1
|
Irie T, Matsuda T. In vivo direct neuronal conversion as a therapeutic strategy for ischemic stroke. Neural Regen Res 2025; 20:2309-2310. [PMID: 39359083 PMCID: PMC11759033 DOI: 10.4103/nrr.nrr-d-24-00545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/11/2024] [Accepted: 06/26/2024] [Indexed: 10/04/2024] Open
Affiliation(s)
- Takashi Irie
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Taito Matsuda
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
2
|
Saito Y, Ishikawa M, Ohkuma M, Moody J, Mabuchi Y, Sanosaka T, Ando Y, Yamashita T, Hon CC, Shin JW, Akamatsu W, Okano H. NEUROD1 efficiently converts peripheral blood cells into neurons with partial reprogramming by pluripotency factors. Proc Natl Acad Sci U S A 2025; 122:e2401387122. [PMID: 40299704 PMCID: PMC12067290 DOI: 10.1073/pnas.2401387122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/17/2025] [Indexed: 05/01/2025] Open
Abstract
The direct reprogramming of cells has tremendous potential in in vitro neurological studies. Previous attempts to convert blood cells into induced neurons have presented several challenges, necessitating a less invasive, efficient, rapid, and convenient approach. The current study introduces an optimized method for converting somatic cells into neurons using a nonsurgical approach that employs peripheral blood cells as an alternative source to fibroblasts. We have demonstrated the efficacy of a unique combination of transcription factors, including NEUROD1, and four Yamanaka reprogramming factors (OCT3/4, SOX2, KLF4, and c-MYC), in generating glutamatergic neurons within 3 wk. This approach, which requires only five pivotal factors (NEUROD1, OCT3/4, SOX2, KLF4, and c-MYC), has the potential to create functional neurons and circumvents the need for induced pluripotent stem cell (iPSC) intermediates, as evidenced by single-cell RNA sequencing and whole-genome bisulfite sequencing, along with lineage-tracing experiments using Cre-LoxP system. While fibroblasts have been widely used for neuronal reprogramming, our findings suggest that peripheral blood cells offer a potential alternative, particularly in contexts where minimally invasive sampling and procedures convenient for patients are emphasized. This method provides a rapid strategy for modeling neuronal diseases and contributes to advancements in drug discovery and personalized medicine.
Collapse
Affiliation(s)
- Yoichi Saito
- Keio University Regenerative Medicine Research Center, Kawasaki210-0821, Kanagawa, Japan
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku160-8582, Tokyo, Japan
| | - Mitsuru Ishikawa
- Keio University Regenerative Medicine Research Center, Kawasaki210-0821, Kanagawa, Japan
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku160-8582, Tokyo, Japan
- Division of CNS Regeneration and Drug Discovery, International Center for Brain Science, Fujita Health University, Toyoake470-1192, Aichi, Japan
| | - Mahito Ohkuma
- Department of Physiology, Fujita Health University School of Medicine, Toyoake470-1192, Aichi, Japan
| | - Jonathan Moody
- RIKEN Center for Integrative Medical Sciences, Yokohama230-0045, Kanagawa, Japan
| | - Yo Mabuchi
- Department of Clinical Regenerative Medicine, Fujita Medical Innovation Center, Fujita Health University, Ota-ku144-0041, Tokyo, Japan
| | - Tsukasa Sanosaka
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku160-8582, Tokyo, Japan
| | - Yoshinari Ando
- RIKEN Center for Integrative Medical Sciences, Yokohama230-0045, Kanagawa, Japan
| | - Takayuki Yamashita
- Department of Physiology, Fujita Health University School of Medicine, Toyoake470-1192, Aichi, Japan
- Division of Neurophysiology, International Center for Brain Science, Fujita Health University, Toyoake470-1192, Aichi, Japan
| | - Chung Chau Hon
- RIKEN Center for Integrative Medical Sciences, Yokohama230-0045, Kanagawa, Japan
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima739-0046, Hiroshima, Japan
| | - Jay W. Shin
- RIKEN Center for Integrative Medical Sciences, Yokohama230-0045, Kanagawa, Japan
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore138672, Republic of Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117597, Republic of Singapore
| | - Wado Akamatsu
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku160-8582, Tokyo, Japan
- Center for Genomic and Regenerative Medicine, School of Medicine, Juntendo University, Bunkyo-ku113-8421, Tokyo, Japan
| | - Hideyuki Okano
- Keio University Regenerative Medicine Research Center, Kawasaki210-0821, Kanagawa, Japan
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku160-8582, Tokyo, Japan
- Division of CNS Regeneration and Drug Discovery, International Center for Brain Science, Fujita Health University, Toyoake470-1192, Aichi, Japan
| |
Collapse
|
3
|
Li W, Su D, Li X, Lu K, Huang Q, Zheng J, Luo X, Chen G, Fan X. Identification of the core regulatory program driving NEUROD1-induced neuronal reprogramming. Cell Rep 2025; 44:115523. [PMID: 40173039 DOI: 10.1016/j.celrep.2025.115523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 02/03/2025] [Accepted: 03/14/2025] [Indexed: 04/04/2025] Open
Abstract
NEUROD1 (ND1)-induced astrocyte-to-neuron (AtN) conversion shows promise for treating neurological disorders. To gain insight into the molecular mechanisms of neuronal reprogramming, we established an in vitro system using primary cortical astrocyte cultures from postnatal rats and employed single-cell and multiomics sequencing. Our findings indicate that the initial cultures primarily consisted of immature astrocytes (ImAs), with potentially a minor presence of radial glial cells. The ImAs initially went through an intermediate state, activating both astrocyte and neural progenitor genes. Subsequently, they mimic in vivo neurogenesis to acquire mature neuronal characteristics. We show that ND1 acted as a pioneer factor that reshapes the chromatin landscape of astrocytes to that of neurons. This restructuring promotes the expression of neurogenic genes via inducing H3K27ac modification. Through integrative analysis of various ND1-induced neuronal specification systems, we identified 25 ND1 targets, including Hes6, as key regulators. Thus, our work highlights the key role of ND1 and its downstream regulators in neuronal reprogramming.
Collapse
Affiliation(s)
- Wen Li
- Guangdong-HongKong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou 510632, China; Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-Human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Dan Su
- GMU-GIBH Joint School of Life Sciences, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou 510005, China; The Bioland Laboratory, Guangzhou 510700, China
| | - Xining Li
- GMU-GIBH Joint School of Life Sciences, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou 510005, China; The Bioland Laboratory, Guangzhou 510700, China
| | - Kang Lu
- Guangdong-HongKong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou 510632, China
| | - Qingpei Huang
- GMU-GIBH Joint School of Life Sciences, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou 510005, China; The Bioland Laboratory, Guangzhou 510700, China
| | - Jiajun Zheng
- Guangdong-HongKong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou 510632, China; Department of Anesthesiology, Guangzhou First People's Hospital, Guangzhou 510180, China
| | - Xiaopeng Luo
- Guangdong-HongKong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou 510632, China
| | - Gong Chen
- Guangdong-HongKong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou 510632, China; Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-Human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China.
| | - Xiaoying Fan
- GMU-GIBH Joint School of Life Sciences, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou 510005, China; The Bioland Laboratory, Guangzhou 510700, China.
| |
Collapse
|
4
|
Huang Y, Chen Z, Chen J, Liu J, Qiu C, Liu Q, Zhang L, Zhu G, Ma X, Sun S, Shi YS, Wan G. Direct reprogramming of fibroblasts into spiral ganglion neurons by defined transcription factors. Cell Prolif 2025; 58:e13775. [PMID: 39551613 PMCID: PMC11969255 DOI: 10.1111/cpr.13775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/19/2024] Open
Abstract
Degeneration of the cochlear spiral ganglion neurons (SGNs) is one of the major causes of sensorineural hearing loss and significantly impacts the outcomes of cochlear implantation. Functional regeneration of SGNs holds great promise for treating sensorineural hearing loss. In this study, we systematically screened 33 transcriptional regulators implicated in neuronal and SGN fate. Using gene expression array and principal component analyses, we identified a sequential combination of Ascl1, Pou4f1 and Myt1l (APM) in promoting functional reprogramming of SGNs. The neurons induced by APM expressed mature neuronal and SGN lineage-specific markers, displayed mature SGN-like electrophysiological characteristics and exhibited single-cell transcriptomes resembling the endogenous SGNs. Thus, transcription factors APM may serve as novel candidates for direct reprogramming of SGNs and hearing recovery due to SGN damages.
Collapse
Affiliation(s)
- Yuhang Huang
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School and the Model Animal Research Center of Medical SchoolNanjing UniversityNanjingChina
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of ChinaNanjing UniversityNanjingChina
| | - Zhen Chen
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School and the Model Animal Research Center of Medical SchoolNanjing UniversityNanjingChina
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of ChinaNanjing UniversityNanjingChina
| | - Jiang Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of ChinaNanjing UniversityNanjingChina
- Department of Neurology, The Affiliated Drum Tower Hospital of Medical School and Institute of Translational Medicine for Brain Critical DiseasesNanjing UniversityNanjingChina
| | - Jingyue Liu
- National Institute of Biological SciencesBeijingChina
- Tsinghua Institute of Multidisciplinary Biomedical ResearchTsinghua UniversityBeijingChina
| | - Cui Qiu
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School and the Model Animal Research Center of Medical SchoolNanjing UniversityNanjingChina
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of ChinaNanjing UniversityNanjingChina
| | - Qing Liu
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School and the Model Animal Research Center of Medical SchoolNanjing UniversityNanjingChina
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of ChinaNanjing UniversityNanjingChina
- Research Institute of OtolaryngologyNanjingChina
| | - Linqing Zhang
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School and the Model Animal Research Center of Medical SchoolNanjing UniversityNanjingChina
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of ChinaNanjing UniversityNanjingChina
| | - Guang‐Jie Zhu
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School and the Model Animal Research Center of Medical SchoolNanjing UniversityNanjingChina
- Research Institute of OtolaryngologyNanjingChina
| | - Xiaofeng Ma
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School and the Model Animal Research Center of Medical SchoolNanjing UniversityNanjingChina
- Research Institute of OtolaryngologyNanjingChina
| | - Shuohao Sun
- National Institute of Biological SciencesBeijingChina
- Tsinghua Institute of Multidisciplinary Biomedical ResearchTsinghua UniversityBeijingChina
| | - Yun Stone Shi
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School and the Model Animal Research Center of Medical SchoolNanjing UniversityNanjingChina
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of ChinaNanjing UniversityNanjingChina
- Guangdong Institute of Intelligence Science and TechnologyZhuhaiChina
| | - Guoqiang Wan
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School and the Model Animal Research Center of Medical SchoolNanjing UniversityNanjingChina
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of ChinaNanjing UniversityNanjingChina
- Research Institute of OtolaryngologyNanjingChina
| |
Collapse
|
5
|
Watanabe H, Inoue Y, Tsuchiya K, Asada K, Suzuki M, Ogawa H, Tanahashi M, Watanabe T, Matsuura S, Yasuda K, Ohnishi I, Imokawa S, Yasui H, Karayama M, Suzuki Y, Hozumi H, Furuhashi K, Enomoto N, Fujisawa T, Funai K, Shinmura K, Sugimura H, Inui N, Suda T. Lethal co-expression intolerance underlies the mutually exclusive expression of ASCL1 and NEUROD1 in SCLC cells. NPJ Precis Oncol 2025; 9:74. [PMID: 40082639 PMCID: PMC11906894 DOI: 10.1038/s41698-025-00860-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 02/28/2025] [Indexed: 03/16/2025] Open
Abstract
Small cell lung cancer (SCLC) subtypes, defined by the expression of lineage-specific transcription factors (TFs), are thought to be mutually exclusive, with intra-tumoral heterogeneities. This study investigated the mechanism underlying this phenomenon with the aim of identifying a novel vulnerability of SCLC. We profiled the expression status of ASCL1, NEUROD1, POU2F3, and YAP1 in 151 surgically obtained human SCLC samples. On subtyping, a high degree of mutual exclusivity was observed between ASCL1 and NEUROD1 expression at the cell, but not tissue, level. Inducible co-expression models of all combinations of ASCL1, NEUROD1, POU2F3, YAP1, and ATOH1 using SCLC cell lines showed that some expression combinations, such as ASCL1 and NEUROD1, exhibited mutual repression and caused growth inhibition and apoptosis. Gene expression and ATAC-seq analyses of the ASCL1 and NEUROD1 co-expression models revealed that co-expression of ASCL1 in NEUROD1-driven cells, and of NEUROD1 in ASCL1-driven cells, both (although more efficiently by the former) reprogrammed the cell lineage to favor the ectopically expressed factor, with rewiring of chromatin accessibility. Mechanistically, co-expressed NEUROD1 in ASCL1-driven SCLC cells caused apoptosis by downregulating BCL2, likely in a MYC-independent manner. In conclusion, lethal co-expression intolerance underlies the mutual exclusivity between these pioneer TFs, ASCL1 and NEUROD1, in an SCLC cell. Further investigation is warranted to enable therapeutic targeting of this vulnerability.
