1
|
Status epilepticus induced Gadd45b is required for augmented dentate neurogenesis. Stem Cell Res 2020; 49:102102. [PMID: 33279798 DOI: 10.1016/j.scr.2020.102102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/11/2020] [Accepted: 11/23/2020] [Indexed: 11/20/2022] Open
Abstract
In animal models with temporal lobe epilepsy (TLE), the status epilepticus (SE) leads to a dramatic increase in number of newly born neuron in the subgranular zone (SGZ) of dentate gyrus. How the SE confers a modulation in the dentate neurogenesis is mostly unknown. Gadd45b is involved in epigenetic gene activation by DNA demethylation. This study was performed to present a novel mechanism underling SE-induced dentate neurogenesis. A transient induction (12 hrs to 3 days) of Gadd45b was observed in dentate gyrus of mice after pilocarpine-induced SE. Labeling the dividing cells with BrdU, we next found that the induction of Gadd45b was required to increase the rate of cell proliferation in the dentate gyrus at 7 and 14 days after SE. Afterward, the DNA methylation levels for candidate growth factor genes critical for the adult neurogenesis were assayed with Sequenom MassARRAY Analyzer. The results indicated that Gadd45b was necessary for SE-induced DNA demethylation of specific promoters and expression of corresponding genes in the dentate gyrus, including brain-derived neurotrophic factor (BDNF) and fibroblast growth factor-2 (FGF-2). Using Timm staining, we further suggested that SE-induced Gadd45b might contribute to the subsequent mossy fiber sprouting (MFS) in the chronically epileptic hippocampus via epigenetic regulation of dentate neurogenesis at early stage after SE. Together, Gadd45b links pilocarpine-induced SE to epigenetic DNA modification of secreted factors in the dentate gyrus, leading to extrinsic modulation on the neurogenesis.
Collapse
|
2
|
Amtul Z, Najdat AN, Hill DJ, Arany EJ. Differential temporal and spatial post-injury alterations in cerebral cell morphology and viability. J Comp Neurol 2020; 529:421-433. [PMID: 32447764 DOI: 10.1002/cne.24955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 05/04/2020] [Accepted: 05/15/2020] [Indexed: 01/05/2023]
Abstract
Combination of ischemia and β-amyloid (Aβ) toxicity has been shown to simultaneously increase neuro-inflammation, endogenous Aβ deposition, and neurodegeneration. However, studies on the evolution of infarct and panorama of cellular degeneration as a synergistic or overlapping mechanism between ischemia and Aβ toxicity are lacking. Here, we compared fluorojade B (FJB) and hematoxylin and eosin (H&E) stains primarily to examine the chronology of infarct, and the viability and morphological changes in neuroglia and neurons located in different brain regions on d1, d7, and d28 post Aβ toxicity and endothelin-1 induced ischemia (ET1) in rats. We demonstrated a regional difference in cellular degeneration between cortex, corpus callosum, striatum, globus pallidus, and thalamus after cerebral injury. Glial cells in the cortex and corpus callosum underwent delayed FJB staining from d7 to d28, but neurons in cortex disappeared within the first week of cerebral injury. Striatal lesion core and globus pallidus of Aβ + ET1 rats showed extensive degeneration of neuronal cells compared with ET1 rats alone starting from d1. Differential and exacerbated expressions of cyclooxygenase-2 might be the cause of excessive neuronal demise in the striatum of Aβ + ET1 rats. Such an investigation may improve our understanding to identify and manipulate a critical therapeutic window post comorbid injury.
Collapse
Affiliation(s)
- Zareen Amtul
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Canada
| | - Abdullah N Najdat
- Department of Biology, University of Western Ontario, London, Canada
| | - David J Hill
- Departments of Medicine, Physiology, and Pharmacology, and Pediatrics, University of Western Ontario, London, Canada.,Lawson Health Research Institute, London, Ontario, Canada
| | - Edith J Arany
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, Canada
| |
Collapse
|
3
|
Kalinina A, Maletta T, Carr J, Lehmann H, Fournier NM. Spatial exploration induced expression of immediate early genes Fos and Zif268 in adult-born neurons Is reduced after pentylenetetrazole kindling. Brain Res Bull 2019; 152:74-84. [PMID: 31279580 DOI: 10.1016/j.brainresbull.2019.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 07/02/2019] [Accepted: 07/02/2019] [Indexed: 01/05/2023]
Abstract
Seizure activity stimulates adult neurogenesis, the birth of new neurons, in the hippocampus. Many new neurons that develop in the presence of repeatedly induced seizures acquire abnormal morphological and functional characteristics that can promote network hyperexcitability and hippocampal dysfunction. However, the impact of seizure induced neurogenesis on behaviour remains poorly understood. In this study, we investigated whether adult-born neurons generated immediately before and during chronic seizures were capable of integration into behaviorally relevant hippocampal networks. Adult rats underwent pentylenetetrazole (PTZ) kindling for either 1 or 2 weeks. Proliferating cells were labelled with BrdU immediately before kindling commenced. Twenty-four hours after receiving their last kindling treatment, rats were placed in a novel environment and allowed to freely explore for 30 min. The rats were euthanized 90 min later to examine for behaviourally-induced immediate early gene expression (c-fos, Zif268). Using this approach, we found that PTZ kindled rats did not differ from control rats in regards to exploratory behaviour, but there was a marked attenuation in behaviour-induced expression of Fos and Zif268 for rats that received 2 weeks of PTZ kindling. Further examination revealed that PTZ kindled rats showed reduced colocalization of Fos and Zif268 in 2.5 week old BrdU + cells. The proportion of immature granule cells (doublecortin-positive) expressing behaviorally induced Zif268 was also significantly lower for PTZ kindled rats than control rats. These results suggest that chronic seizures can potentially disrupt the ability of adult-born cells to functionally integrate into hippocampal circuits important for the processing of spatial information.
