1
|
Dellal S, Zurita H, Kruglikov I, Valero M, Abad-Perez P, Geron E, Meng JH, Pronneke A, Hanson JL, Mir E, Ongaro M, Wang XJ, Buzsaki G, Machold RP, Rudy B. Inhibitory and disinhibitory VIP IN-mediated circuits in neocortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.26.640383. [PMID: 40060562 PMCID: PMC11888407 DOI: 10.1101/2025.02.26.640383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Cortical GABAergic interneurons (INs) expressing the neuropeptide vasoactive-intestinal peptide (VIP) predominantly function by inhibiting dendritic-targeting somato-statin (SST) expressing INs, thereby disinhibiting pyramidal cells (PCs) and facilitating cortical circuit plasticity. VIP INs are a molecularly heterogeneous group, but the physiological significance of this diversity is unclear at present. Here, we have characterized the functional diversity of VIP INs in the primary somatosensory cortex (vS1) using intersectional genetic approaches. We found that VIP INs are comprised of four primary populations that exhibit different laminar distributions, axonal and dendritic arbors, intrinsic electrophysiological properties, and efferent connectivity. Furthermore, we observe that these populations are differentially activated by long-range inputs, and display distinct responses to neuromodulation by endocannabinoids, acetylcholine and noradrenaline. Stimulation of VIP IN subpopulations in vivo results in differential effects on the cortical network, thus providing evidence for specialized modes of VIP IN-mediated regulation of PC activity during cortical information processing.
Collapse
|
2
|
Inácio AR, Lam KC, Zhao Y, Pereira F, Gerfen CR, Lee S. Brain-wide presynaptic networks of functionally distinct cortical neurons. Nature 2025; 641:162-172. [PMID: 40011781 PMCID: PMC12043506 DOI: 10.1038/s41586-025-08631-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 01/10/2025] [Indexed: 02/28/2025]
Abstract
Revealing the connectivity of functionally identified individual neurons is necessary to understand how activity patterns emerge and support behaviour. Yet the brain-wide presynaptic wiring rules that lay the foundation for the functional selectivity of individual neurons remain largely unexplored. Cortical neurons, even in primary sensory cortex, are heterogeneous in their selectivity, not only to sensory stimuli but also to multiple aspects of behaviour. Here, to investigate presynaptic connectivity rules underlying the selectivity of pyramidal neurons to behavioural state1-10 in primary somatosensory cortex (S1), we used two-photon calcium imaging, neuropharmacology, single-cell-based monosynaptic input tracing and optogenetics. We show that behavioural state-dependent activity patterns are stable over time. These are minimally affected by direct neuromodulatory inputs and are driven primarily by glutamatergic inputs. Analysis of brain-wide presynaptic networks of individual neurons with distinct behavioural state-dependent activity profiles revealed that although behavioural state-related and behavioural state-unrelated neurons shared a similar pattern of local inputs within S1, their long-range glutamatergic inputs differed. Individual cortical neurons, irrespective of their functional properties, received converging inputs from the main S1-projecting areas. Yet neurons that tracked behavioural state received a smaller proportion of motor cortical inputs and a larger proportion of thalamic inputs. Optogenetic suppression of thalamic inputs reduced behavioural state-dependent activity in S1, but this activity was not externally driven. Our results reveal distinct long-range glutamatergic inputs as a substrate for preconfigured network dynamics associated with behavioural state.
Collapse
Affiliation(s)
- Ana R Inácio
- Unit on Functional Neural Circuits, Systems Neurodevelopment Laboratory, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| | - Ka Chun Lam
- Machine Learning Core, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Yuan Zhao
- Machine Learning Core, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Francisco Pereira
- Machine Learning Core, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Charles R Gerfen
- Section on Neuroanatomy, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Soohyun Lee
- Unit on Functional Neural Circuits, Systems Neurodevelopment Laboratory, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
3
|
Park E, Kuljis DA, Swindell RA, Ray A, Zhu M, Christian JA, Barth AL. Somatostatin neurons detect stimulus-reward contingencies to reduce neocortical inhibition during learning. Cell Rep 2025; 44:115606. [PMID: 40257862 DOI: 10.1016/j.celrep.2025.115606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 12/02/2024] [Accepted: 04/01/2025] [Indexed: 04/23/2025] Open
Abstract
Learning involves the association of discrete events in the world to infer causality, likely through a cascade of changes at input- and target-specific synapses. Transient or sustained disinhibition may initiate cortical circuit plasticity important for association learning, but the cellular networks involved have not been well defined. Using recordings in acute brain slices, we show that whisker-dependent sensory association learning drives a durable, target-specific reduction in inhibition from somatostatin (SST)-expressing GABAergic neurons onto pyramidal (Pyr) neurons in superficial but not deep layers of mouse somatosensory cortex. Critically, SST output was not altered when stimuli and rewards were unpaired, indicating that these neurons are sensitive to stimulus-reward contingency. Depression of SST output onto Pyr neurons could be phenocopied by chemogenetic suppression of SST activity outside of the training context. Thus, neocortical SST neuron output can undergo long-lasting modifications to selectively disinhibit superficial layers of sensory neocortex during learning.
Collapse
Affiliation(s)
- Eunsol Park
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15232, USA
| | - Dika A Kuljis
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15232, USA
| | - Rachel A Swindell
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15232, USA
| | - Ajit Ray
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15232, USA
| | - Mo Zhu
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15232, USA
| | - Joseph A Christian
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15232, USA
| | - Alison L Barth
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15232, USA.
| |
Collapse
|
4
|
Rachel J, Möck M, Daigle TL, Tasic B, Witte M, Staiger JF. VIP-to-SST Cell Circuit Motif Shows Differential Short-Term Plasticity across Sensory Areas of Mouse Cortex. J Neurosci 2025; 45:e0949242025. [PMID: 39919833 PMCID: PMC11949481 DOI: 10.1523/jneurosci.0949-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 09/30/2024] [Accepted: 01/06/2025] [Indexed: 02/09/2025] Open
Abstract
Inhibition of GABAergic interneurons has been found to critically fine-tune the excitation-inhibition balance of the cortex. Inhibition is mediated by many connectivity motifs formed by GABAergic neurons. One such motif is the inhibition of somatostatin (SST)-expressing neurons by vasoactive intestinal polypeptide (VIP)-expressing neurons. We studied the synaptic properties of layer (L) 2/3 VIP cells onto L4 SST cells in somatosensory (S1) and visual (V1) cortices of mice of either sex using paired whole-cell patch-clamp recordings, followed by morphological reconstructions. We identified strong differences in the morphological features of L4 SST cells, wherein cells in S1 fell into the non-Martinotti cell (nMC) subclass, while in V1 presented with Martinotti cell (MC)-like features. Approximately 40-45% of tested SST cells were inhibited by VIP cells in both cortices. While unitary connectivity properties of the VIP-to-nMC and VIP-to-MC motifs were comparable, we observed stark differences in short-term plasticity. During high-frequency stimulation of both motifs, some connections showed short-term facilitation while others showed a stable response, with a fraction of VIP-to-nMC connections showing short-term depression. We thus provide evidence that VIP cells target morphological subclasses of SST cells differentially, forming cell-type-specific inhibitory motifs.
Collapse
Affiliation(s)
- Jenifer Rachel
- Institute for Neuroanatomy, Universitätsmedizin Göttingen, Georg-August-Universität, Göttingen 37075, Germany
| | - Martin Möck
- Institute for Neuroanatomy, Universitätsmedizin Göttingen, Georg-August-Universität, Göttingen 37075, Germany
| | - Tanya L Daigle
- Allen Institute for Brain Science, Seattle 98109, Washington
| | - Bosiljka Tasic
- Allen Institute for Brain Science, Seattle 98109, Washington
| | - Mirko Witte
- Institute for Neuroanatomy, Universitätsmedizin Göttingen, Georg-August-Universität, Göttingen 37075, Germany
| | - Jochen F Staiger
- Institute for Neuroanatomy, Universitätsmedizin Göttingen, Georg-August-Universität, Göttingen 37075, Germany
| |
Collapse
|
5
|
Christensen RK, Studer F, Barkat TR. Background white noise increases neuronal activity by reducing membrane fluctuations and slow-wave oscillations in auditory cortex. Prog Neurobiol 2025; 246:102720. [PMID: 39863149 DOI: 10.1016/j.pneurobio.2025.102720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
The brain faces the challenging task of preserving a consistent portrayal of the external world in the face of disruptive sensory inputs. What alterations occur in sensory representation amidst noise, and how does brain activity adapt to it? Although it has previously been shown that background white noise (WN) decreases responses to salient sounds, a mechanistic understanding of the brain processes responsible for such changes is lacking. We investigated the effect of background WN on neuronal spiking activity, membrane potential, and network oscillations in the mouse central auditory system. We found that, in addition to increasing background spiking activity in the auditory cortex and thalamus, background WN decreases neural activity fluctuations, as reflected in the membrane potential of single neurons and the local field potential. Blocking acetylcholine signaling in the auditory cortex eliminated the WN-dependent increase in background activity as well as the shift in slow-wave oscillations. Together, our observations show that background WN is not filtered away along the auditory pathway, but rather drives sustained changes in cortical activity that can be reverted by blocking cholinergic inputs.
Collapse
Affiliation(s)
| | - Florian Studer
- Department of Biomedicine, University of Basel, Klingelbergstrasse 50, Basel 4056, Switzerland
| | - Tania Rinaldi Barkat
- Department of Biomedicine, University of Basel, Klingelbergstrasse 50, Basel 4056, Switzerland.
| |
Collapse
|
6
|
Giesbrecht B, Bullock T, Garrett J. Physically activated modes of attentional control. Trends Cogn Sci 2025; 29:295-307. [PMID: 39690081 DOI: 10.1016/j.tics.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 12/19/2024]
Abstract
As we navigate through the day, our attentional control processes are constantly challenged by changing sensory information, goals, expectations, and motivations. At the same time, our bodies and brains are impacted by changes in global physiological state that can influence attentional processes. Based on converging lines of evidence from brain recordings in physically active humans and nonhumans, we propose a new framework incorporating at least two physically activated modes of attentional control in humans: altered gain control and differential neuromodulation of control networks. We discuss the implications of this framework for understanding a broader range of states and cognitive functions studied both in the laboratory and in the wild.
Collapse
Affiliation(s)
- Barry Giesbrecht
- Psychological and Brain Sciences, University of California, Santa Barbara, CA 93106, USA; Institute for Collaborative Biotechnologies, University of California, Santa Barbara, CA 93106, USA.
| | - Tom Bullock
- Psychological and Brain Sciences, University of California, Santa Barbara, CA 93106, USA; Institute for Collaborative Biotechnologies, University of California, Santa Barbara, CA 93106, USA
| | - Jordan Garrett
- Psychological and Brain Sciences, University of California, Santa Barbara, CA 93106, USA; Institute for Collaborative Biotechnologies, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
7
|
Park E, Mosso MB, Barth AL. Neocortical somatostatin neuron diversity in cognition and learning. Trends Neurosci 2025; 48:140-155. [PMID: 39824710 DOI: 10.1016/j.tins.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/13/2024] [Accepted: 12/12/2024] [Indexed: 01/20/2025]
Abstract
Somatostatin-expressing (SST) neurons are a major class of electrophysiologically and morphologically distinct inhibitory cells in the mammalian neocortex. Transcriptomic data suggest that this class can be divided into multiple subtypes that are correlated with morpho-electric properties. At the same time, availability of transgenic tools to identify and record from SST neurons in awake, behaving mice has stimulated insights about their response properties and computational function. Neocortical SST neurons are regulated by sleep and arousal, attention, and novelty detection, and show marked response plasticity during learning. Recent studies suggest that subtype-specific analysis of SST neurons may be critical for understanding their complex roles in cortical function. In this review, we discuss and synthesize recent advances in understanding the diversity, circuit integration, and functional properties of this important group of GABAergic neurons.