Collapse
Affiliation(s)
- Hirofumi Watanabe
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yusuke Inoue
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan.
| | - Kazuo Tsuchiya
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kazuhiro Asada
- Department of Respiratory Medicine, Shizuoka General Hospital, Shizuoka, Japan
| | - Makoto Suzuki
- Department of Pathology, Shizuoka General Hospital, Shizuoka, Japan
| | - Hiroshi Ogawa
- Department of Pathology, Seirei Mikatahara General Hospital, Hamamatsu, Japan
| | - Masayuki Tanahashi
- Division of Thoracic Surgery, Respiratory Disease Center, Seirei Mikatahara General Hospital, Hamamatsu, Japan
| | - Takuya Watanabe
- Division of Thoracic Surgery, Respiratory Disease Center, Seirei Mikatahara General Hospital, Hamamatsu, Japan
| | - Shun Matsuura
- Department of Respiratory Medicine, Fujieda Municipal General Hospital, Fujieda, Japan
| | - Kazuyo Yasuda
- Department of Pathology, Shizuoka General Hospital, Shizuoka, Japan
- Department of Pathology, Fujieda Municipal General Hospital, Fujieda, Japan
| | - Ippei Ohnishi
- Division of Pathology, Iwata City Hospital, Iwata, Japan
| | - Shiro Imokawa
- Department of Respiratory Medicine, Iwata City Hospital, Iwata, Japan
| | - Hideki Yasui
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Masato Karayama
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Department of Chemotherapy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yuzo Suzuki
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hironao Hozumi
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kazuki Furuhashi
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Noriyuki Enomoto
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tomoyuki Fujisawa
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kazuhito Funai
- First Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kazuya Shinmura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Haruhiko Sugimura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Sasaki Institute, Sasaki Foundation, Tokyo, Japan
| | - Naoki Inui
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Department of Clinical Pharmacology and Therapeutics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takafumi Suda
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
6
|
Tang J, Zhou C, Ye F, Zuo S, Zhou M, Lu L, Chai P, Fan X. RNA methylation homeostasis in ocular diseases: All eyes on Me. Prog Retin Eye Res 2025; 105:101335. [PMID: 39880118 DOI: 10.1016/j.preteyeres.2025.101335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 01/31/2025]
Abstract
RNA methylation is a pivotal epigenetic modification that adjusts various aspects of RNA biology, including nuclear transport, stability, and the efficiency of translation for specific RNA candidates. The methylation of RNA involves the addition of methyl groups to specific bases and can occur at different sites, resulting in distinct forms, such as N6-methyladenosine (m6A), N1-methyladenosine (m1A), 5-methylcytosine (m5C), and 7-methylguanosine (m7G). Maintaining an optimal equilibrium of RNA methylation is crucial for fundamental cellular activities such as cell survival, proliferation, and migration. The balance of RNA methylation is linked to various pathophysiological conditions, including senescence, cancer development, stress responses, and blood vessel formation, all of which are pivotal for comprehending a spectrum of eye diseases. Recent findings have highlighted the significant role of diverse RNA methylation patterns in ophthalmological conditions such as age-related macular degeneration, diabetic retinopathy, cataracts, glaucoma, uveitis, retinoblastoma, uveal melanoma, thyroid eye disease, and myopia, which are critical for vision health. This thorough review endeavors to dissect the influence of RNA methylation on common and vision-impairing ocular disorders. It explores the nuanced roles that RNA methylation plays in key pathophysiological mechanisms, such as oxidative stress and angiogenesis, which are integral to the onset and progression of these diseases. By synthesizing the latest research, this review offers valuable insights into how RNA methylation could be harnessed for therapeutic interventions in the field of ophthalmology.
Collapse
Affiliation(s)
- Jieling Tang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, State Key Laboratory of Vision Health, China
| | - Chuandi Zhou
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, State Key Laboratory of Vision Health, China
| | - Fuxiang Ye
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, State Key Laboratory of Vision Health, China
| | - Sipeng Zuo
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, State Key Laboratory of Vision Health, China
| | - Min Zhou
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, State Key Laboratory of Vision Health, China
| | - Linna Lu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, State Key Laboratory of Vision Health, China.
| | - Peiwei Chai
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, State Key Laboratory of Vision Health, China.
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, State Key Laboratory of Vision Health, China.
| |
Collapse
|
7
|
Greșiță A, Hermann DM, Boboc IKS, Doeppner TR, Petcu E, Semida GF, Popa-Wagner A. Glial Cell Reprogramming in Ischemic Stroke: A Review of Recent Advancements and Translational Challenges. Transl Stroke Res 2025:10.1007/s12975-025-01331-7. [PMID: 39904845 DOI: 10.1007/s12975-025-01331-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/16/2025] [Accepted: 01/18/2025] [Indexed: 02/06/2025]
Abstract
Ischemic stroke, the second leading cause of death worldwide and the leading cause of long-term disabilities, presents a significant global health challenge, particularly in aging populations where the risk and severity of cerebrovascular events are significantly increased. The aftermath of stroke involves neuronal loss in the infarct core and reactive astrocyte proliferation, disrupting the neurovascular unit, especially in aged brains. Restoring the balance between neurons and non-neuronal cells within the perilesional area is crucial for post-stroke recovery. The aged post-stroke brain mounts a fulminant proliferative astroglial response, leading to gliotic scarring that prevents neural regeneration. While countless therapeutic techniques have been attempted for decades with limited success, alternative strategies aim to transform inhibitory gliotic tissue into an environment conducive to neuronal regeneration and axonal growth through genetic conversion of astrocytes into neurons. This concept gained momentum following discoveries that in vivo direct lineage reprogramming in the adult mammalian brain is a feasible strategy for reprogramming non-neuronal cells into neurons, circumventing the need for cell transplantation. Recent advancements in glial cell reprogramming, including transcription factor-based methods with factors like NeuroD1, Ascl1, and Neurogenin2, as well as small molecule-induced reprogramming and chemical induction, show promise in converting glial cells into functional neurons. These approaches leverage the brain's intrinsic plasticity for neuronal replacement and circuit restoration. However, applying these genetic conversion therapies in the aged, post-stroke brain faces significant challenges, such as the hostile inflammatory environment and compromised regenerative capacity. There is a critical need for safe and efficient delivery methods, including viral and non-viral vectors, to ensure targeted and sustained expression of reprogramming factors. Moreover, addressing the translational gap between preclinical successes and clinical applications is essential, emphasizing the necessity for robust stroke models that replicate human pathophysiology. Ethical considerations and biosafety concerns are critically evaluated, particularly regarding the long-term effects and potential risks of genetic reprogramming. By integrating recent research findings, this comprehensive review provides an in-depth understanding of the current landscape and future prospects of genetic conversion therapy for ischemic stroke rehabilitation, highlighting the potential to enhance personalized stroke management and regenerative strategies through innovative approaches.
Collapse
Affiliation(s)
- Andrei Greșiță
- Experimental Research Center for Normal and Pathological Aging, University of Medicine and Pharmacy Craiova, 200349, Craiova, Romania
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY, 11568, USA
| | - Dirk M Hermann
- Chair of Vascular Neurology and Dementia, Department of Neurology, University Hospital Essen, 45147, Essen, Germany
- Experimental Research Center for Normal and Pathological Aging, University of Medicine and Pharmacy Craiova, 200349, Craiova, Romania
| | - Ianis Kevyn Stefan Boboc
- Experimental Research Center for Normal and Pathological Aging, University of Medicine and Pharmacy Craiova, 200349, Craiova, Romania
| | - Thorsten R Doeppner
- Department of Neurology, University Medical Center Göttingen, 37075, Göttingen, Germany
- Department of Neurology, University of Giessen Medical School, 35392, Giessen, Germany
| | - Eugen Petcu
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY, 11568, USA
- Department of Biological & Chemical Sciences, New York Institute of Technology, Old Westbury, NY, 11568, USA
| | - Ghinea Flavia Semida
- Experimental Research Center for Normal and Pathological Aging, University of Medicine and Pharmacy Craiova, 200349, Craiova, Romania.
| | - Aurel Popa-Wagner
- Chair of Vascular Neurology and Dementia, Department of Neurology, University Hospital Essen, 45147, Essen, Germany.
- Experimental Research Center for Normal and Pathological Aging, University of Medicine and Pharmacy Craiova, 200349, Craiova, Romania.
| |
Collapse
|
8
|
Dokukin NV, Chudakova DA, Shkap MO, Kovalchuk AM, Kibirsky PD, Baklaushev VP. Direct Neural Reprogramming in situ: Existing Approaches and Their Optimization. BIOCHEMISTRY. BIOKHIMIIA 2025; 90:214-230. [PMID: 40254400 DOI: 10.1134/s000629792460426x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/28/2025] [Accepted: 01/31/2025] [Indexed: 04/22/2025]
Abstract
Direct in situ neuronal reprogramming (transdifferentiation) of glial cells (astrocytes and microglia) has attracted a significant interest as a potential approach for the treatment of a wide range of neurodegenerative diseases and damages of the central nervous system (CNS). The nervous system of higher mammals has a very limited capacity for repair. Disruption of CNS functioning due to traumatic injuries or neurodegenerative processes can significantly affect the quality of patients' life, lead to motor and cognitive impairments, and result in disability and, in some cases, death. Restoration of lost neurons in situ via direct reprogramming of glial cells without the intermediate stage of pluripotency seems to be the most attractive approach from the viewpoint of translational biomedicine. The ability of astroglia to actively proliferate in response to the damage of neural tissue supports the idea that these neuron-like cells, which are already present at the lesion site, are good candidates for transdifferentiation into neurons, considering that the possibility of direct neuronal reprogramming of astrocytes both in vitro and in vivo have demonstrated in many independent studies. Overexpression of proneuronal transcription factors, e.g., neurogenic differentiation factors 1-4 (NeuroD1-4), Neurogenin 2 (NeuroG2), Ascl1 (Achaete-Scute homolog 1), and Dlx2 (distal-less homeobox 2), including pioneer transcription factors that recognize target sequences in the compacted chromatin and activate transcription of silent genes, has already been proven as a potential therapeutic strategy. Other strategies, such as microRNA-mediated suppression of activity of PTB and REST transcription factors and application of small molecules or various biomaterials, are also utilized in neuronal reprogramming. However, the efficiency of direct in situ reprogramming is limited by a number of factors, including cell specificity of transgene delivery systems and promoters, brain regions in which transdifferentiation occurs, factors affecting cell metabolism, microenvironment, etc. Reprogramming in situ, which takes place in the presence of a large number of different cell types, requires monitoring and precise phenotypic characterization of subpopulations of cells undergoing transdifferentiation in order to confirm the reprogramming of the astroglia into neurons and subsequent integration of these neurons into the CNS. Here, we discussed the most efficient strategies of neuronal reprogramming and technologies used to visualize the transdifferentiation process, with special focus on the obstacles to efficient neuronal conversion, as well as approaches to overcome them.
Collapse
Affiliation(s)
- Nikita V Dokukin
- Federal Center for Brain and Neurotechnology, Federal Medical and Biological Agency of Russia, Moscow, 117513, Russia
| | - Daria A Chudakova
- Federal Center for Brain and Neurotechnology, Federal Medical and Biological Agency of Russia, Moscow, 117513, Russia
- National Medical Research Center of Children's Health, Ministry of Health of the Russian Federation, Moscow, 119991, Russia
| | - Matvey O Shkap
- Federal Center for Brain and Neurotechnology, Federal Medical and Biological Agency of Russia, Moscow, 117513, Russia
| | - Anna M Kovalchuk
- Federal Center for Brain and Neurotechnology, Federal Medical and Biological Agency of Russia, Moscow, 117513, Russia
| | - Pavel D Kibirsky
- Federal Center for Brain and Neurotechnology, Federal Medical and Biological Agency of Russia, Moscow, 117513, Russia
| | - Vladimir P Baklaushev
- Federal Center for Brain and Neurotechnology, Federal Medical and Biological Agency of Russia, Moscow, 117513, Russia.
- Federal Scientific and Clinical Center for Specialized Types of Medical Care and Medical Technologies, Federal Medical and Biological Agency of Russia, Moscow, 115682, Russia
- Research Institute of Pulmonology, Federal Medical and Biological Agency of Russia, Moscow, 115682, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| |
Collapse
|
9
|
d'Orange M, Lentini C, Heinrich C. Retrovirus-Mediated Reprogramming of Endogenous Hippocampal Glia into GABAergic Induced Neurons. Methods Mol Biol 2025; 2899:199-219. [PMID: 40067626 DOI: 10.1007/978-1-0716-4386-0_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2025]
Abstract
Lineage reprogramming of glial cells into induced neurons (iNs) has emerged as an innovative strategy to replace neurons lost due to injury or neurological diseases. Here, we describe a step-by-step protocol to induce in vivo conversion of reactive glial cells, proliferating within the injured hippocampus, into mature and functional GABAergic iNs through retrovirus-mediated expression of two neurogenic fate determinants (Ascl1 and Dlx2). We have previously applied this method to study the integration and functional impact of GABAergic iNs in epileptic mice (Lentini et al., Cell Stem Cell 28:2104-2121.e10, 2021). We successfully generated GABAergic iNs that exhibited substantial integration within pathological circuits, leading to a significant reduction in epileptic seizures.
Collapse
Affiliation(s)
- Marie d'Orange
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Célia Lentini
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Christophe Heinrich
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, Bron, France.
| |
Collapse
|
10
|
Xie Y, Liu J, Hou Z, Wang H, Liu K, Chen X, Fan Z, Li D, Li C, Pan Y, Zhao Y, Zhu Y, Hu B. CD4-Derived Double-Negative T Cells Ameliorate Alzheimer's Disease-Like Phenotypes in the 5×FAD Mouse Model. CNS Neurosci Ther 2025; 31:e70187. [PMID: 39844773 PMCID: PMC11754964 DOI: 10.1111/cns.70187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 01/24/2025] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a debilitating neurodegenerative disorder that is difficult to predict and is typically diagnosed only after symptoms manifest. Recently, CD4+ T cell-derived double-negative T (DNT) cells have shown strong immuno-regulatory properties in both in vitro and in vivo neuronal inflammation studies. However, the effectiveness of DNT cells in treating on AD are not yet fully understood. OBJECTIVE This study's aims were three-fold, to (1) evaluate the efficacy of CD4+ T cell-derived DNT cells treatment on AD mice, (2) understand how DNT treatment make changes in different cell types of 5FAD mice, (3) identify the side effects of DNT treatment. METHODS We performed tail vein injection of transformed and amplified CD4+ T cell-derived DNT cells into 5 × FAD mice, while using WT mice and saline injection 5FAD mice as controls. DNT suspensions or NaCl alone were administered to 5 × FAD mice at the 6 months of age. For intravenous injection (n = 10 for both DNT and control injections), 5 × FAD mice were injected with a total of 5 × 106 DNT cells suspended in 200 μL of 0.9% NaCl or 0.9% NaCl alone via the lateral tail vein. Behavioral tests and pathology tests were carried out 30 days after cell transplantation. RESULTS Through qualitative analysis, we identified 6 main themes. DNT from young wild-type mice enhance the capability of spatial learning and memory in AD mice. DNT cell treatment rejuvenates the microglial function. DNT cell treatment improves the state of oligodendrocytes. DNT cell treatment finetunes the activation of the immune system. DNT cell treatment improves the synaptic plasticity and increases the complexity of neurons. DNT cell treatment reduces the density of amyloid Beta plaques deposition in the cortex and hippocampus of 5 × FAD mice. DISCUSSION The findings from this study reveal that DNT treatment improved spatial memory and learning abilities, reduced Aβ deposition, and enhanced synaptic plasticity, contrasting with previous reports on thymus-derived DNT cells. Additionally, CD4+ T cell-derived DNT therapy exhibited anti-inflammatory effects and modulated microglial function, promoting a neuroprotective environment. Notably, DNT treatment also reduced tau pathology by decreasing levels of abnormally phosphorylated tau. These findings suggest that CD4+ T cell-derived DNT cells hold therapeutic potential for AD, effectively targeting both Aβ and tau pathologies.
