1
|
Li H, Yang Y, Liu Q, Liu L, Zhang G, Zhang X, Yin M, Cao Y. The Effects of Caffeine on Exercise in Hot Environments: A Bibliometric Study. Nutrients 2024; 16:3692. [PMID: 39519525 PMCID: PMC11547974 DOI: 10.3390/nu16213692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/10/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Caffeine is widely recognized as an ergogenic aid to enhance athletic performance, yet its effects in hot environments remain relatively underexplored. AIMS To provide a comprehensive overview of the research landscape and identify research themes in this field. METHODS We systematically searched the Web of Science (WoS) and SCOPUS databases using keywords related to caffeine (e.g., caffe*), hot environments (e.g., heat, hot, or therm*), and athletic performance (e.g., cardio, endurance, or strength). The Bibliometrix package in R was used for bibliometric analysis and result visualization, while a narrative review was subsequently performed to identify research themes. RESULTS We found that studies examining the impact of caffeine on exercise in hot conditions are relatively sparse and have progressed slowly in recent years. Research in this domain has predominantly been concentrated within an academic network led by Professor Lawrence Armstrong. Recent contributions have been sporadically made by emerging scholars, with collaborations largely confined to a few research groups and countries. Key research themes identified include exercise performance, thermoregulation, fluid balance, physiological responses, immune responses, synergistic effects with other compounds, and the influence of individual differences. Of these, the first three themes-exercise performance, thermoregulation, and fluid balance-have received the most attention. CONCLUSIONS Caffeine's effects on exercise performance in hot environments have not been thoroughly studied. The existing research themes are varied, and the conclusions show considerable inconsistencies. Our study highlights the need for further research into the effects of caffeine dosage, administration methods, and population-specific variables. We also call for increased collaboration among research groups to advance scientific understanding and address the gaps in this field.
Collapse
Affiliation(s)
- Hansen Li
- School of Physical Education, Sichuan Agricultural University, Ya'an 625014, China
| | - Ying Yang
- School of Physical Education, Sichuan Agricultural University, Ya'an 625014, China
| | - Qian Liu
- School of Physical Education, Sichuan Agricultural University, Ya'an 625014, China
| | - Liming Liu
- School of Physical Education, Sichuan Agricultural University, Ya'an 625014, China
| | - Guodong Zhang
- Institute of Sports Science, College of Physical Education, Southwest University, Chongqing 400715, China
| | - Xing Zhang
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, 18071 Granada, Spain
| | - Mingyue Yin
- School of Athletic Performance, Shanghai University of Sport, Shanghai 200438, China
| | - Yang Cao
- Clinical Epidemiology and Biostatistics, School of Medical Sciences, Faculty of Medicine and Health, Örebro University, 70182 Örebro, Sweden
- Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, 17177 Stockholm, Sweden
| |
Collapse
|
2
|
Santos N, Oliveira M, Domingues I. Influence of exposure scenario on the sensitivity to caffeine. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:122808-122821. [PMID: 37978123 PMCID: PMC10724325 DOI: 10.1007/s11356-023-30945-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
The chorion acts as a protective barrier, restricting some chemical absorption into the embryo and the surrounding fluids. In this sense, larvae may only have direct contact with some chemicals after dechorionation. This study aimed to evaluate the effects of caffeine (CAF) (0, 13, 20, 44, 67, and 100 mg.L-1) under different exposure scenarios (embryos with chorion or embryos/larvae already hatched) and rank the stage sensitivity. Thus, three scenarios were investigated: from 2 to 120 hours post fertilization (hpf) (5 days of exposure- 5dE), from 72 to 120 hpf (2dE), and from 96 to 120 hpf (1dE). Heart rate (48 hpf) and energy reserves (120 hpf) were measured in the 5dE scenario, and behavior and acetylcholinesterase (AChE) activity were evaluated at 120 hpf in all scenarios (5dE, 2dE, and 1dE). At 120 hpf, some of the fish was transferred to clean medium for a 10 days depuration period (10dPE). Behavior and AChE activity were assessed after this period. In the 5dE scenario, CAF increased heartbeat (13, 20, and 30 mg.L-1) and reduced carbohydrates (67, and 100 mg.L-1), while inhibiting AChE activity (100 mg.L-1) in the 5dE, 2dE, and 1dE scenarios. CAF reduced the total distance moved in the 5dE (67, and 100 mg.L-1), 2dE (20, 30, 44, 67, and 100 mg.L-1), and 1dE fish (67, and 100 mg.L-1) and increased erratic movements. Based on the lowest observed effect concentration (LOEC) for total distance moved (20 mg.L-1) and higher inhibition of AChE activity (100 mg.L-1) (65%), 2dE fish appear to be more sensitive to CAF. After 10dPE, a recovery in behavior was detected in all scenarios (5dE, 2dE, and 1dE). AChE activity remained inhibited in the 2dE scenario while increasing in the 1dE scenario. This study demonstrated that the presence of the chorion is an important factor for the analysis of CAF toxicity. After the loss of the chorion, organisms show greater sensitivity to CAF and can be used to evaluate the toxicity of various substances, including nanomaterials or chemicals with low capacity to cross the chorion. Therefore, the use of hatched embryos in toxicity tests is suggested, as they allow a shorter and less expensive exposure scenario that provides similar outcome as the conventional scenario.
Collapse
Affiliation(s)
- Niedja Santos
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - Miguel Oliveira
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Inês Domingues
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
3
|
DiStefano JK. The Role of Choline, Soy Isoflavones, and Probiotics as Adjuvant Treatments in the Prevention and Management of NAFLD in Postmenopausal Women. Nutrients 2023; 15:2670. [PMID: 37375574 DOI: 10.3390/nu15122670] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a prevalent condition among postmenopausal women that can lead to severe liver dysfunction and increased mortality. In recent years, research has focused on identifying potential lifestyle dietary interventions that may prevent or treat NAFLD in this population. Due to the complex and multifactorial nature of NAFLD in postmenopausal women, the disease can present as different subtypes, with varying levels of clinical presentation and variable treatment responses. By recognizing the significant heterogeneity of NAFLD in postmenopausal women, it may be possible to identify specific subsets of individuals who may benefit from targeted nutritional interventions. The purpose of this review was to examine the current evidence supporting the role of three specific nutritional factors-choline, soy isoflavones, and probiotics-as potential nutritional adjuvants in the prevention and treatment of NAFLD in postmenopausal women. There is promising evidence supporting the potential benefits of these nutritional factors for NAFLD prevention and treatment, particularly in postmenopausal women, and further research is warranted to confirm their effectiveness in alleviating hepatic steatosis in this population.
Collapse
Affiliation(s)
- Johanna K DiStefano
- Diabetes and Metabolic Disease Research Unit, Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| |
Collapse
|
4
|
Zhao YC, Li LP, Li XY, Wang CC, Yang JY, Xue CH, Wang YM, Zhang TT. The synergistic effect of sea cucumber saponins and caffeine on preventing obesity in high-fat diet-fed mice by extending the action duration of caffeine. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3950-3960. [PMID: 36377349 DOI: 10.1002/jsfa.12339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/04/2022] [Accepted: 11/15/2022] [Indexed: 05/03/2023]
Abstract
BACKGROUND Sea cucumber saponins (SCSs) exhibit a unique structure and high bioactivities and might have specialized implications on caffeine metabolic process by altering the activity of N-demethylation enzyme CYP1A2. The present study aimed to clarify the effects of SCS on caffeine metabolism in vivo and in vitro, as well as the synergistic anti-obesity effect of SCS and caffeine on high-fat diet-induced obese mice. RESULTS Results found that SCS administration significantly postponed the elimination rate of caffeine and its metabolites in vivo, and further study found CYP1A2-mediated caffeine metabolism was remarkably inhibited in a dose-dependent manner in vitro. The synergistic effect of the SCS and caffeine combination could decrease the total weight of white adipose tissue by 52% compared with high-fat diet-treated group. CONCLUSION SCS could prolong caffeine action time, and the combination of the two substances exhibited joint action on high-fat diet-induced obese mice. These findings might provide a basis for the development of functional foods and potential application using the combination of SCS and caffeine. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ying-Cai Zhao
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Le-Ping Li
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology/ETH Zürich, Zurich, Switzerland
| | - Xiao-Yue Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Cheng-Cheng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Jin-Yue Yang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Chang-Hu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Yu-Ming Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Tian-Tian Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
5
|
Chen L, Wang XJ, Chen JX, Yang JC, Cai XB, Chen YS. Caffeine ameliorates the metabolic syndrome in diet-induced obese mice through regulating the gut microbiota and serum metabolism. Diabetol Metab Syndr 2023; 15:37. [PMID: 36890514 PMCID: PMC9996965 DOI: 10.1186/s13098-023-00993-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 02/07/2023] [Indexed: 03/10/2023] Open
Abstract
OBJECTIVE Obesity is associated with gut microbiota disorders, which has been related to developing metabolic syndromes. The research aims to investigate the effects of caffeine treatment on insulin resistance, intestinal microbiota composition and serum metabolomic changes in high-fat diet (HFD)-induced obesity mice. METHODS Eight-week-old male C57BL/6 J mice were fed a normal chow diet (NCD) or HFD with or without different concentrations of caffeine. After 12 weeks of treatment, body weight, insulin resistance, serum lipid profiles, gut microbiota and serum metabolomic profiles were assessed. RESULTS Caffeine intervention improved the metabolic syndrome in HFD-fed mice, such as serum lipid disorders and insulin resistance. 16S rRNA Sequencing analysis revealed that caffeine increased the relative abundance of Dubosiella, Bifidobacterium and Desulfovibrio and decreased that of Bacteroides, Lactobacillus and Lactococcus to reverse HFD-fed obesity in mice. Additionally, Caffeine Supplementation also altered serum metabolomics, mainly focusing on lipid metabolism, bile acid metabolism and energy metabolism. Caffeine increased its metabolite 1,7-Dimethylxanthine, which was positively correlated with Dubosiella. CONCLUSIONS Caffeine exerts a beneficial effect on insulin resistance in HFD-mice, and the underlying mechanism may be partly related to altered gut microbiota and bile acid metabolism.
Collapse
Affiliation(s)
- Li Chen
- Department of Gastroenterology, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
- Department of Endocrinology, The First Affiliated Hospital of Shantou University Medical College, No. 57 Changping Road, Shantou, 515041, Guangdong, China
| | - Xian-Jun Wang
- Department of Gastroenterology, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
| | - Jie-Xin Chen
- Department of Endocrinology, The First Affiliated Hospital of Shantou University Medical College, No. 57 Changping Road, Shantou, 515041, Guangdong, China
| | - Jing-Cheng Yang
- Department of Endocrinology, The First Affiliated Hospital of Shantou University Medical College, No. 57 Changping Road, Shantou, 515041, Guangdong, China
| | - Xian-Bin Cai
- Department of Gastroenterology, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China.
| | - Yong-Song Chen
- Department of Endocrinology, The First Affiliated Hospital of Shantou University Medical College, No. 57 Changping Road, Shantou, 515041, Guangdong, China.
| |
Collapse
|
6
|
Alhadi IA, Al Ansari AM, AlSaleh AFF, Alabbasi AMA. Systematic review of the effect of caffeine therapy effect on cardiometabolic markers in rat models of the metabolic syndrome. BMC Endocr Disord 2023; 23:34. [PMID: 36740696 PMCID: PMC9901135 DOI: 10.1186/s12902-023-01288-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 01/31/2023] [Indexed: 02/07/2023] Open
Abstract
This systematic review aimed to study caffeine's effect on the cardiometabolic markers of the metabolic syndrome and to evaluate caffeine's application as a potential therapeutic agent in rat models. The systematic review was structured and synthesized according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) and the Population, Intervention, comparator, outcome (PICO) framework. A literature search was conducted in PubMed, Scopus, and ScienceDirect to identify studies that used caffeine as an intervention in the rat model of the metabolic syndrome or any of its components compared with no treatment or controls. Studies that did not mention the disease manifestations from the experimental model used, without rat subjects, and which induced renovascular hypertension were excluded. The risk of bias in the included studies was assessed using the Systematic Review Center for Laboratory Animal Experimentation risk-of-bias tool. The main outcomes assessed were caffeine's effect on obesity, dyslipidemia, hepatic steatosis, hepatic dysfunction, insulin resistance, and hypertension. Out of 228 studies retrieved from the search, 18 met our inclusion criteria and were included in the systematic review. Caffeine was found to favorably reduce obesity and insulin resistance in the rat model of the metabolic syndrome. The effects of caffeine on dyslipidemia, hepatic steatosis, hepatic dysfunction, and hypertension remain inconclusive. The main limitations of this study are the heterogeneity of the included studies in terms of the disease model used, experimental duration, methods to assess outcomes, including studies that were only published in English, measurement units used, and graphical data without and numerical mention in the results section. As a result, quantitative synthesis was unfeasible, and a qualitative descriptive synthesis was conducted; this might have led to the under characterization of caffeine's effect on metabolic syndrome and its potential as an adjuvant therapy in metabolic syndrome. Caffeine has favorable effects on the metabolic syndrome, chiefly reducing obesity and insulin resistance. Future research is encouraged to delve into caffeine's effect on dyslipidemia, hepatic steatosis, hepatic dysfunction, and hypertension, which is necessary if caffeine is to be used as a potential clinical adjuvant therapy to treat the metabolic syndrome.
