1
|
Shen F, Zhang H, Wan M, Yang Y, Kuang Z, Xiao L, Zuo D, Li Z, Qin G, Li L. The CIN-TCP transcription factors regulate endocycle progression and pavement cell size by promoting cell wall pectin degradation. Nat Commun 2025; 16:4108. [PMID: 40316522 DOI: 10.1038/s41467-025-59336-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 04/18/2025] [Indexed: 05/04/2025] Open
Abstract
In plants, endoreplication, the process where nuclear DNA replicates in the absence of mitosis, and remodeling of the primary cell walls are both coupled with cell expansion. However, the mechanisms by which these two processes coordinate to determine cell size remain largely elusive. Here, employing the tcpΔ7 septuple mutant disabling seven of the eight CIN-TCP transcription factors in Arabidopsis, we find that hindered endoreplication progression in tcpΔ7 whereby ploidy increases from 8 C to beyond is correlated with an increase in cell wall pectin. CIN-TCPs transcriptionally activate POLYGALACTURONASE LIKE 1 (PGL1), which encodes a polygalacturonase downregulating both abundance and molecular mass of pectin polymers. Genetic analysis of PGL1 in both the wild type and tcpΔ7 backgrounds confirm that pectin reduction promotes endocycle progression and cell enlargement. Collectively, these findings reveal a critical role of pectin in regulating endoreplication, providing insights in the understanding of cell growth and organ development in plants.
Collapse
Affiliation(s)
- Feng Shen
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong, China
- School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing, China
| | - He Zhang
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong, China.
- School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing, China.
| | - Miaomiao Wan
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong, China
- School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing, China
| | - Yanzhi Yang
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong, China
| | - Zheng Kuang
- School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing, China
| | - Liang Xiao
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong, China
- School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing, China
| | - Daqing Zuo
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong, China
- School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing, China
| | - Zhan Li
- School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing, China
| | - Genji Qin
- School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing, China
| | - Lei Li
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong, China.
| |
Collapse
|
2
|
Lv H, Wang X, Dong X, Gao M, Dong D, Li C, Jing S, Guo YD, Zhang N. CRISPR/Cas9 edited SlGT30 improved both drought resistance and fruit yield through endoreduplication. PLANT, CELL & ENVIRONMENT 2025; 48:2581-2595. [PMID: 38695280 DOI: 10.1111/pce.14927] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/28/2024] [Accepted: 03/25/2024] [Indexed: 03/12/2025]
Abstract
There is often a trade-off effect between different agronomic traits due to gene pleiotropy, leading to a negative correlation between yield and resistance. Consequently, using gene-editing techniques to develop superior traits becomes challenging. Genetic resources that defy this constraint are scarce but hold great potential as targets for improvement through the utilisation of CRISPR. Transcription factors are critical in modulating numerous gene expressions across diverse biological processes. Here, we found that the trihelix transcription factor SlGT30 plays a role in drought resistance and tomato fruit development. We edited the SlGT30 gene with CRISPR/Cas9 technology and found that the knockout lines showed decreased stomata density in the leaves and large fruits. Subsequent examination revealed that cell ploidy was impacted in the leaves and fruits of SlGT30 knockout lines. SlGT30 knockout affected cell size through the endoreduplication pathway, manifested in decreased stomata density and reduced water loss. Consequently, this resulted in an enhancement of drought resistance. For the fruit, both cell size and cell number increased in the fruit pericarp of knockout lines, improving the fruit size and weight accordingly. Therefore, SlGT30 represents a promising candidate gene for gene editing in breeding practice.
Collapse
Affiliation(s)
- Hongmei Lv
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, China
| | - Xuewei Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, China
| | - Xiaonan Dong
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, China
| | - Ming Gao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, China
| | - Danhui Dong
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, China
| | - Chonghua Li
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, China
| | - Shirui Jing
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, China
| | - Yang-Dong Guo
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, China
- Sanya Institute of China Agricultural University, Sanya, China
| | - Na Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, China
- Sanya Institute of China Agricultural University, Sanya, China
| |
Collapse
|
3
|
Lessware OC, Mantell JM, Bauer U. Carnivorous Nepenthes pitcher plants combine common developmental processes to make a complex epidermal trapping surface. ANNALS OF BOTANY 2025; 135:643-654. [PMID: 39240138 PMCID: PMC11904891 DOI: 10.1093/aob/mcae147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/05/2024] [Indexed: 09/07/2024]
Abstract
BACKGROUND AND AIMS A hierarchical micro-topography of ridges and steps renders the trap rim of carnivorous Nepenthes pitcher plants unusually wettable, and slippery for insects when wet. This complex three-dimensional epidermis structure forms, hidden from plain sight, inside the still-closed developing pitcher bud. Here, we reveal the sequence of epidermal patterning events that shape the trap rim. By linking this sequence to externally visible markers of bud development, we provide a framework for targeting individual stages of surface development in future studies. METHODS We used cryo-scanning electron microscopy to investigate the detailed morphogenesis and epidermal patterning of the Nepenthes × hookeriana pitcher rim. In addition, we collected morphometric and qualitative data from developing pitcher traps including those sampled for microscopy. KEY RESULTS We identified three consecutive patterning events. First, strictly oriented cell divisions resulted in radially aligned rows of cells and established a macroscopic ridge-and-groove pattern. Next, conical papillate cells formed, and papillae elongated towards the trap interior, increasingly overlapping adjacent cells and eventually forming continuous microscopic ridges. In between these ridges, the flattened papillae formed acutely angled arched steps. Finally, the cells elongated radially, thereby establishing the convex collar shape of the rim. This general sequence of surface development also showed a spatial progression from the outer to the inner trap rim edge, with several consecutive developmental stages co-occurring at any given time. CONCLUSIONS We demonstrate that the complex surface micro-topography of the Nepenthes pitcher rim develops by sequentially combining widespread, evolutionarily conserved epidermal patterning processes in a new way. This makes the Nepenthes trap rim an excellent model for studying epidermal patterning mechanisms in leaves.
Collapse
Affiliation(s)
- Oona C Lessware
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Judith M Mantell
- Wolfson Bioimaging Centre, School of Biomedical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Ulrike Bauer
- Department of Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| |
Collapse
|
4
|
Zhang X, Wang G, Zhang P, Chen C, Zhang J, Bian Y, Liu M, Niu C, Sun F, Wang Y, Liu G, Wang Z, Ma F, Bao Z. Plant cell-cycle regulators control the nuclear environment for viral pathogenesis. Cell Host Microbe 2025; 33:420-435.e14. [PMID: 40043702 DOI: 10.1016/j.chom.2025.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/15/2024] [Accepted: 02/10/2025] [Indexed: 03/15/2025]
Abstract
The proper regulation of cell-cycle regulators is curial for both viral replication and host-plant adaptive growth during the viral pathogenesis. Mechanisms on reorchestrating RETINOBLASTOMA-RELATED 1 (RBR1), repressor of E2F transcription factor, and downstream genes in host-virus interactions are unclear. Here, we discover that anaphase-promoting complex/cyclosome (APC/C) E3 ligase activator cell division cycle 20 (CDC20) in tomato binds RBR1 or mediates cyclin D1 depletion to preserve RBR1-E2F complexes, while geminivirus or crinivirus repurposes APC/CCDC20 activities to liberate E2Fs in two ways: activating APC/CCDC20 to deplete RBR1 or blocking APC/CCDC20 to stimulate cyclin-D1-mediated RBR1 depletion. The liberated E2Fs activate DNA polymerase or heat shock protein 70 gene transcription to favor virus propagation. The improper disruption of RBR1-E2F complexes via hijacking APC/CCDC20 causes the host growth repression. We uncover a scenario in which the virus co-opts host APC/CCDC20 to reprogram RBR1-E2F complex to favor its propagation while dampening host vitality.
Collapse
Affiliation(s)
- Xu Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, Shandong, China
| | - Ge Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, Shandong, China
| | - Peng Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, Shandong, China
| | - Chunyan Chen
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, Shandong, China
| | - Jiucheng Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, Shandong, China
| | - Yumei Bian
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, Shandong, China
| | - Minmin Liu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, Shandong, China
| | - Chenxu Niu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, Shandong, China
| | - Fengze Sun
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, Shandong, China
| | - Yahui Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, Shandong, China
| | - Genzhong Liu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, Shandong, China
| | - Zhimin Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, Shandong, China
| | - Fangfang Ma
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, Shandong, China.
| | - Zhilong Bao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, Shandong, China.
| |
Collapse
|
5
|
Hittorf M, Garvetto A, Magauer M, Kirchmair M, Salvenmoser W, Murúa P, Neuhauser S. Local endoreduplication of the host is a conserved process during Phytomyxea-host interaction. Front Microbiol 2025; 15:1494905. [PMID: 39974374 PMCID: PMC11835965 DOI: 10.3389/fmicb.2024.1494905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/30/2024] [Indexed: 02/21/2025] Open
Abstract
Background Endoreduplication, a modified cell cycle, involves cells duplicating DNA without undergoing mitosis. This phenomenon is frequently observed in plants, algae, and animals. Biotrophic pathogens have been demonstrated to induce endoreduplication in plants to secure more space or nutrients. Methods In this study, we investigated the endoreduplication process triggered by two phylogenetically distant Rhizaria organisms-Maullinia spp. (in brown algae) and Plasmodiophora brassicae (in plants)-by combining fluorescent in situ hybridization (FISH) with nuclear area measurements. Results We could confirm that Plasmodiophora brassicae (Plasmodiophorida) triggers endoreduplication in infected plants. For the first time, we also demonstrated pathogen-induced endoreduplication in brown algae infected with Maullinia ectocarpii and Maullinia braseltonii (Phagomyxida). We identified molecular signatures of endoreduplication in RNA-seq datasets of P. brassicae-infected Brassica oleracea and M. ectocarpii-infected Ectocarpus siliculosus. Discussion Cell cycle switch proteins such as CCS52A1 and B in plants, CCS52 in algae, and the protein kinase WEE1 in plants were upregulated in RNA-seq datasets hinting at a potential role in the phytomyxean-induced transition from mitotic cell cycle to endocycle. By demonstrating the consistent induction of endoreduplication in hosts during phytomyxid infections, our study expands our understanding of Phytomyxea-host interaction. The induction of this cellular mechanism by phytomyxid parasites in phylogenetically distant hosts further emphasizes the importance of endoreduplication in these biotrophic interactions.
Collapse
Affiliation(s)
- Michaela Hittorf
- Department of Microbiology, Universität Innsbruck, Innsbruck, Austria
| | - Andrea Garvetto
- Department of Microbiology, Universität Innsbruck, Innsbruck, Austria
| | | | - Martin Kirchmair
- Department of Microbiology, Universität Innsbruck, Innsbruck, Austria
| | | | - Pedro Murúa
- Laboratorio de Macroalgas y Ficopatología, Instituto de Acuicultura, Universidad Austral de Chile, Puerto Montt, Chile
| | - Sigrid Neuhauser
- Department of Microbiology, Universität Innsbruck, Innsbruck, Austria
| |
Collapse
|
6
|
Li J, Pang S. Evidence of sterility of the male sporophytes of the brown alga Saccharina japonica (Phaeophyceae) in culture irrespective of their ploidy levels. JOURNAL OF PHYCOLOGY 2025; 61:241-249. [PMID: 39620310 DOI: 10.1111/jpy.13530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 10/30/2024] [Accepted: 11/06/2024] [Indexed: 03/19/2025]
Abstract
Monoclonal female gametophytes of Saccharina japonica, when cultured independently, can develop into female sporophytes. Previous research has shown that the chromosomes in female sporophytes of S. japonica may naturally duplicate, forming diploids, and these diploid female sporophytes are capable of forming sori and releasing zoospores. In contrast, male sporophytes derived from culturing monoclonal male gametophytes failed to form sori and produce meiospores; thus, it was hypothesized that these male sporophytes are haploid and unable to perform meiotic division. In order to explore whether the chromosomes in male sporophytes can naturally duplicate and whether such diploid male sporophytes can effectively form sori and produce meiospores, we obtained 62 male sporophytes and cultivated them into adults. Only male-specific DNA markers were detected in all of these male sporophytes, indicating their male nature. Ten microsatellite markers were used to estimate the relatedness of the parental gametophytes and the corresponding sporophytes. Results revealed that the genotypes of the male sporophytes matched exactly with the corresponding male gametophytes. Both diploid and haploid sporophytes were detected in these 62 male sporophytes when analyzed by flow cytometry. After 16 months of cultivation, none of the male sporophytes formed sori regardless of their ploidy. As controls, both female and hybrid sporophytes developed sori and released viable zoospores. These findings suggest that the sterility of male sporophytes in S. japonica is not related to their ploidy; rather, it is attributed to the absence of essential elements for sori formation that may be present only in the female.
Collapse
Affiliation(s)
- Jing Li
- Chinese Academy of Sciences and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shaojun Pang
- Chinese Academy of Sciences and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
7
|
Chadha Y, Khurana A, Schmoller KM. Eukaryotic cell size regulation and its implications for cellular function and dysfunction. Physiol Rev 2024; 104:1679-1717. [PMID: 38900644 PMCID: PMC11495193 DOI: 10.1152/physrev.00046.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/24/2024] [Accepted: 06/19/2024] [Indexed: 06/22/2024] Open
Abstract
Depending on cell type, environmental inputs, and disease, the cells in the human body can have widely different sizes. In recent years, it has become clear that cell size is a major regulator of cell function. However, we are only beginning to understand how the optimization of cell function determines a given cell's optimal size. Here, we review currently known size control strategies of eukaryotic cells and the intricate link of cell size to intracellular biomolecular scaling, organelle homeostasis, and cell cycle progression. We detail the cell size-dependent regulation of early development and the impact of cell size on cell differentiation. Given the importance of cell size for normal cellular physiology, cell size control must account for changing environmental conditions. We describe how cells sense environmental stimuli, such as nutrient availability, and accordingly adapt their size by regulating cell growth and cell cycle progression. Moreover, we discuss the correlation of pathological states with misregulation of cell size and how for a long time this was considered a downstream consequence of cellular dysfunction. We review newer studies that reveal a reversed causality, with misregulated cell size leading to pathophysiological phenotypes such as senescence and aging. In summary, we highlight the important roles of cell size in cellular function and dysfunction, which could have major implications for both diagnostics and treatment in the clinic.