Collapse
Affiliation(s)
- Yuanzi Xie
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jing Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
| | - Zongren Hou
- University of Chinese Academy of SciencesBeijingChina
- Savaid Medical SchoolUniversity of Chinese Academy of SciencesBeijingChina
| | - Huan Wang
- Beijing Clinical Research InstituteBeijing Friendship Hospital, Capital Medical UniversityBeijingChina
- Department of NeurologyBeijing Friendship Hospital, Capital Medical UniversityBeijingChina
| | - Kailun Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
| | - Xiaowei Chen
- Institute of BiophysicsChinese Academy of SciencesBeijingChina
| | - Zhen Fan
- Institute of BiophysicsChinese Academy of SciencesBeijingChina
| | - Da Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
| | - Can Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yuhualei Pan
- Beijing Clinical Research InstituteBeijing Friendship Hospital, Capital Medical UniversityBeijingChina
- Department of NeurologyBeijing Friendship Hospital, Capital Medical UniversityBeijingChina
| | - Yushang Zhao
- Beijing Clinical Research InstituteBeijing Friendship Hospital, Capital Medical UniversityBeijingChina
- Department of NeurologyBeijing Friendship Hospital, Capital Medical UniversityBeijingChina
| | - Yanbing Zhu
- Beijing Clinical Research InstituteBeijing Friendship Hospital, Capital Medical UniversityBeijingChina
- Department of NeurologyBeijing Friendship Hospital, Capital Medical UniversityBeijingChina
| | - Baoyang Hu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Savaid Medical SchoolUniversity of Chinese Academy of SciencesBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
| |
Collapse
|
11
|
de Martin X, Oliva B, Santpere G. Recruitment of homodimeric proneural factors by conserved CAT-CAT E-boxes drives major epigenetic reconfiguration in cortical neurogenesis. Nucleic Acids Res 2024; 52:12895-12917. [PMID: 39494521 PMCID: PMC11602148 DOI: 10.1093/nar/gkae950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/03/2024] [Accepted: 10/09/2024] [Indexed: 11/05/2024] Open
Abstract
Proneural factors of the basic helix-loop-helix family coordinate neurogenesis and neurodifferentiation. Among them, NEUROG2 and NEUROD2 subsequently act to specify neurons of the glutamatergic lineage. Disruption of these factors, their target genes and binding DNA motifs has been linked to various neuropsychiatric disorders. Proneural factors bind to specific DNA motifs called E-boxes (hexanucleotides of the form CANNTG, composed of two CAN half sites on opposed strands). While corticogenesis heavily relies on E-box activity, the collaboration of proneural factors on different E-box types and their chromatin remodeling mechanisms remain largely unknown. Here, we conducted a comprehensive analysis using chromatin immunoprecipitation followed by sequencing (ChIP-seq) data for NEUROG2 and NEUROD2, along with time-matched single-cell RNA-seq, ATAC-seq and DNA methylation data from the developing mouse cortex. Our findings show that these factors are highly enriched in transiently active genomic regions during intermediate stages of neuronal differentiation. Although they primarily bind CAG-containing E-boxes, their binding in dynamic regions is notably enriched in CAT-CAT E-boxes (i.e. CATATG, denoted as 5'3' half sites for dimers), which undergo significant DNA demethylation and exhibit the highest levels of evolutionary constraint. Aided by HT-SELEX data reanalysis, structural modeling and DNA footprinting, we propose that these proneural factors exert maximal chromatin remodeling influence during intermediate stages of neurogenesis by binding as homodimers to CAT-CAT motifs. This study provides an in-depth integrative analysis of the dynamic regulation of E-boxes during neuronal development, enhancing our understanding of the mechanisms underlying the binding specificity of critical proneural factors.
Collapse
Affiliation(s)
- Xabier de Martin
- Neurogenomics Group, Hospital del Mar Research Institute, Parc de Recerca Biomèdica de Barcelona (PRBB), Dr. Aiguader, 88, Barcelona 08003, Catalonia, Spain
| | - Baldomero Oliva
- Structural Bioinformatics Lab (GRIB-IMIM), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Dr. Aiguader, 88, Barcelona 08003 Catalonia, Spain
| | - Gabriel Santpere
- Neurogenomics Group, Hospital del Mar Research Institute, Parc de Recerca Biomèdica de Barcelona (PRBB), Dr. Aiguader, 88, Barcelona 08003, Catalonia, Spain
- Department of Neuroscience, Yale School of Medicine, 333 Cedar st., New Haven, CT 06510, USA
| |
Collapse
|
12
|
Beitz A, Teves J, Oakes C, Johnstone C, Wang N, Brickman JM, Galloway KE. Cells transit through a quiescent-like state to convert to neurons at high rates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.22.624928. [PMID: 39651159 PMCID: PMC11623504 DOI: 10.1101/2024.11.22.624928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
While transcription factors (TFs) provide essential cues for directing and redirecting cell fate, TFs alone are insufficient to drive cells to adopt alternative fates. Rather, transcription factors rely on receptive cell states to induce novel identities. Cell state emerges from and is shaped by cellular history and the activity of diverse processes. Here, we define the cellular and molecular properties of a highly receptive state amenable to transcription factor-mediated direct conversion from fibroblasts to induced motor neurons. Using a well-defined model of direct conversion to a post-mitotic fate, we identify the highly proliferative, receptive state that transiently emerges during conversion. Through examining chromatin accessibility, histone marks, and nuclear features, we find that cells reprogram from a state characterized by global reductions in nuclear size and transcriptional activity. Supported by globally increased levels of H3K27me3, cells enter a quiescent-like state of reduced RNA metabolism and elevated expression of REST and p27, markers of quiescent neural stem cells. From this transient state, cells convert to neurons at high rates. Inhibition of Ezh2, the catalytic subunit of PRC2 that deposits H3K27me3, abolishes conversion. Our work offers a roadmap to identify global changes in cellular processes that define cells with different conversion potentials that may generalize to other cell-fate transitions. Highlights Proliferation drives cells to a compact nuclear state that is receptive to TF-mediated conversion.Increased receptivity to TFs corresponds to reduced nuclear volumes.Reprogrammable cells display global, genome-wide increases in H3K27me3.High levels of H3K27me3 support cells' transits through a state of altered RNA metabolism.Inhibition of Ezh2 increases nuclear size, reduces the expression of the quiescence marker p27.Acute inhibition of Ezh2 abolishes motor neuron conversion. One Sentence Summary Cells transit through a quiescent-like state characterized by global reductions in nuclear size and transcriptional activity to convert to neurons at high rates.
Collapse
|
13
|
Cui Y, Zhang X, Liu J, Hou Y, Song Q, Cao M, Zhang J, Wang X, Liu C, Wang P, Wang Y. Myeloid ectopic viral integration site 2 accelerates the progression of Alzheimer's disease. Aging Cell 2024; 23:e14260. [PMID: 38994634 PMCID: PMC11464116 DOI: 10.1111/acel.14260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/29/2024] [Accepted: 06/11/2024] [Indexed: 07/13/2024] Open
Abstract
Amyloid plaques, a major pathological hallmark of Alzheimer's disease (AD), are caused by an imbalance between the amyloidogenic and non-amyloidogenic pathways of amyloid precursor protein (APP). BACE1 cleavage of APP is the rate-limiting step for amyloid-β production and plaque formation in AD. Although the alteration of BACE1 expression in AD has been investigated, the underlying mechanisms remain unknown. In this study, we determined MEIS2 was notably elevated in AD models and AD patients. Alterations in the expression of MEIS2 can modulate the levels of BACE1. MEIS2 downregulation improved the learning and memory retention of AD mice and decreased the number of amyloid plaques. MEIS2 binds to the BACE1 promoter, positively regulates BACE1 expression, and accelerates APP amyloid degradation in vitro. Therefore, our findings suggest that MEIS2 might be a critical transcription factor in AD, since it regulates BACE1 expression and accelerates BACE1-mediated APP amyloidogenic cleavage. MEIS2 is a promising early intervention target for AD treatment.
Collapse
Affiliation(s)
- Yuting Cui
- Clinical Laboratory of Xuanwu Hospital, Capital Medical UniversityBeijingPeople's Republic of China
| | - Xiaomin Zhang
- Clinical Laboratory of Xuanwu Hospital, Capital Medical UniversityBeijingPeople's Republic of China
| | - Jing Liu
- Clinical Laboratory of Xuanwu Hospital, Capital Medical UniversityBeijingPeople's Republic of China
| | - Yuli Hou
- Clinical Laboratory of Xuanwu Hospital, Capital Medical UniversityBeijingPeople's Republic of China
| | - Qiao Song
- Clinical Laboratory of Xuanwu Hospital, Capital Medical UniversityBeijingPeople's Republic of China
| | - Min Cao
- Department of Clinical LaboratoryBeijing Huairou HospitalBeijingPeople's Republic of China
| | - Jingjing Zhang
- Clinical Laboratory of Xuanwu Hospital, Capital Medical UniversityBeijingPeople's Republic of China
| | - Xiaoling Wang
- Clinical Laboratory of Xuanwu Hospital, Capital Medical UniversityBeijingPeople's Republic of China
| | - Congcong Liu
- Clinical Laboratory of Xuanwu Hospital, Capital Medical UniversityBeijingPeople's Republic of China
| | - Peichang Wang
- Clinical Laboratory of Xuanwu Hospital, Capital Medical UniversityBeijingPeople's Republic of China
| | - Yaqi Wang
- Clinical Laboratory of Xuanwu Hospital, Capital Medical UniversityBeijingPeople's Republic of China
| |
Collapse
|
14
|
Fukui Y, Morihara R, Hu X, Nakano Y, Yunoki T, Takemoto M, Abe K, Yamashita T. Suppression of PTBP1 in hippocampal astrocytes promotes neurogenesis and ameliorates recognition memory in mice with cerebral ischemia. Sci Rep 2024; 14:20521. [PMID: 39227632 PMCID: PMC11372044 DOI: 10.1038/s41598-024-71212-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 08/26/2024] [Indexed: 09/05/2024] Open
Abstract
The therapeutic potential of suppressing polypyrimidine tract-binding protein 1 (Ptbp1) messenger RNA by viral transduction in a post-stroke dementia mouse model has not yet been examined. In this study, 3 days after cerebral ischemia, we injected a viral vector cocktail containing adeno-associated virus (AAV)-pGFAP-mCherry and AAV-pGFAP-CasRx (control vector) or a cocktail of AAV-pGFAP-mCherry and AAV-pGFAP-CasRx-SgRNA-(Ptbp1) (1:5, 1.0 × 1011 viral genomes) into post-stroke mice via the tail vein. We observed new mCherry/NeuN double-positive neuron-like cells in the hippocampus 56 days after cerebral ischemia. A portion of mCherry/GFAP double-positive astrocyte-like glia could have been converted into new mCherry/NeuN double-positive neuron-like cells with morphological changes. The new neuronal cells integrated into the dentate gyrus and recognition memory was significantly ameliorated. These results demonstrated that the in vivo conversion of hippocampal astrocyte-like glia into functional new neurons by the suppression of Ptbp1 might be a therapeutic strategy for post-stroke dementia.
Collapse
Affiliation(s)
- Yusuke Fukui
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama, 700-8558, Japan
| | - Ryuta Morihara
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama, 700-8558, Japan
| | - Xinran Hu
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama, 700-8558, Japan
| | - Yumiko Nakano
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama, 700-8558, Japan
| | - Taijun Yunoki
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama, 700-8558, Japan
| | - Mami Takemoto
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama, 700-8558, Japan
| | - Koji Abe
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama, 700-8558, Japan
| | - Toru Yamashita
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikatacho, Kitaku, Okayama, 700-8558, Japan.
| |
Collapse
|
15
|
Papadimitriou E, Thomaidou D. Post-transcriptional mechanisms controlling neurogenesis and direct neuronal reprogramming. Neural Regen Res 2024; 19:1929-1939. [PMID: 38227517 DOI: 10.4103/1673-5374.390976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/08/2023] [Indexed: 01/17/2024] Open
Abstract
Neurogenesis is a tightly regulated process in time and space both in the developing embryo and in adult neurogenic niches. A drastic change in the transcriptome and proteome of radial glial cells or neural stem cells towards the neuronal state is achieved due to sophisticated mechanisms of epigenetic, transcriptional, and post-transcriptional regulation. Understanding these neurogenic mechanisms is of major importance, not only for shedding light on very complex and crucial developmental processes, but also for the identification of putative reprogramming factors, that harbor hierarchically central regulatory roles in the course of neurogenesis and bare thus the capacity to drive direct reprogramming towards the neuronal fate. The major transcriptional programs that orchestrate the neurogenic process have been the focus of research for many years and key neurogenic transcription factors, as well as repressor complexes, have been identified and employed in direct reprogramming protocols to convert non-neuronal cells, into functional neurons. The post-transcriptional regulation of gene expression during nervous system development has emerged as another important and intricate regulatory layer, strongly contributing to the complexity of the mechanisms controlling neurogenesis and neuronal function. In particular, recent advances are highlighting the importance of specific RNA binding proteins that control major steps of mRNA life cycle during neurogenesis, such as alternative splicing, polyadenylation, stability, and translation. Apart from the RNA binding proteins, microRNAs, a class of small non-coding RNAs that block the translation of their target mRNAs, have also been shown to play crucial roles in all the stages of the neurogenic process, from neural stem/progenitor cell proliferation, neuronal differentiation and migration, to functional maturation. Here, we provide an overview of the most prominent post-transcriptional mechanisms mediated by RNA binding proteins and microRNAs during the neurogenic process, giving particular emphasis on the interplay of specific RNA binding proteins with neurogenic microRNAs. Taking under consideration that the molecular mechanisms of neurogenesis exert high similarity to the ones driving direct neuronal reprogramming, we also discuss the current advances in in vitro and in vivo direct neuronal reprogramming approaches that have employed microRNAs or RNA binding proteins as reprogramming factors, highlighting the so far known mechanisms of their reprogramming action.