Collapse
Affiliation(s)
- Isa Abdulla Alhadi
- Department of Gifted Education, Arabian Gulf University, P.O. Box: 26671, Manama, Bahrain
| | | | | | | |
Collapse
|
7
|
Chege BM, Nyaga NM, Kaur PS, Misigo WO, Khan N, Wanyonyi WC, Mwangi PW. The significant antidyslipidemic, hypoglycemic, antihyperglycemic, and antiobesity activities of the aqueous extracts of Agave Sisalana juice are partly mediated via modulation of calcium signaling pathways. Heliyon 2023; 9:e12400. [PMID: 36816233 PMCID: PMC9932365 DOI: 10.1016/j.heliyon.2022.e12400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/15/2022] [Accepted: 12/08/2022] [Indexed: 12/26/2022] Open
Abstract
Plant species in the genus Agave, including Agave sisalana, have found extensive application in African and Asian traditional medicine. Inspired by the use of the edible sweet sap known as Aguamiel (obtained from specific mature agave species such as Agave salmiana) in Mexico by diabetic patients to improve their diabetic condition, this study investigated the effects of Agave sisalana extracts prepared by lyophilization, fermentation, and saponin extraction from sisal juice in a rodent model of metabolic syndrome. The metabolic syndrome was induced by administering a high fat and high fructose diet to freshly weaned Sprague-Dawley rats for eight weeks. The A. sisalana extracts possessed significant hypoglycemic effects [3.883 ± 0.371 mmol/L (normal group) vs. 8.183 ± 0.5845 mmol/L (negative control) vs. 3.767 ± 0.2716 mmol/L (positive control) vs. 4.167 ± 0.4602 mmol/L (FSP) vs. 4.533 ± 0.3169 mmol/L (FerSP) vs. 3.5 ± 0.2309 mmol/L (FS LD) vs. 3.867 ± 0.3353 mmol/L (FS HD) vs. 4.617 ± 0.2725 mmol/L (FerS LD) vs. 4.383 ± 0.3114 mmol/L (FerS HD): p < 0.0001]. The extracts also possessed significant antihyperlipidemic effects with significant differences in total serum cholesterol between the groups [1.398 ± 0.1232 mmol/L (normal group) vs. 4.225 ± 0.4135 mmol/L (negative control) vs. 1.582 ± 0.154 mmol/L (positive control) vs. 1.245 ± 0.0911 mmol/L (FSP) vs. 1.393 ± 0.1423 mmol/L (FerSP) vs. 1.387 ± 0.0924 mmol/L (FS LD) vs. 1.761 ± 0.1495 mmol/L (FS HD) vs. 1.698 ± 0.1294 mmol/L (FerS LD) vs. 1.6975 ± 0.0982 mmol/L (FerS HD): p < 0.0001]. Further, significant antiobesity effects of the A.sisalana extracts were observed with significant differences in weight among the groups [196.3 ± 6.49 g (normal group) vs. 298.9 ± 6.67 g (negative control) vs. 215.3 ± 6.06 g (positive control) vs. 195.4 ± 3.92 g (FSP) vs. 213.1 ± 5.21 g (FerSP) vs. 190.8 ± 6.49 g (FS LD) vs. 198.9 ± 4.31 g (FS HD) vs. 204.7 ± 4.78 g (FerS LD) vs. 208.7 ± 6.21 g (FerS HD): p < 0.0001]. Network pharmacology studies indicated that the chemical components found in sisal juice primarily exert their effects by modulating the voltage-gated calcium channels CACNA1S, CACNA1D, and CACNA1C, in the beta cells of the islets of Langerhans.
Collapse
Affiliation(s)
| | | | | | | | - Nelson Khan
- University of Nairobi, Department of Biochemistry, Kenya
| | | | | |
Collapse
|
8
|
Yang XD, Ge XC, Jiang SY, Yang YY. Potential lipolytic regulators derived from natural products as effective approaches to treat obesity. Front Endocrinol (Lausanne) 2022; 13:1000739. [PMID: 36176469 PMCID: PMC9513423 DOI: 10.3389/fendo.2022.1000739] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Epidemic obesity is contributing to increases in the prevalence of obesity-related metabolic diseases and has, therefore, become an important public health problem. Adipose tissue is a vital energy storage organ that regulates whole-body energy metabolism. Triglyceride degradation in adipocytes is called lipolysis. It is closely tied to obesity and the metabolic disorders associated with it. Various natural products such as flavonoids, alkaloids, and terpenoids regulate lipolysis and can promote weight loss or improve obesity-related metabolic conditions. It is important to identify the specific secondary metabolites that are most effective at reducing weight and the health risks associated with obesity and lipolysis regulation. The aims of this review were to identify, categorize, and clarify the modes of action of a wide diversity of plant secondary metabolites that have demonstrated prophylactic and therapeutic efficacy against obesity by regulating lipolysis. The present review explores the regulatory mechanisms of lipolysis and summarizes the effects and modes of action of various natural products on this process. We propose that the discovery and development of natural product-based lipolysis regulators could diminish the risks associated with obesity and certain metabolic conditions.
Collapse
Affiliation(s)
- Xi-Ding Yang
- Department of Pharmacy, Second Xiangya Hospital of Central South University, Changsha, China
- Phase I Clinical Trial Center, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xing-Cheng Ge
- Xiangxing College, Hunan University of Chinese Medicine, Changsha, China
| | - Si-Yi Jiang
- Department of Pharmacy, Medical College, Yueyang Vocational Technical College, YueYang, China
| | - Yong-Yu Yang
- Department of Pharmacy, Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Provincial Engineering Research Central of Translational Medical and Innovative Drug, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
9
|
Chen L, Wang X, Chen J, Yang J, lin L, Cai X, Chen Y. Caffeine Ameliorates the Metabolic Syndrome in Diet-induced Obese Mice Through Regulating the Gut Microbiota and Serum Metabolism.. [DOI: 10.21203/rs.3.rs-1897181/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Abstract
Objective
Obesity is associated with gut microbiota disorders, which has been related to developing metabolic syndromes. The research aims to investigate the effects of caffeine treatment on insulin resistance, intestinal microbiota composition and serum metabolomic changes in high-fat diet (HFD)-induced obesity mice.
Methods
Eight-week-old male C57BL/6J mice were fed a normal chow diet (NCD) or HFD with or without different concentrations of caffeine. After 12 weeks of treatment, body weight, insulin resistance, serum lipid profiles, gut microbiota and serum metabolomic profiles were assessed.
Results
Caffeine intervention improved the metabolic syndrome in HFD-fed mice, such as serum lipid disorders and insulin resistance. 16S rRNA Sequencing analysis revealed that caffeine increased the relative abundance of Dubosiella, Bifidobacterium and Desulfovibrio and decreased that of Bacteroides, Lactobacillus and Lactococcus to reverse HFD-fed obesity in mice. Additionally, Caffeine Supplementation also altered serum metabolomics, mainly focusing on lipid metabolism, bile acid metabolism and energy metabolism. Caffeine increased its metabolite 1,7-Dimethylxanthine, which was positively correlated with Dubosiella.
Conclusions
Caffeine exerts a beneficial effect on insulin resistance in HFD-mice, and the underlying mechanism may be partly related to altered gut microbiota and bile acid metabolism.
Collapse
Affiliation(s)
- Li Chen
- First Affiliated Hospital of Shantou University Medical College
| | - Xian-jun Wang
- First Affiliated Hospital of Shantou University Medical College
| | - Jie-xin Chen
- First Affiliated Hospital of Shantou University Medical College
| | - Jing-cheng Yang
- First Affiliated Hospital of Shantou University Medical College
| | - Ling lin
- First Affiliated Hospital of Shantou University Medical College
| | - Xian-Bin Cai
- First Affiliated Hospital of Shantou University Medical College
| | - Yong-song Chen
- First Affiliated Hospital of Shantou University Medical College
| |
Collapse
|
10
|
Apostolidis A, Mougios V, Smilios I, Hadjicharalambous M. Higher and lower caffeine consumers: exercise performance and biological responses during a simulated soccer-game protocol following caffeine ingestion. Eur J Nutr 2022; 61:4135-4143. [PMID: 35857131 DOI: 10.1007/s00394-022-02955-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 07/08/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE Research on whether caffeine habituation reduces its ergogenicity is scarce and conflicting. The purpose of the present study was to examine the influence of habitual caffeine consumption on exercise performance and biological responses during a simulated soccer-game protocol following acute caffeine ingestion. METHODS Twenty professional male soccer players were categorized as higher (n = 9) or lower caffeine consumers (n = 11) after answering a validated questionnaire. Participants performed a simulated treadmill soccer-game protocol on treadmill following either caffeine (6 mg kg-1) or placebo ingestion, during which several variables were evaluated. RESULTS Time to exhaustion, countermovement jump height, mean arterial pressure, heart rate, plasma glucose, and lactate were higher (P ≤ 0.001), while rating of perceived exertion (RPE) was lower (P = 0.002), following caffeine compared to placebo ingestion, with no differences between groups (P > 0.05). Plasma non-esterified fatty acids exhibited a higher response to caffeine in the higher vs lower caffeine consumers. Reaction time, plasma glycerol and epinephrine, carbohydrate and fat oxidation, and energy expenditure were not affected by caffeine (P > 0.05). CONCLUSION Caffeine ingestion largely improved cardiovascular and neuromuscular performance, while reducing RPE, in both higher and lower caffeine consuming athletes during prolonged intermitted exercise to exhaustion.
Collapse
Affiliation(s)
- Andreas Apostolidis
- Human Performance Laboratory, Department of Life & Health Sciences, University of Nicosia, 46 Makedonitissas Ave., P.O. Box 2417, Nicosia, Cyprus
| | - Vassilis Mougios
- Laboratory of Evaluation of Human Biological Performance, School of Physical Education & Sport Science at Thessaloniki, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ilias Smilios
- School of Physical Education & Sports Science, Democritus University of Thrace, Komotini, Greece
| | - Marios Hadjicharalambous
- Human Performance Laboratory, Department of Life & Health Sciences, University of Nicosia, 46 Makedonitissas Ave., P.O. Box 2417, Nicosia, Cyprus.
| |
Collapse
|
11
|
Protective Effect of Butanolic Fraction of Delphinium brunonianum on Fructose-Mediated Metabolic Alterations in Rats. Metabolites 2022; 12:metabo12060481. [PMID: 35736413 PMCID: PMC9227329 DOI: 10.3390/metabo12060481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/15/2022] [Accepted: 05/22/2022] [Indexed: 02/04/2023] Open
Abstract
The present study was conducted with an intent to evaluate the protective effect of butanolic fraction of Delphinium brunonianum on fructose mediated metabolic abnormalities in rats. Rats in all groups except control group were fed on 10% fructose for 6 weeks; however, rats in the treated group also received butanolic fraction for the last 3 weeks, along with the fructose. Moreover, phytoconstituents present in butanolic fraction were analyzed using LC-MS. All doses of butanolic fraction profoundly reduce the fructose-induced blood pressure, sympathetic over-activity, and weight gain. Furthermore, butanolic fraction prominently reduces the glucose intolerance and hyperinsulinemia in fructose-fed rats. On treatment with butanolic fraction, oxidative enzymes and the functionality of the aorta was also restored. Phytochemical analysis revealed the presence of several active constituents including bergenin, scopolin, rutinoside, kaempferol, coumaric acid, apigenin, and gingerol. In conclusion, butanolic fraction of Delphinium brunonianum has the potential to prevent and recover the fructose-induced metabolic perturbations.
Collapse
|
12
|
Liang J, Sun X, Yi L, Lv J. Effect of hyperbaric oxygen therapy on weight loss and hyperlipidemia in rats. Biochem Biophys Res Commun 2022; 599:106-112. [PMID: 35180469 DOI: 10.1016/j.bbrc.2022.02.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 01/22/2023]
Abstract
OBJECTIVE To explore whether hyperbaric oxygen therapy(HBO) can promote weight loss and recovery of hyperlipidemia in rats, and to explore the possible mechanism. METHODS 180 SD rats were divided into 6 groups with 30 rats in each group. The first 3 groups were intraperitoneally injected with fat emulsion to make hyperlipidemia models, and the last three groups were injected with normal saline. The first three groups received 3 h/d, 6 h/d, 0 h/d HBO therapy respectively, and the last three groups received the same treatment. Body weight, blood lipid and transaminase were measured in all SD rats, and pathological sections of heart, liver and kidney were observed. RESULTS Hyperlipidemia group treated with 3 h/d hyperbaric oxygen has the effect of reducing hyperlipidemia compared with other groups and has the effect of heart and kidney protection. Although 6 h/d HBO therapy has a more noticeable effect on lowering hyperlipidemia, it has more apparent liver damage effects. The normal group treated with HBO for 3 h/d or 6 h/d both have the effect of weight loss, and the impact of liver injury is not apparent. However, the 6 h/d HBO therapy group had a more prominent weight loss effect. CONCLUSION HBO therapy can promote weight loss and reduce hyperlipidemia. Our experiments have shown that 6 h/d and 3 h/d HBO therapy reduces blood lipids in hyperlipidemia SD rats. However, the former has noticeable liver damage effects on SD rats, and the latter is adequate for protecting the liver in normal or hyperlipidemia SD rats. At the same time, it has been proved that HBO therapy has cardio and kidney protection in hyperlipidemia SD rats.