Collapse
Affiliation(s)
- Alena Kalinina
- Department of Psychology, Trent University, Peterborough, ON K9J 7B8, Canada
| | - Teresa Maletta
- Department of Psychology, Trent University, Peterborough, ON K9J 7B8, Canada
| | - Joshua Carr
- Department of Psychology, Trent University, Peterborough, ON K9J 7B8, Canada
| | - Hugo Lehmann
- Department of Psychology, Trent University, Peterborough, ON K9J 7B8, Canada
| | - Neil M Fournier
- Department of Psychology, Trent University, Peterborough, ON K9J 7B8, Canada.
| |
Collapse
|
4
|
Chen YC, Shi L, Zhu GY, Wang X, Liu DF, Liu YY, Jiang Y, Zhang X, Zhang JG. Effects of anterior thalamic nuclei deep brain stimulation on neurogenesis in epileptic and healthy rats. Brain Res 2017; 1672:65-72. [PMID: 28764934 DOI: 10.1016/j.brainres.2017.07.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/23/2017] [Accepted: 07/24/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND The efficacy of anterior thalamic nuclei (ANT) deep brain stimulation (DBS) in mitigating epileptic seizures has been established. Though the neuroprotection of ANT-DBS has been illustrated, the seizure mitigating mechanism of ANT-DBS has not been thoroughly elucidated. In particular, the effect of ANT-DBS on neurogenesis has not been reported previously. METHOD Thirty-two male Sprague Dawley rats were randomly assigned to the following groups: sham-DBS-healthy (HL) (n=8), DBS-HL (n=8), sham-DBS-epilepsy (EP) (n=8) and DBS-EP (n=8). Normal saline and kainic acid were injected, respectively, into the former and later two groups, and seizures were monitored. One month later, rats received electrode implantation. Stimulation was exerted in the DBS group but not in the sham-DBS group. Next, all rats were sacrificed, and the ipsilateral hippocampus was dissected and prepared for quantitative real time PCR (qPCR) and western blot analysis in order to measure neuronal nuclear (NeuN), brain-derived neurotrophic factor (BDNF), doublecortin (DCX) and Ki-67 expressions. RESULTS A 44.4% seizure frequency reduction was obtained after ANT-DBS, and no seizures was observed in healthy rats. NeuN, BDNF, Ki-67 and DCX expression levels were significantly decreased in the epileptic rats compared to healthy rats (P<0.01 or P<0.05). Obvious increases in NeuN, Ki-67 and DCX expressions were observed in epileptic and healthy rats receiving stimulation compared to rats receiving no stimulation (all Ps<0.01). However, BDNF expression was not affected by ANT-DBS (all Ps>0.05). CONCLUSIONS (1) ANT-DBS reduces neuronal loss during the chronic stage of epilepsy. (2) Neurogenesis is elevated by ANT-DBS in both epileptic and healthy rats, and this elevation may not be regulated via a BDNF pathway.
Collapse
Affiliation(s)
- Ying-Chuan Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China.
| | - Lin Shi
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China.
| | - Guan-Yu Zhu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China.
| | - Xiu Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China.
| | - De-Feng Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China.
| | - Yu-Ye Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China.
| | - Yin Jiang
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, China.
| | - Xin Zhang
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, China.
| | - Jian-Guo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China; Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, China; Beijing Key Laboratory of Neurostimulation, Beijing 100050, China.
| |
Collapse
|
5
|
Friedman LK, Sharma A, Corcia M, Webster T, Qazi L, Simsovits D, Khalil Y, Hu S, Kantrowitz M, Hong H. Selective inhibition of metabotropic glutamate type 1 alpha receptor (mGluR1α) reduces cell proliferation and migration following status epilepticus in early development. Int J Dev Neurosci 2016; 54:6-21. [PMID: 27530811 DOI: 10.1016/j.ijdevneu.2016.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 08/09/2016] [Accepted: 08/11/2016] [Indexed: 12/16/2022] Open
Abstract
The present study examined whether a single or multiple episode(s) of status epilepticus induced with kainic acid (KA) during the first 3 weeks of postnatal (P) development would aberrantly stimulate proliferation zones that alters migration to potentially injured areas and whether they would be blocked by selective Group I mGluR antagonists. mGluR1α (LY367385) and mGluR5 (MPEP) antagonists were administered 2h following KA-induced status epilepticus and animals were examined after 7days. Proliferating cells of the subventricular zone (SVZ), third ventricle, hippocampus, amygdala cortical complex were analyzed with the proliferative marker, Ki67; and two complementary retrograde dye tracers. Proliferation increased in extrahippocampal limbic structures when KA was administered on P13 or P20 which correlated with number of injured cells at the older age. LY367385 post-treatment caused striking decreases in proliferation in all limbic structures in the presence and absence of injury, whereas a reduction with MPEP was observed only within the amygdala cortical complex (Amg/ERcx) in the presence of multiple seizures (3×KA). After 3×KA and LY367385 post-treatments, diminished co-staining of dye tracers with Ki67 was observed within the Amg/ERcx despite high levels of progenitors marked by the retrograde tracers in this region. This indicates that not only was local proliferation within the SVZ and distant structures inhibited, but also that migration itself was reduced indirectly since there were less cells to migrate from the SVZ. Co-labeling with biomarkers provided evidence for neuronal differentiation suggesting potential aberrant integration may occur in distant locations, and that targeting of mGluR1α receptors may be a potential therapeutic strategy for future development.
Collapse
Affiliation(s)
- L K Friedman
- New York Medical College, Valhalla, NY, United States; New York College of Osteopathic Medicine, Old Westbury, NY, United States.
| | - A Sharma
- New York College of Osteopathic Medicine, Old Westbury, NY, United States
| | - M Corcia
- New York College of Osteopathic Medicine, Old Westbury, NY, United States
| | - T Webster
- New York College of Osteopathic Medicine, Old Westbury, NY, United States
| | - L Qazi
- New York College of Osteopathic Medicine, Old Westbury, NY, United States
| | - D Simsovits
- New York College of Osteopathic Medicine, Old Westbury, NY, United States
| | - Y Khalil
- New York College of Osteopathic Medicine, Old Westbury, NY, United States
| | - S Hu
- New York Medical College, Valhalla, NY, United States
| | - M Kantrowitz
- New York College of Osteopathic Medicine, Old Westbury, NY, United States
| | - H Hong
- New York College of Osteopathic Medicine, Old Westbury, NY, United States
| |
Collapse
|
6
|
Chen SD, Wang YL, Liang SF, Shaw FZ. Rapid Amygdala Kindling Causes Motor Seizure and Comorbidity of Anxiety- and Depression-Like Behaviors in Rats. Front Behav Neurosci 2016; 10:129. [PMID: 27445726 PMCID: PMC4916743 DOI: 10.3389/fnbeh.2016.00129] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 06/08/2016] [Indexed: 11/30/2022] Open
Abstract
Amygdala kindling is a model of temporal lobe epilepsy (TLE) with convulsion. The rapid amygdala kindling has an advantage on quick development of motor seizures and for antiepileptic drugs screening. The rapid amygdala kindling causes epileptogenesis accompanied by an anxiolytic response in early isolation of rat pups or depressive behavior in immature rats. However, the effect of rapid amygdala kindling on comorbidity of anxiety- and depression-like behaviors is unexplored in adult rats with normal breeding. In the present study, 40 amygdala stimulations given within 2 days were applied in adult Wistar rats. Afterdischarge (AD) and seizure stage were recorded throughout the amygdala kindling. Anxiety-like behaviors were evaluated by the elevated plus maze (EPM) test and open field (OF) test, whereas depression-like behaviors were assessed by the forced swim (FS) and sucrose consumption (SC) tests. A tonic-clonic convulsion was provoked in the kindle group. Rapid amygdala kindling resulted in a significantly lower frequency entering an open area of either open arms of the EPM or the central zone of an OF, lower sucrose intake, and longer immobility of the FS test in the kindle group. Our results suggest that rapid amygdala kindling elicited severe motor seizures comorbid with anxiety- and depression-like behaviors.