Collapse
Affiliation(s)
- Eunsol Park
- Department of Biological Sciences and Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Matthew B Mosso
- Department of Biological Sciences and Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Alison L Barth
- Department of Biological Sciences and Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
8
|
Milicevic KD, Ivanova VO, Brazil TN, Varillas CA, Zhu YMD, Andjus PR, Antic SD. The Impact of Optical Undersampling on the Ca 2+ Signal Resolution in Ca 2+ Imaging of Spontaneous Neuronal Activity. J Integr Neurosci 2025; 24:26242. [PMID: 39862012 DOI: 10.31083/jin26242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/03/2024] [Accepted: 10/24/2024] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND In neuroscience, Ca2+ imaging is a prevalent technique used to infer neuronal electrical activity, often relying on optical signals recorded at low sampling rates (3 to 30 Hz) across multiple neurons simultaneously. This study investigated whether increasing the sampling rate preserves critical information that may be missed at slower acquisition speeds. METHODS Primary neuronal cultures were prepared from the cortex of newborn pups. Neurons were loaded with Oregon Green BAPTA-1 AM (OGB1-AM) fluorescent indicator. Spontaneous neuronal activity was recorded at low (14 Hz) and high (500 Hz) sampling rates, and the same neurons (n = 269) were analyzed under both conditions. We compared optical signal amplitude, duration, and frequency. RESULTS Although recurring Ca2+ transients appeared visually similar at 14 Hz and 500 Hz, quantitative analysis revealed significantly faster rise times and shorter durations (half-widths) at the higher sampling rate. Small-amplitude Ca2+ transients, undetectable at 14 Hz, became evident at 500 Hz, particularly in the neuropil (putative dendrites and axons), but not in nearby cell bodies. Large Ca2+ transients exhibited greater amplitudes and faster temporal dynamics in dendrites compared with somas, potentially due to the higher surface-to-volume ratio of dendrites. In neurons bulk-loaded with OGB1-AM, cell nucleus-mediated signal distortions were observed in every neuron examined (n = 57). Specifically, two regions of interest (ROIs) on different segments of the same cell body displayed significantly different signal amplitudes and durations due to dye accumulation in the nucleus. CONCLUSIONS Our findings reveal that Ca2+ signal undersampling leads to three types of information loss: (1) distortion of rise times and durations for large-amplitude transients, (2) failure to detect small-amplitude transients in cell bodies, and (3) omission of small-amplitude transients in the neuropil.
Collapse
Affiliation(s)
- Katarina D Milicevic
- Neuroscience Department, University of Connecticut Health, School of Medicine, Institute for Systems Genomics, Farmington, CT 06030, USA
- Center for Laser Microscopy, Institute of Physiology and Biochemistry 'Jean Giaja' , Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia
| | - Violetta O Ivanova
- Neuroscience Department, University of Connecticut Health, School of Medicine, Institute for Systems Genomics, Farmington, CT 06030, USA
| | - Tina N Brazil
- Neuroscience Department, University of Connecticut Health, School of Medicine, Institute for Systems Genomics, Farmington, CT 06030, USA
| | - Cesar A Varillas
- Neuroscience Department, University of Connecticut Health, School of Medicine, Institute for Systems Genomics, Farmington, CT 06030, USA
| | - Yan M D Zhu
- Neuroscience Department, University of Connecticut Health, School of Medicine, Institute for Systems Genomics, Farmington, CT 06030, USA
| | - Pavle R Andjus
- Center for Laser Microscopy, Institute of Physiology and Biochemistry 'Jean Giaja' , Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia
| | - Srdjan D Antic
- Neuroscience Department, University of Connecticut Health, School of Medicine, Institute for Systems Genomics, Farmington, CT 06030, USA
| |
Collapse
|
9
|
Corbo J, Erkat OB, McClure J, Khdour H, Polack PO. Discretized representations in V1 predict suboptimal orientation discrimination. Nat Commun 2025; 16:41. [PMID: 39746991 PMCID: PMC11696038 DOI: 10.1038/s41467-024-55409-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 12/10/2024] [Indexed: 01/04/2025] Open
Abstract
Neuronal population activity in sensory cortices is the substrate for perceptual decisions. Yet, we still do not understand how neuronal information content in sensory cortices relates to behavioral reports. To reconcile neurometric and psychometric performance, we recorded the activity of V1 neurons in mice performing a Go/NoGo orientation discrimination task. We found that, around the discrimination threshold, V1 does not represent the orientation of the stimuli as canonically expected. Instead, it forms categorical representations characterized by a relocation of activity at task-relevant domains of the orientation representational space. The relative neuronal activity at those discrete domains accurately predicted the probabilities of the animals' decisions. Our results thus suggest that the categorical integration of discretized feature representations from sensory cortices explains perceptual decisions.
Collapse
Affiliation(s)
- Julien Corbo
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, NJ, USA
| | - O Batuhan Erkat
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, NJ, USA
- Graduate Program in Neuroscience, Rutgers University-Newark, Newark, NJ, USA
| | - John McClure
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, NJ, USA
- Graduate Program in Neuroscience, Rutgers University-Newark, Newark, NJ, USA
| | - Hussein Khdour
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, NJ, USA
- Graduate Program in Neuroscience, Rutgers University-Newark, Newark, NJ, USA
| | - Pierre-Olivier Polack
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, NJ, USA.
| |
Collapse
|
10
|
Benezra SE, Patel KB, Perez Campos C, Hillman EMC, Bruno RM. Learning enhances behaviorally relevant representations in apical dendrites. eLife 2024; 13:RP98349. [PMID: 39727300 PMCID: PMC11677229 DOI: 10.7554/elife.98349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024] Open
Abstract
Learning alters cortical representations and improves perception. Apical tuft dendrites in cortical layer 1, which are unique in their connectivity and biophysical properties, may be a key site of learning-induced plasticity. We used both two-photon and SCAPE microscopy to longitudinally track tuft-wide calcium spikes in apical dendrites of layer 5 pyramidal neurons in barrel cortex as mice learned a tactile behavior. Mice were trained to discriminate two orthogonal directions of whisker stimulation. Reinforcement learning, but not repeated stimulus exposure, enhanced tuft selectivity for both directions equally, even though only one was associated with reward. Selective tufts emerged from initially unresponsive or low-selectivity populations. Animal movement and choice did not account for changes in stimulus selectivity. Enhanced selectivity persisted even after rewards were removed and animals ceased performing the task. We conclude that learning produces long-lasting realignment of apical dendrite tuft responses to behaviorally relevant dimensions of a task.
Collapse
Affiliation(s)
- Sam E Benezra
- Department of Neuroscience, Columbia UniversityNew YorkUnited States
- Kavli Institute for Brain Science, Columbia UniversityNew YorkUnited States
| | - Kripa B Patel
- Kavli Institute for Brain Science, Columbia UniversityNew YorkUnited States
- Departments of Biomedical Engineering and Radiology, Columbia UniversityNew YorkUnited States
| | - Citlali Perez Campos
- Kavli Institute for Brain Science, Columbia UniversityNew YorkUnited States
- Departments of Biomedical Engineering and Radiology, Columbia UniversityNew YorkUnited States
| | - Elizabeth MC Hillman
- Department of Neuroscience, Columbia UniversityNew YorkUnited States
- Kavli Institute for Brain Science, Columbia UniversityNew YorkUnited States
- Departments of Biomedical Engineering and Radiology, Columbia UniversityNew YorkUnited States
| | - Randy M Bruno
- Department of Neuroscience, Columbia UniversityNew YorkUnited States
- Kavli Institute for Brain Science, Columbia UniversityNew YorkUnited States
- Zuckerman Mind Brain Behavior Institute, Columbia UniversityNew YorkUnited States
- Department of Physiology, Anatomy & Genetics, University of OxfordOxfordUnited Kingdom
| |
Collapse
|
11
|
Inacio AR, Lam KC, Zhao Y, Pereira F, Gerfen CR, Lee S. Distinct brain-wide presynaptic networks underlie the functional identity of individual cortical neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.25.542329. [PMID: 37425800 PMCID: PMC10327181 DOI: 10.1101/2023.05.25.542329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Neuronal connections provide the scaffolding for neuronal function. Revealing the connectivity of functionally identified individual neurons is necessary to understand how activity patterns emerge and support behavior. Yet, the brain-wide presynaptic wiring rules that lay the foundation for the functional selectivity of individual neurons remain largely unexplored. Cortical neurons, even in primary sensory cortex, are heterogeneous in their selectivity, not only to sensory stimuli but also to multiple aspects of behavior. Here, to investigate presynaptic connectivity rules underlying the selectivity of pyramidal neurons to behavioral state 1-12 in primary somatosensory cortex (S1), we used two-photon calcium imaging, neuropharmacology, single-cell based monosynaptic input tracing, and optogenetics. We show that behavioral state-dependent neuronal activity patterns are stable over time. These are minimally affected by neuromodulatory inputs and are instead driven by glutamatergic inputs. Analysis of brain-wide presynaptic networks of individual neurons with distinct behavioral state-dependent activity profiles revealed characteristic patterns of anatomical input. While both behavioral state-related and unrelated neurons had a similar pattern of local inputs within S1, their long-range glutamatergic inputs differed. Individual cortical neurons, irrespective of their functional properties, received converging inputs from the main S1-projecting areas. Yet, neurons that tracked behavioral state received a smaller proportion of motor cortical inputs and a larger proportion of thalamic inputs. Optogenetic suppression of thalamic inputs reduced behavioral state-dependent activity in S1, but this activity was not externally driven. Our results revealed distinct long-range glutamatergic inputs as a substrate for preconfigured network dynamics associated with behavioral state.
Collapse
|
12
|
Yogesh B, Keller GB. Cholinergic input to mouse visual cortex signals a movement state and acutely enhances layer 5 responsiveness. eLife 2024; 12:RP89986. [PMID: 39057843 PMCID: PMC11281783 DOI: 10.7554/elife.89986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024] Open
Abstract
Acetylcholine is released in visual cortex by axonal projections from the basal forebrain. The signals conveyed by these projections and their computational significance are still unclear. Using two-photon calcium imaging in behaving mice, we show that basal forebrain cholinergic axons in the mouse visual cortex provide a binary locomotion state signal. In these axons, we found no evidence of responses to visual stimuli or visuomotor prediction errors. While optogenetic activation of cholinergic axons in visual cortex in isolation did not drive local neuronal activity, when paired with visuomotor stimuli, it resulted in layer-specific increases of neuronal activity. Responses in layer 5 neurons to both top-down and bottom-up inputs were increased in amplitude and decreased in latency, whereas those in layer 2/3 neurons remained unchanged. Using opto- and chemogenetic manipulations of cholinergic activity, we found acetylcholine to underlie the locomotion-associated decorrelation of activity between neurons in both layer 2/3 and layer 5. Our results suggest that acetylcholine augments the responsiveness of layer 5 neurons to inputs from outside of the local network, possibly enabling faster switching between internal representations during locomotion.
Collapse
Affiliation(s)
- Baba Yogesh
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
- Faculty of Natural Sciences, University of BaselBaselSwitzerland
| | - Georg B Keller
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
- Faculty of Natural Sciences, University of BaselBaselSwitzerland
| |
Collapse
|
13
|
de Brito Van Velze M, Dhanasobhon D, Martinez M, Morabito A, Berthaux E, Pinho CM, Zerlaut Y, Rebola N. Feedforward and disinhibitory circuits differentially control activity of cortical somatostatin interneurons during behavioral state transitions. Cell Rep 2024; 43:114197. [PMID: 38733587 DOI: 10.1016/j.celrep.2024.114197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 03/26/2024] [Accepted: 04/21/2024] [Indexed: 05/13/2024] Open
Abstract
Interneurons (INs), specifically those in disinhibitory circuits like somatostatin (SST) and vasoactive intestinal peptide (VIP)-INs, are strongly modulated by the behavioral context. Yet, the mechanisms by which these INs are recruited during active states and whether their activity is consistent across sensory cortices remain unclear. We now report that in mice, locomotor activity strongly recruits SST-INs in the primary somatosensory (S1) but not the visual (V1) cortex. This diverse engagement of SST-INs cannot be explained by differences in VIP-IN function but is absent in the presence of visual input, suggesting the involvement of feedforward sensory pathways. Accordingly, inactivating the somatosensory thalamus, but not decreasing VIP-IN activity, significantly reduces the modulation of SST-INs by locomotion. Model simulations suggest that the differences in SST-INs across behavioral states can be explained by varying ratios of VIP- and thalamus-driven activity. By integrating feedforward activity with neuromodulation, SST-INs are anticipated to be crucial for adapting sensory processing to behavioral states.