Collapse
|
16
|
Giacomoni J, Åkerblom M, Habekost M, Fiorenzano A, Kajtez J, Davidsson M, Parmar M, Björklund T. Identification and validation of novel engineered AAV capsid variants targeting human glia. Front Neurosci 2024; 18:1435212. [PMID: 39193523 PMCID: PMC11348808 DOI: 10.3389/fnins.2024.1435212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 07/15/2024] [Indexed: 08/29/2024] Open
Abstract
Direct neural conversion of endogenous non-neuronal cells, such as resident glia, into therapeutic neurons has emerged as a promising strategy for brain repair, aiming to restore lost or damaged neurons. Proof-of-concept has been obtained from animal studies, yet these models do not efficiently recapitulate the complexity of the human brain, and further refinement is necessary before clinical translation becomes viable. One important aspect is the need to achieve efficient and precise targeting of human glial cells using non-integrating viral vectors that exhibit a high degree of cell type specificity. While various naturally occurring or engineered adeno-associated virus (AAV) serotypes have been utilized to transduce glia, efficient targeting of human glial cell types remains an unsolved challenge. In this study, we employ AAV capsid library engineering to find AAV capsids that selectively target human glia in vitro and in vivo. We have identified two families of AAV capsids that induce efficient targeting of human glia both in glial spheroids and after glial progenitor cell transplantation into the rat forebrain. Furthermore, we show the robustness of this targeting by transferring the capsid peptide from the parent AAV2 serotype onto the AAV9 serotype, which facilitates future scalability for the larger human brain.
Collapse
Affiliation(s)
- Jessica Giacomoni
- Developmental and Regenerative Neurobiology, Lund Stem Cell Center, Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
| | - Malin Åkerblom
- Molecular Neuromodulation, Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
| | - Mette Habekost
- Developmental and Regenerative Neurobiology, Lund Stem Cell Center, Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
| | - Alessandro Fiorenzano
- Developmental and Regenerative Neurobiology, Lund Stem Cell Center, Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
| | - Janko Kajtez
- Developmental and Regenerative Neurobiology, Lund Stem Cell Center, Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
| | - Marcus Davidsson
- Molecular Neuromodulation, Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
| | - Malin Parmar
- Developmental and Regenerative Neurobiology, Lund Stem Cell Center, Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
| | - Tomas Björklund
- Molecular Neuromodulation, Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
| |
Collapse
|
17
|
Xiang Z, He S, Chen R, Liu S, Liu M, Xu L, Zheng J, Jiang Z, Ma L, Sun Y, Qin Y, Chen Y, Li W, Wang X, Chen G, Lei W. Two-photon live imaging of direct glia-to-neuron conversion in the mouse cortex. Neural Regen Res 2024; 19:1781-1788. [PMID: 38103245 PMCID: PMC10960291 DOI: 10.4103/1673-5374.386401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/23/2023] [Accepted: 09/26/2023] [Indexed: 12/18/2023] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202408000-00032/figure1/v/2023-12-16T180322Z/r/image-tiff Over the past decade, a growing number of studies have reported transcription factor-based in situ reprogramming that can directly convert endogenous glial cells into functional neurons as an alternative approach for neuroregeneration in the adult mammalian central nervous system. However, many questions remain regarding how a terminally differentiated glial cell can transform into a delicate neuron that forms part of the intricate brain circuitry. In addition, concerns have recently been raised around the absence of astrocyte-to-neuron conversion in astrocytic lineage-tracing mice. In this study, we employed repetitive two-photon imaging to continuously capture the in situ astrocyte-to-neuron conversion process following ectopic expression of the neural transcription factor NeuroD1 in both proliferating reactive astrocytes and lineage-traced astrocytes in the mouse cortex. Time-lapse imaging over several weeks revealed the step-by-step transition from a typical astrocyte with numerous short, tapered branches to a typical neuron with a few long neurites and dynamic growth cones that actively explored the local environment. In addition, these lineage-converting cells were able to migrate radially or tangentially to relocate to suitable positions. Furthermore, two-photon Ca2+ imaging and patch-clamp recordings confirmed that the newly generated neurons exhibited synchronous calcium signals, repetitive action potentials, and spontaneous synaptic responses, suggesting that they had made functional synaptic connections within local neural circuits. In conclusion, we directly visualized the step-by-step lineage conversion process from astrocytes to functional neurons in vivo and unambiguously demonstrated that adult mammalian brains are highly plastic with respect to their potential for neuroregeneration and neural circuit reconstruction.
Collapse
Affiliation(s)
- Zongqin Xiang
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, Guangdong Province, China
- Department of Neurosurgery, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong Province, China
- Laboratory for Neuroimmunology in Health and Diseases, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong Province, China
| | - Shu He
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, Guangdong Province, China
| | - Rongjie Chen
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, Guangdong Province, China
| | - Shanggong Liu
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, Guangdong Province, China
| | - Minhui Liu
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Flemish Region, Belgium
| | - Liang Xu
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, Guangdong Province, China
| | - Jiajun Zheng
- Department of Neurosurgery, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong Province, China
| | - Zhouquan Jiang
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, Guangdong Province, China
| | - Long Ma
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, Guangdong Province, China
| | - Ying Sun
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, Guangdong Province, China
| | - Yongpeng Qin
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, Guangdong Province, China
| | - Yi Chen
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, Guangdong Province, China
| | - Wen Li
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, Guangdong Province, China
| | - Xiangyu Wang
- Department of Neurosurgery, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong Province, China
| | - Gong Chen
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, Guangdong Province, China
| | - Wenliang Lei
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, Guangdong Province, China
| |
Collapse
|
18
|
Li ST, Wan Y, Chen L, Ding Y. Advances in neuronal reprogramming for neurodegenerative diseases: Strategies, controversies, and opportunities. Exp Neurol 2024; 378:114817. [PMID: 38763354 DOI: 10.1016/j.expneurol.2024.114817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
Neuronal death is often observed in central nervous system injuries and neurodegenerative diseases. The mammalian central nervous system manifests limited neuronal regeneration capabilities, and traditional cell therapies are limited in their potential applications due to finite cell sources and immune rejection. Neuronal reprogramming has emerged as a novel technology, in which non-neuronal cells (e.g. glial cells) are transdifferentiated into mature neurons. This process results in relatively minimal immune rejection. The present review discuss the latest progress in this cutting-edge field, including starter cell selection, innovative technical strategies and methods of neuronal reprogramming for neurodegenerative diseases, as well as the potential problems and controversies. The further development of neuronal reprogramming technology may pave the way for novel therapeutic strategies in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Si-Tong Li
- Department of Histology and Embryology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Yue Wan
- Department of Histology and Embryology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Li Chen
- Department of Histology and Embryology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Yan Ding
- Department of Histology and Embryology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
19
|
Pavlinkova G, Smolik O. NEUROD1: transcriptional and epigenetic regulator of human and mouse neuronal and endocrine cell lineage programs. Front Cell Dev Biol 2024; 12:1435546. [PMID: 39105169 PMCID: PMC11298428 DOI: 10.3389/fcell.2024.1435546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/02/2024] [Indexed: 08/07/2024] Open
Abstract
Transcription factors belonging to the basic helix-loop-helix (bHLH) family are key regulators of cell fate specification and differentiation during development. Their dysregulation is implicated not only in developmental abnormalities but also in various adult diseases and cancers. Recently, the abilities of bHLH factors have been exploited in reprogramming strategies for cell replacement therapy. One such factor is NEUROD1, which has been associated with the reprogramming of the epigenetic landscape and potentially possessing pioneer factor abilities, initiating neuronal developmental programs, and enforcing pancreatic endocrine differentiation. The review aims to consolidate current knowledge on NEUROD1's multifaceted roles and mechanistic pathways in human and mouse cell differentiation and reprogramming, exploring NEUROD1 roles in guiding the development and reprogramming of neuroendocrine cell lineages. The review focuses on NEUROD1's molecular mechanisms, its interactions with other transcription factors, its role as a pioneer factor in chromatin remodeling, and its potential in cell reprogramming. We also show a differential potential of NEUROD1 in differentiation of neurons and pancreatic endocrine cells, highlighting its therapeutic potential and the necessity for further research to fully understand and utilize its capabilities.
Collapse
Affiliation(s)
- Gabriela Pavlinkova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology Czech Academy of Sciences, Vestec, Czechia
| | | |
Collapse
|
20
|
Mseis-Jackson N, Sharma M, Li H. Controlling the Expression Level of the Neuronal Reprogramming Factors for a Successful Reprogramming Outcome. Cells 2024; 13:1223. [PMID: 39056804 PMCID: PMC11274869 DOI: 10.3390/cells13141223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Neuronal reprogramming is a promising approach for making major advancement in regenerative medicine. Distinct from the approach of induced pluripotent stem cells, neuronal reprogramming converts non-neuronal cells to neurons without going through a primitive stem cell stage. In vivo neuronal reprogramming brings this approach to a higher level by changing the cell fate of glial cells to neurons in neural tissue through overexpressing reprogramming factors. Despite the ongoing debate over the validation and interpretation of newly generated neurons, in vivo neuronal reprogramming is still a feasible approach and has the potential to become clinical treatment with further optimization and refinement. Here, we discuss the major neuronal reprogramming factors (mostly pro-neurogenic transcription factors during development), especially the significance of their expression levels during neurogenesis and the reprogramming process focusing on NeuroD1. In the developing central nervous system, these pro-neurogenic transcription factors usually elicit distinct spatiotemporal expression patterns that are critical to their function in generating mature neurons. We argue that these dynamic expression patterns may be similarly needed in the process of reprogramming adult cells into neurons and further into mature neurons with subtype identities. We also summarize the existing approaches and propose new ones that control gene expression levels for a successful reprogramming outcome.
Collapse
Affiliation(s)
- Natalie Mseis-Jackson
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
| | - Mehek Sharma
- Department of Biological Sciences, College of Science & Mathematics, Augusta University, Augusta, GA 30912, USA;
| | - Hedong Li
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
| |
Collapse
|
21
|
Kim M, Oh S, Kim S, Kim IS, Kim J, Han J, Ahn JW, Chung S, Jang JH, Shin JE, Park KI. In vivo neural regeneration via AAV-NeuroD1 gene delivery to astrocytes in neonatal hypoxic-ischemic brain injury. Inflamm Regen 2024; 44:33. [PMID: 39014391 PMCID: PMC11253351 DOI: 10.1186/s41232-024-00349-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/06/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND Neonatal hypoxic-ischemic brain injury (HIBI) is a significant contributor to neonatal mortality and long-term neurodevelopmental disability, characterized by massive neuronal loss and reactive astrogliosis. Current therapeutic approaches for neonatal HIBI have been limited to general supportive therapy because of the lack of methods to compensate for irreversible neuronal loss. This study aimed to establish a feasible regenerative therapy for neonatal HIBI utilizing in vivo direct neuronal reprogramming technology. METHODS Neonatal HIBI was induced in ICR mice at postnatal day 7 by permanent right common carotid artery occlusion and exposure to hypoxia with 8% oxygen and 92% nitrogen for 90 min. Three days after the injury, NeuroD1 was delivered to reactive astrocytes of the injury site using the astrocyte-tropic adeno-associated viral (AAV) vector AAVShH19. AAVShH19 was engineered with the Cre-FLEX system for long-term tracking of infected cells. RESULTS AAVShH19-mediated ectopic NeuroD1 expression effectively converted astrocytes into GABAergic neurons, and the converted cells exhibited electrophysiological properties and synaptic transmitters. Additionally, we found that NeuroD1-mediated in vivo direct neuronal reprogramming protected injured host neurons and altered the host environment, i.e., decreased the numbers of activated microglia, reactive astrocytes, and toxic A1-type astrocytes, and decreased the expression of pro-inflammatory factors. Furthermore, NeuroD1-treated mice exhibited significantly improved motor functions. CONCLUSIONS This study demonstrates that NeuroD1-mediated in vivo direct neuronal reprogramming technology through AAV gene delivery can be a novel regenerative therapy for neonatal HIBI.
Collapse
Affiliation(s)
- Miri Kim
- Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Seokmin Oh
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Songyeon Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Il-Sun Kim
- Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Joowon Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jungho Han
- Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Ji Woong Ahn
- BnH Research. Co., Ltd. Goyang-Si, Gyeonggi-Do, Republic of Korea
| | - Seungsoo Chung
- Department of Physiology, Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae-Hyung Jang
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- GluGene Therapeutics Inc., Seoul, Republic of Korea
| | - Jeong Eun Shin
- Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
- Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea.
| | - Kook In Park
- Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| |
Collapse
|
22
|
Singh PNP, Gu W, Madha S, Lynch AW, Cejas P, He R, Bhattacharya S, Muñoz Gomez M, Oser MG, Brown M, Long HW, Meyer CA, Zhou Q, Shivdasani RA. Transcription factor dynamics, oscillation, and functions in human enteroendocrine cell differentiation. Cell Stem Cell 2024; 31:1038-1057.e11. [PMID: 38733993 PMCID: PMC12005834 DOI: 10.1016/j.stem.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/17/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024]
Abstract
Enteroendocrine cells (EECs) secrete serotonin (enterochromaffin [EC] cells) or specific peptide hormones (non-EC cells) that serve vital metabolic functions. The basis for terminal EEC diversity remains obscure. By forcing activity of the transcription factor (TF) NEUROG3 in 2D cultures of human intestinal stem cells, we replicated physiologic EEC differentiation and examined transcriptional and cis-regulatory dynamics that culminate in discrete cell types. Abundant EEC precursors expressed stage-specific genes and TFs. Before expressing pre-terminal NEUROD1, post-mitotic precursors oscillated between transcriptionally distinct ASCL1+ and HES6hi cell states. Loss of either factor accelerated EEC differentiation substantially and disrupted EEC individuality; ASCL1 or NEUROD1 deficiency had opposing consequences on EC and non-EC cell features. These TFs mainly bind cis-elements that are accessible in undifferentiated stem cells, and they tailor subsequent expression of TF combinations that underlie discrete EEC identities. Thus, early TF oscillations retard EEC maturation to enable accurate diversity within a medically important cell lineage.