Collapse
Affiliation(s)
- Shang-Der Chen
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of MedicineKaohsiung, Taiwan; Center for Translational Research in Biomedical Science, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of MedicineKaohsiung, Taiwan
| | - Yu-Lin Wang
- Department of Computer Science and Information Engineering, National Cheng Kung University Tainan, Taiwan
| | - Sheng-Fu Liang
- Department of Computer Science and Information Engineering, National Cheng Kung UniversityTainan, Taiwan; Institute of Medical Informatics, National Cheng Kung UniversityTainan, Taiwan
| | - Fu-Zen Shaw
- Department of Psychology, National Cheng Kung University Tainan, Taiwan
| |
Collapse
|
7
|
|
8
|
Effects of neonatal hypoxic-ischemic episodes on late seizure outcomes in C57 black mice. Epilepsy Res 2015; 111:142-9. [PMID: 25769378 DOI: 10.1016/j.eplepsyres.2015.01.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 01/07/2015] [Accepted: 01/23/2015] [Indexed: 12/17/2022]
Abstract
We examined brain injury and seizures in adult C57 black mice (C57/BL6) that underwent neonatal hypoxic-ischemic (HI) episodes. Mouse pups of 7 days-old underwent a ligation of the right common carotid artery and a subsequent hypoxic challenge (8% O2 for 45min). Post-HI mice were implanted with intracranial electrodes at 2-3 months of age, subjected to behavioral/EEG recordings and hippocampal electrical stimulation in next several months and then euthanized for brain histological assessments at ages of 11-12 months. Histological assessment revealed ipsilateral brain infarctions in 9 post-HI animals. Evident motor seizures were found to occur in only 2 animals with histologically identified cystic infarctions but not in the 21 post-HI animals with or without infarctions. In response to the hippocampal stimulation, post-HI animals were less prone than sham controls to evoked motor seizures. We thus suggest that adult C57 black mice may have low propensity of developing epileptic seizures following the neonatal HI episode. Our present observations may be relevant to future investigation of post-HI epileptogenesis in mouse models.
Collapse
|
9
|
Quadrato G, Elnaggar MY, Di Giovanni S. Adult neurogenesis in brain repair: cellular plasticity vs. cellular replacement. Front Neurosci 2014; 8:17. [PMID: 24574955 PMCID: PMC3921569 DOI: 10.3389/fnins.2014.00017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 01/22/2014] [Indexed: 01/19/2023] Open
Affiliation(s)
- Giorgia Quadrato
- Laboratory for NeuroRegeneration and Repair, Center for Neurology, Hertie Institute for Clinical Brain Research, University of Tuebingen Tuebingen, Germany
| | - Mohamed Y Elnaggar
- Laboratory for NeuroRegeneration and Repair, Center for Neurology, Hertie Institute for Clinical Brain Research, University of Tuebingen Tuebingen, Germany ; Graduate School for Cellular and Molecular Neuroscience, University of Tuebingen Tuebingen, Germany
| | - Simone Di Giovanni
- Laboratory for NeuroRegeneration and Repair, Center for Neurology, Hertie Institute for Clinical Brain Research, University of Tuebingen Tuebingen, Germany ; Molecular Neuroregeneration, Division of Brain Sciences, Department of Medicine, Imperial College London London, UK
| |
Collapse
|
10
|
Curia G, Lucchi C, Vinet J, Gualtieri F, Marinelli C, Torsello A, Costantino L, Biagini G. Pathophysiogenesis of mesial temporal lobe epilepsy: is prevention of damage antiepileptogenic? Curr Med Chem 2014; 21:663-88. [PMID: 24251566 PMCID: PMC4101766 DOI: 10.2174/0929867320666131119152201] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 07/04/2013] [Accepted: 08/29/2013] [Indexed: 12/26/2022]
Abstract
Temporal lobe epilepsy (TLE) is frequently associated with hippocampal sclerosis, possibly caused by a primary brain injury that occurred a long time before the appearance of neurological symptoms. This type of epilepsy is characterized by refractoriness to drug treatment, so to require surgical resection of mesial temporal regions involved in seizure onset. Even this last therapeutic approach may fail in giving relief to patients. Although prevention of hippocampal damage and epileptogenesis after a primary event could be a key innovative approach to TLE, the lack of clear data on the pathophysiological mechanisms leading to TLE does not allow any rational therapy. Here we address the current knowledge on mechanisms supposed to be involved in epileptogenesis, as well as on the possible innovative treatments that may lead to a preventive approach. Besides loss of principal neurons and of specific interneurons, network rearrangement caused by axonal sprouting and neurogenesis are well known phenomena that are integrated by changes in receptor and channel functioning and modifications in other cellular components. In particular, a growing body of evidence from the study of animal models suggests that disruption of vascular and astrocytic components of the blood-brain barrier takes place in injured brain regions such as the hippocampus and piriform cortex. These events may be counteracted by drugs able to prevent damage to the vascular component, as in the case of the growth hormone secretagogue ghrelin and its analogues. A thoroughly investigation on these new pharmacological tools may lead to design effective preventive therapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - G Biagini
- Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze, Laboratorio di Epilettologia Sperimentale, Universita di Modena e Reggio Emilia, Via Campi, 287, 41125 Modena, Italy.
| |
Collapse
|
11
|
Jiruska P, Shtaya AB, Bodansky DM, Chang WC, Gray WP, Jefferys JG. Dentate gyrus progenitor cell proliferation after the onset of spontaneous seizures in the tetanus toxin model of temporal lobe epilepsy. Neurobiol Dis 2013; 54:492-8. [PMID: 23439313 PMCID: PMC3635088 DOI: 10.1016/j.nbd.2013.02.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 01/18/2013] [Accepted: 02/06/2013] [Indexed: 12/20/2022] Open
Abstract
Temporal lobe epilepsy alters adult neurogenesis. Existing experimental evidence is mainly from chronic models induced by an initial prolonged status epilepticus associated with substantial cell death. In these models, neurogenesis increases after status epilepticus. To test whether status epilepticus is necessary for this increase, we examined precursor cell proliferation and neurogenesis after the onset of spontaneous seizures in a model of temporal lobe epilepsy induced by unilateral intrahippocampal injection of tetanus toxin, which does not cause status or, in most cases, detectable neuronal loss. We found a 4.5 times increase in BrdU labeling (estimating precursor cells proliferating during the 2nd week after injection of toxin and surviving at least up to 7days) in dentate gyri of both injected and contralateral hippocampi of epileptic rats. Radiotelemetry revealed that the rats experienced 112±24 seizures, lasting 88±11s each, over a period of 8.6±1.3days from the first electrographic seizure. On the first day of seizures, their duration was a median of 103s, and the median interictal period was 23min, confirming the absence of experimentally defined status epilepticus. The total increase in cell proliferation/survival was due to significant population expansions of: radial glial-like precursor cells (type I; 7.2×), non-radial type II/III neural precursors in the dentate gyrus stem cell niche (5.6×), and doublecortin-expressing neuroblasts (5.1×). We conclude that repeated spontaneous brief temporal lobe seizures are sufficient to promote increased hippocampal neurogenesis in the absence of status epilepticus.