Collapse
Affiliation(s)
- Jianhe Liang
- Department of Plastic Burn and Cosmetic Center, The First Affiliated Hospital of Jiamusi University, Jiamusi, 154002, China
| | - Xu Sun
- Department of Burn, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lei Yi
- Department of Burn, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Jinyuan Lv
- Department of Plastic Burn and Cosmetic Center, The First Affiliated Hospital of Jiamusi University, Jiamusi, 154002, China.
| |
Collapse
|
13
|
Conde SV, Martins FO, Dias SS, Pinto P, Bárbara C, Monteiro EC. Dysmetabolism and Sleep Fragmentation in Obstructive Sleep Apnea Patients Run Independently of High Caffeine Consumption. Nutrients 2022; 14:nu14071382. [PMID: 35405995 PMCID: PMC9003552 DOI: 10.3390/nu14071382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/16/2022] [Accepted: 03/24/2022] [Indexed: 12/01/2022] Open
Abstract
Daytime hypersomnolence, the prime feature of obstructive sleep apnea (OSA), frequently leads to high coffee consumption. Nevertheless, some clinicians ask for patients’ caffeine avoidance. Caffeinated drinks are sometimes associated with more severe OSA. However, these effects are not consensual. Here we investigated the effect of caffeine consumption on sleep architecture and apnea/hypopnea index in OSA. Also, the impact of caffeine on variables related with dysmetabolism, dyslipidemia, and sympathetic nervous system (SNS) dysfunction were investigated. A total of 65 patients diagnosed with OSA and 32 without OSA were included after given written informed consent. Polysomnographic studies were performed. Blood was collected to quantify caffeine and its metabolites in plasma and biochemical parameters. 24 h urine samples were collected for catecholamines measurement. Statistical analyses were performed by SPSS: (1) non-parametric Mann-Whitney test to compare variables between controls and OSA; (2) multivariate logistic regression testing the effect of caffeine on sets of variables in the 2 groups; and (3) Spearmans’ correlation between caffeine levels and comorbidities in patients with OSA. As expected OSA development is associated with dyslipidemia, dysmetabolism, SNS dysfunction, and sleep fragmentation. There was also a significant increase in plasma caffeine levels in the OSA group. However, the higher consumption of caffeine by OSA patients do not alter any of these associations. These results showed that there is no apparent rationale for caffeine avoidance in chronic consumers with OSA.
Collapse
Affiliation(s)
- Sílvia V. Conde
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Rua Câmara Pestana 6, Edifício 2, piso 3, 1150-082 Lisboa, Portugal; (F.O.M.); (E.C.M.)
- Correspondence:
| | - Fátima O. Martins
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Rua Câmara Pestana 6, Edifício 2, piso 3, 1150-082 Lisboa, Portugal; (F.O.M.); (E.C.M.)
| | - Sara S. Dias
- ciTechCare—Center for Innovative Care and Health Technology, Polytechnic of Leiria, 2411-901 Leiria, Portugal;
- School of Health Sciences, Polytechnic of Leiria, 2411-901 Leiria, Portugal
| | - Paula Pinto
- Pneumology Department, Centro Hospitalar de Lisboa Norte, Hospital Pulido Valente, 1649-028 Lisboa, Portugal; (P.P.); (C.B.)
| | - Cristina Bárbara
- Pneumology Department, Centro Hospitalar de Lisboa Norte, Hospital Pulido Valente, 1649-028 Lisboa, Portugal; (P.P.); (C.B.)
| | - Emília C. Monteiro
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Rua Câmara Pestana 6, Edifício 2, piso 3, 1150-082 Lisboa, Portugal; (F.O.M.); (E.C.M.)
| |
Collapse
|
14
|
Orhan C, Er B, Deeh PBD, Bilgic AA, Ojalvo SP, Komorowski JR, Sahin K. Different Sources of Dietary Magnesium Supplementation Reduces Oxidative Stress by Regulation Nrf2 and NF-κB Signaling Pathways in High-Fat Diet Rats. Biol Trace Elem Res 2021; 199:4162-4170. [PMID: 33409912 DOI: 10.1007/s12011-020-02526-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/29/2020] [Indexed: 12/31/2022]
Abstract
Magnesium (Mg) is an essential mineral required for many physiological processes, including ionic balances in ocular tissues. We compared the effects of different Mg-chelates (Mg oxide, MgO vs. Mg picolinate, MgPic) on retinal function in a high-fat diet (HFD) rats. Forty-two rats were divided into six groups and treated orally for 8 weeks as follows: Control, MgO, MgPic, HFD, HFD + MgO, and HFD + MgPic. Mg was administered at 500 mg of elemental Mg/kg of diet. HFD intake increased the levels of retinal MDA and NF-κB, INOS, ICAM, and VEGF but downregulated Nrf2. However, in rats supplemented with MgO and MgPic, the retinal MDA level was decreased, compared with the control and HFD rats. Activities of antioxidant enzymes (SOD, CAT, and GPx) were increased in HFD animals given Mg-chelates (p < 0.001), MgPic being the most effective. Mg supplementation significantly decreased the expression levels of NF-κB, INOS, ICAM, and VEGF in HFD rats while increasing the level of Nrf2 (p < 0.001). Mg supplementation significantly decreased the levels of NF-κB, INOS, ICAM, and VEGF and increased Nrf2 level in HFD rats (p < 0.001), with stronger effects seen from MgPic. Mg attenuated retinal oxidative stress and neuronal inflammation and could be considered as an effective treatment for ocular diseases.
Collapse
Affiliation(s)
- Cemal Orhan
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, 23119, Elazig, Turkey
| | - Besir Er
- Department of Molecular Biology, Faculty of Science, Firat University, Elazig, Turkey
| | | | - Ahmet Alp Bilgic
- Department of Ophthalmology, Sabuncuoglu Serefeddin Research and Training Hospital, Amasya University, Amasya, Turkey
| | | | | | - Kazim Sahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, 23119, Elazig, Turkey.
| |
Collapse
|
15
|
Bhandarkar NS, Mouatt P, Majzoub ME, Thomas T, Brown L, Panchal SK. Coffee Pulp, a By-Product of Coffee Production, Modulates Gut Microbiota and Improves Metabolic Syndrome in High-Carbohydrate, High-Fat Diet-Fed Rats. Pathogens 2021; 10:pathogens10111369. [PMID: 34832525 PMCID: PMC8624503 DOI: 10.3390/pathogens10111369] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 12/17/2022] Open
Abstract
Waste from food production can be re-purposed as raw material for usable products to decrease industrial waste. Coffee pulp is 29% of the dry weight of coffee cherries and contains caffeine, chlorogenic acid, trigonelline, diterpenes and fibre. We investigated the attenuation of signs of metabolic syndrome induced by high-carbohydrate, high-fat diet in rats by dietary supplementation with 5% freeze-dried coffee pulp for the final 8 weeks of a 16-week protocol. Coffee pulp decreased body weight, feed efficiency and abdominal fat; normalised systolic blood pressure, left ventricular diastolic stiffness, and plasma concentrations of triglycerides and non-esterified fatty acids; and improved glucose tolerance in rats fed high-carbohydrate, high-fat diet. Further, the gut microbiota was modulated with high-carbohydrate, high-fat diet and coffee pulp supplementation and 14 physiological parameters were correlated with the changes in bacterial community structures. This study suggested that coffee pulp, as a waste from the coffee industry, is useful as a functional food for improving obesity-associated metabolic, cardiovascular and liver structure and function, and gut microbiota.
Collapse
Affiliation(s)
- Nikhil S. Bhandarkar
- Functional Foods Research Group, University of Southern Queensland, Toowoomba, QLD 4350, Australia; (N.S.B.); (L.B.)
| | - Peter Mouatt
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW 2480, Australia;
| | - Marwan E. Majzoub
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia; (M.E.M.); (T.T.)
| | - Torsten Thomas
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia; (M.E.M.); (T.T.)
| | - Lindsay Brown
- Functional Foods Research Group, University of Southern Queensland, Toowoomba, QLD 4350, Australia; (N.S.B.); (L.B.)
| | - Sunil K. Panchal
- Functional Foods Research Group, University of Southern Queensland, Toowoomba, QLD 4350, Australia; (N.S.B.); (L.B.)
- Correspondence: ; Tel.: +61-2-4570-1932
| |
Collapse
|
16
|
Novel Facet of an Old Dietary Molecule? Direct Influence of Caffeine on Glucose and Biogenic Amine Handling by Human Adipocytes. Molecules 2021; 26:molecules26133831. [PMID: 34201708 PMCID: PMC8270301 DOI: 10.3390/molecules26133831] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022] Open
Abstract
Caffeine is a plant alkaloid present in food and beverages consumed worldwide. It has high lipid solubility with recognized actions in the central nervous system and in peripheral tissues, notably the adipose depots. However, the literature is scant regarding caffeine's influence on adipocyte functions other than lipolysis, such as glucose incorporation into lipids (lipogenesis) and amine oxidation. The objective of this study was to explore the direct effects of caffeine and of isobutylmethylxanthine (IBMX) on these adipocyte functions. Glucose transport into fat cells freshly isolated from mice, rats, or humans was monitored by determining [3H]-2-deoxyglucose (2-DG) uptake, while the incorporation of radiolabeled glucose into cell lipids was used as an index of lipogenic activity. Oxidation of benzylamine by primary amine oxidase (PrAO) was inhibited by increasing doses of caffeine in human adipose tissue preparations with an inhibition constant (Ki) in the millimolar range. Caffeine inhibited basal and insulin-stimulated glucose transport as well as lipogenesis in rodent adipose cells. The antilipogenic action of caffeine was also observed in adipocytes from mice genetically invalidated for PrAO activity, indicating that PrAO activity was not required for lipogenesis inhibition. These caffeine inhibitory properties were extended to human adipocytes: relative to basal 2-DG uptake, set at 1.0 ± 0.2 for 6 individuals, 0.1 mM caffeine tended to reduce uptake to 0.83 ± 0.08. Insulin increased uptake by 3.86 ± 1.11 fold when tested alone at 100 nM, and by 3.21 ± 0.80 when combined with caffeine. Our results reinforce the recommendation of caffeine's potential in the treatment or prevention of obesity complications.
Collapse
|
17
|
Mengesha T, Sekaran NG, Mehare T. Hepatoprotective effect of silymarin on fructose induced nonalcoholic fatty liver disease in male albino wistar rats. BMC Complement Med Ther 2021; 21:104. [PMID: 33785007 PMCID: PMC8011178 DOI: 10.1186/s12906-021-03275-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 03/15/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is one of the most common causes of chronic liver disease in the Western world, and it's likely to parallel the increasing prevalence of type 2 diabetes, obesity, and other components of metabolic syndrome. However, optimal treatment for NAFLD has not been established yet. Therefore, this study investigated the hepatoprotective effect of silymarin on fructose-induced nonalcoholic fatty liver disease in rats. METHODS Thirty male Wistar rats were randomly divided into five groups; normal control group that consumed tap water, silymarin control group that consumed tap water and silymarin (400 mg/kg/day), fructose control group that consumed 20% fructose solution, treatment group that consumed 20% fructose solution and silymarin (200 mg/kg/day), and another treatment group that consumed 20% fructose solution and silymarin (400 mg/kg/day). Hepatic triglyceride, serum lipid profile, lipid peroxidation, antioxidant level, morphological features, and histopathological changes were investigated. The data were analyzed using one-way analysis of variance (ANOVA) followed by Tukey multiple comparison test. Statistical significance was determined at p < 0.05. RESULTS This study showed that the fructose control group had a significantly high value in the stage of steatosis grade, hepatic triglyceride, serum triglyceride, total cholesterol, low-density lipoprotein cholesterol, alanine aminotransferase, aspartate aminotransferase, and hepatic malondialdehyde concentration as compared to the normal control. However, significantly low values of reduced glutathione and plasma total antioxidant capacity were found. The altered parameters due to fructose drastic effect were ameliorated by silymarin treatment. CONCLUSIONS The fructose control group developed dyslipidemia, oxidative stress, and mild steatosis that are the characteristics features of NAFLD. However, silymarin-treated groups showed amelioration in oxidative stress, dyslipidemia, and steatosis.
Collapse
Affiliation(s)
- Tewodros Mengesha
- Department of Biomedical Science, College of Medicine and Health Science, Dilla University, Dilla, Ethiopia
| | - N. Gnana Sekaran
- Department of Biochemistry, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | - Tsegaye Mehare
- Department of Biomedical Science, College of Medicine and Health Science, Dilla University, Dilla, Ethiopia
| |
Collapse
|
18
|
Yang L, Zhu Y, Zhong S, Zheng G. Astilbin lowers the effective caffeine dose for decreasing lipid accumulation via activating AMPK in high-fat diet-induced obese mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:573-581. [PMID: 32673411 DOI: 10.1002/jsfa.10669] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/07/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Caffeine has an anti-obesity effect, although chronic excessive caffeine consumption also causes caffeinism, which is marked by increased anxiety or depression, amongst other symptoms. The present study aimed to investigate whether the addition of flavonoids such as astilbin can reduce the caffeine dose needed to inhibit obesity. RESULTS ICR mice (n = 80) were fed with normal diet, high-fat diet (HFD), HFD supplemented with astilbin, caffeine, or astilbin + caffeine for 12 weeks. When diets supplemented with astilbin, 0.3 g kg-1 diet caffeine had the same effect as 0.6 g kg-1 diet caffeine alone, and 0.6 g kg-1 diet caffeine combined with astilbin most effectively inhibited HFD-induced obesity. Astilbin improved the anti-obesity effects of caffeine on lipid accumulation via the activation of AMP-activated protein kinase α (AMPKα). (i) Activated AMPKα decreased lipid biosynthesis by suppressing the activity or mRNA expression of 3-hydroxy-3-methylglutaryl-CoA reductase, sterol regulatory element binding protein 1c and its target gene fatty acid synthase. (ii) Activated AMPKα also up-regulated lipolysis by enhancing the expression of adipose triglyceride lipase and increasing the phosphorylation of hormone-sensitive lipase. (iii) Finally, activated AMPKα increased carnitine acyltransferase and acyl-CoA oxidase activities, which further promoted fatty acid β-oxidation. CONCLUSION The results obtained in the present study indicate that astilbin may decrease the effective dose of caffeine needed for an anti-obesity effect and also suggest that it suppresses fat accumulation via the activation of AMPK. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Licong Yang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Yanping Zhu
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Shusheng Zhong
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Guodong Zheng
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
19
|
Ghattamaneni NKR, Brown L. Functional foods from the tropics to relieve chronic normobaric hypoxia. Respir Physiol Neurobiol 2020; 286:103599. [PMID: 33333240 DOI: 10.1016/j.resp.2020.103599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/16/2020] [Accepted: 12/09/2020] [Indexed: 12/28/2022]
Abstract
Functional foods with antioxidant and anti-inflammatory properties are regarded as a complementary therapy to improve chronic diseases such as obesity and inflammatory bowel disease (IBD). Obesity is a chronic low-grade inflammatory state leading to organ damage with increased risk of common diseases including cardiovascular and metabolic disease, non-alcoholic fatty liver disease, osteoarthritis and some cancers. IBD is a chronic intestinal inflammation categorised as Crohn's disease and ulcerative colitis depending on the location of inflammation. These inflammatory states are characterised by normobaric hypoxia in adipose and intestinal tissues, respectively. Tropical foods especially from Australia and South America are discussed in this review to show their potential in attenuation of these chronic diseases. The phytochemicals from these foods have antioxidant and anti-inflammatory activities to reduce chronic normobaric hypoxia in the tissues. These health benefits of the tropical foods are relevant not only for health economy but also in providing a global solution by improving the sustainability of their cultivation and assisting the local economies.