Collapse
Affiliation(s)
- Marcel de Brito Van Velze
- ICM, Paris Brain Institute, Hôpital de la Pitié-Salpêtrière, Sorbonne Université, INSERM, CNRS, 75013 Paris, France
| | - Dhanasak Dhanasobhon
- ICM, Paris Brain Institute, Hôpital de la Pitié-Salpêtrière, Sorbonne Université, INSERM, CNRS, 75013 Paris, France
| | - Marie Martinez
- ICM, Paris Brain Institute, Hôpital de la Pitié-Salpêtrière, Sorbonne Université, INSERM, CNRS, 75013 Paris, France
| | - Annunziato Morabito
- ICM, Paris Brain Institute, Hôpital de la Pitié-Salpêtrière, Sorbonne Université, INSERM, CNRS, 75013 Paris, France
| | - Emmanuelle Berthaux
- ICM, Paris Brain Institute, Hôpital de la Pitié-Salpêtrière, Sorbonne Université, INSERM, CNRS, 75013 Paris, France
| | - Cibele Martins Pinho
- ICM, Paris Brain Institute, Hôpital de la Pitié-Salpêtrière, Sorbonne Université, INSERM, CNRS, 75013 Paris, France
| | - Yann Zerlaut
- ICM, Paris Brain Institute, Hôpital de la Pitié-Salpêtrière, Sorbonne Université, INSERM, CNRS, 75013 Paris, France.
| | - Nelson Rebola
- ICM, Paris Brain Institute, Hôpital de la Pitié-Salpêtrière, Sorbonne Université, INSERM, CNRS, 75013 Paris, France.
| |
Collapse
|
14
|
Myers-Joseph D, Wilmes KA, Fernandez-Otero M, Clopath C, Khan AG. Disinhibition by VIP interneurons is orthogonal to cross-modal attentional modulation in primary visual cortex. Neuron 2024; 112:628-645.e7. [PMID: 38070500 DOI: 10.1016/j.neuron.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/24/2023] [Accepted: 11/08/2023] [Indexed: 02/24/2024]
Abstract
Attentional modulation of sensory processing is a key feature of cognition; however, its neural circuit basis is poorly understood. A candidate mechanism is the disinhibition of pyramidal cells through vasoactive intestinal peptide (VIP) and somatostatin (SOM)-positive interneurons. However, the interaction of attentional modulation and VIP-SOM disinhibition has never been directly tested. We used all-optical methods to bi-directionally manipulate VIP interneuron activity as mice performed a cross-modal attention-switching task. We measured the activities of VIP, SOM, and parvalbumin (PV)-positive interneurons and pyramidal neurons identified in the same tissue and found that although activity in all cell classes was modulated by both attention and VIP manipulation, their effects were orthogonal. Attention and VIP-SOM disinhibition relied on distinct patterns of changes in activity and reorganization of interactions between inhibitory and excitatory cells. Circuit modeling revealed a precise network architecture consistent with multiplexing strong yet non-interacting modulations in the same neural population.
Collapse
Affiliation(s)
- Dylan Myers-Joseph
- Centre for Developmental Neurobiology, King's College London, London SE1 1UL, UK
| | | | | | - Claudia Clopath
- Department of Bioengineering, Imperial College, London SW7 2AZ, UK
| | - Adil G Khan
- Centre for Developmental Neurobiology, King's College London, London SE1 1UL, UK.
| |
Collapse
|
15
|
Kawatani M, Horio K, Ohkuma M, Li WR, Yamashita T. Interareal Synaptic Inputs Underlying Whisking-Related Activity in the Primary Somatosensory Barrel Cortex. J Neurosci 2024; 44:e1148232023. [PMID: 38050130 PMCID: PMC10860602 DOI: 10.1523/jneurosci.1148-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/06/2023] Open
Abstract
Body movements influence brain-wide neuronal activities. In the sensory cortex, thalamocortical bottom-up inputs and motor-sensory top-down inputs are thought to affect the dynamics of membrane potentials (Vm ) of neurons and change their processing of sensory information during movements. However, direct perturbation of the axons projecting to the sensory cortex from other remote areas during movements has remained unassessed, and therefore the interareal circuits generating motor-related signals in sensory cortices remain unclear. Using a Gi/o -coupled opsin, eOPN3, we here inhibited interareal signals incoming to the whisker primary somatosensory barrel cortex (wS1) of awake male mice and tested their effects on whisking-related changes in neuronal activities in wS1. Spontaneous whisking in air induced the changes in spike rates of a subset of wS1 neurons, which were accompanied by depolarization and substantial reduction of slow-wave oscillatory fluctuations of Vm Despite an extensive innervation, inhibition of inputs from the whisker primary motor cortex (wM1) to wS1 did not alter the spike rates and Vm dynamics of wS1 neurons during whisking. In contrast, inhibition of axons from the whisker-related thalamus (wTLM) and the whisker secondary somatosensory cortex (wS2) to wS1 largely attenuated the whisking-related supra- and sub-threshold Vm dynamics of wS1 neurons. Notably, silencing inputs from wTLM markedly decreased the modulation depth of whisking phase-tuned neurons in wS1, while inhibiting wS2 inputs did not impact the whisking variable tuning of wS1 neurons. Thus, sensorimotor integration in wS1 during spontaneous whisking is predominantly facilitated by direct synaptic inputs from wTLM and wS2 rather than from wM1.
Collapse
Affiliation(s)
- Masahiro Kawatani
- Department of Physiology, Fujita Health University School of Medicine, Toyoake, 470-1192, Japan
- Department of Functional Anatomy and Neuroscience, Graduate School of Medicine, Nagoya University, Nagoya, 466-8550, Japan
| | - Kayo Horio
- Department of Physiology, Fujita Health University School of Medicine, Toyoake, 470-1192, Japan
| | - Mahito Ohkuma
- Department of Physiology, Fujita Health University School of Medicine, Toyoake, 470-1192, Japan
| | - Wan-Ru Li
- Department of Physiology, Fujita Health University School of Medicine, Toyoake, 470-1192, Japan
- Department of Functional Anatomy and Neuroscience, Graduate School of Medicine, Nagoya University, Nagoya, 466-8550, Japan
| | - Takayuki Yamashita
- Department of Physiology, Fujita Health University School of Medicine, Toyoake, 470-1192, Japan
- International Center for Brain Science (ICBS), Fujita Health University, Toyoake, 470-1192, Japan
| |
Collapse
|
16
|
Huang S, Wu SJ, Sansone G, Ibrahim LA, Fishell G. Layer 1 neocortex: Gating and integrating multidimensional signals. Neuron 2024; 112:184-200. [PMID: 37913772 PMCID: PMC11180419 DOI: 10.1016/j.neuron.2023.09.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/23/2023] [Accepted: 09/28/2023] [Indexed: 11/03/2023]
Abstract
Layer 1 (L1) of the neocortex acts as a nexus for the collection and processing of widespread information. By integrating ascending inputs with extensive top-down activity, this layer likely provides critical information regulating how the perception of sensory inputs is reconciled with expectation. This is accomplished by sorting, directing, and integrating the complex network of excitatory inputs that converge onto L1. These signals are combined with neuromodulatory afferents and gated by the wealth of inhibitory interneurons that either are embedded within L1 or send axons from other cortical layers. Together, these interactions dynamically calibrate information flow throughout the neocortex. This review will primarily focus on L1 within the primary sensory cortex and will use these insights to understand L1 in other cortical areas.
Collapse
Affiliation(s)
- Shuhan Huang
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA; Program in Neuroscience, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Sherry Jingjing Wu
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Giulia Sansone
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Leena Ali Ibrahim
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia.
| | - Gord Fishell
- Harvard Medical School, Blavatnik Institute, Department of Neurobiology, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
17
|
Mishra W, Kheradpezhouh E, Arabzadeh E. Activation of M1 cholinergic receptors in mouse somatosensory cortex enhances information processing and detection behaviour. Commun Biol 2024; 7:3. [PMID: 38168628 PMCID: PMC10761830 DOI: 10.1038/s42003-023-05699-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
To optimise sensory representations based on environmental demands, the activity of cortical neurons is regulated by neuromodulators such as Acetylcholine (ACh). ACh is implicated in cognitive functions including attention, arousal and sleep cycles. However, it is not clear how specific ACh receptors shape the activity of cortical neurons in response to sensory stimuli. Here, we investigate the role of a densely expressed muscarinic ACh receptor M1 in information processing in the mouse primary somatosensory cortex and its influence on the animal's sensitivity to detect vibrotactile stimuli. We show that M1 activation results in faster and more reliable neuronal responses, manifested by a significant reduction in response latencies and the trial-to-trial variability. At the population level, M1 activation reduces the network synchrony, and thus enhances the capacity of cortical neurons in conveying sensory information. Consistent with the neuronal findings, we show that M1 activation significantly improves performances in a vibriotactile detection task.
Collapse
Affiliation(s)
- Wricha Mishra
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Ehsan Kheradpezhouh
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Ehsan Arabzadeh
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, Australia.
| |
Collapse
|
18
|
Li B, Ma C, Huang YA, Ding X, Silverman D, Chen C, Darmohray D, Lu L, Liu S, Montaldo G, Urban A, Dan Y. Circuit mechanism for suppression of frontal cortical ignition during NREM sleep. Cell 2023; 186:5739-5750.e17. [PMID: 38070510 DOI: 10.1016/j.cell.2023.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 09/06/2023] [Accepted: 11/09/2023] [Indexed: 12/24/2023]
Abstract
Conscious perception is greatly diminished during sleep, but the underlying circuit mechanism is poorly understood. We show that cortical ignition-a brain process shown to be associated with conscious awareness in humans and non-human primates-is strongly suppressed during non-rapid-eye-movement (NREM) sleep in mice due to reduced cholinergic modulation and rapid inhibition of cortical responses. Brain-wide functional ultrasound imaging and cell-type-specific calcium imaging combined with optogenetics showed that activity propagation from visual to frontal cortex is markedly reduced during NREM sleep due to strong inhibition of frontal pyramidal neurons. Chemogenetic activation and inactivation of basal forebrain cholinergic neurons powerfully increased and decreased visual-to-frontal activity propagation, respectively. Furthermore, although multiple subtypes of dendrite-targeting GABAergic interneurons in the frontal cortex are more active during wakefulness, soma-targeting parvalbumin-expressing interneurons are more active during sleep. Chemogenetic manipulation of parvalbumin interneurons showed that sleep/wake-dependent cortical ignition is strongly modulated by perisomatic inhibition of pyramidal neurons.
Collapse
Affiliation(s)
- Bing Li
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Chenyan Ma
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Yun-An Huang
- Neuro-Electronics Research Flanders, VIB, Department of Neurosciences, KU Leuven, imec, Leuven, Belgium
| | - Xinlu Ding
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Daniel Silverman
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Changwan Chen
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Dana Darmohray
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Lihui Lu
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Siqi Liu
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Gabriel Montaldo
- Neuro-Electronics Research Flanders, VIB, Department of Neurosciences, KU Leuven, imec, Leuven, Belgium
| | - Alan Urban
- Neuro-Electronics Research Flanders, VIB, Department of Neurosciences, KU Leuven, imec, Leuven, Belgium
| | - Yang Dan
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
19
|
Ferguson KA, Salameh J, Alba C, Selwyn H, Barnes C, Lohani S, Cardin JA. VIP interneurons regulate cortical size tuning and visual perception. Cell Rep 2023; 42:113088. [PMID: 37682710 PMCID: PMC10618959 DOI: 10.1016/j.celrep.2023.113088] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/12/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
Cortical circuit function is regulated by extensively interconnected, diverse populations of GABAergic interneurons that may play key roles in shaping circuit operation according to behavioral context. A specialized population of interneurons that co-express vasoactive intestinal peptides (VIP-INs) are activated during arousal and innervate other INs and pyramidal neurons (PNs). Although state-dependent modulation of VIP-INs has been extensively studied, their role in regulating sensory processing is less well understood. We examined the impact of VIP-INs in the primary visual cortex of awake behaving mice. Loss of VIP-IN activity alters the behavioral state-dependent modulation of somatostatin-expressing INs (SST-INs) but not PNs. In contrast, reduced VIP-IN activity globally disrupts visual feature selectivity for stimulus size. Moreover, the impact of VIP-INs on perceptual behavior varies with context and is more acute for small than large visual cues. VIP-INs thus contribute to both state-dependent modulation of cortical activity and sensory context-dependent perceptual performance.