Collapse
Affiliation(s)
- Premysl Jiruska
- Neuronal Networks Group, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham B15 2TT, UK
- Department of Developmental Epileptology, Institute of Physiology, Academy of Sciences of Czech Republic, Prague, CZ-14220, Czech Republic
- Department of Neurology, Charles University, 2nd School of Medicine, University Hospital Motol, Prague, CZ-15006, Czech Republic
| | - Anan B.Y. Shtaya
- Wessex Neurological Centre, Southampton University Hospital Trust, Southampton, SO16 6YD, UK
- School of Medicine (Clinical Neurosciences), Faculty of Medicine, Health and Life Sciences, University of Southampton, Southampton, SO16 6YD, UK
| | - David M.S. Bodansky
- Neuronal Networks Group, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham B15 2TT, UK
| | - Wei-Chih Chang
- Neuronal Networks Group, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham B15 2TT, UK
| | - William P. Gray
- School of Medicine (Clinical Neurosciences), Faculty of Medicine, Health and Life Sciences, University of Southampton, Southampton, SO16 6YD, UK
- National Institute of Neuroscience and Mental Health Research, LGF — Henry Wellcome Building, Heath Park, Cardiff, CF14 4XN, UK
| | - John G.R. Jefferys
- Neuronal Networks Group, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
12
|
Aniol VA, Stepanichev MY, Lazareva NA, Gulyaeva NV. An early decrease in cell proliferation after pentylenetetrazole-induced seizures. Epilepsy Behav 2011; 22:433-41. [PMID: 21907628 DOI: 10.1016/j.yebeh.2011.08.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2011] [Revised: 07/28/2011] [Accepted: 08/01/2011] [Indexed: 01/17/2023]
Abstract
There are increasing data on the influence of seizures on neurogenesis in the adult brain. However, data on cell proliferation and differentiation during the early stages of kindling are scarce. We have used pentylenetetrazole (PTZ)-induced kindling to investigate the temporal profile of cytogenesis in the germinative zones of adult rat brain. For comparison, we also used a single PTZ-induced generalized tonic-clonic seizure. During kindling development, the density of 5-bromo-2'-deoxyuridine-positive cells demonstrated similar changes in all germinative zones: a dramatic decrease after the first subthreshold PTZ injection, and a gradual increase to the control level following repeated PTZ administration. On the contrary, a single PTZ-induced generalized tonic-clonic seizure was followed by an increase in the number of proliferating cells in both the dentate gyrus and the subventricular zone. These results may indicate the existence of global mechanisms affecting cellular proliferation in adult brain during seizures. Different temporal profiles of neuronal damage and proliferation changes suggest that neurodegeneration is unlikely to be a global proliferation-regulating factor. The data may contribute to better understanding of the initial phase of kindling development and epileptogenesis.
Collapse
Affiliation(s)
- V A Aniol
- Department of Functional Biochemistry of Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | | | | | | |
Collapse
|
13
|
Role of Endoplasmic Reticulum Stress in the Amygdaloid Kindling Model of Rats. Neurochem Res 2011; 36:1834-9. [DOI: 10.1007/s11064-011-0501-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2011] [Indexed: 10/18/2022]
|
14
|
|
15
|
Early hippocampal oxidative stress is a direct consequence of seizures in the rapid electrical amygdala kindling model. Epilepsy Res 2010; 90:285-94. [DOI: 10.1016/j.eplepsyres.2010.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 05/18/2010] [Accepted: 06/10/2010] [Indexed: 11/23/2022]
|
16
|
Wong-Goodrich SJE, Glenn MJ, Mellott TJ, Liu YB, Blusztajn JK, Williams CL. Water maze experience and prenatal choline supplementation differentially promote long-term hippocampal recovery from seizures in adulthood. Hippocampus 2010; 21:584-608. [PMID: 20232399 DOI: 10.1002/hipo.20783] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2010] [Indexed: 12/16/2022]
Abstract
Status epilepticus (SE) in adulthood dramatically alters the hippocampus and produces spatial learning and memory deficits. Some factors, like environmental enrichment and exercise, may promote functional recovery from SE. Prenatal choline supplementation (SUP) also protects against spatial memory deficits observed shortly after SE in adulthood, and we have previously reported that SUP attenuates the neuropathological response to SE in the adult hippocampus just 16 days after SE. It is unknown whether SUP can ameliorate longer-term cognitive and neuropathological consequences of SE, whether repeatedly engaging the injured hippocampus in a cognitive task might facilitate recovery from SE, and whether our prophylactic prenatal dietary treatment would enable the injured hippocampus to more effectively benefit from cognitive rehabilitation. To address these issues, adult offspring from rat dams that received either a control (CON) or SUP diet on embryonic days 12-17 first received training on a place learning water maze task (WM) and were then administered saline or kainic acid (KA) to induce SE. Rats then either remained in their home cage, or received three additional WM sessions at 3, 6.5, and 10 weeks after SE to test spatial learning and memory retention. Eleven weeks after SE, the brains were analyzed for several hippocampal markers known to be altered by SE. SUP attenuated SE-induced spatial learning deficits and completely rescued spatial memory retention by 10 weeks post-SE. Repeated WM experience prevented SE-induced declines in glutamic acid decarboxylase (GAD) and dentate gyrus neurogenesis, and attenuated increased glial fibrilary acidic protein (GFAP) levels. Remarkably, SUP alone was similarly protective to an even greater extent, and SUP rats that were water maze trained after SE showed reduced hilar migration of newborn neurons. These findings suggest that prophylactic SUP is protective against the long-term cognitive and neuropathological effects of KA-induced SE, and that rehabilitative cognitive enrichment may be partially beneficial.