Collapse
Affiliation(s)
- Yagya Chadha
- Institute of Functional Epigenetics, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - Arohi Khurana
- Institute of Functional Epigenetics, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - Kurt M Schmoller
- Institute of Functional Epigenetics, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
8
|
Wang Q, Wang L, Song S, Zhao YN, Gu HH, Zhu Z, Wang J, Lu S. ORANGE interplays with TCP7 to regulate endoreduplication and leaf size. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:473-490. [PMID: 39176434 DOI: 10.1111/tpj.16994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/18/2024] [Accepted: 07/29/2024] [Indexed: 08/24/2024]
Abstract
Leaf size is a crucial agronomic trait directly affecting crop yield, which is mainly determined by coordinated cell proliferation, growth, and differentiation. Although endoreduplication is known to be correlated with the onset of cell differentiation and leaf size, the underlying molecular mechanisms are largely unclear. The DnaJ-like zinc finger domain-containing protein ORANGE (OR) was initially demonstrated to confer the massive accumulation of carotenoids in cauliflower curds. However, the cauliflower or mutant also possesses other phenotypes such as smaller curds, smaller leaves with elongated petioles, and delayed flowering. Here, we demonstrated that OR physically interacts with the transcription factor TCP7, which promotes endoreduplication by inducing the expression of the cell cycle gene CYCLIN D 1;1 (CYCD1;1). Overexpression of OR resulted in smaller rosette leaves, whereas the OR-silencing plants had larger rosette leaves than wild-type plants. Our microscopic observations and flow cytometry analysis revealed that the variation in leaf size was a result of different endoreduplication levels. Genetic analyses showed that OR functions antagonistically with TCP7 in regulating the endoreduplication levels in leaf cells. While the expression of OR is induced by TCP7, OR represses the transactivation activity of TCP7 by affecting its binding capability to the TCP-binding motif in the promoter region of CYCD1;1. Through this interaction, OR negatively regulates the expression of CYCD1;1 and reduces the nuclear ploidy level in rosette leaf cells. Our findings provide new insights into the regulatory network of leaf size and also reveal a regulatory circuit controlling endoreduplication in leaf cells.
Collapse
Affiliation(s)
- Qi Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Linjuan Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Shuyuan Song
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Ya-Nan Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Hong-Hui Gu
- Zhejiang Academy of Agricultural Sciences, Institute of Vegetables, Hangzhou, 310021, China
| | - Ziqiang Zhu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Jiansheng Wang
- Zhejiang Academy of Agricultural Sciences, Institute of Vegetables, Hangzhou, 310021, China
| | - Shan Lu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| |
Collapse
|
9
|
Kunnen K, Ali MM, Lataf A, Van Hees M, Nauts R, Horemans N, Vandamme D, Cuypers A. From crop left-overs to nutrient resource: growth-stimulating potential of biochar in nutrient solutions for wheat soilless cultivation systems. FRONTIERS IN PLANT SCIENCE 2024; 15:1414212. [PMID: 39301156 PMCID: PMC11410626 DOI: 10.3389/fpls.2024.1414212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/21/2024] [Indexed: 09/22/2024]
Abstract
To reach the estimated food demands for 2050 in decreasingly suiting climates, current agricultural techniques have to be complemented by sustainably intensified practices. The current study repurposed wheat crop residues into biochar, and investigated its potential in different plant cultivation systems, including a hydroponic cultivation of wheat. Biochars resulting from varying pyrolysis parameters including feedstock composition (straw and chaff) and temperature (450°C and 600°C), were tested using a fast plant screening method. Biochar WBC450, produced from a combination of chaff and straw at 450°C, was selected for further plant experiments, and used in a static leaching experiment in the Arabidopsis thaliana cultivation medium. Increased pH and EC were observed, together with an increase of most macronutrient (K, Mg, P, S) and a decrease of most micronutrient (Fe, Mn, Zn) concentrations. Considering plant growth, application of biochar resulted in concentration-dependent effects in both tested plant species (A. thaliana and wheat). It improved the vegetative yield across all tested cultivation systems. Increases in K and S, and concentration-dependent decreases in Fe and Na content in wheatgrass were observed. Biochar influenced the reproduction of hydroponically cultivated wheat by increasing the number of spikes and the number of seeds per spike. The antioxidative capacity of wheat grass, and the seed sugar and starch contents remained unaffected by biochar application. This study contributes to innovation in soilless cultivation approaches of staple crops, within the framework of closing waste loops for a circular bioeconomy.
Collapse
Affiliation(s)
- Kris Kunnen
- Environmental Biology, Centre for Environmental Sciences (CMK), Hasselt University, Diepenbeek, Belgium
| | - Md Muntasir Ali
- Biosphere Impact Studies, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Amine Lataf
- Analytical and Circular Chemistry, Institute for Materials Research (imo-imomec), Hasselt University, Diepenbeek, Belgium
| | - May Van Hees
- Biosphere Impact Studies, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Robin Nauts
- Biosphere Impact Studies, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Nele Horemans
- Environmental Biology, Centre for Environmental Sciences (CMK), Hasselt University, Diepenbeek, Belgium
- Biosphere Impact Studies, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Dries Vandamme
- Analytical and Circular Chemistry, Institute for Materials Research (imo-imomec), Hasselt University, Diepenbeek, Belgium
| | - Ann Cuypers
- Environmental Biology, Centre for Environmental Sciences (CMK), Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
10
|
Cerbantez-Bueno VE, Serwatowska J, Rodríguez-Ramos C, Cruz-Valderrama JE, de Folter S. The role of D3-type cyclins is related to cytokinin and the bHLH transcription factor SPATULA in Arabidopsis gynoecium development. PLANTA 2024; 260:48. [PMID: 38980389 PMCID: PMC11233295 DOI: 10.1007/s00425-024-04481-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
MAIN CONCLUSION We studied the D3-type cyclin function during gynoecium development in Arabidopsis and how they are related to the hormone cytokinin and the transcription factor SPATULA. Growth throughout the life of plants is sustained by cell division and differentiation processes in meristematic tissues. In Arabidopsis, gynoecium development implies a multiphasic process where the tissues required for pollination, fertilization, and seed development form. The Carpel Margin Meristem (CMM) is a mass of undifferentiated cells that gives rise to the gynoecium internal tissues, such as septum, ovules, placenta, funiculus, transmitting tract, style, and stigma. Different genetic and hormonal factors, including cytokinin, control the CMM function. Cytokinin regulates the cell cycle transitions through the activation of cell cycle regulators as cyclin genes. D3-type cyclins are expressed in proliferative tissues, favoring the mitotic cell cycle over the endoreduplication. Though the role of cytokinin in CMM and gynoecium development is highly studied, its specific role in regulating the cell cycle in this tissue remains unclear. Additionally, despite extensive research on the relationship between CYCD3 genes and cytokinin, the regulatory mechanism that connects them remains elusive. Here, we found that D3-type cyclins are expressed in proliferative medial and lateral tissues. Conversely, the depletion of the three CYCD3 genes showed that they are not essential for gynoecium development. However, the addition of exogenous cytokinin showed that they could control the division/differentiation balance in gynoecium internal tissues and outgrowths. Finally, we found that SPATULA can be a mechanistic link between cytokinin and the D3-type cyclins. The data suggest that the role of D3-type cyclins in gynoecium development is related to the cytokinin response, and they might be activated by the transcription factor SPATULA.
Collapse
Affiliation(s)
- Vincent E Cerbantez-Bueno
- Unidad de Genómica Avanzada (UGA-Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824, Irapuato, México
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA, 92521, USA
| | - Joanna Serwatowska
- Unidad de Genómica Avanzada (UGA-Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824, Irapuato, México
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824, Irapuato, México
| | - Carolina Rodríguez-Ramos
- Unidad de Genómica Avanzada (UGA-Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824, Irapuato, México
| | - J Erik Cruz-Valderrama
- Unidad de Genómica Avanzada (UGA-Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824, Irapuato, México
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, 62210, Cuernavaca, Morelos, México
| | - Stefan de Folter
- Unidad de Genómica Avanzada (UGA-Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824, Irapuato, México.
| |
Collapse
|
11
|
Li M, Zhang M, Meng B, Miao L, Fan Y. Genome-Wide Identification and Evolutionary and Expression Analyses of the Cyclin B Gene Family in Brassica napus. PLANTS (BASEL, SWITZERLAND) 2024; 13:1709. [PMID: 38931141 PMCID: PMC11207893 DOI: 10.3390/plants13121709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/09/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024]
Abstract
Cyclin B (CYCB) is a regulatory subunit of cyclin-dependent kinase (CDK), the concentration of which fluctuates to regulate cell cycle progression. Extensive studies have been performed on cyclins in numerous species, yet the evolutionary relationships and biological functions of the CYCB family genes in Brassica napus remain unclear. In this study, we identified 299 CYCB genes in 11 B. napus accessions. Phylogenetic analysis suggests that CYCB genes could be divided into three subfamilies in angiosperms and that the CYCB3 subfamily members may be a newer group that evolved in eudicots. The expansion of BnaCYCB genes underwent segmental duplication and purifying selection in genomes, and a number of drought-responsive and light-responsive cis-elements were found in their promoter regions. Additionally, expression analysis revealed that BnaCYCBs were strongly expressed in the developing seed and silique pericarp, as confirmed by the obviously reduced seed size of the mutant cycb3;1 in Arabidopsis thaliana compared with Col-0. This study provides a comprehensive evolutionary analysis of CYCB genes as well as insight into the biological function of CYCB genes in B. napus.
Collapse
Affiliation(s)
- Mingyue Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China; (M.L.); (M.Z.); (B.M.); (L.M.)
- Hanhong College, Institute of Innovation and Entrepreneurship, Southwest University, Beibei, Chongqing 400715, China
| | - Minghao Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China; (M.L.); (M.Z.); (B.M.); (L.M.)
| | - Boyu Meng
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China; (M.L.); (M.Z.); (B.M.); (L.M.)
| | - Likai Miao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China; (M.L.); (M.Z.); (B.M.); (L.M.)
| | - Yonghai Fan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China; (M.L.); (M.Z.); (B.M.); (L.M.)
| |
Collapse
|
12
|
Xu F, Dong H, Guo W, Le L, Jing Y, Fletcher JC, Sun J, Pu L. The trxG protein ULT1 regulates Arabidopsis organ size by interacting with TCP14/15 to antagonize the LIM peptidase DA1 for H3K4me3 on target genes. PLANT COMMUNICATIONS 2024; 5:100819. [PMID: 38217289 PMCID: PMC11009162 DOI: 10.1016/j.xplc.2024.100819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/18/2023] [Accepted: 01/09/2024] [Indexed: 01/15/2024]
Abstract
Plant organ size is an important agronomic trait that makes a significant contribution to plant yield. Despite its central importance, the genetic and molecular mechanisms underlying organ size control remain to be fully clarified. Here, we report that the trithorax group protein ULTRAPETALA1 (ULT1) interacts with the TEOSINTE BRANCHED1/CYCLOIDEA/PCF14/15 (TCP14/15) transcription factors by antagonizing the LIN-11, ISL-1, and MEC-3 (LIM) peptidase DA1, thereby regulating organ size in Arabidopsis. Loss of ULT1 function significantly increases rosette leaf, petal, silique, and seed size, whereas overexpression of ULT1 results in reduced organ size. ULT1 associates with TCP14 and TCP15 to co-regulate cell size by affecting cellular endoreduplication. Transcriptome analysis revealed that ULT1 and TCP14/15 regulate common target genes involved in endoreduplication and leaf development. ULT1 can be recruited by TCP14/15 to promote lysine 4 of histone H3 trimethylation at target genes, activating their expression to determine final cell size. Furthermore, we found that ULT1 influences the interaction of DA1 and TCP14/15 and antagonizes the effect of DA1 on TCP14/15 degradation. Collectively, our findings reveal a novel epigenetic mechanism underlying the regulation of organ size in Arabidopsis.
Collapse
Affiliation(s)
- Fan Xu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Huixue Dong
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Weijun Guo
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Liang Le
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yexing Jing
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jennifer C Fletcher
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Plant Gene Expression Center, United States Department of Agriculture - Agricultural Research Service, Albany, CA 94710, USA
| | - Jiaqiang Sun
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Li Pu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
13
|
Burian M, Podgórska A, Kryzheuskaya K, Gieczewska K, Sliwinska E, Szal B. Ammonium treatment inhibits cell cycle activity and induces nuclei endopolyploidization in Arabidopsis thaliana. PLANTA 2024; 259:94. [PMID: 38509428 DOI: 10.1007/s00425-024-04372-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 02/28/2024] [Indexed: 03/22/2024]
Abstract
MAIN CONCLUSION This study determined the effect of ammonium supply on the cell division process and showed that ammonium-dependent elevated reactive oxygen species production could mediate the downregulation of the cell cycle-related gene expression. Plants grown under high-ammonium conditions show stunted growth and other toxicity symptoms, including oxidative stress. However, how ammonium regulates the development of plants remains unknown. Growth is defined as an increase in cell volume or proliferation. In the present study, ammonium-related changes in cell cycle activity were analyzed in seedlings, apical buds, and young leaves of Arabidopsis thaliana plants. In all experimental ammonium treatments, the genes responsible for regulating cell cycle progression, such as cyclin-dependent kinases and cyclins, were downregulated in the studied tissues. Thus, ammonium nutrition could be considered to reduce cell proliferation; however, the cause of this phenomenon may be secondary. Reactive oxygen species (ROS), which are produced in large amounts in response to ammonium nutrition, can act as intermediates in this process. Indeed, high ROS levels resulting from H2O2 treatment or reduced ROS production in rbohc mutants, similar to ammonium-triggered ROS, correlated with altered cell cycle-related gene expression. It can be concluded that the characteristic ammonium growth suppression may be executed by enhanced ROS metabolism to inhibit cell cycle activity. This study provides a base for future research in determining the mechanism behind ammonium-induced dwarfism in plants, and strategies to mitigate such stress.