Collapse
Affiliation(s)
- Pratik N P Singh
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Wei Gu
- Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Shariq Madha
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Allen W Lynch
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Paloma Cejas
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Ruiyang He
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Swarnabh Bhattacharya
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Miguel Muñoz Gomez
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Matthew G Oser
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Departments of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Myles Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Departments of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Henry W Long
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Clifford A Meyer
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Qiao Zhou
- Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA.
| | - Ramesh A Shivdasani
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Departments of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| |
Collapse
|
23
|
Portela-Lomba M, Simón D, Callejo-Móstoles M, de la Fuente G, Fernández de Sevilla D, García-Escudero V, Moreno-Flores MT, Sierra J. Generation of functional neurons from adult human mucosal olfactory ensheathing glia by direct lineage conversion. Cell Death Dis 2024; 15:478. [PMID: 38961086 PMCID: PMC11222439 DOI: 10.1038/s41419-024-06862-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024]
Abstract
A recent approach to promote central nervous system (CNS) regeneration after injury or disease is direct conversion of somatic cells to neurons. This is achieved by transduction of viral vectors that express neurogenic transcription factors. In this work we propose adult human mucosal olfactory ensheathing glia (hmOEG) as a candidate for direct reprogramming to neurons due to its accessibility and to its well-characterized neuroregenerative capacity. After induction of hmOEG with the single neurogenic transcription factor NEUROD1, the cells under study exhibited morphological and immunolabeling neuronal features, fired action potentials and expressed glutamatergic and GABAergic markers. In addition, after engraftment of transduced hmOEG cells in the mouse hippocampus, these cells showed specific neuronal labeling. Thereby, if we add to the neuroregenerative capacity of hmOEG cultures the conversion to neurons of a fraction of their population through reprogramming techniques, the engraftment of hmOEG and hmOEG-induced neurons could be a procedure to enhance neural repair after central nervous system injury.
Collapse
Affiliation(s)
- María Portela-Lomba
- School of Experimental Sciences, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Spain
- Department of Genetics and Development, Columbia University Medical Center, New York, NY, USA
| | - Diana Simón
- School of Experimental Sciences, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Spain
| | - Marta Callejo-Móstoles
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Gemma de la Fuente
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - David Fernández de Sevilla
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Vega García-Escudero
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - M Teresa Moreno-Flores
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain.
| | - Javier Sierra
- School of Experimental Sciences, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Spain.
- School of Medicine, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Spain.
| |
Collapse
|
24
|
Liang S, Zhou J, Yu X, Lu S, Liu R. Neuronal conversion from glia to replenish the lost neurons. Neural Regen Res 2024; 19:1446-1453. [PMID: 38051886 PMCID: PMC10883502 DOI: 10.4103/1673-5374.386400] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 08/16/2023] [Indexed: 12/07/2023] Open
Abstract
ABSTRACT Neuronal injury, aging, and cerebrovascular and neurodegenerative diseases such as cerebral infarction, Alzheimer's disease, Parkinson's disease, frontotemporal dementia, amyotrophic lateral sclerosis, and Huntington's disease are characterized by significant neuronal loss. Unfortunately, the neurons of most mammals including humans do not possess the ability to self-regenerate. Replenishment of lost neurons becomes an appealing therapeutic strategy to reverse the disease phenotype. Transplantation of pluripotent neural stem cells can supplement the missing neurons in the brain, but it carries the risk of causing gene mutation, tumorigenesis, severe inflammation, and obstructive hydrocephalus induced by brain edema. Conversion of neural or non-neural lineage cells into functional neurons is a promising strategy for the diseases involving neuron loss, which may overcome the above-mentioned disadvantages of neural stem cell therapy. Thus far, many strategies to transform astrocytes, fibroblasts, microglia, Müller glia, NG2 cells, and other glial cells to mature and functional neurons, or for the conversion between neuronal subtypes have been developed through the regulation of transcription factors, polypyrimidine tract binding protein 1 (PTBP1), and small chemical molecules or are based on a combination of several factors and the location in the central nervous system. However, some recent papers did not obtain expected results, and discrepancies exist. Therefore, in this review, we discuss the history of neuronal transdifferentiation, summarize the strategies for neuronal replenishment and conversion from glia, especially astrocytes, and point out that biosafety, new strategies, and the accurate origin of the truly converted neurons in vivo should be focused upon in future studies. It also arises the attention of replenishing the lost neurons from glia by gene therapies such as up-regulation of some transcription factors or down-regulation of PTBP1 or drug interference therapies.
Collapse
Affiliation(s)
- Shiyu Liang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Jing Zhou
- Department of Geriatric Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Xiaolin Yu
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Shuai Lu
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Ruitian Liu
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
25
|
Wei J, Wang M, Li S, Han R, Xu W, Zhao A, Yu Q, Li H, Li M, Chi G. Reprogramming of astrocytes and glioma cells into neurons for central nervous system repair and glioblastoma therapy. Biomed Pharmacother 2024; 176:116806. [PMID: 38796971 DOI: 10.1016/j.biopha.2024.116806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024] Open
Abstract
Central nervous system (CNS) damage is usually irreversible owing to the limited regenerative capability of neurons. Following CNS injury, astrocytes are reactively activated and are the key cells involved in post-injury repair mechanisms. Consequently, research on the reprogramming of reactive astrocytes into neurons could provide new directions for the restoration of neural function after CNS injury and in the promotion of recovery in various neurodegenerative diseases. This review aims to provide an overview of the means through which reactive astrocytes around lesions can be reprogrammed into neurons, to elucidate the intrinsic connection between the two cell types from a neurogenesis perspective, and to summarize what is known about the neurotranscription factors, small-molecule compounds and MicroRNA that play major roles in astrocyte reprogramming. As the malignant proliferation of astrocytes promotes the development of glioblastoma multiforme (GBM), this review also examines the research advances on and the theoretical basis for the reprogramming of GBM cells into neurons and discusses the advantages of such approaches over traditional treatment modalities. This comprehensive review provides new insights into the field of GBM therapy and theoretical insights into the mechanisms of neurological recovery following neurological injury and in GBM treatment.
Collapse
Affiliation(s)
- Junyuan Wei
- The Key Laboratory of Pathobiology, Ministry of Education, and College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Miaomiao Wang
- The Key Laboratory of Pathobiology, Ministry of Education, and College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Shilin Li
- School of Public Health, Jilin University, Changchun 130021, China.
| | - Rui Han
- Department of Neurovascular Surgery, First Hospital of Jilin University, 1xinmin Avenue, Changchun, Jilin Province 130021, China.
| | - Wenhong Xu
- The Key Laboratory of Pathobiology, Ministry of Education, and College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Anqi Zhao
- The Key Laboratory of Pathobiology, Ministry of Education, and College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Qi Yu
- The Key Laboratory of Pathobiology, Ministry of Education, and College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Haokun Li
- The Key Laboratory of Pathobiology, Ministry of Education, and College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Meiying Li
- The Key Laboratory of Pathobiology, Ministry of Education, and College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Guangfan Chi
- The Key Laboratory of Pathobiology, Ministry of Education, and College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| |
Collapse
|
26
|
Umeyama T, Matsuda T, Nakashima K. Lineage Reprogramming: Genetic, Chemical, and Physical Cues for Cell Fate Conversion with a Focus on Neuronal Direct Reprogramming and Pluripotency Reprogramming. Cells 2024; 13:707. [PMID: 38667322 PMCID: PMC11049106 DOI: 10.3390/cells13080707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Although lineage reprogramming from one cell type to another is becoming a breakthrough technology for cell-based therapy, several limitations remain to be overcome, including the low conversion efficiency and subtype specificity. To address these, many studies have been conducted using genetics, chemistry, physics, and cell biology to control transcriptional networks, signaling cascades, and epigenetic modifications during reprogramming. Here, we summarize recent advances in cellular reprogramming and discuss future directions.
Collapse
Affiliation(s)
- Taichi Umeyama
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Taito Matsuda
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | | |
Collapse
|
27
|
González-Iglesias A, Arcas A, Domingo-Muelas A, Mancini E, Galcerán J, Valcárcel J, Fariñas I, Nieto MA. Intron detention tightly regulates the stemness/differentiation switch in the adult neurogenic niche. Nat Commun 2024; 15:2837. [PMID: 38565566 PMCID: PMC10987655 DOI: 10.1038/s41467-024-47092-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/13/2024] [Indexed: 04/04/2024] Open
Abstract
The adult mammalian brain retains some capacity to replenish neurons and glia, holding promise for brain regeneration. Thus, understanding the mechanisms controlling adult neural stem cell (NSC) differentiation is crucial. Paradoxically, adult NSCs in the subependymal zone transcribe genes associated with both multipotency maintenance and neural differentiation, but the mechanism that prevents conflicts in fate decisions due to these opposing transcriptional programmes is unknown. Here we describe intron detention as such control mechanism. In NSCs, while multiple mRNAs from stemness genes are spliced and exported to the cytoplasm, transcripts from differentiation genes remain unspliced and detained in the nucleus, and the opposite is true under neural differentiation conditions. We also show that m6A methylation is the mechanism that releases intron detention and triggers nuclear export, enabling rapid and synchronized responses. m6A RNA methylation operates as an on/off switch for transcripts with antagonistic functions, tightly controlling the timing of NSCs commitment to differentiation.
Collapse
Affiliation(s)
| | - Aida Arcas
- Instituto de Neurociencias (CSIC-UMH), Sant Joan d'Alacant, 03550, Spain
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research, University of Navarra, Pamplona, 31008, Spain
| | - Ana Domingo-Muelas
- Departamento de Biología Celular, Biología Funcional y Antropología Física and Instituto de Biotecnología y Biomedicina, Universidad de Valencia, Burjassot, 46100, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28029, Madrid, Spain
- Carlos Simon Foundation, 46980, Paterna, Valencia, Spain
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Igenomix Foundation, 46980, Paterna, Valencia, Spain
| | - Estefania Mancini
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, 08003, Spain
| | - Joan Galcerán
- Instituto de Neurociencias (CSIC-UMH), Sant Joan d'Alacant, 03550, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Raras (CIBERER), 28029, Madrid, Spain
| | - Juan Valcárcel
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, 08003, Spain
- Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010, Barcelona, Spain
| | - Isabel Fariñas
- Departamento de Biología Celular, Biología Funcional y Antropología Física and Instituto de Biotecnología y Biomedicina, Universidad de Valencia, Burjassot, 46100, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28029, Madrid, Spain
| | - M Angela Nieto
- Instituto de Neurociencias (CSIC-UMH), Sant Joan d'Alacant, 03550, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Raras (CIBERER), 28029, Madrid, Spain.
| |
Collapse
|
28
|
Zhao J, Liu S, Xiang X, Zhu X. Versatile strategies for adult neurogenesis: avenues to repair the injured brain. Neural Regen Res 2024; 19:774-780. [PMID: 37843211 PMCID: PMC10664121 DOI: 10.4103/1673-5374.382224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 02/22/2023] [Accepted: 07/10/2023] [Indexed: 10/17/2023] Open
Abstract
Brain injuries due to trauma or stroke are major causes of adult death and disability. Unfortunately, few interventions are effective for post-injury repair of brain tissue. After a long debate on whether endogenous neurogenesis actually happens in the adult human brain, there is now substantial evidence to support its occurrence. Although neurogenesis is usually significantly stimulated by injury, the reparative potential of endogenous differentiation from neural stem/progenitor cells is usually insufficient. Alternatively, exogenous stem cell transplantation has shown promising results in animal models, but limitations such as poor long-term survival and inefficient neuronal differentiation make it still challenging for clinical use. Recently, a high focus was placed on glia-to-neuron conversion under single-factor regulation. Despite some inspiring results, the validity of this strategy is still controversial. In this review, we summarize historical findings and recent advances on neurogenesis strategies for neurorepair after brain injury. We also discuss their advantages and drawbacks, as to provide a comprehensive account of their potentials for further studies.
Collapse
Affiliation(s)
- Junyi Zhao
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
| | - Siyu Liu
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
| | - Xianyuan Xiang
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
- Faculty of Life and Health Sciences, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
| | - Xinzhou Zhu
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
- Faculty of Life and Health Sciences, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, Guangdong Province, China
| |
Collapse
|
29
|
Lim B, Domsch K, Mall M, Lohmann I. Canalizing cell fate by transcriptional repression. Mol Syst Biol 2024; 20:144-161. [PMID: 38302581 PMCID: PMC10912439 DOI: 10.1038/s44320-024-00014-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/28/2023] [Accepted: 12/15/2023] [Indexed: 02/03/2024] Open
Abstract
Precision in the establishment and maintenance of cellular identities is crucial for the development of multicellular organisms and requires tight regulation of gene expression. While extensive research has focused on understanding cell type-specific gene activation, the complex mechanisms underlying the transcriptional repression of alternative fates are not fully understood. Here, we provide an overview of the repressive mechanisms involved in cell fate regulation. We discuss the molecular machinery responsible for suppressing alternative fates and highlight the crucial role of sequence-specific transcription factors (TFs) in this process. Depletion of these TFs can result in unwanted gene expression and increased cellular plasticity. We suggest that these TFs recruit cell type-specific repressive complexes to their cis-regulatory elements, enabling them to modulate chromatin accessibility in a context-dependent manner. This modulation effectively suppresses master regulators of alternative fate programs and their downstream targets. The modularity and dynamic behavior of these repressive complexes enables a limited number of repressors to canalize and maintain major and minor cell fate decisions at different stages of development.
Collapse
Affiliation(s)
- Bryce Lim
- Cell Fate Engineering and Disease Modeling Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- HITBR Hector Institute for Translational Brain Research gGmbH, 69120, Heidelberg, Germany
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Katrin Domsch
- Heidelberg University, Centre for Organismal Studies (COS) Heidelberg, Department of Developmental Biology and Cell Networks - Cluster of Excellence, Heidelberg, Germany
| | - Moritz Mall
- Cell Fate Engineering and Disease Modeling Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany.
- HITBR Hector Institute for Translational Brain Research gGmbH, 69120, Heidelberg, Germany.
