1
|
Wanders L, Gijbels A, Hul GB, Feskens EJM, Afman LA, Blaak EE, Hopman MTE, Goossens GH, Thijssen DHJ. Impact of a 12-week personalized dietary intervention on vascular function and cardiovascular risk factors. Diabetes Obes Metab 2025; 27:2601-2612. [PMID: 40013435 PMCID: PMC11965023 DOI: 10.1111/dom.16261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/31/2025] [Accepted: 01/31/2025] [Indexed: 02/28/2025]
Abstract
AIMS Individuals with liver insulin-resistant (LIR) or muscle insulin-resistant (MIR) phenotypes may respond differently to dietary interventions. Given the interaction between insulin resistance and cardiovascular risk, this sub-analysis of the PERSON study examined whether a personalized diet according to MIR or LIR phenotypes improves vascular function and cardiovascular disease risk factors. MATERIALS AND METHODS We randomized 119 participants to a 12-week low-fat, high-protein, high-fibre diet (LFHP; may be optimal for LIR) or Mediterranean diet (high in monounsaturated fat, HMUFA; may be optimal for MIR). Randomization linked the insulin-resistant (IR) phenotype to the proposed optimal diet, leading to PhenoDiet A (MIR-HMUFA and LIR-LFHP) and PhenoDiet B (MIR-LFHP and LIR-HMUFA). Before and after the intervention, vascular function (carotid artery reactivity) and cardiovascular risk factors (blood pressure, total cholesterol, HDL-cholesterol and Framingham risk score) were examined. A 7-point oral glucose tolerance test was performed to determine insulin resistance (Matsuda index and HOMA-IR) and disposition index. RESULTS Following drop-out (n = 18), 101 participants finished the intervention (54 women, 61 ± 7 years, 27.6 [26.4;30.0] kg/m2), with n = 80 available for the primary outcome of vascular function. Overall, the dietary interventions significantly decreased blood pressure, total cholesterol, HDL-cholesterol and the Framingham risk score (all p < 0.05), while vascular function was not affected (p = 0.485). Insulin resistance (p ≤ 0.001), but not disposition index (p = 0.362), was significantly improved after intervention. The Matsuda index (p = 0.078) tended to increase more and total cholesterol (p = 0.052) tended to decrease more in PhenoDiet group B than A, but other changes in outcome parameters were not significantly different between PhenoDiet groups. The LFHP diet resulted in more pronounced improvements in cholesterol, diastolic blood pressure (DBP) and insulin resistance compared with the HMUFA diet (all p < 0.05). CONCLUSION A 12-week diet improves metabolic and cardiovascular outcomes, but not vascular function in insulin-resistant adults with overweight or obesity. Whilst the LFHP diet resulted in greater improvements in cardiometabolic risk markers than the HMUFA diet, we found no significant differences between the PhenoDiet groups.
Collapse
Affiliation(s)
- Lisa Wanders
- Radboud Institute for Health Sciences, Department of PhysiologyRadboud university medical centerNijmegenThe Netherlands
- TiFNWageningenThe Netherlands
| | - Anouk Gijbels
- TiFNWageningenThe Netherlands
- Division of Human Nutrition and HealthWageningen UniversityWageningenThe Netherlands
| | - Gabby B. Hul
- Department of Human BiologyInstitute of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical CenterMaastrichtThe Netherlands
| | - Edith J. M. Feskens
- Division of Human Nutrition and HealthWageningen UniversityWageningenThe Netherlands
| | - Lydia A. Afman
- Division of Human Nutrition and HealthWageningen UniversityWageningenThe Netherlands
| | - Ellen E. Blaak
- Department of Human BiologyInstitute of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical CenterMaastrichtThe Netherlands
| | - Maria T. E. Hopman
- Radboud Institute for Health Sciences, Department of PhysiologyRadboud university medical centerNijmegenThe Netherlands
| | - Gijs H. Goossens
- Department of Human BiologyInstitute of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical CenterMaastrichtThe Netherlands
| | - Dick H. J. Thijssen
- Radboud Institute for Health Sciences, Department of PhysiologyRadboud university medical centerNijmegenThe Netherlands
- Research Institute for Sport and Exercise SciencesLiverpool John Moores UniversityLiverpoolUK
| |
Collapse
|
2
|
Fathi S, Vahdat M, Saeedirad Z, Hassanpour Ardekanizadeh N, Mousavi Mele M, Shekari S, Mobarakeh KA, Shafaei H, Mosavi Jarrahi A, Rajabi Harsini A, Khoshdooz S, Gholamalizadeh M, YazdiMoghaddam H, Doaei S. The association between consumption of dairy products and risk of type 2 diabetes. Cardiovasc Endocrinol Metab 2025; 14:e00318. [PMID: 39649678 PMCID: PMC11620717 DOI: 10.1097/xce.0000000000000318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 10/22/2024] [Indexed: 12/11/2024]
Abstract
Background The effects of dairy products on type 2 diabetes mellitus (T2DM) are unclear. Some studies have revealed the beneficial effects, whereas others found harmful effects of dairy products on the risk of T2DM. The objective of the present study was to investigate the association of different types of dairy products with risk of T2DM in Iranian adults. Methods This cross-sectional study included a total of 4241 individuals. Among these participants, 1804 were diagnosed with T2DM or prediabetes, whereas the remaining 2437 individuals were without T2DM. A validated food frequency questionnaire was used to assess the consumption of different types of dairy products. Results A positive association was found between T2DM with dietary intake of milk [odds ratio (OR): 1.16, 95% confidence interval (CI): 1.11-1.23, P = 0.008] and cheese (OR: 1.90, 95% CI: 1.41-2.29, P = 0.001) after adjustment for age, sex, physical activity, BMI, education level, energy, and fat intake. There was no significant association between T2DM and dietary intake of total dairy, yogurt, ayran (yogurt drink), and curd. Conclusion A positive association was found between the consumption of some dairy products including milk and cheese and the risk of T2DM. Further longitudinal studies are warranted to approve this finding.
Collapse
Affiliation(s)
- Soroor Fathi
- Department of Nutrition, Faculty of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences
| | - Mahsa Vahdat
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz
| | - Zahra Saeedirad
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran
| | | | | | - Soheila Shekari
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran
| | - Khadijeh Abbasi Mobarakeh
- Department of Community Nutrition, Nutrition and Food Security Research Center, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan
| | - Hanieh Shafaei
- Shahid Beheshti College of Midwifery, Guilan University of Medical Sciences, Rasht
| | | | - Asma Rajabi Harsini
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran
| | - Sara Khoshdooz
- Faculty of Medicine, Guilan University of Medical Sciences, Rasht
| | | | - Hamideh YazdiMoghaddam
- Operating Room Department, Faculty of Paramedics, Iranian Research Center on Healthy Aging, Sabzevar University of Medical Sciences, Sabzevar
| | - Saeid Doaei
- Department of Community Nutrition, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran
- Reproductive Health Research Center, Department of Obstetrics and Gynecology, School of Medicine, Al-Zahra Hospital, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
3
|
Qiang Y, Lu X, Zhang Y. Association between dietary patterns and glycemic control in type II diabetes mellitus patients. Aten Primaria 2025; 57:103075. [PMID: 39288729 PMCID: PMC11421999 DOI: 10.1016/j.aprim.2024.103075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 09/19/2024] Open
Abstract
OBJECTIVE To assess the association between dietary patterns and glycemic control among patients with type II diabetes mellitus (T2DM). DESIGN A cross-sectional study. SITE: The 2015-2018 National Health and Nutrition Examination Survey (NHANES). PARTICIPANTS A total of 1646 T2DM patients were included, of whom 854 were hyperglycemia. METHODS Main dietary patterns were identified using the sparse principal components analysis (SPCA). Logistic regression analysis was applied to investigate the association between each dietary pattern and the risk of hyperglycemia with odds ratios (OR) and 95% confidence intervals (CI). SPCA analysis yielded five significant principal components (PC), which represented five main dietary patterns. RESULTS PC1, characterized by a high intake of sweets, red meat and processed meat, was associated with higher odds of hyperglycemia in patients who underwent hyperglycemic drug or insulin treatments (OR: 1.71, 95% CI: 1.10-2.64). PC5, characterized by high in red meat, while low in coffee, sweets, and high-fat dairy consumption. The relationship between the PC5 and hyperglycemia was marginal significance (OR: 0.63, 95% CI: 0.38-1.02). PC2 was characterized by a high consumption of green vegetables, other vegetables, and whole grains, and low intake of potatoes and processed meat. In patients with the hyperglycemic drug and insulin free, higher PC2 levels were related to lower odds of hyperglycemia (OR: 0.45, 95% CI: 0.21-0.96). CONCLUSIONS High intake of sweets, red meat, and processed meat might be detrimental to glycemic control in patients with drug-treated T2DM. High in red meat, while low in coffee, sweets, and high-fat dairy consumption may be beneficial to glycemic control. In addition, high consumption of green vegetables, other vegetables, and whole grains, and low intake of potatoes and processed meat may be good for glycemic control in patients without drug-treated T2DM.
Collapse
Affiliation(s)
- Ye Qiang
- Department of Endocrinology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Quingdao Municipal Hospital), Qingdao 266071, Shandong Province, PR China
| | - Xingchen Lu
- Department of Endocrinology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Quingdao Municipal Hospital), Qingdao 266071, Shandong Province, PR China
| | - Yuchao Zhang
- Department of Endocrinology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Quingdao Municipal Hospital), Qingdao 266071, Shandong Province, PR China.
| |
Collapse
|
4
|
Arias-Gastélum M, Lindberg NM, Leo MC, Gille S, Vaughn K, Shuster E, LeBlanc ES, Stevens VJ, Vega-López S. A better diet quality based on the Healthy Eating Index-2020 is associated with lower energy intake and age but not with a pre-diabetes/T2DM diagnosis among Hispanic women with overweight/obesity. Nutr Res 2025; 134:88-98. [PMID: 39874721 PMCID: PMC11830551 DOI: 10.1016/j.nutres.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 01/03/2025] [Accepted: 01/04/2025] [Indexed: 01/30/2025]
Abstract
Low diet quality is related to obesity and type 2 diabetes mellitus (T2DM) risk among Hispanic women. This cross-sectional study compared diet quality among Hispanic women with overweight/obesity based on their T2DM diagnosis (pre-diabetes/T2DM group, n = 104 vs no diagnosis, at-risk group, n = 84). It was hypothesized that having a pre-diabetes or T2DM diagnosis would be associated with better diet quality based on the Healthy Eating Index (HEI)-2020 score. Means were compared using a 2-sample t-test for parametric and Kruskal-Wallis for non-parametric variables. Women with pre-diabetes/T2DM reported a lower intake of total energy (1378 ± 557 vs 1644 ± 703 kcal; P = .004) and cholesterol (228 ± 140 vs 299 ± 216 mg; P = .007). Total HEI score was higher for pre-diabetes/T2DM than the at-risk group (64 ± 8 vs 62 ± 9; P = .027). Among all participants, adequacy subscores were excellent for whole fruits, greens & beans, total proteins, and seafood and plant proteins, good for total fruits (77%); fair for total vegetables and fatty acids (64% for both); and poor for whole grains, and dairy (20% and 53%, respectively). Moderation subscores were very good for added sugars (89%), good for saturated fats (78%), and poor for refined grains, and sodium (44% and 33%, respectively). Compared to the at-risk group, women with pre-diabetes/T2DM had higher fatty acid ratio scores (7 ± 2 vs 6 ± 3, P = .039). Multiple linear regression revealed that pre-diabetes/T2DM did not significantly impact diet quality, but energy intake and age did. Overall, HEI subscores underscore the need to improve diet quality through key food groups in Hispanic women with overweight/obesity, regardless of T2DM status.
Collapse
Affiliation(s)
- Mayra Arias-Gastélum
- School of Nutrition, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa, México; College of Health Solutions, Arizona State University, Phoenix, AZ, USA
| | | | - Michael C Leo
- Kaiser Permanente Center for Health Research, Portland, OR, USA
| | - Sara Gille
- Kaiser Permanente Center for Health Research, Portland, OR, USA
| | - Katie Vaughn
- Kaiser Permanente Center for Health Research, Portland, OR, USA
| | | | - Erin S LeBlanc
- Kaiser Permanente Center for Health Research, Portland, OR, USA
| | | | - Sonia Vega-López
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA; Southwest Interdisciplinary Research Center, Arizona State University, Phoenix, AZ, USA.
| |
Collapse
|
5
|
Deng W, Zhao L, Chen C, Ren Z, Jing Y, Qiu J, Liu D. National burden and risk factors of diabetes mellitus in China from 1990 to 2021: Results from the Global Burden of Disease study 2021. J Diabetes 2024; 16:e70012. [PMID: 39373380 PMCID: PMC11457207 DOI: 10.1111/1753-0407.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/07/2024] [Indexed: 10/08/2024] Open
Abstract
BACKGROUND In recent years, the prevalence and mortality rates of diabetes have been rising continuously, posing a significant threat to public health and placing a heavy burden on the population. This study was conducted to describe and analyze the burden of diabetes in China from 1990 to 2021 and its attributable risk factors. METHODS Utilizing data from the Global Burden of Disease Study 2021, we analyzed the incidence, prevalence, and disability-adjusted life years (DALYs) of type 1 diabetes (T1DM) and type 2 diabetes (T2DM) in China from 1990 to 2021. We extracted sex- and age-specific data on diabetes, focusing on DALYs, years lived with disability, and years of life lost. Bayesian meta-regression and spatiotemporal Gaussian process regression were used to estimate disease parameters. Age-standardized rates (ASRs) and estimated annual percentage changes (EAPC) were calculated using direct standardization and log-linear regression. The population-attributable fractions were also determined for each risk factor. RESULTS In 2021, the absolute number of incident diabetes mellitus (DM) cases was estimated at 4003543.82, including 32 000 T1DM and 3971486.24 T2DM cases. The ASRs were 244.57 for DM, 2.67 for T1DM, and 241.9 for T2DM (per 100 000 population). The absolute number of prevalent DM cases was 117288553.93, including 1442775.09 T1DM and 115845778.84 T2DM cases. The ASRs were 6142.29 for DM, 86.78 for T1DM, and 6055.51 for T2DM (per 100 000 population). In 2021, there were 178475.73 deaths caused by DM, with an ASR of mortality of 8.98 per 100 000 population. The DALYs due to DM in 2021 were 11713613.86, with an ASR of 585.43 per 100 000 population and an EAPC of 0.57. This increase can be attributed to several factors, including high body mass index, air pollution, and dietary habits. CONCLUSIONS The burden of diabetes is considerable, with high prevalence and incidence rates, highlighting the urgent need for public health interventions. Addressing factors like high fasting plasma glucose, body mass index, air pollution, and dietary risks through effective interventions is critical.
Collapse
Affiliation(s)
- Wenzhen Deng
- Department of EndocrinologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- Department of EndocrinologyQianjiang Central Hospital of ChongqingQianjiangChina
| | - Li Zhao
- Department of EndocrinologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- Department of EndocrinologyQianjiang Central Hospital of ChongqingQianjiangChina
| | - Cheng Chen
- Department of EndocrinologyQianjiang Central Hospital of ChongqingQianjiangChina
| | - Ziyu Ren
- Department of EndocrinologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Yuanyuan Jing
- Department of EndocrinologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Jingwen Qiu
- Department of EndocrinologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Dongfang Liu
- Department of EndocrinologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| |
Collapse
|
6
|
Nguyen TH, Pletsch-Borba L, Feindt PH, Stokes CS, Pohrt A, Meyer NMT, Wernicke C, Sommer-Ballarini M, Apostolopoulou K, Hornemann S, Grune T, Brück T, Pfeiffer AFH, Spranger J, Mai K. The Effect of Individual Attitude toward Healthy Nutrition on Adherence to a High-UFA and High-Protein Diet: Results of a Randomized Controlled Trial. Nutrients 2024; 16:3044. [PMID: 39275358 PMCID: PMC11397022 DOI: 10.3390/nu16173044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024] Open
Abstract
Despite beneficial cardiovascular effects, substantial long-term modulation of food pattern could only be achieved in a limited number of participants. The impact of attitude towards healthy nutrition (ATHN) on successful modulation of dietary behavior is unclear, especially in the elderly. We aimed to analyze whether the personal ATHN influences 12-month adherence to two different dietary intervention regimes within a 36-month randomized controlled trial. METHODS 502 subjects were randomized to an intervention group (IG; dietary pattern focused on high intake of unsaturated fatty acids (UFA), plant protein and fiber) or control group (CG; dietary recommendation in accordance with the German Society of Nutrition) within a 36-month dietary intervention trial. Sum scores for effectiveness, appreciation and practice of healthy nutrition were assessed using ATHN questionnaire during the trial (n = 344). Linear regression models were used to investigate associations between ATHN and dietary patterns at baseline and at month 12. RESULTS Retirement, higher education level, age and lower body mass index (BMI) were associated with higher ATHN sum scores. ATHN was similar in CG and IG. Higher baseline intake of polyunsaturated fatty acids (PUFA) and fiber as well as lower intake in saturated fatty acids (SFA) were associated with higher scores in practice in both groups. The intervention resulted in a stronger increase of UFA, protein and fiber in the IG after 12 months, while intake of SFA declined (p < 0.01). Higher scores in appreciation were significantly associated with higher intake of fiber and lower intake of SFA in the CG at month 12, whereas no associations between ATHN and macronutrient intake were observed in the IG after 12 months. CONCLUSIONS While ATHN appeared to play a role in general dietary behavior, ATHN did not affect the success of the specific dietary intervention in the IG at month 12. Thus, the dietary intervention achieved a substantial modification of dietary pattern in the IG and was effective to override the impact of the individual ATHN on dietary behavior.