Collapse
Affiliation(s)
- Maria Burian
- Department of Plant Bioenergetics, Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Anna Podgórska
- Department of Plant Bioenergetics, Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Katsiaryna Kryzheuskaya
- Department of Plant Bioenergetics, Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Katarzyna Gieczewska
- Department of Plant Anatomy and Cytology, Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Elwira Sliwinska
- Laboratory of Molecular Biology and Cytometry, Department of Agricultural Biotechnology, Bydgoszcz University of Science and Technology, Kaliskiego 7, 85-796, Bydgoszcz, Poland
| | - Bożena Szal
- Department of Plant Bioenergetics, Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.
| |
Collapse
|
14
|
Guo X, Zhang X, Jiang S, Qiao X, Meng B, Wang X, Wang Y, Yang K, Zhang Y, Li N, Chen T, Kang Y, Yao M, Zhang X, Wang X, Zhang E, Li J, Yan D, Hu Z, Botella JR, Song CP, Li Y, Guo S. E3 ligases MAC3A and MAC3B ubiquitinate UBIQUITIN-SPECIFIC PROTEASE14 to regulate organ size in Arabidopsis. PLANT PHYSIOLOGY 2024; 194:684-697. [PMID: 37850874 PMCID: PMC10828200 DOI: 10.1093/plphys/kiad559] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/12/2023] [Accepted: 09/22/2023] [Indexed: 10/19/2023]
Abstract
The molecular mechanisms controlling organ size during plant development ultimately influence crop yield. However, a deep understanding of these mechanisms is still lacking. UBIQUITIN-SPECIFIC PROTEASE14 (UBP14), encoded by DA3, is an essential factor determining organ size in Arabidopsis (Arabidopsis thaliana). Here, we identified two suppressors of the da3-1 mutant phenotype, namely SUPPRESSOR OF da3-1 1 and 2 (SUD1 and SUD2), which encode the E3 ligases MOS4-ASSOCIATED COMPLEX 3A (MAC3A) and MAC3B, respectively. The mac3a-1 and mac3b-1 mutations partially suppressed the high ploidy level and organ size phenotypes observed in the da3-1 mutant. Biochemical analysis showed that MAC3A and MAC3B physically interacted with and ubiquitinated UBP14/DA3 to modulate its stability. We previously reported that UBP14/DA3 acts upstream of the B-type cyclin-dependent kinase CDKB1;1 and maintains its stability to inhibit endoreduplication and cell growth. In this work, MAC3A and MAC3B were found to promote the degradation of CDKB1;1 by ubiquitinating UBP14/DA3. Genetic analysis suggests that MAC3A and MAC3B act in a common pathway with UBP14/DA3 to control endoreduplication and organ size. Thus, our findings define a regulatory module, MAC3A/MAC3B-UBP14-CDKB1;1, that plays a critical role in determining organ size and endoreduplication in Arabidopsis.
Collapse
Affiliation(s)
- Xiaopeng Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
- Sanya Institute, Henan University, Sanya 572025, China
| | - Xin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
- Sanya Institute, Henan University, Sanya 572025, China
| | - Shan Jiang
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xin Qiao
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
| | - Bolun Meng
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
| | - Xiaohang Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
| | - Yanan Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
| | - Kaihuan Yang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
| | - Yilan Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
| | - Na Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- State Key Laboratory of North China Crop Improvement and Regulation, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Tianyan Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, Yunnan University, Kunming 650500, China
| | - Yiyang Kang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
| | - Mengyi Yao
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
| | - Xuan Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
| | - Xinru Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
| | - Erling Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
| | - Junhua Li
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Dawei Yan
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
| | - Zhubing Hu
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
- Sanya Institute, Henan University, Sanya 572025, China
| | - José Ramón Botella
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
- Plant Genetic Engineering Laboratory, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Chun-Peng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
- Sanya Institute, Henan University, Sanya 572025, China
| | - Yunhai Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Siyi Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
- Sanya Institute, Henan University, Sanya 572025, China
| |
Collapse
|
15
|
Zumel D, Diéguez X, Werner O, Moreno-Ortiz MC, Muñoz J, Ros RM. High endoreduplication after drought-related conditions in haploid but not diploid mosses. ANNALS OF BOTANY 2023; 132:1249-1258. [PMID: 37823772 PMCID: PMC10902894 DOI: 10.1093/aob/mcad159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/01/2023] [Accepted: 10/18/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND AND AIMS Endoreduplication, the duplication of the nuclear genome without mitosis, is a common process in plants, especially in angiosperms and mosses. Accumulating evidence supports the relationship between endoreduplication and plastic responses to stress factors. Here, we investigated the level of endoreduplication in Ceratodon (Bryophyta), which includes the model organism Ceratodon purpureus. METHODS We used flow cytometry to estimate the DNA content of 294 samples from 67 localities and found three well-defined cytotypes, two haploids and one diploid, the haploids corresponding to C. purpureus and Ceratodon amazonum, and the diploid to Ceratodon conicus, recombination occurring between the former two. KEY RESULTS The endoreduplication index (EI) was significantly different for each cytotype, being higher in the two haploids. In addition, the EI of the haploids was higher during the hot and dry periods typical of the Mediterranean summer than during spring, whereas the EI of the diploid cytotype did not differ between seasons. CONCLUSIONS Endopolyploidy may be essential in haploid mosses to buffer periods of drought and to respond rapidly to desiccation events. Our results also suggest that the EI is closely related to the basic ploidy level, but less so to the nuclear DNA content as previously suggested.
Collapse
Affiliation(s)
- D Zumel
- Real Jardín Botánico (CSIC), Plaza de Murillo 2, 28014, Madrid, Spain
| | - X Diéguez
- Real Jardín Botánico (CSIC), Plaza de Murillo 2, 28014, Madrid, Spain
| | - O Werner
- Universidad de Murcia, Facultad de Biología, Departamento de Biología Vegetal, Campus de Espinardo, 30100, Murcia, Spain
| | - M C Moreno-Ortiz
- Centro Nacional de Biotecnología (CSIC), Departamento de Inmunología y Oncología, 28049 Madrid, Spain
| | - J Muñoz
- Real Jardín Botánico (CSIC), Plaza de Murillo 2, 28014, Madrid, Spain
| | - R M Ros
- Universidad de Murcia, Facultad de Biología, Departamento de Biología Vegetal, Campus de Espinardo, 30100, Murcia, Spain
| |
Collapse
|
16
|
Tourdot E, Mauxion JP, Gonzalez N, Chevalier C. Endoreduplication in plant organogenesis: a means to boost fruit growth. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6269-6284. [PMID: 37343125 DOI: 10.1093/jxb/erad235] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/16/2023] [Indexed: 06/23/2023]
Abstract
Endoreduplication is the major source of somatic endopolyploidy in higher plants, and leads to variation in cell ploidy levels due to iterative rounds of DNA synthesis in the absence of mitosis. Despite its ubiquitous occurrence in many plant organs, tissues, and cells, the physiological meaning of endoreduplication is not fully understood, although several roles during plant development have been proposed, mostly related to cell growth, differentiation, and specialization via transcriptional and metabolic reprogramming. Here, we review recent advances in our knowledge of the molecular mechanisms and cellular characteristics of endoreduplicated cells, and provide an overview of the multi-scale effects of endoreduplication on supporting growth in plant development. In addition, the effects of endoreduplication in fruit development are discussed, since it is highly prominent during fruit organogenesis where it acts as a morphogenetic factor supporting rapid fruit growth, as illustrated by case of the model fleshy fruit, tomato (Solanum lycopersicum).
Collapse
Affiliation(s)
- Edouard Tourdot
- Université de Bordeaux, INRAE, UMR1332 Biologie du Fruit et Pathologie, F-33140 Villenave d'Ornon, France
| | - Jean-Philippe Mauxion
- Université de Bordeaux, INRAE, UMR1332 Biologie du Fruit et Pathologie, F-33140 Villenave d'Ornon, France
| | - Nathalie Gonzalez
- Université de Bordeaux, INRAE, UMR1332 Biologie du Fruit et Pathologie, F-33140 Villenave d'Ornon, France
| | - Christian Chevalier
- Université de Bordeaux, INRAE, UMR1332 Biologie du Fruit et Pathologie, F-33140 Villenave d'Ornon, France
| |
Collapse
|
17
|
Karaca S, Aydin M, Agar G, Taspinar MS. α-Tocopherol application as a countermeasure to UV-B stress in bread wheat (Triticum aestivum L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:89012-89021. [PMID: 37452252 DOI: 10.1007/s11356-023-28768-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/08/2023] [Indexed: 07/18/2023]
Abstract
The source of energy for all photoautotrophic organisms is light, which is absorbed by photosynthetic processes and used to transform carbon dioxide and H2O into organic molecules. The majority of UV-B light (280 to 320 nm) is absorbed by stratospheric ozone layer, although some of it does reach at the Earth's surface. Because of the sedentary lifestyle of plants, this form of abiotic stress is unavoidable and can induce growth and even cell death. Ten-day-old calli generated from mature Kirik wheat embryos were subjected to UV-B radiation for 0, 2, 4, and 6 h to examine the function of exogenous α-tocopherol, a lipophilic antioxidant, in wheat tolerance to UV-B radiation stress. The calli were then moved to a callus medium containing α-tocopherol (0, 50, and 100 mg/l) and cultivated there for 20 days after being subjected to UV-B stress. For plant regeneration, embryogenic calli were put on a medium for plant regeneration after 30 days. The findings of this investigation demonstrated that an increase in UV-B exposure period resulted in a substantial drop in the relative growth rate of callus, the rate of embryogenic callus, the rate of responding embryogenic callus, and the number of plants in each explant. On the other hand, with the application of α-tocopherol, all these parameters improved, and the best result was observed in the application of 100 mg/l of α-tocopherol in terms of plant regeneration under UV-B stress.
Collapse
Affiliation(s)
- Sedat Karaca
- Department of Biotechnology, Faculty of Agriculture, Ataturk University, Erzurum, Turkey
| | - Murat Aydin
- Department of Biotechnology, Faculty of Agriculture, Ataturk University, Erzurum, Turkey
| | - Güleray Agar
- Department of Biology, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Mahmut Sinan Taspinar
- Department of Biotechnology, Faculty of Agriculture, Ataturk University, Erzurum, Turkey.
| |
Collapse
|
18
|
Mahto A, Yadav A, P V A, Parida SK, Tyagi AK, Agarwal P. Cytological, transcriptome and miRNome temporal landscapes decode enhancement of rice grain size. BMC Biol 2023; 21:91. [PMID: 37076907 PMCID: PMC10116700 DOI: 10.1186/s12915-023-01577-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 03/27/2023] [Indexed: 04/21/2023] Open
Abstract
BACKGROUND Rice grain size (GS) is an essential agronomic trait. Though several genes and miRNA modules influencing GS are known and seed development transcriptomes analyzed, a comprehensive compendium connecting all possible players is lacking. This study utilizes two contrasting GS indica rice genotypes (small-grained SN and large-grained LGR). Rice seed development involves five stages (S1-S5). Comparative transcriptome and miRNome atlases, substantiated with morphological and cytological studies, from S1-S5 stages and flag leaf have been analyzed to identify GS proponents. RESULTS Histology shows prolonged endosperm development and cell enlargement in LGR. Stand-alone and comparative RNAseq analyses manifest S3 (5-10 days after pollination) stage as crucial for GS enhancement, coherently with cell cycle, endoreduplication, and programmed cell death participating genes. Seed storage protein and carbohydrate accumulation, cytologically and by RNAseq, is shown to be delayed in LGR. Fourteen transcription factor families influence GS. Pathway genes for four phytohormones display opposite patterns of higher expression. A total of 186 genes generated from the transcriptome analyses are located within GS trait-related QTLs deciphered by a cross between SN and LGR. Fourteen miRNA families express specifically in SN or LGR seeds. Eight miRNA-target modules display contrasting expressions amongst SN and LGR, while 26 (SN) and 43 (LGR) modules are differentially expressed in all stages. CONCLUSIONS Integration of all analyses concludes in a "Domino effect" model for GS regulation highlighting chronology and fruition of each event. This study delineates the essence of GS regulation, providing scope for future exploits. The rice grain development database (RGDD) ( www.nipgr.ac.in/RGDD/index.php ; https://doi.org/10.5281/zenodo.7762870 ) has been developed for easy access of data generated in this paper.
