1
|
Xing H, Bai Y, Ding Q, Wang H, Gao G, Hu Z, Yu Y, Fan H, Meng X, Cui N. Transcriptomic analysis of regulating the growth and development of tomato seedlings by the crosstalk between JA and TOR signaling. PLANT CELL REPORTS 2025; 44:82. [PMID: 40126670 DOI: 10.1007/s00299-025-03476-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 03/04/2025] [Indexed: 03/26/2025]
Abstract
KEY MESSAGE Transcription factors MYB, WRKY, bHLH, bZIP and NAC were identified as key candidate genes for JA and TOR regulation of tomato seedling growth and development. Jasmonic acid (JA) and Target of Rapamycin (TOR) signaling pathways interact to regulate plant growth, development, and stress responses. In this study, transcriptomic and weighted gene co-expression network analysis (WGCNA) were conducted on tomato wild-type (WT) and spr2 mutant lines treated with the TOR inhibitor RAP and activator MHY1485. We identified key roles of MAPK kinase and ethylene signaling in mediating JA-TOR interaction. Core transcription factors, including MYB, WRKY, bHLH, bZIP, and NAC, were highlighted as central regulators within the interaction between JA and TOR signaling network. These findings advance our understanding of how JA and TOR signaling coordinate plant growth and stress adaptation.
Collapse
Affiliation(s)
- Hongyun Xing
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yipeng Bai
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Qi Ding
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Haoran Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, Guangdong, China
| | - Guorui Gao
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Ziqiang Hu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yang Yu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Haiyan Fan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xiangnan Meng
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Na Cui
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China.
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
2
|
Yadav R, Ramakrishna W. MicroRNAs Involved in Nutritional Regulation During Plant-Microbe Symbiotic and Pathogenic Interactions with Rice as a Model. Mol Biotechnol 2024; 66:1754-1771. [PMID: 37468736 DOI: 10.1007/s12033-023-00822-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/04/2023] [Indexed: 07/21/2023]
Abstract
Plants are constantly challenged with numerous adverse environmental conditions, including biotic and abiotic stresses. Coordinated regulation of plant responses requires crosstalk between regulatory pathways initiated by different external cues. Stress induced by excessiveness or deficiency of nutrients has been shown to positively or negatively interact with pathogen-induced immune responses. Also, colonization by arbuscular mycorrhizal (AM) fungi can improve plant nutrition, mainly phosphorus and resistance to pathogen infection. The proposed review addresses these issues about a new question that integrates adaptation to nutrient stress and disease resistance. The main goal of the current review is to provide insights into the interconnected regulation between nutrient signaling and immune signaling pathways in rice, focusing on phosphate, potassium and iron signaling. The underpinnings of plant/pathogen/AM fungus interaction concerning rice/M. oryzae/R. irregularis is highlighted. The role of microRNAs (miRNAs) involved in Pi (miR399, miR827) and Fe (miR7695) homeostasis in pathogenic/symbiotic interactions in rice is discussed. The intracellular dynamics of membrane proteins that function in nutrient transport transgenic rice lines expressing fluorescent protein fusion genes are outlined. Integrating functional genomic, nutritional and metal content, molecular and cell biology approaches to understand how disease resistance is regulated by nutrient status leading to novel concepts in fundamental processes underlying plant disease resistance will help to devise novel strategies for crop protection with less input of pesticides and fertilizers.
Collapse
Affiliation(s)
- Radheshyam Yadav
- Department of Biochemistry, Central University of Punjab, VPO Ghudda, Bathinda, Punjab, India
| | - Wusirika Ramakrishna
- Department of Biochemistry, Central University of Punjab, VPO Ghudda, Bathinda, Punjab, India.
| |
Collapse
|
3
|
Elsisi M, Elshiekh M, Sabry N, Aziz M, Attia K, Islam F, Chen J, Abdelrahman M. The genetic orchestra of salicylic acid in plant resilience to climate change induced abiotic stress: critical review. STRESS BIOLOGY 2024; 4:31. [PMID: 38880851 PMCID: PMC11180647 DOI: 10.1007/s44154-024-00160-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/12/2024] [Indexed: 06/18/2024]
Abstract
Climate change, driven by human activities and natural processes, has led to critical alterations in varying patterns during cropping seasons and is a vital threat to global food security. The climate change impose several abiotic stresses on crop production systems. These abiotic stresses include extreme temperatures, drought, and salinity, which expose agricultural fields to more vulnerable conditions and lead to substantial crop yield and quality losses. Plant hormones, especially salicylic acid (SA), has crucial roles for plant resiliency under unfavorable environments. This review explores the genetics and molecular mechanisms underlying SA's role in mitigating abiotic stress-induced damage in plants. It also explores the SA biosynthesis pathways, and highlights the regulation of their products under several abiotic stresses. Various roles and possible modes of action of SA in mitigating abiotic stresses are discussed, along with unraveling the genetic mechanisms and genes involved in responses under stress conditions. Additionally, this review investigates molecular pathways and mechanisms through which SA exerts its protective effects, such as redox signaling, cross-talks with other plant hormones, and mitogen-activated protein kinase pathways. Moreover, the review discusses potentials of using genetic engineering approaches, such as CRISPR technology, for deciphering the roles of SA in enhancing plant resilience to climate change related abiotic stresses. This comprehensive analysis bridges the gap between genetics of SA role in response to climate change related stressors. Overall goal is to highlight SA's significance in safeguarding plants and by offering insights of SA hormone for sustainable agriculture under challenging environmental conditions.
Collapse
Affiliation(s)
- Mohamed Elsisi
- School of Biotechnology, Nile University, Giza, 12588, Egypt
| | - Moaz Elshiekh
- School of Biotechnology, Nile University, Giza, 12588, Egypt
| | - Nourine Sabry
- School of Biotechnology, Nile University, Giza, 12588, Egypt
| | - Mark Aziz
- School of Biotechnology, Nile University, Giza, 12588, Egypt
| | - Kotb Attia
- College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Faisal Islam
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China.
| | - Jian Chen
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China.
| | | |
Collapse
|
4
|
Marash I, Gupta R, Anand G, Leibman-Markus M, Lindner N, Israeli A, Nir D, Avni A, Bar M. TOR coordinates cytokinin and gibberellin signals mediating development and defense. PLANT, CELL & ENVIRONMENT 2024; 47:629-650. [PMID: 37904283 DOI: 10.1111/pce.14748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/15/2023] [Accepted: 10/17/2023] [Indexed: 11/01/2023]
Abstract
Plants constantly perceive and process environmental signals and balance between the energetic demands of growth and defense. Growth arrest upon pathogen attack was previously suggested to result from a redirection of the plants' metabolic resources towards the activation of plant defense. The energy sensor Target of Rapamycin (TOR) kinase is a conserved master coordinator of growth and development in all eukaryotes. Although TOR is positioned at the interface between development and defense, little is known about the mechanisms by which TOR may potentially regulate the relationship between these two modalities. The plant hormones cytokinin (CK) and gibberellin (GA) execute various aspects of plant development and defense. The ratio between CK and GA was reported to determine the outcome of developmental programmes. Here, investigating the interplay between TOR-mediated development and TOR-mediated defense in tomato, we found that TOR silencing resulted in rescue of several different aberrant developmental phenotypes, demonstrating that TOR is required for the execution of developmental cues. In parallel, TOR inhibition enhanced immunity in genotypes with a low CK/GA ratio but not in genotypes with a high CK/GA ratio. TOR-inhibition mediated disease resistance was found to depend on developmental status, and was abolished in strongly morphogenetic leaves, while being strongest in mature, differentiated leaves. CK repressed TOR activity, suggesting that CK-mediated immunity may rely on TOR downregulation. At the same time, TOR activity was promoted by GA, and TOR silencing reduced GA sensitivity, indicating that GA signalling requires normal TOR activity. Our results demonstrate that TOR likely acts in concert with CK and GA signalling, executing signalling cues in both defense and development. Thus, differential regulation of TOR or TOR-mediated processes could regulate the required outcome of development-defense prioritisation.