Collapse
Affiliation(s)
- Katie A Ferguson
- Department of Neuroscience, Kavli Institute for Neuroscience, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Jenna Salameh
- Department of Neuroscience, Kavli Institute for Neuroscience, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Christopher Alba
- Department of Neuroscience, Kavli Institute for Neuroscience, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Hannah Selwyn
- Department of Neuroscience, Kavli Institute for Neuroscience, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Clayton Barnes
- Department of Neuroscience, Kavli Institute for Neuroscience, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Sweyta Lohani
- Department of Neuroscience, Kavli Institute for Neuroscience, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Jessica A Cardin
- Department of Neuroscience, Kavli Institute for Neuroscience, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
20
|
Zou J, Hires SA. Inhibitory neurons: VIP neurons expect rewards. Curr Biol 2023; 33:R909-R911. [PMID: 37699349 DOI: 10.1016/j.cub.2023.07.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Inhibitory neurons which express vasoactive intestinal polypeptide, VIPs, are a small subset of the mammalian cortex but in importance live up to their acronym. New research shows that these critical control knobs of cortical activity are specifically activated by actions taken when rewards are anticipated rather than consummated.
Collapse
Affiliation(s)
- Jing Zou
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA; Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School, Boston, MA 02114, USA
| | - Samuel Andrew Hires
- Department of Biological Sciences, Section of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
21
|
Arroyo S, Barati S, Kim K, Aparicio F, Ganguly K. Emergence of preparatory dynamics in VIP interneurons during motor learning. Cell Rep 2023; 42:112834. [PMID: 37467107 DOI: 10.1016/j.celrep.2023.112834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 03/20/2023] [Accepted: 07/03/2023] [Indexed: 07/21/2023] Open
Abstract
To determine what actions to perform in each context, animals must learn how to execute motor programs in response to sensory cues. In rodents, the interface between sensory processing and motor planning occurs in the secondary motor cortex (M2). Here, we investigate dynamics in vasointestinal peptide (VIP) and somatostatin (SST) interneurons in M2 during acquisition of a cue-based, reach-to-grasp (RTG) task in mice. We observe the emergence of preparatory activity consisting of sensory responses and ramping activation in a subset of VIP interneurons during motor learning. We show that preparatory and movement activities in VIP neurons exhibit compartmentalized dynamics, with principal component 1 (PC1) and PC2 reflecting primarily movement and preparatory activity, respectively. In contrast, we observe later and more synchronous activation of SST neurons during the movement epoch with learning. Our results reveal how VIP population dynamics might support sensorimotor learning and compartmentalization of sensory processing and movement execution.
Collapse
Affiliation(s)
- Sergio Arroyo
- Department of Neurology, Weill Institute for Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sapeeda Barati
- Department of Neurology, Weill Institute for Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kyungsoo Kim
- Department of Neurology, Weill Institute for Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Francisco Aparicio
- Department of Neurology, Weill Institute for Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Karunesh Ganguly
- Department of Neurology, Weill Institute for Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA; Neurology Service, San Francisco Veterans Affairs Medical Center, San Francisco, CA 94121, USA.
| |
Collapse
|
22
|
Ramamurthy DL, Chen A, Zhou J, Park C, Huang PC, Bharghavan P, Krishna G, Liu J, Casale K, Feldman DE. VIP interneurons in sensory cortex encode sensory and action signals but not direct reward signals. Curr Biol 2023; 33:3398-3408.e7. [PMID: 37499665 PMCID: PMC10528032 DOI: 10.1016/j.cub.2023.06.086] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/29/2023]
Abstract
Vasoactive intestinal peptide (VIP) interneurons in sensory cortex modulate sensory responses based on global exploratory behavior and arousal state, but their function during non-exploratory, goal-directed behavior is not well understood. In particular, whether VIP cells are activated by sensory cues, reward-seeking actions, or directly by reinforcement is unclear. We trained mice on a Go/NoGo whisker touch detection task that included a delay period and other features designed to separate sensory-evoked, action-related, and reward-related neural activity. Mice had to lick in response to a whisker stimulus to receive a variable-sized reward. Using two-photon calcium imaging, we measured ΔF/F responses of L2/3 VIP neurons in whisker somatosensory cortex (S1) during behavior. In both expert and novice mice, VIP cells were strongly activated by whisker stimuli and goal-directed actions (licking), but not by reinforcement. VIP cells showed somatotopic whisker tuning that was spatially organized relative to anatomical columns in S1, unlike lick-related signals which were spatially widespread. In expert mice, lick-related VIP responses were suppressed, not enhanced, when a reward was delivered, and the amount of suppression increased with reward size. This reward-related suppression was not seen in novice mice, where reward delivery was not yoked to licking. These results indicate that besides arousal and global state variables, VIP cells are activated by local sensory features and goal-directed actions, but not directly by reinforcement. Instead, our results are consistent with a role for VIP cells in encoding the expectation of reward associated with motor actions.
Collapse
Affiliation(s)
- Deepa L Ramamurthy
- Department of Molecular & Cell Biology and Helen Wills Neuroscience Institute, UC Berkeley, Berkeley, CA 94720-3200, USA.
| | - Andrew Chen
- Department of Molecular & Cell Biology and Helen Wills Neuroscience Institute, UC Berkeley, Berkeley, CA 94720-3200, USA
| | - Jiayu Zhou
- Department of Molecular & Cell Biology and Helen Wills Neuroscience Institute, UC Berkeley, Berkeley, CA 94720-3200, USA
| | - Chanbin Park
- Department of Molecular & Cell Biology and Helen Wills Neuroscience Institute, UC Berkeley, Berkeley, CA 94720-3200, USA
| | - Patrick C Huang
- Department of Molecular & Cell Biology and Helen Wills Neuroscience Institute, UC Berkeley, Berkeley, CA 94720-3200, USA
| | - Priyanka Bharghavan
- Department of Molecular & Cell Biology and Helen Wills Neuroscience Institute, UC Berkeley, Berkeley, CA 94720-3200, USA
| | - Gayathri Krishna
- Department of Molecular & Cell Biology and Helen Wills Neuroscience Institute, UC Berkeley, Berkeley, CA 94720-3200, USA
| | - Jinjian Liu
- Department of Molecular & Cell Biology and Helen Wills Neuroscience Institute, UC Berkeley, Berkeley, CA 94720-3200, USA
| | - Kayla Casale
- Department of Molecular & Cell Biology and Helen Wills Neuroscience Institute, UC Berkeley, Berkeley, CA 94720-3200, USA
| | - Daniel E Feldman
- Department of Molecular & Cell Biology and Helen Wills Neuroscience Institute, UC Berkeley, Berkeley, CA 94720-3200, USA.
| |
Collapse
|
23
|
Kiritani T, Pala A, Gasselin C, Crochet S, Petersen CCH. Membrane potential dynamics of excitatory and inhibitory neurons in mouse barrel cortex during active whisker sensing. PLoS One 2023; 18:e0287174. [PMID: 37311008 DOI: 10.1371/journal.pone.0287174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 05/31/2023] [Indexed: 06/15/2023] Open
Abstract
Neocortical neurons can increasingly be divided into well-defined classes, but their activity patterns during quantified behavior remain to be fully determined. Here, we obtained membrane potential recordings from various classes of excitatory and inhibitory neurons located across different cortical depths in the primary whisker somatosensory barrel cortex of awake head-restrained mice during quiet wakefulness, free whisking and active touch. Excitatory neurons, especially those located superficially, were hyperpolarized with low action potential firing rates relative to inhibitory neurons. Parvalbumin-expressing inhibitory neurons on average fired at the highest rates, responding strongly and rapidly to whisker touch. Vasoactive intestinal peptide-expressing inhibitory neurons were excited during whisking, but responded to active touch only after a delay. Somatostatin-expressing inhibitory neurons had the smallest membrane potential fluctuations and exhibited hyperpolarising responses at whisking onset for superficial, but not deep, neurons. Interestingly, rapid repetitive whisker touch evoked excitatory responses in somatostatin-expressing inhibitory neurons, but not when the intercontact interval was long. Our analyses suggest that distinct genetically-defined classes of neurons at different subpial depths have differential activity patterns depending upon behavioral state providing a basis for constraining future computational models of neocortical function.
Collapse
Affiliation(s)
- Taro Kiritani
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Aurélie Pala
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Célia Gasselin
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Sylvain Crochet
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Carl C H Petersen
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
24
|
Ferguson KA, Salameh J, Alba C, Selwyn H, Barnes C, Lohani S, Cardin JA. VIP interneurons regulate cortical size tuning and visual perception. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532664. [PMID: 37162871 PMCID: PMC10168200 DOI: 10.1101/2023.03.14.532664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Local cortical circuit function is regulated by diverse populations of GABAergic interneurons with distinct properties and extensive interconnectivity. Inhibitory-to-inhibitory interactions between interneuron populations may play key roles in shaping circuit operation according to behavioral context. A specialized population of GABAergic interneurons that co-express vasoactive intestinal peptide (VIP-INs) are activated during arousal and locomotion and innervate other local interneurons and pyramidal neurons. Although modulation of VIP-IN activity by behavioral state has been extensively studied, their role in regulating information processing and selectivity is less well understood. Using a combination of cellular imaging, short and long-term manipulation, and perceptual behavior, we examined the impact of VIP-INs on their synaptic target populations in the primary visual cortex of awake behaving mice. We find that loss of VIP-IN activity alters the behavioral state-dependent modulation of somatostatin-expressing interneurons (SST-INs) but not pyramidal neurons (PNs). In contrast, reduced VIP-IN activity disrupts visual feature selectivity for stimulus size in both populations. Inhibitory-to inhibitory interactions thus directly shape the selectivity of GABAergic interneurons for sensory stimuli. Moreover, the impact of VIP-IN activity on perceptual behavior varies with visual context and is more acute for small than large visual cues. VIP-INs thus contribute to both state-dependent modulation of cortical circuit activity and sensory context-dependent perceptual performance.
Collapse
Affiliation(s)
- Katie A Ferguson
- Department of Neuroscience, Kavli Institute for Neuroscience, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06510 USA
| | - Jenna Salameh
- Department of Neuroscience, Kavli Institute for Neuroscience, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06510 USA
| | - Christopher Alba
- Department of Neuroscience, Kavli Institute for Neuroscience, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06510 USA
| | - Hannah Selwyn
- Department of Neuroscience, Kavli Institute for Neuroscience, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06510 USA
| | - Clayton Barnes
- Department of Neuroscience, Kavli Institute for Neuroscience, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06510 USA
| | - Sweyta Lohani
- Department of Neuroscience, Kavli Institute for Neuroscience, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06510 USA
| | - Jessica A Cardin
- Department of Neuroscience, Kavli Institute for Neuroscience, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06510 USA
| |
Collapse
|
25
|
Guy J, Möck M, Staiger JF. Direction selectivity of inhibitory interneurons in mouse barrel cortex differs between interneuron subtypes. Cell Rep 2023; 42:111936. [PMID: 36640357 DOI: 10.1016/j.celrep.2022.111936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/08/2022] [Accepted: 12/14/2022] [Indexed: 01/01/2023] Open
Abstract
GABAergic interneurons represent ∼15% to 20% of all cortical neurons, but their diversity grants them unique roles in cortical circuits. In the barrel cortex, responses of excitatory neurons to stimulation of facial whiskers are direction selective, whereby excitation is maximized over a narrow range of angular deflections. Whether GABAergic interneurons are also direction selective is unclear. Here, we use two-photon-guided whole-cell recordings in the barrel cortex of anesthetized mice and control whisker stimulation to measure direction selectivity in defined interneuron subtypes. Selectivity is ubiquitous in interneurons, but tuning sharpness varies across populations. Vasoactive intestinal polypeptide (VIP) interneurons are as selective as pyramidal neurons, but parvalbumin (PV) interneurons are more broadly tuned. Furthermore, a majority (2/3) of somatostatin (SST) interneurons receive direction-selective inhibition, with the rest receiving direction-selective excitation. Sensory evoked activity in the barrel cortex is thus cell-type specific, suggesting that interneuron subtypes make distinct contributions to cortical representations of stimuli.