Collapse
Affiliation(s)
- Arunima Mahto
- National Institute of Plant Genome Research, New Delhi, India
| | - Antima Yadav
- National Institute of Plant Genome Research, New Delhi, India
| | - Aswathi P V
- National Institute of Plant Genome Research, New Delhi, India
| | - Swarup K Parida
- National Institute of Plant Genome Research, New Delhi, India
| | - Akhilesh K Tyagi
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Pinky Agarwal
- National Institute of Plant Genome Research, New Delhi, India.
| |
Collapse
|
19
|
Bhushan S, Singh AK, Thakur Y, Baskar R. Persistence of parental age effect on somatic mutation rates across generations in Arabidopsis. BMC PLANT BIOLOGY 2023; 23:152. [PMID: 36944916 PMCID: PMC10031922 DOI: 10.1186/s12870-023-04150-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
In the model plant Arabidopsis thaliana, parental age is known to affect somatic mutation rates in their immediate progeny and here we show that this age dependent effect persists across successive generations. Using a set of detector lines carrying the mutated uidA gene, we examined if a particular parental age maintained across five consecutive generations affected the rates of base substitution (BSR), intrachromosomal recombination (ICR), frameshift mutation (FS), and transposition. The frequency of functional GUS reversions were assessed in seedlings as a function of identical/different parental ages across generations. In the context of a fixed parental age, BSR/ICR rates were unaffected in the first three generations, then dropped significantly in the 4th and increased in most instances in the 5th generation (e.g. BSR (F1 38 = 0.9, F2 38 = 1.14, F3 38 = 1.02, F4 38 = 0.5, F5 38 = 0.76)). On the other hand, with advancing parental ages, BSR/ICR rates remained high in the first two/three generations, with a striking resemblance in the pattern of mutation rates (BSR (F1 38 = 0.9, F1 43 = 0.53, F1 48 = 0.79, F1 53 = 0.83 and F2 38 = 1.14, F2 43 = 0.57, F2 48 = 0.64, F2 53 = 0.94). We adopted a novel approach of identifying and tagging flowers pollinated on a particular day, thereby avoiding biases due to potential emasculation induced stress responses. Our results suggest a time component in counting the number of generations a plant has passed through self-fertilization at a particular age in determining the somatic mutation rates.
Collapse
Affiliation(s)
- Shashi Bhushan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai, 600 036, India
| | - Amit Kumar Singh
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
- Institut de Biologie Moléculaire des Plantes, UPR2357 CNRS, Université de Strasbourg, 12 rue du Général Zimmer, Strasbourg Cédex, 67084, France
| | - Yogendra Thakur
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai, 600 036, India
| | - Ramamurthy Baskar
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai, 600 036, India.
| |
Collapse
|
20
|
Li Z, Liu J, Wang X, Wang J, Ye J, Xu S, Zhang Y, Hu D, Zhang M, Xu Q, Wang S, Yang Y, Wei X, Feng Y, Wang S. LG5, a Novel Allele of EUI1, Regulates Grain Size and Flag Leaf Angle in Rice. PLANTS (BASEL, SWITZERLAND) 2023; 12:675. [PMID: 36771759 PMCID: PMC9921835 DOI: 10.3390/plants12030675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/05/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Grain size and flag leaf angle are two important traits that determining grain yield in rice. However, the mechanisms regulating these two traits remain largely unknown. In this study, a rice long grain 5 (lg5) mutant with a large flag leaf angle was identified, and map-based cloning revealed that a single base substitution followed by a 2 bp insertion in the LOC_Os05g40384 gene resulted in larger grains, a larger flag leaf angle, and higher plant height than the wild type. Sequence analysis revealed that lg5 is a novel allele of elongated uppermost internode-1 (EUI1), which encodes a cytochrome P450 protein. Functional complementation and overexpression tests showed that LG5 can rescue the bigger grain size and larger flag leaf angle in the Xiushui11 (XS) background. Knockdown of the LG5 transcription level by RNA interference resulted in elevated grain size and flag leaf angle in the Nipponbare (NIP) background. Morphological and cellular analyses suggested that LG5 regulated grain size and flag leaf angle by promoting cell expansion and cell proliferation. Our results provided new insight into the functions of EUI1 in rice, especially in regulating grain size and flag leaf angle, indicating a potential target for the improvement of rice breeding.
Collapse
Affiliation(s)
- Zhen Li
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
- Chinese National Center for Rice Improvement and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Junrong Liu
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
- Chinese National Center for Rice Improvement and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Xingyu Wang
- College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Jing Wang
- College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Junhua Ye
- Chinese National Center for Rice Improvement and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Siliang Xu
- Chinese National Center for Rice Improvement and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Yuanyuan Zhang
- Chinese National Center for Rice Improvement and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Dongxiu Hu
- Chinese National Center for Rice Improvement and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Mengchen Zhang
- Chinese National Center for Rice Improvement and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Qun Xu
- Chinese National Center for Rice Improvement and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Shan Wang
- Chinese National Center for Rice Improvement and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Yaolong Yang
- Chinese National Center for Rice Improvement and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
| | - Xinghua Wei
- Chinese National Center for Rice Improvement and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China
| | - Yue Feng
- Chinese National Center for Rice Improvement and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China
| | - Shu Wang
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
21
|
Variability of polyteny of giant chromosomes in Drosophila melanogaster salivary glands. Genetica 2023; 151:75-86. [PMID: 36163579 DOI: 10.1007/s10709-022-00168-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/13/2022] [Indexed: 02/01/2023]
Abstract
Polyteny is an effective mechanism for accelerating growth and enhancing gene expression in eukaryotes. The purpose of investigation was to study the genetic variability of polyteny degree of giant chromosomes in the salivary glands of Drosophila melanogaster Meig. in relation to the differential fitness of different genotypes. 16 strains, lines and hybrids of fruit flies were studied. This study demonstrates the significant influence of hereditary factors on the level of polytenization of giant chromosomes in Drosophila. This is manifested in the differences between strains and lines, the effect of inbreeding, chromosome isogenization, hybridization, adaptively significant selection, sexual differences, and varying degrees of individual variability of a trait in different strains, lines, and hybrids. The genetic component in the variability of the degree of chromosome polyteny in Drosophila salivary glands was 45.3%, the effect of sex was 9.5%. It has been shown that genetic distances during inbreeding, outbreeding or hybridization, which largely determine the selective value of different genotypes, also affect polyteny patterns. Genetic, humoral, and epigenetic aspects of endocycle regulation, which may underlie the variations in the degree of chromosome polyteny, as well as the biological significance of the phenomenon of endopolyploidy, are discussed.
Collapse
|
22
|
Kuan C, Yang SL, Ho CMK. Using quantitative methods to understand leaf epidermal development. QUANTITATIVE PLANT BIOLOGY 2022; 3:e28. [PMID: 37077990 PMCID: PMC10097589 DOI: 10.1017/qpb.2022.25] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 10/25/2022] [Accepted: 11/13/2022] [Indexed: 05/03/2023]
Abstract
As the interface between plants and the environment, the leaf epidermis provides the first layer of protection against drought, ultraviolet light, and pathogen attack. This cell layer comprises highly coordinated and specialised cells such as stomata, pavement cells and trichomes. While much has been learned from the genetic dissection of stomatal, trichome and pavement cell formation, emerging methods in quantitative measurements that monitor cellular or tissue dynamics will allow us to further investigate cell state transitions and fate determination in leaf epidermal development. In this review, we introduce the formation of epidermal cell types in Arabidopsis and provide examples of quantitative tools to describe phenotypes in leaf research. We further focus on cellular factors involved in triggering cell fates and their quantitative measurements in mechanistic studies and biological patterning. A comprehensive understanding of how a functional leaf epidermis develops will advance the breeding of crops with improved stress tolerance.
Collapse
Affiliation(s)
- Chi Kuan
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei City, Taiwan
| | - Shao-Li Yang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei City, Taiwan
| | - Chin-Min Kimmy Ho
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei City, Taiwan
| |
Collapse
|
23
|
Jiang S, Meng B, Zhang Y, Li N, Zhou L, Zhang X, Xu R, Guo S, Song CP, Li Y. An SNW/SKI-INTERACTING PROTEIN influences endoreduplication and cell growth in Arabidopsis. PLANT PHYSIOLOGY 2022; 190:2217-2228. [PMID: 36063458 PMCID: PMC9706482 DOI: 10.1093/plphys/kiac415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Endoreduplication plays an important role in cell growth and differentiation, but the mechanisms regulating endoreduplication are still elusive. We have previously reported that UBIQUITIN-SPECIFIC PROTEASE14 (UBP14) encoded by DA3 interacts with ULTRAVIOLETB INSENSITIVE4 (UVI4) to influence endoreduplication and cell growth in Arabidopsis (Arabidopsis thaliana). The da3-1 mutant possesses larger cotyledons and flowers with higher ploidy levels than the wild-type. Here, we identify the suppressor of da3-1 (SUPPRESSOR OF da3-1 3; SUD3), which encodes SNW/SKI-INTERACTING PROTEIN (SKIP). Biochemical studies demonstrate that SUD3 physically interacts with UBP14/DA3 and UVI4 in vivo and in vitro. Genetic analyses support that SUD3 acts in a common pathway with UBP14/DA3 and UVI4 to control endoreduplication. Our findings reveal an important genetic and molecular mechanism by which SKIP/SUD3 associates with UBP14/DA3 and UVI4 to modulate endoreduplication.
Collapse
Affiliation(s)
- Shan Jiang
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bolun Meng
- State Key Laboratory of Crop Stress Adaptation and Improvement, Collaborative Innovation Center of Crop Stress Biology, College of Life Sciences, Henan University, Kaifeng, Henan 475001, China
| | - Yilan Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, Collaborative Innovation Center of Crop Stress Biology, College of Life Sciences, Henan University, Kaifeng, Henan 475001, China
| | - Na Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lixun Zhou
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xuan Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Collaborative Innovation Center of Crop Stress Biology, College of Life Sciences, Henan University, Kaifeng, Henan 475001, China
| | - Ran Xu
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Siyi Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, Collaborative Innovation Center of Crop Stress Biology, College of Life Sciences, Henan University, Kaifeng, Henan 475001, China
| | - Chun-Peng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, Collaborative Innovation Center of Crop Stress Biology, College of Life Sciences, Henan University, Kaifeng, Henan 475001, China
| | - Yunhai Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 10039, China
| |
Collapse
|
24
|
Effects and Mechanism of Enhanced UV-B Radiation on the Flag Leaf Angle of Rice. Int J Mol Sci 2022; 23:ijms232112776. [PMID: 36361567 PMCID: PMC9654109 DOI: 10.3390/ijms232112776] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/25/2022] Open
Abstract
Leaf angle is an influential agricultural trait that influences rice (Oryza sativa L.) plant type and yield, which results from the leaf bending from the vertical axis to the abaxial axis. UV-B radiation affects plant morphology, but the effects of varying UV-B intensities on rice flag leaves and the underlying molecular, cellular, and physiological mechanisms remain unknown. This experiment aims to examine the effect of natural light and field-enhanced UV-B radiation (2.5, 5.0, 7.5 kJ·m−2) on the leaf angle of the traditional rice variety Baijiaolaojing on Yuanyang terraces. In comparison with natural light, the content of brassinolide and gibberellin in rice flag leaves increased by 29.94% and 60.1%, respectively. The auxin content decreased by 17.3%. Compared with the natural light treatment, the cellulose content in the pulvini was reduced by 13.8% and hemicellulose content by 25.7% under 7.5 kJ·m−2 radiation intensity. The thick-walled cell area and vascular bundle area of the leaf pulvini decreased with increasing radiation intensity, and the growth of mechanical tissue in the rice leaf pulvini was inhibited. The flag leaf angle of rice was greatest at 7.5 kJ·m−2 radiation intensity, with an increase of 50.2%. There are two pathways by which the angle of rice flag leaves is controlled under high-intensity UV-B radiation. The leaf angle regulation genes OsBUL1, OsGSR1, and OsARF19 control hormone levels, whereas the ILA1 gene controls fiber levels. Therefore, as cellulose, hemicellulose, sclerenchyma, and vascular bundles weaken the mechanical support of the pulvini, the angle of the flag leaf increases.
Collapse
|
25
|
Umeda-Hara C, Iwakawa H, Ohtani M, Demura T, Matsumoto T, Kikuchi J, Murata K, Umeda M. Tetraploidization promotes radial stem growth in poplars. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2022; 39:215-220. [PMID: 36349238 PMCID: PMC9592956 DOI: 10.5511/plantbiotechnology.22.0716a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/16/2022] [Indexed: 06/16/2023]
Abstract
Somatic polyploidization often increases cell and organ size, thereby contributing to plant biomass production. However, as most woody plants do not undergo polyploidization, explaining the polyploidization effect on organ growth in trees remains difficult. Here we developed a new method to generate tetraploid lines in poplars through colchicine treatment of lateral buds. We found that tetraploidization induced cell enlargement in the stem, suggesting that polyploidization can increase cell size in woody plants that cannot induce polyploidization in normal development. Greenhouse growth analysis revealed that radial growth was enhanced in the basal stem of tetraploids, whereas longitudinal growth was retarded, producing the same amount of stem biomass as diploids. Woody biomass characteristics were also comparable in terms of wood substance density, saccharification efficiency, and cell wall profiling. Our results reveal tetraploidization as an effective strategy for improving woody biomass production when combined with technologies that promote longitudinal stem growth by enhancing metabolite production and/or transport.
