USA
| | - Preston Cartagena
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA, USA
| | - Adolfo Sequeira
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA, USA
| | - Stanley J Watson
- The Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - Huda Akil
- The Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | | | - Richard M Myers
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA.
| |
Collapse
|
12
|
Martins-Costa C, Wiegers A, Pham VA, Sidhaye J, Doleschall B, Novatchkova M, Lendl T, Piber M, Peer A, Möseneder P, Stuempflen M, Chow SYA, Seidl R, Prayer D, Höftberger R, Kasprian G, Ikeuchi Y, Corsini NS, Knoblich JA. ARID1B controls transcriptional programs of axon projection in an organoid model of the human corpus callosum. Cell Stem Cell 2024; 31:866-885.e14. [PMID: 38718796 DOI: 10.1016/j.stem.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 02/13/2024] [Accepted: 04/17/2024] [Indexed: 06/09/2024]
Abstract
Mutations in ARID1B, a member of the mSWI/SNF complex, cause severe neurodevelopmental phenotypes with elusive mechanisms in humans. The most common structural abnormality in the brain of ARID1B patients is agenesis of the corpus callosum (ACC), characterized by the absence of an interhemispheric white matter tract that connects distant cortical regions. Here, we find that neurons expressing SATB2, a determinant of callosal projection neuron (CPN) identity, show impaired maturation in ARID1B+/- neural organoids. Molecularly, a reduction in chromatin accessibility of genomic regions targeted by TCF-like, NFI-like, and ARID-like transcription factors drives the differential expression of genes required for corpus callosum (CC) development. Through an in vitro model of the CC tract, we demonstrate that this transcriptional dysregulation impairs the formation of long-range axonal projections, causing structural underconnectivity. Our study uncovers new functions of the mSWI/SNF during human corticogenesis, identifying cell-autonomous axonogenesis defects in SATB2+ neurons as a cause of ACC in ARID1B patients.
Collapse
Affiliation(s)
- Catarina Martins-Costa
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, 1030 Vienna, Austria
| | - Andrea Wiegers
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Vincent A Pham
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Jaydeep Sidhaye
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Balint Doleschall
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, 1030 Vienna, Austria
| | - Maria Novatchkova
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Thomas Lendl
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Marielle Piber
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Angela Peer
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Paul Möseneder
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Marlene Stuempflen
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Siu Yu A Chow
- Institute of Industrial Science, The University of Tokyo, 153-8505 Tokyo, Japan; Institute for AI and Beyond, The University of Tokyo, 113-0032 Tokyo, Japan
| | - Rainer Seidl
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Daniela Prayer
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Romana Höftberger
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria
| | - Gregor Kasprian
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Yoshiho Ikeuchi
- Institute of Industrial Science, The University of Tokyo, 153-8505 Tokyo, Japan; Institute for AI and Beyond, The University of Tokyo, 113-0032 Tokyo, Japan
| | - Nina S Corsini
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria.
| | - Jürgen A Knoblich
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria; Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
13
|
Prem S, Dev B, Peng C, Mehta M, Alibutud R, Connacher RJ, St Thomas M, Zhou X, Matteson P, Xing J, Millonig JH, DiCicco-Bloom E. Dysregulation of mTOR signaling mediates common neurite and migration defects in both idiopathic and 16p11.2 deletion autism neural precursor cells. eLife 2024; 13:e82809. [PMID: 38525876 PMCID: PMC11003747 DOI: 10.7554/elife.82809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 03/04/2024] [Indexed: 03/26/2024] Open
Abstract
Autism spectrum disorder (ASD) is defined by common behavioral characteristics, raising the possibility of shared pathogenic mechanisms. Yet, vast clinical and etiological heterogeneity suggests personalized phenotypes. Surprisingly, our iPSC studies find that six individuals from two distinct ASD subtypes, idiopathic and 16p11.2 deletion, have common reductions in neural precursor cell (NPC) neurite outgrowth and migration even though whole genome sequencing demonstrates no genetic overlap between the datasets. To identify signaling differences that may contribute to these developmental defects, an unbiased phospho-(p)-proteome screen was performed. Surprisingly despite the genetic heterogeneity, hundreds of shared p-peptides were identified between autism subtypes including the mTOR pathway. mTOR signaling alterations were confirmed in all NPCs across both ASD subtypes, and mTOR modulation rescued ASD phenotypes and reproduced autism NPC-associated phenotypes in control NPCs. Thus, our studies demonstrate that genetically distinct ASD subtypes have common defects in neurite outgrowth and migration which are driven by the shared pathogenic mechanism of mTOR signaling dysregulation.
Collapse
Affiliation(s)
- Smrithi Prem
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical SchoolPiscatawayUnited States
- Graduate Program in Neuroscience, Rutgers UniversityPiscatawayUnited States
| | - Bharati Dev
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical SchoolPiscatawayUnited States
| | - Cynthia Peng
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical SchoolPiscatawayUnited States
| | - Monal Mehta
- Graduate Program in Neuroscience, Rutgers UniversityPiscatawayUnited States
- Center for Advanced Biotechnology and Medicine, Rutgers UniversityPiscatawayUnited States
| | - Rohan Alibutud
- Department of Genetics, Rutgers UniversityPiscatawayUnited States
| | - Robert J Connacher
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical SchoolPiscatawayUnited States
- Graduate Program in Neuroscience, Rutgers UniversityPiscatawayUnited States
| | - Madeline St Thomas
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical SchoolPiscatawayUnited States
- Graduate Program in Neuroscience, Rutgers UniversityPiscatawayUnited States
| | - Xiaofeng Zhou
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical SchoolPiscatawayUnited States
| | - Paul Matteson
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical SchoolPiscatawayUnited States
- Center for Advanced Biotechnology and Medicine, Rutgers UniversityPiscatawayUnited States
| | - Jinchuan Xing
- Department of Genetics, Rutgers UniversityPiscatawayUnited States
| | - James H Millonig
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical SchoolPiscatawayUnited States
- Center for Advanced Biotechnology and Medicine, Rutgers UniversityPiscatawayUnited States
| | - Emanuel DiCicco-Bloom
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical SchoolPiscatawayUnited States
- Department of Pediatrics, Rutgers Robert Wood Johnson Medical SchoolNew BrunswickUnited States
| |
Collapse
|
14
|
Seigfried FA, Britsch S. The Role of Bcl11 Transcription Factors in Neurodevelopmental Disorders. BIOLOGY 2024; 13:126. [PMID: 38392344 PMCID: PMC10886639 DOI: 10.3390/biology13020126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/05/2024] [Accepted: 02/10/2024] [Indexed: 02/24/2024]
Abstract
Neurodevelopmental disorders (NDDs) comprise a diverse group of diseases, including developmental delay, autism spectrum disorder (ASD), intellectual disability (ID), and attention-deficit/hyperactivity disorder (ADHD). NDDs are caused by aberrant brain development due to genetic and environmental factors. To establish specific and curative therapeutic approaches, it is indispensable to gain precise mechanistic insight into the cellular and molecular pathogenesis of NDDs. Mutations of BCL11A and BCL11B, two closely related, ultra-conserved zinc-finger transcription factors, were recently reported to be associated with NDDs, including developmental delay, ASD, and ID, as well as morphogenic defects such as cerebellar hypoplasia. In mice, Bcl11 transcription factors are well known to orchestrate various cellular processes during brain development, for example, neural progenitor cell proliferation, neuronal migration, and the differentiation as well as integration of neurons into functional circuits. Developmental defects observed in both, mice and humans display striking similarities, suggesting Bcl11 knockout mice provide excellent models for analyzing human disease. This review offers a comprehensive overview of the cellular and molecular functions of Bcl11a and b and links experimental research to the corresponding NDDs observed in humans. Moreover, it outlines trajectories for future translational research that may help to better understand the molecular basis of Bcl11-dependent NDDs as well as to conceive disease-specific therapeutic approaches.
Collapse
Affiliation(s)
| | - Stefan Britsch
- Institute of Molecular and Cellular Anatomy, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany;
| |
Collapse
|
15
|
Wang N, Wan R, Tang K. Transcriptional regulation in the development and dysfunction of neocortical projection neurons. Neural Regen Res 2024; 19:246-254. [PMID: 37488873 PMCID: PMC10503610 DOI: 10.4103/1673-5374.379039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/10/2023] [Accepted: 05/17/2023] [Indexed: 07/26/2023] Open
Abstract
Glutamatergic projection neurons generate sophisticated excitatory circuits to integrate and transmit information among different cortical areas, and between the neocortex and other regions of the brain and spinal cord. Appropriate development of cortical projection neurons is regulated by certain essential events such as neural fate determination, proliferation, specification, differentiation, migration, survival, axonogenesis, and synaptogenesis. These processes are precisely regulated in a tempo-spatial manner by intrinsic factors, extrinsic signals, and neural activities. The generation of correct subtypes and precise connections of projection neurons is imperative not only to support the basic cortical functions (such as sensory information integration, motor coordination, and cognition) but also to prevent the onset and progression of neurodevelopmental disorders (such as intellectual disability, autism spectrum disorders, anxiety, and depression). This review mainly focuses on the recent progress of transcriptional regulations on the development and diversity of neocortical projection neurons and the clinical relevance of the failure of transcriptional modulations.
Collapse
Affiliation(s)
- Ningxin Wang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong Province, China
| | - Rong Wan
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong Province, China
| | - Ke Tang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong Province, China
| |
Collapse
|
16
|
Yamaguchi M, Huynh MA, Chiyonobu T, Yoshida H. Knockdown of Chronophage in the nervous system mimics features of neurodevelopmental disorders caused by BCL11A/B variants. Exp Cell Res 2023; 433:113827. [PMID: 37926342 DOI: 10.1016/j.yexcr.2023.113827] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 11/07/2023]
Abstract
Neurodevelopmental disorders (NDD) are a group of disorders that include intellectual disability. Although several genes have been implicated in NDD, the molecular mechanisms underlying its pathogenesis remain unclear. Therefore, it is important to develop novel models to analyze the functions of NDD-causing genes in vivo. Recently, rare pathogenic variants of the B-cell lymphoma/leukemia11A/B (BCL11A/B) gene have been identified in several patients with NDD. Drosophila carries the Chronophage (Cph) gene, which has been predicted to be a homolog of BCL11A/B based on the conservation of the amino acid sequence. In the present study, we investigated whether nervous system-specific knockdown of Cph mimics NDD phenotypes in Drosophila. Nervous system-specific knockdown of Cph induced learning and locomotor defects in larvae and epilepsy-like behaviors in adults. The number of synaptic branches was also elevated in the larval neuromuscular junction without a corresponding increase in the number of boutons. Furthermore, the expression levels of putative target genes that are Drosophila homologs of the mammalian BCL11 target genes were decreased in Cph knockdown flies. These results suggest that Cph knockdown flies are a promising model for investigating the pathology of NDD-induced BCL11A/B dysfunction.