Collapse
Affiliation(s)
- Julien Guy
- Institute for Neuroanatomy, University Medical Center, 37075 Göttingen, Lower Saxony, Germany
| | - Martin Möck
- Institute for Neuroanatomy, University Medical Center, 37075 Göttingen, Lower Saxony, Germany
| | - Jochen F Staiger
- Institute for Neuroanatomy, University Medical Center, 37075 Göttingen, Lower Saxony, Germany.
| |
Collapse
|
26
|
Scott DN, Frank MJ. Adaptive control of synaptic plasticity integrates micro- and macroscopic network function. Neuropsychopharmacology 2023; 48:121-144. [PMID: 36038780 PMCID: PMC9700774 DOI: 10.1038/s41386-022-01374-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 11/09/2022]
Abstract
Synaptic plasticity configures interactions between neurons and is therefore likely to be a primary driver of behavioral learning and development. How this microscopic-macroscopic interaction occurs is poorly understood, as researchers frequently examine models within particular ranges of abstraction and scale. Computational neuroscience and machine learning models offer theoretically powerful analyses of plasticity in neural networks, but results are often siloed and only coarsely linked to biology. In this review, we examine connections between these areas, asking how network computations change as a function of diverse features of plasticity and vice versa. We review how plasticity can be controlled at synapses by calcium dynamics and neuromodulatory signals, the manifestation of these changes in networks, and their impacts in specialized circuits. We conclude that metaplasticity-defined broadly as the adaptive control of plasticity-forges connections across scales by governing what groups of synapses can and can't learn about, when, and to what ends. The metaplasticity we discuss acts by co-opting Hebbian mechanisms, shifting network properties, and routing activity within and across brain systems. Asking how these operations can go awry should also be useful for understanding pathology, which we address in the context of autism, schizophrenia and Parkinson's disease.
Collapse
Affiliation(s)
- Daniel N Scott
- Cognitive Linguistic, and Psychological Sciences, Brown University, Providence, RI, USA.
- Carney Institute for Brain Science, Brown University, Providence, RI, USA.
| | - Michael J Frank
- Cognitive Linguistic, and Psychological Sciences, Brown University, Providence, RI, USA.
- Carney Institute for Brain Science, Brown University, Providence, RI, USA.
| |
Collapse
|
27
|
Probing top-down information in neocortical layer 1. Trends Neurosci 2023; 46:20-31. [PMID: 36428192 DOI: 10.1016/j.tins.2022.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/26/2022] [Accepted: 11/01/2022] [Indexed: 11/23/2022]
Abstract
Accurate perception of the environment is a constructive process that requires integration of external bottom-up sensory signals with internally generated top-down information. Decades of work have elucidated how sensory neocortex processes physical stimulus features. By contrast, examining how top-down information is encoded and integrated with bottom-up signals has been challenging using traditional neuroscience methods. Recent technological advances in functional imaging of brain-wide afferents in behaving mice have enabled the direct measurement of top-down information. Here, we review the emerging literature on encoding of these internally generated signals by different projection systems enriched in neocortical layer 1 during defined brain functions, including memory, attention, and predictive coding. Moreover, we identify gaps in current knowledge and highlight future directions for this rapidly advancing field.
Collapse
|
28
|
Matteucci G, Guyoton M, Mayrhofer JM, Auffret M, Foustoukos G, Petersen CCH, El-Boustani S. Cortical sensory processing across motivational states during goal-directed behavior. Neuron 2022; 110:4176-4193.e10. [PMID: 36240769 DOI: 10.1016/j.neuron.2022.09.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/25/2022] [Accepted: 09/24/2022] [Indexed: 11/06/2022]
Abstract
Behavioral states can influence performance of goal-directed sensorimotor tasks. Yet, it is unclear how altered neuronal sensory representations in these states relate to task performance and learning. We trained water-restricted mice in a two-whisker discrimination task to study cortical circuits underlying perceptual decision-making under different levels of thirst. We identified somatosensory cortices as well as the premotor cortex as part of the circuit necessary for task execution. Two-photon calcium imaging in these areas identified populations selective to sensory or motor events. Analysis of task performance during individual sessions revealed distinct behavioral states induced by decreasing levels of thirst-related motivation. Learning was better explained by improvements in motivational state control rather than sensorimotor association. Whisker sensory representations in the cortex were altered across behavioral states. In particular, whisker stimuli could be better decoded from neuronal activity during high task performance states, suggesting that state-dependent changes of sensory processing influence decision-making.
Collapse
Affiliation(s)
- Giulio Matteucci
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, 1 Rue Michel-Servet, 1206 Geneva, Switzerland
| | - Maëlle Guyoton
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, 1 Rue Michel-Servet, 1206 Geneva, Switzerland
| | - Johannes M Mayrhofer
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), EPFL-SV-BMI-LSENS Station 19, CH-1015 Lausanne, Switzerland
| | - Matthieu Auffret
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), EPFL-SV-BMI-LSENS Station 19, CH-1015 Lausanne, Switzerland
| | - Georgios Foustoukos
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), EPFL-SV-BMI-LSENS Station 19, CH-1015 Lausanne, Switzerland
| | - Carl C H Petersen
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), EPFL-SV-BMI-LSENS Station 19, CH-1015 Lausanne, Switzerland.
| | - Sami El-Boustani
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, 1 Rue Michel-Servet, 1206 Geneva, Switzerland; Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), EPFL-SV-BMI-LSENS Station 19, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
29
|
Hegedüs P, Sviatkó K, Király B, Martínez-Bellver S, Hangya B. Cholinergic activity reflects reward expectations and predicts behavioral responses. iScience 2022; 26:105814. [PMID: 36636356 PMCID: PMC9830220 DOI: 10.1016/j.isci.2022.105814] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/22/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Basal forebrain cholinergic neurons (BFCNs) play an important role in associative learning, suggesting that BFCNs may participate in processing stimuli that predict future outcomes. However, the impact of outcome probabilities on BFCN activity remained elusive. Therefore, we performed bulk calcium imaging and recorded spiking of identified cholinergic neurons from the basal forebrain of mice performing a probabilistic Pavlovian cued outcome task. BFCNs responded more to sensory cues that were often paired with reward. Reward delivery also activated BFCNs, with surprising rewards eliciting a stronger response, whereas punishments evoked uniform positive-going responses. We propose that BFCNs differentially weigh predictions of positive and negative reinforcement, reflecting divergent relative salience of forecasting appetitive and aversive outcomes, partially explained by a simple reinforcement learning model of a valence-weighed unsigned prediction error. Finally, the extent of cue-driven cholinergic activation predicted subsequent decision speed, suggesting that the expectation-gated cholinergic firing is instructive to reward-seeking behaviors.
Collapse
Affiliation(s)
- Panna Hegedüs
- Lendület Laboratory of Systems Neuroscience, Institute of Experimental Medicine, H-1083 Budapest, Hungary,János Szentágothai Doctoral School of Neurosciences, Semmelweis University, H-1085 Budapest, Hungary
| | - Katalin Sviatkó
- Lendület Laboratory of Systems Neuroscience, Institute of Experimental Medicine, H-1083 Budapest, Hungary,János Szentágothai Doctoral School of Neurosciences, Semmelweis University, H-1085 Budapest, Hungary
| | - Bálint Király
- Lendület Laboratory of Systems Neuroscience, Institute of Experimental Medicine, H-1083 Budapest, Hungary,Department of Biological Physics, Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Sergio Martínez-Bellver
- Lendület Laboratory of Systems Neuroscience, Institute of Experimental Medicine, H-1083 Budapest, Hungary,Department of Anatomy and Human Embryology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain
| | - Balázs Hangya
- Lendület Laboratory of Systems Neuroscience, Institute of Experimental Medicine, H-1083 Budapest, Hungary,Corresponding author
| |
Collapse
|
30
|
Kanamori T, Mrsic-Flogel TD. Independent response modulation of visual cortical neurons by attentional and behavioral states. Neuron 2022; 110:3907-3918.e6. [PMID: 36137550 DOI: 10.1016/j.neuron.2022.08.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 06/15/2022] [Accepted: 08/30/2022] [Indexed: 12/15/2022]
Abstract
Sensory processing is influenced by cognitive and behavioral states, but how these states interact to modulate responses of individual neurons is unknown. We trained mice in a visual discrimination task wherein they attended to different locations within a hemifield while running or sitting still, enabling us to examine how visual responses are modulated by spatial attention and running behavior. We found that spatial attention improved discrimination performance and strengthened visual responses of excitatory neurons in the primary visual cortex whose receptive fields overlapped with the attended location. Although individual neurons were modulated by both spatial attention and running, the magnitudes of these influences were not correlated. While running-dependent modulation was stable across days, attentional modulation was dynamic, influencing individual neurons to different degrees after repeated changes in attentional states. Thus, despite similar effects on neural responses, spatial attention and running act independently with different dynamics, implying separable mechanisms for their implementation.
Collapse
Affiliation(s)
- Takahiro Kanamori
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, 25 Howland Street, London W1T 4JG, UK.
| | - Thomas D Mrsic-Flogel
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, 25 Howland Street, London W1T 4JG, UK.
| |
Collapse
|
31
|
Lohani S, Moberly AH, Benisty H, Landa B, Jing M, Li Y, Higley MJ, Cardin JA. Spatiotemporally heterogeneous coordination of cholinergic and neocortical activity. Nat Neurosci 2022; 25:1706-1713. [PMID: 36443609 PMCID: PMC10661869 DOI: 10.1038/s41593-022-01202-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 10/12/2022] [Indexed: 11/30/2022]
Abstract
Variation in an animal's behavioral state is linked to fluctuations in brain activity and cognitive ability. In the neocortex, state-dependent circuit dynamics may reflect neuromodulatory influences such as that of acetylcholine (ACh). Although early literature suggested that ACh exerts broad, homogeneous control over cortical function, recent evidence indicates potential anatomical and functional segregation of cholinergic signaling. In addition, it is unclear whether states as defined by different behavioral markers reflect heterogeneous cholinergic and cortical network activity. Here, we perform simultaneous, dual-color mesoscopic imaging of both ACh and calcium across the neocortex of awake mice to investigate their relationships with behavioral variables. We find that higher arousal, categorized by different motor behaviors, is associated with spatiotemporally dynamic patterns of cholinergic modulation and enhanced large-scale network correlations. Overall, our findings demonstrate that ACh provides a highly dynamic and spatially heterogeneous signal that links fluctuations in behavior to functional reorganization of cortical networks.