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany.
| | - Ingrid Lohmann
- Heidelberg University, Centre for Organismal Studies (COS) Heidelberg, Department of Developmental Biology and Cell Networks - Cluster of Excellence, Heidelberg, Germany.
| |
Collapse
|
30
|
Huyghe A, Trajkova A, Lavial F. Cellular plasticity in reprogramming, rejuvenation and tumorigenesis: a pioneer TF perspective. Trends Cell Biol 2024; 34:255-267. [PMID: 37648593 DOI: 10.1016/j.tcb.2023.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 09/01/2023]
Abstract
The multistep process of in vivo reprogramming, mediated by the transcription factors (TFs) Oct4, Sox2, Klf4, and c-Myc (OSKM), holds great promise for the development of rejuvenating and regenerative strategies. However, most of the approaches developed so far are accompanied by a persistent risk of tumorigenicity. Here, we review the groundbreaking effects of in vivo reprogramming with a particular focus on rejuvenation and regeneration. We discuss how the activity of pioneer TFs generates cellular plasticity that may be critical for inducing not only reprogramming and regeneration, but also cancer initiation. Finally, we highlight how a better understanding of the uncoupled control of cellular identity, plasticity, and aging during reprogramming might pave the way to the development of rejuvenating/regenerating strategies in a nontumorigenic manner.
Collapse
Affiliation(s)
- Aurélia Huyghe
- Cellular Reprogramming, Stem Cells and Oncogenesis Laboratory, Equipe Labellisée la Ligue Contre le Cancer, Labex Dev2Can - Univeristy of Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69008 Lyon, France
| | - Aneta Trajkova
- Cellular Reprogramming, Stem Cells and Oncogenesis Laboratory, Equipe Labellisée la Ligue Contre le Cancer, Labex Dev2Can - Univeristy of Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69008 Lyon, France
| | - Fabrice Lavial
- Cellular Reprogramming, Stem Cells and Oncogenesis Laboratory, Equipe Labellisée la Ligue Contre le Cancer, Labex Dev2Can - Univeristy of Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69008 Lyon, France.
| |
Collapse
|
31
|
Katsuda T, Sussman JH, Ito K, Katznelson A, Yuan S, Takenaka N, Li J, Merrell AJ, Cure H, Li Q, Rasool RU, Asangani IA, Zaret KS, Stanger BZ. Cellular reprogramming in vivo initiated by SOX4 pioneer factor activity. Nat Commun 2024; 15:1761. [PMID: 38409161 PMCID: PMC10897393 DOI: 10.1038/s41467-024-45939-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 02/08/2024] [Indexed: 02/28/2024] Open
Abstract
Tissue damage elicits cell fate switching through a process called metaplasia, but how the starting cell fate is silenced and the new cell fate is activated has not been investigated in animals. In cell culture, pioneer transcription factors mediate "reprogramming" by opening new chromatin sites for expression that can attract transcription factors from the starting cell's enhancers. Here we report that SOX4 is sufficient to initiate hepatobiliary metaplasia in the adult mouse liver, closely mimicking metaplasia initiated by toxic damage to the liver. In lineage-traced cells, we assessed the timing of SOX4-mediated opening of enhancer chromatin versus enhancer decommissioning. Initially, SOX4 directly binds to and closes hepatocyte regulatory sequences via an overlapping motif with HNF4A, a hepatocyte master regulatory transcription factor. Subsequently, SOX4 exerts pioneer factor activity to open biliary regulatory sequences. The results delineate a hierarchy by which gene networks become reprogrammed under physiological conditions, providing deeper insight into the basis for cell fate transitions in animals.
Collapse
Affiliation(s)
- Takeshi Katsuda
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA
- Department of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Jonathan H Sussman
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA
- Graduate Group in Genomics and Computational Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kenji Ito
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- The Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew Katznelson
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- The Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Salina Yuan
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Naomi Takenaka
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- The Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jinyang Li
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Allyson J Merrell
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Hector Cure
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Qinglan Li
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- The Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Reyaz Ur Rasool
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Irfan A Asangani
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Kenneth S Zaret
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- The Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA.
| | - Ben Z Stanger
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA.
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA.
- The Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
32
|
Choi W, Choe MS, Kim SM, Kim SJ, Lee J, Lee Y, Lee SM, Dho SH, Lee MY, Kim LK. RFX4 is an intrinsic factor for neuronal differentiation through induction of proneural genes POU3F2 and NEUROD1. Cell Mol Life Sci 2024; 81:99. [PMID: 38386071 PMCID: PMC10884155 DOI: 10.1007/s00018-024-05129-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/27/2023] [Accepted: 01/15/2024] [Indexed: 02/23/2024]
Abstract
Proneural genes play a crucial role in neuronal differentiation. However, our understanding of the regulatory mechanisms governing proneural genes during neuronal differentiation remains limited. RFX4, identified as a candidate regulator of proneural genes, has been reported to be associated with the development of neuropsychiatric disorders. To uncover the regulatory relationship, we utilized a combination of multi-omics data, including ATAC-seq, ChIP-seq, Hi-C, and RNA-seq, to identify RFX4 as an upstream regulator of proneural genes. We further validated the role of RFX4 using an in vitro model of neuronal differentiation with RFX4 knock-in and a CRISPR-Cas9 knock-out system. As a result, we found that RFX4 directly interacts with the promoters of POU3F2 and NEUROD1. Transcriptomic analysis revealed a set of genes associated with neuronal development, which are highly implicated in the development of neuropsychiatric disorders, including schizophrenia. Notably, ectopic expression of RFX4 can drive human embryonic stem cells toward a neuronal fate. Our results strongly indicate that RFX4 serves as a direct upstream regulator of proneural genes, a role that is essential for normal neuronal development. Impairments in RFX4 function could potentially be related to the development of various neuropsychiatric disorders. However, understanding the precise mechanisms by which the RFX4 gene influences the onset of neuropsychiatric disorders requires further investigation through human genetic studies.
Collapse
Affiliation(s)
- Wonyoung Choi
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, The Graduate School, Yonsei University, Seoul, Korea
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Mu Seog Choe
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Su Min Kim
- Department of Biomedical Sciences, Graduate School of Medical Science, Brain Korea 21 Project, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06230, Republic of Korea
| | - So Jin Kim
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Jiyeon Lee
- Department of Biomedical Sciences, Graduate School of Medical Science, Brain Korea 21 Project, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06230, Republic of Korea
| | - Yeongun Lee
- Department of Biomedical Sciences, Graduate School of Medical Science, Brain Korea 21 Project, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06230, Republic of Korea
| | - Sun-Min Lee
- Department of Physics, Konkuk University, Seoul, Republic of Korea
| | - So Hee Dho
- Department of Biomedical Sciences, Graduate School of Medical Science, Brain Korea 21 Project, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06230, Republic of Korea
| | - Min-Young Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea.
| | - Lark Kyun Kim
- Department of Biomedical Sciences, Graduate School of Medical Science, Brain Korea 21 Project, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06230, Republic of Korea.
| |
Collapse
|
33
|
Zhu X, Joo Y, Bossi S, McDevitt RA, Xie A, Wang Y, Xue Y, Su S, Lee SK, Sah N, Zhang S, Ye R, Pinto A, Zhang Y, Araki K, Araki M, Morales M, Mattson MP, van Praag H, Wang W. Tdrd3-null mice show post-transcriptional and behavioral impairments associated with neurogenesis and synaptic plasticity. Prog Neurobiol 2024; 233:102568. [PMID: 38216113 PMCID: PMC10922770 DOI: 10.1016/j.pneurobio.2024.102568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 12/14/2023] [Accepted: 01/06/2024] [Indexed: 01/14/2024]
Abstract
The Topoisomerase 3B (Top3b) - Tudor domain containing 3 (Tdrd3) protein complex is the only dual-activity topoisomerase complex that can alter both DNA and RNA topology in animals. TOP3B mutations in humans are associated with schizophrenia, autism and cognitive disorders; and Top3b-null mice exhibit several phenotypes observed in animal models of psychiatric and cognitive disorders, including impaired cognitive and emotional behaviors, aberrant neurogenesis and synaptic plasticity, and transcriptional defects. Similarly, human TDRD3 genomic variants have been associated with schizophrenia, verbal short-term memory and educational attainment. However, the importance of Tdrd3 in normal brain function has not been examined in animal models. Here we generated a Tdrd3-null mouse strain and demonstrate that these mice display both shared and unique defects when compared to Top3b-null mice. Shared defects were observed in cognitive behaviors, synaptic plasticity, adult neurogenesis, newborn neuron morphology, and neuronal activity-dependent transcription; whereas defects unique to Tdrd3-deficient mice include hyperactivity, changes in anxiety-like behaviors, olfaction, increased new neuron complexity, and reduced myelination. Interestingly, multiple genes critical for neurodevelopment and cognitive function exhibit reduced levels in mature but not nascent transcripts. We infer that the entire Top3b-Tdrd3 complex is essential for normal brain function, and that defective post-transcriptional regulation could contribute to cognitive and psychiatric disorders.
Collapse
Affiliation(s)
- Xingliang Zhu
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institute of Health, Baltimore, MD 21224, USA
| | - Yuyoung Joo
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institute of Health, Baltimore, MD 21224, USA
| | - Simone Bossi
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institute of Health, Baltimore, MD 21224, USA
| | - Ross A McDevitt
- Comparative Medicine Section, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Aoji Xie
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institute of Health, Baltimore, MD 21224, USA
| | - Yue Wang
- Lab of Neuroscience, National Institute on Aging, Intramural Research Program, National Institute of Health, Baltimore, MD 21224, USA
| | - Yutong Xue
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institute of Health, Baltimore, MD 21224, USA
| | - Shuaikun Su
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institute of Health, Baltimore, MD 21224, USA
| | - Seung Kyu Lee
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institute of Health, Baltimore, MD 21224, USA
| | - Nirnath Sah
- Lab of Neuroscience, National Institute on Aging, Intramural Research Program, National Institute of Health, Baltimore, MD 21224, USA
| | - Shiliang Zhang
- Confocal and Electron Microscopy Core, National Institute on Drug Abuse, National Institute of Health, Baltimore, MD 21224, USA
| | - Rong Ye
- Confocal and Electron Microscopy Core, National Institute on Drug Abuse, National Institute of Health, Baltimore, MD 21224, USA
| | - Alejandro Pinto
- Stiles-Nicholson Brain Institute, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Yongqing Zhang
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institute of Health, Baltimore, MD 21224, USA
| | - Kimi Araki
- Division of Developmental Genetics, Institute of Resource Development and Analysis, Kumamoto University, 2-2-1, Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Masatake Araki
- Division of Genomics, Institute of Resource Development and Analysis, Kumamoto University, 2-2-1, Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Marisela Morales
- Confocal and Electron Microscopy Core, National Institute on Drug Abuse, National Institute of Health, Baltimore, MD 21224, USA
| | - Mark P Mattson
- Lab of Neuroscience, National Institute on Aging, Intramural Research Program, National Institute of Health, Baltimore, MD 21224, USA
| | - Henriette van Praag
- Stiles-Nicholson Brain Institute, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Weidong Wang
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institute of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
34
|
Wu Y, Meng X, Cheng WY, Yan Z, Li K, Wang J, Jiang T, Zhou F, Wong KH, Zhong C, Dong Y, Gao S. Can pluripotent/multipotent stem cells reverse Parkinson's disease progression? Front Neurosci 2024; 18:1210447. [PMID: 38356648 PMCID: PMC10864507 DOI: 10.3389/fnins.2024.1210447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 01/02/2024] [Indexed: 02/16/2024] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by continuous and selective degeneration or death of dopamine neurons in the midbrain, leading to dysfunction of the nigrostriatal neural circuits. Current clinical treatments for PD include drug treatment and surgery, which provide short-term relief of symptoms but are associated with many side effects and cannot reverse the progression of PD. Pluripotent/multipotent stem cells possess a self-renewal capacity and the potential to differentiate into dopaminergic neurons. Transplantation of pluripotent/multipotent stem cells or dopaminergic neurons derived from these cells is a promising strategy for the complete repair of damaged neural circuits in PD. This article reviews and summarizes the current preclinical/clinical treatments for PD, their efficacies, and the advantages/disadvantages of various stem cells, including pluripotent and multipotent stem cells, to provide a detailed overview of how these cells can be applied in the treatment of PD, as well as the challenges and bottlenecks that need to be overcome in future translational studies.
Collapse
Affiliation(s)
- Yongkang Wu
- Key Laboratory of Adolescent Health Evaluation and Sports Intervention, Ministry of Education, East China Normal University, Shanghai, China
| | - Xiangtian Meng
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wai-Yin Cheng
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Zhichao Yan
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Keqin Li
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jian Wang
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Tianfang Jiang
- Department of Neurology, Shanghai Eighth People’s Hospital Affiliated to Jiangsu University, Shanghai, China
| | - Fei Zhou
- Department of Neurology, Third Affiliated Hospital of Navy Military Medical University, Shanghai, China
| | - Ka-Hing Wong
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Chunlong Zhong
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yi Dong
- Key Laboratory of Adolescent Health Evaluation and Sports Intervention, Ministry of Education, East China Normal University, Shanghai, China
| | - Shane Gao
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
35
|
Singh PNP, Gu W, Madha S, Lynch AW, Cejas P, He R, Bhattacharya S, Gomez MM, Oser MG, Brown M, Long HW, Meyer CA, Zhou Q, Shivdasani RA. Transcription factor dynamics, oscillation, and functions in human enteroendocrine cell differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.09.574746. [PMID: 38260422 PMCID: PMC10802488 DOI: 10.1101/2024.01.09.574746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Enteroendocrine cells (EECs), which secrete serotonin (enterochromaffin cells, EC) or a dominant peptide hormone, serve vital physiologic functions. As with any adult human lineage, the basis for terminal cell diversity remains obscure. We replicated human EEC differentiation in vitro , mapped transcriptional and chromatin dynamics that culminate in discrete cell types, and studied abundant EEC precursors expressing selected transcription factors (TFs) and gene programs. Before expressing the pre-terminal factor NEUROD1, non-replicating precursors oscillated between epigenetically similar but transcriptionally distinct ASCL1 + and HES6 hi cell states. Loss of either factor substantially accelerated EEC differentiation and disrupted EEC individuality; ASCL1 or NEUROD1 deficiency had opposing consequences on EC and hormone-producing cell features. Expressed late in EEC differentiation, the latter TFs mainly bind cis -elements that are accessible in undifferentiated stem cells and tailor the subsequent expression of TF combinations that specify EEC types. Thus, TF oscillations retard EEC maturation to enable accurate EEC diversification.