Collapse
Affiliation(s)
- Thu Huong Nguyen
- Department of Endocrinology and Metabolism, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
- NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, 14558 Nuthetal, Germany
- IFST-Inclusive Food System Transition, Berlin University Alliance, 10178 Berlin, Germany
| | - Laura Pletsch-Borba
- Department of Endocrinology and Metabolism, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
- NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, 14558 Nuthetal, Germany
- BIH Charité Junior Clinician Scientist Program, BIH Biomedical Innovation Academy, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Peter H Feindt
- IFST-Inclusive Food System Transition, Berlin University Alliance, 10178 Berlin, Germany
- Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Caroline S Stokes
- IFST-Inclusive Food System Transition, Berlin University Alliance, 10178 Berlin, Germany
- Food and Health Research Group, Faculty of Life Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, 14195 Berlin, Germany
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbrücke, 14558 Nuthetal, Germany
| | - Anne Pohrt
- Institute of Biometry and Clinical Epidemiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Nina M T Meyer
- Department of Endocrinology and Metabolism, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
- NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, 14558 Nuthetal, Germany
| | - Charlotte Wernicke
- Department of Endocrinology and Metabolism, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
- NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, 14558 Nuthetal, Germany
| | - Miriam Sommer-Ballarini
- Department of Endocrinology and Metabolism, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
- NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, 14558 Nuthetal, Germany
| | - Konstantina Apostolopoulou
- Department of Endocrinology and Metabolism, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Silke Hornemann
- Department of Human Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, 14558 Nuthetal, Germany
| | - Tilman Grune
- NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, 14558 Nuthetal, Germany
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbrücke, 14558 Nuthetal, Germany
- German Center for Diabetes Research (DZD e.V.), 85764 Neuherberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Tilman Brück
- IFST-Inclusive Food System Transition, Berlin University Alliance, 10178 Berlin, Germany
- Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Leibniz Institute of Vegetable and Ornamental Crops, 14979 Großbeeren, Germany
- ISDC-International Security and Development Center, 10117 Berlin, Germany
| | - Andreas F H Pfeiffer
- Department of Endocrinology and Metabolism, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
- NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, 14558 Nuthetal, Germany
- Department of Human Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, 14558 Nuthetal, Germany
| | - Joachim Spranger
- Department of Endocrinology and Metabolism, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
- NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, 14558 Nuthetal, Germany
- Department of Human Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, 14558 Nuthetal, Germany
- German Center for Diabetes Research (DZD e.V.), 85764 Neuherberg, Germany
| | - Knut Mai
- Department of Endocrinology and Metabolism, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
- NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, 14558 Nuthetal, Germany
- IFST-Inclusive Food System Transition, Berlin University Alliance, 10178 Berlin, Germany
- Department of Human Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, 14558 Nuthetal, Germany
- German Center for Diabetes Research (DZD e.V.), 85764 Neuherberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| |
Collapse
|
7
|
Bhandarkar NS, Shetty KB, Shetty N, Shetty K, Kiran A, Pindipapanahalli N, Shetty R, Ghosh A. Comprehensive analysis of systemic, metabolic, and molecular changes following prospective change to low-carbohydrate diet in adults with type 2 diabetes mellitus in India. Front Nutr 2024; 11:1394298. [PMID: 39279894 PMCID: PMC11397303 DOI: 10.3389/fnut.2024.1394298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/29/2024] [Indexed: 09/18/2024] Open
Abstract
Purpose South Asians, especially Indians, face higher diabetes-related risks despite lower body mass index (BMI) compared with the White population. Limited research connects low-carbohydrate high-fat (LCHF)/ketogenic diets to metabolic changes in this group. Systematic studies are needed to assess the long-term effects of the diet, such as ocular health. Method In this prospective, observational study, 465 candidates aged 25-75 years with type 2 diabetes included with institutional ethics approval. A total of 119 subjects were included in the final study assessment based on the availability of pathophysiological reports, tears, and blood samples collected at baseline, 3rd, and 6th months. Serum and tear samples were analyzed by an enzyme-linked lectinsorbent assay, to examine secreted soluble protein biomarkers, such as IL-1β (interleukin 1 Beta), IL-6 (interleukin 6), IL-10 (interleukin 10), IL-17A (interleukin 17A), MMP-9 (matrix metalloproteinase 9), ICAM-1 (intercellular adhesion molecule 1), VEGF-A (vascular endothelial growth factor A), and TNF-α (tumor necrosis factor-alpha). A Wilcoxon test was performed for paired samples. Spearman's correlation was applied to test the strength and direction of the association between tear biomarkers and HbA1c. p-value of < 0.05 was considered significant. Results After a 3- and 6-month LCHF intervention, fasting blood sugar decreased by 10% (Δ: -14 mg/dL; p < 0.0001) and 7% (Δ: -8 mg/dL; p < 0.0001), respectively. Glycated hemoglobin A1c levels decreased by 13% (Δ: -1%; p < 0.0001) and 9% (Δ: -0.6%; p < 0.0001). Triglycerides reduced by 22% (Δ: -27 mg/dL; p < 0.0001) and 14% (Δ: -19 mg/dL; p < 0.0001). Total cholesterol reduced by 5.4% (Δ: -10.5 mg/dL; p < 0.003) and 4% (Δ: -7 mg/dL; p < 0.03), while low-density lipoprotein decreased by 10% (Δ: -11.5 mg/dL; p < 0.003) and 9% (Δ: -11 mg/dL; p < 0.002). High-density lipoprotein increased by 11% (Δ: 5 mg/dL; p < 0.0001) and 17% (Δ: 8 mg/dL; p < 0.0001). At the first follow-up, tear proteins such as ICAM-1, IL-17A, and TNF-α decreased by 30% (Δ: -2,739 pg/mL; p < 0.01), 22% (Δ: -4.5 pg/mL; p < 0.02), and 34% (Δ: -0.9 pg/mL; p < 0.002), respectively. At the second follow-up, IL-1β and TNF-α reduced by 41% (Δ: -2.4 pg/mL; p < 0.05) and 34% (Δ: -0.67 pg/mL; p < 0.02). Spearman's correlation between HbA1c and tear analytes was not statistically significant. Conclusion The LCHF diet reduces the risk of hyperglycemia and dyslipidemia. Changes in tear fluid protein profiles were observed, but identifying promising candidate biomarkers requires validation in a larger cohort.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Arkasubhra Ghosh
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, India
| |
Collapse
|
8
|
Peride I, Anastasiu M, Serban SA, Tiglis M, Ene R, Nechita AM, Neagu TP, Checherita IA, Niculae A. The Key Role of Nutritional Intervention in Delaying Disease Progression and the Therapeutic Management of Diabetic Kidney Disease-A Challenge for Physicians and Patients. J Pers Med 2024; 14:778. [PMID: 39201970 PMCID: PMC11355100 DOI: 10.3390/jpm14080778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/13/2024] [Accepted: 07/20/2024] [Indexed: 09/03/2024] Open
Abstract
Chronic kidney disease (CKD) represents an increasingly common pathology that affects patients' quality of life, and it is frequently associated with a high mortality rate, especially in the final stages of the disease. At the same time, diabetes mellitus is a chronic disease that contributes to the increased number of patients with CKD through diabetic kidney disease (DKD). The alternation of hypoglycemia with hyperglycemia is a condition in the occurrence of microvascular complications of diabetes, including DKD, which involves structural and functional changes in the kidneys. The therapeutic management of diabetic nephropathy is a much-discussed topic, both from nutritional medical recommendations and a pharmacotherapy perspective. The diet starting point for patients with DKD is represented by a personalized and correct adjustment of macro- and micronutrients. The importance of nutritional status in DKD patients is given by the fact that it represents a modifiable factor, which contributes to the evolution and prognosis of the disease. Since, in most cases, it is necessary to restrict many types of food, malnutrition must be considered and avoided as much as possible.
Collapse
Affiliation(s)
- Ileana Peride
- Clinical Department No. 3, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Miruna Anastasiu
- “Marie Skłodowska Curie” Children Emergency Clinical Hospital, 077120 Bucharest, Romania
| | | | - Mirela Tiglis
- Department of Anesthesia and Intensive Care, Emergency Clinical Hospital of Bucharest, 014461 Bucharest, Romania
| | - Razvan Ene
- Clinical Department No. 14, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Ana-Maria Nechita
- Department of Nephrology and Dialysis, “St. John” Emergency Clinical Hospital, 042122 Bucharest, Romania
| | - Tiberiu Paul Neagu
- Clinical Department No. 11, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | | | - Andrei Niculae
- Clinical Department No. 3, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| |
Collapse
|
9
|
Sajedi F, Abdi A, Mehrpooya M, Faramarzi V, Mohammadi Y, Sheida F. Comparison of therapeutic effects of N-Acetylcysteine with pregabalin in improving the clinical symptoms of painful diabetic neuropathy: a randomized, double-blind clinical trial. Clin Diabetes Endocrinol 2024; 10:15. [PMID: 38641841 PMCID: PMC11031970 DOI: 10.1186/s40842-024-00172-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/31/2024] [Indexed: 04/21/2024] Open
Abstract
OBJECTIVES Painful diabetic neuropathy (PDN) is highly prevalent and annoyingly in patients with diabetes. The aim of this study was to investigate the effects of oral N-acetylcysteine (NAC) compared to pregabalin in PDN. METHODS One hundred two eligible patients with type 2 diabetes and PDN were randomly recievied pregabalin (150 mg/day) or N-Acetylcysteine (NAC) (600 mg/ twice a day) for 8 weeks. Mean pain score, Sleep interference score (SIS), Patient Global Impression of Change (PGIC), Clinical Global Impression of Change (CGIC), and also, serum levels of total antioxidant capacity (TAC), total thiol groups (TTG), catalase activity (CAT), nitric oxide (NO), and malondialdehyde (MDA) were assessed at baseline and at the end of the study. RESULTS NAC was well tolerated in all patients. The decrease in mean pain scores and increase in SIS was similar between two groups. More improvement in PGIC and CGIC from the baseline was reported in NAC group. NAC, significantly, decreased serum levels of MDA, and NO, but increased TAC, TTG, and CAT. Pregabalin, significantly, decreased serum levels of MDA, and NO and increased TAC. DISCUSSION NAC is efficacious in alleviate symptoms of PDN which is probably related to its antioxidant effects. TRIAL REGISTRATION The research protocol received approval from the Ethics Committee of Hamadan University of Medical Sciences (IR.UMSHA.REC.1397.137). The trial registry URL and number in Iranian Registry of Clinical Trials (IRCT): https://www.irct.ir/trial/33313 , IRCT20180814040795N2 (Registration date: 2019-01-21, Retrospectively registered).
Collapse
Affiliation(s)
- Firozeh Sajedi
- Department of Internal Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Arman Abdi
- Department of Internal Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Maryam Mehrpooya
- Department of Clinical Pharmacy, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Vida Faramarzi
- Department of Internal Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Younes Mohammadi
- Modeling of Noncommunicable Diseases Research Center, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fateme Sheida
- Cancer Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
10
|
Ebrahimi S, Ellery SJ, Leech RM, van der Pligt PF. Associations between diet quality and dietary patterns and gestational diabetes mellitus in a low-risk cohort of pregnant women in Australia: a cross-sectional study. J Hum Nutr Diet 2024; 37:503-513. [PMID: 38193638 DOI: 10.1111/jhn.13274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 01/10/2024]
Abstract
INTRODUCTION Evidence of associations between the Mediterranean Diet Score (MDS) and Dietary Approaches to Stop Hypertension (DASH) score and gestational diabetes mellitus (GDM) in pregnant women is limited. This study examined changes in MDS and DASH and dietary patterns in Australian pregnant women between early and late pregnancy and their associations with GDM. METHODS The data from n = 284 participants were analysed. Diet quality indices and empirical dietary patterns were determined in early (15 ± 3 weeks gestation) and late pregnancy (35 ± 2 weeks gestation). Paired t-tests were used to examine changes in scores for diet quality indices and dietary patterns from early to late pregnancy. Logistic regression analysis was used to examine associations between GDM, diet quality indices and dietary patterns. RESULTS Three major dietary patterns were identified at early pregnancy. The first and second dietary patterns included unhealthier and healthier food groups, respectively, and the third comprised mixed food groups. Although diet quality scores did not change over time, consumption of the first dietary pattern increased (p = 0.01), and consumption of the second dietary pattern decreased by late pregnancy in women without GDM (p < 0.001). CONCLUSION No associations between DASH score, MDS and GDM were found; however an inverse association was observed between the first dietary pattern and GDM in late pregnancy (p = 0.023). Longitudinal studies are needed to examine diet quality and dietary patterns at early and late pregnancy to inform the development of tailored dietary advice for GDM.
Collapse
Affiliation(s)
- Sara Ebrahimi
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Stacey J Ellery
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Rebecca M Leech
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Paige F van der Pligt
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
- Department of Nutrition, Western Health, Footscray, Victoria, Australia
| |
Collapse
|
11
|
Mehrabani S, Shoaei N, Shateri Z, Askarpour M, Nouri M, Keshani P, Honarvar B, Homayounfar R. Consumption of ultra-processed foods could influence the metabolic syndrome odds: A cross-sectional study. Food Sci Nutr 2024; 12:2567-2577. [PMID: 38628179 PMCID: PMC11016394 DOI: 10.1002/fsn3.3938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 04/19/2024] Open
Abstract
Metabolic syndrome (MetS) prevalence has augmented globally during recent decades. Over the past years, the consumption of ultra-processed foods (UPFs) has grown significantly worldwide. So, the present research investigated the association between UPFs and MetS in an Iranian sample. This cross-sectional research was conducted on people (n = 8841) in the Fasa cohort study, Fars province, Iran. The participants' dietary consumption over a year, UPF consumption, and MetS diagnosis were evaluated through a 125-item modified food frequency questionnaire, the NOVA food group classification, and the Adult Treatment Panel III of the National Cholesterol Education Program, respectively. The association between the quartiles (Q) of UPF intake and the odds of MetS was estimated using the backward LR method of multivariate analysis. In the multivariate model, after adjusting potential confounders, the association between UPF intake and the odds of MetS was significant (Q4: odds ratio (OR = 3.27; 95% confidence interval (CI): 2.76-3.89). Also, the odds of increasing triglycerides (TG), blood pressure, and fasting blood sugar (FBS) and decreasing high-density lipoprotein cholesterol (HDL-C) were significantly higher in the last quartile compared to the first quartile of UPFs (TG: OR = 1.71; 95% CI: 1.49-1.97, blood pressure: OR = 1.53; 95% CI: 1.30-1.79, FBS: OR = 1.30; 95% CI: 1.10-1.54, and HDL-C: OR = 1.22; 95% CI: 1.08-1.39). The current research found a relationship between UPF intake and MetS and its components, indicating a diet-containing UPFs can be related to the occurrence of noncommunicable diseases.
Collapse
Affiliation(s)
- Sanaz Mehrabani
- Health Policy Research Center, Institute of HealthShiraz University of Medical SciencesShirazIran
- Department of Clinical Nutrition, School of Nutrition and Food ScienceIsfahan University of Medical SciencesIsfahanIran
| | - Niloofar Shoaei
- Department of Community Nutrition, School of Nutrition and Food Science, Food Security Research CenterIsfahan University of Medical SciencesIsfahanIran
| | - Zainab Shateri
- Department of Nutrition and Biochemistry, Faculty of MedicineIlam University of Medical SciencesIlamIran
| | - Moein Askarpour
- Department of Clinical Nutrition, School of Nutritional Sciences and DieteticsShiraz University of Medical SciencesShirazIran
- Students' Research Committee, School of Nutrition and Food ScienceShiraz University of Medical SciencesShirazIran
| | - Mehran Nouri
- Health Policy Research Center, Institute of HealthShiraz University of Medical SciencesShirazIran
- Students' Research Committee, School of Nutrition and Food ScienceShiraz University of Medical SciencesShirazIran
- Department of Community Nutrition, School of Nutrition and Food SciencesShiraz University of Medical SciencesShirazIran
| | - Parisa Keshani
- Health Policy Research Center, Institute of HealthShiraz University of Medical SciencesShirazIran
| | - Behnam Honarvar
- Health Policy Research Center, Institute of HealthShiraz University of Medical SciencesShirazIran
| | - Reza Homayounfar
- National Nutrition and Food Technology Research InstituteShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
12
|
Lahlou RA, Carvalho F, Pereira MJ, Lopes J, Silva LR. Overview of Ethnobotanical-Pharmacological Studies Carried Out on Medicinal Plants from the Serra da Estrela Natural Park: Focus on Their Antidiabetic Potential. Pharmaceutics 2024; 16:454. [PMID: 38675115 PMCID: PMC11054966 DOI: 10.3390/pharmaceutics16040454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
The Serra da Estrela Natural Park (NPSE) in Portugal stands out as a well-preserved region abundant in medicinal plants, particularly known for their pharmaceutical applications in diabetes prevention and treatment. This comprehensive review explores these plants' botanical diversity, traditional uses, pharmacological applications, and chemical composition. The NPSE boast a rich diversity with 138 medicinal plants across 55 families identified as traditionally and pharmacologically used against diabetes globally. Notably, the Asteraceae and Lamiaceae families are prevalent in antidiabetic applications. In vitro studies have revealed their significant inhibition of carbohydrate-metabolizing enzymes, and certain plant co-products regulate genes involved in carbohydrate metabolism and insulin secretion. In vivo trials have demonstrated antidiabetic effects, including glycaemia regulation, insulin secretion, antioxidant activity, and lipid profile modulation. Medicinal plants in NPSE exhibit various activities beyond antidiabetic, such as antioxidant, anti-inflammatory, antibacterial, anti-cancer, and more. Chemical analyses have identified over fifty compounds like phenolic acids, flavonoids, terpenoids, and polysaccharides responsible for their efficacy against diabetes. These findings underscore the potential of NPSE medicinal plants as antidiabetic candidates, urging further research to develop effective plant-based antidiabetic drugs, beverages, and supplements.
Collapse
Affiliation(s)
- Radhia Aitfella Lahlou
- SPRINT Sport Physical Activity and Health Research & Innovation Center, Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal; (R.A.L.); (F.C.)
| | - Filomena Carvalho
- SPRINT Sport Physical Activity and Health Research & Innovation Center, Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal; (R.A.L.); (F.C.)
| | - Maria João Pereira
- CERENA/DER, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal;
| | - João Lopes
- iMed.ULisboa, Research Institute for Medicines, Faculdade de Farmácia, University of Lisboa, 1649-003 Lisboa, Portugal;
| | - Luís R. Silva
- SPRINT Sport Physical Activity and Health Research & Innovation Center, Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal; (R.A.L.); (F.C.)
- CICS-UBI—Health Sciences Research Center, University of Beira Interior, 6201-506 Covilhã, Portugal
- CERES, Department of Chemical Engineering, University of Coimbra, 3030-790 Coimbra, Portugal
| |
Collapse
|
13
|
Song Y, Chang Z, Song C, Cui K, Shi B, Zhang R, Dong Q, Dou K. Association Between MIND Diet Adherence and Mortality: Insights from Diabetic and Non-Diabetic Cohorts. Nutr Diabetes 2023; 13:18. [PMID: 37816701 PMCID: PMC10564876 DOI: 10.1038/s41387-023-00247-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/19/2023] [Accepted: 09/20/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND/OBJECTIVES To date, evidence regarding the protective roles of the Mediterranean-Dietary Approaches to Stop Hypertension Intervention for Neurodegenerative Delay (MIND) diet in patients with type 2 diabetes mellitus (T2DM) is scarce. This study aims to estimate the impact of adhering to the MIND diet on the mortality in patients with and without T2DM. SUBJECTS/METHODS In this cohort study, 6887 participants (1021 patients with T2DM) from the NHANES dataset were analyzed. The exposure is the MIND diet adherence. The primary outcomes are all-cause and cardiovascular (CV) deaths. RESULTS We documented 1087 all-cause deaths consisting of 377 CV deaths during the follow-up (median time of 10 years). Among participants with T2DM, those with a high MIND score (> 8.0, range of MIND score: 4.5-13) had a significantly lower risk of all-cause death (hazard ratio [HR] 0.75, 95% confidence interval [CI]: 0.59, 0.96, P = 0.021) and CV death (HR 0.50, 95% CI: 0.29, 0.87, P = 0.014) compared to those with a low MIND score (≤ 8.0). In participants without T2DM, a high MIND score was associated with a significant decrease in the risk of all-cause death (HR = 0.83, 95% CI: 0.70, 0.99, P < 0.001), but the association with CV death risk was not statistically significant. CONCLUSION This study uncovered significant associations between the MIND diet and decreased risk of all-cause and CV death in patients with T2DM. The findings highlight the potential benefits of following the MIND diet in managing and enhancing the outcomes of individuals with T2DM.
Collapse
Affiliation(s)
- Yanjun Song
- Cardiometabolic Medicine Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing, 100037, China
- State Key Laboratory of Cardiovascular Disease, Beijing, China
| | - Zhen'ge Chang
- Department of Respiratory Medicine, Civil Aviation General Hospital, Beijing, China
| | - Chenxi Song
- Cardiometabolic Medicine Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing, 100037, China
- State Key Laboratory of Cardiovascular Disease, Beijing, China
| | - Kongyong Cui
- Cardiometabolic Medicine Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing, 100037, China
- State Key Laboratory of Cardiovascular Disease, Beijing, China
| | - Boqun Shi
- Cardiometabolic Medicine Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing, 100037, China
- State Key Laboratory of Cardiovascular Disease, Beijing, China
| | - Rui Zhang
- Cardiometabolic Medicine Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing, 100037, China
- State Key Laboratory of Cardiovascular Disease, Beijing, China
| | - Qiuting Dong
- Cardiometabolic Medicine Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing, 100037, China.
- State Key Laboratory of Cardiovascular Disease, Beijing, China.
| | - Kefei Dou
- Cardiometabolic Medicine Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing, 100037, China.
- State Key Laboratory of Cardiovascular Disease, Beijing, China.
| |
Collapse
|
14
|
Blaak EE, Goossens GH. Metabolic phenotyping in people living with obesity: Implications for dietary prevention. Rev Endocr Metab Disord 2023; 24:825-838. [PMID: 37581871 PMCID: PMC10492670 DOI: 10.1007/s11154-023-09830-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/01/2023] [Indexed: 08/16/2023]
Abstract
Given the increasing number of people living with obesity and related chronic metabolic disease, precision nutrition approaches are required to increase the effectiveness of prevention strategies. This review addresses these approaches in different metabolic phenotypes (metabotypes) in obesity. Although obesity is typically associated with an increased cardiometabolic disease risk, some people with obesity are relatively protected against the detrimental effects of excess adiposity on cardiometabolic health, also referred to as 'metabolically healthy obesity' (MHO). Underlying mechanisms, the extent to which MHO is a transient state as well as lifestyle strategies to counteract the transition from MHO to metabolically unhealthy obesity (MUO) are discussed. Based on the limited resources that are available for dietary lifestyle interventions, it may be reasonable to prioritize interventions for people with MUO, since targeting high-risk patients for specific nutritional, lifestyle or weight-loss strategies may enhance the cost-effectiveness of these interventions. Additionally, the concept of tissue insulin resistant (IR) metabotypes is discussed, representing distinct etiologies towards type 2 diabetes (T2D) as well as cardiovascular disease (CVD). Recent evidence indicates that these tissue IR metabotypes, already present in individuals with obesity with a normal glucose homeostasis, respond differentially to diet. Modulation of dietary macronutrient composition according to these metabotypes may considerably improve cardiometabolic health benefits. Thus, nutritional or lifestyle intervention may improve cardiometabolic health, even with only minor or no weight loss, which stresses the importance of focusing on a healthy lifestyle and not on weight loss only. Targeting different metabotypes towards T2D and cardiometabolic diseases may lead to more effective lifestyle prevention and treatment strategies. Age and sex-related differences in tissue metabotypes and related microbial composition and functionality (fermentation), as important drivers and/or mediators of dietary intervention response, have to be taken into account. For the implementation of these approaches, more prospective trials are required to provide the knowledge base for precision nutrition in the prevention of chronic metabolic diseases.