Collapse
Affiliation(s)
- Mizuki Yamaguchi
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan.
| | - Man Anh Huynh
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Tomohiro Chiyonobu
- Department of Molecular Diagnostics and Therapeutics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Hideki Yoshida
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan; Advanced Insect Research Promotion Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan.
| |
Collapse
|
17
|
Qu Y, Lim JJY, An O, Yang H, Toh YC, Chua JJE. FEZ1 participates in human embryonic brain development by modulating neuronal progenitor subpopulation specification and migrations. iScience 2023; 26:108497. [PMID: 38213789 PMCID: PMC10783620 DOI: 10.1016/j.isci.2023.108497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 09/13/2023] [Accepted: 11/17/2023] [Indexed: 01/13/2024] Open
Abstract
Mutations in the human fasciculation and elongation protein zeta 1 (FEZ1) gene are found in schizophrenia and Jacobsen syndrome patients. Here, using human cerebral organoids (hCOs), we show that FEZ1 expression is turned on early during brain development and is detectable in both neuroprogenitor subtypes and immature neurons. FEZ1 deletion disrupts expression of neuronal and synaptic development genes. Using single-cell RNA sequencing, we detected abnormal expansion of homeodomain-only protein homeobox (HOPX)- outer radial glia (oRG), concurrent with a reduction of HOPX+ oRG, in FEZ1-null hCOs. HOPX- oRGs show higher cell mobility as compared to HOPX+ oRGs. Ectopic localization of neuroprogenitors to the outer layer is seen in FEZ1-null hCOs. Anomalous encroachment of TBR2+ intermediate progenitors into CTIP2+ deep layer neurons further indicated abnormalities in cortical layer formation these hCOs. Collectively, our findings highlight the involvement of FEZ1 in early cortical brain development and how it contributes to neurodevelopmental disorders.
Collapse
Affiliation(s)
- Yinghua Qu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Jonathan Jun-Yong Lim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
- LSI Neurobiology Programme, National University of Singapore, Singapore 117456, Singapore
| | - Omer An
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Henry Yang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Yi-Chin Toh
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4059, Australia
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - John Jia En Chua
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
- LSI Neurobiology Programme, National University of Singapore, Singapore 117456, Singapore
- Institute for Molecular and Cell Biology, A∗STAR, Singapore 138473, Singapore
| |
Collapse
|
18
|
Wang X, Zhang Z, Zuo W, Wang D, Yang F, Liu Q, Xiao Y. Case Report: Identification of microduplication in the chromosomal 2p16.1p15 region in an infant suffering from pulmonary arterial hypertension. Front Cardiovasc Med 2023; 10:1219480. [PMID: 37937284 PMCID: PMC10626460 DOI: 10.3389/fcvm.2023.1219480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/03/2023] [Indexed: 11/09/2023] Open
Abstract
This study reports the first case of a patient with chromosomal 2p16.1p15 microduplication syndrome complicated by pulmonary arterial hypertension (PAH). A female infant was admitted to the hospital suffering from dyskinesia and developmental delay, and conventional echocardiography revealed an atrial septal defect (ASD), which was not taken seriously or treated at that time. Two years later, preoperative right heart catheterization for ASD closure revealed a mean pulmonary artery pressure (mPAP) of 45 mmHg. The mPAP was reduced, and the condition was stabilized after drug therapy. A genomic copy number duplication (3×) of at least 2.58 Mb in the 2p16.1p15 region on the paternal chromosome was revealed. Multiple Online Mendelian Inheritance in Man (OMIM) genes are involved in this genomic region, such as BCL11A, EHBP1, FAM161A, PEX13, and REL. EHBP1 promotes a molecular phenotypic transformation of pulmonary vascular endothelial cells and is thought to be involved in the rapidly developing PAH of this infant. Collectively, our findings contribute to the knowledge of the genes involved and the clinical manifestations of the 2p16.1p15 microduplication syndrome. Moreover, clinicians should be alert to the possibility of PAH and take early drug intervention when facing patients with 2p16.1p15 microduplications.
Collapse
Affiliation(s)
- Xun Wang
- Department of Cardiology, Hunan Children’s Hospital, Changsha, China
| | - Zeying Zhang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Wanyun Zuo
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Dan Wang
- Department of Cardiology, Hunan Children’s Hospital, Changsha, China
| | - Fan Yang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qiming Liu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yunbin Xiao
- Department of Cardiology, Hunan Children’s Hospital, Changsha, China
| |
Collapse
|
19
|
Brugmans AK, Walter C, Moreno N, Göbel C, Holdhof D, de Faria FW, Hotfilder M, Jeising D, Frühwald MC, Skryabin BV, Rozhdestvensky TS, Wachsmuth L, Faber C, Dugas M, Varghese J, Schüller U, Albert TK, Kerl K. A Carboxy-terminal Smarcb1 Point Mutation Induces Hydrocephalus Formation and Affects AP-1 and Neuronal Signalling Pathways in Mice. Cell Mol Neurobiol 2023; 43:3511-3526. [PMID: 37219662 PMCID: PMC10477118 DOI: 10.1007/s10571-023-01361-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/08/2023] [Indexed: 05/24/2023]
Abstract
The BAF (BRG1/BRM-associated factor) chromatin remodelling complex is essential for the regulation of DNA accessibility and gene expression during neuronal differentiation. Mutations of its core subunit SMARCB1 result in a broad spectrum of pathologies, including aggressive rhabdoid tumours or neurodevelopmental disorders. Other mouse models have addressed the influence of a homo- or heterozygous loss of Smarcb1, yet the impact of specific non-truncating mutations remains poorly understood. Here, we have established a new mouse model for the carboxy-terminal Smarcb1 c.1148del point mutation, which leads to the synthesis of elongated SMARCB1 proteins. We have investigated its impact on brain development in mice using magnetic resonance imaging, histology, and single-cell RNA sequencing. During adolescence, Smarcb11148del/1148del mice demonstrated rather slow weight gain and frequently developed hydrocephalus including enlarged lateral ventricles. In embryonic and neonatal stages, mutant brains did not differ anatomically and histologically from wild-type controls. Single-cell RNA sequencing of brains from newborn mutant mice revealed that a complete brain including all cell types of a physiologic mouse brain is formed despite the SMARCB1 mutation. However, neuronal signalling appeared disturbed in newborn mice, since genes of the AP-1 transcription factor family and neurite outgrowth-related transcripts were downregulated. These findings support the important role of SMARCB1 in neurodevelopment and extend the knowledge of different Smarcb1 mutations and their associated phenotypes.
Collapse
Affiliation(s)
- Aliska K Brugmans
- Department of Paediatric Haematology and Oncology, University Children's Hospital Münster, 48149, Münster, Germany
| | - Carolin Walter
- Department of Paediatric Haematology and Oncology, University Children's Hospital Münster, 48149, Münster, Germany
- Institute of Medical Informatics, University of Münster, 48149, Münster, Germany
| | - Natalia Moreno
- Department of Paediatric Haematology and Oncology, University Children's Hospital Münster, 48149, Münster, Germany
| | - Carolin Göbel
- Department of Paediatric Haematology and Oncology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
- Research Institute Children's Cancer Center, 20251, Hamburg, Germany
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Dörthe Holdhof
- Department of Paediatric Haematology and Oncology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
- Research Institute Children's Cancer Center, 20251, Hamburg, Germany
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Flavia W de Faria
- Department of Paediatric Haematology and Oncology, University Children's Hospital Münster, 48149, Münster, Germany
| | - Marc Hotfilder
- Department of Paediatric Haematology and Oncology, University Children's Hospital Münster, 48149, Münster, Germany
| | - Daniela Jeising
- Department of Paediatric Haematology and Oncology, University Children's Hospital Münster, 48149, Münster, Germany
| | - Michael C Frühwald
- Swabian Children's Cancer Center, Paediatrics and Adolescent Medicine, University Medical Center Augsburg, 86156, Augsburg, Germany
| | - Boris V Skryabin
- Medical Faculty, Core Facility TRAnsgenic Animal and Genetic Engineering Models (TRAM), University of Münster, 48149, Münster, Germany
| | - Timofey S Rozhdestvensky
- Medical Faculty, Core Facility TRAnsgenic Animal and Genetic Engineering Models (TRAM), University of Münster, 48149, Münster, Germany
| | - Lydia Wachsmuth
- Clinic of Radiology, Translational Research Imaging Center (TRIC), University of Münster, 48149, Münster, Germany
| | - Cornelius Faber
- Clinic of Radiology, Translational Research Imaging Center (TRIC), University of Münster, 48149, Münster, Germany
| | - Martin Dugas
- Institute of Medical Informatics, University of Münster, 48149, Münster, Germany
- Institute of Medical Informatics, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Julian Varghese
- Institute of Medical Informatics, University of Münster, 48149, Münster, Germany
| | - Ulrich Schüller
- Department of Paediatric Haematology and Oncology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
- Research Institute Children's Cancer Center, 20251, Hamburg, Germany
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Thomas K Albert
- Department of Paediatric Haematology and Oncology, University Children's Hospital Münster, 48149, Münster, Germany
| | - Kornelius Kerl
- Department of Paediatric Haematology and Oncology, University Children's Hospital Münster, 48149, Münster, Germany.
| |
Collapse
|
20
|
Wiegreffe C, Ehricke S, Schmid L, Andratschke J, Britsch S. Using i-GONAD for Cell-Type-Specific and Systematic Analysis of Developmental Transcription Factors In Vivo. BIOLOGY 2023; 12:1236. [PMID: 37759634 PMCID: PMC10526018 DOI: 10.3390/biology12091236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023]
Abstract
Transcription factors (TFs) regulate gene expression via direct DNA binding together with cofactors and in chromatin remodeling complexes. Their function is thus regulated in a spatiotemporal and cell-type-specific manner. To analyze the functions of TFs in a cell-type-specific context, genome-wide DNA binding, as well as the identification of interacting proteins, is required. We used i-GONAD (improved genome editing via oviductal nucleic acids delivery) in mice to genetically modify TFs by adding fluorescent reporter and affinity tags that can be exploited for the imaging and enrichment of target cells as well as chromatin immunoprecipitation and pull-down assays. As proof-of-principle, we showed the functional genetic modification of the closely related developmental TFs, Bcl11a and Bcl11b, in defined cell types of newborn mice. i-GONAD is a highly efficient procedure for modifying TF-encoding genes via the integration of small insertions, such as reporter and affinity tags. The novel Bcl11a and Bcl11b mouse lines, described in this study, will be used to improve our understanding of the Bcl11 family's function in neurodevelopment and associated disease.
Collapse
Affiliation(s)
- Christoph Wiegreffe
- Medical Faculty, Institute of Molecular and Cellular Anatomy, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | | | | | | | | |
Collapse
|
21
|
Zhang Y, Shen Y, Zhao L, Zhao Q, Zhao L, Yi S. Transcription Factor BCL11A Regulates Schwann Cell Behavior During Peripheral Nerve Regeneration. Mol Neurobiol 2023; 60:5352-5365. [PMID: 37316757 DOI: 10.1007/s12035-023-03432-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/05/2023] [Indexed: 06/16/2023]
Abstract
Nerve injury-induced Schwann cell dedifferentiation helps to construct a favorable microenvironment for axon growth. Transcription factors regulate cell reprogramming and thus may be critical for Schwann cell phenotype switch during peripheral nerve regeneration. Here, we show that transcription factor B-cell lymphoma/leukemia 11A (BCL11A) is up-regulated in Schwann cells of injured peripheral nerves. Bcl11a silencing suppresses Schwann cell viability, decreases Schwann cell proliferation and migration rates, and impairs the debris clearance ability of Schwann cells. Reduced Bcl11a in injured peripheral nerves results in restricted axon elongation and myelin wrapping, leading to recovery failure. Mechanistically, we demonstrate that BCL11A may mediate Schwann cell activity through binding to the promoter of nuclear receptor subfamily 2 group F member 2 (Nr2f2) and regulating Nr2f2 expression. Collectively, we conclude that BCL11A is essential for Schwann cell activation and peripheral nerve regeneration, providing a potential therapeutic target for the treatment of peripheral nerve injury.