Collapse
Affiliation(s)
- Sweyta Lohani
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Andrew H Moberly
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Hadas Benisty
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Boris Landa
- Program in Applied Mathematics, Yale University, New Haven, CT, USA
| | - Miao Jing
- Chinese Institute for Brain Research, Beijing, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Michael J Higley
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA.
| | - Jessica A Cardin
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
32
|
Szadai Z, Pi HJ, Chevy Q, Ócsai K, Albeanu DF, Chiovini B, Szalay G, Katona G, Kepecs A, Rózsa B. Cortex-wide response mode of VIP-expressing inhibitory neurons by reward and punishment. eLife 2022; 11:e78815. [PMID: 36416886 PMCID: PMC9683790 DOI: 10.7554/elife.78815] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 10/23/2022] [Indexed: 11/24/2022] Open
Abstract
Neocortex is classically divided into distinct areas, each specializing in different function, but all could benefit from reinforcement feedback to inform and update local processing. Yet it remains elusive how global signals like reward and punishment are represented in local cortical computations. Previously, we identified a cortical neuron type, vasoactive intestinal polypeptide (VIP)-expressing interneurons, in auditory cortex that is recruited by behavioral reinforcers and mediates disinhibitory control by inhibiting other inhibitory neurons. As the same disinhibitory cortical circuit is present virtually throughout cortex, we wondered whether VIP neurons are likewise recruited by reinforcers throughout cortex. We monitored VIP neural activity in dozens of cortical regions using three-dimensional random access two-photon microscopy and fiber photometry while mice learned an auditory discrimination task. We found that reward and punishment during initial learning produce rapid, cortex-wide activation of most VIP interneurons. This global recruitment mode showed variations in temporal dynamics in individual neurons and across areas. Neither the weak sensory tuning of VIP interneurons in visual cortex nor their arousal state modulation was fully predictive of reinforcer responses. We suggest that the global response mode of cortical VIP interneurons supports a cell-type-specific circuit mechanism by which organism-level information about reinforcers regulates local circuit processing and plasticity.
Collapse
Affiliation(s)
- Zoltán Szadai
- Laboratory of 3D functional network and dendritic imaging, Institute of Experimental MedicineBudapestHungary
- MTA-PPKE ITK-NAP B – 2p Measurement Technology Group, The Faculty of Information Technology, Pázmány Péter Catholic UniversityBudapestHungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis UniversityBudapestHungary
- BrainVisionCenterBudapestHungary
| | - Hyun-Jae Pi
- Cold Spring Harbor LaboratoryCold Spring HarborUnited States
- Volen Center for Complex Systems, Biology Department, Brandeis UniversityWalthamUnited States
| | - Quentin Chevy
- Cold Spring Harbor LaboratoryCold Spring HarborUnited States
- Departments of Neuroscience and Psychiatry, Washington University School of MedicineSt. LouisUnited States
| | - Katalin Ócsai
- MTA-PPKE ITK-NAP B – 2p Measurement Technology Group, The Faculty of Information Technology, Pázmány Péter Catholic UniversityBudapestHungary
- BrainVisionCenterBudapestHungary
- Computational Systems Neuroscience Lab, Wigner Research Centre for PhysicsBudapestHungary
- Department of Mathematical Geometry, Institute of Mathematics, Budapest University of Technology and EconomicsBudapestHungary
| | - Dinu F Albeanu
- Cold Spring Harbor LaboratoryCold Spring HarborUnited States
| | - Balázs Chiovini
- Laboratory of 3D functional network and dendritic imaging, Institute of Experimental MedicineBudapestHungary
| | - Gergely Szalay
- Laboratory of 3D functional network and dendritic imaging, Institute of Experimental MedicineBudapestHungary
| | - Gergely Katona
- MTA-PPKE ITK-NAP B – 2p Measurement Technology Group, The Faculty of Information Technology, Pázmány Péter Catholic UniversityBudapestHungary
| | - Adam Kepecs
- Cold Spring Harbor LaboratoryCold Spring HarborUnited States
- Departments of Neuroscience and Psychiatry, Washington University School of MedicineSt. LouisUnited States
| | - Balázs Rózsa
- Laboratory of 3D functional network and dendritic imaging, Institute of Experimental MedicineBudapestHungary
- BrainVisionCenterBudapestHungary
| |
Collapse
|
33
|
Wagatsuma N, Shimomura H, Nobukawa S. Disinhibitory circuit mediated by connections from vasoactive intestinal polypeptide to somatostatin interneurons underlies the paradoxical decrease in spike synchrony with increased border ownership selective neuron firing rate. Front Comput Neurosci 2022; 16:988715. [PMID: 36405781 PMCID: PMC9672816 DOI: 10.3389/fncom.2022.988715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
The activity of border ownership selective (BOS) neurons in intermediate-level visual areas indicates which side of a contour owns a border relative to its classical receptive field and provides a fundamental component of figure-ground segregation. A physiological study reported that selective attention facilitates the activity of BOS neurons with a consistent border ownership preference, defined as two neurons tuned to respond to the same visual object. However, spike synchrony between this pair is significantly suppressed by selective attention. These neurophysiological findings are derived from a biologically-plausible microcircuit model consisting of spiking neurons including two subtypes of inhibitory interneurons, somatostatin (SOM) and vasoactive intestinal polypeptide (VIP) interneurons, and excitatory BOS model neurons. In our proposed model, BOS neurons and SOM interneurons cooperate and interact with each other. VIP interneurons not only suppress SOM interneuron responses but also are activated by feedback signals mediating selective attention, which leads to disinhibition of BOS neurons when they are directing selective attention toward an object. Our results suggest that disinhibition arising from the synaptic connections from VIP to SOM interneurons plays a critical role in attentional modulation of neurons in intermediate-level visual areas.
Collapse
Affiliation(s)
- Nobuhiko Wagatsuma
- Department of Information Science, Faculty of Science, Toho University, Funabashi, Japan
- *Correspondence: Nobuhiko Wagatsuma,
| | - Haruka Shimomura
- Department of Information Science, Faculty of Science, Toho University, Funabashi, Japan
| | - Sou Nobukawa
- Department of Computer Science, Chiba Institute of Technology, Narashino, Japan
- Department of Preventive Intervention for Psychiatric Disorders, National Center of Neurology and Psychiatry, Kodaira, Japan
| |
Collapse
|
34
|
Ren C, Peng K, Yang R, Liu W, Liu C, Komiyama T. Global and subtype-specific modulation of cortical inhibitory neurons regulated by acetylcholine during motor learning. Neuron 2022; 110:2334-2350.e8. [PMID: 35584693 PMCID: PMC9308684 DOI: 10.1016/j.neuron.2022.04.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 01/12/2022] [Accepted: 04/28/2022] [Indexed: 12/26/2022]
Abstract
Inhibitory neurons (INs) consist of distinct subtypes with unique functions. Previous studies on INs mainly focused on single brain regions, and thus it remains unclear whether the modulation of IN subtypes occurs globally across multiple regions. Here, we monitored the activity of different cortical IN subtypes at both macroscale and microscale in mice learning a lever-press task. Learning evoked a global modulation of IN subtypes throughout the cortex. The initial learning phase involved strong activation of vasoactive intestinal peptide-expressing INs (VIP-INs) and weak activation of somatostatin-expressing INs (SOM-INs). Inactivating VIP-INs increased SOM-IN activity and impaired initial learning. Concurrently, cortical cholinergic inputs from the basal forebrain were initially more active but became less engaged over learning. Manipulation of the cholinergic system impaired motor learning and differentially altered activity of IN subtypes. These results reveal that motor learning involves a global and subtype-specific modulation on cortical INs regulated by the cholinergic system.
Collapse
Affiliation(s)
- Chi Ren
- Neurobiology Section, Center for Neural Circuits and Behavior, Department of Neurosciences, and Halıcıoğlu Data Science Institute, University of California San Diego, La Jolla, CA 92093, USA
| | - Kailong Peng
- Neurobiology Section, Center for Neural Circuits and Behavior, Department of Neurosciences, and Halıcıoğlu Data Science Institute, University of California San Diego, La Jolla, CA 92093, USA
| | - Ruize Yang
- Neurobiology Section, Center for Neural Circuits and Behavior, Department of Neurosciences, and Halıcıoğlu Data Science Institute, University of California San Diego, La Jolla, CA 92093, USA
| | - Weikang Liu
- Neurobiology Section, Center for Neural Circuits and Behavior, Department of Neurosciences, and Halıcıoğlu Data Science Institute, University of California San Diego, La Jolla, CA 92093, USA
| | - Chang Liu
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Takaki Komiyama
- Neurobiology Section, Center for Neural Circuits and Behavior, Department of Neurosciences, and Halıcıoğlu Data Science Institute, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
35
|
Bugeon S, Duffield J, Dipoppa M, Ritoux A, Prankerd I, Nicoloutsopoulos D, Orme D, Shinn M, Peng H, Forrest H, Viduolyte A, Reddy CB, Isogai Y, Carandini M, Harris KD. A transcriptomic axis predicts state modulation of cortical interneurons. Nature 2022; 607:330-338. [PMID: 35794483 PMCID: PMC9279161 DOI: 10.1038/s41586-022-04915-7] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 05/27/2022] [Indexed: 12/14/2022]
Abstract
Transcriptomics has revealed that cortical inhibitory neurons exhibit a great diversity of fine molecular subtypes1-6, but it is not known whether these subtypes have correspondingly diverse patterns of activity in the living brain. Here we show that inhibitory subtypes in primary visual cortex (V1) have diverse correlates with brain state, which are organized by a single factor: position along the main axis of transcriptomic variation. We combined in vivo two-photon calcium imaging of mouse V1 with a transcriptomic method to identify mRNA for 72 selected genes in ex vivo slices. We classified inhibitory neurons imaged in layers 1-3 into a three-level hierarchy of 5 subclasses, 11 types and 35 subtypes using previously defined transcriptomic clusters3. Responses to visual stimuli differed significantly only between subclasses, with cells in the Sncg subclass uniformly suppressed, and cells in the other subclasses predominantly excited. Modulation by brain state differed at all hierarchical levels but could be largely predicted from the first transcriptomic principal component, which also predicted correlations with simultaneously recorded cells. Inhibitory subtypes that fired more in resting, oscillatory brain states had a smaller fraction of their axonal projections in layer 1, narrower spikes, lower input resistance and weaker adaptation as determined in vitro7, and expressed more inhibitory cholinergic receptors. Subtypes that fired more during arousal had the opposite properties. Thus, a simple principle may largely explain how diverse inhibitory V1 subtypes shape state-dependent cortical processing.
Collapse
Affiliation(s)
- Stéphane Bugeon
- UCL Queen Square Institute of Neurology, University College London, London, UK.
| | - Joshua Duffield
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Mario Dipoppa
- UCL Queen Square Institute of Neurology, University College London, London, UK
- Center for Theoretical Neuroscience, Columbia University, New York, NY, USA
| | - Anne Ritoux
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Isabelle Prankerd
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | | | - David Orme
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Maxwell Shinn
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Han Peng
- Department of Physics, University of Oxford, Oxford, UK
| | - Hamish Forrest
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Aiste Viduolyte
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Charu Bai Reddy
- UCL Queen Square Institute of Neurology, University College London, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Yoh Isogai
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK
| | - Matteo Carandini
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Kenneth D Harris
- UCL Queen Square Institute of Neurology, University College London, London, UK.
| |
Collapse
|
36
|
Wu J, Zhao Z, Shi Y, He M. Cortical VIP + Interneurons in the Upper and Deeper Layers Are Transcriptionally Distinct. J Mol Neurosci 2022; 72:1779-1795. [PMID: 35708842 DOI: 10.1007/s12031-022-02040-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/07/2022] [Indexed: 12/19/2022]
Abstract
Different interneuron classes have distinct laminar distribution patterns which contribute to the layer-specific organization of cortical microcircuits. However, laminar differences within the same interneuron classes are not well recognized. Despite systematic efforts towards neuron cell-type taxonomy in the neocortex by single-cell transcriptomics, less attention has been driven towards laminar differences in interneurons compared to projection neurons. VIP+ interneurons are the major interneuron class that mostly populate superficial layers and mediate disinhibition. A few reports noted the morphological and electrophysiological differences between VIP+ interneurons residing in layers I-III (upper layer) and layers IV-VI (deeper layer), but little is known about their molecular differences. Here, we delineated the laminar difference in their transcriptome employing single-cell RNA sequencing (scRNAseq) data from public databases. Analysis of 1175 high-quality VIP+ interneurons in the primary visual cortex (VISp) showed that the upper layer and deeper layer VIP+ interneurons are transcriptionally distinct distinguished by genes implicated in synapse organization and regulation of membrane potential. Similar differences are also observed in the anterior lateral motor cortex (ALM) and primary motor cortex (MOp). Cross-comparing between the top 10 differentially expressed genes (DEGs) with Allen Mouse Brain in situ hybridization database, we identified Tac2 and CxCl14 as potential marker genes of upper layer VIP+ interneurons across most cortical regions. Importantly, such expression patterns are conserved in the human brain. Together, we revealed significant laminar differences in transcriptomic profiles within VIP+ interneurons, which provided new insight into their molecular heterogeneity that may contribute to their functional diversity.