Collapse
Affiliation(s)
- Ellen E Blaak
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.
| | - Gijs H Goossens
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| |
Collapse
|
15
|
Lord M. A Matter of the Heart: Why It Is Time to Change How We Talk About Maternal Mortality. Mil Med 2023; 188:168-170. [PMID: 36217781 DOI: 10.1093/milmed/usac301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/16/2022] [Accepted: 09/29/2022] [Indexed: 11/12/2022] Open
Abstract
As the global burden of disease shifts from "diseases of poverty" such as diarrhea to "diseases of affluence" like diabetes and heart disease, a parallel shift is underway in maternal health. Maternal death from hemorrhage is decreasing, while deaths resulting from exacerbation of underlying chronic disease are on the rise.
Collapse
Affiliation(s)
- Megan Lord
- Division of Maternal Fetal Medicine, Women and Infants Hospital of Rhode Island, Alpert Medical School of Brown University, Providence, RI 02905, USA
- Department of Preventive Medicine and Biostatistics, Uniformed Service University of the Health Sciences, Bethesda, MD 02814, USA
| |
Collapse
|
16
|
Bae CS, Lee Y, Ahn T. Therapeutic treatments for diabetes mellitus-induced liver injury by regulating oxidative stress and inflammation. Appl Microsc 2023; 53:4. [PMID: 37428327 PMCID: PMC10333167 DOI: 10.1186/s42649-023-00089-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/01/2023] [Indexed: 07/11/2023] Open
Abstract
Diabetes mellitus (DM) is a metabolic disease that affects all systems in the body, including the liver. Numerous studies have reported that chronic DM etiology and pathogenesis complications implicate oxidative stress, generating reactive oxygen species, such as superoxide anions and free radicals. In addition, pro-inflammatory reactions are also underlying functions closely related to oxidative stress that further exacerbate pathological DM states. The liver is especially susceptible to hyperglycemia-induced oxidative stress and the related inflammation. Thus, anti-oxidation and anti-inflammation therapies are promising strategies for treating liver damage. This review summarizes therapeutic treatments attenuating the generation of oxidative stress and pro-inflammation, which also cause DM-induced liver injury. Although the treatments have several impediments to be solved, these remedies may have clinically important implications under the absence of effective drugs for the damaged liver in DM patients.
Collapse
Affiliation(s)
- Chun-Sik Bae
- College of Veterinary Medicine, Chonnam National University, 77 Yongbong-Ro, Buk-Gu, Gwangju, 61186, Republic of Korea
| | - Youngchan Lee
- College of Veterinary Medicine, Chonnam National University, 77 Yongbong-Ro, Buk-Gu, Gwangju, 61186, Republic of Korea
| | - Taeho Ahn
- College of Veterinary Medicine, Chonnam National University, 77 Yongbong-Ro, Buk-Gu, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
17
|
Chikwetu L, Daily S, Mortazavi BJ, Dunn J. Automated Diet Capture Using Voice Alerts and Speech Recognition on Smartphones: Pilot Usability and Acceptability Study. JMIR Form Res 2023; 7:e46659. [PMID: 37191989 DOI: 10.2196/46659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND Effective monitoring of dietary habits is critical for promoting healthy lifestyles and preventing or delaying the onset and progression of diet-related diseases, such as type 2 diabetes. Recent advances in speech recognition technologies and natural language processing present new possibilities for automated diet capture; however, further exploration is necessary to assess the usability and acceptability of such technologies for diet logging. OBJECTIVE This study explores the usability and acceptability of speech recognition technologies and natural language processing for automated diet logging. METHODS We designed and developed base2Diet-an iOS smartphone application that prompts users to log their food intake using voice or text. To compare the effectiveness of the 2 diet logging modes, we conducted a 28-day pilot study with 2 arms and 2 phases. A total of 18 participants were included in the study, with 9 participants in each arm (text: n=9, voice: n=9). During phase I of the study, all 18 participants received reminders for breakfast, lunch, and dinner at preselected times. At the beginning of phase II, all participants were given the option to choose 3 times during the day to receive 3 times daily reminders to log their food intake for the remainder of the phase, with the ability to modify the selected times at any point before the end of the study. RESULTS The total number of distinct diet logging events per participant was 1.7 times higher in the voice arm than in the text arm (P=.03, unpaired t test). Similarly, the total number of active days per participant was 1.5 times higher in the voice arm than in the text arm (P=.04, unpaired t test). Furthermore, the text arm had a higher attrition rate than the voice arm, with only 1 participant dropping out of the study in the voice arm, while 5 participants dropped out in the text arm. CONCLUSIONS The results of this pilot study demonstrate the potential of voice technologies in automated diet capturing using smartphones. Our findings suggest that voice-based diet logging is more effective and better received by users compared to traditional text-based methods, underscoring the need for further research in this area. These insights carry significant implications for the development of more effective and accessible tools for monitoring dietary habits and promoting healthy lifestyle choices.
Collapse
Affiliation(s)
- Lucy Chikwetu
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, United States
| | - Shaundra Daily
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, United States
| | - Bobak J Mortazavi
- Department of Computer Science and Engineering, Texas A & M University, College Station, TX, United States
| | - Jessilyn Dunn
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| |
Collapse
|
18
|
Nguyen CQ, Pham TTP, Fukunaga A, Hoang DV, Phan TV, Phan DC, Huynh DV, Hachiya M, Le HX, Do HT, Mizoue T, Inoue Y. Red meat consumption is associated with prediabetes and diabetes in rural Vietnam: a cross-sectional study. Public Health Nutr 2023; 26:1006-1013. [PMID: 35722988 PMCID: PMC10346020 DOI: 10.1017/s1368980022001422] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/02/2022] [Accepted: 05/27/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE To examine the association between red/processed meat consumption and glycaemic conditions (i.e. prediabetes (preDM) and diabetes mellitus (DM)) among middle-aged residents in rural Khánh Hòa, Vietnam. DESIGN In this cross-sectional study, a multinomial logistic regression model was used to examine the association between daily consumption of red/processed meat (0-99 g, 100-199 g or ≥ 200 g) and preDM/DM with adjustments for socio-demographic, lifestyle-related and health-related variables. SETTING Khánh Hòa Province, Vietnam. PARTICIPANTS The study used data collected through a baseline survey conducted during a prospective cohort study on CVD among 3000 residents, aged 40-60 years, living in rural communes in Khánh Hòa Province. RESULTS The multinomial regression model revealed that the relative-risk ratios for DM were 1·00 (reference), 1·11 (95 % CI = 0·75, 1·62) and 1·80 (95 % CI = 1·40, 2·32) from the lowest to the highest red/processed meat consumption categories (Ptrend = 0·006). The corresponding values for preDM were 1·00 (reference), 1·25 (95 % CI = 1·01, 1·54) and 1·67 (95 % CI = 1·20, 2·33) (Ptrend = 0·004). We did not find any evidence of statistical significance in relation to poultry consumption. CONCLUSION Increased red/processed meat consumption, but not poultry consumption, was positively associated with the prevalence of preDM/DM in rural communes in Khánh Hòa Province, Vietnam. Dietary recommendations involving a reduction in red/processed meat consumption should be considered in low- and middle-income countries.
Collapse
Affiliation(s)
- Chau Que Nguyen
- Department of Non-communicable Disease Control and Nutrition, Pasteur Institute in Nha Trang, Nha Trang, Khánh Hòa, Vietnam
| | - Thuy Thi Phuong Pham
- Department of Non-communicable Disease Control and Nutrition, Pasteur Institute in Nha Trang, Nha Trang, Khánh Hòa, Vietnam
| | - Ami Fukunaga
- Department of Epidemiology and Prevention, National Center for Global Health and Medicine, Tokyo162-8655, Japan
| | - Dong Van Hoang
- Department of Epidemiology and Prevention, National Center for Global Health and Medicine, Tokyo162-8655, Japan
| | - Tien Vu Phan
- Medical Service Center, Pasteur Institute in Nha Trang, Nha Trang, Khánh Hòa, Vietnam
| | - Danh Cong Phan
- Department of Non-communicable Disease Control and Nutrition, Pasteur Institute in Nha Trang, Nha Trang, Khánh Hòa, Vietnam
| | - Dong Van Huynh
- Khánh Hòa Center for Disease Control, Khánh Hòa, Vietnam
| | - Masahiko Hachiya
- Bureau of International Health Cooperation, National Center for Global Health and Medicine, Tokyo, Japan
| | - Huy Xuan Le
- Pasteur Institute in Nha Trang, Nha Trang, Khánh Hòa, Vietnam
| | - Hung Thai Do
- Pasteur Institute in Nha Trang, Nha Trang, Khánh Hòa, Vietnam
| | - Tetsuya Mizoue
- Department of Epidemiology and Prevention, National Center for Global Health and Medicine, Tokyo162-8655, Japan
| | - Yosuke Inoue
- Department of Epidemiology and Prevention, National Center for Global Health and Medicine, Tokyo162-8655, Japan
| |
Collapse
|
19
|
Alfhili MA, Alsughayyir J, Basudan A, Alfaifi M, Awan ZA, Algethami MR, Al-Sheikh YA. Blood indices of omega-3 and omega-6 polyunsaturated fatty acids are altered in hyperglycemia. Saudi J Biol Sci 2023; 30:103577. [PMID: 36816730 PMCID: PMC9932443 DOI: 10.1016/j.sjbs.2023.103577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/31/2022] [Accepted: 01/22/2023] [Indexed: 01/30/2023] Open
Abstract
Polyunsaturated fatty acids (PUFAs) may favorably influence the risk and clinical course of diabetes mellitus (DM). In particular, eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and arachidonic acid (AA) alleviate oxidative injury and insulin resistance characteristic of DM. Uncertainty still remains, however, as to the composition and proportions of blood PUFAs in relation to fasting blood glucose levels. This study, thus, aims to examine the patterns of blood PUFA indices in normoglycemic (NG) and hyperglycemic (HG) Saudi subjects. Age, gender, FA profiles, and laboratory records of 143 subjects collected from September 2014 to March 2018 were retrospectively analyzed. Means, prevalence rates, associations, risk measures, and the diagnostic accuracy of PUFAs were determined. HG subjects had significantly lower AA (0.70%, 95% CI: 0.59-0.80% vs 0.46%, 95% CI: 0.38-0.53%) and higher EPA/AA ratio (0.36, 95% CI: 0.30-0.42 vs 0.69, 95% CI: 0.61-0.77). Gender-wise comparisons revealed that ώ-6/ώ-3 ratio was the only PUFA index significantly elevated in HG males (0.36, 95% CI: 0.26-0.45 vs 5.68, 95% CI: 4.98-6.38) while both DHA (2.91%, 95% CI: 2.54-3.29% vs 3.37%, 95% CI: 3.13-3.60%) and ώ-3 index (3.1%, 95% CI: 2.70-3.49% vs 3.63%, 95% CI: 3.38-3.88%) were significantly elevated in HG females. Furthermore, reduced AA and elevated EPA/AA ratio were more prevalent in HG subjects (26.53 vs 28.72 and 30.61 vs 38.29, respectively) and exhibited the highest diagnostic accuracy for HG among all PUFA indices. Altogether, our study revealed that distinct, gender-specific blood PUFA indices are differentially regulated in HG subjects which may be valuable for DM management.
Collapse
Affiliation(s)
- Mohammad A. Alfhili
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia
| | - Jawaher Alsughayyir
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia
| | - Ahmed Basudan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia
| | - Mohammed Alfaifi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
| | - Zuhier A. Awan
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia
- Department of Clinical Pathology, Al-Borg Medical Laboratories, Jeddah, Saudi Arabia
| | | | - Yazeed A. Al-Sheikh
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia
| |
Collapse
|
20
|
Vázquez-Ruiz Z, Martínez-González MÁ, Vitelli-Storelli F, Bes-Rastrollo M, Basterra-Gortari FJ, Toledo E. Effect of Dietary Phenolic Compounds on Incidence of Type 2 Diabetes in the "Seguimiento Universidad de Navarra" (SUN) Cohort. Antioxidants (Basel) 2023; 12:antiox12020507. [PMID: 36830064 PMCID: PMC9952475 DOI: 10.3390/antiox12020507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
The global incidence of type 2 diabetes (T2D) has been steadily increasing in recent decades. The Mediterranean dietary pattern has shown a preventive effect on the risk of T2D. Evaluating the association between bioactive compounds such as phenolic compounds (PC) in a Mediterranean cohort could help to better understand the mechanisms implicated in this protection. We evaluated the association between dietary intake of PC and the risk of T2D in a relatively young cohort of 17,821 Spanish participants initially free of T2D, through the University of Navarra Follow-up Project ("Seguimiento Universidad de Navarra" or SUN cohort) after 10 years of median follow-up using time-dependent Cox models. Intake of PC was estimated at baseline and repeatedly at 10-year follow-up using a 136-item validated food frequency and the Phenol-Explorer database. The incidence of T2D was identified by a biennial follow-up, and only medically confirmed cases were included. During 224,751 person-years of follow-up, 186 cases of T2D were confirmed. A suboptimal intake of stilbenes was independently associated with a higher risk of T2D in subjects over 50 years (HR: 1.75, 95% CI: 1.06-2.90, p value < 0.05) after adjusting for potential confounders. Our results suggest that a moderate-high intake of stilbenes can decrease the risk of developing T2D in subjects over 50 years in our cohort.
Collapse
Affiliation(s)
- Zenaida Vázquez-Ruiz
- Department of Preventive Medicine and Public Health, Instituto de Investigación Sanitaria de Navarra (IdiSNA), University of Navarra, 31008 Pamplona, Spain
- Biomedical Research Network Centre for Pathophysiology of Obesity and Nutrition (CIBEROBN), Carlos III Health Institute, 28029 Madrid, Spain
| | - Miguel Ángel Martínez-González
- Department of Preventive Medicine and Public Health, Instituto de Investigación Sanitaria de Navarra (IdiSNA), University of Navarra, 31008 Pamplona, Spain
- Biomedical Research Network Centre for Pathophysiology of Obesity and Nutrition (CIBEROBN), Carlos III Health Institute, 28029 Madrid, Spain
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| | - Facundo Vitelli-Storelli
- Grupo de Investigación en Interacciones Gen-Ambiente y Salud (GIIGAS), Instituto de Biomedicina (IBIOMED), University of León, 24004 León, Spain
| | - Maira Bes-Rastrollo
- Department of Preventive Medicine and Public Health, Instituto de Investigación Sanitaria de Navarra (IdiSNA), University of Navarra, 31008 Pamplona, Spain
- Biomedical Research Network Centre for Pathophysiology of Obesity and Nutrition (CIBEROBN), Carlos III Health Institute, 28029 Madrid, Spain
| | - Francisco Javier Basterra-Gortari
- Department of Preventive Medicine and Public Health, Instituto de Investigación Sanitaria de Navarra (IdiSNA), University of Navarra, 31008 Pamplona, Spain
- Department of Endocrinology and Nutrition, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Hospital Universitario de Navarra, 31008 Pamplona, Spain
| | - Estefanía Toledo
- Department of Preventive Medicine and Public Health, Instituto de Investigación Sanitaria de Navarra (IdiSNA), University of Navarra, 31008 Pamplona, Spain
- Biomedical Research Network Centre for Pathophysiology of Obesity and Nutrition (CIBEROBN), Carlos III Health Institute, 28029 Madrid, Spain
- Correspondence:
| |
Collapse
|
21
|
Idoko VO, Sulaiman MA, Adamu RM, Abdullahi AD, Tajuddeen N, Mohammed A, Inuwa HM, Ibrahim MA. Evaluating Khaya senegalensis for Dipeptidyl Peptidase-IV Inhibition Using in Vitro Analysis and Molecular Dynamic Simulation of Identified Bioactive Compounds. Chem Biodivers 2023; 20:e202200909. [PMID: 36565063 DOI: 10.1002/cbdv.202200909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/25/2022]
Abstract
The dipeptidyl peptidase-IV (DPP-IV) inhibitory activity of Khaya senegalensis extracts was evaluated. The DPP-IV from a rat kidney was purified to a purification fold of 2.3. Among extracts from K. senegalensis, the hexane extract had the best DPP-IV inhibitory activity, with IC50 value of 1.56±0.61 μg/mL and was fractionated to eleven fractions (A-K). Fraction I had the best DPP-IV inhibition via uncompetitive pattern. GC-MS analysis of fraction I showed that the major bioactive compounds were 3-amino-3-hydroxyimino-N-phenylpropanamide (1) and 11-(2-cyclopenten-1-yl)undecanoic acid (2), with good binding affinities toward DPP-IV, based on molecular docking,. They were then subjected to molecular dynamic simulation using WEBGRO and utilizing a GROMACS system for 100 ns. The 3-amino-3-hydroxyimino-N-phenylpropanamide-DPP-IV complex was more stable and compact than the other complex. K. senegalensis contains compounds like 1 that might be used for the design of new DPP-IV inhibitors.
Collapse
Affiliation(s)
| | - Mohammed Aliyu Sulaiman
- Department of Biochemistry, Ahmadu Bello University, Zaria 80001, Nigeria
- Department of Biochemistry, Modibbo Adama University of Technology, Yola, Nigeria
| | - Rahma Muhammad Adamu
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | | | - Nasir Tajuddeen
- Department of Chemistry, Ahmadu Bello University, Zaria 80001, Nigeria
| | - Aminu Mohammed
- Department of Biochemistry, Ahmadu Bello University, Zaria 80001, Nigeria
| | - Hajiya Mairo Inuwa
- Department of Biochemistry, Ahmadu Bello University, Zaria 80001, Nigeria
| | | |
Collapse
|
22
|
Oberoi A, Giezenaar C, Rigda RS, Horowitz M, Jones KL, Chapman I, Soenen S. Effects of co-ingesting glucose and whey protein on blood glucose, plasma insulin and glucagon concentrations, and gastric emptying, in older men with and without type 2 diabetes. Diabetes Obes Metab 2023; 25:1321-1330. [PMID: 36694303 DOI: 10.1111/dom.14983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/19/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023]
Abstract
AIM To investigate whether co-ingestion of dietary protein with, or before, carbohydrate may be a useful strategy to reduce postprandial hyperglycaemia in older men with type 2 diabetes (T2D). MATERIALS AND METHODS Blood glucose, plasma insulin and glucagon concentrations were measured for 180 minutes following ingestion of a drink containing 30 g of glucose (G; 120 kcal), 30 g of whey protein (120 kcal), 30 g of glucose plus 30 g of whey protein (GP; 240 kcal), or control (~2 kcal) in older men with T2D (n = 10, 77 ± 1 years; 31 ± 1.7 kg/m2 ) and without T2D (n = 10, 78 ± 2 years; 27 ± 1.4 kg/m2 ). Mixed model analysis was used. RESULTS GP versus G markedly reduced the increase in blood glucose concentrations (P < .001) and had a synergistic effect on the increase in insulin concentrations (P < .001), in men both with and without T2D. Glucose concentrations were higher in men with T2D compared with those without T2D, whereas insulin and glucagon concentrations were largely unaffected by the presence of T2D. Gastric emptying was faster in men with T2D than in those without T2D. CONCLUSIONS The ability of whey protein to reduce carbohydrate-induced, postprandial hyperglycaemia is retained in older men with T2D compared with those without T2D, and whey protein supplementation may be a useful strategy in the prevention and management of T2D in older people.