Collapse
Affiliation(s)
- Yunsong Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Yinying Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Li Zhao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Qian Zhao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Lili Zhao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China.
| | - Sheng Yi
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
22
|
Hao J, Han X, Huang H, Yu X, Fang J, Zhao J, Prayson RA, Bao S, Yu JS. Sema3C signaling is an alternative activator of the canonical WNT pathway in glioblastoma. Nat Commun 2023; 14:2262. [PMID: 37080989 PMCID: PMC10119166 DOI: 10.1038/s41467-023-37397-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/15/2023] [Indexed: 04/22/2023] Open
Abstract
The Wnt pathway is frequently dysregulated in many cancers, underscoring it as a therapeutic target. Wnt inhibitors have uniformly failed in clinical trials. Here, we report a mechanism of WNT pathway activation through the Semaphorin 3 C neurodevelopmental program in glioma stem-like cells. Sema3C directs β-catenin nuclear accumulation in a Rac1-dependent process, leading to transactivation of Wnt target genes. Sema3C-driven Wnt signaling occurred despite suppression of Wnt ligand secretion, suggesting that Sema3C drives canonical Wnt signaling independent of Wnt ligand binding. In a mouse model of glioblastoma, combined depletion of Sema3C and β-catenin partner TCF1 extended animal survival more than single target inhibition alone. In human glioblastoma, Sema3C expression and Wnt pathway activation were highly concordant. Since Sema3C is frequently overexpressed in glioblastoma, Sema3C signaling may be a significant mechanism of resistance to upstream Wnt pathway inhibitors. Dual targeting of Sema3C and Wnt pathways may achieve clinically significant Wnt pathway inhibition.
Collapse
Affiliation(s)
- Jing Hao
- Center for Cancer Stem Cell Biology, Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Xiangzi Han
- Center for Cancer Stem Cell Biology, Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Haidong Huang
- Center for Cancer Stem Cell Biology, Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Xingjiang Yu
- Center for Cancer Stem Cell Biology, Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Jiankang Fang
- Center for Cancer Stem Cell Biology, Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Jianjun Zhao
- Center for Cancer Stem Cell Biology, Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Richard A Prayson
- Department of Anatomic Pathology, Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
- Burkhardt Brain Tumor and Neuro-Oncology Center, Neurological Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Shideng Bao
- Center for Cancer Stem Cell Biology, Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Jennifer S Yu
- Center for Cancer Stem Cell Biology, Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA.
- Burkhardt Brain Tumor and Neuro-Oncology Center, Neurological Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA.
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA.
| |
Collapse
|
23
|
Miceli M, Failla P, Saccuzzo L, Galesi O, Amata S, Romano C, Bonaglia MC, Fichera M. Trait - driven analysis of the 2p15p16.1 microdeletion syndrome suggests a complex pattern of interactions between candidate genes. Genes Genomics 2023; 45:491-505. [PMID: 36807877 PMCID: PMC10027778 DOI: 10.1007/s13258-023-01369-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/27/2023] [Indexed: 02/23/2023]
Abstract
BACKGROUND Individuals with the 2p15p16.1 microdeletion syndrome share a complex phenotype including neurodevelopmental delay, brain malformations, microcephaly, and autistic behavior. The analysis of the shortest region of overlap (SRO) between deletions in ~ 40 patients has led to the identification of two critical regions and four strongly candidate genes (BCL11A, REL, USP34 and XPO1). However, the delineation of their role in the occurrence of specific traits is hampered by their incomplete penetrance. OBJECTIVE To better delineate the role of hemizygosity of specific regions in selected traits by leveraging information both from penetrant and non - penetrant deletions. METHODS Deletions in patients that do not present a specific trait cannot contribute to delineate the SROs. We recently developed a probabilistic model that, by considering also the non - penetrant deletions, allows a more reliable assignment of peculiar traits to specific genomic segments. We apply this method adding two new patients to the published cases. RESULTS Our results delineate an intricate pattern of genotype - phenotype correlation where BCL11A emerges as the main gene for autistic behavior while USP34 and/or XPO1 haploinsufficiency are mainly associated with microcephaly, hearing loss and IUGR. BCL11A, USP34 and XPO1 genes are broadly related with brain malformations albeit with distinct patterns of brain damage. CONCLUSIONS The observed penetrance of deletions encompassing different SROs and that predicted when considering each single SRO as acting independently, may reflect a more complex model than the additive one. Our approach may improve the genotype/phenotype correlation and may help to identify specific pathogenic mechanisms in contiguous gene syndromes.
Collapse
Affiliation(s)
- Martina Miceli
- Department of Biomedical and Biotechnological Sciences, Medical Genetics, University of Catania, Catania, Italy
| | | | - Lucia Saccuzzo
- Department of Biomedical and Biotechnological Sciences, Medical Genetics, University of Catania, Catania, Italy
| | | | | | - Corrado Romano
- Department of Biomedical and Biotechnological Sciences, Medical Genetics, University of Catania, Catania, Italy
- Research Unit of Rare Diseases and Neurodevelopmental Disorders, Oasi Research Institute-IRCCS, Troina, Italy
| | - Maria Clara Bonaglia
- Cytogenetics Laboratory, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Lecco, Italy
| | - Marco Fichera
- Department of Biomedical and Biotechnological Sciences, Medical Genetics, University of Catania, Catania, Italy.
- Research Unit of Rare Diseases and Neurodevelopmental Disorders, Oasi Research Institute-IRCCS, Troina, Italy.
| |
Collapse
|
24
|
Jiang D, Li T, Guo C, Tang TS, Liu H. Small molecule modulators of chromatin remodeling: from neurodevelopment to neurodegeneration. Cell Biosci 2023; 13:10. [PMID: 36647159 PMCID: PMC9841685 DOI: 10.1186/s13578-023-00953-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/03/2023] [Indexed: 01/18/2023] Open
Abstract
The dynamic changes in chromatin conformation alter the organization and structure of the genome and further regulate gene transcription. Basically, the chromatin structure is controlled by reversible, enzyme-catalyzed covalent modifications to chromatin components and by noncovalent ATP-dependent modifications via chromatin remodeling complexes, including switch/sucrose nonfermentable (SWI/SNF), inositol-requiring 80 (INO80), imitation switch (ISWI) and chromodomain-helicase DNA-binding protein (CHD) complexes. Recent studies have shown that chromatin remodeling is essential in different stages of postnatal and adult neurogenesis. Chromatin deregulation, which leads to defects in epigenetic gene regulation and further pathological gene expression programs, often causes a wide range of pathologies. This review first gives an overview of the regulatory mechanisms of chromatin remodeling. We then focus mainly on discussing the physiological functions of chromatin remodeling, particularly histone and DNA modifications and the four classes of ATP-dependent chromatin-remodeling enzymes, in the central and peripheral nervous systems under healthy and pathological conditions, that is, in neurodegenerative disorders. Finally, we provide an update on the development of potent and selective small molecule modulators targeting various chromatin-modifying proteins commonly associated with neurodegenerative diseases and their potential clinical applications.
Collapse
Affiliation(s)
- Dongfang Jiang
- grid.458458.00000 0004 1792 6416State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, 100101 China
| | - Tingting Li
- grid.458458.00000 0004 1792 6416State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, 100101 China
| | - Caixia Guo
- grid.9227.e0000000119573309Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, 100101 China
| | - Tie-Shan Tang
- grid.458458.00000 0004 1792 6416State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China ,grid.512959.3Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, 100101 China
| | - Hongmei Liu
- grid.458458.00000 0004 1792 6416State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China ,grid.512959.3Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101 China
| |
Collapse
|
25
|
Differential Regulation of the BDNF Gene in Cortical and Hippocampal Neurons. J Neurosci 2022; 42:9110-9128. [PMID: 36316156 PMCID: PMC9761680 DOI: 10.1523/jneurosci.2535-21.2022] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 09/18/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a widely expressed neurotrophin that supports the survival, differentiation, and signaling of various neuronal populations. Although it has been well described that expression of BDNF is strongly regulated by neuronal activity, little is known whether regulation of BDNF expression is similar in different brain regions. Here, we focused on this fundamental question using neuronal populations obtained from rat cerebral cortices and hippocampi of both sexes. First, we thoroughly characterized the role of the best-described regulators of BDNF gene - cAMP response element binding protein (CREB) family transcription factors, and show that activity-dependent BDNF expression depends more on CREB and the coactivators CREB binding protein (CBP) and CREB-regulated transcriptional coactivator 1 (CRTC1) in cortical than in hippocampal neurons. Our data also reveal an important role of CREB in the early induction of BDNF mRNA expression after neuronal activity and only modest contribution after prolonged neuronal activity. We further corroborated our findings at BDNF protein level. To determine the transcription factors regulating BDNF expression in these rat brain regions in addition to CREB family, we used in vitro DNA pulldown assay coupled with mass spectrometry, chromatin immunoprecipitation (ChIP), and bioinformatics, and propose a number of neurodevelopmentally important transcription factors, such as FOXP1, SATB2, RAI1, BCL11A, and TCF4 as brain region-specific regulators of BDNF expression. Together, our data reveal complicated brain region-specific fine-tuning of BDNF expression.SIGNIFICANCE STATEMENT To date, majority of the research has focused on the regulation of brain-derived neurotrophic factor (BDNF) in the brain but much less is known whether the regulation of BDNF expression is universal in different brain regions and neuronal populations. Here, we report that the best described regulators of BDNF gene from the cAMP-response element binding protein (CREB) transcription factor family have a more profound role in the activity-dependent regulation of BDNF in cortex than in hippocampus. Our results indicate a brain region-specific fine tuning of BDNF expression. Moreover, we have used unbiased determination of novel regulators of the BDNF gene and report a number of neurodevelopmentally important transcription factors as novel potential regulators of the BDNF expression.
Collapse
|
26
|
Jin Q, Chen Y, Du S, Xu D, Yue J, Cai L, Yuan X. BCL11A Facilitates Cell Proliferation and Metastasis in Neuroblastoma via Regulating the PI3K/Akt Signaling Pathway. Curr Cancer Drug Targets 2022; 22:919-930. [PMID: 35909289 PMCID: PMC9900700 DOI: 10.2174/1568009622666220728123748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/18/2022] [Accepted: 04/25/2022] [Indexed: 11/22/2022]
Abstract
PURPOSE The study aims to access the value of B-cell lymphoma/leukemia 11A (BCL11A) in the prognosis of patients with neuroblastoma (NB) and to explore its role and possible mechanism in NB. METHODS Tumor specimens from 53 children with neuroblastoma were evaluated for the relationship between BCL11A expression level and prognosis of NB patients. Online datasets like SEQC and Asgharzadeh were analyzed to further check out the suppose.The role of BCL11A in the proliferation and migration of NB cells was studied by functional experiments such as CCK8, colony formation, flow cytometry, transwell and wound healing assay after knocking down BCL11A by small interfering RNA (siRNA) in vitro. The protein makers of the potential pathways were tested by western blot. RESULTS High expression of BCL11A in NB patients was closely correlated with high-risk and poor prognosis. The proliferation and migration abilities of NB cell lines SK-N-BE(2) and IMR-32 were significantly impaired by silencing BCL11A. Downregulation of BCL11A expression level in NB cells inhibited the epithelial-mesenchymal transition (EMT) process and affected the PI3K/Akt signaling pathway. CONCLUSION As a prognostic indicator of survival in NB patients, BCL11A might serve as a potential therapeutic target. BCL11A played a regulatory role in cell proliferation, invasion, and migration in NB, which may be through the PI3K/AKT signaling pathway and induce EMT.