Collapse
Affiliation(s)
- Jinyun Wu
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurobiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zhirong Zhao
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurobiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yun Shi
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurobiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Miao He
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurobiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
37
|
Brécier A, Borel M, Urbain N, Gentet LJ. Vigilance and Behavioral State-Dependent Modulation of Cortical Neuronal Activity throughout the Sleep/Wake Cycle. J Neurosci 2022; 42:4852-4866. [PMID: 35552234 PMCID: PMC9188387 DOI: 10.1523/jneurosci.1400-21.2022] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 01/27/2023] Open
Abstract
GABAergic inhibitory neurons, through their molecular, anatomic, and physiological diversity, provide a substrate for the modulation of ongoing cortical circuit activity throughout the sleep/wake cycle. Here, we investigated neuronal activity dynamics of parvalbumin (PV), vasoactive intestinal polypeptide (VIP), and somatostatin (SST) neurons in naturally sleeping head-restrained mice at the level of layer 2/3 of the primary somatosensory barrel cortex of mice. Through calcium imaging and targeted single-unit loose-patch or whole-cell recordings, we found that PV action potential firing activity was largest during both rapid eye movement (REM) and nonrapid eye movement (NREM) sleep stages, that VIP neurons were most active during REM sleep, and that the overall activity of SST neurons remained stable throughout the sleep/wake cycle. Analysis of neuronal activity dynamics uncovered rapid decreases in PV cell firing at wake onset followed by a progressive recovery during wake. Simultaneous local field potential (LFP) recordings further revealed that except for SST neurons, a large proportion of neurons were modulated by ongoing delta and theta oscillations. During NREM sleep spindles, PV and SST activity increased and decreased, respectively. Finally, we uncovered the presence of whisking behavior in mice during REM sleep and show that the activity of VIP and SST is differentially modulated during awake and sleeping whisking bouts, which may provide a neuronal substrate for internal brain representations occurring during sleep.SIGNIFICANCE STATEMENT In the sensory cortex, the balance between excitation and inhibition is believed to be highly dynamic throughout the sleep/wake cycle, shaping the response of cortical circuits to external stimuli while allowing the formation of newly encoded memory. Using in vivo two-photon calcium imaging or targeted single-unit recordings combined with LFP recordings, we describe the vigilance state and whisking-behavior-dependent activity of excitatory pyramidal and inhibitory GABAergic neurons in the supragranular layers of mouse somatosensory cortex. Interneuronal activity was found to be differentially modulated by ongoing delta and theta waves, sleep spindles, and a novel type of whisking observed during REM sleep, potentially providing a neuronal substrate for internal brain representations occurring during sleep.
Collapse
Affiliation(s)
| | | | - Nadia Urbain
- Physiopathology of Sleep Networks, Lyon Neuroscience Research Center, Institut National de la Santé et de la Recherche Médicale U1028-Centre National de la Recherche Scientifique Mixed Research Unit 5292, Université Claude-Bernard Lyon 1, 69372 Lyon, France
| | | |
Collapse
|
38
|
Corbo J, McClure JP, Erkat OB, Polack PO. Dynamic Distortion of Orientation Representation after Learning in the Mouse Primary Visual Cortex. J Neurosci 2022; 42:4311-4325. [PMID: 35477902 PMCID: PMC9145234 DOI: 10.1523/jneurosci.2272-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/24/2022] [Accepted: 02/13/2022] [Indexed: 11/21/2022] Open
Abstract
Learning is an essential cognitive mechanism allowing behavioral adaptation through adjustments in neuronal processing. It is associated with changes in the activity of sensory cortical neurons evoked by task-relevant stimuli. However, the exact nature of those modifications and the computational advantages they may confer are still debated. Here, we investigated how learning an orientation discrimination task alters the neuronal representations of the cues orientations in the primary visual cortex (V1) of male and female mice. When comparing the activity evoked by the task stimuli in naive mice and the mice performing the task, we found that the representations of the orientation of the rewarded and nonrewarded cues were more accurate and stable in trained mice. This better cue representation in trained mice was associated with a distortion of the orientation representation space such that stimuli flanking the task-relevant orientations were represented as the task stimuli themselves, suggesting that those stimuli were generalized as the task cues. This distortion was context dependent as it was absent in trained mice passively viewing the task cues and enhanced in the behavioral sessions where mice performed best. Those modifications of the V1 population orientation representation in performing mice were supported by a suppression of the activity of neurons tuned for orientations neighboring the orientations of the task cues. Thus, visual processing in V1 is dynamically adapted to enhance the reliability of the representation of the learned cues and favor generalization in the task-relevant computational space.SIGNIFICANCE STATEMENT Performance improvement in a task often requires facilitating the extraction of the information necessary to its execution. Here, we demonstrate the existence of a suppression mechanism that improves the representation of the orientations of the task stimuli in the V1 of mice performing an orientation discrimination task. We also show that this mechanism distorts the V1 orientation representation space, leading stimuli flanking the task stimuli orientations to be generalized as the task stimuli themselves.
Collapse
Affiliation(s)
- Julien Corbo
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, New Jersey 07102
| | - John P McClure
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, New Jersey 07102
- Behavioral and Neural Sciences Graduate Program, Rutgers University-Newark, Newark, New Jersey 07102
| | - O Batuhan Erkat
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, New Jersey 07102
- Behavioral and Neural Sciences Graduate Program, Rutgers University-Newark, Newark, New Jersey 07102
| | - Pierre-Olivier Polack
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, New Jersey 07102
| |
Collapse
|
39
|
Learning-related congruent and incongruent changes of excitation and inhibition in distinct cortical areas. PLoS Biol 2022; 20:e3001667. [PMID: 35639787 PMCID: PMC9187120 DOI: 10.1371/journal.pbio.3001667] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 06/10/2022] [Accepted: 05/10/2022] [Indexed: 12/20/2022] Open
Abstract
Excitatory and inhibitory neurons in diverse cortical regions are likely to contribute differentially to the transformation of sensory information into goal-directed motor plans. Here, we investigate the relative changes across mouse sensorimotor cortex in the activity of putative excitatory and inhibitory neurons—categorized as regular spiking (RS) or fast spiking (FS) according to their action potential (AP) waveform—comparing before and after learning of a whisker detection task with delayed licking as perceptual report. Surprisingly, we found that the whisker-evoked activity of RS versus FS neurons changed in opposite directions after learning in primary and secondary whisker motor cortices, while it changed similarly in primary and secondary orofacial motor cortices. Our results suggest that changes in the balance of excitation and inhibition in local circuits concurrent with changes in the long-range synaptic inputs in distinct cortical regions might contribute to performance of delayed sensory-to-motor transformation. A study of mouse sensorimotor cortex during a whisker detection task shows that learning of a goal-directed sensorimotor transformation is accompanied by differential changes in excitation and inhibition in distinct neocortical regions, helping to link sensory cortex and motor cortex for correct task performance.
Collapse
|
40
|
Kim YR, Kim SJ. Altered synaptic connections and inhibitory network of the primary somatosensory cortex in chronic pain. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2022; 26:69-75. [PMID: 35203057 PMCID: PMC8890942 DOI: 10.4196/kjpp.2022.26.2.69] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Chronic pain is induced by tissue or nerve damage and is accompanied by pain hypersensitivity (i.e., allodynia and hyperalgesia). Previous studies using in vivo two-photon microscopy have shown functional and structural changes in the primary somatosensory (S1) cortex at the cellular and synaptic levels in inflammatory and neuropathic chronic pain. Furthermore, alterations in local cortical circuits were revealed during the development of chronic pain. In this review, we summarize recent findings regarding functional and structural plastic changes of the S1 cortex and alteration of the S1 inhibitory network in chronic pain. Finally, we discuss potential neuromodulators driving modified cortical circuits and suggest further studies to understand the cortical mechanisms that induce pain hypersensitivity.
Collapse
Affiliation(s)
- Yoo Rim Kim
- Departments of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Sang Jeong Kim
- Departments of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea
- Departments of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
41
|
DiNuzzo M, Mangia S, Moraschi M, Mascali D, Hagberg GE, Giove F. Perception is associated with the brain's metabolic response to sensory stimulation. eLife 2022; 11:71016. [PMID: 35225790 PMCID: PMC9038191 DOI: 10.7554/elife.71016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
Processing of incoming sensory stimulation triggers an increase of cerebral perfusion and blood oxygenation (neurovascular response) as well as an alteration of the metabolic neurochemical profile (neurometabolic response). Here we show in human primary visual cortex (V1) that perceived and unperceived isoluminant chromatic flickering stimuli designed to have similar neurovascular responses as measured by blood oxygenation level dependent functional MRI (BOLD-fMRI) have markedly different neurometabolic responses as measured by functional MRS. In particular, a significant regional buildup of lactate, an index of aerobic glycolysis, and glutamate, an index of malate-aspartate shuttle, occurred in V1 only when the flickering was perceived, without any relation with behavioral or physiological variables. Whereas the BOLD-fMRI signal in V1, a proxy for input to V1, was insensitive to flickering perception by design, the BOLD-fMRI signal in secondary visual areas was larger during perceived than unperceived flickering, indicating increased output from V1. These results demonstrate that the upregulation of energy metabolism induced by visual stimulation depends on the type of information processing taking place in V1, and that 1H-fMRS provides unique information about local input/output balance that is not measured by BOLD fMRI.
Collapse
Affiliation(s)
- Mauro DiNuzzo
- Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Rome, Italy
| | - Silvia Mangia
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, United States
| | - Marta Moraschi
- Department of Radiation Oncology, University of Rome, Rome, Italy
| | - Daniele Mascali
- Dipartimento di Neuroscienze, Università Gabriele D'Annunzio, Chieti, Italy
| | - Gisela E Hagberg
- High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics and Biomedical Magnetic Resonance, Tübingen, Germany
| | - Federico Giove
- Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Rome, Italy
| |
Collapse
|
42
|
Lee C, Harkin EF, Yin X, Naud R, Chen S. Cell-type specific responses to associative learning in the primary motor cortex. eLife 2022; 11:72549. [PMID: 35113017 PMCID: PMC8856656 DOI: 10.7554/elife.72549] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 02/02/2022] [Indexed: 11/13/2022] Open
Abstract
The primary motor cortex (M1) is known to be a critical site for movement initiation and motor learning. Surprisingly, it has also been shown to possess reward-related activity, presumably to facilitate reward-based learning of new movements. However, whether reward-related signals are represented among different cell types in M1, and whether their response properties change after cue–reward conditioning remains unclear. Here, we performed longitudinal in vivo two-photon Ca2+ imaging to monitor the activity of different neuronal cell types in M1 while mice engaged in a classical conditioning task. Our results demonstrate that most of the major neuronal cell types in M1 showed robust but differential responses to both the conditioned cue stimulus (CS) and reward, and their response properties undergo cell-type-specific modifications after associative learning. PV-INs’ responses became more reliable to the CS, while VIP-INs’ responses became more reliable to reward. Pyramidal neurons only showed robust responses to novel reward, and they habituated to it after associative learning. Lastly, SOM-INs’ responses emerged and became more reliable to both the CS and reward after conditioning. These observations suggest that cue- and reward-related signals are preferentially represented among different neuronal cell types in M1, and the distinct modifications they undergo during associative learning could be essential in triggering different aspects of local circuit reorganization in M1 during reward-based motor skill learning.