Collapse
Affiliation(s)
- Naga K R Ghattamaneni
- Functional Foods Research Group, University of Southern Queensland, Ipswich, 4305, Australia; School of Health and Wellbeing, University of Southern Queensland, Ipswich, 4305, Australia
| | - Lindsay Brown
- Functional Foods Research Group, University of Southern Queensland, Ipswich, 4305, Australia; School of Health and Wellbeing, University of Southern Queensland, Ipswich, 4305, Australia.
| |
Collapse
|
20
|
Ajala-Lawal RA, Aliyu NO, Ajiboye TO. Betulinic acid improves insulin sensitivity, hyperglycemia, inflammation and oxidative stress in metabolic syndrome rats via PI3K/Akt pathways. Arch Physiol Biochem 2020; 126:107-115. [PMID: 30288995 DOI: 10.1080/13813455.2018.1498901] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This study investigated the influence of betulinic acid on high-fructose diet-induced metabolic syndrome in rats. Oral administration of betulinic acid significantly reversed high-fructose diet-mediated increase in body mass index and blood glucose. Furthermore, betulinic acid restored high-fructose diet-mediated alterations in metabolic hormones (insulin, leptin and adiponectin). Betulinic acid-mediated upregulation of protein kinase B (Akt) and phosphoinositde-3 kinase (PI3K) anulled high-fructose diet mediated depletion. Also, elevated tumour necrosis factor-α, interleukin-6 and -8 were significantly lowered. Administration of betulinic acid restored high-fructose diet-mediated increase in the levels of lipid profile parameters and indices of atherosclerosis, cardiac and cardiovascular diseases. High-fructose diet-mediated decrease in activities of antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and glucose 6-phosphate dehydrogenase) and increase in oxidative stress biomarkers (reduced glutathione, lipid peroxidation products, protein oxidation and fragmented DNA) were significantly restored by the phenolic acids. Conclusively, betulinic acid improves insulin sensitivity, elevated blood glucose, inflammation and dyslipidaemia and oxidative stress in high-fructose diet-induced metabolic syndrome through the PI#Kand Akt pathways .
Collapse
Affiliation(s)
- R A Ajala-Lawal
- Antioxidants, Redox Biology and Toxicology Research Group, Department of Medical Biochemistry, College of Health Sciences, Nile University of Nigeria, Abuja, Nigeria
| | - N O Aliyu
- Antioxidants, Redox Biology and Toxicology Research Group, Department of Medical Biochemistry, College of Health Sciences, Nile University of Nigeria, Abuja, Nigeria
| | - T O Ajiboye
- Antioxidants, Redox Biology and Toxicology Research Group, Department of Medical Biochemistry, College of Health Sciences, Nile University of Nigeria, Abuja, Nigeria
| |
Collapse
|
21
|
Mastroleon I, Korou LM, Pergialiotis V, Vlachos IS, Sarlanis H, Konstantopoulos P, Pikoulis E, Perrea DN, Kavantzas N. Metabolic Response of Adult Male Offspring Rats to Prenatal Caffeine Exposure. Cureus 2020; 12:e7006. [PMID: 32206470 PMCID: PMC7077745 DOI: 10.7759/cureus.7006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Caffeine is the most widely consumed psychoactive substance, with recommendations from health associations and regulatory bodies for limiting caffeine consumption during pregnancy being increasingly common. Prenatal exposure to caffeine has been shown to increase the risk of developing abnormalities in lipid metabolism in adult life. We further investigated the effect of prenatal caffeine exposure (PCE) (20 mg/kg of body weight) on the metabolic "reserve" of male Sprague Dawley offspring fed on a high fructose diet in adult life. Male adult PCE offspring were assigned to four groups; Nw and Nf: offspring of control mothers (N group of mothers), having received tap water or high fructose water respectively; Cw and Cf: offspring exposed to caffeine during gestation (C group of mothers) and receiving tap water or a high fructose water solution, respectively. Cf rats presented increased serum triglyceride level, as well as raised systolic and diastolic blood pressure levels, together with extensive renal tissue oedema in adulthood, compared to the other groups (p<0.05 for all comparisons). These findings show further evidence for potential detrimental metabolic effects of prenatal caffeine exposure during adulthood in this animal model.
Collapse
Affiliation(s)
- Ioanna Mastroleon
- Laboratory of Experimental Surgery and Surgical Research "N.S. Christeas" (LESSR), National & Kapodistrian University of Athens, Athens, GRC
| | - Laskarina-Maria Korou
- Laboratory of Experimental Surgery and Surgical Research "N.S. Christeas" (LESSR), National & Kapodistrian University of Athens, Athens, GRC
| | - Vasilios Pergialiotis
- Laboratory of Experimental Surgery and Surgical Research "N.S. Christeas" (LESSR), National & Kapodistrian University of Athens, Athens, GRC
| | - Ioannis S Vlachos
- Laboratory of Experimental Surgery and Surgical Research "N.S. Christeas" (LESSR), National & Kapodistrian University of Athens, Athens, GRC
| | - Helen Sarlanis
- First Department of Pathology, National & Kapodistrian University of Athens, Athens, GRC
| | - Panagiotis Konstantopoulos
- Laboratory of Experimental Surgery and Surgical Research "N.S. Christeas" (LESSR), National & Kapodistrian University of Athens, Athens, GRC
| | - Emmanouil Pikoulis
- Third Department of Surgery, National & Kapodistrian University of Athens, Athens, GRC
| | - Despina N Perrea
- Laboratory of Experimental Surgery and Surgical Research "N.S. Christeas" (LESSR), National & Kapodistrian University of Athens, Athens, GRC
| | | |
Collapse
|
22
|
Bhandarkar NS, Mouatt P, Goncalves P, Thomas T, Brown L, Panchal SK. Modulation of gut microbiota by spent coffee grounds attenuates diet-induced metabolic syndrome in rats. FASEB J 2020; 34:4783-4797. [PMID: 32039529 DOI: 10.1096/fj.201902416rr] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/22/2020] [Accepted: 01/24/2020] [Indexed: 12/13/2022]
Abstract
Coffee brewing produces spent coffee grounds as waste; few studies have investigated the health benefits of these grounds. This study investigated responses to spent coffee grounds in a diet-induced rat model of metabolic syndrome. Male Wistar rats aged 8-9 weeks were fed either corn starch-rich diet or high-carbohydrate, high-fat diet for 16 weeks, which were supplemented with 5% spent coffee grounds during the last 8 weeks. Rats fed non-supplemented diets were used as controls. High-carbohydrate, high-fat diet-fed rats developed metabolic syndrome including abdominal obesity, impaired glucose tolerance, dyslipidemia, and cardiovascular and liver damage. Body weight, abdominal fat, total body fat mass, systolic blood pressure, and concentrations of plasma triglycerides and non-esterified fatty acids were reduced by spent coffee grounds along with improved glucose tolerance and structure and function of heart and liver. Spent coffee grounds increased the diversity of the gut microbiota and decreased the ratio of Firmicutes to Bacteroidetes. Changes in gut microbiota correlated with the reduction in obesity and improvement in glucose tolerance and systolic blood pressure. These findings indicate that intervention with spent coffee grounds may be useful for managing obesity and metabolic syndrome by altering the gut microbiota, thus increasing the value of this food waste.
Collapse
Affiliation(s)
- Nikhil S Bhandarkar
- Functional Foods Research Group, University of Southern Queensland, Toowoomba, QLD, Australia.,School of Health and Wellbeing, University of Southern Queensland, Toowoomba, QLD, Australia
| | - Peter Mouatt
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, Australia
| | - Priscila Goncalves
- Centre for Marine Science and Innovation & School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Torsten Thomas
- Centre for Marine Science and Innovation & School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Lindsay Brown
- Functional Foods Research Group, University of Southern Queensland, Toowoomba, QLD, Australia.,School of Health and Wellbeing, University of Southern Queensland, Toowoomba, QLD, Australia
| | - Sunil K Panchal
- Functional Foods Research Group, University of Southern Queensland, Toowoomba, QLD, Australia
| |
Collapse
|
23
|
Gao Y, Xu Y, Ruan J, Yin J. Selenium affects the activity of black tea in preventing metabolic syndrome in high-fat diet-fed Sprague-Dawley rats. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:225-234. [PMID: 31512247 DOI: 10.1002/jsfa.10027] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/18/2019] [Accepted: 09/04/2019] [Indexed: 05/28/2023]
Abstract
BACKGROUND Metabolic syndrome, a group of factors that increase the risk of health problems, is becoming increasingly common. Strategies to prevent metabolic syndrome have received substantial attention. Black tea consumption and selenium (Se) intake have been reported to be associated negatively with the prevalence of metabolic syndrome. We therefore sought to investigate whether Se-rich black tea might have a stronger effect than Se-deficient black tea in the prevention of metabolic syndrome. RESULTS Sprague-Dawley rats were divided into four groups and fed a normal rodent diet, high-fat diet, high-fat diet containing 3% Se-rich black tea, or a high-fat diet containing 3% Se-deficient black tea for 4 weeks. Blood and tissue samples were tested at the end of the experiment. The results suggested that both types of black tea ameliorated high-fat diet-induced body-weight gain, lowered serum triglycerides and attenuated intestinal barrier dysfunction. Selenium-rich black tea showed stronger activity in decreasing fasting serum glucose and increasing insulin sensitivity, as well as stronger hepatoprotection, owing to higher total antioxidant capacity and activated hepatic antioxidant enzymes. However, it did not exhibit better effects in preventing fat accumulation. The different effects of Se-rich and Se-deficient black tea on the gut microbiota might have been partially responsible for the results. CONCLUSION Compared with Se-deficient black tea, Se-rich black tea displayed stronger activity in preventing high-fat diet-induced hyperglycemia and liver damage but was not better at preventing fat accumulation and attenuating dysbiosis. More experiments are needed to understand the underlying mechanisms further. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ying Gao
- Ministry of Agriculture, Tea Research Institute Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Yongquan Xu
- Ministry of Agriculture, Tea Research Institute Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Jianyun Ruan
- Ministry of Agriculture, Tea Research Institute Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Junfeng Yin
- Ministry of Agriculture, Tea Research Institute Chinese Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
24
|
Enyart DS, Crocker CL, Stansell JR, Cutrone M, Dintino MM, Kinsey ST, Brown SL, Baumgarner BL. Low-dose caffeine administration increases fatty acid utilization and mitochondrial turnover in C2C12 skeletal myotubes. Physiol Rep 2020; 8:e14340. [PMID: 31960608 PMCID: PMC6971411 DOI: 10.14814/phy2.14340] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Caffeine has been shown to directly increase fatty acid oxidation, in part, by promoting mitochondrial biogenesis. Mitochondrial biogenesis is often coupled with mitophagy, the autophagy-lysosomal degradation of mitochondria. Increased mitochondrial biogenesis and mitophagy promote mitochondrial turnover, which can enhance aerobic metabolism. In addition, recent studies have revealed that cellular lipid droplets can be directly utilized in an autophagy-dependent manner, a process known as lipophagy. Although caffeine has been shown to promote autophagy and mitochondrial biogenesis in skeletal muscles, it remains unclear whether caffeine can increase lipophagy and mitochondrial turnover in skeletal muscle as well. The purpose of this study was to determine the possible contribution of lipophagy to caffeine-dependent lipid utilization. Furthermore, we sought to determine whether caffeine could increase mitochondrial turnover, which may also contribute to elevated fatty acid oxidation. Treating fully differentiated C2C12 skeletal myotubes with 0.5 mM oleic acid (OA) for 24 hr promoted an approximate 2.5-fold increase in cellular lipid storage. Treating skeletal myotubes with 0.5 mM OA plus 0.5 mM caffeine for an additional 24 hr effectively returned cellular lipid stores to control levels, and this was associated with an increase in markers of autophagosomes and autophagic flux, as well as elevated autophagosome density in TEM images. The addition of autophagy inhibitors 3-methyladenine (10 mM) or bafilomycin A1 (10 μM) reduced caffeine-dependent lipid utilization by approximately 30%. However, fluorescence and transmission electron microscopy analysis revealed no direct evidence of lipophagy in skeletal myotubes, and there was also no lipophagy-dependent increase in fatty acid oxidation. Finally, caffeine treatment promoted an 80% increase in mitochondrial turnover, which coincided with a 35% increase in mitochondrial fragmentation. Our results suggest that caffeine administration causes an autophagy-dependent decrease in lipid content by increasing mitochondrial turnover in mammalian skeletal myotubes.