Collapse
Affiliation(s)
- Qianya Jin
- Department of Pediatric Hematology/Oncology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China;,Department of Medicine, Quzhou College of Technology, Quzhou, Zhejiang Province 324000, China; ,This author contributed equally to this work.
| | - Yanmin Chen
- Department of Pediatric Hematology/Oncology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China;,This author contributed equally to this work.
| | - Shibei Du
- Department of Pediatric Hematology/Oncology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Dongqing Xu
- Department of Pediatric Hematology/Oncology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Juanqing Yue
- Department of Pathology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Lei Cai
- Department of Pathology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Xiaojun Yuan
- Department of Pediatric Hematology/Oncology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China;,Address correspondence to this author at the Department of Pediatric Hematology/Oncology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Tel: +86-21-25078360; E-mail:
| |
Collapse
|
27
|
Song S, Creus Muncunill J, Galicia Aguirre C, Tshilenge KT, Hamilton BW, Gerencser AA, Benlhabib H, Cirnaru MD, Leid M, Mooney SD, Ellerby LM, Ehrlich ME. Postnatal Conditional Deletion of Bcl11b in Striatal Projection Neurons Mimics the Transcriptional Signature of Huntington's Disease. Biomedicines 2022; 10:2377. [PMID: 36289639 PMCID: PMC9598565 DOI: 10.3390/biomedicines10102377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/15/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
The dysregulation of striatal gene expression and function is linked to multiple diseases, including Huntington's disease (HD), Parkinson's disease, X-linked dystonia-parkinsonism (XDP), addiction, autism, and schizophrenia. Striatal medium spiny neurons (MSNs) make up 90% of the neurons in the striatum and are critical to motor control. The transcription factor, Bcl11b (also known as Ctip2), is required for striatal development, but the function of Bcl11b in adult MSNs in vivo has not been investigated. We conditionally deleted Bcl11b specifically in postnatal MSNs and performed a transcriptomic and behavioral analysis on these mice. Multiple enrichment analyses showed that the D9-Cre-Bcl11btm1.1Leid transcriptional profile was similar to the HD gene expression in mouse and human data sets. A Gene Ontology enrichment analysis linked D9-Cre-Bcl11btm1.1Leid to calcium, synapse organization, specifically including the dopaminergic synapse, protein dephosphorylation, and HDAC-signaling, commonly dysregulated pathways in HD. D9-Cre-Bcl11btm1.1Leid mice had decreased DARPP-32/Ppp1r1b in MSNs and behavioral deficits, demonstrating the dysregulation of a subtype of the dopamine D2 receptor expressing MSNs. Finally, in human HD isogenic MSNs, the mislocalization of BCL11B into nuclear aggregates points to a mechanism for BCL11B loss of function in HD. Our results suggest that BCL11B is important for the function and maintenance of mature MSNs and Bcl11b loss of function drives, in part, the transcriptomic and functional changes in HD.
Collapse
Affiliation(s)
- Sicheng Song
- Department of Biomedical Informatics and Medical Education, School of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Jordi Creus Muncunill
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Carlos Galicia Aguirre
- Buck Institute for Research on Aging, Novato, CA 94945, USA
- Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Ave, Los Angeles, CA 90893, USA
| | | | - B. Wade Hamilton
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Houda Benlhabib
- Department of Biomedical Informatics and Medical Education, School of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Maria-Daniela Cirnaru
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mark Leid
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Sean D. Mooney
- Department of Biomedical Informatics and Medical Education, School of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Lisa M. Ellerby
- Buck Institute for Research on Aging, Novato, CA 94945, USA
- Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Ave, Los Angeles, CA 90893, USA
| | - Michelle E. Ehrlich
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
28
|
Du H, Wang Z, Guo R, Yang L, Liu G, Zhang Z, Xu Z, Tian Y, Yang Z, Li X, Chen B. Transcription factors Bcl11a and Bcl11b are required for the production and differentiation of cortical projection neurons. Cereb Cortex 2022; 32:3611-3632. [PMID: 34963132 PMCID: PMC9433425 DOI: 10.1093/cercor/bhab437] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/02/2021] [Indexed: 12/31/2022] Open
Abstract
The generation and differentiation of cortical projection neurons are extensively regulated by interactive programs of transcriptional factors. Here, we report the cooperative functions of transcription factors Bcl11a and Bcl11b in regulating the development of cortical projection neurons. Among the cells derived from the cortical neural stem cells, Bcl11a is expressed in the progenitors and the projection neurons, while Bcl11b expression is restricted to the projection neurons. Using conditional knockout mice, we show that deficiency of Bcl11a leads to reduced proliferation and precocious differentiation of cortical progenitor cells, which is exacerbated when Bcl11b is simultaneously deleted. Besides defective neuronal production, the differentiation of cortical projection neurons is blocked in the absence of both Bcl11a and Bcl11b: Expression of both pan-cortical and subtype-specific genes is reduced or absent; axonal projections to the thalamus, hindbrain, spinal cord, and contralateral cortical hemisphere are reduced or absent. Furthermore, neurogenesis-to-gliogenesis switch is accelerated in the Bcl11a-CKO and Bcl11a/b-DCKO mice. Bcl11a likely regulates neurogenesis through repressing the Nr2f1 expression. These results demonstrate that Bcl11a and Bcl11b jointly play critical roles in the generation and differentiation of cortical projection neurons and in controlling the timing of neurogenesis-to-gliogenesis switch.
Collapse
Affiliation(s)
- Heng Du
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Pediatrics, Children’s Hospital of Fudan University, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Ziwu Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Pediatrics, Children’s Hospital of Fudan University, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Rongliang Guo
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Pediatrics, Children’s Hospital of Fudan University, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Lin Yang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Pediatrics, Children’s Hospital of Fudan University, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Guoping Liu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Pediatrics, Children’s Hospital of Fudan University, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Zhuangzhi Zhang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Pediatrics, Children’s Hospital of Fudan University, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Zhejun Xu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Pediatrics, Children’s Hospital of Fudan University, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Yu Tian
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Pediatrics, Children’s Hospital of Fudan University, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Zhengang Yang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Pediatrics, Children’s Hospital of Fudan University, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Xiaosu Li
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Pediatrics, Children’s Hospital of Fudan University, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Bin Chen
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| |
Collapse
|
29
|
Wiegreffe C, Wahl T, Joos NS, Bonnefont J, Liu P, Britsch S. Developmental cell death of cortical projection neurons is controlled by a Bcl11a/Bcl6‐dependent pathway. EMBO Rep 2022; 23:e54104. [PMID: 35766181 PMCID: PMC9346488 DOI: 10.15252/embr.202154104] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 05/31/2022] [Accepted: 06/08/2022] [Indexed: 12/05/2022] Open
Abstract
Developmental neuron death plays a pivotal role in refining organization and wiring during neocortex formation. Aberrant regulation of this process results in neurodevelopmental disorders including impaired learning and memory. Underlying molecular pathways are incompletely determined. Loss of Bcl11a in cortical projection neurons induces pronounced cell death in upper‐layer cortical projection neurons during postnatal corticogenesis. We use this genetic model to explore genetic mechanisms by which developmental neuron death is controlled. Unexpectedly, we find Bcl6, previously shown to be involved in the transition of cortical neurons from progenitor to postmitotic differentiation state to provide a major checkpoint regulating neuron survival during late cortical development. We show that Bcl11a is a direct transcriptional regulator of Bcl6. Deletion of Bcl6 exerts death of cortical projection neurons. In turn, reintroduction of Bcl6 into Bcl11a mutants prevents induction of cell death in these neurons. Together, our data identify a novel Bcl11a/Bcl6‐dependent molecular pathway in regulation of developmental cell death during corticogenesis.
Collapse
Affiliation(s)
| | - Tobias Wahl
- Institute of Molecular and Cellular Anatomy Ulm University Ulm Germany
| | | | - Jerome Bonnefont
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), and ULB Neuroscience Institute (UNI) Université Libre de Bruxelles (ULB) Brussels Belgium
- VIB‐KU Leuven Center for Brain & Disease Research, KU Leuven Department of Neuroscience Leuven Brain Institute Leuven Belgium
| | - Pentao Liu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine The University of Hong Kong Hong Kong China
| | - Stefan Britsch
- Institute of Molecular and Cellular Anatomy Ulm University Ulm Germany
| |
Collapse
|
30
|
Anderson DJ, Pauler FM, McKenna A, Shendure J, Hippenmeyer S, Horwitz MS. Simultaneous brain cell type and lineage determined by scRNA-seq reveals stereotyped cortical development. Cell Syst 2022; 13:438-453.e5. [PMID: 35452605 DOI: 10.1016/j.cels.2022.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 01/21/2022] [Accepted: 03/30/2022] [Indexed: 11/30/2022]
Abstract
Mutations are acquired frequently, such that each cell's genome inscribes its history of cell divisions. Common genomic alterations involve loss of heterozygosity (LOH). LOH accumulates throughout the genome, offering large encoding capacity for inferring cell lineage. Using only single-cell RNA sequencing (scRNA-seq) of mouse brain cells, we found that LOH events spanning multiple genes are revealed as tracts of monoallelically expressed, constitutionally heterozygous single-nucleotide variants (SNVs). We simultaneously inferred cell lineage and marked developmental time points based on X chromosome inactivation and the total number of LOH events while identifying cell types from gene expression patterns. Our results are consistent with progenitor cells giving rise to multiple cortical cell types through stereotyped expansion and distinct waves of neurogenesis. This type of retrospective analysis could be incorporated into scRNA-seq pipelines and, compared with experimental approaches for determining lineage in model organisms, is applicable where genetic engineering is prohibited, such as humans.