Collapse
Affiliation(s)
- Iftah Marash
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Bet Dagan, Israel
- School of Plant Science and Food Security, Tel-Aviv University, Tel-Aviv, Israel
| | - Rupali Gupta
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Bet Dagan, Israel
| | - Gautam Anand
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Bet Dagan, Israel
| | - Meirav Leibman-Markus
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Bet Dagan, Israel
| | - Naomi Lindner
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Bet Dagan, Israel
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Alon Israeli
- Institute of Plant Science and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Dov Nir
- Institute of Plant Science and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Adi Avni
- School of Plant Science and Food Security, Tel-Aviv University, Tel-Aviv, Israel
| | - Maya Bar
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Bet Dagan, Israel
| |
Collapse
|
5
|
Hu Q, Wu Y, Hong T, Wu D, Wang L. OsMED16, a tail subunit of Mediator complex, interacts with OsE2Fa to synergistically regulate rice leaf development and blast resistance. Int J Biol Macromol 2023; 253:126728. [PMID: 37678689 DOI: 10.1016/j.ijbiomac.2023.126728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/20/2023] [Accepted: 09/03/2023] [Indexed: 09/09/2023]
Abstract
Mediator, a universal eukaryotic coactivator, is a multiprotein complex to transduce information from the DNA-bound transcription factors to the RNA polymerase II transcriptional machinery. In this study, the biofunctions of a rice mediator subunit OsMED16 in leaf development and blast resistance were characterized. OsMED16 encodes a putative protein of 1170 amino acids, which is 393 bp shorted than the version in Rice Genome Annotation Project databases. Overexpression of OsMED16 plants exhibited wider leaves with larger and more numerous cells in lateral axis, and enhanced resistance to M. oryzae with hyperaccumulated salicylic acid. Further analysis revealed that OsMED16 interacts with OsE2Fa in nuclei, and the complex could directly regulate the transcriptional levels of several genes involved in cell cycle regulation and SA mediated blast resistance, such as OsCC52A1, OsCDKA1, OsCDKB2;2, OsICS1 and OsWRKY45. Altogether, this study proved that OsMED16 is a positive regulator of rice leaf development and blast resistance, and providing new insights into the crosstalk between cell cycle regulation and immunity.
Collapse
Affiliation(s)
- Qin Hu
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi University, Daxue East Road 100, Nanning 530004, China; College of Agriculture, Guangxi University, Daxue East Road 100, Nanning 530004, China.
| | - Yanfei Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Youyi Avenue 368, Wuhan 430062, China
| | - Tianshu Hong
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi University, Daxue East Road 100, Nanning 530004, China; College of Agriculture, Guangxi University, Daxue East Road 100, Nanning 530004, China
| | - Deng Wu
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi University, Daxue East Road 100, Nanning 530004, China; College of Agriculture, Guangxi University, Daxue East Road 100, Nanning 530004, China
| | - Lulu Wang
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi University, Daxue East Road 100, Nanning 530004, China; College of Agriculture, Guangxi University, Daxue East Road 100, Nanning 530004, China
| |
Collapse
|
6
|
Erofeeva EA. Environmental hormesis in living systems: The role of hormetic trade-offs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:166022. [PMID: 37541518 DOI: 10.1016/j.scitotenv.2023.166022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/22/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Hormesis (low-dose stimulation and high-dose inhibition) can be accompanied by hormetic trade-offs, that is, stimulation of some traits and inhibition (trade-off 1) or invariability (trade-off 2) of others. Currently, trade-off options and their biological significance are insufficiently studied. Therefore, the review analyses trade-off types, their relationship with asynchronous stress responses of indicators, the importance of trade-offs for preconditioning, hormesis transgenerational effects, fitness, and evolution. The analysis has shown that hormetic trade-offs 1 and 2 can be observed in evolutionarily distant groups of organisms and at different biological levels (cells, individuals, populations, and communities) with abiotic and biotic stressors, as well as various pollutants. Trade-offs 1 and 2 are found both between different functional traits (e.g., self-maintenance and reproduction in animals, growth and defense in plants), and between the endpoints of the same functional trait (e.g., seed weight and seed number in plants). Asynchronous responses of indicators to a low-dose stressor can lead to hormetic trade-offs in two cases: 1) these indicators have different responses (hormesis, inhibition or zero reaction) in the same dose range; 2) these indicators have hormetic responses with different hormetic zones. Trade-offs can have a positive, negative or zero effect on preconditioning, offspring, and fitness of the population. Trade-offs can potentially affect evolution in two ways: 1) the creation of trends in genotype selection; 2) participation in the assimilation of phenotypic adaptations in the genotype through the Baldwin effect (selection of mutations copying adaptive phenotypes).
Collapse
Affiliation(s)
- Elena A Erofeeva
- Department of Ecology, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhni Novgorod, 23 Gagarina Pr, Nizhni Novgorod 603950, Russian Federation.
| |
Collapse
|
7
|
Lu K, Zhang L, Qin L, Chen X, Wang X, Zhang M, Dong H. Importin β1 Mediates Nuclear Entry of EIN2C to Confer the Phloem-Based Defense against Aphids. Int J Mol Sci 2023; 24:ijms24108545. [PMID: 37239892 DOI: 10.3390/ijms24108545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/28/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Ethylene Insensitive 2 (EIN2) is an integral membrane protein that regulates ethylene signaling towards plant development and immunity by release of its carboxy-terminal functional portion (EIN2C) into the nucleus. The present study elucidates that the nuclear trafficking of EIN2C is induced by importin β1, which triggers the phloem-based defense (PBD) against aphid infestations in Arabidopsis. In plants, IMPβ1 interacts with EIN2C to facilitate EIN2C trafficking into the nucleus, either by ethylene treatment or by green peach aphid infestation, to confer EIN2-dependent PBD responses, which, in turn, impede the phloem-feeding activity and massive infestation by the aphid. In Arabidopsis, moreover, constitutively expressed EIN2C can complement the impβ1 mutant regarding EIN2C localization to the plant nucleus and the subsequent PBD development in the concomitant presence of IMPβ1 and ethylene. As a result, the phloem-feeding activity and massive infestation by green peach aphid were highly inhibited, indicating the potential value of EIN2C in protecting plants from insect attacks.
Collapse
Affiliation(s)
- Kai Lu
- State Key Laboratory of Crop Biology, College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Liyuan Zhang
- State Key Laboratory of Crop Biology, College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Lina Qin
- State Key Laboratory of Crop Biology, College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Xiaochen Chen
- State Key Laboratory of Crop Biology, College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Xiaobing Wang
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China
| | - Meixiang Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710019, China
| | - Hansong Dong
- State Key Laboratory of Crop Biology, College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| |
Collapse
|
8
|
Ding S, Lv J, Hu Z, Wang J, Wang P, Yu J, Foyer CH, Shi K. Phytosulfokine peptide optimizes plant growth and defense via glutamine synthetase GS2 phosphorylation in tomato. EMBO J 2023; 42:e111858. [PMID: 36562188 PMCID: PMC10015362 DOI: 10.15252/embj.2022111858] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Phytosulfokine (PSK) is a plant pentapeptide hormone that fulfills a wide range of functions. Although PSK has frequently been reported to function in the inverse regulation of growth and defense in response to (hemi)biotrophic pathogens, the mechanisms involved remain largely unknown. Using the tomato (Solanum lycopersicum) and Pseudomonas syringae pv. tomato (Pst) DC3000 pathogen system, we present compelling evidence that the PSK receptor PSKR1 interacts with the calcium-dependent protein kinase CPK28, which in turn phosphorylates the key enzyme of nitrogen assimilation glutamine synthetase GS2 at two sites (Serine-334 and Serine-360). GS2 phosphorylation at S334 specifically regulates plant defense, whereas S360 regulates growth, uncoupling the PSK-induced effects on defense responses and growth regulation. The discovery of these sites will inform breeding strategies designed to optimize the growth-defense balance in a compatible manner.
Collapse
Affiliation(s)
- Shuting Ding
- Department of HorticultureZhejiang UniversityHangzhouChina
| | - Jianrong Lv
- Department of HorticultureZhejiang UniversityHangzhouChina
| | - Zhangjian Hu
- Department of HorticultureZhejiang UniversityHangzhouChina
| | - Jiao Wang
- Department of HorticultureZhejiang UniversityHangzhouChina
| | - Ping Wang
- Department of HorticultureZhejiang UniversityHangzhouChina
| | - Jingquan Yu
- Department of HorticultureZhejiang UniversityHangzhouChina
- Hainan Institute, Yazhou Bay Science and Technology CityZhejiang UniversitySanyaChina
- Key Laboratory of Horticultural Plant Growth and DevelopmentMinistry of Agriculture and Rural AffairsHangzhouChina
| | - Christine H Foyer
- School of Biosciences, College of Life and Environmental SciencesUniversity of BirminghamBirminghamUK
| | - Kai Shi
- Department of HorticultureZhejiang UniversityHangzhouChina
- Hainan Institute, Yazhou Bay Science and Technology CityZhejiang UniversitySanyaChina
- Key Laboratory of Horticultural Plant Growth and DevelopmentMinistry of Agriculture and Rural AffairsHangzhouChina
| |
Collapse
|
9
|
Wang X, Lu K, Yao X, Zhang L, Wang F, Wu D, Peng J, Chen X, Du J, Wei J, Ma J, Chen L, Zou S, Zhang C, Zhang M, Dong H. The Aquaporin TaPIP2;10 Confers Resistance to Two Fungal Diseases in Wheat. PHYTOPATHOLOGY 2021; 111:2317-2331. [PMID: 34058861 DOI: 10.1094/phyto-02-21-0048-r] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Plants employ aquaporins (AQPs) of the plasma membrane intrinsic protein (PIP) family to import environmental substrates, thereby affecting various processes, such as the cellular responses regulated by the signaling molecule hydrogen peroxide (H2O2). Common wheat (Triticum aestivum) contains 24 candidate members of the PIP family, designated as TaPIP1;1 to TaPIP1;12 and TaPIP2;1 to TaPIP2;12. None of these TaPIP candidates have been characterized for substrate selectivity or defense responses in their source plant. Here, we report that T. aestivum AQP TaPIP2;10 facilitates the cellular uptake of H2O2 to confer resistance against powdery mildew and Fusarium head blight, two devastating fungal diseases in wheat throughout the world. In wheat, the apoplastic H2O2 signal is induced by fungal attack, while TaPIP2;10 is stimulated to translocate this H2O2 into the cytoplasm, where it activates defense responses to restrict further attack. TaPIP2;10-mediated transport of H2O2 is essential for pathogen-associated molecular pattern-triggered plant immunity (PTI). Typical PTI responses are induced by the fungal infection and intensified by overexpression of the TaPIP2;10 gene. TaPIP2;10 overexpression causes a 70% enhancement in wheat resistance to powdery mildew and an 86% enhancement in resistance to Fusarium head blight. By reducing the disease severities, TaPIP2;10 overexpression brings about >37% increase in wheat grain yield. These results verify the feasibility of using an immunity-relevant AQP to concomitantly improve crop productivity and immunity.