Collapse
|
17
|
Benice TS, Raber J. Castration and training in a spatial task alter the number of immature neurons in the hippocampus of male mice. Brain Res 2010; 1329:21-9. [PMID: 20233585 DOI: 10.1016/j.brainres.2010.03.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 02/26/2010] [Accepted: 03/06/2010] [Indexed: 11/18/2022]
Abstract
New neurons are generated in the granule cell layer of the dentate gyrus (GCL) throughout adulthood. This process is modulated by many environmental and neurochemical factors. We previously observed that castrated mice, compared to sham-operated mice, perform poorly in the delayed matching to place water-maze task (DMTP). In this study, we quantified the number of doublecortin expressing (DCX+) immature neurons and Ki-67 expressing (Ki-67+) proliferating progenitors in mice previously tested in a spatial DMTP task, a nonspatial DMTP, or that received equivalent amounts of handling only. Regardless of DMTP training experience, castration reduced immature neuron number in the GCL but had no effect on proliferating progenitors. Compared to handling only, visible DMTP training reduced the immature neuron number, but hidden DMTP training had no effect. Castration did not alter these environmental effects. Finally, performance on the spatial DMTP task did not correlate with immature neuron number. In addition, while the number of immature neurons was strongly reduced following cranial irradiation with (137)Cs, this treatment did not affect spatial DMTP performance. Thus, in mice, castration disrupts spatial memory and reduces immature neuron number, but there is no strong link between these effects.
Collapse
Affiliation(s)
- Ted S Benice
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA
| | | |
Collapse
|
18
|
Castro JE, Varea E, Márquez C, Cordero MI, Poirier G, Sandi C. Role of the amygdala in antidepressant effects on hippocampal cell proliferation and survival and on depression-like behavior in the rat. PLoS One 2010; 5:e8618. [PMID: 20062812 PMCID: PMC2799663 DOI: 10.1371/journal.pone.0008618] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Accepted: 12/13/2009] [Indexed: 11/19/2022] Open
Abstract
The stimulation of adult hippocampal neurogenesis by antidepressants has been associated with multiple molecular pathways, but the potential influence exerted by other brain areas has received much less attention. The basolateral complex of the amygdala (BLA), a region involved in anxiety and a site of action of antidepressants, has been implicated in both basal and stress-induced changes in neural plasticity in the dentate gyrus. We investigated here whether the BLA modulates the effects of the SSRI antidepressant fluoxetine on hippocampal cell proliferation and survival in relation to a behavioral index of depression-like behavior (forced swim test). We used a lesion approach targeting the BLA along with a chronic treatment with fluoxetine, and monitored basal anxiety levels given the important role of this behavioral trait in the progress of depression. Chronic fluoxetine treatment had a positive effect on hippocampal cell survival only when the BLA was lesioned. Anxiety was related to hippocampal cell survival in opposite ways in sham- and BLA-lesioned animals (i.e., negatively in sham- and positively in BLA-lesioned animals). Both BLA lesions and low anxiety were critical factors to enable a negative relationship between cell proliferation and depression-like behavior. Therefore, our study highlights a role for the amygdala on fluoxetine-stimulated cell survival and on the establishment of a link between cell proliferation and depression-like behavior. It also reveals an important modulatory role for anxiety on cell proliferation involving both BLA-dependent and -independent mechanisms. Our findings underscore the amygdala as a potential target to modulate antidepressants' action in hippocampal neurogenesis and in their link to depression-like behaviors.
Collapse
Affiliation(s)
- Jorge E. Castro
- Laboratory of Behavioral Genetics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Emilio Varea
- Laboratory of Behavioral Genetics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Cristina Márquez
- Laboratory of Behavioral Genetics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Maria Isabel Cordero
- Laboratory of Behavioral Genetics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Guillaume Poirier
- Laboratory of Behavioral Genetics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Carmen Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
19
|
Wang YY, Smith P, Murphy M, Cook M. Global expression profiling in epileptogenesis: does it add to the confusion? Brain Pathol 2010; 20:1-16. [PMID: 19243383 PMCID: PMC2805866 DOI: 10.1111/j.1750-3639.2008.00254.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Revised: 10/23/2008] [Accepted: 10/28/2008] [Indexed: 12/14/2022] Open
Abstract
Since the inception of global gene expression profiling platforms in the mid-1990s, there has been a significant increase in publications of differentially expressed genes in the process of epileptogenesis. In particular for mesial temporal lobe epilepsy, the presence of a latency period between the first manifestation of seizures to chronic epilepsy provides the opportunity for therapeutic interventions at the molecular biology level. Using global expression profiling techniques, approximately 2000 genes have been published demonstrating differential expression in mesial temporal epilepsy. The majority of these changes, however, are specific to laboratory or experimental conditions with only 53 genes demonstrating changes in more than two publications. To this end, we review the current status of gene expression profiling in epileptogenesis and suggest standard guidelines to be followed for greater accuracy and reproducibility of results.
Collapse
Affiliation(s)
- Yi Yuen Wang
- Centre for Clinical Neuroscience and Neurological Research, St Vincent's Hospital, Melbourne, Australia.
| | | | | | | |
Collapse
|
20
|
Kraev IV, Godukhin OV, Patrushev IV, Davies HA, Popov VI, Stewart MG. Partial kindling induces neurogenesis, activates astrocytes and alters synaptic morphology in the dentate gyrus of freely moving adult rats. Neuroscience 2009; 162:254-67. [PMID: 19447163 DOI: 10.1016/j.neuroscience.2009.05.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 04/30/2009] [Accepted: 05/10/2009] [Indexed: 12/01/2022]
Abstract
A partial kindling procedure was used to investigate the correlation between focal seizure development and changes in dendritic spine morphology, ongoing neurogenesis and reactive astrogliosis in the adult rat dentate gyrus (DG). The processes of neurogenesis and astrogliosis were investigated using markers for doublecortin (DCX), 5-bromo-2-deoxyuridine (BrdU) and glial fibrillary acidic protein (GFAP). Our data demonstrate that mild focal seizures induce a complex series of cellular events in the DG one day after cessation of partial rapid kindling stimulation consisting (in comparison to control animals that were electrode implanted but unkindled), firstly, of an increase in the number of postmitotic BrdU labeled cells, and secondly, an increase in the number of DCX labeled cells, mainly in subgranular zone. Ultrastructural changes were examined using qualitative electron microscope analysis and 3-D reconstructions of both dendritic spines and postsynaptic densities. Typical features of kindling in comparison to control tissue included translocation of mitochondria to the base of the dendritic spine stalks; a migration of multivesicular bodies into mushroom dendritic spines, and most notably formation of "giant" spinules originating from the head of the spines of DG neurons. These morphological alterations arise at seizure stages 2-3 (focal seizures) in the absence of signs of the severe generalized seizures that are generally recognized as potentially harmful for neuronal cells. We suggest that an increase in ongoing neurogenesis, reactive astrogliosis and dendritic spine reorganization in the DG is the crucial step in the chain of events leading to the progressive development of seizure susceptibility in hippocampal circuits.