Collapse
Affiliation(s)
- Donovan J Anderson
- Allen Discovery Center for Lineage Tracing and Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98109, USA
| | - Florian M Pauler
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | | | - Jay Shendure
- Allen Discovery Center for Lineage Tracing, Department of Genome Sciences, and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98109, USA
| | - Simon Hippenmeyer
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Marshall S Horwitz
- Allen Discovery Center for Lineage Tracing and Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
31
|
Lo T, Kushima I, Aleksic B, Kato H, Nawa Y, Hayashi Y, Otgonbayar G, Kimura H, Arioka Y, Mori D, Ozaki N. Sequencing of selected chromatin remodelling genes reveals increased burden of rare missense variants in ASD patients from the Japanese population. Int Rev Psychiatry 2022; 34:154-167. [PMID: 35699097 DOI: 10.1080/09540261.2022.2072193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Chromatin remodelling is an important process in neural development and is related to autism spectrum disorder (ASD) and schizophrenia (SCZ) aetiology. To further elucidate the involvement of chromatin remodelling genes in the genetic aetiology of ASD and SCZ in the Japanese population, we performed a case-control study. Targeted sequencing was conducted on coding regions of four BAF chromatin remodelling complex genes: SMARCA2, SMARCA4, SMARCC2, and ARID1B in 185 ASD, 432 SCZ patients, and 517 controls. 27 rare non-synonymous variants were identified in ASD and SCZ patients, including 25 missense, one in-frame deletion in SMRACA4, and one frame-shift variant in SMARCC2. Association analysis was conducted to investigate the burden of rare variants in BAF genes in ASD and SCZ patients. Significant enrichment of rare missense variants in BAF genes, but not synonymous variants, was found in ASD compared to controls. Rare pathogenic variants indicated by in silico tools were significantly enriched in ASD, but not statistically significant in SCZ. Pathogenic-predicted variants were located in disordered binding regions and may confer risk for ASD and SCZ by disrupting protein-protein interactions. Our study supports the involvement of rare missense variants of BAF genes in ASD and SCZ susceptibility.
Collapse
Affiliation(s)
- Tzuyao Lo
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Itaru Kushima
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Medical Genomics Center, Nagoya University Hospital, Nagoya, Japan
| | - Branko Aleksic
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hidekazu Kato
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshihiro Nawa
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yu Hayashi
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Gantsooj Otgonbayar
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroki Kimura
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuko Arioka
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Medical Genomics Center, Nagoya University Hospital, Nagoya, Japan.,Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya, Japan
| | - Daisuke Mori
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Brain and Mind Research Center, Nagoya University, Nagoya, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
32
|
Neha S, Dholaniya PS. The Prevailing Role of Topoisomerase 2 Beta and its Associated Genes in Neurons. Mol Neurobiol 2021; 58:6443-6459. [PMID: 34546528 DOI: 10.1007/s12035-021-02561-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 09/11/2021] [Indexed: 12/01/2022]
Abstract
Topoisomerase 2 beta (TOP2β) is an enzyme that alters the topological states of DNA by making a transient double-strand break during the transcription process. The direct interaction of TOP2β with DNA strand results in transcriptional regulation of certain genes and some studies have suggested that a particular set of genes are regulated by TOP2β, which have a prominent role in various stages of neuron from development to degeneration. In this review, we discuss the role of TOP2β in various phases of the neuron's life. Based on the existing reports, we have compiled the list of genes, which are directly regulated by the enzyme, from different studies and performed their functional classification. We discuss the role of these genes in neurogenesis, neuron migration, fate determination, differentiation and maturation, generation of neural circuits, and senescence.
Collapse
Affiliation(s)
- Neha S
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500 046, India
| | - Pankaj Singh Dholaniya
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500 046, India.
| |
Collapse
|
33
|
Tolve M, Ulusoy A, Patikas N, Islam KUS, Bodea GO, Öztürk E, Broske B, Mentani A, Wagener A, van Loo KMJ, Britsch S, Liu P, Khaled WT, Metzakopian E, Baader SL, Di Monte DA, Blaess S. The transcription factor BCL11A defines distinct subsets of midbrain dopaminergic neurons. Cell Rep 2021; 36:109697. [PMID: 34525371 DOI: 10.1016/j.celrep.2021.109697] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 07/08/2021] [Accepted: 08/18/2021] [Indexed: 10/20/2022] Open
Abstract
Midbrain dopaminergic (mDA) neurons are diverse in their projection targets, effect on behavior, and susceptibility to neurodegeneration. Little is known about the molecular mechanisms establishing this diversity during development. We show that the transcription factor BCL11A is expressed in a subset of mDA neurons in the developing and adult murine brain and in a subpopulation of pluripotent-stem-cell-derived human mDA neurons. By combining intersectional labeling and viral-mediated tracing, we demonstrate that Bcl11a-expressing mDA neurons form a highly specific subcircuit within the murine dopaminergic system. In the substantia nigra, the Bcl11a-expressing mDA subset is particularly vulnerable to neurodegeneration upon α-synuclein overexpression or oxidative stress. Inactivation of Bcl11a in murine mDA neurons increases this susceptibility further, alters the distribution of mDA neurons, and results in deficits in skilled motor behavior. In summary, BCL11A defines mDA subpopulations with highly distinctive characteristics and is required for establishing and maintaining their normal physiology.
Collapse
Affiliation(s)
- Marianna Tolve
- Neurodevelopmental Genetics, Institute of Reconstructive Neurobiology, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Ayse Ulusoy
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Nikolaos Patikas
- UK Dementia Research Institute, Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0AH, UK
| | - K Ushna S Islam
- Neurodevelopmental Genetics, Institute of Reconstructive Neurobiology, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Gabriela O Bodea
- Neurodevelopmental Genetics, Institute of Reconstructive Neurobiology, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Ece Öztürk
- Neurodevelopmental Genetics, Institute of Reconstructive Neurobiology, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Bianca Broske
- Neurodevelopmental Genetics, Institute of Reconstructive Neurobiology, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Astrid Mentani
- Neurodevelopmental Genetics, Institute of Reconstructive Neurobiology, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Antonia Wagener
- Neurodevelopmental Genetics, Institute of Reconstructive Neurobiology, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Karen M J van Loo
- Section for Translational Epilepsy Research, Department of Neuropathology, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Stefan Britsch
- Institute of Molecular and Cellular Anatomy, Ulm University, 89081 Ulm, Germany
| | - Pengtao Liu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Walid T Khaled
- Department of Pharmacology, University of Cambridge, Cambridge, CB 21PD, UK; Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, CB2 0AW, UK
| | - Emmanouil Metzakopian
- UK Dementia Research Institute, Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0AH, UK
| | - Stephan L Baader
- Institute of Anatomy, Anatomy and Cell Biology, Medical Faculty, University of Bonn, 53115 Bonn, Germany
| | - Donato A Di Monte
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Sandra Blaess
- Neurodevelopmental Genetics, Institute of Reconstructive Neurobiology, Medical Faculty, University of Bonn, 53127 Bonn, Germany.
| |
Collapse
|
34
|
D'Souza L, Channakkar AS, Muralidharan B. Chromatin remodelling complexes in cerebral cortex development and neurodevelopmental disorders. Neurochem Int 2021; 147:105055. [PMID: 33964373 PMCID: PMC7611358 DOI: 10.1016/j.neuint.2021.105055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 04/11/2021] [Accepted: 04/24/2021] [Indexed: 12/19/2022]
Abstract
The diverse number of neurons in the cerebral cortex are generated during development by neural stem cells lining the ventricle, and they continue maturing postnatally. Dynamic chromatin regulation in these neural stem cells is a fundamental determinant of the emerging property of the functional neural network, and the chromatin remodellers are critical determinants of this process. Chromatin remodellers participate in several steps of this process from proliferation, differentiation, migration leading to complex network formation which forms the basis of higher-order functions of cognition and behaviour. Here we review the role of these ATP-dependent chromatin remodellers in cortical development in health and disease and highlight several key mouse mutants of the subunits of the complexes which have revealed how the remodelling mechanisms control the cortical stem cell chromatin landscape for expression of stage-specific transcripts. Consistent with their role in cortical development, several putative risk variants in the subunits of the remodelling complexes have been identified as the underlying causes of several neurodevelopmental disorders. A basic understanding of the detailed molecular mechanism of their action is key to understating how mutations in the same networks lead to disease pathologies and perhaps pave the way for therapeutic development for these complex multifactorial disorders.
Collapse
Affiliation(s)
- Leora D'Souza
- Brain Development and Disease Mechanisms, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore Life Science Cluster, Bangalore, India
| | - Asha S Channakkar
- Brain Development and Disease Mechanisms, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore Life Science Cluster, Bangalore, India
| | - Bhavana Muralidharan
- Brain Development and Disease Mechanisms, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore Life Science Cluster, Bangalore, India.
| |
Collapse
|
35
|
Sokpor G, Kerimoglu C, Nguyen H, Pham L, Rosenbusch J, Wagener R, Nguyen HP, Fischer A, Staiger JF, Tuoc T. Loss of BAF Complex in Developing Cortex Perturbs Radial Neuronal Migration in a WNT Signaling-Dependent Manner. Front Mol Neurosci 2021; 14:687581. [PMID: 34220450 PMCID: PMC8243374 DOI: 10.3389/fnmol.2021.687581] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/20/2021] [Indexed: 12/22/2022] Open
Abstract
Radial neuronal migration is a key neurodevelopmental event indispensable for proper cortical laminar organization. Cortical neurons mainly use glial fiber guides, cell adhesion dynamics, and cytoskeletal remodeling, among other discrete processes, to radially trek from their birthplace to final layer positions. Dysregulated radial migration can engender cortical mis-lamination, leading to neurodevelopmental disorders. Epigenetic factors, including chromatin remodelers have emerged as formidable regulators of corticogenesis. Notably, the chromatin remodeler BAF complex has been shown to regulate several aspects of cortical histogenesis. Nonetheless, our understanding of how BAF complex regulates neuronal migration is limited. Here, we report that BAF complex is required for neuron migration during cortical development. Ablation of BAF complex in the developing mouse cortex caused alteration in the cortical gene expression program, leading to loss of radial migration-related factors critical for proper cortical layer formation. Of note, BAF complex inactivation in cortex caused defective neuronal polarization resulting in diminished multipolar-to-bipolar transition and eventual disruption of radial migration of cortical neurons. The abnormal radial migration and cortical mis-lamination can be partly rescued by downregulating WNT signaling hyperactivity in the BAF complex mutant cortex. By implication, the BAF complex modulates WNT signaling to establish the gene expression program required for glial fiber-dependent neuronal migration, and cortical lamination. Overall, BAF complex has been identified to be crucial for cortical morphogenesis through instructing multiple aspects of radial neuronal migration in a WNT signaling-dependent manner.