Collapse
Affiliation(s)
- Xiaobing Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Kai Lu
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong Province 271018, China
| | - Xiaohui Yao
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong Province 271018, China
| | - Liyuan Zhang
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong Province 271018, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong Province 271018, China
| | - Fubin Wang
- Institute of Environmental Sciences & Resources and Plant Protection, Jining Academy of Agricultural Sciences, Jining, Shandon Province 272000, China
| | - Degong Wu
- College of Agriculture, Anhui Science and Technology University, Fengyang, Anhui Province 233100, China
| | - Jinfeng Peng
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Xiaochen Chen
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Junli Du
- College of Agriculture, Anhui Science and Technology University, Fengyang, Anhui Province 233100, China
| | - Jiankun Wei
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong Province 271018, China
| | - Jingyu Ma
- Institute of Environmental Sciences & Resources and Plant Protection, Jining Academy of Agricultural Sciences, Jining, Shandon Province 272000, China
| | - Lei Chen
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong Province 271018, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong Province 271018, China
| | - Shenshen Zou
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong Province 271018, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong Province 271018, China
| | - Chunling Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Meixiang Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Hansong Dong
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong Province 271018, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong Province 271018, China
| |
Collapse
|
10
|
Maruta N, Trusov Y, Jones AM, Botella JR. Heterotrimeric G Proteins in Plants: Canonical and Atypical Gα Subunits. Int J Mol Sci 2021; 22:11841. [PMID: 34769272 PMCID: PMC8584482 DOI: 10.3390/ijms222111841] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022] Open
Abstract
Heterotrimeric GTP-binding proteins (G proteins), consisting of Gα, Gβ and Gγ subunits, transduce signals from a diverse range of extracellular stimuli, resulting in the regulation of numerous cellular and physiological functions in Eukaryotes. According to the classic G protein paradigm established in animal models, the bound guanine nucleotide on a Gα subunit, either guanosine diphosphate (GDP) or guanosine triphosphate (GTP) determines the inactive or active mode, respectively. In plants, there are two types of Gα subunits: canonical Gα subunits structurally similar to their animal counterparts and unconventional extra-large Gα subunits (XLGs) containing a C-terminal domain homologous to the canonical Gα along with an extended N-terminal domain. Both Gα and XLG subunits interact with Gβγ dimers and regulator of G protein signalling (RGS) protein. Plant G proteins are implicated directly or indirectly in developmental processes, stress responses, and innate immunity. It is established that despite the substantial overall similarity between plant and animal Gα subunits, they convey signalling differently including the mechanism by which they are activated. This review emphasizes the unique characteristics of plant Gα subunits and speculates on their unique signalling mechanisms.
Collapse
Affiliation(s)
- Natsumi Maruta
- School of Agriculture and Food Sciences, University of Queensland, Brisbane 4072, Australia; (N.M.); (Y.T.)
| | - Yuri Trusov
- School of Agriculture and Food Sciences, University of Queensland, Brisbane 4072, Australia; (N.M.); (Y.T.)
| | - Alan M. Jones
- Departments of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
- Departments of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jose R. Botella
- School of Agriculture and Food Sciences, University of Queensland, Brisbane 4072, Australia; (N.M.); (Y.T.)
| |
Collapse
|
11
|
Chen X, Ma J, Wang X, Lu K, Liu Y, Zhang L, Peng J, Chen L, Yang M, Li Y, Cheng Z, Xiao S, Yu J, Zou S, Liang Y, Zhang M, Yang Y, Ding X, Dong H. Functional modulation of an aquaporin to intensify photosynthesis and abrogate bacterial virulence in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:330-346. [PMID: 34273211 DOI: 10.1111/tpj.15427] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/02/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
Plant aquaporins are a recently noted biological resource with a great potential to improve crop growth and defense traits. Here, we report the functional modulation of the rice (Oryza sativa) aquaporin OsPIP1;3 to enhance rice photosynthesis and grain production and to control bacterial blight and leaf streak, the most devastating worldwide bacterial diseases in the crop. We characterize OsPIP1;3 as a physiologically relevant CO2 -transporting facilitator, which supports 30% of rice photosynthesis on average. This role is nullified by interaction of OsPIP1;3 with the bacterial protein Hpa1, an essential component of the Type III translocon that supports translocation of the bacterial Type III effectors PthXo1 and TALi into rice cells to induce leaf blight and streak, respectively. Hpa1 binding shifts OsPIP1;3 from CO2 transport to effector translocation, aggravates bacterial virulence, and blocks rice photosynthesis. On the contrary, the external application of isolated Hpa1 to rice plants effectively prevents OsPIP1;3 from interaction with Hpa1 secreted by the bacteria that are infecting the plants. Blockage of the OsPIP1;3-Hpa1 interaction reverts OsPIP1;3 from effector translocation to CO2 transport, abrogates bacterial virulence, and meanwhile induces defense responses in rice. These beneficial effects can combine to enhance photosynthesis by 29-30%, reduce bacterial disease by 58-75%, and increase grain yield by 11-34% in different rice varieties investigated in small-scale field trials conducted during the past years. Our results suggest that crop productivity and immunity can be coordinated by modulating the physiological and pathological functions of a single aquaporin to break the growth-defense tradeoff barrier.
Collapse
Affiliation(s)
- Xiaochen Chen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Jinbiao Ma
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Xuan Wang
- Department of Biology, Institute of Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu Province, China
| | - Kai Lu
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong Province, China
| | - Yan Liu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Liyuan Zhang
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong Province, China
- State Key Laboratory of Crop Biology, Taian, Shandong Province, China
| | - Jinfeng Peng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Lei Chen
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong Province, China
- State Key Laboratory of Crop Biology, Taian, Shandong Province, China
| | - Minkai Yang
- Department of Biology, Institute of Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu Province, China
| | - Yang Li
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong Province, China
- State Key Laboratory of Crop Biology, Taian, Shandong Province, China
| | - Zaiquan Cheng
- Biotechnology and Genetic Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan Province, China
| | - Suqin Xiao
- Biotechnology and Genetic Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan Province, China
| | - Jinfeng Yu
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong Province, China
| | - Shenshen Zou
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong Province, China
- State Key Laboratory of Crop Biology, Taian, Shandong Province, China
| | - Yuancun Liang
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong Province, China
| | - Meixiang Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Yonghua Yang
- Department of Biology, Institute of Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu Province, China
| | - Xinhua Ding
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong Province, China
| | - Hansong Dong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
- State Key Laboratory of Crop Biology, Taian, Shandong Province, China
| |
Collapse
|
12
|
Gough C, Sadanandom A. Understanding and Exploiting Post-Translational Modifications for Plant Disease Resistance. Biomolecules 2021; 11:1122. [PMID: 34439788 PMCID: PMC8392720 DOI: 10.3390/biom11081122] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 12/27/2022] Open
Abstract
Plants are constantly threatened by pathogens, so have evolved complex defence signalling networks to overcome pathogen attacks. Post-translational modifications (PTMs) are fundamental to plant immunity, allowing rapid and dynamic responses at the appropriate time. PTM regulation is essential; pathogen effectors often disrupt PTMs in an attempt to evade immune responses. Here, we cover the mechanisms of disease resistance to pathogens, and how growth is balanced with defence, with a focus on the essential roles of PTMs. Alteration of defence-related PTMs has the potential to fine-tune molecular interactions to produce disease-resistant crops, without trade-offs in growth and fitness.