Collapse
Affiliation(s)
- Chikage Umeda-Hara
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara 630-0192, Japan
| | - Hidekazu Iwakawa
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara 630-0192, Japan
| | - Misato Ohtani
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara 630-0192, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanaagawa 230-0045, Japan
| | - Taku Demura
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara 630-0192, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanaagawa 230-0045, Japan
| | - Tomoko Matsumoto
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanaagawa 230-0045, Japan
| | - Jun Kikuchi
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanaagawa 230-0045, Japan
| | - Koji Murata
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Masaaki Umeda
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara 630-0192, Japan
| |
Collapse
|
26
|
Ding AM, Xu CT, Xie Q, Zhang MJ, Yan N, Dai CB, Lv J, Cui MM, Wang WF, Sun YH. ERF4 interacts with and antagonizes TCP15 in regulating endoreduplication and cell growth in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1673-1689. [PMID: 35775119 DOI: 10.1111/jipb.13323] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Endoreduplication is prevalent during plant growth and development, and is often correlated with large cell and organ size. Despite its prevalence, the transcriptional regulatory mechanisms underlying the transition from mitotic cell division to endoreduplication remain elusive. Here, we characterize ETHYLENE-RESPONSIVE ELEMENT BINDING FACTOR 4 (ERF4) as a positive regulator of endoreduplication through its function as a transcriptional repressor. ERF4 was specifically expressed in mature tissues in which the cells were undergoing expansion, but was rarely expressed in young organs. Plants overexpressing ERF4 exhibited much larger cells and organs, while plants that lacked functional ERF4 displayed smaller organs than the wild-type. ERF4 was further shown to regulate cell size by controlling the endopolyploidy level in the nuclei. Moreover, ERF4 physically associates with the class I TEOSINTE BRANCHED 1/CYCLOIDEA/PCF (TCP) protein TCP15, a transcription factor that inhibits endoreduplication by activating the expression of a key cell-cycle gene, CYCLIN A2;3 (CYCA2;3). A molecular and genetic analysis revealed that ERF4 promotes endoreduplication by directly suppressing the expression of CYCA2;3. Together, this study demonstrates that ERF4 and TCP15 function as a module to antagonistically regulate each other's activity in regulating downstream genes, thereby controlling the switch from the mitotic cell cycle to endoreduplication during leaf development. These findings expand our understanding of how the control of the cell cycle is fine-tuned by an ERF4-TCP15 transcriptional complex.
Collapse
Affiliation(s)
- An-Ming Ding
- Key Laboratory of Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Qingdao, 266101, China
| | - Chuan-Tao Xu
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
- Luzhou Tobacco Company of Sichuan Province, Luzhou, 646000, China
| | - Qiang Xie
- Luzhou Tobacco Company of Sichuan Province, Luzhou, 646000, China
| | - Ming-Jin Zhang
- Luzhou Tobacco Company of Sichuan Province, Luzhou, 646000, China
| | - Ning Yan
- Key Laboratory of Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Qingdao, 266101, China
| | - Chang-Bo Dai
- Key Laboratory of Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Qingdao, 266101, China
| | - Jing Lv
- Key Laboratory of Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Qingdao, 266101, China
| | - Meng-Meng Cui
- Key Laboratory of Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Qingdao, 266101, China
| | - Wei-Feng Wang
- Key Laboratory of Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Qingdao, 266101, China
| | - Yu-He Sun
- Key Laboratory of Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Qingdao, 266101, China
| |
Collapse
|
27
|
Boza Espinoza TE, Kessler M. A monograph of the genus Polylepis (Rosaceae). PHYTOKEYS 2022; 203:1-274. [PMID: 36761034 PMCID: PMC9849045 DOI: 10.3897/phytokeys.203.83529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/13/2022] [Indexed: 05/27/2023]
Abstract
We present a monograph of the high Andean tree genus Polylepis (Rosaceae), based on a species concept considering morphological, climatic and biogeographic distinctness as indicators of evolutionary independence. In total, we recognize 45 species of Polylepis, grouped in five sections. Polylepissect.Sericeae is represented by 15 species in four subsections, P.sect.Reticulatae by seven species, P.sect.Subsericantes by three species, P.sect.Australes by two species and P.sect.Incanaee by three subsections with 18 species. We describe seven new species, one from Colombia (P.frontinensis), one from Ecuador (P.simpsoniae) and five from Peru (P.acomayensis, P.fjeldsaoi, P.occidentalis, P.pilosissima and P.sacra). Three species from Peru (P.albicans, P.pallidistigma and P.serrata) are re-instated as valid species. Two taxa from Bolivia (P.incanoides and P.nana) are elevated from subspecies to species rank. The morphology, habitat, distribution, ecology and conservation status of each species are documented. We also provide an identification key to the species of the genus and general introductions on taxonomic history, morphology, evolution, ecology and conservation.
Collapse
Affiliation(s)
- Tatiana Erika Boza Espinoza
- Institute for Nature, Earth and Energy (INTE), Pontificia Universidad Católica del Perú (PUCP), Av. Universitaria 1801, Lima 15088, PeruPontificia Universidad Católica del Perú (PUCP)LimaPeru
| | - Michael Kessler
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse 107, CH-8008 Zurich, SwitzerlandUniversity of ZurichZürichSwitzerland
| |
Collapse
|
28
|
Jiang R, Yuan W, Yao W, Jin X, Wang X, Wang Y. A regulatory GhBPE-GhPRGL module maintains ray petal length in Gerbera hybrida. MOLECULAR HORTICULTURE 2022; 2:9. [PMID: 37789358 PMCID: PMC10515009 DOI: 10.1186/s43897-022-00030-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/08/2022] [Indexed: 10/05/2023]
Abstract
The molecular mechanism regulating petal length in flowers is not well understood. Here we used transient transformation assays to confirm that GhPRGL (proline-rich and GASA-like)-a GASA (gibberellic acid [GA] stimulated in Arabidopsis) family gene-promotes the elongation of ray petals in gerbera (Gerbera hybrida). Yeast one-hybrid screening assay identified a bHLH transcription factor of the jasmonic acid (JA) signaling pathway, here named GhBPE (BIGPETAL), which binds to the GhPRGL promoter and represses its expression, resulting in a phenotype of shortened ray petal length when GhBPE is overexpressed. Further, the joint response to JA and GA of GhBPE and GhPRGL, together with their complementary expression profiles in the early stage of petal growth, suggests a novel GhBPE-GhPRGL module that controls the size of ray petals. GhPRGL promotes ray petal elongation in its early stage especially, while GhBPE inhibits ray petal elongation particularly in the late stage by inhibiting the expression of GhPRGL. JA and GA operate in concert to regulate the expression of GhBPE and GhPRGL genes, providing a regulatory mechanism by which ray petals could grow to a fixed length in gerbera species.
Collapse
Affiliation(s)
- Rui Jiang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Weichao Yuan
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Wei Yao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Xuefeng Jin
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Xiaojing Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Yaqin Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.
- Guangdong Laboratory for Lingnan Modern Agricultural, Guangzhou, 510642, China.
| |
Collapse
|
29
|
Harrouard J, Eberlein C, Ballestra P, Dols-Lafargue M, Masneuf-Pomarede I, Miot-Sertier C, Schacherer J, Albertin W. Brettanomyces bruxellensis: Overview of the genetic and phenotypic diversity of an anthropized yeast. Mol Ecol 2022; 32:2374-2395. [PMID: 35318747 DOI: 10.1111/mec.16439] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 03/08/2022] [Accepted: 03/16/2022] [Indexed: 12/24/2022]
Abstract
Human-associated microorganisms are ideal models to study the impact of environmental changes on species evolution and adaptation because of their small genome, short generation time, and their colonization of contrasting and ever-changing ecological niches. The yeast Brettanomyces bruxellensis is a good example of organism facing anthropogenic-driven selective pressures. It is associated with fermentation processes in which it can be considered either as a spoiler (e.g. winemaking, bioethanol production) or as a beneficial microorganism (e.g. production of specific beers, kombucha). Besides its industrial interests, noteworthy parallels and dichotomies with Saccharomyces cerevisiae propelled B. bruxellensis as a valuable complementary yeast model. In this review, we emphasize that the broad genetic and phenotypic diversity of this species is only beginning to be uncovered. Population genomic studies have revealed the co-existence of auto- and allotriploidization events with different evolutionary outcomes. The different diploid, autotriploid and allotriploid subpopulations are associated with specific fermented processes, suggesting independent adaptation events to anthropized environments. Phenotypically, B. bruxellensis is renowned for its ability to metabolize a wide variety of carbon and nitrogen sources, which may explain its ability to colonize already fermented environments showing low-nutrient contents. Several traits of interest could be related to adaptation to human activities (e.g. nitrate metabolization in bioethanol production, resistance to sulphite treatments in winemaking). However, phenotypic traits are insufficiently studied in view of the great genomic diversity of the species. Future work will have to take into account strains of varied substrates, geographical origins as well as displaying different ploidy levels to improve our understanding of an anthropized yeast's phenotypic landscape.
Collapse
Affiliation(s)
- Jules Harrouard
- UMR 1366 OENOLOGIE, Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, Institut des Sciences de la Vigne et du Vin, 33140, Villenave d'Ornon, France
| | - Chris Eberlein
- Université de Strasbourg, CNRS, GMGM, UMR 7156, Strasbourg, France
| | - Patricia Ballestra
- UMR 1366 OENOLOGIE, Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, Institut des Sciences de la Vigne et du Vin, 33140, Villenave d'Ornon, France
| | - Marguerite Dols-Lafargue
- UMR 1366 OENOLOGIE, Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, Institut des Sciences de la Vigne et du Vin, 33140, Villenave d'Ornon, France.,ENSCBP, Bordeaux INP, 33600, Pessac, France
| | - Isabelle Masneuf-Pomarede
- UMR 1366 OENOLOGIE, Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, Institut des Sciences de la Vigne et du Vin, 33140, Villenave d'Ornon, France.,BSA, 33170, Gradignan
| | - Cécile Miot-Sertier
- UMR 1366 OENOLOGIE, Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, Institut des Sciences de la Vigne et du Vin, 33140, Villenave d'Ornon, France
| | - Joseph Schacherer
- Université de Strasbourg, CNRS, GMGM, UMR 7156, Strasbourg, France.,Institut Universitaire de France (IUF), Paris, France
| | - Warren Albertin
- UMR 1366 OENOLOGIE, Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, Institut des Sciences de la Vigne et du Vin, 33140, Villenave d'Ornon, France.,ENSCBP, Bordeaux INP, 33600, Pessac, France
| |
Collapse
|
30
|
Wos G, Macková L, Kubíková K, Kolář F. Ploidy and local environment drive intraspecific variation in endoreduplication in Arabidopsis arenosa. AMERICAN JOURNAL OF BOTANY 2022; 109:259-271. [PMID: 35137947 DOI: 10.1002/ajb2.1818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/28/2021] [Accepted: 09/28/2021] [Indexed: 06/14/2023]
Abstract
PREMISE Endoreduplication, nonheritable duplication of a nuclear genome, is widespread in plants and plays a role in developmental processes related to cell differentiation. However, neither ecological nor cytological factors influencing intraspecific variation in endoreduplication are fully understood. METHODS We cultivated plants covering the range-wide natural diversity of diploid and tetraploid populations of Arabidopsis arenosa in common conditions to investigate the effect of original ploidy level on endoreduplication. We also raised plants from several foothill and alpine populations from different lineages and of both ploidies to test for the effect of elevation. We determined the endoreduplication level in leaves of young plants by flow cytometry. Using RNA-seq data available for our populations, we analyzed gene expression analysis in individuals that differed in endoreduplication level. RESULTS We found intraspecific variation in endoreduplication that was mainly driven by the original ploidy level of populations, with significantly higher endoreduplication in diploids. An effect of elevation was also found within each ploidy, yet its direction exhibited rather regional-specific patterns. Transcriptomic analysis comparing individuals with high vs. low endopolyploidy revealed a majority of differentially expressed genes related to the stress and hormone response and to modifications especially in the cell wall and in chloroplasts. CONCLUSIONS Our results support the general assumption of higher potential of low-ploidy organisms to undergo endoreduplication and suggest that endoreduplication is further integrated within the stress response pathways for a fine-tune adjustment of the endoreduplication process to their local environment.
Collapse
Affiliation(s)
- Guillaume Wos
- Department of Botany, Charles University, Benátská 2, 12801 Prague, Czech Republic
| | - Lenka Macková
- Department of Botany, Charles University, Benátská 2, 12801 Prague, Czech Republic
| | - Kateřina Kubíková
- Department of Zoology, Charles University, Viničná 7, 12845 Prague, Czech Republic
| | - Filip Kolář
- Department of Botany, Charles University, Benátská 2, 12801 Prague, Czech Republic
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, CZ-252 43 Průhonice, Czech Republic
| |
Collapse
|
31
|
McKie SJ, Desai P, Seol Y, Allen AM, Maxwell A, Neuman KC. Topoisomerase VI is a chirally-selective, preferential DNA decatenase. eLife 2022; 11:67021. [PMID: 35076393 PMCID: PMC8837201 DOI: 10.7554/elife.67021] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 01/24/2022] [Indexed: 11/28/2022] Open
Abstract
DNA topoisomerase VI (topo VI) is a type IIB DNA topoisomerase found predominantly in archaea and some bacteria, but also in plants and algae. Since its discovery, topo VI has been proposed to be a DNA decatenase; however, robust evidence and a mechanism for its preferential decatenation activity was lacking. Using single-molecule magnetic tweezers measurements and supporting ensemble biochemistry, we demonstrate that Methanosarcina mazei topo VI preferentially unlinks, or decatenates DNA crossings, in comparison to relaxing supercoils, through a preference for certain DNA crossing geometries. In addition, topo VI demonstrates a significant increase in ATPase activity, DNA binding and rate of strand passage, with increasing DNA writhe, providing further evidence that topo VI is a DNA crossing sensor. Our study strongly suggests that topo VI has evolved an intrinsic preference for the unknotting and decatenation of interlinked chromosomes by sensing and preferentially unlinking DNA crossings with geometries close to 90°.