Collapse
Affiliation(s)
- Godwin Sokpor
- Institute for Neuroanatomy, University Medical Center Goettingen, Göttingen, Germany.,Department of Human Genetics, Ruhr University of Bochum, Bochum, Germany
| | - Cemil Kerimoglu
- German Center for Neurodegenerative Diseases, Göttingen, Germany
| | - Huong Nguyen
- Institute for Neuroanatomy, University Medical Center Goettingen, Göttingen, Germany.,Faculty of Biotechnology, Thai Nguyen University of Sciences, Thai Nguyen, Vietnam
| | - Linh Pham
- Institute for Neuroanatomy, University Medical Center Goettingen, Göttingen, Germany.,Department of Human Genetics, Ruhr University of Bochum, Bochum, Germany
| | - Joachim Rosenbusch
- Institute for Neuroanatomy, University Medical Center Goettingen, Göttingen, Germany
| | - Robin Wagener
- Institute for Neuroanatomy, University Medical Center Goettingen, Göttingen, Germany.,Department of Neurology, University Medical Center Heidelberg, Heidelberg, Germany.,Neurooncology Clinical Cooperation Unit, German Cancer Research Center, Heidelberg, Germany
| | - Huu Phuc Nguyen
- Department of Human Genetics, Ruhr University of Bochum, Bochum, Germany
| | - Andre Fischer
- German Center for Neurodegenerative Diseases, Göttingen, Germany.,Department for Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Jochen F Staiger
- Institute for Neuroanatomy, University Medical Center Goettingen, Göttingen, Germany
| | - Tran Tuoc
- Institute for Neuroanatomy, University Medical Center Goettingen, Göttingen, Germany.,Department of Human Genetics, Ruhr University of Bochum, Bochum, Germany
| |
Collapse
|
36
|
Whole-genome sequencing identifies functional noncoding variation in SEMA3C that cosegregates with dyslexia in a multigenerational family. Hum Genet 2021; 140:1183-1200. [PMID: 34076780 PMCID: PMC8263547 DOI: 10.1007/s00439-021-02289-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 04/27/2021] [Indexed: 12/11/2022]
Abstract
Dyslexia is a common heritable developmental disorder involving impaired reading abilities. Its genetic underpinnings are thought to be complex and heterogeneous, involving common and rare genetic variation. Multigenerational families segregating apparent monogenic forms of language-related disorders can provide useful entrypoints into biological pathways. In the present study, we performed a genome-wide linkage scan in a three-generational family in which dyslexia affects 14 of its 30 members and seems to be transmitted with an autosomal dominant pattern of inheritance. We identified a locus on chromosome 7q21.11 which cosegregated with dyslexia status, with the exception of two cases of phenocopy (LOD = 2.83). Whole-genome sequencing of key individuals enabled the assessment of coding and noncoding variation in the family. Two rare single-nucleotide variants (rs144517871 and rs143835534) within the first intron of the SEMA3C gene cosegregated with the 7q21.11 risk haplotype. In silico characterization of these two variants predicted effects on gene regulation, which we functionally validated for rs144517871 in human cell lines using luciferase reporter assays. SEMA3C encodes a secreted protein that acts as a guidance cue in several processes, including cortical neuronal migration and cellular polarization. We hypothesize that these intronic variants could have a cis-regulatory effect on SEMA3C expression, making a contribution to dyslexia susceptibility in this family.
Collapse
|
37
|
Limoni G, Niquille M. Semaphorins and Plexins in central nervous system patterning: the key to it all? Curr Opin Neurobiol 2021; 66:224-232. [PMID: 33513538 DOI: 10.1016/j.conb.2020.12.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/17/2022]
Abstract
Semaphorins and Plexins constitute one of the largest family of guidance molecules and receptors involved in setting critical biological steps for central nervous system development. The role of these molecules in axonal development has been extensively characterized but Semaphorins and Plexins are also involved in a variety of other developmental processes, spanning from cell polarization to migration, laminar segregation and neuronal maturation. In this review, we aim to gather discoveries carried in the field of neurodevelopment over the last decade, during which Semaphorin/Plexin complexes have emerged as key regulators of neurogenesis, neural cell migration and adult gliogenesis. As well, we report mechanisms that brought a better understanding of axonal midline crossing.
Collapse
Affiliation(s)
- Greta Limoni
- Department of Basic Neuroscience, University Medical Center, University of Geneva, Rue Michel-Servet 1, 1211 Genève 4, Switzerland.
| | - Mathieu Niquille
- Department of Basic Neuroscience, University Medical Center, University of Geneva, Rue Michel-Servet 1, 1211 Genève 4, Switzerland.
| |
Collapse
|
38
|
Ku RY, Torii M. New Molecular Players in the Development of Callosal Projections. Cells 2020; 10:cells10010029. [PMID: 33375263 PMCID: PMC7824101 DOI: 10.3390/cells10010029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 12/18/2020] [Accepted: 12/23/2020] [Indexed: 12/28/2022] Open
Abstract
Cortical development in humans is a long and ongoing process that continuously modifies the neural circuitry into adolescence. This is well represented by the dynamic maturation of the corpus callosum, the largest white matter tract in the brain. Callosal projection neurons whose long-range axons form the main component of the corpus callosum are evolved relatively recently with a substantial, disproportionate increase in numbers in humans. Though the anatomy of the corpus callosum and cellular processes in its development have been intensively studied by experts in a variety of fields over several decades, the whole picture of its development, in particular, the molecular controls over the development of callosal projections, still has many missing pieces. This review highlights the most recent progress on the understanding of corpus callosum formation with a special emphasis on the novel molecular players in the development of axonal projections in the corpus callosum.
Collapse
Affiliation(s)
- Ray Yueh Ku
- Center for Neuroscience Research, Children’s Research Institute, Children’s National Hospital, Washington, DC 20010, USA
| | - Masaaki Torii
- Center for Neuroscience Research, Children’s Research Institute, Children’s National Hospital, Washington, DC 20010, USA
- Department of Pediatrics, Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
- Correspondence:
| |
Collapse
|
39
|
Bartelt-Kirbach B, Wiegreffe C, Birk S, Baur T, Moron M, Britsch S, Golenhofen N. HspB5/αB-crystallin phosphorylation at S45 and S59 is essential for protection of the dendritic tree of rat hippocampal neurons. J Neurochem 2020; 157:2055-2069. [PMID: 33220080 DOI: 10.1111/jnc.15247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/26/2020] [Accepted: 11/18/2020] [Indexed: 12/15/2022]
Abstract
Rarefaction of the dendritic tree leading to neuronal dysfunction is a hallmark of many neurodegenerative diseases and we have shown previously that heat shock protein B5 (HspB5)/αB-crystallin is able to increase dendritic complexity in vitro. The aim of this study was to investigate if this effect is also present in vivo, if HspB5 can counteract dendritic rarefaction under pathophysiological conditions and the impact of phosphorylation of HspB5 in this process. HspB5 and eight mutants inhibiting or mimicking phosphorylation at the three phosphorylation sites serine (S)19, S45, and S59 were over-expressed in cultured rat hippocampal neurons with subsequent investigation of the complexity of the dendritic tree. Sholl analysis revealed significant higher complexity of the dendritic tree after over-expression of wild-type HspB5 and the mutant HspB5-AEE. All other mutants showed no or minor effects. For in vivo investigation in utero electroporation of mouse embryos was applied. At embryonal day E15.5 the respective plasmids were injected, cornu ammonis 1 (CA1) pyramidal cells transfected by electroporation and their basal dendritic trees were analyzed at post-natal day P15. In vivo, HspB5 and HspB5-AEE led to an increase of total dendritic length as well as a higher complexity. Finally, the dendritic effect of HspB5 was investigated under a pathophysiological condition, that is, iron deficiency which reportedly results in dendritic rarefaction. HspB5 and HspB5-AEE but not the non-phosphorylatable mutant HspB5-AAA significantly counteracted the dendritic rarefaction. Thus, our data suggest that up-regulation and selective phosphorylation of HspB5 in neurodegenerative diseases may preserve dendritic morphology and counteract neuronal dysfunction.
Collapse
Affiliation(s)
| | - Christoph Wiegreffe
- Institute of Molecular and Cellular Anatomy, University of Ulm, Ulm, Germany
| | - Samuel Birk
- Institute of Anatomy and Cell Biology, University of Ulm, Ulm, Germany
| | - Tina Baur
- Institute of Anatomy and Cell Biology, University of Ulm, Ulm, Germany
| | - Margarethe Moron
- Institute of Anatomy and Cell Biology, University of Ulm, Ulm, Germany
| | - Stefan Britsch
- Institute of Molecular and Cellular Anatomy, University of Ulm, Ulm, Germany
| | - Nikola Golenhofen
- Institute of Anatomy and Cell Biology, University of Ulm, Ulm, Germany
| |
Collapse
|
40
|
Garcia-Forn M, Boitnott A, Akpinar Z, De Rubeis S. Linking Autism Risk Genes to Disruption of Cortical Development. Cells 2020; 9:cells9112500. [PMID: 33218123 PMCID: PMC7698947 DOI: 10.3390/cells9112500] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/10/2020] [Accepted: 11/15/2020] [Indexed: 02/06/2023] Open
Abstract
Autism spectrum disorder (ASD) is a prevalent neurodevelopmental disorder characterized by impairments in social communication and social interaction, and the presence of repetitive behaviors and/or restricted interests. In the past few years, large-scale whole-exome sequencing and genome-wide association studies have made enormous progress in our understanding of the genetic risk architecture of ASD. While showing a complex and heterogeneous landscape, these studies have led to the identification of genetic loci associated with ASD risk. The intersection of genetic and transcriptomic analyses have also begun to shed light on functional convergences between risk genes, with the mid-fetal development of the cerebral cortex emerging as a critical nexus for ASD. In this review, we provide a concise summary of the latest genetic discoveries on ASD. We then discuss the studies in postmortem tissues, stem cell models, and rodent models that implicate recently identified ASD risk genes in cortical development.
Collapse
Affiliation(s)
- Marta Garcia-Forn
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.G.-F.); (A.B.); (Z.A.)
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Andrea Boitnott
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.G.-F.); (A.B.); (Z.A.)
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zeynep Akpinar
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.G.-F.); (A.B.); (Z.A.)
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychology, College of Arts and Sciences, New York University, New York, NY 10003, USA
| | - Silvia De Rubeis
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.G.-F.); (A.B.); (Z.A.)
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Correspondence: ; Tel.: +1-212-241-0179
| |
Collapse
|
41
|
Kikuchi S, Takahashi Y, Ojiro R, Takashima K, Okano H, Tang Q, Woo GH, Yoshida T, Shibutani M. Identification of gene targets of developmental neurotoxicity focusing on DNA hypermethylation involved in irreversible disruption of hippocampal neurogenesis in rats. J Appl Toxicol 2020; 41:1021-1037. [PMID: 33150595 PMCID: PMC8247304 DOI: 10.1002/jat.4089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023]
Abstract
We have previously found that maternal exposure to 6‐propyl‐2‐thiouracil (PTU), valproic acid (VPA), or glycidol (GLY) has a sustained or late effect on hippocampal neurogenesis at the adult stage in rat offspring. Herein, we searched for genes with hypermethylated promoter region and downregulated transcript level to reveal irreversible markers of developmental neurotoxicity. The hippocampal dentate gyrus of male rat offspring exposed maternally to PTU, VPA, or GLY was subjected to Methyl‐Seq and RNA‐Seq analyses on postnatal day (PND) 21. Among the genes identified, 170 were selected for further validation analysis of gene expression on PND 21 and PND 77 by real‐time reverse transcription‐PCR. PTU and GLY downregulated many genes on PND 21, reflecting diverse effects on neurogenesis. Furthermore, genes showing sustained downregulation were found after PTU or VPA exposure, reflecting a sustained or late effect on neurogenesis by these compounds. In contrast, such genes were not observed with GLY, probably because of the reversible nature of the effects. Among the genes showing sustained downregulation, Creb, Arc, and Hes5 were concurrently downregulated by PTU, suggesting an association with neuronal mismigration, suppressed synaptic plasticity, and reduction in neural stem and progenitor cells. Epha7 and Pvalb were also concurrently downregulated by PTU, suggesting an association with the reduction in late‐stage progenitor cells. VPA induced sustained downregulation of Vgf and Dpysl4, which may be related to the aberrations in synaptic plasticity. The genes showing sustained downregulation may be irreversible markers of developmental neurotoxicity. Hippocampal dentate gyrus of rat offspring exposed maternally to PTU, VPA, or GLY was subjected to global methylation analysis on PND 21. Genes downregulated on PND 77 were examined. PTU concurrently downregulated Creb, Arc, and Hes5, suggesting an association with the diverse effects on neurogenesis. PTU also concurrently downregulated Epha7 and Pvalb, suggesting an association with progenitor cell reduction. VPA downregulated Vgf and Dpysl4, suggesting an association with the aberrant synaptic plasticity. In contrast, GLY did not induce sustained downregulation.