Collapse
Affiliation(s)
| | - Ari Sadanandom
- Department of Biosciences, Durham University, Stockton Road, Durham DH1 3LE, UK;
| |
Collapse
|
13
|
Figueroa-Macías JP, García YC, Núñez M, Díaz K, Olea AF, Espinoza L. Plant Growth-Defense Trade-Offs: Molecular Processes Leading to Physiological Changes. Int J Mol Sci 2021; 22:ijms22020693. [PMID: 33445665 PMCID: PMC7828132 DOI: 10.3390/ijms22020693] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/31/2020] [Accepted: 01/04/2021] [Indexed: 01/01/2023] Open
Abstract
In order to survive in a hostile habitat, plants have to manage the available resources to reach a delicate balance between development and defense processes, setting up what plant scientists call a trade-off. Most of these processes are basically responses to stimuli sensed by plant cell receptors and are influenced by the environmental features, which can incredibly modify such responses and even cause changes upon both molecular and phenotypic level. Therefore, significant differences can be detected between plants of the same species living in different environments. The comprehension of plant growth-defense trade-offs from the molecular basis to the phenotypic expression is one of the fundamentals for developing sustainable agriculture, so with this review we intend to contribute to the increasing of knowledge on this topic, which have a great importance for future development of agricultural crop production.
Collapse
Affiliation(s)
| | - Yamilet Coll García
- Center for Natural Products Research, Faculty of Chemistry, University of Havana, Habana 10400, Cuba;
- Correspondence: (Y.C.G.); (L.E.); Tel.: +56-32-2654225 (L.E.)
| | - María Núñez
- Departamento de Química, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile; (M.N.); (K.D.)
| | - Katy Díaz
- Departamento de Química, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile; (M.N.); (K.D.)
| | - Andres F. Olea
- Instituto de Ciencias Químicas Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, El Llano Subercaseaux 2801, Santiago 8900000, Chile;
| | - Luis Espinoza
- Departamento de Química, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile; (M.N.); (K.D.)
- Correspondence: (Y.C.G.); (L.E.); Tel.: +56-32-2654225 (L.E.)
| |
Collapse
|
14
|
Skalak J, Nicolas KL, Vankova R, Hejatko J. Signal Integration in Plant Abiotic Stress Responses via Multistep Phosphorelay Signaling. FRONTIERS IN PLANT SCIENCE 2021; 12:644823. [PMID: 33679861 PMCID: PMC7925916 DOI: 10.3389/fpls.2021.644823] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 01/26/2021] [Indexed: 05/02/2023]
Abstract
Plants growing in any particular geographical location are exposed to variable and diverse environmental conditions throughout their lifespan. The multifactorial environmental pressure resulted into evolution of plant adaptation and survival strategies requiring ability to integrate multiple signals that combine to yield specific responses. These adaptive responses enable plants to maintain their growth and development while acquiring tolerance to a variety of environmental conditions. An essential signaling cascade that incorporates a wide range of exogenous as well as endogenous stimuli is multistep phosphorelay (MSP). MSP mediates the signaling of essential plant hormones that balance growth, development, and environmental adaptation. Nevertheless, the mechanisms by which specific signals are recognized by a commonly-occurring pathway are not yet clearly understood. Here we summarize our knowledge on the latest model of multistep phosphorelay signaling in plants and the molecular mechanisms underlying the integration of multiple inputs including both hormonal (cytokinins, ethylene and abscisic acid) and environmental (light and temperature) signals into a common pathway. We provide an overview of abiotic stress responses mediated via MSP signaling that are both hormone-dependent and independent. We highlight the mutual interactions of key players such as sensor kinases of various substrate specificities including their downstream targets. These constitute a tightly interconnected signaling network, enabling timely adaptation by the plant to an ever-changing environment. Finally, we propose possible future directions in stress-oriented research on MSP signaling and highlight its potential importance for targeted crop breeding.
Collapse
Affiliation(s)
- Jan Skalak
- CEITEC - Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, Brno, Czechia
| | - Katrina Leslie Nicolas
- CEITEC - Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, Brno, Czechia
| | - Radomira Vankova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czechia
| | - Jan Hejatko
- CEITEC - Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, Brno, Czechia
- *Correspondence: Jan Hejatko,
| |
Collapse
|
15
|
Han X, Zhang L, Zhao L, Xue P, Qi T, Zhang C, Yuan H, Zhou L, Wang D, Qiu J, Shen QH. SnRK1 Phosphorylates and Destabilizes WRKY3 to Enhance Barley Immunity to Powdery Mildew. PLANT COMMUNICATIONS 2020; 1:100083. [PMID: 33367247 PMCID: PMC7747994 DOI: 10.1016/j.xplc.2020.100083] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/03/2020] [Accepted: 06/08/2020] [Indexed: 05/19/2023]
Abstract
Plants recognize pathogens and activate immune responses, which usually involve massive transcriptional reprogramming. The evolutionarily conserved kinase, Sucrose non-fermenting-related kinase 1 (SnRK1), functions as a metabolic regulator that is essential for plant growth and stress responses. Here, we identify barley SnRK1 and a WRKY3 transcription factor by screening a cDNA library. SnRK1 interacts with WRKY3 in yeast, as confirmed by pull-down and luciferase complementation assays. Förster resonance energy transfer combined with noninvasive fluorescence lifetime imaging analysis indicates that the interaction occurs in the barley nucleus. Transient expression and virus-induced gene silencing analyses indicate that WRKY3 acts as a repressor of disease resistance to the Bgh fungus. Barley plants overexpressing WRKY3 have enhanced fungal microcolony formation and sporulation. Phosphorylation assays show that SnRK1 phosphorylates WRKY3 mainly at Ser83 and Ser112 to destabilize the repressor, and WRKY3 non-phosphorylation-null mutants at these two sites are more stable than the wild-type protein. SnRK1-overexpressing barley plants display enhanced disease resistance to Bgh. Transient expression of SnRK1 reduces fungal haustorium formation in barley cells, which probably requires SnRK1 nuclear localization and kinase activity. Together, these findings suggest that SnRK1 is directly involved in plant immunity through phosphorylation and destabilization of the WRKY3 repressor, revealing a new regulatory mechanism of immune derepression in plants.
Collapse
Affiliation(s)
- Xinyun Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Innovation Academy for Seed Design, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ling Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Innovation Academy for Seed Design, Beijing 100101, China
| | - Lifang Zhao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Innovation Academy for Seed Design, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengya Xue
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Innovation Academy for Seed Design, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting Qi
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Innovation Academy for Seed Design, Beijing 100101, China
| | - Chunlei Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Innovation Academy for Seed Design, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongbo Yuan
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Innovation Academy for Seed Design, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lixun Zhou
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Innovation Academy for Seed Design, Beijing 100101, China
| | - Daowen Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Innovation Academy for Seed Design, Beijing 100101, China
| | - Jinlong Qiu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qian-Hua Shen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Innovation Academy for Seed Design, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
- Corresponding author
| |
Collapse
|
16
|
Margaritopoulou T, Toufexi E, Kizis D, Balayiannis G, Anagnostopoulos C, Theocharis A, Rempelos L, Troyanos Y, Leifert C, Markellou E. Reynoutria sachalinensis extract elicits SA-dependent defense responses in courgette genotypes against powdery mildew caused by Podosphaera xanthii. Sci Rep 2020; 10:3354. [PMID: 32098979 PMCID: PMC7042220 DOI: 10.1038/s41598-020-60148-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 02/04/2020] [Indexed: 11/17/2022] Open
Abstract
Powdery mildew (PM) caused by Podosphaera xanthii is one of the most important courgette diseases with high yield losses and is currently controlled by fungicides and sulphur applications in conventional and organic production. Plant derived elicitors/inducers of resistance are natural compounds that induce resistance to pathogen attack and promote a faster and/or more robust activation of plant defense responses. Giant knotweed (Reynoutria sachalinensis, RS) extract is a known elicitor of plant defenses but its mode of action remains elusive. The aim of this study was to investigate the mechanisms of foliar RS applications and how these affect PM severity and crop performance when used alone or in combination with genetic resistance. RS foliar treatments significantly reduced conidial germination and PM severity on both an intermediate resistance (IR) and a susceptible (S) genotype. RS application triggered plant defense responses, which induced the formation of callose papillae, hydrogen peroxide accumulation and the Salicylic acid (SA) - dependent pathway. Increased SA production was detected along with increased p-coumaric and caffeic acid concentrations. These findings clearly indicate that RS elicits plant defenses notably as a consequence of SA pathway induction.