Collapse
Affiliation(s)
- David S. Enyart
- Division of Natural Science and EngineeringUniversity of South Carolina UpstateSpartanburgSC
| | - Chelsea L. Crocker
- Department of Biology and Marine BiologyUniversity of North Carolina WilmingtonWilmingtonNC
| | - Jennifer R. Stansell
- Division of Natural Science and EngineeringUniversity of South Carolina UpstateSpartanburgSC
| | - Madeleine Cutrone
- Department of Biology and Marine BiologyUniversity of North Carolina WilmingtonWilmingtonNC
| | - Meghann M. Dintino
- Department of Biology and Marine BiologyUniversity of North Carolina WilmingtonWilmingtonNC
| | - Stephen T. Kinsey
- Department of Biology and Marine BiologyUniversity of North Carolina WilmingtonWilmingtonNC
| | - Stephan L. Brown
- Department of Cell Biology and PhysiologyEdward Via College of Osteopathic MedicineSpartanburgSC
| | - Bradley L. Baumgarner
- Division of Natural Science and EngineeringUniversity of South Carolina UpstateSpartanburgSC
| |
Collapse
|
25
|
Reshidan NH, Abd Muid S, Mamikutty N. The effects of Pandanus amaryllifolius (Roxb.) leaf water extracts on fructose-induced metabolic syndrome rat model. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:232. [PMID: 31462242 PMCID: PMC6714300 DOI: 10.1186/s12906-019-2627-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 08/06/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Metabolic syndrome is a non-communicable disease inclusive of risk factors such as central obesity, hypertension, hyperglycaemia and dyslipidaemia. In this present study, we investigated the ability of Pandanus amaryllifolius (PA) leaf water extract to reverse the cluster of diseases in an established rat model induced by fructose in drinking water. METHODS Thirty healthy adult male Wistar rats (150-180 g) were randomly divided into three groups which included control (C; n = 6), PA extract (PAE; n = 6) and Metabolic Syndrome (MetS; n = 18). Food and fluid were given ad libitum for 8 weeks. These groups differed in fluid intake whereby rats received tap water, 10% of PA leaf water extracts and 20% of fructose in drinking water in group C, PAE and MetS, respectively. After 8 weeks, the MetS group was further subdivided into three subgroups namely MetS1 (n = 6), MetS2 (n = 6) and MetS3 (n = 6). The C, PAE and MetS1 were sacrificed. MetS1 group was sacrificed as the control for metabolic syndrome. MetS2 and MetS3 groups were treated with only tap water and 10% of PA leaf water extract respectively for another 8 weeks. The parameters for physiological and metabolic changes such as obesity, hypertension, hyperglycaemia, dyslipidaemia, and inflammatory biomarkers (NFκβ p65, TNFα, leptin and adiponectin) were measured. RESULTS The intake of 20% of fructose in drinking water induced full blown of metabolic syndrome symptoms, including obesity, hypertension, dyslipidaemia and hyperglycaemia in male Wistar rats. Subsequently, treatment with PA leaf water extract improved obesity parameters including BMI, abdominal adipose tissue deposition and adipocytes size, systolic and diastolic blood pressures, fasting plasma glucose, triglycerides, high density lipoprotein with neutral effects on inflammatory biomarkers. CONCLUSIONS Administration of PA in metabolic syndrome rat model attenuates most of the metabolic syndrome symptoms as well as improves obesity. Therefore, PA which is rich in total flavonoids and total phenolic acids can be suggested as a useful dietary supplement to improve metabolic syndrome components induces by fructose.
Collapse
Affiliation(s)
- Nur Hidayah Reshidan
- Faculty of Medicine, Universiti Teknologi MARA, Cawangan Selangor, Kampus Sungai Buloh, Jalan Hospital, 47000 Sungai Buloh, Selangor Malaysia
| | - Suhaila Abd Muid
- Faculty of Medicine, Universiti Teknologi MARA, Cawangan Selangor, Kampus Sungai Buloh, Jalan Hospital, 47000 Sungai Buloh, Selangor Malaysia
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA, Cawangan Selangor, Kampus Sungai Buloh, Jalan Hospital, 47000 Sungai Buloh, Selangor Malaysia
| | - Norshalizah Mamikutty
- Sulaiman Al Rajhi College, Faculty of Medicine, Kingdom of Saudi Arabia, Bukayriyah, 51941 Saudi Arabia
| |
Collapse
|
26
|
Vitamin E modifies high-fat diet-induced reduction of seizure threshold in rats: Role of oxidative stress. Physiol Behav 2019; 206:200-205. [DOI: 10.1016/j.physbeh.2019.04.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 04/06/2019] [Accepted: 04/12/2019] [Indexed: 12/13/2022]
|
27
|
Bhandarkar NS, Mouatt P, Brown L, Panchal SK. Green coffee ameliorates components of diet-induced metabolic syndrome in rats. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.04.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
28
|
Clark KS, Coleman C, Shelton R, Heemstra LA, Novak CM. Caffeine enhances activity thermogenesis and energy expenditure in rats. Clin Exp Pharmacol Physiol 2019; 46:475-482. [PMID: 30620415 DOI: 10.1111/1440-1681.13065] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 12/06/2018] [Accepted: 12/27/2018] [Indexed: 10/27/2022]
Abstract
Caffeine and its derivatives have been used, alone and in combination with other phytochemicals, as weight-loss supplements. Caffeine affects several physiological and behavioural aspects of energy balance, including increasing locomotor activity. This study investigates the potential for caffeine to enhance activity thermogenesis and energy expenditure (EE) even when activity level is held constant. To do this, EE and muscle thermogenesis were measured in rats during treadmill walking regimens, with and without caffeine (25 mg/kg, ip). Activity-related EE was significantly increased throughout the treadmill walking protocol. Muscle heat dissipation, on the other hand, was significantly increased by caffeine only at the end of the 25-minute treadmill test. This study demonstrates that caffeine increases the caloric cost of physical activity, compared to the caloric cost of that same physical activity without caffeine, implicating decreased muscle work efficiency. Combined with the known ability of caffeine to increase locomotor activity, the decreased locomotor efficiency imparted by caffeine may further augment the potential for caffeine to enhance caloric expenditure.
Collapse
Affiliation(s)
| | - Claire Coleman
- Department of Biological Sciences, Kent State University, Kent, Ohio
| | - Rhiannon Shelton
- Colorado School of Public Health, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Lydia A Heemstra
- Department of Biological Sciences, Kent State University, Kent, Ohio
| | - Colleen M Novak
- Department of Biological Sciences, Kent State University, Kent, Ohio.,School of Biomedical Sciences, Kent State University, Kent, Ohio
| |
Collapse
|
29
|
Ibitoye OB, Ajiboye TO. Dietary phenolic acids reverse insulin resistance, hyperglycaemia, dyslipidaemia, inflammation and oxidative stress in high-fructose diet-induced metabolic syndrome rats. Arch Physiol Biochem 2018; 124:410-417. [PMID: 29260581 DOI: 10.1080/13813455.2017.1415938] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This study investigated the influence of caffeic, ferulic, gallic and protocatechuic acids on high-fructose diet-induced metabolic syndrome in rats. Oral administration of the phenolic acids significantly reversed high-fructose diet-mediated increase in body mass index and blood glucose. Furthermore, phenolic acids restored high-fructose diet-mediated alterations in metabolic hormones (insulin, leptin and adiponectin). Similarly, elevated tumour necrosis factor-α, interleukin-6 and -8 were significantly lowered. Administration of phenolic acids restored High-fructose diet-mediated increase in the levels of lipid parameters and indices of atherosclerosis, cardiac and cardiovascular diseases. High-fructose diet-mediated decrease in activities of antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and glucose 6-phosphate dehydrogenase) and increase in oxidative stress biomarkers (reduced glutathione, lipid peroxidation products, protein oxidation and fragmented DNA) were significantly restored by the phenolic acids. The result of this study shows protective influence of caffeic acid, ferulic acid, gallic acid and protocatechuic acid in high-fructose diet-induced metabolic syndrome.
Collapse
Affiliation(s)
| | - Taofeek O Ajiboye
- b Antioxidants, Redox Biology and Toxicology Research Group, Department of Medical Biochemistry , College of Health Sciences, Nile University of Nigeria , Abuja , Nigeria
| |
Collapse
|
30
|
Bhandarkar NS, Brown L, Panchal SK. Chlorogenic acid attenuates high-carbohydrate, high-fat diet-induced cardiovascular, liver, and metabolic changes in rats. Nutr Res 2018; 62:78-88. [PMID: 30803509 DOI: 10.1016/j.nutres.2018.11.002] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 10/26/2018] [Accepted: 11/02/2018] [Indexed: 01/07/2023]
Abstract
Chlorogenic acid as a constituent of coffee is consumed regularly in the human diet. Chlorogenic acid intake has been associated with decreased risk of cardiovascular disease and type 2 diabetes. We hypothesized that chlorogenic acid would improve cardiovascular, liver, and metabolic responses in a rat model of metabolic syndrome induced by a high-carbohydrate, high-fat diet. Male Wistar rats (8-9 weeks old, 335 ± 2 g, n = 48) were divided into 4 groups and fed with corn starch diet (16 weeks); corn starch diet with chlorogenic acid in food for the last 8 weeks; high-carbohydrate, high-fat diet (16 weeks); or high-carbohydrate, high-fat diet with chlorogenic acid (~100 mg/kg/d) in food for the last 8 weeks. In high-carbohydrate, high-fat diet-fed rats, chlorogenic acid reduced energy intake and food efficiency to reduce visceral fat, especially retroperitoneal fat, and abdominal circumference; reversed the elevated systolic blood pressure; and attenuated left ventricular diastolic stiffness with reduced collagen deposition and infiltration of inflammatory cells in the left ventricle. Chlorogenic acid decreased inflammation and fat deposition in the liver along with reduced plasma liver enzyme activities of obese rats but did not change the plasma lipid profile. Chlorogenic acid increased diversity of gut microbiota, which may improve overall metabolism in the body. Thus, chronic dietary chlorogenic acid attenuated diet-induced inflammation as well as cardiovascular, liver, and metabolic changes, suggesting that chlorogenic acid has potential for further clinical evaluation.
Collapse
Affiliation(s)
- Nikhil S Bhandarkar
- Functional Foods Research Group, University of Southern Queensland, Toowoomba, QLD 4350, Australia
| | - Lindsay Brown
- Functional Foods Research Group, University of Southern Queensland, Toowoomba, QLD 4350, Australia; School of Health and Wellbeing, Faculty of Health, Engineering and Sciences, University of Southern Queensland, Toowoomba, QLD 4350, Australia
| | - Sunil K Panchal
- Functional Foods Research Group, University of Southern Queensland, Toowoomba, QLD 4350, Australia.
| |
Collapse
|
31
|
Alzoubi KH, Hasan ZA, Khabour OF, Mayyas FA, Al Yacoub ON, Banihani SA, Azab MA, Alrabadi N. The effect of high-fat diet on seizure threshold in rats: Role of oxidative stress. Physiol Behav 2018; 196:1-7. [DOI: 10.1016/j.physbeh.2018.08.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 06/21/2018] [Accepted: 08/23/2018] [Indexed: 02/06/2023]
|
32
|
Effects of Unfiltered Coffee and Bioactive Coffee Compounds on the Development of Metabolic Syndrome Components in a High-Fat-/High-Fructose-Fed Rat Model. Nutrients 2018; 10:nu10101547. [PMID: 30347674 PMCID: PMC6213813 DOI: 10.3390/nu10101547] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/08/2018] [Accepted: 10/11/2018] [Indexed: 12/22/2022] Open
Abstract
The literature is inconsistent as to how coffee affects metabolic syndrome (MetS), and which bioactive compounds are responsible for its metabolic effects. This study aimed to evaluate the effects of unfiltered coffee on diet-induced MetS and investigate whether or not phenolic acids and trigonelline are the main bioactive compounds in coffee. Twenty-four male Sprague‒Dawley rats were fed a high-fat (35% W/W) diet plus 20% W/W fructose in drinking water for 14 weeks, and were randomized into three groups: control, coffee, or nutraceuticals (5-O-caffeoylquinic acid, caffeic acid, and trigonelline). Coffee or nutraceuticals were provided in drinking water at a dosage equal to 4 cups/day in a human. Compared to the controls, total food intake (p = 0.023) and mean body weight at endpoint (p = 0.016) and estimated average plasma glucose (p = 0.041) were lower only in the coffee group. Surrogate measures of insulin resistance including the overall fasting insulin (p = 0.010), endpoint HOMA-IR (p = 0.022), and oral glucose tolerance (p = 0.029) were improved in the coffee group. Circulating triglyceride levels were lower (p = 0.010), and histopathological and quantitative (p = 0.010) measurements indicated lower grades of liver steatosis compared to controls after long-term coffee consumption. In conclusion, a combination of phenolic acids and trigonelline was not as effective as coffee per se in improving the components of the MetS. This points to the role of other coffee chemicals and a potential synergism between compounds.
Collapse
|
33
|
Goss MJ, Nunes MLO, Machado ID, Merlin L, Macedo NB, Silva AMO, Bresolin TMB, Santin JR. Peel flour of Passiflora edulis Var. Flavicarpa supplementation prevents the insulin resistance and hepatic steatosis induced by low-fructose-diet in young rats. Biomed Pharmacother 2018; 102:848-854. [PMID: 29605773 DOI: 10.1016/j.biopha.2018.03.137] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/21/2018] [Accepted: 03/22/2018] [Indexed: 02/07/2023] Open
Abstract
The increase in fructose consumption in the last decades has an important correlation with the growth of overweight population. Fructose is a monosaccharide found in fruits, vegetables and honey, however, it is widely used in processed food and beverages such as sweeteners. This monosaccharide is metabolized in the liver, so it can produce glucose, lactate, triglycerides, free fatty acids and uric acid, which are responsible for negative effects on the liver and extrahepatic tissues. One effect of the high consumption of fructose is the resistance to Insulin, which appears to be an important issue in the development of metabolic abnormalities observed in animals that were subjected to a high fructose diet. The population and, consequently, the market search for natural sources to manage metabolic abnormalities is increasing, but, adequate scientific proof still is necessary. The Passiflora edulis peel flour (PEPF) is a byproduct of the juice industry, and, represents an important source of fiber and bioactive compounds. The present study investigates the PEPF supplementation (30%) effects on insulin sensitivity, adiposity and metabolic parameters in young rats that were given beverages enriched with 10% of fructose for 8 weeks. Fructose intake induced insulin resistance, increased serum triglycerides levels, growth of fat deposits in the liver and widening of the diameter of adipocytes. In contrast, the group that received PEPF did not present such abnormalities, which could be related to the presence of fiber or bioactive compounds (phenolics compounds, e.g., caffeic acid and isoorientin) in its composition, as identified by analytical methods. Thus, for the first time, it has been demonstrated that PEPF supplementation prevents insulin resistance and hepatic steatosis induced by low-fructose-diet in young rats.