Collapse
Affiliation(s)
- Satomi Kikuchi
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Yasunori Takahashi
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Ryota Ojiro
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Kazumi Takashima
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Hiromu Okano
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Qian Tang
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Gye-Hyeong Woo
- Laboratory of Histopathology, Department of Clinical Laboratory Science, Semyung University, Jecheon, Republic of Korea
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan.,Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
42
|
BCL11A: a potential diagnostic biomarker and therapeutic target in human diseases. Biosci Rep 2020; 39:220893. [PMID: 31654056 PMCID: PMC6851505 DOI: 10.1042/bsr20190604] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 12/16/2022] Open
Abstract
Transcription factor B-cell lymphoma/leukemia 11A (BCL11A) gene encodes a zinc-finger protein that is predominantly expressed in brain and hematopoietic tissue. BCL11A functions mainly as a transcriptional repressor that is crucial in brain, hematopoietic system development, as well as fetal-to-adult hemoglobin switching. The expression of this gene is regulated by microRNAs, transcription factors and genetic variations. A number of studies have recently shown that BCL11A is involved in β-hemoglobinopathies, hematological malignancies, malignant solid tumors, 2p15-p16.1 microdeletion syndrome, and Type II diabetes. It has been suggested that BCL11A may be a potential prognostic biomarker and therapeutic target for some diseases. In this review, we summarize the current research state of BCL11A, including its biochemistry, expression, regulation, function, and its possible clinical application in human diseases.
Collapse
|
43
|
Inglis GAS, Zhou Y, Patterson DG, Scharer CD, Han Y, Boss JM, Wen Z, Escayg A. Transcriptomic and epigenomic dynamics associated with development of human iPSC-derived GABAergic interneurons. Hum Mol Genet 2020; 29:2579-2595. [PMID: 32794569 PMCID: PMC7471504 DOI: 10.1093/hmg/ddaa150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/09/2020] [Accepted: 07/11/2020] [Indexed: 12/13/2022] Open
Abstract
GABAergic interneurons (GINs) are a heterogeneous population of inhibitory neurons that collectively contribute to the maintenance of normal neuronal excitability and network activity. Identification of the genetic regulatory elements and transcription factors that contribute toward GIN function may provide new insight into the pathways underlying proper GIN activity while also indicating potential therapeutic targets for GIN-associated disorders, such as schizophrenia and epilepsy. In this study, we examined the temporal changes in gene expression and chromatin accessibility during GIN development by performing transcriptomic and epigenomic analyses on human induced pluripotent stem cell-derived neurons at 22, 50 and 78 days (D) post-differentiation. We observed 13 221 differentially accessible regions (DARs) of chromatin that associate with temporal changes in gene expression at D78 and D50, relative to D22. We also classified families of transcription factors that are increasingly enriched at DARs during differentiation, indicating regulatory networks that likely drive GIN development. Collectively, these data provide a resource for examining the molecular networks regulating GIN functionality.
Collapse
Affiliation(s)
- George Andrew S Inglis
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ying Zhou
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30329, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Dillon G Patterson
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Christopher D Scharer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yanfei Han
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30329, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jeremy M Boss
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Zhexing Wen
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30329, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Andrew Escayg
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
44
|
Seachrist DD, Hannigan MM, Ingles NN, Webb BM, Weber-Bonk KL, Yu P, Bebek G, Singh S, Sizemore ST, Varadan V, Licatalosi DD, Keri RA. The transcriptional repressor BCL11A promotes breast cancer metastasis. J Biol Chem 2020; 295:11707-11719. [PMID: 32576660 PMCID: PMC7450125 DOI: 10.1074/jbc.ra120.014018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/17/2020] [Indexed: 01/14/2023] Open
Abstract
The phenotypes of each breast cancer subtype are defined by their transcriptomes. However, the transcription factors that regulate differential patterns of gene expression that contribute to specific disease outcomes are not well understood. Here, using gene silencing and overexpression approaches, RNA-Seq, and splicing analysis, we report that the transcription factor B-cell leukemia/lymphoma 11A (BCL11A) is highly expressed in triple-negative breast cancer (TNBC) and drives metastatic disease. Moreover, BCL11A promotes cancer cell invasion by suppressing the expression of muscleblind-like splicing regulator 1 (MBNL1), a splicing regulator that suppresses metastasis. This ultimately increases the levels of an alternatively spliced isoform of integrin-α6 (ITGA6), which is associated with worse patient outcomes. These results suggest that BCL11A sustains TNBC cell invasion and metastatic growth by repressing MBNL1-directed splicing of ITGA6 Our findings also indicate that BCL11A lies at the interface of transcription and splicing and promotes aggressive TNBC phenotypes.
Collapse
Affiliation(s)
- Darcie D Seachrist
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Molly M Hannigan
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Natasha N Ingles
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Bryan M Webb
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Kristen L Weber-Bonk
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Peng Yu
- Department of Electrical and Computer Engineering and TEES-AgriLife Center for Bioinformatics and Genomic Systems Engineering, Texas A&M University, College Station, Texas, USA
| | - Gurkan Bebek
- Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Salendra Singh
- Division of General Medical Sciences-Oncology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Steven T Sizemore
- Department of Radiation Oncology, The Ohio State University, Arthur G. James Comprehensive Cancer Center and Richard L. Solove Research Institute, Columbus, Ohio, USA
| | - Vinay Varadan
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
- Division of General Medical Sciences-Oncology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Donny D Licatalosi
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Ruth A Keri
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
- Division of General Medical Sciences-Oncology, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
45
|
Simon R, Wiegreffe C, Britsch S. Bcl11 Transcription Factors Regulate Cortical Development and Function. Front Mol Neurosci 2020; 13:51. [PMID: 32322190 PMCID: PMC7158892 DOI: 10.3389/fnmol.2020.00051] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/11/2020] [Indexed: 12/21/2022] Open
Abstract
Transcription factors regulate multiple processes during brain development and in the adult brain, from brain patterning to differentiation and maturation of highly specialized neurons as well as establishing and maintaining the functional neuronal connectivity. The members of the zinc-finger transcription factor family Bcl11 are mainly expressed in the hematopoietic and central nervous systems regulating the expression of numerous genes involved in a wide range of pathways. In the brain Bcl11 proteins are required to regulate progenitor cell proliferation as well as differentiation, migration, and functional integration of neural cells. Mutations of the human Bcl11 genes lead to anomalies in multiple systems including neurodevelopmental impairments like intellectual disabilities and autism spectrum disorders.
Collapse
Affiliation(s)
- Ruth Simon
- Institute of Molecular and Cellular Anatomy, Ulm University, Germany
| | | | - Stefan Britsch
- Institute of Molecular and Cellular Anatomy, Ulm University, Germany
| |
Collapse
|
46
|
Wang X, Xu Y, Xu K, Chen Y, Xiao X, Guan X. BCL11A confers cell invasion and migration in androgen receptor-positive triple-negative breast cancer. Oncol Lett 2020; 19:2916-2924. [PMID: 32218847 PMCID: PMC7068233 DOI: 10.3892/ol.2020.11383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/14/2020] [Indexed: 12/14/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is associated with poor clinical prognosis due to a lack of effective therapeutic options. The expression of B-cell lymphoma/leukemia 11A (BCL11A) has been indicated to correlate with TNBC carcinogenesis, though the precise mechanisms of BCL11A-induced tumorigenesis in TNBC remain unclear. Using data retrieved from The Cancer Genome Atlas (TCGA) database, the present study demonstrated that BCL11A expression was upregulated in TNBC, compared with other types of breast cancer. Furthermore, in a tissue microarray of 140 patients with breast cancer, an elevated BCL11A level was correlated with unfavorable overall survival (OS), and exogenous BCL11A-knockdown was subsequently verified to inhibit tumor growth and metastasis in TNBC. Notably, the same tissue microarray revealed that a favorable patient outcome was associated with high expression levels of BCL11A and androgen receptor (AR). Moreover, BCL11A-knockdown significantly inhibited the expression level of AR and further had an influence on proliferation, migration and invasion in TNBC cell lines. Collectively, the results of the current study indicate the function of BCL11A in TNBC progression, and provide new insights into the unique mechanism of BCL11A in AR regulation, emphasizing the significance of more research on BCL11A and AR regulation in TNBC molecular treatment.
Collapse
Affiliation(s)
- Xin Wang
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Yumei Xu
- Department of Gynaecology and Obstetrics, Zhongshan People's Hospital, Zhongshan, Guangdong 528403, P.R. China
| | - Kun Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yajuan Chen
- Department of Medical Oncology, Jinling Clinical College of Nanjing Medical University, Nanjing, Jiangsu 210002, P.R. China
| | - Xiudi Xiao
- Department of Breast Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu 212002, P.R. China
| | - Xiaoxiang Guan
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China.,Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China.,Department of Medical Oncology, Jinling Clinical College of Nanjing Medical University, Nanjing, Jiangsu 210002, P.R. China
| |
Collapse
|
47
|
Prem S, Millonig JH, DiCicco-Bloom E. Dysregulation of Neurite Outgrowth and Cell Migration in Autism and Other Neurodevelopmental Disorders. ADVANCES IN NEUROBIOLOGY 2020; 25:109-153. [PMID: 32578146 DOI: 10.1007/978-3-030-45493-7_5] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Despite decades of study, elucidation of the underlying etiology of complex developmental disorders such as autism spectrum disorder (ASD), schizophrenia (SCZ), intellectual disability (ID), and bipolar disorder (BPD) has been hampered by the inability to study human neurons, the heterogeneity of these disorders, and the relevance of animal model systems. Moreover, a majority of these developmental disorders have multifactorial or idiopathic (unknown) causes making them difficult to model using traditional methods of genetic alteration. Examination of the brains of individuals with ASD and other developmental disorders in both post-mortem and MRI studies shows defects that are suggestive of dysregulation of embryonic and early postnatal development. For ASD, more recent genetic studies have also suggested that risk genes largely converge upon the developing human cerebral cortex between weeks 8 and 24 in utero. Yet, an overwhelming majority of studies in autism rodent models have focused on postnatal development or adult synaptic transmission defects in autism related circuits. Thus, studies looking at early developmental processes such as proliferation, cell migration, and early differentiation, which are essential to build the brain, are largely lacking. Yet, interestingly, a few studies that did assess early neurodevelopment found that alterations in brain structure and function associated with neurodevelopmental disorders (NDDs) begin as early as the initial formation and patterning of the neural tube. By the early to mid-2000s, the derivation of human embryonic stem cells (hESCs) and later induced pluripotent stem cells (iPSCs) allowed us to study living human neural cells in culture for the first time. Specifically, iPSCs gave us the unprecedented ability to study cells derived from individuals with idiopathic disorders. Studies indicate that iPSC-derived neural cells, whether precursors or "matured" neurons, largely resemble cortical cells of embryonic humans from weeks 8 to 24. Thus, these cells are an excellent model to study early human neurodevelopment, particularly in the context of genetically complex diseases. Indeed, since 2011, numerous studies have assessed developmental phenotypes in neurons derived from individuals with both genetic and idiopathic forms of ASD and other NDDs. However, while iPSC-derived neurons are fetal in nature, they are post-mitotic and thus cannot be used to study developmental processes that occur before terminal differentiation. Moreover, it is important to note that during the 8-24-week window of human neurodevelopment, neural precursor cells are actively undergoing proliferation, migration, and early differentiation to form the basic cytoarchitecture of the brain. Thus, by studying NPCs specifically, we could gain insight into how early neurodevelopmental processes contribute to the pathogenesis of NDDs. Indeed, a few studies have explored NPC phenotypes in NDDs and have uncovered dysregulations in cell proliferation. Yet, few studies have explored migration and early differentiation phenotypes of NPCs in NDDs. In this chapter, we will discuss cell migration and neurite outgrowth and the role of these processes in neurodevelopment and NDDs. We will begin by reviewing the processes that are important in early neurodevelopment and early cortical development. We will then delve into the roles of neurite outgrowth and cell migration in the formation of the brain and how errors in these processes affect brain development. We also provide review of a few key molecules that are involved in the regulation of neurite outgrowth and migration while discussing how dysregulations in these molecules can lead to abnormalities in brain structure and function thereby highlighting their contribution to pathogenesis of NDDs. Then we will discuss whether neurite outgrowth, migration, and the molecules that regulate these processes are associated with ASD. Lastly, we will review the utility of iPSCs in modeling NDDs and discuss future goals for the study of NDDs using this technology.