Collapse
Affiliation(s)
- Theoni Margaritopoulou
- Benaki Phytopathological Institute, Department of Phytopathology, Laboratory of Mycology, 8, St. Delta str., 145 61, Kifissia, Athens, Greece
| | - Eleftheria Toufexi
- Benaki Phytopathological Institute, Department of Phytopathology, Laboratory of Mycology, 8, St. Delta str., 145 61, Kifissia, Athens, Greece
- Newcastle University, Nafferton Ecological Farming Group, School of Agriculture Food and Rural Development, Newcastle upon Tyne, NE1 7RU, UK
| | - Dimosthenis Kizis
- Benaki Phytopathological Institute, Department of Phytopathology, Laboratory of Mycology, 8, St. Delta str., 145 61, Kifissia, Athens, Greece
| | - George Balayiannis
- Benaki Phytopathological Institute, Department of Pesticides Control & Phytopharmacy, Laboratory of Chemical Control of Pesticides, 8, St. Delta str., 145 61, Kifissia, Athens, Greece
| | - Christos Anagnostopoulos
- Benaki Phytopathological Institute, Department of Pesticides Control & Phytopharmacy, Laboratory of Pesticide Residues, 8, St. Delta str., 145 61, Kifissia, Athens, Greece
| | - Andreas Theocharis
- Benaki Phytopathological Institute, Department of Phytopathology, Laboratory of Mycology, 8, St. Delta str., 145 61, Kifissia, Athens, Greece
| | - Leonidas Rempelos
- Newcastle University, Nafferton Ecological Farming Group, School of Agriculture Food and Rural Development, Newcastle upon Tyne, NE1 7RU, UK
| | - Yerasimos Troyanos
- Benaki Phytopathological Institute, Department of Phytopathology, Laboratory of Non-Parasitic Diseases, 8, St. Delta str., 145 61, Kifissia, Athens, Greece
| | - Carlo Leifert
- Centre for Organics Research, Southern Cross University, Military Rd., Lismore, NSW, Australia
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, Domus Medica, 0372, Oslo, Norway
| | - Emilia Markellou
- Benaki Phytopathological Institute, Department of Phytopathology, Laboratory of Mycology, 8, St. Delta str., 145 61, Kifissia, Athens, Greece.
| |
Collapse
|
17
|
Li P, Lu YJ, Chen H, Day B. The Lifecycle of the Plant Immune System. CRITICAL REVIEWS IN PLANT SCIENCES 2020; 39:72-100. [PMID: 33343063 PMCID: PMC7748258 DOI: 10.1080/07352689.2020.1757829] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Throughout their life span, plants confront an endless barrage of pathogens and pests. To successfully defend against biotic threats, plants have evolved a complex immune system responsible for surveillance, perception, and the activation of defense. Plant immunity requires multiple signaling processes, the outcome of which vary according to the lifestyle of the invading pathogen(s). In short, these processes require the activation of host perception, the regulation of numerous signaling cascades, and transcriptome reprograming, all of which are highly dynamic in terms of temporal and spatial scales. At the same time, the development of a single immune event is subjective to the development of plant immune system, which is co-regulated by numerous processes, including plant ontogenesis and the host microbiome. In total, insight into each of these processes provides a fuller understanding of the mechanisms that govern plant-pathogen interactions. In this review, we will discuss the "lifecycle" of plant immunity: the development of individual events of defense, including both local and distal processes, as well as the development and regulation of the overall immune system by ontogenesis regulatory genes and environmental microbiota. In total, we will integrate the output of recent discoveries and theories, together with several hypothetical models, to present a dynamic portrait of plant immunity.
Collapse
Affiliation(s)
- Pai Li
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - Yi-Ju Lu
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - Huan Chen
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
- Graduate Program in Genetics and Genome Sciences, Michigan State University, East Lansing, MI, USA
| | - Brad Day
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
- Graduate Program in Genetics and Genome Sciences, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
18
|
Xie L, Dong C, Shang Q. Gene co-expression network analysis reveals pathways associated with graft healing by asymmetric profiling in tomato. BMC PLANT BIOLOGY 2019; 19:373. [PMID: 31445524 PMCID: PMC6708225 DOI: 10.1186/s12870-019-1976-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/14/2019] [Indexed: 05/18/2023]
Abstract
BACKGROUND The ability of severed rootstocks and shoots to re-establish vascular connections is used to generate grafted plants that combine desirable traits from both scions and rootstocks. Clarifying the mechanisms of graft healing is essential for its further application. We performed RNA sequencing of internodes near the cut position, making a distinction between separated or grafted tissues above and below the cut, in order to obtain a genetic description of graft union formation. RESULTS Using weighted gene co-expression analysis, variable transcripts were clustered into 10 distinct co-expression networks (modules) based on expression profiles, and genes with the most "hubness" ("hub" genes show the most connections in a network) within each module were predicted. A large proportion of modules were related to Position, and represent asymmetric expression networks from different pathways. Expression of genes involved in auxin and sugar transport and signaling, and brassinosteroid biosynthesis was increased above the cut, while stress response genes were up-regulated below the cut. Some modules were related to graft union formation, among which oxidative detoxification genes were co-expressed along with both wounding response and cell wall organization genes. CONCLUSIONS The present work provides a comprehensive understanding of graft healing-related gene networks in tomato. Also, the candidate pathways and hub genes identified here will be valuable for future studies of grafting in tomato.
Collapse
Affiliation(s)
- Lulu Xie
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Chunjuan Dong
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Qingmao Shang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| |
Collapse
|
19
|
Neuser J, Metzen CC, Dreyer BH, Feulner C, van Dongen JT, Schmidt RR, Schippers JH. HBI1 Mediates the Trade-off between Growth and Immunity through Its Impact on Apoplastic ROS Homeostasis. Cell Rep 2019; 28:1670-1678.e3. [DOI: 10.1016/j.celrep.2019.07.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 11/15/2018] [Accepted: 07/11/2019] [Indexed: 10/26/2022] Open
|
20
|
Tera M, Koyama T, Murata J, Furukawa A, Mori S, Azuma T, Watanabe T, Hori K, Okazawa A, Kabe Y, Suematsu M, Satake H, Ono E, Horikawa M. Identification of a binding protein for sesamin and characterization of its roles in plant growth. Sci Rep 2019; 9:8631. [PMID: 31201340 PMCID: PMC6570762 DOI: 10.1038/s41598-019-45003-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 05/29/2019] [Indexed: 12/22/2022] Open
Abstract
Sesamin is a furofuran-type lignan that is found abundantly in seeds of Sesamum indicum (sesame) and has been widely accepted as a dietary supplement with positive effects on human health. The biological activity of sesamin in human cells and organs has been analysed extensively, although comparatively few studies show biological functions for sesamin in planta. Herein we screened sesamin-binding proteins (SBP) from sesame seedling extracts using sesamin-immobilized nano-beads. In subsequent peptide mass fingerprinting analyses, we identified a SBP, Steroleosin B, which is one of the membrane proteins found in oil bodies. In addition, pull-down assays and saturation transfer difference-nuclear magnetic resonance (STD-NMR) experiments demonstrated that sesamin binds directly to recombinant Steroleosin B in vitro. Finally, ectopic accumulations of sesamin and Steroleosin B in transgenic Arabidopsis thaliana plants induced severe growth defects including suppression of leaf expansion and root elongation. Collectively, these results indicate that sesamin influences tissue development in the presence of Steroleosin B.
Collapse
Affiliation(s)
- Masayuki Tera
- Bioorganic Research Institute, Suntory Foundation for Life Sciences (SUNBOR), 8-1-1 Seikadai, Seika, Soraku, Kyoto, 619-0284, Japan
| | - Tomotsugu Koyama
- Bioorganic Research Institute, Suntory Foundation for Life Sciences (SUNBOR), 8-1-1 Seikadai, Seika, Soraku, Kyoto, 619-0284, Japan
| | - Jun Murata
- Bioorganic Research Institute, Suntory Foundation for Life Sciences (SUNBOR), 8-1-1 Seikadai, Seika, Soraku, Kyoto, 619-0284, Japan
| | - Ayako Furukawa
- Bioorganic Research Institute, Suntory Foundation for Life Sciences (SUNBOR), 8-1-1 Seikadai, Seika, Soraku, Kyoto, 619-0284, Japan
| | - Shoko Mori
- Bioorganic Research Institute, Suntory Foundation for Life Sciences (SUNBOR), 8-1-1 Seikadai, Seika, Soraku, Kyoto, 619-0284, Japan
| | - Toshiaki Azuma
- Bioorganic Research Institute, Suntory Foundation for Life Sciences (SUNBOR), 8-1-1 Seikadai, Seika, Soraku, Kyoto, 619-0284, Japan
| | - Takehiro Watanabe
- Bioorganic Research Institute, Suntory Foundation for Life Sciences (SUNBOR), 8-1-1 Seikadai, Seika, Soraku, Kyoto, 619-0284, Japan
| | - Katsuhito Hori
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Atsushi Okazawa
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| | - Yasuaki Kabe
- Department of Biochemistry, Keio University School of Medicine, 35 Shinanomachi, Shinjyuku-ku, Tokyo, 160-8582, Japan.,Japan Agency for Medical Research and Development (AMED), Core Research for Evolutional Science and Technology (CREST), 1-7-1 Otemachi, Chiyoda-ku, 100-0004, Japan
| | - Makoto Suematsu
- Department of Biochemistry, Keio University School of Medicine, 35 Shinanomachi, Shinjyuku-ku, Tokyo, 160-8582, Japan
| | - Honoo Satake
- Bioorganic Research Institute, Suntory Foundation for Life Sciences (SUNBOR), 8-1-1 Seikadai, Seika, Soraku, Kyoto, 619-0284, Japan
| | - Eiichiro Ono
- Research Institute, Suntory Global Innovation Center Ltd (SIC), 8-1-1 Seikadai, Seika, Soraku, Kyoto, 619-0284, Japan
| | - Manabu Horikawa
- Bioorganic Research Institute, Suntory Foundation for Life Sciences (SUNBOR), 8-1-1 Seikadai, Seika, Soraku, Kyoto, 619-0284, Japan.