Collapse
|
36
|
Marzoog BA. Transcription Factors in Brain Regeneration: A Potential Novel Therapeutic Target. Curr Drug Targets 2024; 25:46-61. [PMID: 38444255 DOI: 10.2174/0113894501279977231210170231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 03/07/2024]
Abstract
Transcription factors play a crucial role in providing identity to each cell population. To maintain cell identity, it is essential to balance the expression of activator and inhibitor transcription factors. Cell plasticity and reprogramming offer great potential for future therapeutic applications, as they can regenerate damaged tissue. Specific niche factors can modify gene expression and differentiate or transdifferentiate the target cell to the required fate. Ongoing research is being carried out on the possibilities of transcription factors in regenerating neurons, with neural stem cells (NSCs) being considered the preferred cells for generating new neurons due to their epigenomic and transcriptome memory. NEUROD1/ASCL1, BRN2, MYTL1, and other transcription factors can induce direct reprogramming of somatic cells, such as fibroblasts, into neurons. However, the molecular biology of transcription factors in reprogramming and differentiation still needs to be fully understood.
Collapse
Affiliation(s)
- Basheer Abdullah Marzoog
- World-Class Research Center, Digital Biodesign and Personalized Healthcare», I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| |
Collapse
|
37
|
Guo Y, Chen J, Ji W, Xu L, Xie Y, He S, Lai C, Hou K, Li Z, Chen G, Wu Z. High-titer AAV disrupts cerebrovascular integrity and induces lymphocyte infiltration in adult mouse brain. Mol Ther Methods Clin Dev 2023; 31:101102. [PMID: 37753218 PMCID: PMC10518493 DOI: 10.1016/j.omtm.2023.08.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/25/2023] [Indexed: 09/28/2023]
Abstract
The brain is often described as an "immune-privileged" organ due to the presence of the blood-brain-barrier (BBB), which limits the entry of immune cells. In general, intracranial injection of adeno-associated virus (AAV) is considered a relatively safe procedure. In this study, we discovered that AAV, a popular engineered viral vector for gene therapy, can disrupt the BBB and induce immune cell infiltration in a titer-dependent manner. First, our bulk RNA sequencing data revealed that injection of high-titer AAV significantly upregulated many genes involved in disrupting BBB integrity and antiviral adaptive immune responses. By using histologic analysis, we further demonstrated that the biological structure of the BBB was severely disrupted in the adult mouse brain. Meanwhile, we noticed abnormal leakage of blood components, including immune cells, within the brain parenchyma of high-titer AAV injected areas. Moreover, we identified that the majority of infiltrated immune cells were cytotoxic T lymphocytes (CTLs), which resulted in a massive loss of neurons at the site of AAV injection. In addition, antagonizing CTL function by administering antibodies significantly reduced neuronal toxicity induced by high-titer AAV. Collectively, our findings underscore potential severe side effects of intracranial injection of high-titer AAV, which might compromise proper data interpretation if unaware of.
Collapse
Affiliation(s)
- Yaowei Guo
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Junliang Chen
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Wenyu Ji
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Liang Xu
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Yu Xie
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Shu He
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Chuying Lai
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Kaiyu Hou
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Zeru Li
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Gong Chen
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Zheng Wu
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| |
Collapse
|
38
|
Li X, Fan R, Xiang J, Yuan Y, Mao X, Zhou N. P-hydroxy benzaldehyde facilitates reprogramming of reactive astrocytes into neurons via endogenous transcriptional regulation. Int J Neurosci 2023; 133:1096-1108. [PMID: 35321633 DOI: 10.1080/00207454.2022.2049775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/21/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Cerebral ischemia leads to linguistic and motor dysfunction, as the death of neurons in ischemic core is permanent and non-renewable. An innovative avenue is to induce and/or facilitate reprogramming of adjacent astrocytes into neurons to replace the lost neurons and re-establish brain homeostasis. PURPOSE This study aimed to investigate whether the p-hydroxy benzaldehyde (p-HBA), a phenolic compound isolated from Gastrodia elata Blume, could facilitate the reprogramming of oxygen-glucose deprivation/reperfusion (OGD/R)-damaged astrocytes into neurons. STUDY DESIGN/METHODS The primary parenchymal astrocytes of rat were exposure to OGD and reperfusion with define culture medium. Cells were then incubated with different concentration of p-HBA (1, 10, 100, 400 μM) and collected at desired time point for reprogramming process analysis. RESULTS OGD/R could elicit endogenous neurogenic program in primary parenchymal astrocytes of rat under define culture condition, and these so-called reactive astrocytes could be reprogrammed into neurons. However, the neonatal neurons produced by this endogenous procedure could not develop into mature neurons, and the conversion rate was only 1.9%. Treatment of these reactive astrocytes with p-HBA could successfully promote the conversion rate to 6.1%, and the neonatal neurons could develop into mature neurons within 14 days. Further analysis showed that p-HBA down-regulated the Notch signal component genes Dll1, Hes1 and SOX2, while the transcription factor NeuroD1 was up-regulated. CONCLUSION The results of this study demonstrated that p-HBA facilitated the astrocyte-to-neuron conversion. This chemical reprogramming was mediated by inhibition of Notch1 signaling pathway and transcriptional activation of NeuroD1.
Collapse
Affiliation(s)
- Xin Li
- College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine
| | - Ruoxi Fan
- College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine
| | - Jianming Xiang
- Department of Neurosurgery, Medical School, University of Michigan, MI, USA
| | - Yajin Yuan
- College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine
| | - Xiaojian Mao
- College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine
| | - Ningna Zhou
- College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine
| |
Collapse
|
39
|
Horisawa K, Suzuki A. The role of pioneer transcription factors in the induction of direct cellular reprogramming. Regen Ther 2023; 24:112-116. [PMID: 37397229 PMCID: PMC10314230 DOI: 10.1016/j.reth.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 06/01/2023] [Indexed: 07/04/2023] Open
Abstract
Regenerative medicine is a highly advanced medical field that aims to restore tissues and organs lost due to diseases and injury using a person's own cells or those of others. Direct cellular reprogramming is a promising technology that can directly induce cell-fate conversion from terminally differentiated cells to other cell types and is expected to play a pivotal role in applications in regenerative medicine. The induction of direct cellular reprogramming requires one or more master transcription factors with the potential to reconstitute cell type-specific transcription factor networks. The set of master transcription factors may contain unique transcription factors called pioneer factors that can open compacted chromatin structures and drive the transcriptional activation of target genes. Therefore, pioneer factors may play a central role in direct cellular reprogramming. However, our understanding of the molecular mechanisms by which pioneer factors induce cell-fate conversion is still limited. This review briefly summarizes the outcomes of recent findings and discusses future perspectives, focusing on the role of pioneer factors in direct cellular reprogramming.
Collapse
|
40
|
Huang P, Duan W, Ruan C, Wang L, Hosea R, Wu Z, Zeng J, Wu S, Kasim V. NeuroD1-GPX4 signaling leads to ferroptosis resistance in hepatocellular carcinoma. PLoS Genet 2023; 19:e1011098. [PMID: 38134213 PMCID: PMC10773945 DOI: 10.1371/journal.pgen.1011098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 01/08/2024] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Cell death resistance is a hallmark of tumor cells that drives tumorigenesis and drug resistance. Targeting cell death resistance-related genes to sensitize tumor cells and decrease their cell death threshold has attracted attention as a potential antitumor therapeutic strategy. However, the underlying mechanism is not fully understood. Recent studies have reported that NeuroD1, first discovered as a neurodifferentiation factor, is upregulated in various tumor cells and plays a crucial role in tumorigenesis. However, its involvement in tumor cell death resistance remains unknown. Here, we found that NeuroD1 was highly expressed in hepatocellular carcinoma (HCC) cells and was associated with tumor cell death resistance. We revealed that NeuroD1 enhanced HCC cell resistance to ferroptosis, a type of cell death caused by aberrant redox homeostasis that induces lipid peroxide accumulation, leading to increased HCC cell viability. NeuroD1 binds to the promoter of glutathione peroxidase 4 (GPX4), a key reductant that suppresses ferroptosis by reducing lipid peroxide, and activates its transcriptional activity, resulting in decreased lipid peroxide and ferroptosis. Subsequently, we showed that NeuroD1/GPX4-mediated ferroptosis resistance was crucial for HCC cell tumorigenic potential. These findings not only identify NeuroD1 as a regulator of tumor cell ferroptosis resistance but also reveal a novel molecular mechanism underlying the oncogenic function of NeuroD1. Furthermore, our findings suggest the potential of targeting NeuroD1 in antitumor therapy.
Collapse
Affiliation(s)
- Ping Huang
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, China
| | - Wei Duan
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, China
| | - Cao Ruan
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, China
| | - Lingxian Wang
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, China
| | - Rendy Hosea
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, China
| | - Zheng Wu
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, China
| | - Jianting Zeng
- Department of Hepatobiliary and Pancreatic Oncology, Chongqing University Cancer Hospital, Chongqing University, Chongqing, China
| | - Shourong Wu
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing, China
| | - Vivi Kasim
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing, China
| |
Collapse
|
41
|
Marei HE, Khan MUA, Hasan A. Potential use of iPSCs for disease modeling, drug screening, and cell-based therapy for Alzheimer's disease. Cell Mol Biol Lett 2023; 28:98. [PMID: 38031028 PMCID: PMC10687886 DOI: 10.1186/s11658-023-00504-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Alzheimer's disease (AD) is a chronic illness marked by increasing cognitive decline and nervous system deterioration. At this time, there is no known medication that will stop the course of Alzheimer's disease; instead, most symptoms are treated. Clinical trial failure rates for new drugs remain high, highlighting the urgent need for improved AD modeling for improving understanding of the underlying pathophysiology of disease and improving drug development. The development of induced pluripotent stem cells (iPSCs) has made it possible to model neurological diseases like AD, giving access to an infinite number of patient-derived cells capable of differentiating neuronal fates. This advance will accelerate Alzheimer's disease research and provide an opportunity to create more accurate patient-specific models of Alzheimer's disease to support pathophysiological research, drug development, and the potential application of stem cell-based therapeutics. This review article provides a complete summary of research done to date on the potential use of iPSCs from AD patients for disease modeling, drug discovery, and cell-based therapeutics. Current technological developments in AD research including 3D modeling, genome editing, gene therapy for AD, and research on familial (FAD) and sporadic (SAD) forms of the disease are discussed. Finally, we outline the issues that need to be elucidated and future directions for iPSC modeling in AD.
Collapse
Affiliation(s)
- Hany E Marei
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35116, Egypt.
| | - Muhammad Umar Aslam Khan
- Biomedical Research Center, Qatar University, 2713, Doha, Qatar
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha, Qatar
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha, Qatar
| |
Collapse
|
42
|
Zhou JL, de Guglielmo G, Ho AJ, Kallupi M, Pokhrel N, Li HR, Chitre AS, Munro D, Mohammadi P, Carrette LLG, George O, Palmer AA, McVicker G, Telese F. Single-nucleus genomics in outbred rats with divergent cocaine addiction-like behaviors reveals changes in amygdala GABAergic inhibition. Nat Neurosci 2023; 26:1868-1879. [PMID: 37798411 PMCID: PMC10620093 DOI: 10.1038/s41593-023-01452-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 09/06/2023] [Indexed: 10/07/2023]
Abstract
The amygdala processes positive and negative valence and contributes to addiction, but the cell-type-specific gene regulatory programs involved are unknown. We generated an atlas of single-nucleus gene expression and chromatin accessibility in the amygdala of outbred rats with high and low cocaine addiction-like behaviors following prolonged abstinence. Differentially expressed genes between the high and low groups were enriched for energy metabolism across cell types. Rats with high addiction index (AI) showed increased relapse-like behaviors and GABAergic transmission in the amygdala. Both phenotypes were reversed by pharmacological inhibition of the glyoxalase 1 enzyme, which metabolizes methylglyoxal-a GABAA receptor agonist produced by glycolysis. Differences in chromatin accessibility between high and low AI rats implicated pioneer transcription factors in the basic helix-loop-helix, FOX, SOX and activator protein 1 families. We observed opposite regulation of chromatin accessibility across many cell types. Most notably, excitatory neurons had greater accessibility in high AI rats and inhibitory neurons had greater accessibility in low AI rats.
Collapse
Affiliation(s)
- Jessica L Zhou
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA
- Integrative Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | - Aaron J Ho
- Integrative Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Marsida Kallupi
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Narayan Pokhrel
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Hai-Ri Li
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Apurva S Chitre
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Daniel Munro
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Pejman Mohammadi
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | | | - Olivier George
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Abraham A Palmer
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Graham McVicker
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA.
- Integrative Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA.
| | - Francesca Telese
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA.
- Department of Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
43
|
Irie T, Matsuda T, Hayashi Y, Matsuda-Ito K, Kamiya A, Masuda T, Prinz M, Isobe N, Kira JI, Nakashima K. Direct neuronal conversion of microglia/macrophages reinstates neurological function after stroke. Proc Natl Acad Sci U S A 2023; 120:e2307972120. [PMID: 37812721 PMCID: PMC10589698 DOI: 10.1073/pnas.2307972120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/05/2023] [Indexed: 10/11/2023] Open
Abstract
Although generating new neurons in the ischemic injured brain would be an ideal approach to replenish the lost neurons for repairing the damage, the adult mammalian brain retains only limited neurogenic capability. Here, we show that direct conversion of microglia/macrophages into neurons in the brain has great potential as a therapeutic strategy for ischemic brain injury. After transient middle cerebral artery occlusion in adult mice, microglia/macrophages converge at the lesion core of the striatum, where neuronal loss is prominent. Targeted expression of a neurogenic transcription factor, NeuroD1, in microglia/macrophages in the injured striatum enables their conversion into induced neuronal cells that functionally integrate into the existing neuronal circuits. Furthermore, NeuroD1-mediated induced neuronal cell generation significantly improves neurological function in the mouse stroke model, and ablation of these cells abolishes the gained functional recovery. Our findings thus demonstrate that neuronal conversion contributes directly to functional recovery after stroke.