Collapse
Affiliation(s)
- Avneet Oberoi
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Caroline Giezenaar
- Food Experience and Sensory Testing (FEAST) Laboratory, School of Food & Advanced Technology, Massey University, Palmerston North, New Zealand
| | - Rachael S Rigda
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Michael Horowitz
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Royal Adelaide Hospital, Adelaide, South Australia, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Karen L Jones
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Royal Adelaide Hospital, Adelaide, South Australia, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Ian Chapman
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Royal Adelaide Hospital, Adelaide, South Australia, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Stijn Soenen
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Royal Adelaide Hospital, Adelaide, South Australia, Australia
- Faculty of Health Sciences & Medicine, Bond University, Gold Coast, Queensland, Australia
| |
Collapse
|
23
|
Trouwborst I, Gijbels A, Jardon KM, Siebelink E, Hul GB, Wanders L, Erdos B, Péter S, Singh-Povel CM, de Vogel-van den Bosch J, Adriaens ME, Arts ICW, Thijssen DHJ, Feskens EJM, Goossens GH, Afman LA, Blaak EE. Cardiometabolic health improvements upon dietary intervention are driven by tissue-specific insulin resistance phenotype: A precision nutrition trial. Cell Metab 2023; 35:71-83.e5. [PMID: 36599304 DOI: 10.1016/j.cmet.2022.12.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/12/2022] [Accepted: 11/13/2022] [Indexed: 01/05/2023]
Abstract
Precision nutrition based on metabolic phenotype may increase the effectiveness of interventions. In this proof-of-concept study, we investigated the effect of modulating dietary macronutrient composition according to muscle insulin-resistant (MIR) or liver insulin-resistant (LIR) phenotypes on cardiometabolic health. Women and men with MIR or LIR (n = 242, body mass index [BMI] 25-40 kg/m2, 40-75 years) were randomized to phenotype diet (PhenoDiet) group A or B and followed a 12-week high-monounsaturated fatty acid (HMUFA) diet or low-fat, high-protein, and high-fiber diet (LFHP) (PhenoDiet group A, MIR/HMUFA and LIR/LFHP; PhenoDiet group B, MIR/LFHP and LIR/HMUFA). PhenoDiet group B showed no significant improvements in the primary outcome disposition index, but greater improvements in insulin sensitivity, glucose homeostasis, serum triacylglycerol, and C-reactive protein compared with PhenoDiet group A were observed. We demonstrate that modulating macronutrient composition within the dietary guidelines based on tissue-specific insulin resistance (IR) phenotype enhances cardiometabolic health improvements. Clinicaltrials.gov registration: NCT03708419, CCMO registration NL63768.068.17.
Collapse
Affiliation(s)
- Inez Trouwborst
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands; TI Food and Nutrition (TIFN), Wageningen, the Netherlands
| | - Anouk Gijbels
- TI Food and Nutrition (TIFN), Wageningen, the Netherlands; Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands
| | - Kelly M Jardon
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands; TI Food and Nutrition (TIFN), Wageningen, the Netherlands
| | - Els Siebelink
- Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands
| | - Gabby B Hul
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands; TI Food and Nutrition (TIFN), Wageningen, the Netherlands
| | - Lisa Wanders
- TI Food and Nutrition (TIFN), Wageningen, the Netherlands; Radboud Institute for Health Sciences, Department of Physiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Balázs Erdos
- TI Food and Nutrition (TIFN), Wageningen, the Netherlands; Maastricht Centre for Systems Biology, Maastricht University, Maastricht, the Netherlands
| | | | | | | | - Michiel E Adriaens
- TI Food and Nutrition (TIFN), Wageningen, the Netherlands; Maastricht Centre for Systems Biology, Maastricht University, Maastricht, the Netherlands
| | - Ilja C W Arts
- TI Food and Nutrition (TIFN), Wageningen, the Netherlands; Maastricht Centre for Systems Biology, Maastricht University, Maastricht, the Netherlands
| | - Dick H J Thijssen
- Radboud Institute for Health Sciences, Department of Physiology, Radboud University Medical Center, Nijmegen, the Netherlands; Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Edith J M Feskens
- Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands
| | - Gijs H Goossens
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Lydia A Afman
- TI Food and Nutrition (TIFN), Wageningen, the Netherlands; Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands
| | - Ellen E Blaak
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands; TI Food and Nutrition (TIFN), Wageningen, the Netherlands.
| |
Collapse
|
24
|
Dhinagaran DA, Car LT. Public perceptions of a healthy lifestyle change conversational agent in Singapore: A qualitative study. Digit Health 2022; 8:20552076221131190. [PMID: 36267545 PMCID: PMC9578172 DOI: 10.1177/20552076221131190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/20/2022] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVE Conversational agents (CAs) are increasingly used for the delivery of healthy lifestyle behaviour interventions. This qualitative study aimed to explore the barriers and facilitators to participants' usage of a healthy lifestyle change CA and collect their views on areas for its improvement. METHODS Twenty participants were recruited from a convenience sample of users interacting with a CA promoting healthy lifestyle changes to the general population in Singapore. This CA, Precilla, educated users on healthy living, specifically: diet, exercise, sleep and stress; for four weeks. The volunteers participated in semi-structured interviews where an interview guide was used, with questions on acceptability, satisfaction and critical appraisal of the CA. Interviews were transcribed and analysed in parallel by two researchers using thematic content analysis. RESULTS Four main themes were identified: (1) enjoyable and acceptable experiences, (2) suboptimal experience(s), (3) alterations to Precilla for enhanced interaction and (4) suggestions for the future. Enjoyable experiences referenced the CA's friendly personality and important content that motivated a positive change to their lifestyle. Some participants were less satisfied and found the content to be too simple or sometimes, the messages too lengthy. CONCLUSIONS Participants suggested that in the future, CAs should provide regularly updated content on healthy living, specifically pre-diabetes. Multiple answer options should also be provided for more personalisation along with links to external resources to help improve users' health literacy. Further recommendations include a necessity for a user-centered approach in CA development, employment of engagement strategies, use of a delivery platform most familiar to the target population and stratified message timings to suit the population and purpose of CA. Translating the health CAs to languages relevant to the target group could also enable wider reach and applicability.
Collapse
Affiliation(s)
| | - Lorainne Tudor Car
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore,Department of Primary Care and Public Health, School of Public Health, Imperial College London, London, UK,Future Health Technologies, Singapore-ETH Centre, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore,Lorainne Tudor Car, Family Medicine and Primary Care, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Level 18, Clinical Science Building, 308232, Singapore.
| |
Collapse
|
25
|
Atzeni A, Martínez MÁ, Babio N, Konstanti P, Tinahones FJ, Vioque J, Corella D, Fitó M, Vidal J, Moreno-Indias I, Pertusa-Martinez S, Álvarez-Sala A, Castañer O, Goday A, Damas-Fuentes M, Belzer C, Martínez-Gonzalez MÁ, Hu FB, Salas-Salvadó J. Association between ultra-processed food consumption and gut microbiota in senior subjects with overweight/obesity and metabolic syndrome. Front Nutr 2022; 9:976547. [PMID: 36299993 PMCID: PMC9589409 DOI: 10.3389/fnut.2022.976547] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/21/2022] [Indexed: 12/14/2022] Open
Abstract
The production and consumption of ultra-processed foods (UPF) has increased considerably during the last years worldwide. Collective evidence shows the association between UPF consumption and adverse health outcomes, including inflammatory gastro-intestinal disorders and obesity. The gut microbiota has been suggested as potential mediator of the effects of UPF consumption on metabolism and health. However, few studies have been conducted in order to elucidate these aspects. Therefore, the aim of the present study was to assess the cross-sectional associations between UPF consumption and gut microbiota in a population of senior subjects (n = 645) within the frame of the PREDIMED-Plus trial. Eligible participants were men and women (aged 55-75 years), without documented history of cardiovascular disease at enrollment, with overweight/obesity (body mass index ≤ 27 and <40 kg/m2) and metabolic syndrome. Using the information of food frequency questionnaires, the consumption of UPF, expressed as a percentage of total dietary energy intake in kcal/day, was calculated considering those food items classified in group 4 of NOVA system. Population was categorized according to tertiles of UPF consumption. Taxonomic fecal microbiota information, along with blood biochemical parameters, anthropometric measurements and clinical data were obtained. Bioinformatics analysis was performed to study the association between fecal microbiota composition and UPF consumption. We observed that subjects allocated in the highest tertile of UPF consumption (21.4 ± 5.0 % kcal/day) presented lower adherence to MedDiet (p < 0.001) and higher total energy intake (p < 0.001). The taxonomic analysis of the fecal microbiota revealed a significant (Benjamini-Hochberg adjusted p < 0.2) positive association between specific taxa and tertiles (T) of UPF consumption: Alloprevotella (p = 0.041 vs. T2; p = 0.065 vs. T3), Negativibacillus (p = 0.096 vs. T3), Prevotella (p = 0.116 vs. T3), and Sutterella (p = 0.116 vs. T2). UPF consumption was positively associated with lower adherence to MedDiet and higher total energy intake in senior subjects with overweight obesity and metabolic syndrome. In addition, positive association with specific fecal microbiota taxa related to inflammatory gastro-intestinal diseases and low consumption of fruits and vegetables, was observed.
Collapse
Affiliation(s)
- Alessandro Atzeni
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain.,Universitat Rovira i Virgili, Department de Bioquímica i Biotecnologia, Unitat de Nutrició, Reus, Spain.,Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| | - María Ágeles Martínez
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain.,Universitat Rovira i Virgili, Department de Bioquímica i Biotecnologia, Unitat de Nutrició, Reus, Spain.,Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| | - Nancy Babio
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain.,Universitat Rovira i Virgili, Department de Bioquímica i Biotecnologia, Unitat de Nutrició, Reus, Spain.,Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| | - Prokopis Konstanti
- Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands
| | - Francisco J Tinahones
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain.,Department of Endocrinology and Nutrition, Instituto de Investigación Biomédica de Málaga - IBIMA, Hospital Universitario Virgen de la Vic, Málaga, Spain
| | - Jesús Vioque
- CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Investigación Sanitaria y Biomédica de Alicante, Universidad Miguel Hernández (ISABIAL-UMH), Alicante, Spain
| | - Dolores Corella
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain.,Department of Preventive Medicine, University of Valencia, Valencia, Spain
| | - Montserrat Fitó
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain.,Unit of Cardiovascular Risk and Nutrition, Institut Hospital del Mar de Investigaciones Médicas Municipal d'Investigació Médica (IMIM), Barcelona, Spain
| | - Josep Vidal
- CIBER Diabetes y Enfermedades Metabólicas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Department of Endocrinology, Institut d'Investigacions Biomédiques August Pi Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Isabel Moreno-Indias
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain.,Department of Endocrinology and Nutrition, Instituto de Investigación Biomédica de Málaga - IBIMA, Hospital Universitario Virgen de la Vic, Málaga, Spain
| | | | - Andrea Álvarez-Sala
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain.,Department of Preventive Medicine, University of Valencia, Valencia, Spain
| | - Olga Castañer
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain.,Unit of Cardiovascular Risk and Nutrition, Institut Hospital del Mar de Investigaciones Médicas Municipal d'Investigació Médica (IMIM), Barcelona, Spain
| | - Albert Goday
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain.,Medicine Department, Universitat Autònoma de Barcelona, Barcelona, Spain.,IMIM, Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Miguel Damas-Fuentes
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain.,Department of Endocrinology and Nutrition, Instituto de Investigación Biomédica de Málaga - IBIMA, Hospital Universitario Virgen de la Vic, Málaga, Spain
| | - Clara Belzer
- Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands
| | - Miguel Á Martínez-Gonzalez
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain.,Department of Preventive Medicine and Public Health, University of Navarra, Pamplona, Spain.,Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, United States
| | - Frank B Hu
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, United States.,Channing Division for Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Jordi Salas-Salvadó
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain.,Universitat Rovira i Virgili, Department de Bioquímica i Biotecnologia, Unitat de Nutrició, Reus, Spain.,Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
26
|
Azarova I, Klyosova E, Polonikov A. Association between RAC1 gene variation, redox homeostasis and type 2 diabetes mellitus. Eur J Clin Invest 2022; 52:e13792. [PMID: 35416295 DOI: 10.1111/eci.13792] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/11/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Increased production of reactive oxygen species (ROS) and oxidative stress are known to play a key role in the pathogenesis of type 2 diabetes (T2D); however, the relationship between genes encoding a multi-subunit ROS-generated enzyme NADPH oxidase and disease susceptibility remains unexplored. AIMS The present pilot study investigated whether single-nucleotide polymorphisms (SNP) at the RAC1 gene (Rac family small GTPase 1), a molecular switcher of NADPH oxidase, are associated with the risk of T2D, glucose metabolism and redox homeostasis. MATERIALS & METHODS DNA samples from 3206 unrelated Russian subjects (1579 T2D patients and 1627 controls) were genotyped for six common SNPs rs4724800, rs7784465, rs10951982, rs10238136, rs836478 and rs9374 of RAC1 using the MassArray-4 system. RESULTS SNP rs7784465 was associated with an increased risk of T2D (p = .0003), and significant differences in the RAC1 haplotypes occurred between the cases and controls (p = .005). Seventeen combinations of RAC1 genotypes showed significant associations with T2D risk (FDR <0.05). Associations of RAC1 polymorphisms with T2D were modified by environmental factors such as sedentary lifestyle, psychological stresses, a dietary deficit of fresh fruits/vegetables and increased carbohydrate intake. RAC1 polymorphisms were associated with biochemical parameters in diabetics: rs7784465 (p = .015) and rs836478 (p = .028) with increased glycated haemoglobin, rs836478 (p = .005) with increased fasting blood glucose, oxidized glutathione (p = .012) and uric acid (p = .034). Haplotype rs4724800A-rs7784465C-rs10951982G-rs10238136A-rs836478C-rs9374G was strongly associated with increased levels of hydrogen peroxide (p < .0001). CONCLUSION Thus, polymorphisms in the RAC1 gene represent novel genetic markers of type 2 diabetes, and their link with glucose metabolism and disease pathogenesis is associated with the changes in redox homeostasis.
Collapse
Affiliation(s)
- Iuliia Azarova
- Department of Biological Chemistry, Kursk State Medical University, Kursk, Russian Federation.,Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, Kursk, Russian Federation
| | - Elena Klyosova
- Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, Kursk, Russian Federation
| | - Alexey Polonikov
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, Kursk, Russian Federation.,Laboratory of Statistical Genetics and Bioinformatics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, Kursk, Russian Federation
| |
Collapse
|
27
|
Sharma BR, Jaiswal S, Ravindra PV. Modulation of gut microbiota by bioactive compounds for prevention and management of type 2 diabetes. Biomed Pharmacother 2022; 152:113148. [PMID: 35665671 DOI: 10.1016/j.biopha.2022.113148] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 05/10/2022] [Accepted: 05/15/2022] [Indexed: 01/08/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder characterized by hyperglycemia and insulin resistance. Gut microbiota (GM) are specific groups of microbes colonized in the gastrointestinal (GI) tract. They profoundly influence health, disease protection, and associated with metabolic activities, and play a vital role in the production of functional metabolites from dietary substances. Dysbiosis of GM has been linked to the onset of T2DM and can be altered to attain eubiosis by intervention with various nutritional bioactive compounds such as polyphenols, prebiotics, and probiotics. This review presents an overview of the evidence and underlying mechanisms by which bioactive compounds modulate the GM for the prevention and management of T2DM.
Collapse
Affiliation(s)
- Basista Rabina Sharma
- Department of Biochemistry, CSIR-Central Food Technological Research Institute (CFTRI), KRS Road, Opp. Rail Museum, Mysuru 570020, India
| | - Swarna Jaiswal
- School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin - City Campus, Central Quad, Grangegorman, Dublin D07 ADY7, Ireland; Environmental Sustainability and Health Institute, Technological University Dublin - City Campus, Grangegorman, Dublin D07 H6K8, Ireland
| | - P V Ravindra
- Department of Biochemistry, CSIR-Central Food Technological Research Institute (CFTRI), KRS Road, Opp. Rail Museum, Mysuru 570020, India.
| |
Collapse
|
28
|
Hosseini-Esfahani F, Beheshti N, Koochakpoor G, Mirmiran P, Azizi F. Meat Food Group Intakes and the Risk of Type 2 Diabetes Incidence. Front Nutr 2022; 9:891111. [PMID: 35845792 PMCID: PMC9280202 DOI: 10.3389/fnut.2022.891111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
AimThis study aimed to evaluate the association of meats and their substitute food group intakes, including nuts, eggs, and legumes, with type 2 diabetes (T2D).MethodsFor this secondary analysis, we selected eligible adults (n = 6,112) from the Tehran Lipid and Glucose Study participants with a median follow-up of 6.63 years. Expert nutritionists assessed dietary intakes using a valid and reliable semiquantitative food frequency questionnaire. Biochemical and anthropometric variables were assessed at baseline and follow-up examinations. We used multivariable Cox proportional hazard regression models to estimate the new onset of T2D concerning meats and their substitute food groups.ResultsWe performed this study on 2,749 men and 3,363 women, aged 41.4 ± 14.2 and 39.1 ± 13.1 years, respectively. The number of participants with incident T2D was 549. After adjusting for confounders, legume [HR: 1, 0.74 (0.58–0.94), 0.69 (0.54–0.90), 0.65 (0.50–0.84), P-trend = 0.01)] was inversely associated with incident T2D. Fish intake [HR: 1, 1.0 (0.79–1.27), 1.17 (0.91–1.50), 1.14 (0.89–1.45), P-trend = 0.01)] was positively associated with incident T2D. In subjects who reported poultry consumption of 36.4–72.8 g/day, a positive association [HR: 1.33 (1.03–1.71)] between poultry intake and T2D risk was observed.ConclusionOur findings revealed that a diet rich in legumes significantly reduced the risk of T2D incidence, while a diet high in poultry increased the risk of T2D incidence, probably due to high-temperature cooking methods and environmental contaminants.
Collapse
Affiliation(s)
- Firoozeh Hosseini-Esfahani
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloofar Beheshti
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Parvin Mirmiran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Parvin Mirmiran,
| | - Fereidoun Azizi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Complete nutrition drink with retrograded starch is low glycemic, and the individual glucose response to the low glycemic complete nutrition drink depends on fasting insulin levels and HOMA-IR in a randomized cross-over control trial. J Nutr Sci 2022; 11:e25. [PMID: 35462880 PMCID: PMC9003636 DOI: 10.1017/jns.2022.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 02/26/2022] [Accepted: 03/02/2022] [Indexed: 11/30/2022] Open
Abstract
Complete nutrition drinks with a low glycemic index (GI) provide nutritional support and prevent hyperglycaemia. The present study identified GI and factors predicting individual glucose response to a new complete nutrition drink. A randomised cross-over controlled trial was conducted in eighteen healthy volunteers (FPG < 100 mg/dl). Complete nutrition drinks containing retrograded starch, glucose solution and white bread were assigned in a random sequence with 14-day wash-out intervals. Plasma glucose and insulin levels were measured from baseline to 180 min after consuming each food. Results show the adjusted GIs of the drink was 48.2 ± 10.4 and 46.7 ± 12.7 with glucose and white bread as the reference, respectively. While the drink has low GI (<55), the individual glucose responses varied (GI: 7–149). Comparing characters in individual GI < 55 (n = 12) and GI ≥ 55 (n = 6) groups revealed significantly higher baseline insulin in the low GI group (14.86 ± 16.51 μIU/ml v. 4.9 ± 3.4 μIU/ml, P < 0·05). The correlation matrix confirms only two predictive factors for having individual GI <55 were baseline insulin (r = 0·5, P = 0·03) and HOMA-IR (r = 0·55, P = 0·02). ROC curve reveals fasting insulin above 1.6 μIU/ml and HOMA-IR above 1.05 as the cut-off values. The findings suggest that the complete nutrition drink has a low GI, but there was wide variability in individual responses partly explained by fasting insulin levels and HOMA-IR. Screening for fasting insulin and HOMA-IR may be encouraged to maximise the functional benefit of the drink.
Collapse
|
30
|
Toor R, Chana I. Exploring diet associations with Covid-19 and other diseases: a Network Analysis-based approach. Med Biol Eng Comput 2022; 60:991-1013. [PMID: 35171411 PMCID: PMC8852958 DOI: 10.1007/s11517-022-02505-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 01/10/2022] [Indexed: 02/07/2023]
Abstract
The current global pandemic, Covid-19, is a severe threat to human health and existence especially when it is mutating very frequently. Being a novel disease, Covid-19 is impacting the patients with comorbidities and is predicted to have long-term consequences, even for those who have recovered from it. To clearly recognize its impact, it is important to comprehend the complex relationship between Covid-19 and other diseases. It is also being observed that people with good immune system are less susceptible to the disease. It is perceived that if a correlation between Covid-19, other diseases, and diet is realized, then caregivers would be able to enhance their further course of medical action and recommendations. Network Analysis is one such technique that can bring forth such complex interdependencies and associations. In this paper, a Network Analysis-based approach has been proposed for analyzing the interplay of diets/foods along with Covid-19 and other diseases. Relationships between Covid-19, diabetes mellitus type 2 (T2DM), non-alcoholic fatty liver disease (NAFLD), and diets have been curated, visualized, and further analyzed in this study so as to predict unknown associations. Network algorithms including Louvain graph algorithm (LA), K nearest neighbors (KNN), and Page rank algorithms (PR) have been employed for predicting a total of 60 disease-diet associations, out of which 46 have been found to be either significant in disease risk prevention/mitigation or in its progression as validated using PubMed literature. A precision of 76.7% has been achieved which is significant considering the involvement of a novel disease like Covid-19. The generated interdependencies can be further explored by medical professionals and caregivers in order to plan healthy eating patterns for Covid-19 patients. The proposed approach can also be utilized for finding beneficial diets for different combinations of comorbidities with Covid-19 as per the underlying health conditions of a patient. Graphical abstract.