Collapse
Affiliation(s)
- Candice Lee
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Emerson F Harkin
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Xuming Yin
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Richard Naud
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Simon Chen
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| |
Collapse
|
43
|
Luhmann HJ. Neurophysiology of the Developing Cerebral Cortex: What We Have Learned and What We Need to Know. Front Cell Neurosci 2022; 15:814012. [PMID: 35046777 PMCID: PMC8761895 DOI: 10.3389/fncel.2021.814012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/09/2021] [Indexed: 11/15/2022] Open
Abstract
This review article aims to give a brief summary on the novel technologies, the challenges, our current understanding, and the open questions in the field of the neurophysiology of the developing cerebral cortex in rodents. In the past, in vitro electrophysiological and calcium imaging studies on single neurons provided important insights into the function of cellular and subcellular mechanism during early postnatal development. In the past decade, neuronal activity in large cortical networks was recorded in pre- and neonatal rodents in vivo by the use of novel high-density multi-electrode arrays and genetically encoded calcium indicators. These studies demonstrated a surprisingly rich repertoire of spontaneous cortical and subcortical activity patterns, which are currently not completely understood in their functional roles in early development and their impact on cortical maturation. Technological progress in targeted genetic manipulations, optogenetics, and chemogenetics now allow the experimental manipulation of specific neuronal cell types to elucidate the function of early (transient) cortical circuits and their role in the generation of spontaneous and sensory evoked cortical activity patterns. Large-scale interactions between different cortical areas and subcortical regions, characterization of developmental shifts from synchronized to desynchronized activity patterns, identification of transient circuits and hub neurons, role of electrical activity in the control of glial cell differentiation and function are future key tasks to gain further insights into the neurophysiology of the developing cerebral cortex.
Collapse
Affiliation(s)
- Heiko J. Luhmann
- Institute of Physiology, University Medical Center Mainz, Mainz, Germany
| |
Collapse
|
44
|
Takado Y, Takuwa H, Sampei K, Urushihata T, Takahashi M, Shimojo M, Uchida S, Nitta N, Shibata S, Nagashima K, Ochi Y, Ono M, Maeda J, Tomita Y, Sahara N, Near J, Aoki I, Shibata K, Higuchi M. MRS-measured glutamate versus GABA reflects excitatory versus inhibitory neural activities in awake mice. J Cereb Blood Flow Metab 2022; 42:197-212. [PMID: 34515548 PMCID: PMC8721779 DOI: 10.1177/0271678x211045449] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
To assess if magnetic resonance spectroscopy (MRS)-measured Glutamate (Glu) and GABA reflect excitatory and inhibitory neural activities, respectively, we conducted MRS measurements along with two-photon mesoscopic imaging of calcium signals in excitatory and inhibitory neurons of living, unanesthetized mice. For monitoring stimulus-driven activations of a brain region, MRS signals and mesoscopic neural activities were measured during two consecutive sessions of 15-min prolonged sensory stimulations. In the first session, putative excitatory neuronal activities were increased, while inhibitory neuronal activities remained at the baseline level. In the second half, while excitatory neuronal activities remained elevated, inhibitory neuronal activities were significantly enhanced. We assessed regional neurochemical statuses by measuring MRS signals, which were overall in accordance with the neural activities, and neuronal activities and neurochemical statuses in a mouse model of Dravet syndrome under resting condition. Mesoscopic assessments showed that activities of inhibitory neurons in the cortex were diminished relative to wild-type mice in contrast to spared activities of excitatory neurons. Consistent with these observations, the Dravet model exhibited lower concentrations of GABA than wild-type controls. Collectively, the current investigations demonstrate that MRS-measured Glu and GABA can reflect spontaneous and stimulated activities of neurons producing and releasing these neurotransmitters in an awake condition.
Collapse
Affiliation(s)
- Yuhei Takado
- Department of Functional Brain Imaging, Institute of Quantum Medical Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
- Yuhei Takado, Department of Functional Brain Imaging, Institute of Quantum Medical Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan.
| | - Hiroyuki Takuwa
- Department of Functional Brain Imaging, Institute of Quantum Medical Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
- Hiroyuki Takuwa, Department of Functional Brain Imaging, Institute of Quantum Medical Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan.
| | - Kazuaki Sampei
- Department of Functional Brain Imaging, Institute of Quantum Medical Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Takuya Urushihata
- Department of Functional Brain Imaging, Institute of Quantum Medical Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Manami Takahashi
- Department of Functional Brain Imaging, Institute of Quantum Medical Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Masafumi Shimojo
- Department of Functional Brain Imaging, Institute of Quantum Medical Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Shoko Uchida
- Department of Functional Brain Imaging, Institute of Quantum Medical Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Nobuhiro Nitta
- Department of Molecular Imaging and Theranostics, Institute of Quantum Medical Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Sayaka Shibata
- Department of Molecular Imaging and Theranostics, Institute of Quantum Medical Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Keisuke Nagashima
- Kansai Photon Science Institute, National Institutes for Quantum and Radiological Science and Technology, Kyoto, Japan
| | - Yoshihiro Ochi
- Kansai Photon Science Institute, National Institutes for Quantum and Radiological Science and Technology, Kyoto, Japan
| | - Maiko Ono
- Department of Functional Brain Imaging, Institute of Quantum Medical Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Jun Maeda
- Department of Functional Brain Imaging, Institute of Quantum Medical Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Yutaka Tomita
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Naruhiko Sahara
- Department of Functional Brain Imaging, Institute of Quantum Medical Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Jamie Near
- Douglas Mental Health University Institute and Department of Psychiatry, McGill University, Montreal, Canada
| | - Ichio Aoki
- Department of Molecular Imaging and Theranostics, Institute of Quantum Medical Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Kazuhisa Shibata
- Department of Functional Brain Imaging, Institute of Quantum Medical Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
- Laboratory for Human Cognition and Learning, Center for Brain Science, RIKEN, Saitama, Japan
| | - Makoto Higuchi
- Department of Functional Brain Imaging, Institute of Quantum Medical Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
- Makoto Higuchi, Department of Functional Brain Imaging, Institute of Quantum Medical Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan.
| |
Collapse
|
45
|
Khateb M, Schiller J, Schiller Y. State-Dependent Synchrony and Functional Connectivity in the Primary and Secondary Whisker Somatosensory Cortices. Front Syst Neurosci 2021; 15:713397. [PMID: 34616281 PMCID: PMC8489558 DOI: 10.3389/fnsys.2021.713397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 08/16/2021] [Indexed: 12/04/2022] Open
Abstract
Synchronized activity plays an important role in sensory coding and memory and is a hallmark of functional network connectivity. However, the effect of sensory activation on synchronization and cortical functional connectivity is largely unknown. In this study, we investigated the effect of whisker activation on synchronization and functional connectivity of the primary (wS1) and secondary (wS2) whisker somatosensory cortices at the single-cell level. The results showed that during the spontaneous pre-stimulus state, neurons tended to be functionally connected with nearby neurons which shared similar tuning characteristics. Whisker activation using either ramp-and-hold stimulation or artificial whisking against sandpaper has significantly reduced the average overall pairwise synchronization and functional connectivity within the wS1 barrel and wS2 cortices. Whisker stimulation disconnected approximately a third of neuronal pairs that were functionally connected during the unstimulated state. Nearby neurons with congruent tuning properties were more likely to remain functionally connected during whisker activation. The findings of this study indicated that cortical somatosensory networks are organized in non-random small world networks composed of neurons sharing relatively similar tuning properties. Sensory whisker activation intensifies these properties and further subdivides the cortical network into smaller more functionally uniform subnetworks, which possibly serve to increase the computational capacity of the network.
Collapse
Affiliation(s)
- Mohamed Khateb
- The Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel.,Department of Neurology, Rambam Medical Center, Haifa, Israel
| | - Jackie Schiller
- The Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Yitzhak Schiller
- The Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel.,Department of Neurology, Rambam Medical Center, Haifa, Israel
| |
Collapse
|
46
|
Speed A, Haider B. Probing mechanisms of visual spatial attention in mice. Trends Neurosci 2021; 44:822-836. [PMID: 34446296 PMCID: PMC8484049 DOI: 10.1016/j.tins.2021.07.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/05/2021] [Accepted: 07/30/2021] [Indexed: 11/25/2022]
Abstract
The role of spatial attention for visual perception has been thoroughly studied in primates, but less so in mice. Several behavioral tasks in mice reveal spatial attentional effects, with similarities to observations in primates. Pairing these tasks with large-scale, cell-type-specific techniques could enable deeper access to underlying mechanisms, and help define the utility and limitations of resolving attentional effects on visual perception and neural activity in mice. In this Review, we evaluate behavioral and neural evidence for visual spatial attention in mice; assess how specializations of the mouse visual system and behavioral repertoire impact interpretation of spatial attentional effects; and outline how several measurement and manipulation techniques in mice could precisely test and refine models of attentional modulation across scales.
Collapse
Affiliation(s)
- Anderson Speed
- Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA
| | - Bilal Haider
- Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA.
| |
Collapse
|
47
|
Cholinergic modulation of sensory processing in awake mouse cortex. Sci Rep 2021; 11:17525. [PMID: 34471145 PMCID: PMC8410938 DOI: 10.1038/s41598-021-96696-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/09/2021] [Indexed: 11/08/2022] Open
Abstract
Cholinergic modulation of brain activity is fundamental for awareness and conscious sensorimotor behaviours, but deciphering the timing and significance of acetylcholine actions for these behaviours is challenging. The widespread nature of cholinergic projections to the cortex means that new insights require access to specific neuronal populations, and on a time-scale that matches behaviourally relevant cholinergic actions. Here, we use fast, voltage imaging of L2/3 cortical pyramidal neurons exclusively expressing the genetically-encoded voltage indicator Butterfly 1.2, in awake, head-fixed mice, receiving sensory stimulation, whilst manipulating the cholinergic system. Altering muscarinic acetylcholine function re-shaped sensory-evoked fast depolarisation and subsequent slow hyperpolarisation of L2/3 pyramidal neurons. A consequence of this re-shaping was disrupted adaptation of the sensory-evoked responses, suggesting a critical role for acetylcholine during sensory discrimination behaviour. Our findings provide new insights into how the cortex processes sensory information and how loss of acetylcholine, for example in Alzheimer's Disease, disrupts sensory behaviours.
Collapse
|
48
|
Goff KM, Goldberg EM. A Role for Vasoactive Intestinal Peptide Interneurons in Neurodevelopmental Disorders. Dev Neurosci 2021; 43:168-180. [PMID: 33794534 PMCID: PMC8440337 DOI: 10.1159/000515264] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/10/2021] [Indexed: 11/19/2022] Open
Abstract
GABAergic inhibitory interneurons of the cerebral cortex expressing vasoactive intestinal peptide (VIP-INs) are rapidly emerging as important regulators of network dynamics and normal circuit development. Several recent studies have also identified VIP-IN dysfunction in models of genetically determined neurodevelopmental disorders (NDDs). In this article, we review the known circuit functions of VIP-INs and how they may relate to accumulating evidence implicating VIP-INs in the mechanisms of prominent NDDs. We highlight recurring VIP-IN-mediated circuit motifs that are shared across cerebral cortical areas and how VIP-IN activity can shape sensory input, development, and behavior. Ultimately, we extract a set of themes that inform our understanding of how VIP-INs influence pathogenesis of NDDs. Using publicly available single-cell RNA sequencing data from the Allen Institute, we also identify several underexplored disease-associated genes that are highly expressed in VIP-INs. We survey these genes and their shared related disease phenotypes that may broadly implicate VIP-INs in autism spectrum disorder and intellectual disability rather than epileptic encephalopathy. Finally, we conclude with a discussion of the relevance of cell type-specific investigations and therapeutics in the age of genomic diagnosis and targeted therapeutics.
Collapse
Affiliation(s)
- Kevin M Goff
- Medical Scientist Training Program (MSTP), The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Neuroscience Graduate Group, The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Ethan M Goldberg
- Neuroscience Graduate Group, The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- The Epilepsy NeuroGenetics Initiative, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Departments of Neurology, The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Departments of Neuroscience, The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|