Collapse
Affiliation(s)
- Takashi Irie
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 812-8582Fukuoka, Japan
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 812-8582Fukuoka, Japan
| | - Taito Matsuda
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 812-8582Fukuoka, Japan
| | - Yoshinori Hayashi
- Department of Physiology, Nihon University School of Dentistry, 101-8310Tokyo, Japan
| | - Kanae Matsuda-Ito
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 812-8582Fukuoka, Japan
| | - Akihide Kamiya
- Department of Molecular Life Sciences, Tokai University School of Medicine, 259-1193Isehara, Japan
- Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, 108-8639Tokyo, Japan
| | - Takahiro Masuda
- Division of Molecular Neuroinflammation, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, 812-8582Fukuoka, Japan
| | - Marco Prinz
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, D-79106Freiburg, Germany
- Signalling Research Centres Centre for Biological Signalling Studies and Centre for Integrative Biological Signalling Studies, University of Freiburg, D-79106Freiburg, Germany
| | - Noriko Isobe
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 812-8582Fukuoka, Japan
| | - Jun-ichi Kira
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 812-8582Fukuoka, Japan
- Translational Neuroscience Center, Graduate School of Medicine, and School of Pharmacy at Fukuoka, International University of Health and Welfare, 831-8501Okawa, Japan
- Department of Neurology, Brain and Nerve Center, Fukuoka Central Hospital, International University of Health and Welfare, 810-0022Fukuoka, Japan
| | - Kinichi Nakashima
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 812-8582Fukuoka, Japan
| |
Collapse
|
44
|
Tai W, Zhang CL. In vivo cell fate reprogramming for spinal cord repair. Curr Opin Genet Dev 2023; 82:102090. [PMID: 37506560 PMCID: PMC11025462 DOI: 10.1016/j.gde.2023.102090] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/07/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023]
Abstract
Spinal cord injury (SCI) can lead to the loss of motor, sensory, or autonomic function due to neuronal death. Unfortunately, the adult mammalian spinal cord has limited intrinsic regenerative capacity, making it difficult to rebuild the neural circuits necessary for functional recovery. However, recent evidence suggests that in vivo fate reprogramming of resident cells that are normally non-neurogenic can generate new neurons. This process also improves the pathological microenvironment, and the new neurons can integrate into the local neural network, resulting in better functional outcomes in SCI animal models. In this concise review, we focus on recent advances while also discussing the challenges, pitfalls, and opportunities in the field of in vivo cell fate reprogramming for spinal cord repair.
Collapse
Affiliation(s)
- Wenjiao Tai
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chun-Li Zhang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
45
|
Bohuslavova R, Fabriciova V, Smolik O, Lebrón-Mora L, Abaffy P, Benesova S, Zucha D, Valihrach L, Berkova Z, Saudek F, Pavlinkova G. NEUROD1 reinforces endocrine cell fate acquisition in pancreatic development. Nat Commun 2023; 14:5554. [PMID: 37689751 PMCID: PMC10492842 DOI: 10.1038/s41467-023-41306-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 08/30/2023] [Indexed: 09/11/2023] Open
Abstract
NEUROD1 is a transcription factor that helps maintain a mature phenotype of pancreatic β cells. Disruption of Neurod1 during pancreatic development causes severe neonatal diabetes; however, the exact role of NEUROD1 in the differentiation programs of endocrine cells is unknown. Here, we report a crucial role of the NEUROD1 regulatory network in endocrine lineage commitment and differentiation. Mechanistically, transcriptome and chromatin landscape analyses demonstrate that Neurod1 inactivation triggers a downregulation of endocrine differentiation transcription factors and upregulation of non-endocrine genes within the Neurod1-deficient endocrine cell population, disturbing endocrine identity acquisition. Neurod1 deficiency altered the H3K27me3 histone modification pattern in promoter regions of differentially expressed genes, which resulted in gene regulatory network changes in the differentiation pathway of endocrine cells, compromising endocrine cell potential, differentiation, and functional properties.
Collapse
Affiliation(s)
- Romana Bohuslavova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Valeria Fabriciova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Ondrej Smolik
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Laura Lebrón-Mora
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Pavel Abaffy
- Laboratory of Gene Expression, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Sarka Benesova
- Laboratory of Gene Expression, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Daniel Zucha
- Laboratory of Gene Expression, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Lukas Valihrach
- Laboratory of Gene Expression, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Zuzana Berkova
- Diabetes Centre, Experimental Medicine Centre, Institute for Clinical and Experimental Medicine, 14021, Prague, Czechia
| | - Frantisek Saudek
- Diabetes Centre, Experimental Medicine Centre, Institute for Clinical and Experimental Medicine, 14021, Prague, Czechia
| | - Gabriela Pavlinkova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology CAS, 25250, Vestec, Czechia.
| |
Collapse
|
46
|
Chen X, Sokirniy I, Wang X, Jiang M, Mseis-Jackson N, Williams C, Mayes K, Jiang N, Puls B, Du Q, Shi Y, Li H. MicroRNA-375 Is Induced during Astrocyte-to-Neuron Reprogramming and Promotes Survival of Reprogrammed Neurons when Overexpressed. Cells 2023; 12:2202. [PMID: 37681934 PMCID: PMC10486704 DOI: 10.3390/cells12172202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/25/2023] [Accepted: 09/01/2023] [Indexed: 09/09/2023] Open
Abstract
While astrocyte-to-neuron (AtN) reprogramming holds great promise in regenerative medicine, the molecular mechanisms that govern this unique biological process remain elusive. To understand the function of miRNAs during the AtN reprogramming process, we performed RNA-seq of both mRNAs and miRNAs on human astrocyte (HA) cultures upon NeuroD1 overexpression. Bioinformatics analyses showed that NeuroD1 not only activated essential neuronal genes to initiate the reprogramming process but also induced miRNA changes in HA. Among the upregulated miRNAs, we identified miR-375 and its targets, neuronal ELAVL genes (nELAVLs), which encode a family of RNA-binding proteins and were also upregulated by NeuroD1. We further showed that manipulating the miR-375 level regulated nELAVLs' expression during NeuroD1-mediated reprogramming. Interestingly, miR-375/nELAVLs were also induced by the reprogramming factors Neurog2 and ASCL1 in HA, suggesting a conserved function to neuronal reprogramming, and by NeuroD1 in the mouse astrocyte culture and spinal cord. Functionally, we showed that miR-375 overexpression improved NeuroD1-mediated reprogramming efficiency by promoting cell survival at early stages in HA and did not appear to compromise the maturation of the reprogrammed neurons. Lastly, overexpression of miR-375-refractory ELAVL4 induced apoptosis and reversed the cell survival-promoting effect of miR-375 during AtN reprogramming. Together, we demonstrated a neuroprotective role of miR-375 during NeuroD1-mediated AtN reprogramming.
Collapse
Affiliation(s)
- Xuanyu Chen
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Ivan Sokirniy
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Xin Wang
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Mei Jiang
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Natalie Mseis-Jackson
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Christine Williams
- Department of Chemistry & Biochemistry, College of Science & Mathematics, Augusta University, Augusta, GA 30912, USA
| | - Kristopher Mayes
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Na Jiang
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Brendan Puls
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Quansheng Du
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Yang Shi
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
- Division of Biostatistics and Data Science, Department of Population Health Sciences, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Hedong Li
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
47
|
Chen X, Sokirniy I, Wang X, Jiang M, Mseis-Jackson N, Williams C, Mayes K, Jiang N, Puls B, Du Q, Shi Y, Li H. MicroRNA-375 is induced during astrocyte-to-neuron reprogramming and promotes survival of reprogrammed neurons when overexpressed. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.10.548401. [PMID: 37503054 PMCID: PMC10369893 DOI: 10.1101/2023.07.10.548401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
While astrocyte-to-neuron (AtN) reprogramming holds great promise in regenerative medicine, the molecular mechanisms that govern this unique biological process remain elusive. MicroRNAs (miRNAs), as post-transcriptional regulators of gene expression, play crucial roles during development and under various pathological conditions. To understand the function of miRNAs during AtN reprogramming process, we performed RNA-seq of both mRNAs and miRNAs on human astrocyte (HA) cultures upon NeuroD1 overexpression. Bioinformatics analyses showed that NeuroD1 not only activates essential neuronal genes to initiate reprogramming process but also induces miRNA changes in HA. Among the upregulated miRNAs, we identified miR-375 and its targets, neuronal ELAVL genes ( nELAVLs ), which encode a family of RNA-binding proteins and are also upregulated by NeuroD1. We further showed that manipulating miR-375 level regulates nELAVLs expression during NeuroD1-mediated reprogramming. Interestingly, miR-375/ nELAVLs are also induced by reprogramming factors Neurog2 and ASCL1 in HA suggesting a conserved function to neuronal reprogramming, and by NeuroD1 in the mouse astrocyte culture and spinal cord. Functionally, we showed that miR-375 overexpression improves NeuroD1-mediated reprogramming efficiency by promoting cell survival at early stages in HA even in cultures treated with the chemotherapy drug Cisplatin. Moreover, miR-375 overexpression doesn't appear to compromise maturation of the reprogrammed neurons in long term HA cultures. Lastly, overexpression of miR-375-refractory ELAVL4 induces apoptosis and reverses the cell survival-promoting effect of miR-375 during AtN reprogramming. Together, we demonstrate a neuro-protective role of miR-375 during NeuroD1-mediated AtN reprogramming and suggest a strategy of combinatory overexpression of NeuroD1 and miR-375 for improving neuronal reprogramming efficiency.
Collapse
|
48
|
Wang Y, Xia Y, Kou L, Yin S, Chi X, Li J, Sun Y, Wu J, Zhou Q, Zou W, Jin Z, Huang J, Xiong N, Wang T. Astrocyte-to-neuron reprogramming and crosstalk in the treatment of Parkinson's disease. Neurobiol Dis 2023:106224. [PMID: 37433411 DOI: 10.1016/j.nbd.2023.106224] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/24/2023] [Accepted: 07/07/2023] [Indexed: 07/13/2023] Open
Abstract
Parkinson's disease (PD) is currently the fastest growing disabling neurological disorder worldwide, with motor and non-motor symptoms being its main clinical manifestations. The primary pathological features include a reduction in the number of dopaminergic neurons in the substantia nigra and decrease in dopamine levels in the nigrostriatal pathway. Existing treatments only alleviate clinical symptoms and do not stop disease progression; slowing down the loss of dopaminergic neurons and stimulating their regeneration are emerging therapies. Preclinical studies have demonstrated that transplantation of dopamine cells generated from human embryonic or induced pluripotent stem cells can restore the loss of dopamine. However, the application of cell transplantation is limited owing to ethical controversies and the restricted source of cells. Until recently, the reprogramming of astrocytes to replenish lost dopaminergic neurons has provided a promising alternative therapy for PD. In addition, repair of mitochondrial perturbations, clearance of damaged mitochondria in astrocytes, and control of astrocyte inflammation may be extensively neuroprotective and beneficial against chronic neuroinflammation in PD. Therefore, this review primarily focuses on the progress and remaining issues in astrocyte reprogramming using transcription factors (TFs) and miRNAs, as well as exploring possible new targets for treating PD by repairing astrocytic mitochondria and reducing astrocytic inflammation.
Collapse
Affiliation(s)
- Yiming Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yun Xia
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Liang Kou
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Sijia Yin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaosa Chi
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jingwen Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yadi Sun
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jiawei Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qiulu Zhou
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wenkai Zou
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zongjie Jin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jinsha Huang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Nian Xiong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Tao Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
49
|
Pascual-Guerra J, Rodríguez-Navarro JA, Paíno CL. Generating oligodendroglia from adult mesenchymal cells for transplantation: cell reprogramming or direct lineage conversion? Neural Regen Res 2023; 18:1493-1494. [PMID: 36571349 PMCID: PMC10075127 DOI: 10.4103/1673-5374.360278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Jorge Pascual-Guerra
- Service of Neurobiology-Research, Ramón y Cajal University Hospital - IRYCIS, Madrid, Spain
| | - José A Rodríguez-Navarro
- Service of Neurobiology-Research, Ramón y Cajal University Hospital - IRYCIS; Department of Cellular Biology, Complutense University, Madrid, Spain
| | - Carlos L Paíno
- Service of Neurobiology-Research, Ramón y Cajal University Hospital - IRYCIS, Madrid, Spain
| |
Collapse
|
50
|
Morin A, Chu ECP, Sharma A, Adrian-Hamazaki A, Pavlidis P. Characterizing the targets of transcription regulators by aggregating ChIP-seq and perturbation expression data sets. Genome Res 2023; 33:763-778. [PMID: 37308292 PMCID: PMC10317128 DOI: 10.1101/gr.277273.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 04/26/2023] [Indexed: 06/14/2023]
Abstract
Mapping the gene targets of chromatin-associated transcription regulators (TRs) is a major goal of genomics research. ChIP-seq of TRs and experiments that perturb a TR and measure the differential abundance of gene transcripts are a primary means by which direct relationships are tested on a genomic scale. It has been reported that there is a poor overlap in the evidence across gene regulation strategies, emphasizing the need for integrating results from multiple experiments. Although research consortia interested in gene regulation have produced a valuable trove of high-quality data, there is an even greater volume of TR-specific data throughout the literature. In this study, we show a workflow for the identification, uniform processing, and aggregation of ChIP-seq and TR perturbation experiments for the ultimate purpose of ranking human and mouse TR-target interactions. Focusing on an initial set of eight regulators (ASCL1, HES1, MECP2, MEF2C, NEUROD1, PAX6, RUNX1, and TCF4), we identified 497 experiments suitable for analysis. We used this corpus to examine data concordance, to identify systematic patterns of the two data types, and to identify putative orthologous interactions between human and mouse. We build upon commonly used strategies to forward a procedure for aggregating and combining these two genomic methodologies, assessing these rankings against independent literature-curated evidence. Beyond a framework extensible to other TRs, our work also provides empirically ranked TR-target listings, as well as transparent experiment-level gene summaries for community use.
Collapse
Affiliation(s)
- Alexander Morin
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Graduate Program in Bioinformatics, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Eric Ching-Pan Chu
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Graduate Program in Bioinformatics, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Aman Sharma
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Alex Adrian-Hamazaki
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Graduate Program in Bioinformatics, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Paul Pavlidis
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada;
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|