Collapse
Affiliation(s)
- M J Goss
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí, Rua Uruguai, 458, Itajaí, SC, CEP 88302-202, Brazil
| | - M L O Nunes
- NIQFAR CCS, Universidade do Vale do Itajaí, Rua Uruguai, 458, Itajaí, SC, CEP 88302-202, Brazil
| | - I D Machado
- NIQFAR CCS, Universidade do Vale do Itajaí, Rua Uruguai, 458, Itajaí, SC, CEP 88302-202, Brazil
| | - L Merlin
- NIQFAR CCS, Universidade do Vale do Itajaí, Rua Uruguai, 458, Itajaí, SC, CEP 88302-202, Brazil
| | - N B Macedo
- Departamento de Nutrição (DNUT) da Universidade Federal de Sergipe (UFS), Avenida Marechal Rondon, s/n - Rosa Elze, São Cristóvão, SE, CEP 49100-000, Brazil
| | - A M O Silva
- Departamento de Nutrição (DNUT) da Universidade Federal de Sergipe (UFS), Avenida Marechal Rondon, s/n - Rosa Elze, São Cristóvão, SE, CEP 49100-000, Brazil
| | - T M B Bresolin
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí, Rua Uruguai, 458, Itajaí, SC, CEP 88302-202, Brazil; NIQFAR CCS, Universidade do Vale do Itajaí, Rua Uruguai, 458, Itajaí, SC, CEP 88302-202, Brazil
| | - J R Santin
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí, Rua Uruguai, 458, Itajaí, SC, CEP 88302-202, Brazil; NIQFAR CCS, Universidade do Vale do Itajaí, Rua Uruguai, 458, Itajaí, SC, CEP 88302-202, Brazil.
| |
Collapse
|
34
|
Biswas HM. Effect of adrenocorticotropic hormone on UCP1 gene expression in brown adipocytes. J Basic Clin Physiol Pharmacol 2018; 28:267-274. [PMID: 28375845 DOI: 10.1515/jbcpp-2016-0017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 02/07/2017] [Indexed: 11/15/2022]
Abstract
BACKGROUND Like other tissues, adrenocorticotropic hormone (ACTH) can produce its effect on brown adipose tissue (BAT). This study was taken to understand the direct effect of ACTH action on thermogenin gene expression and possible relation with α receptors and caffeine with this hormone. METHODS Brown fat precursor cells were isolated from interscapular BAT of young mice and grown in culture. The cells were exposed to norepinephrine (NE) and other agents. Total RNA was isolated after harvesting the cells, and northern blot analysis was performed. Hybridization was performed with nick translated cDNA probes. Filters were exposed to film, and results were evaluated by scanning. Cyclic adenosine monophosphate (cAMP) was measured by using Amersham assay kit. RESULTS ACTH stimulates thermogenin gene expression in brown adipocytes. Initiation and maximum stimulations are observed with 0.01 μM and 10 μM (about 45%) of ACTH, respectively, in comparison to 0.1 μM of NE. Maximum response of cAMP is also observed with 10 μM of ACTH (about 64%). Studies with cirazoline and ACTH show that UCP1 mRNA expression is increased significantly with 10 μM of ACTH, whereas cAMP generation is decreased. In the presence of caffeine, ACTH increases cAMP generation and UCP1 gene expression more than twofold. CONCLUSIONS ACTH stimulates thermogenin gene expression in cultured brown adipocytes. The complex interrelationship of ACTH with cirazoline indicates the possibility of relation between the activity of ACTH and α receptors in brown adipocytes. Further stimulation of cAMP generation and thermogenin gene expression is possible with ACTH in conjugation with caffeine and RO 20-1724.
Collapse
Affiliation(s)
- Hirendra M Biswas
- Department of Physiology, Kathmandu Medical College, 184, Baburam Acharya sadak, Sinamangal, Kathmandu
| |
Collapse
|
35
|
Chen G, Yuan C, Duan F, Liu Y, Zhang J, He Z, Huang H, He C, Wang H. IGF1/MAPK/ERK signaling pathway-mediated programming alterations of adrenal cortex cell proliferation by prenatal caffeine exposure in male offspring rats. Toxicol Appl Pharmacol 2018; 341:64-76. [PMID: 29343424 DOI: 10.1016/j.taap.2018.01.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 01/01/2018] [Accepted: 01/12/2018] [Indexed: 12/20/2022]
Abstract
Our previous study proposed a glucocorticoid-insulin-like growth factor 1 (GC-IGF1) axis programming mechanism for prenatal caffeine exposure (PCE)-induced adrenal developmental dysfunction. Here, we focused on PCE-induced cell proliferation changes of the adrenal cortex in male offspring rats before and after birth and clarified the intrauterine programming mechanism. On gestational day (GD) 20, the PCE group had an elevated serum corticosterone level reduced fetal bodyweight, maximum adrenal sectional area, and elevated adrenal corticosterone and aldosterone contents. However, in postnatal week (PW) 6, the serum corticosterone level was decreased, and the bodyweight, with catch-up growth, adrenal cortex maximum cross-sectional area and aldosterone content were relatively increased, while the adrenal corticosterone content was lower. On GD20, the expression of adrenal IGF1, IGF1R and proliferating cell nuclear antigen (PCNA) were decreased, while the expression of these factors at PW6 were increased in the PCE group. Fetal adrenal gene chip analysis suggested that the mitogen-activated protein kinase/extracellular regulated protein kinase (MAPK/ERK) signal pathway was suppressed in the PCE group. Moreover, in the rat primary adrenal cells, corticosterone (rather than caffeine) was shown to significantly inhibit cell proliferation, IGF1 and PCNA expression, and ERK phosphorylation, which could be reversed by exogenous IGF1. Meanwhile, the effects of exogenous IGF1 were reversed by the ERK pathway inhibitor (PD184161). In conclusion, PCE could induce programming alterations in adrenal cortical cell proliferation before and after birth in male offspring rats. The underlying mechanism is associated with the inhibition of fetal adrenal IGF1-related MAPK/ERK signaling pathway caused by high glucocorticoid levels.
Collapse
Affiliation(s)
- Guanghui Chen
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China
| | - Chao Yuan
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China
| | - Fangfang Duan
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China
| | - Yanyan Liu
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China
| | - Jinzhi Zhang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China
| | - Zheng He
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China
| | - Hegui Huang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China
| | - Chunjiang He
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Hui Wang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| |
Collapse
|
36
|
Polyphenol- and Caffeine-Rich Postfermented Pu-erh Tea Improves Diet-Induced Metabolic Syndrome by Remodeling Intestinal Homeostasis in Mice. Infect Immun 2017; 86:IAI.00601-17. [PMID: 29061705 DOI: 10.1128/iai.00601-17] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/06/2017] [Indexed: 02/06/2023] Open
Abstract
Postfermented Pu-erh tea (PE) protects against metabolic syndrome (MS), but little is known regarding its underlying mechanisms. Animal experiments were performed to determine whether the gut microbiota mediated the improvement in diet-induced MS by PE and its main active components (PEAC). We confirmed that PE altered the body composition and energy efficiency, attenuated metabolic endotoxemia and systemic and multiple-tissue inflammation, and improved the glucose and lipid metabolism disorder in high-fat diet (HFD)-fed mice via multiple pathways. Notably, PE promoted the lipid oxidation and browning of white adipose tissue (WAT) in HFD-fed mice. Polyphenols and caffeine (CAF) played critical roles in improving these parameters. Meanwhile, PE remodeled the disrupted intestinal homeostasis that was induced by the HFD. Many metabolic changes observed in the mice were significantly correlated with alterations in specific gut bacteria. Akkermansia muciniphila and Faecalibacterium prausnitzii were speculated to be the key gut bacterial links between the PEAC treatment and MS at the genus and species levels. Interestingly, A. muciniphila administration altered body composition and energy efficiency, promoted the browning of WAT, and improved the lipid and glucose metabolism disorder in the HFD-fed mice, whereas F. prausnitzii administration reduced the HFD-induced liver and intestinal inflammatory responses. In summary, polyphenol- and CAF-rich PE improved diet-induced MS, and this effect was associated with a remodeling of the gut microbiota.
Collapse
|
37
|
Helal MG, Ayoub SE, Elkashefand WF, Ibrahim TM. Caffeine affects HFD-induced hepatic steatosis by multifactorial intervention. Hum Exp Toxicol 2017; 37:983-990. [DOI: 10.1177/0960327117747026] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The incidence of nonalcoholic fatty liver disease (NAFLD) is considered a risk factor for hepatic fibrosis. Therefore, there is critical need to develop novel cheap and effective therapeutic approaches to prevent and reverse NAFLD. Caffeine is commonly consumed beverage and has antioxidant and anti-inflammatory activities. This study examined whether caffeine can ameliorate liver injury induced by high-fat diet (HFD) feeding. Four groups of rats were used and treated for 16 weeks as follows: control group, rats were fed a standard diet; HFD group, rats were fed HFD; and caffeine 20 and caffeine 30 groups, rats were fed HFD for 16 weeks in addition to different doses of caffeine (20 or 30 mg/kg, respectively) for last 8 weeks. The HFD-induced liver injury is determined biochemically by evaluating serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), albumin, bilirubin, triglycerides, cholesterol, and high-density lipoprotein-cholesterol and by histopathological examination. Tissue malondialdehyde, total nitrate/nitrite, and glutathione concentration were also measured. Real-time reverse transcription polymerase chain reaction technique was used to determine the expression of lipogenic enzyme genes. Caffeine treatment significantly decreased the elevated serum ALT, AST, and bilirubin and increased the reduced albumin level. Interestingly, the hepatic mRNA expression of Fatty acid synthase and acetyl CoA carboxylase was decreased by caffeine, while the protein expression of hepatic carnitine palmitoyltransferase 1 and proliferation-activated receptor α was increased. Furthermore, caffeine reduced tissue lipid peroxidation and oxidative stress. These effects suggest that caffeine could improve HFD-induced hepatic injury by suppressing inflammatory response and oxidative stress and regulating hepatic de novo lipogenesis and β-oxidation.
Collapse
Affiliation(s)
- MG Helal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - SE Ayoub
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafr El-sheikh University, Kafr El-sheikh, Egypt
| | - WF Elkashefand
- Department of Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - TM Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
38
|
Cai X, Hayashi S, Fang C, Hao S, Wang X, Nishiguchi S, Tsutsui H, Sheng J. Pu'erh tea extract-mediated protection against hepatosteatosis and insulin resistance in mice with diet-induced obesity is associated with the induction of de novo lipogenesis in visceral adipose tissue. J Gastroenterol 2017; 52:1240-1251. [PMID: 28364190 DOI: 10.1007/s00535-017-1332-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 03/16/2017] [Indexed: 02/04/2023]
Abstract
BACKGROUND White adipose tissue (WAT) is important for the maintenance of metabolic homeostasis, and metabolic syndrome is sometimes associated with WAT dysfunction in humans and animals. WAT reportedly plays a key, beneficial role in the maintenance of glucose and lipid homeostasis during de novo lipogenesis (DNL). Pu'erh tea extract (PTE) can inhibit harmful, ectopic DNL in the liver, thus protecting against hepatosteatosis, in mice with diet-induced obesity. We examined whether PTE could induce DNL in WAT and consequently protect against hepatosteatosis. METHODS C57BL/6 male mice were fed a high-fat diet (HFD) with/without PTE for 16 weeks. Systemic insulin sensitivity was determined using HOMA-IR, insulin- and glucose-tolerance tests, and WAT adipogenesis was evaluated by histological analysis. Adipogenesis-, inflammation-, and DNL-related gene expression in visceral AT (VAT) and subcutaneous AT (SAT) was measured using quantitative reverse transcription-PCR. Regression analysis was used to investigate the association between DNL in WAT and systemic insulin resistance or hepatosteatosis. RESULTS Pu'erh tea extract significantly reduced the gain of body weight and SAT, but not VAT adiposity, in mice fed the high-fat diet and induced adipogenesis in VAT. The expression of DNL-related genes, including Glut4, encoding an important insulin-regulated glucose transporter (GLUT4), were highly elevated in VAT. Moreover, PTE inhibited VAT inflammation by simultaneously downregulating inflammatory molecules and inducing expression of Gpr120 that encodes an anti-inflammatory and pro-adipogenesis receptor (GPR-120) that recognizes unsaturated long-chain fatty acids, including DNL products. The expression of DNL-related genes in VAT was inversely correlated with hepatosteatosis and systemic insulin resistance. CONCLUSIONS Activation of DNL in VAT may explain PTE-mediated alleviation of hepatosteatosis symptoms and systemic insulin resistance.