Collapse
Affiliation(s)
- I V Kraev
- Department of Life Sciences, Faculty of Science, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK
| | | | | | | | | | | |
Collapse
|
21
|
Yang F, Wang JC, Han JL, Zhao G, Jiang W. Different effects of mild and severe seizures on hippocampal neurogenesis in adult rats. Hippocampus 2008; 18:460-8. [PMID: 18240317 DOI: 10.1002/hipo.20409] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Recent evidence shows that functional neurogenesis exists in the adult hippocampus and that epileptic seizures can increase neurogenesis in the dentate gyrus (DG). However, it is unknown whether different seizure severity has different effects on neurogenesis in the DG of adult rats. In this study, we examined hippocampal neurogenesis in the rat mild and severe seizure preparations characterized with frequent wet dog shakes and severe status epilepticus, respectively. Both mild and severe seizures promoted the mitotic activity in the DG, but severe seizures caused a stronger cell proliferative response than mild seizures. Less than 20% of newborn cells in the DG differentiated into neurons in rats suffering severe seizures, whereas more than 60% of newborn dentate cells differentiated into neurons in control and mild seizure groups. Most newborn neurons migrated into the granular cell layer in control and mild seizure groups, but severe seizures were associated with an aberrant migration of newborn neurons into the dentate hilus. Severe seizures induced astrocyte activation and the expression of nestin and the migration directional molecules netrin 1 and Sema-3A in the hilus, which were not present in the hilus of control and mild seizure-attacked rats, suggesting that these molecules are involved in the aberrant migration of newborn neurons.
Collapse
Affiliation(s)
- Fang Yang
- Department of Neurology, Xijing Hospital, The Fourth Military Medical University, China
| | | | | | | | | |
Collapse
|
22
|
Wong-Goodrich SJE, Mellott TJ, Glenn MJ, Blusztajn JK, Williams CL. Prenatal choline supplementation attenuates neuropathological response to status epilepticus in the adult rat hippocampus. Neurobiol Dis 2008; 30:255-69. [PMID: 18353663 DOI: 10.1016/j.nbd.2008.01.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2007] [Revised: 01/28/2008] [Accepted: 01/31/2008] [Indexed: 12/23/2022] Open
Abstract
Prenatal choline supplementation (SUP) protects adult rats against spatial memory deficits observed after excitotoxin-induced status epilepticus (SE). To examine the mechanism underlying this neuroprotection, we determined the effects of SUP on a variety of hippocampal markers known to change in response to SE and thought to underlie ensuing cognitive deficits. Adult offspring from rat dams that received either a control or SUP diet on embryonic days 12-17 were administered saline or kainic acid (i.p.) to induce SE and were euthanized 16 days later. SUP markedly attenuated seizure-induced hippocampal neurodegeneration, dentate cell proliferation, and hippocampal GFAP mRNA expression levels, prevented the loss of hippocampal GAD65 protein and mRNA expression, and altered growth factor expression patterns. SUP also enhanced pre-seizure hippocampal levels of BDNF, NGF, and IGF-1, which may confer a neuroprotective hippocampal microenvironment that dampens the neuropathological response to and/or helps facilitate recovery from SE to protect cognitive function.
Collapse
|
23
|
Aniol VA, Stepanichev MY. Nitric oxide and gamma-aminobutyric acid as regulators of neurogenesis in the brain of adult mammals: Models of seizure activity. NEUROCHEM J+ 2007. [DOI: 10.1134/s1819712407040010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
24
|
Yang Y, Mahaffey CL, Bérubé N, Maddatu TP, Cox GA, Frankel WN. Complex seizure disorder caused by Brunol4 deficiency in mice. PLoS Genet 2007; 3:e124. [PMID: 17677002 PMCID: PMC1934399 DOI: 10.1371/journal.pgen.0030124] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Accepted: 06/11/2007] [Indexed: 11/18/2022] Open
Abstract
Idiopathic epilepsy is a common human disorder with a strong genetic component, usually exhibiting complex inheritance. We describe a new mouse mutation in C57BL/6J mice, called frequent-flyer (Ff), in which disruption of the gene encoding RNA-binding protein Bruno-like 4 (Brunol4) leads to limbic and severe tonic–clonic seizures in heterozygous mutants beginning in their third month. Younger heterozygous adults have a reduced seizure threshold. Although homozygotes do not survive well on the C57BL/6J background, on mixed backgrounds homozygotes and some heterozygotes also display spike-wave discharges, the electroencephalographic manifestation of absence epilepsy. Brunol4 is widely expressed in the brain with enrichment in the hippocampus. Gene expression profiling and subsequent analysis revealed the down-regulation of at least four RNA molecules encoding proteins known to be involved in neuroexcitability, particularly in mutant hippocampus. Genetic and phenotypic assessment suggests that Brunol4 deficiency in mice results in a complex seizure phenotype, likely due to the coordinate dysregulation of several molecules, providing a unique new animal model of epilepsy that mimics the complex genetic architecture of common disease. Epilepsy is a very common brain disorder characterized by recurrent seizures, resulting from abnormal nerve cell activity in the brain. Some cases of epilepsy are caused by brain trauma, such as stroke, infection, tumor, or head injury. Others—so called “idiopathic”—do not have a clear cause. Many idiopathic epilepsies run in families, but the inheritance patterns and complex seizure types suggest that they are not due to a single defective gene but instead are caused by multiple gene defects that are inherited simultaneously in a patient. This complex inheritance makes it difficult to pinpoint the underlying defects. Here, we describe a new mutant mouse, called “frequent-flyer,” which has several different types of seizures. Although these seizures are caused by a mutation in a single gene, because this gene regulates the expression of many other genes, which, in turn, cause abnormal nerve cell activity, frequent-flyer mice provide a unique animal model of epilepsy—mimicking the complex genetic architecture of common disease.
Collapse
Affiliation(s)
- Yan Yang
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | | | - Nathalie Bérubé
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Terry P Maddatu
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Gregory A Cox
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Wayne N Frankel
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
25
|
Choi YS, Cho KO, Kim SY. Asymmetry in enhanced neurogenesis in the rostral dentate gyrus following kainic acid-induced status epilepticus in adult rats. Arch Pharm Res 2007; 30:646-52. [PMID: 17615686 DOI: 10.1007/bf02977661] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Neurogenesis in the suprapyramidal and infrapyramidal blades of the rostral dentate gyrus was investigated following kainic acid (KA)-induced status epilepticus (SE) in adult rats. Rats were injected with KA (14 mg/kg, i.p.) or saline, with convulsions terminated by an intraperitoneal injection of diazepam. Five days after the induction of SE, the rats were injected with 5-bromo-2-deoxyuridine-5-monophosphate (BrdU; 75 mg/kg, i.p.), a marker of cell division. One day after the BrdU injection, the numbers of BrdU-labeled cells in the supra- and infrapyramidal blades were significantly higher in the KA-injected rats compared to the saline-injected rats. In the saline-injected rats, the number of BrdU-labeled cells in the infrapyramidal blade was greater than in the suprapyramidal blade. Twenty-eight days after the BrdU injection, the number of BrdU-labeled cells remained significantly higher in the KA-injected rats than the saline-injected rats, but only in the infrapyramidal blade. In addition, when the extent of cell death was examined with Fluoro-Jade B (a marker of dead and dying cells) 3 days after the induction of SE, degenerating cells were more numerous in the infrapyramidal blade than in the suprapyramidal blade. Our results suggest that there is an asymmetry of neurogenesis and cell death in the rostral dentate gyrus of rats following KA-induced SE.