Collapse
Affiliation(s)
- Rashmeet Toor
- Cloud and IoT Research Lab, Computer Science and Engineering Department, Thapar Institute of Engineering and Technology, Patiala, India
| | - Inderveer Chana
- Cloud and IoT Research Lab, Computer Science and Engineering Department, Thapar Institute of Engineering and Technology, Patiala, India
| |
Collapse
|
31
|
Tresserra-Rimbau A, Castro-Barquero S, Becerra-Tomás N, Babio N, Martínez-González MÁ, Corella D, Fitó M, Romaguera D, Vioque J, Alonso-Gomez AM, Wärnberg J, Martínez JA, Serra-Majem L, Estruch R, Tinahones FJ, Lapetra J, Pintó X, Tur JA, López-Miranda J, Cano-Ibáñez N, Delgado-Rodríguez M, Matía-Martín P, Daimiel L, Martín Sánchez V, Vidal J, Vázquez C, Ros E, Basterra FJ, Fernández de la Puente M, Asensio EM, Castañer O, Bullón-Vela V, Tojal-Sierra L, Gómez-Gracia E, Cases-Pérez E, Konieczna J, García-Ríos A, Casañas-Quintana T, Bernal-Lopez MR, Santos-Lozano JM, Esteve-Luque V, Bouzas C, Vázquez-Ruiz Z, Palau-Galindo A, Barragan R, López Grau M, Razquín C, Goicolea-Güemez L, Toledo E, Vergaz MV, Lamuela-Raventós RM, Salas-Salvadó J. Adopting a High-Polyphenolic Diet Is Associated with an Improved Glucose Profile: Prospective Analysis within the PREDIMED-Plus Trial. Antioxidants (Basel) 2022; 11:antiox11020316. [PMID: 35204199 PMCID: PMC8868059 DOI: 10.3390/antiox11020316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 01/30/2022] [Accepted: 02/01/2022] [Indexed: 02/05/2023] Open
Abstract
Previous studies suggested that dietary polyphenols could reduce the incidence and complications of type-2 diabetes (T2D); although the evidence is still limited and inconsistent. This work analyzes whether changing to a diet with a higher polyphenolic content is associated with an improved glucose profile. At baseline, and at 1 year of follow-up visits, 5921 participants (mean age 65.0 ± 4.9, 48.2% women) who had overweight/obesity and metabolic syndrome filled out a validated 143-item semi-quantitative food frequency questionnaire (FFQ), from which polyphenol intakes were calculated. Energy-adjusted total polyphenols and subclasses were categorized in tertiles of changes. Linear mixed-effect models with random intercepts (the recruitment centers) were used to assess associations between changes in polyphenol subclasses intake and 1-year plasma glucose or glycosylated hemoglobin (HbA1c) levels. Increments in total polyphenol intake and some classes were inversely associated with better glucose levels and HbA1c after one year of follow-up. These associations were modified when the analyses were run considering diabetes status separately. To our knowledge, this is the first study to assess the relationship between changes in the intake of all polyphenolic groups and T2D-related parameters in a senior population with T2D or at high-risk of developing T2D.
Collapse
Affiliation(s)
- Anna Tresserra-Rimbau
- Department of Nutrition, Food Science and Gastronomy, XIA, School of Pharmacy and Food Sciences, INSA, University of Barcelona, 08921 Barcelona, Spain;
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain; (S.C.-B.); (N.B.-T.); (N.B.); (M.Á.M.-G.); (D.C.); (M.F.); (D.R.); (A.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (R.E.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (J.L.-M.); (C.V.); (E.R.); (F.J.B.); (M.F.d.l.P.); (E.M.A.); (O.C.); (L.T.-S.); (E.G.-G.); (J.K.); (A.G.-R.); (T.C.-Q.); (M.R.B.-L.); (J.M.S.-L.); (C.B.); (Z.V.-R.); (R.B.); (M.L.G.); (C.R.); (L.G.-G.); (E.T.); (M.V.V.); (J.S.-S.)
- Correspondence:
| | - Sara Castro-Barquero
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain; (S.C.-B.); (N.B.-T.); (N.B.); (M.Á.M.-G.); (D.C.); (M.F.); (D.R.); (A.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (R.E.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (J.L.-M.); (C.V.); (E.R.); (F.J.B.); (M.F.d.l.P.); (E.M.A.); (O.C.); (L.T.-S.); (E.G.-G.); (J.K.); (A.G.-R.); (T.C.-Q.); (M.R.B.-L.); (J.M.S.-L.); (C.B.); (Z.V.-R.); (R.B.); (M.L.G.); (C.R.); (L.G.-G.); (E.T.); (M.V.V.); (J.S.-S.)
- Department of Internal Medicine, Institut d’Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain
| | - Nerea Becerra-Tomás
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain; (S.C.-B.); (N.B.-T.); (N.B.); (M.Á.M.-G.); (D.C.); (M.F.); (D.R.); (A.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (R.E.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (J.L.-M.); (C.V.); (E.R.); (F.J.B.); (M.F.d.l.P.); (E.M.A.); (O.C.); (L.T.-S.); (E.G.-G.); (J.K.); (A.G.-R.); (T.C.-Q.); (M.R.B.-L.); (J.M.S.-L.); (C.B.); (Z.V.-R.); (R.B.); (M.L.G.); (C.R.); (L.G.-G.); (E.T.); (M.V.V.); (J.S.-S.)
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London W2 1PG, UK
- Unitat de Nutrició, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43204 Reus, Spain;
| | - Nancy Babio
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain; (S.C.-B.); (N.B.-T.); (N.B.); (M.Á.M.-G.); (D.C.); (M.F.); (D.R.); (A.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (R.E.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (J.L.-M.); (C.V.); (E.R.); (F.J.B.); (M.F.d.l.P.); (E.M.A.); (O.C.); (L.T.-S.); (E.G.-G.); (J.K.); (A.G.-R.); (T.C.-Q.); (M.R.B.-L.); (J.M.S.-L.); (C.B.); (Z.V.-R.); (R.B.); (M.L.G.); (C.R.); (L.G.-G.); (E.T.); (M.V.V.); (J.S.-S.)
- Unitat de Nutrició, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43204 Reus, Spain;
- Nutrition Unit, University Hospital of Sant Joan de Reus, 43204 Reus, Spain
- Institut d’Investigació Sanitària Pere Virgili (IISPV), 43204 Reus, Spain
| | - Miguel Ángel Martínez-González
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain; (S.C.-B.); (N.B.-T.); (N.B.); (M.Á.M.-G.); (D.C.); (M.F.); (D.R.); (A.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (R.E.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (J.L.-M.); (C.V.); (E.R.); (F.J.B.); (M.F.d.l.P.); (E.M.A.); (O.C.); (L.T.-S.); (E.G.-G.); (J.K.); (A.G.-R.); (T.C.-Q.); (M.R.B.-L.); (J.M.S.-L.); (C.B.); (Z.V.-R.); (R.B.); (M.L.G.); (C.R.); (L.G.-G.); (E.T.); (M.V.V.); (J.S.-S.)
- Department of Preventive Medicine and Public Health, University of Navarra, IDISNA, 31008 Pamplona, Spain
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Dolores Corella
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain; (S.C.-B.); (N.B.-T.); (N.B.); (M.Á.M.-G.); (D.C.); (M.F.); (D.R.); (A.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (R.E.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (J.L.-M.); (C.V.); (E.R.); (F.J.B.); (M.F.d.l.P.); (E.M.A.); (O.C.); (L.T.-S.); (E.G.-G.); (J.K.); (A.G.-R.); (T.C.-Q.); (M.R.B.-L.); (J.M.S.-L.); (C.B.); (Z.V.-R.); (R.B.); (M.L.G.); (C.R.); (L.G.-G.); (E.T.); (M.V.V.); (J.S.-S.)
- Department of Preventive Medicine, University of Valencia, 46010 Valencia, Spain
| | - Montserrat Fitó
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain; (S.C.-B.); (N.B.-T.); (N.B.); (M.Á.M.-G.); (D.C.); (M.F.); (D.R.); (A.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (R.E.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (J.L.-M.); (C.V.); (E.R.); (F.J.B.); (M.F.d.l.P.); (E.M.A.); (O.C.); (L.T.-S.); (E.G.-G.); (J.K.); (A.G.-R.); (T.C.-Q.); (M.R.B.-L.); (J.M.S.-L.); (C.B.); (Z.V.-R.); (R.B.); (M.L.G.); (C.R.); (L.G.-G.); (E.T.); (M.V.V.); (J.S.-S.)
- Unit of Cardiovascular Risk and Nutrition, Institut Hospital del Mar de Investigaciones Médicas Municipal d’Investigació Médica (IMIM), 08007 Barcelona, Spain
| | - Dora Romaguera
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain; (S.C.-B.); (N.B.-T.); (N.B.); (M.Á.M.-G.); (D.C.); (M.F.); (D.R.); (A.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (R.E.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (J.L.-M.); (C.V.); (E.R.); (F.J.B.); (M.F.d.l.P.); (E.M.A.); (O.C.); (L.T.-S.); (E.G.-G.); (J.K.); (A.G.-R.); (T.C.-Q.); (M.R.B.-L.); (J.M.S.-L.); (C.B.); (Z.V.-R.); (R.B.); (M.L.G.); (C.R.); (L.G.-G.); (E.T.); (M.V.V.); (J.S.-S.)
- Research Group on Nutritional Epidemiology & Cardiovascular Physiopathology (NUTRECOR), Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
| | - Jesús Vioque
- CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.V.); (N.C.-I.); (M.D.-R.); (V.M.S.)
- Alicante Institute for Health and Biomedical Research, University Miguel Hernandez (ISABIAL-UMH), 03010 Alicante, Spain
| | - Angel M. Alonso-Gomez
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain; (S.C.-B.); (N.B.-T.); (N.B.); (M.Á.M.-G.); (D.C.); (M.F.); (D.R.); (A.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (R.E.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (J.L.-M.); (C.V.); (E.R.); (F.J.B.); (M.F.d.l.P.); (E.M.A.); (O.C.); (L.T.-S.); (E.G.-G.); (J.K.); (A.G.-R.); (T.C.-Q.); (M.R.B.-L.); (J.M.S.-L.); (C.B.); (Z.V.-R.); (R.B.); (M.L.G.); (C.R.); (L.G.-G.); (E.T.); (M.V.V.); (J.S.-S.)
- Bioaraba Health Research Institute, Osakidetza Basque Health Service, Araba University Hospital, University of the Basque Country UPV/EHU, 01009 Vitoria-Gasteiz, Spain
| | - Julia Wärnberg
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain; (S.C.-B.); (N.B.-T.); (N.B.); (M.Á.M.-G.); (D.C.); (M.F.); (D.R.); (A.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (R.E.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (J.L.-M.); (C.V.); (E.R.); (F.J.B.); (M.F.d.l.P.); (E.M.A.); (O.C.); (L.T.-S.); (E.G.-G.); (J.K.); (A.G.-R.); (T.C.-Q.); (M.R.B.-L.); (J.M.S.-L.); (C.B.); (Z.V.-R.); (R.B.); (M.L.G.); (C.R.); (L.G.-G.); (E.T.); (M.V.V.); (J.S.-S.)
- Department of Nursing, Institute of Biomedical Research in Málaga (IBIMA), University of Málaga, 29010 Malaga, Spain
| | - José Alfredo Martínez
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain; (S.C.-B.); (N.B.-T.); (N.B.); (M.Á.M.-G.); (D.C.); (M.F.); (D.R.); (A.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (R.E.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (J.L.-M.); (C.V.); (E.R.); (F.J.B.); (M.F.d.l.P.); (E.M.A.); (O.C.); (L.T.-S.); (E.G.-G.); (J.K.); (A.G.-R.); (T.C.-Q.); (M.R.B.-L.); (J.M.S.-L.); (C.B.); (Z.V.-R.); (R.B.); (M.L.G.); (C.R.); (L.G.-G.); (E.T.); (M.V.V.); (J.S.-S.)
- Department of Nutrition, Food Sciences, and Physiology, Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain;
- Cardiometabolic Nutrition Group, IMDEA Food, CEI UAM + CSIC, 28049 Madrid, Spain
| | - Luís Serra-Majem
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain; (S.C.-B.); (N.B.-T.); (N.B.); (M.Á.M.-G.); (D.C.); (M.F.); (D.R.); (A.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (R.E.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (J.L.-M.); (C.V.); (E.R.); (F.J.B.); (M.F.d.l.P.); (E.M.A.); (O.C.); (L.T.-S.); (E.G.-G.); (J.K.); (A.G.-R.); (T.C.-Q.); (M.R.B.-L.); (J.M.S.-L.); (C.B.); (Z.V.-R.); (R.B.); (M.L.G.); (C.R.); (L.G.-G.); (E.T.); (M.V.V.); (J.S.-S.)
- Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria & Centro Hospitalario Universitario Insular Materno Infantil (CHUIMI), Canarian Health Service, 35016 Las Palmas de Gran Canaria, Spain
| | - Ramon Estruch
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain; (S.C.-B.); (N.B.-T.); (N.B.); (M.Á.M.-G.); (D.C.); (M.F.); (D.R.); (A.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (R.E.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (J.L.-M.); (C.V.); (E.R.); (F.J.B.); (M.F.d.l.P.); (E.M.A.); (O.C.); (L.T.-S.); (E.G.-G.); (J.K.); (A.G.-R.); (T.C.-Q.); (M.R.B.-L.); (J.M.S.-L.); (C.B.); (Z.V.-R.); (R.B.); (M.L.G.); (C.R.); (L.G.-G.); (E.T.); (M.V.V.); (J.S.-S.)
- Department of Internal Medicine, Institut d’Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain
| | - Francisco J. Tinahones
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain; (S.C.-B.); (N.B.-T.); (N.B.); (M.Á.M.-G.); (D.C.); (M.F.); (D.R.); (A.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (R.E.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (J.L.-M.); (C.V.); (E.R.); (F.J.B.); (M.F.d.l.P.); (E.M.A.); (O.C.); (L.T.-S.); (E.G.-G.); (J.K.); (A.G.-R.); (T.C.-Q.); (M.R.B.-L.); (J.M.S.-L.); (C.B.); (Z.V.-R.); (R.B.); (M.L.G.); (C.R.); (L.G.-G.); (E.T.); (M.V.V.); (J.S.-S.)
- Department of Internal Medicine, Regional University Hospital of Malaga, Instituto de Investigación Biomédica de Malaga (IBIMA), University of Malaga, 29010 Malaga, Spain
| | - José Lapetra
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain; (S.C.-B.); (N.B.-T.); (N.B.); (M.Á.M.-G.); (D.C.); (M.F.); (D.R.); (A.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (R.E.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (J.L.-M.); (C.V.); (E.R.); (F.J.B.); (M.F.d.l.P.); (E.M.A.); (O.C.); (L.T.-S.); (E.G.-G.); (J.K.); (A.G.-R.); (T.C.-Q.); (M.R.B.-L.); (J.M.S.-L.); (C.B.); (Z.V.-R.); (R.B.); (M.L.G.); (C.R.); (L.G.-G.); (E.T.); (M.V.V.); (J.S.-S.)
- Department of Family Medicine, Research Unit, Distrito Sanitario Atención Primaria Sevilla, 41010 Sevilla, Spain
| | - Xavier Pintó
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain; (S.C.-B.); (N.B.-T.); (N.B.); (M.Á.M.-G.); (D.C.); (M.F.); (D.R.); (A.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (R.E.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (J.L.-M.); (C.V.); (E.R.); (F.J.B.); (M.F.d.l.P.); (E.M.A.); (O.C.); (L.T.-S.); (E.G.-G.); (J.K.); (A.G.-R.); (T.C.-Q.); (M.R.B.-L.); (J.M.S.-L.); (C.B.); (Z.V.-R.); (R.B.); (M.L.G.); (C.R.); (L.G.-G.); (E.T.); (M.V.V.); (J.S.-S.)
- Lipids and Vascular Risk Unit, Internal Medicine, Hospital Universitario de Bellvitge, 08908 Hospitalet de Llobregat, Spain;
| | - Josep A. Tur
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain; (S.C.-B.); (N.B.-T.); (N.B.); (M.Á.M.-G.); (D.C.); (M.F.); (D.R.); (A.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (R.E.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (J.L.-M.); (C.V.); (E.R.); (F.J.B.); (M.F.d.l.P.); (E.M.A.); (O.C.); (L.T.-S.); (E.G.-G.); (J.K.); (A.G.-R.); (T.C.-Q.); (M.R.B.-L.); (J.M.S.-L.); (C.B.); (Z.V.-R.); (R.B.); (M.L.G.); (C.R.); (L.G.-G.); (E.T.); (M.V.V.); (J.S.-S.)
- Research Group on Community Nutrition & Oxidative Stress, University of Balearic Islands-IUNICS, 07122 Palma de Mallorca, Spain
| | - José López-Miranda
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain; (S.C.-B.); (N.B.-T.); (N.B.); (M.Á.M.-G.); (D.C.); (M.F.); (D.R.); (A.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (R.E.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (J.L.-M.); (C.V.); (E.R.); (F.J.B.); (M.F.d.l.P.); (E.M.A.); (O.C.); (L.T.-S.); (E.G.-G.); (J.K.); (A.G.-R.); (T.C.-Q.); (M.R.B.-L.); (J.M.S.-L.); (C.B.); (Z.V.-R.); (R.B.); (M.L.G.); (C.R.); (L.G.-G.); (E.T.); (M.V.V.); (J.S.-S.)
- Department of Internal Medicine, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, 14004 Cordoba, Spain
| | - Naomi Cano-Ibáñez
- CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.V.); (N.C.-I.); (M.D.-R.); (V.M.S.)
- Department of Preventive Medicine and Public Health, University of Granada, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria, Complejo Hospitales Universitarios de Granada, Universidad de Granada, 18016 Granada, Spain
| | - Miguel Delgado-Rodríguez
- CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.V.); (N.C.-I.); (M.D.-R.); (V.M.S.)
- Division of Preventive Medicine, Faculty of Medicine, University of Jaén, 23071 Jaen, Spain
| | - Pilar Matía-Martín
- Department of Endocrinology and Nutrition, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain;
| | - Lidia Daimiel
- Nutritional Control of the Epigenome Group, Precision Nutrition and Obesity Program, IMDEA Food, CEI UAM + CSIC, 28029 Madrid, Spain;
| | - Vicente Martín Sánchez
- CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.V.); (N.C.-I.); (M.D.-R.); (V.M.S.)
- Institute of Biomedicine (IBIOMED), University of León, 24071 Leon, Spain
| | - Josep Vidal
- CIBER Diabetes y Enfermedades Metabólicas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain;
- Department of Endocrinology, Institut d’Investigacions Biomédiques August Pi Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain
| | - Clotilde Vázquez
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain; (S.C.-B.); (N.B.-T.); (N.B.); (M.Á.M.-G.); (D.C.); (M.F.); (D.R.); (A.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (R.E.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (J.L.-M.); (C.V.); (E.R.); (F.J.B.); (M.F.d.l.P.); (E.M.A.); (O.C.); (L.T.-S.); (E.G.-G.); (J.K.); (A.G.-R.); (T.C.-Q.); (M.R.B.-L.); (J.M.S.-L.); (C.B.); (Z.V.-R.); (R.B.); (M.L.G.); (C.R.); (L.G.-G.); (E.T.); (M.V.V.); (J.S.-S.)
- Department of Endocrinology and Nutrition, Hospital Fundación Jimenez Díaz, Instituto de Investigaciones Biomédicas IISFJD, University Autonoma, 28040 Madrid, Spain
| | - Emili Ros
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain; (S.C.-B.); (N.B.-T.); (N.B.); (M.Á.M.-G.); (D.C.); (M.F.); (D.R.); (A.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (R.E.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (J.L.-M.); (C.V.); (E.R.); (F.J.B.); (M.F.d.l.P.); (E.M.A.); (O.C.); (L.T.-S.); (E.G.-G.); (J.K.); (A.G.-R.); (T.C.-Q.); (M.R.B.-L.); (J.M.S.-L.); (C.B.); (Z.V.-R.); (R.B.); (M.L.G.); (C.R.); (L.G.-G.); (E.T.); (M.V.V.); (J.S.-S.)