Collapse
Affiliation(s)
- Xianbin Cai
- Department of Internal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan
| | - Shuhei Hayashi
- Department of Microbiology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
- Department of Pu-erh Tea and Medical Science, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Chongye Fang
- Department of Pu-erh Tea and Medical Science, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
- Key Laboratory of Pu-erh Tea Science, The Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China
| | | | - Xuanjun Wang
- Key Laboratory of Pu-erh Tea Science, The Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming, China
| | - Shuhei Nishiguchi
- Department of Internal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan.
| | - Hiroko Tsutsui
- Department of Microbiology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
- Department of Pu-erh Tea and Medical Science, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Jun Sheng
- Key Laboratory of Pu-erh Tea Science, The Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China.
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming, China.
- Pu'erh Tea Research Institute, Pu'erh, China.
| |
Collapse
|
39
|
He Z, Lv F, Ding Y, Huang H, Liu L, Zhu C, Lei Y, Zhang L, Si C, Wang H. High-fat diet and chronic stress aggravate adrenal function abnormality induced by prenatal caffeine exposure in male offspring rats. Sci Rep 2017; 7:14825. [PMID: 29093513 PMCID: PMC5665976 DOI: 10.1038/s41598-017-14881-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 10/18/2017] [Indexed: 12/13/2022] Open
Abstract
We previously demonstrated thatprenatal caffeine exposure (PCE) suppressed fetal adrenal steroidogenesis and resulted in developmental programming changes in offspring rats. However, whether these changes play a role in adrenal corticosterone synthesis under high-fat diet (HFD) and unpredictable chronic stress (UCS) remains unknown. In present study, rat model was established by PCE (120 mg/kg.d), and male offspring were provided normal diet or HFD after weaning. At postnatal week 21, several rats fed HFD were exposed to UCS for 3 weeks and sacrificed. The results showed that compared with the corresponding control group, the serum corticosterone levels and adrenal steroid synthetase expression of the PCE offspring without UCS were reduced. Moreover, the glucocorticoid (GC)-activation system was inhibited, and insulin-like growth factor 1 (IGF1) signaling pathway expression was increased. With UCS exposure in the PCE offspring, serum corticosterone levels and adrenal steroid synthetase expression were increased, the activity of GC-activation system was enhanced, and adrenal IGF1 signaling pathway expression was decreased. Based on these findings, PCE induced adrenal hypersensitivity in adult male offspring rats, as shown by the reduced corticosterone levels under HFD conditions but significantly enhanced corticosterone levels with UCS, in which GC-IGF1 axis programming alteration may play an important role.
Collapse
Affiliation(s)
- Zheng He
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Feng Lv
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China
| | - Yufeng Ding
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hegui Huang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China
| | - Lian Liu
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China
| | - Chunyan Zhu
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China
| | - Youyin Lei
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China
| | - Li Zhang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China
| | - Cai Si
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China
| | - Hui Wang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| |
Collapse
|
40
|
Effect of decaffeinated coffee on function and nucleotide metabolism in kidney. Mol Cell Biochem 2017; 439:11-18. [PMID: 28770471 PMCID: PMC5794820 DOI: 10.1007/s11010-017-3131-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 07/26/2017] [Indexed: 11/13/2022]
Abstract
Little is known about the effects of coffee that are not related to the presence of caffeine. The aim of the study was to analyse changes in kidney function and nucleotide metabolism related to high intake of decaffeinated coffee. Mice consumed decaffeinated coffee extract for two weeks. Activities of AMP deaminase, ecto5′-nucleotidase, adenosine deaminase, purine nucleoside phosphorylase were measured in kidney cortex and medulla by analysis of conversion of substrates into products using HPLC. Concentration of nucleotides in kidney cortex, kidney medulla and serum were estimated by HPLC. Activity of ecto5′-nucleotidase increased from 0.032 ± 0.006 to 0.049 ± 0.014 nmol/mg tissue/min in kidney cortex of mice administered high-dose decaffeinated coffee (HDC) together with increase in cortex adenosine concentration and decrease in plasma creatinine concentration. HDC leads to increased activity of ecto5′-nucleotidase in kidney cortex that translates to increase in concentration of adenosine. Surprisingly this caused improved kidney excretion function.
Collapse
|
41
|
Ajiboye TO, Hussaini AA, Nafiu BY, Ibitoye OB. Aqueous seed extract of Hunteria umbellata (K. Schum.) Hallier f. (Apocynaceae) palliates hyperglycemia, insulin resistance, dyslipidemia, inflammation and oxidative stress in high-fructose diet-induced metabolic syndrome in rats. JOURNAL OF ETHNOPHARMACOLOGY 2017; 198:184-193. [PMID: 27894971 DOI: 10.1016/j.jep.2016.11.043] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 11/18/2016] [Accepted: 11/25/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hunteria umbellata is used in the management and treatment of diabetes and obesity in Nigeria. This study evaluates the effect of aqueous seed extract of Hunteria umbellata on insulin resistance, dyslipidemia, inflammation and oxidative stress in high-fructose diet-induced metabolic syndrome MATERIALS AND METHODS: Rats were randomized into seven groups (A-G). Control (group A) and group C rats received control diet for nine weeks while rats in groups B, D - G were placed on high-fructose diet for 9 weeks. In addition to the diets, groups C - F rats orally received 400, 100, 200 and 400mg/kg body weight aqueous seed extract of Hunteria umbellata for 3 weeks starting from 6th - 9th week. RESULTS High-fructose diet (when compared to control rats) mediated a significant (p<0.05) increase in body weight, body mass index and abdominal circumference. Similarly, levels of blood glucose, insulin, leptin, adiponectin and insulin resistance were increased. It also caused a significant increase in the levels of cholesterol, triglycerides, low-density lipoprotein cholesterol, very low-density lipoprotein cholesterol, atherogenic index, cardiac index and coronary artery index while high-density lipoprotein cholesterol was decreased significantly. Levels of proinflammatory factor, tumour necrosis factor-α, interleukin-6 and 8 were also increased by the high fructose diet. Moreover, it mediated decrease in activities of superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glucose 6-phosphate dehydrogenase and level of glutathione reduced. Conversely, levels of malondialdehyde, conjugated dienes, lipid hydroperoxides, protein carbonyl and fragmented DNA were elevated. Aqueous seed extract of Hunteria umbellata significantly ameliorated the high fructose diet-mediated alterations. CONCLUSIONS From this study, it is concluded that aqueous seed extract of Hunteria umbellata possesses hypoglycemic, hypolipidemic and antioxidants abilities as evident from its capability to extenuate insulin resistance, dyslipidemia, inflammation and oxidative stress in high-fructose diet-induced metabolic syndrome rats.
Collapse
Affiliation(s)
- T O Ajiboye
- Antioxidants, Free Radicals, Functional Foods and Toxicology Research Laboratory, Department of Biological Sciences, Al-Hikmah University, Ilorin, Nigeria.
| | - A A Hussaini
- Antioxidants, Free Radicals, Functional Foods and Toxicology Research Laboratory, Department of Biological Sciences, Al-Hikmah University, Ilorin, Nigeria.
| | - B Y Nafiu
- Antioxidants, Free Radicals, Functional Foods and Toxicology Research Laboratory, Department of Biological Sciences, Al-Hikmah University, Ilorin, Nigeria.
| | - O B Ibitoye
- Antioxidants, Free Radicals, Functional Foods and Toxicology Research Laboratory, Department of Biological Sciences, Al-Hikmah University, Ilorin, Nigeria.
| |
Collapse
|
42
|
Ajiboye TO, Aliyu H, Tanimu MA, Muhammad RM, Ibitoye OB. Dioscoreophyllum cumminsii (Stapf) Diels leaves halt high-fructose induced metabolic syndrome: Hyperglycemia, insulin resistance, inflammation and oxidative stress. JOURNAL OF ETHNOPHARMACOLOGY 2016; 192:471-479. [PMID: 27568876 DOI: 10.1016/j.jep.2016.08.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 08/07/2016] [Accepted: 08/18/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dioscoreophyllum cumminsii is widely used in the management and treatment of diabetes and obesity in Nigeria. This study evaluates the effect of aqueous leaf extract of D. cumminsii on high-fructose diet-induced metabolic syndrome. METHODS Seventy male rats were randomized into seven groups. All rats were fed with high-fructose diet for 9 weeks except groups A and C rats, which received control diet. In addition to the diet treatment, groups A and B rats received distilled water for 3 weeks starting from the seventh week of the experimental period. Rats in groups C-F orally received 400, 100, 200 and 400mg/kg body weight of aqueous leaf extract of D. cumminsii respectively, while group G received 300mg/kg bodyweight of metformin for 3 weeks starting from the seventh week. RESULTS There was significant (p<0.05) reduction in high-fructose diet-mediated increase in body weight, body mass index, abdominal circumference, blood glucose, insulin, leptin and insulin resistance by aqueous leaf extract of D. cumminsii. Conversely, high-fructose diet-mediated decrease in adiponectin was reversed by the extract. Increased levels of cholesterol, triglycerides, low-density lipoprotein cholesterol, very low-density lipoprotein cholesterol, atherogenic index, cardiac index and coronary artery index were significantly lowered by the extract, while high-fructose diet mediated decrease in high-density lipoprotein cholesterol was increased by the extract. Tumour necrosis factor-α, interleukin-6 and interleukin-8 levels increased significantly in high-fructose diet-fed rats, which were significantly reversed by the extract. High-fructose mediated-decrease in superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glucose 6-phosphate dehydrogenase and glutathione reduced were significantly reversed by aqueous leaf extract of D. cumminsii. Conversely, elevated levels of malondialdehyde, conjugated dienes, lipid hydroperoxides, protein carbonyl and fragmented DNA were significantly lowered by the extract. CONCLUSION Data generated in this study further laid credence to the hypoglycemic activity of aqueous leaf extract of D. cumminsii as evident from the reversal of hyperglycemia, insulin resistance, dyslipidemia, inflammation and oxidative stress in high-fructose diet-induced metabolic syndrome rats.
Collapse
Affiliation(s)
- T O Ajiboye
- Antioxidants, Free Radicals, Functional Foods and Toxicology Research Laboratory, Department of Biological Sciences, Al-Hikmah University, Ilorin, Nigeria.
| | - H Aliyu
- Antioxidants, Free Radicals, Functional Foods and Toxicology Research Laboratory, Department of Biological Sciences, Al-Hikmah University, Ilorin, Nigeria
| | - M A Tanimu
- Antioxidants, Free Radicals, Functional Foods and Toxicology Research Laboratory, Department of Biological Sciences, Al-Hikmah University, Ilorin, Nigeria
| | - R M Muhammad
- Antioxidants, Free Radicals, Functional Foods and Toxicology Research Laboratory, Department of Biological Sciences, Al-Hikmah University, Ilorin, Nigeria
| | - O B Ibitoye
- Antioxidants, Free Radicals, Functional Foods and Toxicology Research Laboratory, Department of Biological Sciences, Al-Hikmah University, Ilorin, Nigeria
| |
Collapse
|
43
|
Otero-Losada M, González J, Müller A, Ottaviano G, Cao G, Azzato F, Ambrosio G, Milei J. Exercise Ameliorates Endocrine Pancreas Damage Induced by Chronic Cola Drinking in Rats. PLoS One 2016; 11:e0155630. [PMID: 27192084 PMCID: PMC4871573 DOI: 10.1371/journal.pone.0155630] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Accepted: 05/01/2016] [Indexed: 12/23/2022] Open
Abstract
Purpose This study evaluates whether the daily practice of an exercise routine might protect from endocrine pancreas damage in cola drinking rats. Methods Forty-eight Wistar rats were randomly assigned to 4 groups depending on a) beverage consumption ad libitum, water (W) or cola beverage (C), and b) physical activity, sedentary (S) or treadmill running (R). Accordingly, 4 groups were studied: WS (water sedentary), WR (water runner), CS (cola sedentary) and CR (cola runner). Body weight, nutritional data, plasma levels of glucose, creatinine, total cholesterol and cholesterol fractions, and triglycerides (enzymocolorimetry), and systolic blood pressure (plethysmography) were measured. After 6 months, euthanasia was performed (overdose sodium thiopental). Pancreatic tissue was immediately excised and conventionally processed for morphometrical and immunohistochemical determinations. Results The effects of running and chronic cola drinking on pancreas morphology showed interaction (p<0.001) rather than simple summation. Cola drinking (CS vs WS) reduced median pancreatic islet area (-30%, 1.8 104 μm2 vs 2.58 104 μm2, p<0.0001) and median β-cell mass (-43%, 3.81 mg vs 6.73 mg, p<0.0001), and increased median α/β ratio (+49%, 0.64 vs 0.43, p< 0.001). In water drinking rats (WR vs WS), running reduced median α-cell mass (-48%, 1.48 mg vs 2.82 mg, p<0.001) and α/β ratio (-56%, 0.19 vs 0.43, p<0.0001). Differently, in cola drinking rats (CR vs CS), running partially restored median islet area (+15%, 2.06 104 μm2 vs 1.79 104 μm2, p<0.05), increased median β-cell mass (+47%, 5.59 mg vs 3.81 mg, p <0.0001) and reduced median α/β ratio (-6%, 0.60 vs 0.64, p<0.05). Conclusion This study is likely the first reporting experimental evidence of the beneficial effect of exercise on pancreatic morphology in cola-drinking rats. Presently, the increase of nearly 50% in β cells mass by running in cola drinking rats is by far the most relevant finding. Moderate running, advisably indicated in cola consumers and patients at risk of diabetes, finds here experimental support.