| |
Collapse
|
21
|
Signorelli S, Tarkowski ŁP, Van den Ende W, Bassham DC. Linking Autophagy to Abiotic and Biotic Stress Responses. TRENDS IN PLANT SCIENCE 2019; 24:413-430. [PMID: 30824355 PMCID: PMC6475611 DOI: 10.1016/j.tplants.2019.02.001] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 02/01/2019] [Accepted: 02/04/2019] [Indexed: 05/05/2023]
Abstract
Autophagy is a process in which cellular components are delivered to lytic vacuoles to be recycled and has been demonstrated to promote abiotic/biotic stress tolerance. Here, we review how the responses triggered by stress conditions can affect autophagy and its signaling pathways. Besides the role of SNF-related kinase 1 (SnRK1) and TOR kinases in the regulation of autophagy, abscisic acid (ABA) and its signaling kinase SnRK2 have emerged as key players in the induction of autophagy under stress conditions. Furthermore, an interplay between reactive oxygen species (ROS) and autophagy is observed, ROS being able to induce autophagy and autophagy able to reduce ROS production. We also highlight the importance of osmotic adjustment for the successful performance of autophagy and discuss the potential role of GABA in plant survival and ethylene (ET)-induced autophagy.
Collapse
Affiliation(s)
- Santiago Signorelli
- Laboratory of Molecular Plant Biology, KU Leuven, Leuven, Belgium; Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Montevideo 12900, Uruguay.
| | | | - Wim Van den Ende
- Laboratory of Molecular Plant Biology, KU Leuven, Leuven, Belgium
| | - Diane C Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
22
|
Margalha L, Confraria A, Baena-González E. SnRK1 and TOR: modulating growth-defense trade-offs in plant stress responses. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2261-2274. [PMID: 30793201 DOI: 10.1093/jxb/erz066] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 02/07/2019] [Indexed: 05/11/2023]
Abstract
The evolutionarily conserved protein kinase complexes SnRK1 and TOR are central metabolic regulators essential for plant growth, development, and stress responses. They are activated by opposite signals, and the outcome of their activation is, in global terms, antagonistic. Similarly to their yeast and animal counterparts, SnRK1 is activated by the energy deficit often associated with stress to restore homeostasis, while TOR is activated in nutrient-rich conditions to promote growth. Recent evidence suggests that SnRK1 represses TOR in plants, revealing evolutionary conservation also in their crosstalk. Given their importance for integrating environmental information into growth and developmental programs, these signaling pathways hold great promise for reducing the growth penalties caused by stress. Here we review the literature connecting SnRK1 and TOR to plant stress responses. Although SnRK1 and TOR emerge mostly as positive regulators of defense and growth, respectively, the outcome of their activities in plant growth and performance is not always straightforward. Manipulation of both pathways under similar experimental setups, as well as further biochemical and genetic analyses of their molecular and functional interaction, is essential to fully understand the mechanisms through which these two metabolic pathways contribute to stress responses, growth, and development.
Collapse
Affiliation(s)
- Leonor Margalha
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande,Oeiras, Portugal
| | - Ana Confraria
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande,Oeiras, Portugal
| | | |
Collapse
|
23
|
Ahmad F, Anggita VS. Enhancement of saponin accumulation in adventitious root culture of Javanese ginseng (Talinum paniculatum Gaertn.) through methyl jasmonate and salicylic
acid elicitation. ACTA ACUST UNITED AC 2019. [DOI: 10.5897/ajb2018.16736] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
24
|
Yuan P, Du L, Poovaiah BW. Ca 2+/Calmodulin-Dependent AtSR1/CAMTA3 Plays Critical Roles in Balancing Plant Growth and Immunity. Int J Mol Sci 2018; 19:ijms19061764. [PMID: 29899210 PMCID: PMC6032152 DOI: 10.3390/ijms19061764] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/05/2018] [Accepted: 06/08/2018] [Indexed: 02/07/2023] Open
Abstract
During plant-pathogen interactions, plants have to relocate their resources including energy to defend invading organisms; as a result, plant growth and development are usually reduced. Arabidopsis signal responsive1 (AtSR1) has been documented as a negative regulator of plant immune responses and could serve as a positive regulator of plant growth and development. However, the mechanism by which AtSR1 balances plant growth and immunity is poorly understood. Here, we performed a global gene expression profiling using Affymetrix microarrays to study how AtSR1 regulates defense- and growth-related genes in plants with and without bacterial pathogen infection. Results revealed that AtSR1 negatively regulates most of the immune-related genes involved in molecular pattern-triggered immunity (PTI), effector-triggered immunity (ETI), and in salicylic acid (SA)- and jasmonate (JA)-mediated signaling pathways. AtSR1 may rigidly regulate several steps of the SA-mediated pathway, from the activation of SA synthesis to the perception of SA signal. Furthermore, AtSR1 may also regulate plant growth through its involvement in regulating auxin- and BRs-related pathways. Although microarray data revealed that expression levels of defense-related genes induced by pathogens are higher in wild-type (WT) plants than that in atsr1 mutant plants, WT plants are more susceptible to the infection of virulent pathogen as compared to atsr1 mutant plants. These observations indicate that the AtSR1 functions in suppressing the expression of genes induced by pathogen attack and contributes to the rapid establishment of resistance in WT background. Results of electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP)-PCR assays suggest that AtSR1 acts as transcription factor in balancing plant growth and immunity, through interaction with the “CGCG” containing CG-box in the promotors of its target genes.
Collapse
Affiliation(s)
- Peiguo Yuan
- Laboratory of Molecular Plant Science, Department of Horticulture, Washington State University, Pullman, WA 99164-6414, USA.
| | - Liqun Du
- Laboratory of Molecular Plant Science, Department of Horticulture, Washington State University, Pullman, WA 99164-6414, USA.
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China.
| | - B W Poovaiah
- Laboratory of Molecular Plant Science, Department of Horticulture, Washington State University, Pullman, WA 99164-6414, USA.
| |
Collapse
|
25
|
Bechtold U, Ferguson JN, Mullineaux PM. To defend or to grow: lessons from Arabidopsis C24. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:2809-2821. [PMID: 29562306 DOI: 10.1093/jxb/ery106] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 03/13/2018] [Indexed: 06/08/2023]
Abstract
The emergence of Arabidopsis as a model species and the availability of genetic and genomic resources have resulted in the identification and detailed characterization of abiotic stress signalling pathways. However, this has led only to limited success in engineering abiotic stress tolerance in crops. This is because there needs to be a deeper understanding of how to combine resistances to a range of stresses with growth and productivity. The natural variation and genomic resources of Arabidopsis thaliana (Arabidopsis) are a great asset to understand the mechanisms of multiple stress tolerances. One natural variant in Arabidopsis is the accession C24, and here we provide an overview of the increasing research interest in this accession. C24 is highlighted as a source of tolerance for multiple abiotic and biotic stresses, and a key accession to understand the basis of basal immunity to infection, high water use efficiency, and water productivity. Multiple biochemical, physiological, and phenological mechanisms have been attributed to these traits in C24, and none of them constrains productivity. Based on the uniqueness of C24, we postulate that the use of variation derived from natural selection in undomesticated species provides opportunities to better understand how complex environmental stress tolerances and resource use efficiency are co-ordinated.
Collapse
Affiliation(s)
- Ulrike Bechtold
- University of Essex, School of Biological Sciences, Wivenhoe Park, Colchester, UK
| | - John N Ferguson
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Philip M Mullineaux
- University of Essex, School of Biological Sciences, Wivenhoe Park, Colchester, UK
| |
Collapse
|
26
|
MYB30 links ROS signaling, root cell elongation, and plant immune responses. Proc Natl Acad Sci U S A 2018; 115:E4710-E4719. [PMID: 29712840 DOI: 10.1073/pnas.1804233115] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Reactive oxygen species (ROS) are known to be important signal molecules that are involved in biotic and abiotic stress responses as well as in growth regulation. However, the molecular mechanisms by which ROS act as a growth regulator, as well as how ROS-dependent growth regulation relates to its roles in stress responses, are not well understood. We performed a time-course microarray analysis of Arabidopsis root tips upon treatment with hydrogen peroxide, which we named "ROS-map." Using the ROS-map, we identified an MYB transcription factor, MYB30, which showed a strong response to ROS treatment and is the key regulator of a gene network that leads to the hydrogen peroxide-dependent inhibition of root cell elongation. Intriguingly, this network contained multiple genes involved in very-long-chain fatty acid (VLCFA) transport. Finally, we showed that MYB30 is necessary for root growth regulation during defense responses, thus providing a molecular link between these two ROS-associated processes.