- Lipid Clinic, Department of Endocrinology and Nutrition, Institut d’Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Hospital Clínic, 08036 Barcelona, Spain
| | - Francisco Javier Basterra
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain; (S.C.-B.); (N.B.-T.); (N.B.); (M.Á.M.-G.); (D.C.); (M.F.); (D.R.); (A.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (R.E.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (J.L.-M.); (C.V.); (E.R.); (F.J.B.); (M.F.d.l.P.); (E.M.A.); (O.C.); (L.T.-S.); (E.G.-G.); (J.K.); (A.G.-R.); (T.C.-Q.); (M.R.B.-L.); (J.M.S.-L.); (C.B.); (Z.V.-R.); (R.B.); (M.L.G.); (C.R.); (L.G.-G.); (E.T.); (M.V.V.); (J.S.-S.)
- Department of Preventive Medicine and Public Health, University of Navarra, IDISNA, 31008 Pamplona, Spain
| | - María Fernández de la Puente
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain; (S.C.-B.); (N.B.-T.); (N.B.); (M.Á.M.-G.); (D.C.); (M.F.); (D.R.); (A.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (R.E.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (J.L.-M.); (C.V.); (E.R.); (F.J.B.); (M.F.d.l.P.); (E.M.A.); (O.C.); (L.T.-S.); (E.G.-G.); (J.K.); (A.G.-R.); (T.C.-Q.); (M.R.B.-L.); (J.M.S.-L.); (C.B.); (Z.V.-R.); (R.B.); (M.L.G.); (C.R.); (L.G.-G.); (E.T.); (M.V.V.); (J.S.-S.)
- Unitat de Nutrició, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43204 Reus, Spain;
- Nutrition Unit, University Hospital of Sant Joan de Reus, 43204 Reus, Spain
| | - Eva M. Asensio
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain; (S.C.-B.); (N.B.-T.); (N.B.); (M.Á.M.-G.); (D.C.); (M.F.); (D.R.); (A.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (R.E.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (J.L.-M.); (C.V.); (E.R.); (F.J.B.); (M.F.d.l.P.); (E.M.A.); (O.C.); (L.T.-S.); (E.G.-G.); (J.K.); (A.G.-R.); (T.C.-Q.); (M.R.B.-L.); (J.M.S.-L.); (C.B.); (Z.V.-R.); (R.B.); (M.L.G.); (C.R.); (L.G.-G.); (E.T.); (M.V.V.); (J.S.-S.)
- Department of Preventive Medicine, University of Valencia, 46010 Valencia, Spain
| | - Olga Castañer
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain; (S.C.-B.); (N.B.-T.); (N.B.); (M.Á.M.-G.); (D.C.); (M.F.); (D.R.); (A.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (R.E.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (J.L.-M.); (C.V.); (E.R.); (F.J.B.); (M.F.d.l.P.); (E.M.A.); (O.C.); (L.T.-S.); (E.G.-G.); (J.K.); (A.G.-R.); (T.C.-Q.); (M.R.B.-L.); (J.M.S.-L.); (C.B.); (Z.V.-R.); (R.B.); (M.L.G.); (C.R.); (L.G.-G.); (E.T.); (M.V.V.); (J.S.-S.)
- Unit of Cardiovascular Risk and Nutrition, Institut Hospital del Mar de Investigaciones Médicas Municipal d’Investigació Médica (IMIM), 08007 Barcelona, Spain
| | - Vanessa Bullón-Vela
- Department of Nutrition, Food Sciences, and Physiology, Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain;
| | - Lucas Tojal-Sierra
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain; (S.C.-B.); (N.B.-T.); (N.B.); (M.Á.M.-G.); (D.C.); (M.F.); (D.R.); (A.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (R.E.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (J.L.-M.); (C.V.); (E.R.); (F.J.B.); (M.F.d.l.P.); (E.M.A.); (O.C.); (L.T.-S.); (E.G.-G.); (J.K.); (A.G.-R.); (T.C.-Q.); (M.R.B.-L.); (J.M.S.-L.); (C.B.); (Z.V.-R.); (R.B.); (M.L.G.); (C.R.); (L.G.-G.); (E.T.); (M.V.V.); (J.S.-S.)
- Bioaraba Health Research Institute, Osakidetza Basque Health Service, Araba University Hospital, University of the Basque Country UPV/EHU, 01009 Vitoria-Gasteiz, Spain
| | - Enrique Gómez-Gracia
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain; (S.C.-B.); (N.B.-T.); (N.B.); (M.Á.M.-G.); (D.C.); (M.F.); (D.R.); (A.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (R.E.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (J.L.-M.); (C.V.); (E.R.); (F.J.B.); (M.F.d.l.P.); (E.M.A.); (O.C.); (L.T.-S.); (E.G.-G.); (J.K.); (A.G.-R.); (T.C.-Q.); (M.R.B.-L.); (J.M.S.-L.); (C.B.); (Z.V.-R.); (R.B.); (M.L.G.); (C.R.); (L.G.-G.); (E.T.); (M.V.V.); (J.S.-S.)
- Department of Preventive Medicine and Public Health, Instituto de Investigación Biomédica de Málaga-IBIMA, School of Medicine, University of Málaga, 29071 Malaga, Spain
| | | | - Jadwiga Konieczna
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain; (S.C.-B.); (N.B.-T.); (N.B.); (M.Á.M.-G.); (D.C.); (M.F.); (D.R.); (A.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (R.E.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (J.L.-M.); (C.V.); (E.R.); (F.J.B.); (M.F.d.l.P.); (E.M.A.); (O.C.); (L.T.-S.); (E.G.-G.); (J.K.); (A.G.-R.); (T.C.-Q.); (M.R.B.-L.); (J.M.S.-L.); (C.B.); (Z.V.-R.); (R.B.); (M.L.G.); (C.R.); (L.G.-G.); (E.T.); (M.V.V.); (J.S.-S.)
- Research Group on Nutritional Epidemiology & Cardiovascular Physiopathology (NUTRECOR), Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
| | - Antonio García-Ríos
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain; (S.C.-B.); (N.B.-T.); (N.B.); (M.Á.M.-G.); (D.C.); (M.F.); (D.R.); (A.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (R.E.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (J.L.-M.); (C.V.); (E.R.); (F.J.B.); (M.F.d.l.P.); (E.M.A.); (O.C.); (L.T.-S.); (E.G.-G.); (J.K.); (A.G.-R.); (T.C.-Q.); (M.R.B.-L.); (J.M.S.-L.); (C.B.); (Z.V.-R.); (R.B.); (M.L.G.); (C.R.); (L.G.-G.); (E.T.); (M.V.V.); (J.S.-S.)
- Department of Internal Medicine, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, 14004 Cordoba, Spain
| | - Tamara Casañas-Quintana
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain; (S.C.-B.); (N.B.-T.); (N.B.); (M.Á.M.-G.); (D.C.); (M.F.); (D.R.); (A.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (R.E.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (J.L.-M.); (C.V.); (E.R.); (F.J.B.); (M.F.d.l.P.); (E.M.A.); (O.C.); (L.T.-S.); (E.G.-G.); (J.K.); (A.G.-R.); (T.C.-Q.); (M.R.B.-L.); (J.M.S.-L.); (C.B.); (Z.V.-R.); (R.B.); (M.L.G.); (C.R.); (L.G.-G.); (E.T.); (M.V.V.); (J.S.-S.)
- Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria & Centro Hospitalario Universitario Insular Materno Infantil (CHUIMI), Canarian Health Service, 35016 Las Palmas de Gran Canaria, Spain
| | - María Rosa Bernal-Lopez
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain; (S.C.-B.); (N.B.-T.); (N.B.); (M.Á.M.-G.); (D.C.); (M.F.); (D.R.); (A.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (R.E.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (J.L.-M.); (C.V.); (E.R.); (F.J.B.); (M.F.d.l.P.); (E.M.A.); (O.C.); (L.T.-S.); (E.G.-G.); (J.K.); (A.G.-R.); (T.C.-Q.); (M.R.B.-L.); (J.M.S.-L.); (C.B.); (Z.V.-R.); (R.B.); (M.L.G.); (C.R.); (L.G.-G.); (E.T.); (M.V.V.); (J.S.-S.)
- Department of Internal Medicine, Regional University Hospital of Malaga, Instituto de Investigación Biomédica de Malaga (IBIMA), University of Malaga, 29010 Malaga, Spain
| | - José Manuel Santos-Lozano
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain; (S.C.-B.); (N.B.-T.); (N.B.); (M.Á.M.-G.); (D.C.); (M.F.); (D.R.); (A.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (R.E.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (J.L.-M.); (C.V.); (E.R.); (F.J.B.); (M.F.d.l.P.); (E.M.A.); (O.C.); (L.T.-S.); (E.G.-G.); (J.K.); (A.G.-R.); (T.C.-Q.); (M.R.B.-L.); (J.M.S.-L.); (C.B.); (Z.V.-R.); (R.B.); (M.L.G.); (C.R.); (L.G.-G.); (E.T.); (M.V.V.); (J.S.-S.)
- Department of Family Medicine, Research Unit, Distrito Sanitario Atención Primaria Sevilla, 41010 Sevilla, Spain
| | - Virginia Esteve-Luque
- Lipids and Vascular Risk Unit, Internal Medicine, Hospital Universitario de Bellvitge, 08908 Hospitalet de Llobregat, Spain;
| | - Cristina Bouzas
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain; (S.C.-B.); (N.B.-T.); (N.B.); (M.Á.M.-G.); (D.C.); (M.F.); (D.R.); (A.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (R.E.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (J.L.-M.); (C.V.); (E.R.); (F.J.B.); (M.F.d.l.P.); (E.M.A.); (O.C.); (L.T.-S.); (E.G.-G.); (J.K.); (A.G.-R.); (T.C.-Q.); (M.R.B.-L.); (J.M.S.-L.); (C.B.); (Z.V.-R.); (R.B.); (M.L.G.); (C.R.); (L.G.-G.); (E.T.); (M.V.V.); (J.S.-S.)
- Research Group on Community Nutrition & Oxidative Stress, University of Balearic Islands-IUNICS, 07122 Palma de Mallorca, Spain
| | - Zenaida Vázquez-Ruiz
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain; (S.C.-B.); (N.B.-T.); (N.B.); (M.Á.M.-G.); (D.C.); (M.F.); (D.R.); (A.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (R.E.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (J.L.-M.); (C.V.); (E.R.); (F.J.B.); (M.F.d.l.P.); (E.M.A.); (O.C.); (L.T.-S.); (E.G.-G.); (J.K.); (A.G.-R.); (T.C.-Q.); (M.R.B.-L.); (J.M.S.-L.); (C.B.); (Z.V.-R.); (R.B.); (M.L.G.); (C.R.); (L.G.-G.); (E.T.); (M.V.V.); (J.S.-S.)
- Department of Preventive Medicine and Public Health, University of Navarra, IDISNA, 31008 Pamplona, Spain
| | - Antoni Palau-Galindo
- Unitat de Nutrició, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43204 Reus, Spain;
- ABS Reus V. Centre d’Assistència Primària Marià Fortuny, SAGESSA, 43205 Reus, Spain
| | - Rocio Barragan
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain; (S.C.-B.); (N.B.-T.); (N.B.); (M.Á.M.-G.); (D.C.); (M.F.); (D.R.); (A.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (R.E.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (J.L.-M.); (C.V.); (E.R.); (F.J.B.); (M.F.d.l.P.); (E.M.A.); (O.C.); (L.T.-S.); (E.G.-G.); (J.K.); (A.G.-R.); (T.C.-Q.); (M.R.B.-L.); (J.M.S.-L.); (C.B.); (Z.V.-R.); (R.B.); (M.L.G.); (C.R.); (L.G.-G.); (E.T.); (M.V.V.); (J.S.-S.)
- Department of Preventive Medicine, University of Valencia, 46010 Valencia, Spain
| | - Mercè López Grau
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain; (S.C.-B.); (N.B.-T.); (N.B.); (M.Á.M.-G.); (D.C.); (M.F.); (D.R.); (A.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (R.E.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (J.L.-M.); (C.V.); (E.R.); (F.J.B.); (M.F.d.l.P.); (E.M.A.); (O.C.); (L.T.-S.); (E.G.-G.); (J.K.); (A.G.-R.); (T.C.-Q.); (M.R.B.-L.); (J.M.S.-L.); (C.B.); (Z.V.-R.); (R.B.); (M.L.G.); (C.R.); (L.G.-G.); (E.T.); (M.V.V.); (J.S.-S.)
- Unit of Cardiovascular Risk and Nutrition, Institut Hospital del Mar de Investigaciones Médicas Municipal d’Investigació Médica (IMIM), 08007 Barcelona, Spain
| | - Cristina Razquín
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain; (S.C.-B.); (N.B.-T.); (N.B.); (M.Á.M.-G.); (D.C.); (M.F.); (D.R.); (A.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (R.E.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (J.L.-M.); (C.V.); (E.R.); (F.J.B.); (M.F.d.l.P.); (E.M.A.); (O.C.); (L.T.-S.); (E.G.-G.); (J.K.); (A.G.-R.); (T.C.-Q.); (M.R.B.-L.); (J.M.S.-L.); (C.B.); (Z.V.-R.); (R.B.); (M.L.G.); (C.R.); (L.G.-G.); (E.T.); (M.V.V.); (J.S.-S.)
- Department of Nutrition, Food Sciences, and Physiology, Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain;
- Cardiometabolic Nutrition Group, IMDEA Food, CEI UAM + CSIC, 28049 Madrid, Spain
| | - Leire Goicolea-Güemez
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain; (S.C.-B.); (N.B.-T.); (N.B.); (M.Á.M.-G.); (D.C.); (M.F.); (D.R.); (A.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (R.E.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (J.L.-M.); (C.V.); (E.R.); (F.J.B.); (M.F.d.l.P.); (E.M.A.); (O.C.); (L.T.-S.); (E.G.-G.); (J.K.); (A.G.-R.); (T.C.-Q.); (M.R.B.-L.); (J.M.S.-L.); (C.B.); (Z.V.-R.); (R.B.); (M.L.G.); (C.R.); (L.G.-G.); (E.T.); (M.V.V.); (J.S.-S.)
- Bioaraba Health Research Institute, Osakidetza Basque Health Service, Araba University Hospital, University of the Basque Country UPV/EHU, 01009 Vitoria-Gasteiz, Spain
| | - Estefanía Toledo
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain; (S.C.-B.); (N.B.-T.); (N.B.); (M.Á.M.-G.); (D.C.); (M.F.); (D.R.); (A.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (R.E.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (J.L.-M.); (C.V.); (E.R.); (F.J.B.); (M.F.d.l.P.); (E.M.A.); (O.C.); (L.T.-S.); (E.G.-G.); (J.K.); (A.G.-R.); (T.C.-Q.); (M.R.B.-L.); (J.M.S.-L.); (C.B.); (Z.V.-R.); (R.B.); (M.L.G.); (C.R.); (L.G.-G.); (E.T.); (M.V.V.); (J.S.-S.)
- Department of Preventive Medicine and Public Health, University of Navarra, IDISNA, 31008 Pamplona, Spain
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Manel Vila Vergaz
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain; (S.C.-B.); (N.B.-T.); (N.B.); (M.Á.M.-G.); (D.C.); (M.F.); (D.R.); (A.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (R.E.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (J.L.-M.); (C.V.); (E.R.); (F.J.B.); (M.F.d.l.P.); (E.M.A.); (O.C.); (L.T.-S.); (E.G.-G.); (J.K.); (A.G.-R.); (T.C.-Q.); (M.R.B.-L.); (J.M.S.-L.); (C.B.); (Z.V.-R.); (R.B.); (M.L.G.); (C.R.); (L.G.-G.); (E.T.); (M.V.V.); (J.S.-S.)
- Unit of Cardiovascular Risk and Nutrition, Institut Hospital del Mar de Investigaciones Médicas Municipal d’Investigació Médica (IMIM), 08007 Barcelona, Spain
| | - Rosa M. Lamuela-Raventós
- Department of Nutrition, Food Science and Gastronomy, XIA, School of Pharmacy and Food Sciences, INSA, University of Barcelona, 08921 Barcelona, Spain;
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain; (S.C.-B.); (N.B.-T.); (N.B.); (M.Á.M.-G.); (D.C.); (M.F.); (D.R.); (A.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (R.E.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (J.L.-M.); (C.V.); (E.R.); (F.J.B.); (M.F.d.l.P.); (E.M.A.); (O.C.); (L.T.-S.); (E.G.-G.); (J.K.); (A.G.-R.); (T.C.-Q.); (M.R.B.-L.); (J.M.S.-L.); (C.B.); (Z.V.-R.); (R.B.); (M.L.G.); (C.R.); (L.G.-G.); (E.T.); (M.V.V.); (J.S.-S.)
| | - Jordi Salas-Salvadó
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain; (S.C.-B.); (N.B.-T.); (N.B.); (M.Á.M.-G.); (D.C.); (M.F.); (D.R.); (A.M.A.-G.); (J.W.); (J.A.M.); (L.S.-M.); (R.E.); (F.J.T.); (J.L.); (X.P.); (J.A.T.); (J.L.-M.); (C.V.); (E.R.); (F.J.B.); (M.F.d.l.P.); (E.M.A.); (O.C.); (L.T.-S.); (E.G.-G.); (J.K.); (A.G.-R.); (T.C.-Q.); (M.R.B.-L.); (J.M.S.-L.); (C.B.); (Z.V.-R.); (R.B.); (M.L.G.); (C.R.); (L.G.-G.); (E.T.); (M.V.V.); (J.S.-S.)
- Unitat de Nutrició, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43204 Reus, Spain;
- Nutrition Unit, University Hospital of Sant Joan de Reus, 43204 Reus, Spain
- Institut d’Investigació Sanitària Pere Virgili (IISPV), 43204 Reus, Spain
| |
Collapse
|
32
|
Zhang C, Han M, Zhang X, Tong H, Sun X, Sun G. Ginsenoside Rb1 Protects Against Diabetic Cardiomyopathy by Regulating the Adipocytokine Pathway. J Inflamm Res 2022; 15:71-83. [PMID: 35023944 PMCID: PMC8743619 DOI: 10.2147/jir.s348866] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/24/2021] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Obesity and diabetes are often accompanied by chronic inflammation and insulin resistance, which lead to complications such as diabetic cardiomyopathy. Ginsenoside Rb1 has been used to treat diabetes and obesity and reduce inflammation as well as risk of heart diseases. However, the role of ginsenoside Rb1 in treating diabetic cardiomyopathy remains unclear. METHODS Diabetic mice were administered ginsenoside Rb1 for 12 weeks, and their body weight, body fat, and blood glucose levels as well as and serum insulin, lipids, and adipocytokine levels were assessed. Lipid accumulation, pathological morphology of the adipose tissue, liver, and heart were examined. Western blot and qRT-PCR were performed to investigate the molecular changes in response to ginsenoside Rb1 treatment. RESULTS Ginsenoside Rb1 treatment significantly reduced body weight and body fat, attenuated hyperglycemia and hyperlipidemia, and ameliorated insulin resistance and abnormal levels of adipocytokines in diabetic mice. In addition, lipid accumulation and inflammation reduced while the functions of heart improved in the ginsenoside Rb1-treated group. Furthermore, antioxidant function improved in the ginsenoside Rb1-treated diabetic hearts. PCR and Western blotting analyses revealed that the lipid-lowering effect of ginsenoside Rb1 and the resulting improvement of cardiac function could be attributed to the adipocytokine pathway, which promoted energy homeostasis and alleviated cardiac dysfunction. CONCLUSION Ginsenoside Rb1 lowered lipid levels in a adipocytokine-mediated manner and attenuated hyperglycemia/hyperlipidemia-induced oxidative stress, hypertrophy, inflammation, fibrosis, and apoptosis in cardiomyocytes.