Collapse
Affiliation(s)
- Shannon J McKie
- Laboratory of Single Molecule Biophysics, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Parth Desai
- Laboratory of Single Molecule Biophysics, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Yeonee Seol
- Laboratory of Single Molecule Biophysics, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Adam Mb Allen
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich, United Kingdom
| | - Anthony Maxwell
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich, United Kingdom
| | - Keir C Neuman
- Laboratory of Single Molecule Biophysics, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, United States
| |
Collapse
|
32
|
Zhou Z, Zhu Y, Zhang H, Zhang R, Gao Q, Ding T, Wang H, Yan Z, Yao JL. Transcriptome analysis of transgenic apple fruit overexpressing microRNA172 reveals candidate transcription factors regulating apple fruit development at early stages. PeerJ 2022; 9:e12675. [PMID: 35036153 PMCID: PMC8710058 DOI: 10.7717/peerj.12675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 12/02/2021] [Indexed: 11/20/2022] Open
Abstract
Background MicroRNA172 (miR172) has been proven to be critical for fruit growth, since elevated miR172 activity blocks the growth of apple (Malus x domestica Borkh.) fruit. However, it is not clear how overexpression of miR172 affects apple fruit developmental processes. Methods To answer this question, the present study, analyzed global transcriptional changes in miR172-overexpressing (miR172OX) and nongenetically modified wild-type (WT) apple fruit at two developmental stages and in different fruit tissues via RNA-seq. In addition, two cultivars, ‘Hanfu’ and ‘M9’, which have naturally fruit size variation, were included to identify miR172-dependent DEGs. qRT–PCRwas used to verify the reliability of our RNA-seq data. Results Overexpression of miR172 altered the expression levels of many cell proliferation- and cell expansion-related genes. Twenty-four libraries were generated, and 10,338 differentially expressed genes (DEGs) were detected between miR172OX and WT fruit tissues. ‘Hanfu’ and ‘M9’ are two common cultivars that bear fruit of different sizes (250 g and 75 g, respectively). Six libraries were generated, and 3,627 DEGs were detected between ‘Hanfu’ and ‘M9’. After merging the two datasets, 6,888 candidate miR172-specific DEGs were identified. The potential networks associated with fruit size triggered traits were defined among genes belonging to the families of hormone synthesis, signaling pathways, and transcription factors. Our comparative transcriptome analysis provides insights into transcriptome responses to miR172 overexpression in apple fruit and a valuable database for future studies to validate functional genes and elucidate the fruit developmental mechanisms in apple.
Collapse
Affiliation(s)
- Zhe Zhou
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Yanmin Zhu
- Tree Fruit Research Laboratory, United States Department of Agriculture, Agricultural Research Service, Wenatchee, WA, USA
| | - Hengtao Zhang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Ruiping Zhang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Qiming Gao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Tiyu Ding
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Huan Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Zhenli Yan
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Jia-Long Yao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China.,The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
| |
Collapse
|
33
|
Rath M, Challa KR, Sarvepalli K, Nath U. CINCINNATA-Like TCP Transcription Factors in Cell Growth - An Expanding Portfolio. FRONTIERS IN PLANT SCIENCE 2022; 13:825341. [PMID: 35273626 PMCID: PMC8902296 DOI: 10.3389/fpls.2022.825341] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/13/2022] [Indexed: 05/09/2023]
Abstract
Post-mitotic cell growth is a key process in plant growth and development. Cell expansion drives major growth during morphogenesis and is influenced by both endogenous factors and environmental stimuli. Though both isotropic and anisotropic cell growth can contribute to organ size and shape at different degrees, anisotropic cell growth is more likely to contribute to shape change. While much is known about the mechanisms that increase cellular turgor and cell-wall biomass during expansion, the genetic factors that regulate these processes are less studied. In the past quarter of a century, the role of the CINCINNATA-like TCP (CIN-TCP) transcription factors has been well documented in regulating diverse aspects of plant growth and development including flower asymmetry, plant architecture, leaf morphogenesis, and plant maturation. The molecular activity of the CIN-TCP proteins common to these biological processes has been identified as their ability to suppress cell proliferation. However, reports on their role regulating post-mitotic cell growth have been scanty, partly because of functional redundancy among them. In addition, it is difficult to tease out the effect of gene activity on cell division and expansion since these two processes are linked by compensation, a phenomenon where perturbation in proliferation is compensated by an opposite effect on cell growth to keep the final organ size relatively unaltered. Despite these technical limitations, recent genetic and growth kinematic studies have shown a distinct role of CIN-TCPs in promoting cellular growth in cotyledons and hypocotyls, the embryonic organs that grow solely by cell expansion. In this review, we highlight these recent advances in our understanding of how CIN-TCPs promote cell growth.
Collapse
Affiliation(s)
- Monalisha Rath
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Krishna Reddy Challa
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | | | - Utpal Nath
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
- *Correspondence: Utpal Nath,
| |
Collapse
|
34
|
Hilty J, Muller B, Pantin F, Leuzinger S. Plant growth: the What, the How, and the Why. THE NEW PHYTOLOGIST 2021; 232:25-41. [PMID: 34245021 DOI: 10.1111/nph.17610] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 06/19/2021] [Indexed: 05/28/2023]
Abstract
Growth is a widely used term in plant science and ecology, but it can have different meanings depending on the context and the spatiotemporal scale of analysis. At the meristem level, growth is associated with the production of cells and initiation of new organs. At the organ or plant scale and over short time periods, growth is often used synonymously with tissue expansion, while over longer time periods the increase in biomass is a common metric. At even larger temporal and spatial scales, growth is mostly described as net primary production. Here, we first address the question 'what is growth?'. We propose a general framework to distinguish between the different facets of growth, and the corresponding physiological processes, environmental drivers and mathematical formalisms. Based on these different definitions, we then review how plant growth can be measured and analysed at different organisational, spatial and temporal scales. We conclude by discussing why gaining a better understanding of the different facets of plant growth is essential to disentangle genetic and environmental effects on the phenotype, and to uncover the causalities around source or sink limitations of plant growth.
Collapse
Affiliation(s)
- Jonas Hilty
- School of Science, Auckland University of Technology, 46 Wakefield Street, Auckland, 1142, New Zealand
| | - Bertrand Muller
- LEPSE, Univ Montpellier, INRAE, Institut Agro, Montpellier, 34000, France
| | - Florent Pantin
- LEPSE, Univ Montpellier, INRAE, Institut Agro, Montpellier, 34000, France
| | - Sebastian Leuzinger
- School of Science, Auckland University of Technology, 46 Wakefield Street, Auckland, 1142, New Zealand
| |
Collapse
|
35
|
Sliwinska E, Loureiro J, Leitch IJ, Šmarda P, Bainard J, Bureš P, Chumová Z, Horová L, Koutecký P, Lučanová M, Trávníček P, Galbraith DW. Application-based guidelines for best practices in plant flow cytometry. Cytometry A 2021; 101:749-781. [PMID: 34585818 DOI: 10.1002/cyto.a.24499] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/10/2021] [Accepted: 08/26/2021] [Indexed: 12/15/2022]
Abstract
Flow cytometry (FCM) is currently the most widely-used method to establish nuclear DNA content in plants. Since simple, 1-3-parameter, flow cytometers, which are sufficient for most plant applications, are commercially available at a reasonable price, the number of laboratories equipped with these instruments, and consequently new FCM users, has greatly increased over the last decade. This paper meets an urgent need for comprehensive recommendations for best practices in FCM for different plant science applications. We discuss advantages and limitations of establishing plant ploidy, genome size, DNA base composition, cell cycle activity, and level of endoreduplication. Applications of such measurements in plant systematics, ecology, molecular biology research, reproduction biology, tissue cultures, plant breeding, and seed sciences are described. Advice is included on how to obtain accurate and reliable results, as well as how to manage troubleshooting that may occur during sample preparation, cytometric measurements, and data handling. Each section is followed by best practice recommendations; tips as to what specific information should be provided in FCM papers are also provided.
Collapse
Affiliation(s)
- Elwira Sliwinska
- Laboratory of Molecular Biology and Cytometry, Department of Agricultural Biotechnology, UTP University of Science and Technology, Bydgoszcz, Poland
| | - João Loureiro
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Ilia J Leitch
- Kew Science Directorate, Royal Botanic Gardens, Kew, Richmond, Surrey, UK
| | - Petr Šmarda
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jillian Bainard
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, Saskatchewan, Canada
| | - Petr Bureš
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Zuzana Chumová
- Czech Academy of Sciences, Institute of Botany, Průhonice, Czech Republic.,Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
| | - Lucie Horová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Petr Koutecký
- Department of Botany, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Magdalena Lučanová
- Czech Academy of Sciences, Institute of Botany, Průhonice, Czech Republic.,Department of Botany, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Pavel Trávníček
- Czech Academy of Sciences, Institute of Botany, Průhonice, Czech Republic
| | - David W Galbraith
- School of Plant Sciences, BIO5 Institute, Arizona Cancer Center, Department of Biomedical Engineering, University of Arizona, Tucson, Arizona, USA.,Henan University, School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, Kaifeng, China
| |
Collapse
|
36
|
Double Mutant Analysis with the Large Flower Mutant, ohbana1, to Explore the Regulatory Network Controlling the Flower and Seed Sizes in Arabidopsis thaliana. PLANTS 2021; 10:plants10091881. [PMID: 34579413 PMCID: PMC8473154 DOI: 10.3390/plants10091881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/05/2021] [Accepted: 09/06/2021] [Indexed: 12/19/2022]
Abstract
Two growth processes, cell proliferation and expansion, determine plant species-specific organ sizes. A large flower mutant in Arabidopsis thaliana, ohbana1 (ohb1), was isolated from a mutant library. In the ohb1 flowers, post-mitotic cell expansion and endoreduplication of nuclear DNA were promoted. The whole-genome resequencing and genetic analysis results showed that the loss of function in MEDIATOR16 (MED16), a mediator complex subunit, was responsible for the large flower phenotypes exhibited by ohb1. A phenotypic analysis of the mutant alleles in MED16 and the double mutants created by crossing ohb1 with representative large flower mutants revealed that MED16 and MED25 share part of the negative petal size regulatory pathways. Furthermore, the double mutant analyses suggested that there were genetically independent pathways leading to cell size restrictions in the floral organs which were not related to the MED complex. Several double mutants also formed larger and heavier seeds than the wild type and single mutant plants, which indicated that MED16 was involved in seed size regulation. This study has revealed part of the size-regulatory network in flowers and seeds through analysis of the ohb1 mutant, and that the size-regulation pathways are partially different between floral organs and seeds.
Collapse
|
37
|
Kołodziejczyk I, Kaźmierczak A, Posmyk MM. Melatonin Application Modifies Antioxidant Defense and Induces Endoreplication in Maize Seeds Exposed to Chilling Stress. Int J Mol Sci 2021; 22:ijms22168628. [PMID: 34445334 PMCID: PMC8395332 DOI: 10.3390/ijms22168628] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/30/2021] [Accepted: 08/01/2021] [Indexed: 11/23/2022] Open
Abstract
The aim of the study was to demonstrate the biostimulating effect of exogenous melatonin (MEL) applied to seeds via hydroconditioning. It was indicated that only well-chosen application technique and MEL dose guarantees success concerning seed germination and young seedlings growth under stress conditions. For maize seed, 50 μM of MEL appeared to be the optimal dose. It improved seed germination and embryonic axes growth especially during chilling stress (5 °C/14 days) and during regeneration after its subsided. Unfortunately, MEL overdosing lowered IAA level in dry seeds and could disrupt the ROS-dependent signal transduction pathways. Very effective antioxidant MEL action was confirmed by low level of protein oxidative damage and smaller quantity of lipid oxidation products in embryonic axes isolated from seeds pre-treated with MEL and then exposed to cold. The stimulatory effects of MEL on antioxidant enzymes: SOD, APX and GSH-PX and on GST-a detoxifying enzyme, was also demonstrated. It was indicated for the first time, that MEL induced defence strategies against stress at the cytological level, as appearing endoreplication in embryonic axes cells even in the seeds germinating under optimal conditions (preventive action), but very intensively in those germinating under chilling stress conditions (intervention action), and after stress removal, to improve regeneration.
Collapse
Affiliation(s)
- Izabela Kołodziejczyk
- Department of Plant Ecophisiology, Faculty of Biology and Environmental Protection, University of Lodz, 90237 Lodz, Poland;
- Correspondence: ; Tel.: +48-42-635-44-22
| | - Andrzej Kaźmierczak
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Lodz, 90237 Lodz, Poland;
| | - Małgorzata M. Posmyk
- Department of Plant Ecophisiology, Faculty of Biology and Environmental Protection, University of Lodz, 90237 Lodz, Poland;
| |
Collapse
|
38
|
Jang S, Cho JY, Do GR, Kang Y, Li HY, Song J, Kim HY, Kim BG, Hsing YI. Modulation of Rice Leaf Angle and Grain Size by Expressing OsBCL1 and OsBCL2 under the Control of OsBUL1 Promoter. Int J Mol Sci 2021; 22:7792. [PMID: 34360554 PMCID: PMC8346013 DOI: 10.3390/ijms22157792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/18/2021] [Accepted: 07/20/2021] [Indexed: 11/17/2022] Open
Abstract
Leaf angle and grain size are important agronomic traits affecting rice productivity directly and/or indirectly through modulating crop architecture. OsBC1, as a typical bHLH transcription factor, is one of the components comprising a complex formed with LO9-177 and OsBUL1 contributing to modulation of rice leaf inclination and grain size. In the current study, two homologues of OsBC1, OsBCL1 and OsBCL2 were functionally characterized by expressing them under the control of OsBUL1 promoter, which is preferentially expressed in the lamina joint and the spikelet of rice. Increased leaf angle and grain length with elongated cells in the lamina joint and the grain hull were observed in transgenic rice containing much greater gibberellin A3 (GA3) levels than WT, demonstrating that both OsBCL1 and OsBCL2 are positive regulators of cell elongation at least partially through increased GA biosynthesis. Moreover, the cell elongation was likely due to cell expansion rather than cell division based on the related gene expression and, the cell elongation-promoting activities of OsBCL1 and OsBCL2 were functional in a dicot species, Arabidopsis.