Collapse
Affiliation(s)
- Yun-Sik Choi
- Department of Pharmacology, The Catholic University of Korea, Seoul 137-701, Korea
| | | | | |
Collapse
|
26
|
Mohammad-Zadeh M, Mirnajafi-Zadeh J, Fathollahi Y, Javan M, Ghorbani P, Sadegh M, Noorbakhsh SM. Effect of low frequency stimulation of perforant path on kindling rate and synaptic transmission in the dentate gyrus during kindling acquisition in rats. Epilepsy Res 2007; 75:154-61. [PMID: 17576049 DOI: 10.1016/j.eplepsyres.2007.05.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2007] [Revised: 04/22/2007] [Accepted: 05/10/2007] [Indexed: 10/23/2022]
Abstract
Low frequency stimulation (LFS) has an inhibitory effect on kindling acquisition. In the present study the effect of the perforant path LFS on induction of rapid perforant path kindled seizures and synaptic transmission in the dentate gyrus was investigated. Animals were kindled by perforant path stimulation in a rapid kindling manner (12 stimulations per day). In one group of animals LFS (0.1 ms pulse duration at 1 Hz, 200 pulses, and 50-150 microA) was applied to perforant path, immediately after termination of each rapid kindling stimulation. Application of LFS significantly retarded the kindling acquisition and increased the number of stimulations to achieved different kindled seizure stages. LFS also prevented an increment in the slope of field excitatory postsynaptic potentials and population spike amplitude during kindling. In addition, LFS significantly reduced the marked increase in early (10-50 ms intervals) and late (300-1000 ms intervals) paired-pulse depression induced by kindling. According to obtained results, it may be suggested that LFS of perforant path has a significant antiepileptogenic effect through inhibition of synaptic transmission in dentate gyrus. Meanwhile, LFS prevents an increase in the paired-pulse depression during kindling acquisition.
Collapse
Affiliation(s)
- Mohammad Mohammad-Zadeh
- Department of Physiology, School of Medical Sciences, Tarbiat Modares University, Tehran, Islamic Republic of Iran
| | | | | | | | | | | | | |
Collapse
|
27
|
Raedt R, Van Dycke A, Vonck K, Boon P. Cell therapy in models for temporal lobe epilepsy. Seizure 2007; 16:565-78. [PMID: 17566770 DOI: 10.1016/j.seizure.2007.05.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Revised: 04/03/2007] [Accepted: 05/08/2007] [Indexed: 12/18/2022] Open
Abstract
For patients with refractory epilepsy it is important to search for alternative treatments. One of these potential treatments could be introducing new cells or modulating endogenous neurogenesis to reconstruct damaged epileptic circuits or to bring neurotransmitter function back into balance. In this review the scientific basis of these cell therapy strategies is discussed and the results are critically evaluated. Research on cell transplantation strategies has mainly been performed in animal models for temporal lobe epilepsy, in which seizure foci or seizure propagation pathways are targeted. Promising results have been obtained, although there remains a lot of debate about the relevance of the animal models, the appropriate target for transplantation, the suitable cell source and the proper time point for transplantation. From the presented studies it should be evident that transplanted cells can survive and sometimes even integrate in an epileptic brain and in a brain that is subjected to epileptogenic interventions. There is evidence that transplanted cells can partially restore damaged structures and/or release substances that modulate existent or induced hyperexcitability. Even though several studies show encouraging results, more studies need to be done in animal models with spontaneous seizures in order to have a better comparison to the human situation.
Collapse
Affiliation(s)
- R Raedt
- Laboratory for Clinical and Experimental Neurophysiology, Department of Neurology, Ghent University Hospital, De Pintelaan 145, B-9000 Ghent, Belgium.
| | | | | | | |
Collapse
|
28
|
Raedt R, Boon P, Persson A, Alborn AM, Boterberg T, Van Dycke A, Linder B, De Smedt T, Wadman WJ, Ben-Menachem E, Eriksson PS. Radiation of the rat brain suppresses seizure-induced neurogenesis and transiently enhances excitability during kindling acquisition. Epilepsia 2007; 48:1952-63. [PMID: 17555527 DOI: 10.1111/j.1528-1167.2007.01146.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE Adult hippocampal neurogenesis is enhanced in several models for temporal lobe epilepsy (TLE). In this study, we used low-dose whole brain radiation to suppress hippocampal neurogenesis and then studied the effect of this treatment on epileptogenesis in a kindling model for TLE. METHODS Half of the rats were exposed to a radiation dose of 8 Gy one day before the initiation of a rapid kindling protocol. Afterdischarge threshold (ADT), afterdischarge duration (ADD), clinical seizure severity, and inflammation were compared between groups. On the first and third day after radiation, rats were injected with 5'-bromo-2'-deoxyuridine (BrdU) to evaluate neurogenesis. Seven and 21 days after radiation, numbers of doublecortin (DCX) positive neuroblasts in subgranular zone and granule cell layer were compared between groups. RESULTS We showed that radiation significantly suppressed neurogenesis and neuroblast production during kindling acquisition. Radiation prevented an increase in ADT that became significantly lower in radiated rats. On the third and fourth kindling acquisition day radiated rats developed more severe seizures more rapidly, which resulted in a significantly higher mean severity score on these days. Differences in ADD could not be demonstrated. DISCUSSION Our results demonstrate that brain radiation with a relatively low dose effectively suppressed the generation of new granule cells and transiently enhanced excitability during kindling acquisition. Although seizure-induced neurogenesis was lower in the radiated rats we could not detect a strong effect on the final establishment of the permanent fully kindled state, which argues against a prominent role of seizure-induced neurogenesis in epileptogenesis.