Collapse
Affiliation(s)
- Smrithi Prem
- Graduate Program in Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - James H Millonig
- Department of Neuroscience and Cell Biology, Center for Advanced Biotechnology and Medicine, Rutgers Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Emanuel DiCicco-Bloom
- Department of Neuroscience and Cell Biology/Pediatrics, Rutgers Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA.
| |
Collapse
|
48
|
Ren J, Isakova A, Friedmann D, Zeng J, Grutzner SM, Pun A, Zhao GQ, Kolluru SS, Wang R, Lin R, Li P, Li A, Raymond JL, Luo Q, Luo M, Quake SR, Luo L. Single-cell transcriptomes and whole-brain projections of serotonin neurons in the mouse dorsal and median raphe nuclei. eLife 2019; 8:e49424. [PMID: 31647409 PMCID: PMC6812963 DOI: 10.7554/elife.49424] [Citation(s) in RCA: 176] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 10/12/2019] [Indexed: 12/11/2022] Open
Abstract
Serotonin neurons of the dorsal and median raphe nuclei (DR, MR) collectively innervate the entire forebrain and midbrain, modulating diverse physiology and behavior. To gain a fundamental understanding of their molecular heterogeneity, we used plate-based single-cell RNA-sequencing to generate a comprehensive dataset comprising eleven transcriptomically distinct serotonin neuron clusters. Systematic in situ hybridization mapped specific clusters to the principal DR, caudal DR, or MR. These transcriptomic clusters differentially express a rich repertoire of neuropeptides, receptors, ion channels, and transcription factors. We generated novel intersectional viral-genetic tools to access specific subpopulations. Whole-brain axonal projection mapping revealed that DR serotonin neurons co-expressing vesicular glutamate transporter-3 preferentially innervate the cortex, whereas those co-expressing thyrotropin-releasing hormone innervate subcortical regions in particular the hypothalamus. Reconstruction of 50 individual DR serotonin neurons revealed diverse and segregated axonal projection patterns at the single-cell level. Together, these results provide a molecular foundation of the heterogenous serotonin neuronal phenotypes.
Collapse
Affiliation(s)
- Jing Ren
- Department of Biology and Howard Hughes Medical InstituteStanford UniversityStanfordUnited States
| | - Alina Isakova
- Department of BioengineeringStanford UniversityStanfordUnited States
- Department of Applied PhysicsStanford UniversityStanfordUnited States
| | - Drew Friedmann
- Department of Biology and Howard Hughes Medical InstituteStanford UniversityStanfordUnited States
| | - Jiawei Zeng
- National Institute of Biological ScienceBeijingChina
| | - Sophie M Grutzner
- Department of Biology and Howard Hughes Medical InstituteStanford UniversityStanfordUnited States
| | - Albert Pun
- Department of Biology and Howard Hughes Medical InstituteStanford UniversityStanfordUnited States
| | - Grace Q Zhao
- Department of NeurobiologyStanford University School of MedicineStanfordUnited States
| | - Sai Saroja Kolluru
- Department of BioengineeringStanford UniversityStanfordUnited States
- Department of Applied PhysicsStanford UniversityStanfordUnited States
| | - Ruiyu Wang
- National Institute of Biological ScienceBeijingChina
| | - Rui Lin
- National Institute of Biological ScienceBeijingChina
| | - Pengcheng Li
- Britton Chance Center for Biomedical PhotonicsWuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST)WuhanChina
- HUST-Suzhou Institute for Brainsmatics, JITRI Institute for BrainsmaticsSuzhouChina
| | - Anan Li
- Britton Chance Center for Biomedical PhotonicsWuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST)WuhanChina
- HUST-Suzhou Institute for Brainsmatics, JITRI Institute for BrainsmaticsSuzhouChina
| | - Jennifer L Raymond
- Department of NeurobiologyStanford University School of MedicineStanfordUnited States
| | - Qingming Luo
- Britton Chance Center for Biomedical PhotonicsWuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST)WuhanChina
| | - Minmin Luo
- National Institute of Biological ScienceBeijingChina
- School of Life ScienceTsinghua UniversityBeijingChina
| | - Stephen R Quake
- Department of BioengineeringStanford UniversityStanfordUnited States
- Department of Applied PhysicsStanford UniversityStanfordUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - Liqun Luo
- Department of Biology and Howard Hughes Medical InstituteStanford UniversityStanfordUnited States
| |
Collapse
|
49
|
Hollern DP, Swiatnicki MR, Rennhack JP, Misek SA, Matson BC, McAuliff A, Gallo KA, Caron KM, Andrechek ER. E2F1 Drives Breast Cancer Metastasis by Regulating the Target Gene FGF13 and Altering Cell Migration. Sci Rep 2019; 9:10718. [PMID: 31341204 PMCID: PMC6656723 DOI: 10.1038/s41598-019-47218-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 07/12/2019] [Indexed: 12/27/2022] Open
Abstract
In prior work we demonstrated that loss of E2F transcription factors inhibits metastasis. Here we address the mechanisms for this phenotype and identify the E2F regulated genes that coordinate tumor cell metastasis. Transcriptomic profiling of E2F1 knockout tumors identified a role for E2F1 as a master regulator of a suite of pro-metastatic genes, but also uncovered E2F1 target genes with an unknown role in pulmonary metastasis. High expression of one of these genes, Fgf13, is associated with early human breast cancer metastasis in a clinical dataset. Together these data led to the hypothesis that Fgf13 is critical for breast cancer metastasis, and that upregulation of Fgf13 may partially explain how E2F1 promotes breast cancer metastasis. To test this hypothesis we ablated Fgf13 via CRISPR. Deletion of Fgf13 in a MMTV-PyMT breast cancer cell line reduces colonization of the lungs in a tail vein injection. In addition, loss of Fgf13 reduced in vitro cell migration, suggesting that Fgf13 may be critical for tumor cells to escape the primary tumor and to colonize the distal sites. The significance of this work is twofold: we have both uncovered genomic features by which E2F1 regulates metastasis and we have identified new pro-metastatic functions for the E2F1 target gene Fgf13.
Collapse
Affiliation(s)
- Daniel P Hollern
- Lineberger Comprehensive Cancer Center University of North Carolina, Chapel Hill, United States
| | - Matthew R Swiatnicki
- Department of Physiology, Michigan State University, East Lansing, United States
| | - Jonathan P Rennhack
- Department of Physiology, Michigan State University, East Lansing, United States
| | - Sean A Misek
- Department of Physiology, Michigan State University, East Lansing, United States
| | - Brooke C Matson
- University of North Carolina Department of Cell Biology, Chapel Hill, United States
| | - Andrew McAuliff
- Department of Physiology, Michigan State University, East Lansing, United States
| | - Kathleen A Gallo
- Department of Physiology, Michigan State University, East Lansing, United States
| | - Kathleen M Caron
- Lineberger Comprehensive Cancer Center University of North Carolina, Chapel Hill, United States
| | - Eran R Andrechek
- Department of Physiology, Michigan State University, East Lansing, United States.
| |
Collapse
|
50
|
Donega V, Marcy G, Lo Giudice Q, Zweifel S, Angonin D, Fiorelli R, Abrous DN, Rival-Gervier S, Koehl M, Jabaudon D, Raineteau O. Transcriptional Dysregulation in Postnatal Glutamatergic Progenitors Contributes to Closure of the Cortical Neurogenic Period. Cell Rep 2019. [PMID: 29514086 DOI: 10.1016/j.celrep.2018.02.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Progenitors of cortical glutamatergic neurons (Glu progenitors) are usually thought to switch fate before birth to produce astrocytes. We used fate-mapping approaches to show that a large fraction of Glu progenitors persist in the postnatal forebrain after closure of the cortical neurogenesis period. Postnatal Glu progenitors do not accumulate during embryonal development but are produced by embryonal radial glial cells that persist after birth in the dorsal subventricular zone and continue to give rise to cortical neurons, although with low efficiency. Single-cell RNA sequencing reveals a dysregulation of transcriptional programs, which parallels changes in m6A methylation and correlates with the gradual decline in cortical neurogenesis observed in vivo. Rescuing experiments show that postnatal progenitors are partially permissive to genetic and pharmacological manipulations. Our study provides an in-depth characterization of postnatal Glu progenitors and identifies potential therapeutic targets for promoting brain repair.
Collapse
Affiliation(s)
- Vanessa Donega
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France.
| | - Guillaume Marcy
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France; Neurogenetics Department, Ecole Pratique des Hautes Etudes, PSL Research University, 75014 Paris, France
| | - Quentin Lo Giudice
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Stefan Zweifel
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Diane Angonin
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Roberto Fiorelli
- Brain Research Institute, University of Zürich/ETHZ, Zürich, Switzerland
| | - Djoher Nora Abrous
- Neurocentre Magendie, Neurogenesis and Physiopathology Group, Inserm, U1215, 33077 Bordeaux, France; Université de Bordeaux, 33077 Bordeaux, France
| | - Sylvie Rival-Gervier
- Stem Cell and Brain Research Institute U1208, Université Claude Bernard Lyon 1, Inserm, INRA, USC1361, 69500 Bron, France
| | - Muriel Koehl
- Neurocentre Magendie, Neurogenesis and Physiopathology Group, Inserm, U1215, 33077 Bordeaux, France; Université de Bordeaux, 33077 Bordeaux, France
| | - Denis Jabaudon
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Olivier Raineteau
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France; Brain Research Institute, University of Zürich/ETHZ, Zürich, Switzerland.
| |
Collapse
|