Collapse
Affiliation(s)
- Seonghoe Jang
- World Vegetable Center Korea Office (WKO), Wanju-gun, Jeollabuk-do 55365, Korea;
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 711, Taiwan;
| | - Jwa-Yeong Cho
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon 25451, Korea; (J.-Y.C.); (H.-Y.K.)
| | - Gyung-Ran Do
- Planning and Coordination Division, National Institute of Horticultural and Herbal Science, Rural Development Administration (RDA), Wanju-gun, Jeollabuk-do 55365, Korea;
| | - Yeeun Kang
- World Vegetable Center Korea Office (WKO), Wanju-gun, Jeollabuk-do 55365, Korea;
| | - Hsing-Yi Li
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 711, Taiwan;
| | - Jaeeun Song
- Metabolic Engineering Division, National Institute of Agricultural Sciences, RDA, Jeonju 54874, Korea; (J.S.); (B.-G.K.)
| | - Ho-Youn Kim
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon 25451, Korea; (J.-Y.C.); (H.-Y.K.)
| | - Beom-Gi Kim
- Metabolic Engineering Division, National Institute of Agricultural Sciences, RDA, Jeonju 54874, Korea; (J.S.); (B.-G.K.)
| | - Yue-Ie Hsing
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan;
| |
Collapse
|
39
|
Park J, Lee S, Park G, Cho H, Choi D, Umeda M, Choi Y, Hwang D, Hwang I. CYTOKININ-RESPONSIVE GROWTH REGULATOR regulates cell expansion and cytokinin-mediated cell cycle progression. PLANT PHYSIOLOGY 2021; 186:1734-1746. [PMID: 33909905 PMCID: PMC8260111 DOI: 10.1093/plphys/kiab180] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 03/31/2021] [Indexed: 05/23/2023]
Abstract
The cytokinin (CK) phytohormones have long been known to activate cell proliferation in plants. However, how CKs regulate cell division and cell expansion remains unclear. Here, we reveal that a basic helix-loop-helix transcription factor, CYTOKININ-RESPONSIVE GROWTH REGULATOR (CKG), mediates CK-dependent regulation of cell expansion and cell cycle progression in Arabidopsis thaliana. The overexpression of CKG increased cell size in a ploidy-independent manner and promoted entry into the S phase of the cell cycle, especially at the seedling stage. Furthermore, CKG enhanced organ growth in a pleiotropic fashion, from embryogenesis to reproductive stages, particularly of cotyledons. In contrast, ckg loss-of-function mutants exhibited smaller cotyledons. CKG mainly regulates the expression of genes involved in the regulation of the cell cycle including WEE1. We propose that CKG provides a regulatory module that connects cell cycle progression and organ growth to CK responses.
Collapse
Affiliation(s)
- Joonghyuk Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Seungchul Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Geuntae Park
- School of Biological Sciences, Seoul National University, Seoul 151-747, Korea
| | - Hyunwoo Cho
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Daeseok Choi
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Masaaki Umeda
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara 630-0192, Japan
| | - Yeonhee Choi
- School of Biological Sciences, Seoul National University, Seoul 151-747, Korea
| | - Daehee Hwang
- School of Biological Sciences, Seoul National University, Seoul 151-747, Korea
| | - Ildoo Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| |
Collapse
|
40
|
Zhang Y, Li N, Wang L. Phytochrome interacting factor proteins regulate cytokinesis in Arabidopsis. Cell Rep 2021; 35:109095. [PMID: 33979615 DOI: 10.1016/j.celrep.2021.109095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/23/2020] [Accepted: 04/16/2021] [Indexed: 11/18/2022] Open
Abstract
Dicotyledonous plants form an apical hook to protect the fragile apical meristem during upward protrusion from the soil. Etiolated pifq (pif1 pif3 pif4 pif5) seedlings display constitutive apical hook opening. Here, we show that PIF proteins control apical hook opening by regulating the expression of Budding Uninhibited by Benzimidazole 3.1 (BUB3.1) and affecting cytokinesis. Consistent with the major function of BUB3.1 in the organization of phragmoplasts during cytokinesis, the phragmoplasts are well formed in dark-grown pifq but not in wild type. DNA staining and flow cytometry analysis further demonstrate that cellular endoreduplication levels are dramatically reduced in pifq. Chemical treatment with caffeine, an inhibitor of phragmoplast-based cytokinesis, shows that cytokinesis is involved in the apical hook opening. Genetically, BUB3.1 is epistatic to PIFq in the regulation of cytokinesis. Our findings reveal an organ-specific role of PIF proteins in regulating cytokinesis by BUB3.1 during apical hook development.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Na Li
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Wang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
41
|
Cabral D, Forero Ballesteros H, de Melo BP, Lourenço-Tessutti IT, Simões de Siqueira KM, Obicci L, Grossi-de-Sa MF, Hemerly AS, de Almeida Engler J. The Armadillo BTB Protein ABAP1 Is a Crucial Player in DNA Replication and Transcription of Nematode-Induced Galls. FRONTIERS IN PLANT SCIENCE 2021; 12:636663. [PMID: 33995437 PMCID: PMC8121025 DOI: 10.3389/fpls.2021.636663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
The biogenesis of root-knot nematode (Meloidogyne spp.)-induced galls requires the hyperactivation of the cell cycle with controlled balance of mitotic and endocycle programs to keep its homeostasis. To better understand gall functioning and to develop new control strategies for this pest, it is essential to find out how the plant host cell cycle programs are responding and integrated during the nematode-induced gall formation. This work investigated the spatial localization of a number of gene transcripts involved in the pre-replication complex during DNA replication in galls and report their akin colocation with the cell cycle S-phase regulator Armadillo BTB Arabidopsis Protein 1 (ABAP1). ABAP1 is a negative regulator of pre-replication complex controlling DNA replication of genes involved in control of cell division and proliferation; therefore, its function has been investigated during gall ontogenesis. Functional analysis was performed upon ABAP1 knockdown and overexpression in Arabidopsis thaliana. We detected ABAP1 promoter activity and localized ABAP1 protein in galls during development, and its overexpression displayed significantly reduced gall sizes containing atypical giant cells. Profuse ABAP1 expression also impaired gall induction and hindered nematode reproduction. Remarkably, ABAP1 knockdown likewise negatively affected gall and nematode development, suggesting its involvement in the feeding site homeostasis. Microscopy analysis of cleared and nuclei-stained whole galls revealed that ABAP1 accumulation resulted in aberrant giant cells displaying interconnected nuclei filled with enlarged heterochromatic regions. Also, imbalanced ABAP1 expression caused changes in expression patterns of genes involved in the cell division control as demonstrated by qRT-PCR. CDT1a, CDT1b, CDKA;1, and CYCB1;1 mRNA levels were significantly increased in galls upon ABAP1 overexpression, possibly contributing to the structural changes in galls during nematode infection. Overall, data obtained in galls reinforced the role of ABAP1 controlling DNA replication and mitosis and, consequently, cell proliferation. ABAP1 expression might likely take part of a highly ordered mechanism balancing of cell cycle control to prevent gall expansion. ABAP1 expression might prevent galls to further expand, limiting excessive mitotic activity. Our data strongly suggest that ABAP1 as a unique plant gene is an essential component for cell cycle regulation throughout gall development during nematode infection and is required for feeding site homeostasis.
Collapse
Affiliation(s)
- Danila Cabral
- INRAE, Université Côte d’Azur, CNRS, ISA, Sophia Antipolis, France
| | - Helkin Forero Ballesteros
- INRAE, Université Côte d’Azur, CNRS, ISA, Sophia Antipolis, France
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruno Paes de Melo
- INRAE, Université Côte d’Azur, CNRS, ISA, Sophia Antipolis, France
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Isabela Tristan Lourenço-Tessutti
- INRAE, Université Côte d’Azur, CNRS, ISA, Sophia Antipolis, France
- Laboratório de Interação Molecular Planta-Praga, Embrapa Recursos Genéticos e Biotecnologia, Brasília, Brazil
| | | | - Luciana Obicci
- INRAE, Université Côte d’Azur, CNRS, ISA, Sophia Antipolis, France
| | - Maria Fatima Grossi-de-Sa
- Laboratório de Interação Molecular Planta-Praga, Embrapa Recursos Genéticos e Biotecnologia, Brasília, Brazil
| | - Adriana S. Hemerly
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | |
Collapse
|
42
|
Machado M, Steinke S, Ganter M. Plasmodium Reproduction, Cell Size, and Transcription: How to Cope With Increasing DNA Content? Front Cell Infect Microbiol 2021; 11:660679. [PMID: 33898332 PMCID: PMC8062723 DOI: 10.3389/fcimb.2021.660679] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/19/2021] [Indexed: 11/13/2022] Open
Abstract
Plasmodium, the unicellular parasite that causes malaria, evolved a highly unusual mode of reproduction. During its complex life cycle, invasive or transmissive stages alternate with proliferating stages, where a single parasite can produce tens of thousands of progeny. In the clinically relevant blood stage of infection, the parasite replicates its genome up to thirty times and forms a multinucleated cell before daughter cells are assembled. Thus, within a single cell cycle, Plasmodium develops from a haploid to a polypoid cell, harboring multiple copies of its genome. Polyploidy creates several biological challenges, such as imbalances in genome output, and cells can respond to this by changing their size and/or alter the production of RNA species and protein to achieve expression homeostasis. However, the effects and possible adaptations of Plasmodium to the massively increasing DNA content are unknown. Here, we revisit and embed current Plasmodium literature in the context of polyploidy and propose potential mechanisms of the parasite to cope with the increasing gene dosage.
Collapse
Affiliation(s)
- Marta Machado
- Centre for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany.,Graduate Program in Areas of Basic and Applied Biology, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Salome Steinke
- Centre for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Markus Ganter
- Centre for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
43
|
McKie SJ, Neuman KC, Maxwell A. DNA topoisomerases: Advances in understanding of cellular roles and multi-protein complexes via structure-function analysis. Bioessays 2021; 43:e2000286. [PMID: 33480441 PMCID: PMC7614492 DOI: 10.1002/bies.202000286] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/06/2020] [Accepted: 12/17/2020] [Indexed: 12/15/2022]
Abstract
DNA topoisomerases, capable of manipulating DNA topology, are ubiquitous and indispensable for cellular survival due to the numerous roles they play during DNA metabolism. As we review here, current structural approaches have revealed unprecedented insights into the complex DNA-topoisomerase interaction and strand passage mechanism, helping to advance our understanding of their activities in vivo. This has been complemented by single-molecule techniques, which have facilitated the detailed dissection of the various topoisomerase reactions. Recent work has also revealed the importance of topoisomerase interactions with accessory proteins and other DNA-associated proteins, supporting the idea that they often function as part of multi-enzyme assemblies in vivo. In addition, novel topoisomerases have been identified and explored, such as topo VIII and Mini-A. These new findings are advancing our understanding of DNA-related processes and the vital functions topos fulfil, demonstrating their indispensability in virtually every aspect of DNA metabolism.
Collapse
Affiliation(s)
- Shannon J. McKie
- Department Biological Chemistry, John Innes Centre, Norwich, UK
- Laboratory of Single Molecule Biophysics, NHLBI, Bethesda, Maryland, USA
| | - Keir C. Neuman
- Laboratory of Single Molecule Biophysics, NHLBI, Bethesda, Maryland, USA
| | - Anthony Maxwell
- Department Biological Chemistry, John Innes Centre, Norwich, UK
| |
Collapse
|
44
|
Martinez CC, Li S, Woodhouse MR, Sugimoto K, Sinha NR. Spatial transcriptional signatures define margin morphogenesis along the proximal-distal and medio-lateral axes in tomato (Solanum lycopersicum) leaves. THE PLANT CELL 2021; 33:44-65. [PMID: 33710280 PMCID: PMC8136875 DOI: 10.1093/plcell/koaa012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/23/2020] [Indexed: 05/26/2023]
Abstract
Leaf morphogenesis involves cell division, expansion, and differentiation in the developing leaf, which take place at different rates and at different positions along the medio-lateral and proximal-distal leaf axes. The gene expression changes that control cell fate along these axes remain elusive due to difficulties in precisely isolating tissues. Here, we combined rigorous early leaf characterization, laser capture microdissection, and transcriptomic sequencing to ask how gene expression patterns regulate early leaf morphogenesis in wild-type tomato (Solanum lycopersicum) and the leaf morphogenesis mutant trifoliate. We observed transcriptional regulation of cell differentiation along the proximal-distal axis and identified molecular signatures delineating the classically defined marginal meristem/blastozone region during early leaf development. We describe the role of endoreduplication during leaf development, when and where leaf cells first achieve photosynthetic competency, and the regulation of auxin transport and signaling along the leaf axes. Knockout mutants of BLADE-ON-PETIOLE2 exhibited ectopic shoot apical meristem formation on leaves, highlighting the role of this gene in regulating margin tissue identity. We mapped gene expression signatures in specific leaf domains and evaluated the role of each domain in conferring indeterminacy and permitting blade outgrowth. Finally, we generated a global gene expression atlas of the early developing compound leaf.