Collapse
Affiliation(s)
- Robrecht Raedt
- Laboratory for Clinical and Experimental Neurophysiology, Department of Neurology, Ghent University Hospital, Ghent, Belgium.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Xiu-Yu S, Ruo-Peng S, Ji-Wen W. Consequences of pilocarpine-induced recurrent seizures in neonatal rats. Brain Dev 2007; 29:157-63. [PMID: 17008043 DOI: 10.1016/j.braindev.2006.08.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2006] [Revised: 08/07/2006] [Accepted: 08/08/2006] [Indexed: 11/17/2022]
Abstract
Accumulated evidence have shown that a series of morphological alternations occur in patients with epilepsy and in different epileptic animal models. Given most of animal model studies have been focused on adulthood stage, the effect of recurrent seizures to immature brain in neonatal period has not been well established. This study was designed to observe the certain morphological changes following recurrent seizures occurred in the neonatal rats. For seizure induction, neonatal Wistar rats were intraperitoneally injected with pilocarpine on postnatal day 1 (P1), P4 and P7. Rat pups were grouped and sacrificed at 1d, 7d, 14d and 42d after the last pilocarpine injection respectively. Bromodeoxyuridine (BrdU) was intraperitoneally administered 36h before the rats were sacrificed. BrdU single and double labeling with neuronal markers were used to analyze cell proliferation and differentiation. Nissl and Timm staining were performed to evaluate cell loss and mossy fiber sprouting. Rats with neonatal seizures had a significant reduction in the number of Bromodeoxyuridine-(BrdU) labeled cells in the dentate gyrus compared with the control groups when the animals were killed either 1 or 7 days after the third seizure (P<0.05) but there was no difference between two groups on P21. On the contrary, BrdU-labeled cells significantly increased in the experimental group compared with control group on P49 (P<0.05). The majority of the BrdU-labeled cells colocalized with neuronal marker-NF200 (Neurofilament-200). Nissl staining showed that there was no obvious neuronal loss after seizure induction over all different time points. Rats with the survival time of 42 days after neonatal seizures developed to increased mossy fiber sprouting in both the CA3 region and supragranular zone of the dentate gyrus compared with the control groups (P<0.05). Taken together, the present findings suggest that synaptic reorganization only occurs at the later time point following recurrent seizures in neonatal rats, and neonatal recurrent seizures can modulate neurogenesis oppositely over different time window with a down-regulation at early time and up-regulation afterwards.
Collapse
Affiliation(s)
- Shi Xiu-Yu
- Department of Pediatrics, Qilu Hospital, Shandong University, No. 107, Wen Hua Xi Road, Jinan, Shandong 250012, China.
| | | | | |
Collapse
|
30
|
Scharfman HE, Gray WP. Relevance of seizure-induced neurogenesis in animal models of epilepsy to the etiology of temporal lobe epilepsy. Epilepsia 2007; 48 Suppl 2:33-41. [PMID: 17571351 PMCID: PMC2504501 DOI: 10.1111/j.1528-1167.2007.01065.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Seizure induction in laboratory animals is followed by many changes in structure and function, and one of these is an increase in neurogenesis-the birth of new neurons. This phenomenon may be relevant to temporal lobe epilepsy (TLE), because one of the regions of the brain where seizure-induced neurogenesis is most robust is the dentate gyrus-an area of the brain that has been implicated in the pathophysiology of TLE. Although initial studies predicted that neurogenesis in the dentate gyrus would be important to normal functions, such as learning and memory, the new neurons that are born after seizures may not necessarily promote normal function. There appears to be a complex functional and structural relationship between the new dentate gyrus neurons and preexisting cells, both in the animal models of TLE and in tissue resected from patients with intractable TLE. These studies provide new insights into the mechanisms of TLE, and suggest novel strategies for intervention that could be used to prevent or treat TLE.
Collapse
Affiliation(s)
- Helen E Scharfman
- Center for Neural Recovery and Rehabilitation Research, Helen Hayes Hospital, New York State Department of Health, West Haverstraw, New York 10993-1195, USA.
| | | |
Collapse
|
31
|
Smith PD, McLean KJ, Murphy MA, Turnley AM, Cook MJ. Functional dentate gyrus neurogenesis in a rapid kindling seizure model. Eur J Neurosci 2006; 24:3195-203. [PMID: 17156380 DOI: 10.1111/j.1460-9568.2006.05205.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Neurogenesis in the adult mammalian hippocampus resulting in long-term persistence of new neurons with features of capacity for functional activation is recognized. Many stimuli are capable of increasing the rate of neurogenesis, including seizure activity. Whether these insults result in an increased number of new functionally active neurons over and above the baseline rate of neurogenesis is not known. The rapid electrical amygdala kindling (REAK) model of seizures isolates the effects of seizures alone in the absence of neuronal death and the resulting seizures induce expression of c-Fos in the vast majority of dentate gyrus (DG) granule cells. C57BL/6 mice were exposed to REAK then injected with bromodeoxyuridine (BrDU) to label dividing cells, then re-exposed to REAK after a delay period to allow detection of functional activation in new neurons by measurement c-Fos expression in response to seizures. Adult subgranular zone cells migrated into the DG granule cell layer (GCL), assumed a neuronal phenotype and demonstrated seizure-dependent responsiveness. Larger absolute numbers of new neurons demonstrating seizure-dependent activation were found in the GCL of previously kindled mice. Seizures are capable of increasing the number of new neurons with the capacity for functional activation laid down in the postseizure period and incorporated into seizure-activated circuitry.
Collapse
Affiliation(s)
- Paul D Smith
- Centre for Clinical Neurosciences and Neurological Research, St Vincent's Hospital, University of Melbourne, VIC, Australia 3065.
| | | | | | | | | |
Collapse
|
32
|
Damjanac M, Rioux Bilan A, Barrier L, Pontcharraud R, Anne C, Hugon J, Page G. Fluoro-Jade B staining as useful tool to identify activated microglia and astrocytes in a mouse transgenic model of Alzheimer's disease. Brain Res 2006; 1128:40-9. [PMID: 17125750 DOI: 10.1016/j.brainres.2006.05.050] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Revised: 05/04/2006] [Accepted: 05/11/2006] [Indexed: 10/23/2022]
Abstract
Fluoro-Jade B is known as a high affinity fluorescent marker for the localization of neuronal degeneration during acute neuronal distress. However, one study suggested that fluoro-Jade B stains reactive astroglia in the primate cerebral cortex. In this study, we analyzed the staining of fluoro-Jade B alone or combined with specific markers for detection of glial fibrillary acidic protein (GFAP) or activated CD68 microglia in the double APP(SL)/PS1 KI transgenic mice of Alzheimer's disease (AD), which display a massive neuronal loss in the CA1 region of the hippocampus. Our results showed that fluoro-Jade B did not stain normal and degenerating neurons in this double mouse transgenic model. Fluoro-Jade B was co-localized with Abeta in the core of amyloid deposits and in glia-like cells expressing Abeta. Furthermore, fluoro-Jade B was co-localized with CD68/macrosialin, a specific marker of activated microglia, and with GFAP for astrocytes in APP(SL)/PS1 KI transgenic mice of AD. Taken together, these findings showed that fluoro-Jade B can be used to label activated microglia and astrocytes which are abundant in the brain of these AD transgenic mice. It could stain degenerating neurons as a result of acute insult while it could label activated microglia and astrocytes during a chronic neuronal degenerative process such as AD for example.
Collapse
Affiliation(s)
- Milena Damjanac
- Research Group on Brain Aging (EA 3808) University of Poitiers, 34, rue du Jardin des Plantes, BP 199, 86005 Poitiers Cedex France
| | | | | | | | | | | | | |
Collapse
|