Collapse
|
27
|
Ajengui A, Bertolini E, Ligorio A, Chebil S, Ippolito A, Sanzani SM. Comparative transcriptome analysis of two citrus germplasms with contrasting susceptibility to Phytophthora nicotianae provides new insights into tolerance mechanisms. PLANT CELL REPORTS 2018; 37:483-499. [PMID: 29290008 DOI: 10.1007/s00299-017-2244-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 12/26/2017] [Indexed: 06/07/2023]
Abstract
Host perception of Phytophthora nicotianae switching to necrotrophy is fundamental for disease tolerance of citrus. It involves an HR-like response, strengthening of the cell wall structure and hormonal signaling. Stem rot caused by P. nicotianae is a worldwide disease of several important crops, including citrus. Given the growing awareness of chemical fungicides drawbacks, genetic improvement of citrus rootstocks remains the best alternative. However, the molecular basis underlying the successful response of resistant and/or tolerant genotypes remains poorly understood. Therefore, we performed a transcriptomic analysis to examine the differential defense response to P. nicotianae of two germplasms-tolerant sour orange (SO, Citrus aurantium) and susceptible Madam Vinous (MV, C. sinensis)-in both the biotrophic and necrotrophic phases of host-pathogen interaction. Our results revealed the necrotrophic phase as a decisive turning point, since it included stronger modulation of a number of genes implicated in pathogen perception, signal transduction, HR-like response, transcriptional reprogramming, hormone signaling, and cell wall modifications. In particular, the pathogen perception category reflected the ability of SO to perceive the pathogen even after its switch to necrotrophy, and thus to cope successfully with the infection, while MV failed. The concomitant changes in genes involved in the remaining functional categories seemed to prevent pathogen spread. This investigation provided further understanding of the successful defense mechanisms of C. aurantium against P. nicotianae, which might be exploited in post-genomic strategies to develop resistant Citrus genotypes.
Collapse
Affiliation(s)
- Arwa Ajengui
- Laboratory of Plant Molecular Physiology, Center of Biotechnology of Borj-Cédria, 2050, Hammam-Lif, Tunisia
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari "Aldo Moro", Via Amendola 165/A, 70126, Bari, Italy
- Faculté des Sciences de Tunis, LR03ES03 Laboratoire Microorganismes et Biomolécules Actives, Université Tunis El Manar, 2092, Tunis, Tunisia
| | - Edoardo Bertolini
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127, Pisa, Italy
| | - Angela Ligorio
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari "Aldo Moro", Via Amendola 165/A, 70126, Bari, Italy
| | - Samir Chebil
- Laboratory of Plant Molecular Physiology, Center of Biotechnology of Borj-Cédria, 2050, Hammam-Lif, Tunisia
| | - Antonio Ippolito
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari "Aldo Moro", Via Amendola 165/A, 70126, Bari, Italy
| | - Simona Marianna Sanzani
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari "Aldo Moro", Via Amendola 165/A, 70126, Bari, Italy.
| |
Collapse
|
28
|
Filipe O, De Vleesschauwer D, Haeck A, Demeestere K, Höfte M. The energy sensor OsSnRK1a confers broad-spectrum disease resistance in rice. Sci Rep 2018; 8:3864. [PMID: 29497084 PMCID: PMC5832823 DOI: 10.1038/s41598-018-22101-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 02/14/2018] [Indexed: 12/29/2022] Open
Abstract
Sucrose non-fermenting-1-related protein kinase-1 (SnRK1) belongs to a family of evolutionary conserved kinases with orthologs in all eukaryotes, ranging from yeasts (SnF1) to mammals (AMP-Activated kinase). These kinases sense energy deficits caused by nutrient limitation or stress and coordinate the required adaptations to maintain energy homeostasis and survival. In plants, SnRK1 is a global regulator of plant metabolism and is also involved in abiotic stress responses. Its role in the response to biotic stress, however, is only starting to be uncovered. Here we studied the effect of altered SnRK1a expression on growth and plant defense in rice. OsSnRK1a overexpression interfered with normal growth and development and increased resistance against both (hemi)biotrophic and necrotrophic pathogens, while OsSnRK1a silencing in RNAi lines increased susceptibility. OsSnRK1a overexpression positively affected the salicylic acid pathway and boosted the jasmonate-mediated defense response after inoculation with the blast fungus Pyricularia oryzae. Together these findings strongly suggest OsSnRK1a to be involved in plant basal immunity and favor a model whereby OsSnRK1a acts as a master switch that regulates growth-immunity trade-offs.
Collapse
Affiliation(s)
- Osvaldo Filipe
- Laboratory of Phytopathology, Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - David De Vleesschauwer
- Laboratory of Phytopathology, Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
- Bayer CropScience NV, Technologiepark 38, 9051, Zwijnaarde, Belgium
| | - Ashley Haeck
- Research Group EnVOC, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Kristof Demeestere
- Research Group EnVOC, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Monica Höfte
- Laboratory of Phytopathology, Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| |
Collapse
|
29
|
Beiki H, Pakdel A, Javaremi AN, Masoudi-Nejad A, Reecy JM. Cattle infection response network and its functional modules. BMC Immunol 2018; 19:2. [PMID: 29301495 PMCID: PMC5755453 DOI: 10.1186/s12865-017-0238-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 12/18/2017] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Weighted Gene Co-expression Network analysis, a powerful technique used to extract co-expressed gene pattern from mRNA expression data, was constructed to infer common immune strategies used by cattle in response to five different bacterial species (Escherichia coli, Mycobacterium avium, Mycobacterium bovis, Salmonella and Staphylococcus aureus) and a protozoa (Trypanosoma Congolense) using 604 publicly available gene expression microarrays from 12 cattle infection experiments. RESULTS A total of 14,999 transcripts that were differentially expressed (DE) in at least three different infection experiments were consolidated into 15 modules that contained between 43 and 4441 transcripts. The high number of shared DE transcripts between the different types of infections indicated that there were potentially common immune strategies used in response to these infections. The number of transcripts in the identified modules varied in response to different infections. Fourteen modules showed a strong functional enrichment for specific GO/pathway terms related to "immune system process" (71%), "metabolic process" (71%), "growth and developmental process" (64%) and "signaling pathways" (50%), which demonstrated the close interconnection between these biological pathways in response to different infections. The largest module in the network had several over-represented GO/pathway terms related to different aspects of lipid metabolism and genes in this module were down-regulated for the most part during various infections. Significant negative correlations between this module's eigengene values, three immune related modules in the network, and close interconnection between their hub genes, might indicate the potential co-regulation of these modules during different infections in bovine. In addition, the potential function of 93 genes with no functional annotation was inferred based on neighbor analysis and functional uniformity among associated genes. Several hypothetical genes were differentially expressed during experimental infections, which might indicate their important role in cattle response to different infections. CONCLUSIONS We identified several biological pathways involved in immune response to different infections in cattle. These findings provide rich information for experimental biologists to design experiments, interpret experimental results, and develop novel hypothesis on immune response to different infections in cattle.
Collapse
Affiliation(s)
- Hamid Beiki
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | - Abbas Pakdel
- Department of Animal Science, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Ardeshir Nejati Javaremi
- Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj, 31587-11167, Iran
| | - Ali Masoudi-Nejad
- Laboratory of Systems Biology and Bioinformatics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, 31587-11167, Iran
| | - James M Reecy
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
30
|
De Vleesschauwer D, Filipe O, Hoffman G, Seifi HS, Haeck A, Canlas P, Van Bockhaven J, De Waele E, Demeestere K, Ronald P, Hofte M. Target of rapamycin signaling orchestrates growth-defense trade-offs in plants. THE NEW PHYTOLOGIST 2018; 217:305-319. [PMID: 28905991 PMCID: PMC5711548 DOI: 10.1111/nph.14785] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/09/2017] [Indexed: 05/18/2023]
Abstract
Plant defense to microbial pathogens is often accompanied by significant growth inhibition. How plants merge immune system function with normal growth and development is still poorly understood. Here, we investigated the role of target of rapamycin (TOR), an evolutionary conserved serine/threonine kinase, in the plant defense response. We used rice as a model system and applied a combination of chemical, genetic, genomic and cell-based analyses. We demonstrate that ectopic expression of TOR and Raptor (regulatory-associated protein of mTOR), a protein previously demonstrated to interact with TOR in Arabidopsis, positively regulates growth and development in rice. Transcriptome analysis of rice cells treated with the TOR-specific inhibitor rapamycin revealed that TOR not only dictates transcriptional reprogramming of extensive gene sets involved in central and secondary metabolism, cell cycle and transcription, but also suppresses many defense-related genes. TOR overexpression lines displayed increased susceptibility to both bacterial and fungal pathogens, whereas plants with reduced TOR signaling displayed enhanced resistance. Finally, we found that TOR antagonizes the action of the classic defense hormones salicylic acid and jasmonic acid. Together, these results indicate that TOR acts as a molecular switch for the activation of cell proliferation and plant growth at the expense of cellular immunity.