Collapse
Affiliation(s)
- Matilde Otero-Losada
- Instituto de Investigaciones Cardiológicas, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, ININCA.UBA.CONICET, Buenos Aires, Argentina
- * E-mail:
| | - Julián González
- Instituto de Investigaciones Cardiológicas, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, ININCA.UBA.CONICET, Buenos Aires, Argentina
| | - Angélica Müller
- Instituto de Investigaciones Cardiológicas, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, ININCA.UBA.CONICET, Buenos Aires, Argentina
| | - Graciela Ottaviano
- Instituto de Investigaciones Cardiológicas, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, ININCA.UBA.CONICET, Buenos Aires, Argentina
| | - Gabriel Cao
- Instituto de Investigaciones Cardiológicas, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, ININCA.UBA.CONICET, Buenos Aires, Argentina
| | - Francisco Azzato
- Instituto de Investigaciones Cardiológicas, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, ININCA.UBA.CONICET, Buenos Aires, Argentina
| | - Giuseppe Ambrosio
- Università di Perugia, Cardiologia e Fisiopatologia Cardiovascolare, Perugia, Italy
| | - José Milei
- Instituto de Investigaciones Cardiológicas, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, ININCA.UBA.CONICET, Buenos Aires, Argentina
| |
Collapse
|
44
|
Caffeine intake antagonizes salt sensitive hypertension through improvement of renal sodium handling. Sci Rep 2016; 6:25746. [PMID: 27173481 PMCID: PMC4866033 DOI: 10.1038/srep25746] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 04/15/2016] [Indexed: 01/05/2023] Open
Abstract
High salt intake is a major risk factor for hypertension. Although acute caffeine intake produces moderate diuresis and natriuresis, caffeine increases the blood pressure (BP) through activating sympathetic activity. However, the long-term effects of caffeine on urinary sodium excretion and blood pressure are rarely investigated. Here, we investigated whether chronic caffeine administration antagonizes salt sensitive hypertension by promoting urinary sodium excretion. Dahl salt-sensitive (Dahl-S) rats were fed with high salt diet with or without 0.1% caffeine in drinking water for 15 days. The BP, heart rate and locomotor activity of rats was analyzed and urinary sodium excretion was determined. The renal epithelial Na+ channel (ENaC) expression and function were measured by in vivo and in vitro experiments. Chronic consumption of caffeine attenuates hypertension induced by high salt without affecting sympathetic nerve activity in Dahl-S rats. The renal α-ENaC expression and ENaC activity of rats decreased after chronic caffeine administration. Caffeine increased phosphorylation of AMPK and decrease α-ENaC expression in cortical collecting duct cells. Inhibiting AMPK abolished the effect of caffeine on α-ENaC. Chronic caffeine intake prevented the development of salt-sensitive hypertension through promoting urinary sodium excretion, which was associated with activation of renal AMPK and inhibition of renal tubular ENaC.
Collapse
|
45
|
Maneesai P, Bunbupha S, Kukongviriyapan U, Prachaney P, Tangsucharit P, Kukongviriyapan V, Pakdeechote P. Asiatic acid attenuates renin-angiotensin system activation and improves vascular function in high-carbohydrate, high-fat diet fed rats. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 16:123. [PMID: 27121076 PMCID: PMC4849098 DOI: 10.1186/s12906-016-1100-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 04/21/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND In the rat model of high carbohydrate, high fat (HCHF) diet-induced metabolic syndrome (MS), previous studies have found that asiatic acid has an antihypertensive effect. In this study, we investigated effects of asiatic acid on vascular structure, vascular function and renin-angiotensin system (RAS) in HCHF diet-induced MS rats. METHODS Male Sprague-Dawley rats were divided into three treatment groups for the 15 week study: a control group fed a normal diet, a MS group fed HCHF diet plus 15 % fructose in their drinking water for 15 weeks, and an asiatic acid treated group that received a HCHF diet plus fructose for 15 weeks and also received orally administered asiatic acid (20 mg/kg BW/day) for the final 3 weeks. Vascular structure and function were investigated. AT1 receptor expression in aortic tissues and eNOS protein expression in the mesenteric arteries were detected. The levels of serum angiotensin (Ang) II, angiotensin converting enzyme (ACE) and plasma norepinephrine (NE) were measured. The differences among treatment groups were analyzed by one-way analysis of variance (ANOVA) followed by post-hoc Bonferroni tests. RESULTS At the end of the study, all rats fed a HCHF diet exhibited signs of MS including, hypertension, dyslipidemia and insulin resistance. Vascular remodeling in large and small arteries, overexpression of AT1 receptor, and high levels of serum Ang II and ACE were also observed in MS group (p < 0.05). Contractile responses to sympathetic nerve stimulation were enhanced relating to high plasma NE level in MS rats (p < 0.05). The response to exogenous NE was not changed in the mesenteric bed. Vasorelaxation responses to acetylcholine were blunted in thoracic aorta and mesenteric beds, which is consistent with downregulation of eNOS expression in MS rats (p < 0.05). Restoration of metabolic alterations, hemodynamic changes, RAS and sympathetic overactivity, increased plasma NE, endothelium dysfunction, and downregulation of eNOS expression was observed in the asiatic acid treated group (p < 0.05). However, asiatic acid failed to alleviate vascular remodeling in MS rats. CONCLUSION Our findings suggest that the observed antihypertensive effect of asiatic acid in MS rats might be related to its ability to alleviate RAS overactivity and improve vascular function with restoration of sympathetic overactivity.
Collapse
Affiliation(s)
- Putcharawipa Maneesai
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sarawoot Bunbupha
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Upa Kukongviriyapan
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Parichat Prachaney
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Panot Tangsucharit
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Veerapol Kukongviriyapan
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Poungrat Pakdeechote
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
46
|
Zulli A, Smith RM, Kubatka P, Novak J, Uehara Y, Loftus H, Qaradakhi T, Pohanka M, Kobyliak N, Zagatina A, Klimas J, Hayes A, La Rocca G, Soucek M, Kruzliak P. Caffeine and cardiovascular diseases: critical review of current research. Eur J Nutr 2016; 55:1331-43. [PMID: 26932503 DOI: 10.1007/s00394-016-1179-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 02/06/2016] [Indexed: 12/21/2022]
Abstract
Caffeine is a most widely consumed physiological stimulant worldwide, which is consumed via natural sources, such as coffee and tea, and now marketed sources such as energy drinks and other dietary supplements. This wide use has led to concerns regarding the safety of caffeine and its proposed beneficial role in alertness, performance and energy expenditure and side effects in the cardiovascular system. The question remains "Which dose is safe?", as the population does not appear to adhere to the strict guidelines listed on caffeine consumption. Studies in humans and animal models yield controversial results, which can be explained by population, type and dose of caffeine and low statistical power. This review will focus on comprehensive and critical review of the current literature and provide an avenue for further study.
Collapse
Affiliation(s)
- Anthony Zulli
- Centre for Chronic Disease (CCD), College of Health and Biomedicine, Victoria University, Melbourne, VIC, Australia
| | - Renee M Smith
- Centre for Chronic Disease (CCD), College of Health and Biomedicine, Victoria University, Melbourne, VIC, Australia
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Jan Novak
- 2nd Department of Internal Medicine, St. Anne's University Hospital and Masaryk University, Brno, Czech Republic.,Department of Physiology, Masaryk University, Brno, Czech Republic
| | - Yoshio Uehara
- Division of Clinical Nutrition, Faculty of Home Economics, Kyoritsu Women's University, Tokyo, Japan
| | - Hayley Loftus
- Centre for Chronic Disease (CCD), College of Health and Biomedicine, Victoria University, Melbourne, VIC, Australia
| | - Tawar Qaradakhi
- Centre for Chronic Disease (CCD), College of Health and Biomedicine, Victoria University, Melbourne, VIC, Australia
| | - Miroslav Pohanka
- Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| | | | | | - Jan Klimas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Odborarov 10, 832 32, Bratislava, Slovak Republic
| | - Alan Hayes
- Centre for Chronic Disease (CCD), College of Health and Biomedicine, Victoria University, Melbourne, VIC, Australia
| | - Giampiero La Rocca
- Human Anatomy Section, Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Palermo, Italy.,Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
| | - Miroslav Soucek
- 2nd Department of Internal Medicine, St. Anne's University Hospital and Masaryk University, Brno, Czech Republic
| | - Peter Kruzliak
- Laboratory of Structural Biology and Proteomics, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Palackeho tr 1/1946, Brno, 612 42, Czech Republic.
| |
Collapse
|
47
|
Sarr O, Blake A, Thompson JA, Zhao L, Rabicki K, Walsh JC, Welch I, Regnault TRH. The differential effects of low birth weight and Western diet consumption upon early life hepatic fibrosis development in guinea pig. J Physiol 2016; 594:1753-72. [PMID: 26662996 DOI: 10.1113/jp271777] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 12/06/2015] [Indexed: 02/06/2023] Open
Abstract
Postnatal intake of an energy dense diet, the Western diet (WD), is a strong risk factor for liver fibrosis. Recently, adverse in utero conditions resulting in low birth weight (LBW) have also been associated with postnatal fibrosis development. We assessed the independent and possible synergistic effects of placental insufficiency-induced LBW and postnatal WD consumption on liver fibrosis in early adulthood, with a specific focus on changes in inflammation and apoptosis pathways in association with fibrogenesis. Male LBW (uterine artery ablation) and normal birth weight (NBW) guinea pig pups were fed either a control diet (CD) or WD from weaning to 150 days. Significant steatosis, mild lobular inflammation, apoptosis and mild stage 1 fibrosis (perisinusoidal or portal) were evident in WD-fed offspring (NBW/WD and LBW/WD). In LBW/CD versus NBW/CD offspring, increased transforming growth factor-beta 1 and matrix metallopeptidase mRNA and sma- and Mad-related protein 4 (SMAD4) were present in conjunction with minimal stage 1 portal fibrosis. Further, connective tissue growth factor mRNA was increased and miR-146a expression decreased in LBW offspring, irrespective of diet. Independent of birth weight, WD-fed offspring exhibited increased expression of fibrotic genes as well as elevated inflammatory and apoptotic markers. Moreover, the augmented expression of collagen, type III, alpha 1 and tumor necrosis factor-alpha was associated with increased recruitment of RNA polymerase II and enhanced histone acetylation (K9) to their respective promoters. These data support a role for both LBW and postnatal WD as factors contributing to hepatic fibrosis development in offspring through distinct pathways.
Collapse
Affiliation(s)
- Ousseynou Sarr
- Department of Obstetrics and Gynecology, Western University, 1151 Richmond Street, London, ON, Canada, N6A 5C1.,Lawson Research Institute, 268 Grosvenor St, London, ON, Canada, N6A 4V2.,Children's Health Research Institute, 800 Commissioners Road East, London, ON, Canada, N6C 2V5
| | - Alexandra Blake
- Department of Physiology and Pharmacology, Western University, 1151 Richmond Street, London, ON, Canada, N6A 5C1
| | - Jennifer A Thompson
- Department of Physiology and Pharmacology, Western University, 1151 Richmond Street, London, ON, Canada, N6A 5C1
| | - Lin Zhao
- Department of Obstetrics and Gynecology, Western University, 1151 Richmond Street, London, ON, Canada, N6A 5C1
| | - Katherine Rabicki
- Department of Physiology and Pharmacology, Western University, 1151 Richmond Street, London, ON, Canada, N6A 5C1
| | - Joanna C Walsh
- Pathology and Laboratory Medicine, Western University, 1151 Richmond Street, London, ON, Canada, N6A 5C1
| | - Ian Welch
- Animal Care and Veterinary Services, Western University, 1151 Richmond Street, London, ON, Canada, N6A 5C1
| | - Timothy R H Regnault
- Department of Obstetrics and Gynecology, Western University, 1151 Richmond Street, London, ON, Canada, N6A 5C1.,Department of Physiology and Pharmacology, Western University, 1151 Richmond Street, London, ON, Canada, N6A 5C1.,Lawson Research Institute, 268 Grosvenor St, London, ON, Canada, N6A 4V2.,Children's Health Research Institute, 800 Commissioners Road East, London, ON, Canada, N6C 2V5
| |
Collapse
|
48
|
Caffeine prevents d-galactose-induced cognitive deficits, oxidative stress, neuroinflammation and neurodegeneration in the adult rat brain. Neurochem Int 2015. [DOI: 10.1016/j.neuint.2015.07.001] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
49
|
Brown L, Poudyal H, Panchal SK. Functional foods as potential therapeutic options for metabolic syndrome. Obes Rev 2015; 16:914-41. [PMID: 26345360 DOI: 10.1111/obr.12313] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 07/31/2015] [Accepted: 08/03/2015] [Indexed: 12/16/2022]
Abstract
Obesity as part of metabolic syndrome is a major lifestyle disorder throughout the world. Current drug treatments for obesity produce small and usually unsustainable decreases in body weight with the risk of major adverse effects. Surgery has been the only treatment producing successful long-term weight loss. As a different but complementary approach, lifestyle modification including the use of functional foods could produce a reliable decrease in obesity with decreased comorbidities. Functional foods may include fruits such as berries, vegetables, fibre-enriched grains and beverages such as tea and coffee. Although health improvements continue to be reported for these functional foods in rodent studies, further evidence showing the translation of these results into humans is required. Thus, the concept that these fruits and vegetables will act as functional foods in humans to reduce obesity and thereby improve health remains intuitive and possible rather than proven.
Collapse
Affiliation(s)
- L Brown
- Institute for Agriculture and the Environment, University of Southern Queensland, Toowoomba, QLD, Australia.,School of Health and Wellbeing, University of Southern Queensland, Toowoomba, QLD, Australia
| | - H Poudyal
- Department of Diabetes, Endocrinology and Nutrition, The Hakubi Centre for Advanced Research, Kyoto University, Kyoto, Japan
| | - S K Panchal
- Institute for Agriculture and the Environment, University of Southern Queensland, Toowoomba, QLD, Australia
| |
Collapse
|
50
|
Low functional programming of renal AT 2 R mediates the developmental origin of glomerulosclerosis in adult offspring induced by prenatal caffeine exposure. Toxicol Appl Pharmacol 2015; 287:128-138. [DOI: 10.1016/j.taap.2015.05.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 04/05/2015] [Accepted: 05/07/2015] [Indexed: 12/22/2022]
|