Collapse
Affiliation(s)
- Ciera C Martinez
- Department of Molecular and Cellular Biology, University of California at Berkeley, Berkeley, CA 94709
- Berkeley Institute for Data Science, University of California at Berkeley, Berkeley, CA 94709
- Department of Plant Biology, University of California at Davis, Davis, CA 95616
| | - Siyu Li
- Department of Plant Biology, University of California at Davis, Davis, CA 95616
| | | | - Keiko Sugimoto
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama, 15 230-0045 Japan
| | - Neelima R Sinha
- Department of Plant Biology, University of California at Davis, Davis, CA 95616
| |
Collapse
|
45
|
Narukawa H, Yokoyama R, Kuroha T, Nishitani K. Host-produced ethylene is required for marked cell expansion and endoreduplication in dodder search hyphae. PLANT PHYSIOLOGY 2021; 185:491-502. [PMID: 33721891 PMCID: PMC8133569 DOI: 10.1093/plphys/kiaa010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 09/28/2020] [Indexed: 05/13/2023]
Abstract
The genus Cuscuta comprises stem holoparasitic plant species with wide geographic distribution. Cuscuta spp. obtain water, nutrients, proteins, and mRNA from their host plants via a parasitic organ called the haustorium. As the haustorium penetrates into the host tissue, search hyphae elongate within the host tissue and finally connect with the host's vascular system. Invasion by Cuscuta spp. evokes various reactions within the host plant's tissues. Here, we show that, when Arabidopsis (Arabidopsis thaliana) is invaded by Cuscuta campestris, ethylene biosynthesis by the host plant promotes elongation of the parasite's search hyphae. The expression of genes encoding 1-aminocylclopropane-1-carboxylic acid (ACC) synthases, ACC SYNTHASE2 (AtACS2) and ACC SYNTHASE6 (AtACS6), was activated in the stem of Arabidopsis plants upon invasion by C. campestris. When the ethylene-deficient Arabidopsis acs octuple mutant was invaded by C. campestris, cell elongation and endoreduplication of the search hyphae were significantly reduced, and the inhibition of search hyphae growth was complemented by exogenous application of ACC. In contrast, in the C. campestris-infected Arabidopsis ethylene-insensitive mutant etr1-3, no growth inhibition of search hyphae was observed, indicating that ETHYLENE RESPONSE1-mediated ethylene signaling in the host plant is not essential for parasitism by C. campestris. Overall, our results suggest that C. campestris recognizes host-produced ethylene as a stimulatory signal for successful invasion.
Collapse
Affiliation(s)
- Hideki Narukawa
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Ryusuke Yokoyama
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Takeshi Kuroha
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Kazuhiko Nishitani
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Japan
- Author for communication: (K.N.)
| |
Collapse
|
46
|
Nilo-Poyanco R, Moraga C, Benedetto G, Orellana A, Almeida AM. Shotgun proteomics of peach fruit reveals major metabolic pathways associated to ripening. BMC Genomics 2021; 22:17. [PMID: 33413072 PMCID: PMC7788829 DOI: 10.1186/s12864-020-07299-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 12/02/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Fruit ripening in Prunus persica melting varieties involves several physiological changes that have a direct impact on the fruit organoleptic quality and storage potential. By studying the proteomic differences between the mesocarp of mature and ripe fruit, it would be possible to highlight critical molecular processes involved in the fruit ripening. RESULTS To accomplish this goal, the proteome from mature and ripe fruit was assessed from the variety O'Henry through shotgun proteomics using 1D-gel (PAGE-SDS) as fractionation method followed by LC/MS-MS analysis. Data from the 131,435 spectra could be matched to 2740 proteins, using the peach genome reference v1. After data pre-treatment, 1663 proteins could be used for comparison with datasets assessed using transcriptomic approaches and for quantitative protein accumulation analysis. Close to 26% of the genes that code for the proteins assessed displayed higher expression at ripe fruit compared to other fruit developmental stages, based on published transcriptomic data. Differential accumulation analysis between mature and ripe fruit revealed that 15% of the proteins identified were modulated by the ripening process, with glycogen and isocitrate metabolism, and protein localization overrepresented in mature fruit, as well as cell wall modification in ripe fruit. Potential biomarkers for the ripening process, due to their differential accumulation and gene expression pattern, included a pectin methylesterase inhibitor, a gibbellerin 2-beta-dioxygenase, an omega-6 fatty acid desaturase, a homeobox-leucine zipper protein and an ACC oxidase. Transcription factors enriched in NAC and Myb protein domains would target preferentially the genes encoding proteins more abundant in mature and ripe fruit, respectively. CONCLUSIONS Shotgun proteomics is an unbiased approach to get deeper into the proteome allowing to detect differences in protein abundance between samples. This technique provided a resolution so that individual gene products could be identified. Many proteins likely involved in cell wall and sugar metabolism, aroma and color, change their abundance during the transition from mature to ripe fruit.
Collapse
Affiliation(s)
- Ricardo Nilo-Poyanco
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Camino La Pirámide, 5750, Huechuraba, Chile
| | - Carol Moraga
- Université Claude Bernard Lyon 1, 69622, Villeurbanne, France
- Inria Grenoble Rhône-Alpes, 38334, Montbonnot, France
| | - Gianfranco Benedetto
- Centro de Biotecnología Vegetal, Facultad Ciencias Biológicas, Universidad Andrés Bello, República 330, Santiago, Chile
| | - Ariel Orellana
- Centro de Biotecnología Vegetal, Facultad Ciencias Biológicas, Universidad Andrés Bello, República 330, Santiago, Chile
- Center for Genome Regulation, Blanco Encalada, 2085, Santiago, Chile
| | - Andrea Miyasaka Almeida
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Camino La Pirámide, 5750, Huechuraba, Chile.
- Escuela de Agronomía, Facultad de Ciencias, Universidad Mayor, Camino La Pirámide, 5750, Huechuraba, Chile.
| |
Collapse
|
47
|
Boza Espinoza TE, Popp V, Kessler M. Guard cell sizes and ploidy levels in Polylepis (Rosaceae). NEOTROPICAL BIODIVERSITY 2020. [DOI: 10.1080/23766808.2020.1844992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Tatiana Erika Boza Espinoza
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
- Universidad Nacional de San Antonio Abad del Cusco, Herbario Vargas CUZ, Cusco, Perú
| | | | - Michael Kessler
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| |
Collapse
|
48
|
Isolation of Lineage Specific Nuclei Based on Distinct Endoreduplication Levels and Tissue-Specific Markers to Study Chromatin Accessibility Landscapes. PLANTS 2020; 9:plants9111478. [PMID: 33153046 PMCID: PMC7692515 DOI: 10.3390/plants9111478] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/31/2020] [Accepted: 11/01/2020] [Indexed: 12/31/2022]
Abstract
The capacity for achieving immense specificity and resolution in science increases day to day. Fluorescence-activated nuclear sorting (FANS) offers this great precision, enabling one to count and separate distinct types of nuclei from specific cells of heterogeneous mixtures. We developed a workflow to collect nuclei from Arabidopsis thaliana by FANS according to cell lineage and endopolyploidy level with high efficiency. We sorted GFP-labeled nuclei with different ploidy levels from the epidermal tissue layer of three-day, dark-grown hypocotyls followed by a shift to light for one day and compared them to plants left in the dark. We then accessed early chromatin accessibility patterns associated with skotomorphogenesis and photomorphogenesis by the assay for transposase-accessible chromatin using sequencing (ATAC-seq) within primarily stomatal 2C and fully endoreduplicated 16C nuclei. Our quantitative analysis shows that dark- and light-treated samples in 2C nuclei do not exhibit any different chromatin accessibility landscapes, whereas changes in 16C can be linked to transcriptional changes involved in light response.
Collapse
|
49
|
Bertels J, Huybrechts M, Hendrix S, Bervoets L, Cuypers A, Beemster GTS. Cadmium inhibits cell cycle progression and specifically accumulates in the maize leaf meristem. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6418-6428. [PMID: 32822498 DOI: 10.1093/jxb/eraa385] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
It is well known that cadmium (Cd) pollution inhibits plant growth, but how this metal impacts leaf growth processes at the cellular and molecular level is still largely unknown. In the current study, we show that Cd specifically accumulates in the meristematic tissue of the growing maize leaf, while Cd concentration in the elongation zone rapidly declines as the deposition rates diminish and cell volumes increase due to cell expansion. A kinematic analysis shows that, at the cellular level, a lower number of meristematic cells together with a significantly longer cell cycle duration explain the inhibition of leaf growth by Cd. Flow cytometry analysis suggests an inhibition of the G1/S transition, resulting in a lower proportion of cells in the S phase and reduced endoreduplication in expanding cells under Cd stress. Lower cell cycle activity is also reflected by lower expression levels of key cell cycle genes (putative wee1, cyclin-B2-4, and minichromosome maintenance4). Cell elongation rates are also inhibited by Cd, which is possibly linked to the inhibited endoreduplication. Taken together, our results complement studies on Cd-induced growth inhibition in roots and link inhibited cell cycle progression to Cd deposition in the leaf meristem.
Collapse
Affiliation(s)
- Jonas Bertels
- Laboratory for Integrated Molecular Plant Physiology Research (IMPRES), University of Antwerp, Groenenborgerlaan, Antwerpen, Belgium
| | - Michiel Huybrechts
- Centre for Environmental Sciences (CMK), Hasselt University, Agoralaan Building D, Diepenbeek, Belgium
| | - Sophie Hendrix
- Centre for Environmental Sciences (CMK), Hasselt University, Agoralaan Building D, Diepenbeek, Belgium
| | - Lieven Bervoets
- Systemic Physiological and Ecotoxicological Research (SPHERE), University of Antwerp, Groenenborgerlaan, Antwerpen, Belgium
| | - Ann Cuypers
- Centre for Environmental Sciences (CMK), Hasselt University, Agoralaan Building D, Diepenbeek, Belgium
| | - Gerrit T S Beemster
- Laboratory for Integrated Molecular Plant Physiology Research (IMPRES), University of Antwerp, Groenenborgerlaan, Antwerpen, Belgium
| |
Collapse
|
50
|
Wear EE, Song J, Zynda GJ, Mickelson-Young L, LeBlanc C, Lee TJ, Deppong DO, Allen GC, Martienssen RA, Vaughn MW, Hanley-Bowdoin L, Thompson WF. Comparing DNA replication programs reveals large timing shifts at centromeres of endocycling cells in maize roots. PLoS Genet 2020; 16:e1008623. [PMID: 33052904 PMCID: PMC7588055 DOI: 10.1371/journal.pgen.1008623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 10/26/2020] [Accepted: 08/28/2020] [Indexed: 12/20/2022] Open
Abstract
Plant cells undergo two types of cell cycles–the mitotic cycle in which DNA replication is coupled to mitosis, and the endocycle in which DNA replication occurs in the absence of cell division. To investigate DNA replication programs in these two types of cell cycles, we pulse labeled intact root tips of maize (Zea mays) with 5-ethynyl-2’-deoxyuridine (EdU) and used flow sorting of nuclei to examine DNA replication timing (RT) during the transition from a mitotic cycle to an endocycle. Comparison of the sequence-based RT profiles showed that most regions of the maize genome replicate at the same time during S phase in mitotic and endocycling cells, despite the need to replicate twice as much DNA in the endocycle and the fact that endocycling is typically associated with cell differentiation. However, regions collectively corresponding to 2% of the genome displayed significant changes in timing between the two types of cell cycles. The majority of these regions are small with a median size of 135 kb, shift to a later RT in the endocycle, and are enriched for genes expressed in the root tip. We found larger regions that shifted RT in centromeres of seven of the ten maize chromosomes. These regions covered the majority of the previously defined functional centromere, which ranged between 1 and 2 Mb in size in the reference genome. They replicate mainly during mid S phase in mitotic cells but primarily in late S phase of the endocycle. In contrast, the immediately adjacent pericentromere sequences are primarily late replicating in both cell cycles. Analysis of CENH3 enrichment levels in 8C vs 2C nuclei suggested that there is only a partial replacement of CENH3 nucleosomes after endocycle replication is complete. The shift to later replication of centromeres and possible reduction in CENH3 enrichment after endocycle replication is consistent with a hypothesis that centromeres are inactivated when their function is no longer needed. In traditional cell division, or mitosis, a cell’s genetic material is duplicated and then split between two daughter cells. In contrast, in some specialized cell types, the DNA is duplicated a second time without an intervening division step, resulting in cells that carry twice as much DNA. This phenomenon, which is called the endocycle, is common during plant development. At each step, DNA replication follows an ordered program in which highly compacted DNA is unraveled and replicated in sections at different times during the synthesis (S) phase. In plants, it is unclear whether traditional and endocycle programs are the same, especially since endocycling cells are typically in the process of differentiation. Using root tips of maize, we found that in comparison to replication in the mitotic cell cycle, there is a small portion of the genome whose replication in the endocycle is shifted in time, usually to later in S phase. Some of these regions are scattered around the genome and mostly coincide with active genes. However, the most prominent shifts occur in centromeres. The shift to later replication in centromeres is noteworthy because they orchestrate the process of separating duplicated chromosomes into daughter cells, a function that is not needed in the endocycle.
Collapse
Affiliation(s)
- Emily E. Wear
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, United States of America
- * E-mail:
| | - Jawon Song
- Texas Advanced Computing Center, University of Texas, Austin, Texas, United States of America
| | - Gregory J. Zynda
- Texas Advanced Computing Center, University of Texas, Austin, Texas, United States of America
| | - Leigh Mickelson-Young
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Chantal LeBlanc
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Tae-Jin Lee
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - David O. Deppong
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - George C. Allen
- Department of Horticultural Science, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Robert A. Martienssen
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Matthew W. Vaughn
- Texas Advanced Computing Center, University of Texas, Austin, Texas, United States of America
| | - Linda Hanley-Bowdoin
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - William F. Thompson
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, United States of America
| |
Collapse
|