Collapse
Affiliation(s)
- Chenyang Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Meixin Han
- College of Pharmacy, Harbin University of Commerce, Harbin, People’s Republic of China
| | - Xuelian Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Hongna Tong
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Guibo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| |
Collapse
|
33
|
Dhinagaran DA, Sathish T, Soong A, Theng YL, Best J, Tudor Car L. Conversational Agent for Healthy Lifestyle Behavior Change: Web-Based Feasibility Study. JMIR Form Res 2021; 5:e27956. [PMID: 34870611 PMCID: PMC8686401 DOI: 10.2196/27956] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 08/09/2021] [Accepted: 08/24/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The rising incidence of chronic diseases is a growing concern, especially in Singapore, which is one of the high-income countries with the highest prevalence of diabetes. Interventions that promote healthy lifestyle behavior changes have been proven to be effective in reducing the progression of prediabetes to diabetes, but their in-person delivery may not be feasible on a large scale. Novel technologies such as conversational agents are a potential alternative for delivering behavioral interventions that promote healthy lifestyle behavior changes to the public. OBJECTIVE The aim of this study is to assess the feasibility and acceptability of using a conversational agent promoting healthy lifestyle behavior changes in the general population in Singapore. METHODS We performed a web-based, single-arm feasibility study. The participants were recruited through Facebook over 4 weeks. The Facebook Messenger conversational agent was used to deliver the intervention. The conversations focused on diet, exercise, sleep, and stress and aimed to promote healthy lifestyle behavior changes and improve the participants' knowledge of diabetes. Messages were sent to the participants four times a week (once for each of the 4 topics of focus) for 4 weeks. We assessed the feasibility of recruitment, defined as at least 75% (150/200) of our target sample of 200 participants in 4 weeks, as well as retention, defined as 33% (66/200) of the recruited sample completing the study. We also assessed the participants' satisfaction with, and usability of, the conversational agent. In addition, we performed baseline and follow-up assessments of quality of life, diabetes knowledge and risk perception, diet, exercise, sleep, and stress. RESULTS We recruited 37.5% (75/200) of the target sample size in 1 month. Of the 75 eligible participants, 60 (80%) provided digital informed consent and completed baseline assessments. Of these 60 participants, 56 (93%) followed the study through till completion. Retention was high at 93% (56/60), along with engagement, denoted by 50% (30/60) of the participants communicating with the conversational agent at each interaction. Acceptability, usability, and satisfaction were generally high. Preliminary efficacy of the intervention showed no definitive improvements in health-related behavior. CONCLUSIONS The delivery of a conversational agent for healthy lifestyle behavior change through Facebook Messenger was feasible and acceptable. We were unable to recruit our planned sample solely using the free options in Facebook. However, participant retention and conversational agent engagement rates were high. Our findings provide important insights to inform the design of a future randomized controlled trial.
Collapse
Affiliation(s)
| | - Thirunavukkarasu Sathish
- Population Health Research Institute, McMaster University, Hamilton, ON, Canada
- Centre for Population Health Sciences, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - AiJia Soong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore, Singapore
| | - Yin-Leng Theng
- Centre for Healthy and Sustainable Cities, Nanyang Technological University, Singapore, Singapore, Singapore
| | - James Best
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore, Singapore
| | - Lorainne Tudor Car
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore, Singapore
- Department of Primary Care and Public Health, School of Public Health, Imperial College London, London, United Kingdom
| |
Collapse
|
34
|
Enikuomehin AC, Adejumo OA, Akinbodewa AA, Muhammad FY, Lawal OM, Junaid OA. Type 2 diabetes mellitus risk assessment among doctors in Ondo state. Malawi Med J 2021; 33:114-120. [PMID: 34777706 PMCID: PMC8560352 DOI: 10.4314/mmj.v33i2.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Introduction Diabetes Mellitus (DM) has become a disease of public health importance in Nigeria. Early identification of DM risk is important in the reduction of this disease burden. This study assessed ten-year risk of developing type 2 DM among some medical doctors in Ondo State. Methods This was a cross-sectional study that assessed ten-year risk of developing type 2 DM among some doctors using the Finland Diabetic Risk Score form. Known diabetics were excluded from the study. Body mass index (BMI), waist circumference (WC), blood pressure and total DM risk score were determined for each participant. Results One hundred and ninety-two doctors participated in the study with a male: female ratio of 1.3:1. Majority (92.2%) were below 55 years, 22 (11.5%) were obese, 32(16.7%) had central obesity, 46(24%) reported physical inactivity, 49(25.5%) had family history of DM, 141(73.4%) do not take fruits and vegetables regularly. Forty-three (22.4%) were found to have elevated blood pressure while 6(3.1%) had elevated blood glucose. Fifty-seven (29.7%) of the participants had increased ten-year DM risk. Significant predictors of increase DM risk were age ≥ 45 years (AOR:9.08; CI 3.13–26.33; p = <0.001); BMI ≥25kg/m2 (AOR:11.41; CI:4.14–31.45; p = <0.001); family history of DM (AOR:9.93; CI:3.25–30.39; p = <0.001); abdominal obesity (AOR:6.66; CI:2.08–21.29; p= < 0.001); and infrequent dietary intake of fruits and vegetable (AOR:3.11;CI:1.03:9.37: p = 0.04) Conclusion There was increased 10-year DM risk in about 30% of the participants. Lifestyle modification such as physical activity and regular consumption of fruits and vegetables should be encouraged among doctors.
Collapse
|
35
|
Ye M, Vena JE, Johnson JA, Shen-Tu G, Eurich DT. Chronic disease surveillance in Alberta's tomorrow project using administrative health data. Int J Popul Data Sci 2021; 6:1672. [PMID: 34734125 PMCID: PMC8530189 DOI: 10.23889/ijpds.v6i1.1672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Introduction Alberta’s Tomorrow Project (ATP) is the largest population-based prospective cohort study of cancer and chronic diseases in Alberta, Canada. The ATP cohort data were primarily self-reported by participants on lifestyle behaviors and disease risk factors at the enrollment, which lacks sufficient and accurate data on chronic disease diagnosis for longer-term follow-up. Objectives To characterize the occurrence rate and trend of chronic diseases in the ATP cohort by linking with administrative healthcare data. Methods A set of validated algorithms using ICD codes were applied to Alberta Health (AH) administrative data (October 2000-March 2018) linked to the ATP cohort to determine the prevalence and incidence of common chronic diseases. Results There were 52,770 ATP participants (51.2±9.4 years old at enrollment and 63.7% females) linked to the AH data with average follow-up of 10.1±4.4 years. In the ATP cohort, hypertension (18.5%), depression (18.1%), chronic pain (12.8%), osteoarthritis (10.1%) and cardiovascular diseases (8.7%) were the most prevalent chronic conditions. The incidence rates varied across diseases, with the highest rates for hypertension (22.1 per 1000 person-year), osteoarthritis (16.2 per 1000 person-year) and ischemic heart diseases (13.0 per 1000 person-year). All chronic conditions had increased prevalence over time (p < for trend tests), while incidence rates were relatively stable. The proportion of participants with two or more of these conditions (multi-morbidity) increased from 3.9% in 2001 to 40.3% in 2017. Conclusions This study shows an increasing trend of chronic diseases in the ATP cohort, particularly related to cardiovascular diseases and multi-morbidity. Using administrative health data to monitor chronic diseases for large population-based prospective cohort studies is feasible in Alberta, and our approach could be further applied in a broader research area, including health services research, to enhance research capacity of these population-based studies in Canada.
Collapse
Affiliation(s)
- Ming Ye
- School of Public Health, University of Alberta, Edmonton, Alberta, Canada, T6G 2E1
| | - Jennifer E Vena
- Alberta's Tomorrow Project, Cancer Care Alberta, Alberta Health Services, Alberta, Canada, T2T 5C7
| | - Jeffrey A Johnson
- School of Public Health, University of Alberta, Edmonton, Alberta, Canada, T6G 2E1
| | - Grace Shen-Tu
- Alberta's Tomorrow Project, Cancer Care Alberta, Alberta Health Services, Alberta, Canada, T2T 5C7
| | - Dean T Eurich
- School of Public Health, University of Alberta, Edmonton, Alberta, Canada, T6G 2E1
| |
Collapse
|
36
|
Wang P, Liu Y, Zhang T, Yin C, Kang SY, Kim SJ, Park YK, Jung HW. Effects of Root Extract of Morinda officinalis in Mice with High-Fat-Diet/Streptozotocin-Induced Diabetes and C2C12 Myoblast Differentiation. ACS OMEGA 2021; 6:26959-26968. [PMID: 34693116 PMCID: PMC8529596 DOI: 10.1021/acsomega.1c03372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/29/2021] [Indexed: 05/15/2023]
Abstract
Type 2 diabetes is the most common type of diabetes and causes a decline in muscle quality. In this study, we investigated the effects of the root extract of Morinda officinalis (MORE) on skeletal muscle damage in mice with high-fat-diet (HFD)/streptozotocin (STZ)-induced diabetes and the expression of myogenic and biogenesis regulatory proteins in C2C12 myoblast differentiation. An in vivo model comprised C57BL/6N mice fed HFD for 8 weeks, followed by a single injection of STZ at 120 mg/kg. MORE was administered at 100 and 200 mg/kg once daily (p.o.) for 4 weeks. The changes in body weight, calorie intake, and serum levels of glucose, insulin, total cholesterol (TCHO), HDL-cholesterol (HDL-C), LDL-cholesterol (LDL-C), aspartate transaminase (AST), and alanine aminotransferase (ALT) were investigated in diabetic mice. The histological changes in the gastrocnemius muscle were observed by H&E staining, and then the myofiber size was measured. The expression of the myogenic (MHC, myogenin, and MyoD) and biogenesis (PGC-1α, SIRT1, NRF1, and TFAM) regulatory proteins was examined in the muscle tissues and differentiated C2C12 myoblasts by Western blot, respectively. The administration of MORE at 200 mg/kg in mice with HFD/STZ-induced diabetes significantly reduced weight gains, calorie intake, insulin resistance, and serum levels of glucose, TCHO, LDL-C, AST, and ALT. MORE administration at 100 and 200 mg/kg significantly increased serum insulin and HDL-C levels in diabetic mice. In addition, MORE significantly increased the expression of MHC, myogenin, MyoD, PGC-1α, SIRT1, NRF1, and TFAM in muscle tissues as well as increased the myofiber size in diabetic mice. In C2C12 myoblast differentiation, MORE treatment at 0.5, 1, and 2 mg/mL significantly increased the expression of myogenic and biogenesis regulatory proteins in a dose-dependent manner. MORE improves diabetes symptoms in mice with HFD/STZ-induced diabetes by improving muscle function. This suggests that MORE could be used to prevent or treat diabetes along with muscle disorders.
Collapse
Affiliation(s)
- Piao Wang
- Department
of Herbology, College of Korean Medicine, Dongguk University, 38066 Gyeongju, Korea
| | - Yi Liu
- Department
of Herbology, College of Korean Medicine, Dongguk University, 38066 Gyeongju, Korea
| | - Tong Zhang
- Department
of Herbology, College of Korean Medicine, Dongguk University, 38066 Gyeongju, Korea
| | - Cheng Yin
- Department
of Herbology, College of Korean Medicine, Dongguk University, 38066 Gyeongju, Korea
| | - Seok Yong Kang
- Korean
Medicine R&D Center, Dongguk University, 38066 Gyeongju, Korea
| | - Su Jin Kim
- Department
of Anesthesiology and Pain Medicine, College of Medicine, Dongguk University, 38066 Gyeongju, Korea
| | - Yong-Ki Park
- Department
of Herbology, College of Korean Medicine, Dongguk University, 38066 Gyeongju, Korea
- Korean
Medicine R&D Center, Dongguk University, 38066 Gyeongju, Korea
| | - Hyo Won Jung
- Department
of Herbology, College of Korean Medicine, Dongguk University, 38066 Gyeongju, Korea
- Korean
Medicine R&D Center, Dongguk University, 38066 Gyeongju, Korea
| |
Collapse
|
37
|
Vaughan K, Ranawana V, Cooper D, Aceves-Martins M. Effect of brown seaweed on plasma glucose in healthy, at-risk, and type 2 diabetic individuals: systematic review and meta-analysis. Nutr Rev 2021; 80:1194-1205. [PMID: 34549293 PMCID: PMC8990535 DOI: 10.1093/nutrit/nuab069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Context Sustained hyperglycemia triggers chronic disease, including type 2 diabetes. A considerable volume of research has explored the effects of brown seaweed on plasma glucose control, but equivocal findings have been reported. Objective A systematic review and meta-analysis was conducted to assess the evidence from human randomized controlled trials (RCTs) on the effects of brown seaweed on plasma glucose in healthy, at-risk, and individuals with type 2 diabetes. Data Sources MEDLINE/PubMed, EMBASE, and the Cochrane Library were searched for reports published between 2000 and 2020. Data Extraction Population, intervention, comparator, outcome, and study design data were extracted. Data Analysis Eighteen RCTs met our inclusion criteria. The reported results varied across and between populations. Meta-analyses showed a significant effect, favoring the intervention group for both fasting (mean difference –4.6 [95% CI –7.88, –1.33]) and postprandial (mean difference –7.1 [95% CI –7.4, –6.9]) plasma glucose. Conclusion Brown seaweed and its extracts show potential for preventing and managing hyperglycemia. Our meta-analysis confirms that brown seaweed positively affects plasma glucose homeostasis, with particularly promising postprandial plasma glucose effects. However, further research is needed because no high-quality RCT was identified. Species-specific and dose–response research is also required. Systematic Review Registration PROSPERO registration no. CRD42020187849.
Collapse
Affiliation(s)
- Kate Vaughan
- K. Vaughan and M. Aceves-Martins are with the The Rowett Institute, University of Aberdeen, Aberdeen, UK. V. Ranawana is with the School of Health and Related Research, University of Sheffield, Sheffield, UK. D. Cooper is with the Health Services Research Unit, University of Aberdeen, Aberdeen, UK
| | - Viren Ranawana
- K. Vaughan and M. Aceves-Martins are with the The Rowett Institute, University of Aberdeen, Aberdeen, UK. V. Ranawana is with the School of Health and Related Research, University of Sheffield, Sheffield, UK. D. Cooper is with the Health Services Research Unit, University of Aberdeen, Aberdeen, UK
| | - David Cooper
- K. Vaughan and M. Aceves-Martins are with the The Rowett Institute, University of Aberdeen, Aberdeen, UK. V. Ranawana is with the School of Health and Related Research, University of Sheffield, Sheffield, UK. D. Cooper is with the Health Services Research Unit, University of Aberdeen, Aberdeen, UK
| | - Magaly Aceves-Martins
- K. Vaughan and M. Aceves-Martins are with the The Rowett Institute, University of Aberdeen, Aberdeen, UK. V. Ranawana is with the School of Health and Related Research, University of Sheffield, Sheffield, UK. D. Cooper is with the Health Services Research Unit, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
38
|
Flores AC, Heron C, Kim JI, Martin B, Al-Shaar L, Tucker KL, Gao X. Prospective Study of Plant-Based Dietary Patterns and Diabetes in Puerto Rican Adults. J Nutr 2021; 151:3795-3800. [PMID: 34515303 PMCID: PMC8643592 DOI: 10.1093/jn/nxab301] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/22/2021] [Accepted: 08/16/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Vegetarian-type dietary patterns have been associated with reducing the risk of developing diabetes and may function as an effective strategy for diabetes management. OBJECTIVES We aimed to examine the associations between adherence to plant-based diet indices and the risk of developing diabetes in the Boston Puerto Rican Health Study. METHODS Puerto Rican adults (n = 646), aged 45-75 y and free of diabetes at baseline, were included. Dietary intake was assessed via a validated FFQ. Three plant-based dietary indices were calculated: an overall plant-based diet index (PDI), a healthful plant-based diet index (hPDI), and an unhealthful plant-based diet index (uPDI). Incident diabetes was defined as fasting plasma glucose ≥ 126 mg/dL (7.0 mmol/L), glycated hemoglobin ≥ 6.5% (48 mmol/mol), or use of hypoglycemic agents during follow-up. Cox proportional hazards were used to evaluate associations between the dietary patterns and incidence of diabetes, adjusting for potential confounders, such as age, sex, socioeconomic status, lifestyle factors, obesity, total energy intake, depressive symptomatology, and plasma concentrations of lipids. RESULTS During a mean of 4.2 y of follow-up, we identified 134 diabetes cases. After adjustment for covariates, higher hPDI was associated with lower risk of developing diabetes (adjusted HR for the highest compared with the lowest tertile: 0.54; 95% CI: 0.31, 0.94; P-trend = 0.03). In contrast, the PDI and uPDI were not significantly associated with the risk of diabetes (P-trend > 0.3 for both). CONCLUSIONS The healthful plant-based dietary index, but not the total plant-based dietary index, was inversely associated with diabetes risk. These findings suggest that the quality of plant-based diets must be considered when recommending plant-based diets for the prevention of diabetes.This trial was registered at clinicaltrials.gov as NCT01231958.
Collapse
Affiliation(s)
- Ashley C Flores
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Christopher Heron
- Department of Family Medicine, Penn State Health Family and Community Medicine Residency at Mount Nittany Medical Center, State College, PA, USA
| | - Jung In Kim
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA,Department of Statistics, The Pennsylvania State University, University Park, PA, USA
| | - Bryan Martin
- Department of Family Medicine, Penn State Health Family and Community Medicine Residency at Mount Nittany Medical Center, State College, PA, USA
| | - Laila Al-Shaar
- Department of Public Health Sciences, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Katherine L Tucker
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA, USA
| | - Xiang Gao
- Address correspondence to XG (E-mail: )
| |
Collapse
|
39
|
Fatahi S, Qorbani M, J. Surkan P, Azadbakht L. Associations between dietary acid load and obesity among Iranian women. J Cardiovasc Thorac Res 2021; 13:285-297. [PMID: 35047133 PMCID: PMC8749368 DOI: 10.34172/jcvtr.2021.44] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 07/07/2021] [Accepted: 07/18/2021] [Indexed: 01/29/2023] Open
Abstract
Introduction: Diet-induced acid load may be associated with overweight and obesity as well as with diet quality. We aimed to study how dietary acid load is associated with overweight, obesity and diet quality indices in healthy women.
Methods: We randomly selected 306 healthy 20 to 55 year-old women from health centers affiliated with Tehran University of Medical Science. They were enrolled in a cross-sectional study between June2016 and March 2017. Potential renal acid load (PRAL), net endogenous acid production (NEAP) and dietary acid load (DAL) were calculated for each person. Dietary quality index international (DQI-I),mean adequacy ratio (MAR), and energy density (ED) were estimated. Anthropometry was measured using standard protocols. Nutritional data were obtained from food frequency questionnaires (FFQ). We used multivariable logistic regression models to assess dietary acid load indices in relation to overweight, obesity and abdominal adiposity.
Results: Participants had a mean age of 32.4 years. The number and percentage of women who were overweight, obese and who had abdominal obesity were 94(30.7), 38(12.4) and 126(41.2), respectively.The odds of obesity (adjusted odds ratio; Adj. OR = 2.41, 95% confidence interval; CI:1.01-5.74,P = 0.045) and abdominal adiposity (Adj. OR = 2.4, 95% CI:1.34-4.60, P = 0.004) increased significantly with tertile of DAL. Other dietary acid load indices (PRAL and NEAP) showed no significant association with obesity, overweight or abdominal obesity. As dietary acid load scores (PRAL, NEAP and DAL)increased, DQI-I and MAR significantly decreased whereas ED significantly increased across tertilesof dietary acid load indices (P < 0.001).
Conclusion: Dietary acid load is associated with obesity and abdominal obesity and is also considered an indicator of diet quality.
Collapse
Affiliation(s)
- Somaye Fatahi
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
- Pediatric Gastroenterology, Hepatology and Nutrition Research Center, Research Institute for Children’s Health, Shahid Beheshti University of Medical sciences, Tehran, Iran
| | - Mostafa Qorbani
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Pamela J. Surkan
- Department of International Health John Hopkins Bloomberg School of Public Health, Baltimore, USA
| | - Leila Azadbakht
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
40
|
Liu R, Zhang Y, Yao X, Wu Q, Wei M, Yan Z. ε-Viniferin, a promising natural oligostilbene, ameliorates hyperglycemia and hyperlipidemia by activating AMPK in vivo. Food Funct 2021; 11:10084-10093. [PMID: 33140813 DOI: 10.1039/d0fo01932a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
ε-Viniferin (VNF), a naturally occurring oligostilbene (a resveratrol dimer), is mainly found in grapes and red wines. However, unlike resveratrol, the biological activity of VNF has not been widely studied. This study was conducted to investigate the beneficial effects of VNF on hyperglycemia and hyperlipidemia and further to reveal the underlying mechanism. The ameliorative effects of VNF in high-fat-diet and streptozotocin-induced type 2 diabetic rats were assessed physiologically, biochemically and histologically after oral administration of VNF (30 mg kg-1 and 60 mg kg-1) for 8 weeks. Western blotting and immunohistochemistry experiments were performed to determine the effects of VNF on the AMPK phosphorylation levels in the livers of diabetic rats. Molecular docking and molecular dynamics simulation were further performed to study the molecular-level interaction between VNF and AMPK. Meanwhile, the protective effects of VNF on the liver and kidney were also evaluated. The results showed that the VNF treatment caused a significant decrease in the concentrations of fasting blood glucose (FBG), total cholesterol (TC), triglyceride (TG), and low density lipoprotein-cholesterol (LDL-C), and improved the glucose tolerance of diabetic rats. In addition, the liver and kidney damage indices such as alanine aminotransferase (ALT), aspartate aminotransaminase (AST), creatinine (CR), and blood urea nitrogen (BUN) were also lowered and improved. Moreover, VNF could increase the AMPK activation and attenuate histopathological changes in the liver of diabetic rats. The molecular docking and molecular dynamics simulation results revealed for the first time that VNF bound to the hinge region between the α- and β-units of AMPK and interacted with the active site of AMPK. In conclusion, VNF can effectively improve hyperglycemia and hyperlipidemia and exhibit protective effects on the liver and kidney functions. The underlying mechanism of VNF in hyperglycemia and hyperlipidemia may be related to the activation of AMPK in vivo. Our findings indicate that VNF is a potentially useful natural agent for the treatment of metabolic diseases, especially type 2 diabetes and hyperlipidemia.
Collapse
Affiliation(s)
- Ruijuan Liu
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, PR China.
| | | | | | | | | | | |
Collapse
|
41
|
Sauter A, Kikhia S, von Sommoggy J, Loss J. Factors influencing the nutritional behavior of Syrian migrants in Germany - results of a qualitative study. BMC Public Health 2021; 21:1334. [PMID: 34229649 PMCID: PMC8262055 DOI: 10.1186/s12889-021-11268-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/10/2021] [Indexed: 11/10/2022] Open
Abstract
Background Syrian migrants represent the third-largest group of foreigners in Germany and are therefore potential users of health promotion initiatives, including nutrition programs. It is little known how (healthy) nutrition is understood and implemented by this group and which factors influence their experiences related to food and eating in the host country. Thus, this study aimed to explore the importance of (healthy) nutrition, facilitators, and barriers of a preferred diet; nutritional changes in relation to the country of origin; and how nutrition may change with increasing length of stay. Methods Thirty semi-structured qualitative interviews with Syrian migrants (male = 16, female = 14, 18–35 years, length of stay 10–68 months) were conducted in 2018. Seventeen migrants could be followed-up after 12 months and were interviewed in 2019 again and were asked for changes in their nutritional behavior. Interviews were conducted in German, English, or Arabic, transcribed and translated into English if necessary. For analysis, an abbreviated version of the Grounded Theory was used. Results We identified six overarching themes that described influencing factors on a favored diet in Germany over the course of stay: (1) managing everyday life; (2) intercultural contact with local residents; (3) social context of cooking and eating; (4) ambiguity toward Arabic food; (5) mistrust toward certain types of food; and (6) influence of postmigration stressors. In general, the importance of nutrition is high among Syrian migrants. However, daily stressors, the lack of practical knowledge of how to cook favored dishes, and food insecurity in the new food environment make it difficult to obtain a preferred diet. With increasing stay, many developed a higher awareness of healthy eating, mainly due to a new independence or influences from the social environment in Germany. Conclusion Results highlight the need for health promotion interventions to be more responsive to the specific needs of Syrian migrants, including nutrition. Syrian migrants differ in their capabilities, needs, and aims, and they should be addressed differently by health professionals, social services or migrant specific services. Future research should continue to focus on the living conditions of Syrian migrants and its influence on nutrition.
Collapse
Affiliation(s)
- Alexandra Sauter
- Department for Epidemiology and Preventive Medicine, Medical Sociology, University of Regensburg, Regensburg, Germany.
| | - Salma Kikhia
- Department for Epidemiology and Preventive Medicine, Medical Sociology, University of Regensburg, Regensburg, Germany
| | - Julia von Sommoggy
- Department for Epidemiology and Preventive Medicine, Medical Sociology, University of Regensburg, Regensburg, Germany
| | - Julika Loss
- Department for Epidemiology and Preventive Medicine, Medical Sociology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
42
|
Zhou L, Li X, Li S, Wen X, Peng Y, Zhao L. Relationship between dietary choline intake and diabetes mellitus in the National Health and Nutrition Examination Survey 2007-2010. J Diabetes 2021; 13:554-561. [PMID: 33301237 DOI: 10.1111/1753-0407.13143] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/16/2020] [Accepted: 12/06/2020] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Little is known about the relationship between dietary intake of choline, which is a major dietary precursor for gut microbiome-derived trimethylamine N-oxide (TMAO), and diabetes mellitus (DM) in the general population. The present study aims to explore the relationship between dietary choline intake and DM in the US adult population. METHODS Cross-sectional data were derived from the National Health and Nutrition Examination Survey (NHANES) 2007-2010 of 8621 individuals aged 20 years or older. Multivariable logistic regression models were used to determine odds ratios (ORs) and 95% confidence intervals (CIs) for DM of each quartile category of energy-adjusted choline intakes. The restricted cubic spline model was used for the dose-response analysis. The receiver operating characteristic (ROC) curve was used to determine the optimal cutoff value of choline intake for predicting DM. RESULTS A linear dose-response relationship between dietary choline intake and the odds of DM was found after adjustment for multiple potential confounding factors. With the lowest quartile category of choline as the reference, the multivariable-adjusted ORs and 95% CIs of the second, third, and highest quartile categories were 1.23 (0.99-1.53), 1.27 (1.02-1.58), and 1.49 (1.20-1.85), respectively, P for trend =0.0004. The ROC analysis identified energy-adjusted choline of 331.7 mg/8.37-MJ per day as the optimal cutoff value for predicting DM, with 52.5% sensitivity and 60.7% specificity. CONCLUSION This study supports a positive and linear relationship between dietary choline intake and DM in the US adult population.
Collapse
Affiliation(s)
- Long Zhou
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Xiang Li
- Department of Clinical Nutrition, National Center for Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuhong Li
- Department of Clinical Nutrition, National Center for Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoxiao Wen
- Division of Prevention and Community Health, National Center for Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yaguang Peng
- Center for Clinical Epidemiology and Evidence-based Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children Health, Beijing, China
| | - Liancheng Zhao
- Division of Prevention and Community Health, National Center for Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
43
|
Nutritional composition and antioxidant properties of three varieties of carrot (Daucus carota). SCIENTIFIC AFRICAN 2021. [DOI: 10.1016/j.sciaf.2021.e00801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
44
|
Li F, Sun H, Dong HL, Zhang YQ, Pang XX, Cai CJ, Bai D, Wang PP, Yang MY, Zeng G. Starchy vegetable intake in the first trimester is associated with a higher risk of gestational diabetes mellitus: a prospective population-based study. J Matern Fetal Neonatal Med 2021; 35:6794-6801. [PMID: 34096443 DOI: 10.1080/14767058.2021.1924144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE The purpose of this study was to evaluate the association between starchy vegetable consumption and subgroup consumption in the first trimester and the risk of gestational diabetes mellitus (GDM). METHODS A prospective study (n = 1444) was conducted in China. Dietary information was assessed by 24-hour dietary recalls for three days and then we calculated the consumption of total starchy vegetable and its subgroups, including (1) potato and (2) other starchy vegetable (pumpkin, lotus root, yam, taro, water chestnut, pea, and cowpea). GDM was diagnosed according to the results of 75-g two-hour oral glucose tolerance test (OGTT) at 24-28 weeks of gestation. A modified log-binomial regression was used to estimate RRs and 95% CIs of GDM risk. RESULTS Among the 1444 participants in our study, 520 were diagnosed with GDM. The adjusted RRs (95% CIs) for GDM from the lowest to the highest quartiles of total starchy vegetable consumption were 1.00 (reference), 1.29 (1.06, 1.57), 1.13 (0.93, 1.40), and 1.26 (1.02, 1.56), respectively; p for trend = .032. For potato, the RR of GDM risk was 1.32 for the highest potato intake quartile compared with the lowest quartile (95% CI 1.07-1.64, p for trend = .003). In addition, we did not observe an association between other starchy vegetable intakes and GDM risk. CONCLUSIONS A higher consumption of total starchy vegetables and potatoes in the first trimester is associated with a greater risk of GDM.
Collapse
Affiliation(s)
- Fei Li
- Department of Nutrition and Food Safety, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Hong Sun
- Department of Nutrition and Food Safety, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Hong-Li Dong
- Department of Nutrition and Food Safety, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yi-Qi Zhang
- Department of Nutrition and Food Safety, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Xin-Xin Pang
- Department of Nutrition and Food Safety, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Cong-Jie Cai
- Department of Nutrition and Food Safety, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Dan Bai
- Department of Nutrition and Food Safety, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Peng-Peng Wang
- Department of Nutrition and Food Safety, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Meng-Yuan Yang
- Department of Nutrition and Food Safety, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Guo Zeng
- Department of Nutrition and Food Safety, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
45
|
Effects of Gynura bicolor on Glycemic Control and Antioxidant Ability in Prediabetes. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11115066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
There exists an intermediate group of individuals whose glucose levels do not meet the criteria for diabetes yet are higher than those considered normal (prediabetes mellitus (preDM)). Those people have a higher risk of developing diabetes in the future. Gynura bicolor (GB) is a red-purple-colored vegetable, which is common in Taiwan. GB has shown antioxidant, anti-inflammatory and anti-hyperglycemic effects in previous studies. The aim of this study was to assess the effects of serving two serving sizes of GB every day on the glycemic control and antioxidant ability of preDM subjects. According to the age and anthropometry data of the participates, we assigned them into a control or GB group for the 8-week intervention and 4-week washout period. Data of anthropometry and biochemical analysis were collected at 0, 8 and 12 weeks. Oral glucose tolerance tests were performed, and we collected dietary records on the baseline and Week 8. Both groups received nutrition education and a diet plan individually. After intervention, the fasting glucose and malondialdehyde (MDA) values were significantly decreased in the GB group. HOMA-IR and QUICKI values were improved, and antioxidant activity was increased in the GB group. GB could improve glycemic control and decrease oxidative stress because of its large amounts of polyphenols.
Collapse
|
46
|
Ren Z, Gong H, Zhao A, Zhang J, Yang C, Wang P, Zhang Y. Effect of Sea Buckthorn on Plasma Glucose in Individuals with Impaired Glucose Regulation: A Two-Stage Randomized Crossover Intervention Study. Foods 2021; 10:foods10040804. [PMID: 33917994 PMCID: PMC8068387 DOI: 10.3390/foods10040804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/29/2021] [Accepted: 04/06/2021] [Indexed: 01/21/2023] Open
Abstract
Sea buckthorn (SB) has been indicated to have hypoglycemic potential, but its effects on glucose in people with impaired glucose regulation (IGR) are still unclear. This work presents a randomized, double-blinded, two-way crossover study. A total of 38 subjects with IGR completed the intervention of consuming sea buckthorn fruit puree (SBFP, 90 mL/day, five weeks), washing out (four weeks), and then consuming placebo (90 mL/day, five weeks) or in reverse order. In our methodology, a unified questionnaire was used to gather information on physical activity and dietary intakes, and physical examinations were performed to measure blood pressure, height, and weight. Fasting blood samples were collected to detect the fasting plasma glucose (FPG) and glycated serum protein (GSP). To calculate the area under the curve of 2 h postprandial plasma glucose (2 h PG-AUC), blood samples at t = 30, 60, and 120 min were also collected and analyzed. Effects of the intervention were evaluated by paired-sample Wilcoxon test and mixed model analyses. Our results show that the FPG in subjects with IGR decreased by a median reduction of 0.14 mmol/L after five weeks' consumption of SBFP, but increased by a median of 0.07 mmol/L after placebo intervention, and the comparison of these two interventions was statistically significant (p = 0.045). During the wash-out period, a similar difference was observed as the FPG decreased in the group that received SBFP intervention first, but increased in another group (p = 0.043). Both SBFP and placebo significantly raised GSP during the intervention period, but lowered it in the wash-out period (p < 0.05), while no significant difference was found between the two interventions. The 2 h PG-AUC remained relatively stable throughout the study. Our results indicated that consumption of SBFP for five weeks showed a slight downward trend on FPG in subjects with IGR.
Collapse
Affiliation(s)
- Zhongxia Ren
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University Health Science Center, Beijing 100191, China; (Z.R.); (H.G.); (J.Z.); (C.Y.)
| | - Huiting Gong
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University Health Science Center, Beijing 100191, China; (Z.R.); (H.G.); (J.Z.); (C.Y.)
| | - Ai Zhao
- Vanke School of Public Health, Tsinghua University, Beijing 100091, China;
| | - Jian Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University Health Science Center, Beijing 100191, China; (Z.R.); (H.G.); (J.Z.); (C.Y.)
| | - Chenlu Yang
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University Health Science Center, Beijing 100191, China; (Z.R.); (H.G.); (J.Z.); (C.Y.)
| | - Peiyu Wang
- Department of Social Science and Health Education, School of Public Health, Peking University Health Science Center, Beijing 100191, China;
| | - Yumei Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University Health Science Center, Beijing 100191, China; (Z.R.); (H.G.); (J.Z.); (C.Y.)
- Correspondence:
| |
Collapse
|
47
|
Changes in intake of dairy product subgroups and risk of type 2 diabetes: modelling specified food substitutions in the Danish Diet, Cancer and Health cohort. Eur J Nutr 2021; 60:3449-3459. [PMID: 33661378 DOI: 10.1007/s00394-021-02524-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 02/19/2021] [Indexed: 12/26/2022]
Abstract
PURPOSE We investigated the association between an increased intake of one dairy product subgroup at the expense of another within a 5-year period and the subsequent 10-year risk of type 2 diabetes. METHODS The cohort included 39,393 adults with two measurements of diet assessed using food frequency questionnaires (FFQ) administered in 1993-1997 and 1999-2003. Dairy products were milk (skimmed, semi-skimmed, whole fat), buttermilk, low-fat yogurt, whole-fat yogurt, cheese and butter. Type 2 diabetes cases were ascertained from the Danish National Diabetes Register. The pseudo-observation method was used to calculate risk differences (RD) with 95% confidence intervals (CI). The data were analysed in age strata to fulfil the assumption of independent entry. RESULTS Among participants aged 56-59 years at completion of the follow-up FFQ, increased intake of whole-fat yogurt in place of skimmed, semi-skimmed or whole-fat milk was associated with a reduced risk (RD% [95% CI]: - 0.8% [- 1.3, - 0.2]; - 0.6% [- 1,1, - 0.1]; - 0.7 [- 1.2, - 0.1]; per 50 g/d, respectively). Among participants aged 60-64 and 65-72, substitution of skimmed milk for semi-skimmed milk was associated with an increased risk of type 2 diabetes (0.5% [0.2, 0.7]; 0.4% [0.1, 0.7]; per 50 g/d, respectively). Similar patterns of associations were found after adjustment for potential mediators. CONCLUSION Our results suggest that substitution of whole-fat yogurt for milk among those aged 56-59 decreases risk of type 2 diabetes and substitution of skimmed milk for semi-skimmed milk may increase the risk among those aged 60-64 and 65-72.
Collapse
|
48
|
Luo Z, Fu C, Li T, Gao Q, Miao D, Xu J, Zhao Y. Hypoglycemic Effects of Licochalcone A on the Streptozotocin-Induced Diabetic Mice and Its Mechanism Study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2444-2456. [PMID: 33605141 DOI: 10.1021/acs.jafc.0c07630] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is a type of metabolic illness based on relatively insufficient insulin secretion and insulin resistance (IR) as pathophysiological bases. Currently, it is the main type of diabetes. Hypoglycemic and hypolipidemic effects of licochalcone A (LicA) on high-fat diet and streptozocin-caused T2DM were studied. LicA can remarkably decline the IR index and blood glucose and serum lipid levels. Also, the treatment of LicA can improve the "three more and one less" phenomenon in T2DM mice, such as excessive drinking, eating, urine, and weight loss. In addition, LicA can improve oral glucose tolerance, pancreatic injury, and liver enlargement in T2DM mice. Network pharmacology analysis demonstrated that the observed pharmacological effects were mediated by regulating the insulin signal transduction pathway. Therefore, the PI3K/Akt-signaling pathway was selected for verification; it was demonstrated that LicA could improve the insulin-signaling pathway, protect islet cells, improve IR, reduce blood glucose levels, and alleviate lipid metabolism disorder. Its mechanism of influence may be closely related to LicA up-regulating the liver and pancreas IRS-2/PI3K/AKT-signaling pathway. Among them, the high-dose group of LicA had the best effect, which provided an idea for the use of LicA as a nutritional agent in the cure of T2DM.
Collapse
Affiliation(s)
- Zhonghua Luo
- Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chaofan Fu
- Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Tao Li
- Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qingqing Gao
- Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Dongyu Miao
- Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jing Xu
- Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yuqing Zhao
- Shenyang Pharmaceutical University, Shenyang 110016, China
- Key Laboratory of Structure-based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
49
|
Lourido F, Quenti D, Salgado-Canales D, Tobar N. Domeless receptor loss in fat body tissue reverts insulin resistance induced by a high-sugar diet in Drosophila melanogaster. Sci Rep 2021; 11:3263. [PMID: 33547367 PMCID: PMC7864986 DOI: 10.1038/s41598-021-82944-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 01/27/2021] [Indexed: 02/07/2023] Open
Abstract
Insulin resistance is a hallmark of type 2 diabetes resulting from the confluence of several factors, including genetic susceptibility, inflammation, and diet. Under this pathophysiological condition, the dysfunction of the adipose tissue triggered by the excess caloric supply promotes the loss of sensitivity to insulin at the local and peripheral level, a process in which different signaling pathways are involved that are part of the metabolic response to the diet. Besides, the dysregulation of insulin signaling is strongly associated with inflammatory processes in which the JAK/STAT pathway plays a central role. To better understand the role of JAK/STAT signaling in the development of insulin resistance, we used a simple organism, Drosophila melanogaster, as a type 2 diabetes model generated by the consumption of a high-sugar diet. In this model, we studied the effects of inhibiting the expression of the JAK/STAT pathway receptor Domeless, in fat body, on adipose metabolism and glycemic control. Our results show that the Domeless receptor loss in fat body cells reverses both hyperglycemia and the increase in the expression of the insulin resistance marker Nlaz, observed in larvae fed a high sugar diet. This effect is consistent with a significant reduction in Dilp2 mRNA expression and an increase in body weight compared to wild-type flies fed high sugar diets. Additionally, the loss of Domeless reduced the accumulation of triglycerides in the fat body cells of larvae fed HSD and also significantly increased the lifespan of adult flies. Taken together, our results show that the loss of Domeless in the fat body reverses at least in part the dysmetabolism induced by a high sugar diet in a Drosophila type 2 diabetes model.
Collapse
Affiliation(s)
- Fernanda Lourido
- Cellular Biology Laboratory, Institute of Nutrition and Food Technology (INTA), University of Chile, Av. El Líbano, 5524, Macul, Santiago, Chile
| | - Daniela Quenti
- Cellular Biology Laboratory, Institute of Nutrition and Food Technology (INTA), University of Chile, Av. El Líbano, 5524, Macul, Santiago, Chile
| | - Daniela Salgado-Canales
- Cellular Biology Laboratory, Institute of Nutrition and Food Technology (INTA), University of Chile, Av. El Líbano, 5524, Macul, Santiago, Chile
| | - Nicolás Tobar
- Cellular Biology Laboratory, Institute of Nutrition and Food Technology (INTA), University of Chile, Av. El Líbano, 5524, Macul, Santiago, Chile.
| |
Collapse
|
50
|
Immune Function Response Following a Low-carbohydrate, High-fat Diet (LCHFD) in Patients with Type 2 Diabetes. Asian J Sports Med 2021. [DOI: 10.5812/asjsm.106582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Type 2 diabetes is a chronic metabolic disorder that can result in micro- and macrovascular complications and is complicated by an impaired healing process. Research suggests that both dietary factors and habitual physical activity influence the hemostatic system through several pathways. Objectives: The study attempted to investigate if a low-carbohydrate, high-fat diet (LCHFD), on its own or in conjunction with physical activity, could alter hematologic variables in patients with type 2 diabetes. Methods: Participants (n = 39; 31 - 71 y.) were assigned into three groups, which included either a 16 week continuous physical activity program with the consumption of an LCHFD (ExDG) (n = 13; 41 - 71 y), consuming only a LCHFD group (DietG) (n = 13; 31 - 71 y.), or a control group (ConG) (n = 13; 44 - 69 y). Participants in the ExDG were advised only to consume a diet high in fat and not consume more than 50 g of carbohydrates per day. Furthermore, participants had to walk a minimum of 10000 steps per day. The DietG were instructed to only consume a diet high in fat and low in carbohydrates, where the ConG continued with their normal daily routine. Results: No significant changes (P > 0.05) were observed in white blood cell count, neutrophils, lymphocytes, eosinophils, basophils, hemoglobin, red blood cell count, mean corpuscular volume, hematocrit, mean corpuscular hemoglobin, platelets, red blood cell distribution width, mean corpuscular hemoglobin concentration, and C-reactive protein following ExDG, DietG or in the ConG. Conclusions: A LCHFD on its own or in conjunction with physical activity does not have any effect on the measured hematologic variables in patients with type 2 diabetes. This may be due to the current popular recommendation of LCHFD not being useful in type 2 diabetics and 10000 steps being of insufficient intensity to improve hematologic parameters in type 2 diabetics.
Collapse
|