Collapse
Affiliation(s)
- David De Vleesschauwer
- Laboratory of Phytopathology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Osvaldo Filipe
- Laboratory of Phytopathology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Gena Hoffman
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA, 95616, USA
| | - Hamed Soren Seifi
- Laboratory of Phytopathology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Ashley Haeck
- Research Group EnVOC, Department of Sustainable Organic Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Patrick Canlas
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA, 95616, USA
| | - Jonas Van Bockhaven
- Laboratory of Phytopathology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Evelien De Waele
- Laboratory of Phytopathology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Kristof Demeestere
- Research Group EnVOC, Department of Sustainable Organic Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Pamela Ronald
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA, 95616, USA
- Joint Bioenergy Institute, Emeryville, CA, 94608, USA
| | - Monica Hofte
- Laboratory of Phytopathology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| |
Collapse
|
31
|
Deng Y, Wang J, Tung J, Liu D, Zhou Y, He S, Du Y, Baker B, Li F. A role for small RNA in regulating innate immunity during plant growth. PLoS Pathog 2018; 14:e1006756. [PMID: 29293695 PMCID: PMC5766230 DOI: 10.1371/journal.ppat.1006756] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 01/12/2018] [Accepted: 11/16/2017] [Indexed: 12/05/2022] Open
Abstract
Plant genomes encode large numbers of nucleotide-binding (NB) leucine-rich repeat (LRR) immune receptors (NLR) that mediate effector triggered immunity (ETI) and play key roles in protecting crops from diseases caused by devastating pathogens. Fitness costs are associated with plant NLR genes and regulation of NLR genes by micro(mi)RNAs and phased small interfering RNAs (phasiRNA) is proposed as a mechanism for reducing these fitness costs. However, whether NLR expression and NLR-mediated immunity are regulated during plant growth is unclear. We conducted genome-wide transcriptome analysis and showed that NLR expression gradually increased while expression of their regulatory small RNAs (sRNA) gradually decreased as plants matured, indicating that sRNAs could play a role in regulating NLR expression during plant growth. We further tested the role of miRNA in the growth regulation of NLRs using the tobacco mosaic virus (TMV) resistance gene N, which was targeted by miR6019 and miR6020. We showed that N-mediated resistance to TMV effectively restricted this virus to the infected leaves of 6-week old plants, whereas TMV infection was lethal in 1- and 3-week old seedlings due to virus-induced systemic necrosis. We further found that N transcript levels gradually increased while miR6019 levels gradually decreased during seedling maturation that occurs in the weeks after germination. Analyses of reporter genes in transgenic plants showed that growth regulation of N expression was post-transcriptionally mediated by MIR6019/6020 whereas MIR6019/6020 was regulated at the transcriptional level during plant growth. TMV infection of MIR6019/6020 transgenic plants indicated a key role for miR6019-triggered phasiRNA production for regulation of N-mediated immunity. Together our results demonstrate a mechanistic role for miRNAs in regulating innate immunity during plant growth.
Collapse
MESH Headings
- Disease Resistance
- Gene Expression Profiling
- Gene Expression Regulation, Plant
- Genes, Reporter
- Genome, Plant
- Immunity, Innate
- Solanum lycopersicum/growth & development
- Solanum lycopersicum/immunology
- Solanum lycopersicum/metabolism
- Solanum lycopersicum/virology
- NLR Proteins/genetics
- NLR Proteins/metabolism
- Plant Diseases/immunology
- Plant Diseases/virology
- Plant Immunity
- Plant Leaves/growth & development
- Plant Leaves/immunology
- Plant Leaves/metabolism
- Plant Leaves/virology
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/immunology
- Plants, Genetically Modified/metabolism
- Plants, Genetically Modified/virology
- RNA Interference
- RNA, Plant
- RNA, Small Interfering/metabolism
- Seedlings/growth & development
- Seedlings/immunology
- Seedlings/metabolism
- Seedlings/virology
- Species Specificity
- Nicotiana/growth & development
- Nicotiana/immunology
- Nicotiana/metabolism
- Nicotiana/virology
- Tobacco Mosaic Virus/genetics
- Tobacco Mosaic Virus/growth & development
- Tobacco Mosaic Virus/physiology
Collapse
Affiliation(s)
- Yingtian Deng
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Jubin Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Jeffrey Tung
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States of America
- Plant Gene expression Center, ARS-USDA, Albany, CA, United States of America
| | - Dan Liu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Yingjia Zhou
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Shuang He
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Yunlian Du
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Barbara Baker
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States of America
- Plant Gene expression Center, ARS-USDA, Albany, CA, United States of America
| | - Feng Li
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
32
|
Liu J, Chen S, Chen L, Zhou Q, Wang M, Feng D, Li JF, Wang J, Wang HB, Liu B. BIK1 cooperates with BAK1 to regulate constitutive immunity and cell death in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2017; 59:234-239. [PMID: 28225199 DOI: 10.1111/jipb.12529] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 02/20/2017] [Indexed: 05/10/2023]
Abstract
In Arabidopsis, both the membrane-anchored receptor-like kinase (RLK) BAK1 and the receptor-like cytoplasmic kinase (RLCK) BIK1 are important mediators of transmembrane signal transduction that regulate plant development and immunity. However, little attention has been paid to their genetic association. This study found the bak1 bik1 double mutant of Arabidopsis displayed a severe dwarfism phenotype due to constitutive immunity and cell death in developing plants. These data suggest that BIK1 cooperates with BAK1 to regulate constitutive immunity and cell death.
Collapse
Affiliation(s)
- Jun Liu
- State Key Laboratory of Biocontrol and Collaborative Innovation Center of Genetics and Development, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Sufen Chen
- State Key Laboratory of Biocontrol and Collaborative Innovation Center of Genetics and Development, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Lijuan Chen
- State Key Laboratory of Biocontrol and Collaborative Innovation Center of Genetics and Development, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Qi Zhou
- State Key Laboratory of Biocontrol and Collaborative Innovation Center of Genetics and Development, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Menglong Wang
- State Key Laboratory of Biocontrol and Collaborative Innovation Center of Genetics and Development, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Dongru Feng
- State Key Laboratory of Biocontrol and Collaborative Innovation Center of Genetics and Development, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jian-Feng Li
- State Key Laboratory of Biocontrol and Collaborative Innovation Center of Genetics and Development, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jinfa Wang
- State Key Laboratory of Biocontrol and Collaborative Innovation Center of Genetics and Development, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Hong-Bin Wang
- State Key Laboratory of Biocontrol and Collaborative Innovation Center of Genetics and Development, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Bing Liu
- State Key Laboratory of Biocontrol and Collaborative Innovation Center of Genetics and Development, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
33
|
Takatsuji H. Regulating Tradeoffs to Improve Rice Production. FRONTIERS IN PLANT SCIENCE 2017; 8:171. [PMID: 28232844 PMCID: PMC5298989 DOI: 10.3389/fpls.2017.00171] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/27/2017] [Indexed: 05/05/2023]
Abstract
Plants are sessile organisms that are continuously exposed to a wide range of environmental stresses. To cope with various stresses using limited resources, plants have evolved diverse mechanisms of "tradeoff" that enable the allocation of resources to address the most life-threatening stress. During our studies on induced disease resistance in rice, we have found some important phenomena relevant to tradeoffs between biotic and abiotic stress responses, and between stress response and plant growth. We characterized these tradeoff phenomena from viewpoints of signaling crosstalks associated with transcriptional regulation. Here, I describe following topics: (1) PTP1-dependent increased disease susceptibility of rice under low temperature and high salinity conditions, (2) OsNPR1-dependent tradeoff between pathogen defense and photosynthesis, (3) tradeoff between pathogen defense and abiotic stress tolerance in WRKY45-overexpressing rice plants, and (4) WRKY62-dependent tradeoff between pathogen defense and hypoxia tolerance. Lastly, I discuss my view regarding the significance of such tradeoffs in agricultural production that should be considered in crop breeding; that is, the tradeoffs, although they benefit plants in nature, can be rather disadvantageous in agricultural production.
Collapse
|
34
|
Magyar Z, Bögre L, Ito M. DREAMs make plant cells to cycle or to become quiescent. CURRENT OPINION IN PLANT BIOLOGY 2016; 34:100-106. [PMID: 27816815 DOI: 10.1016/j.pbi.2016.10.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 09/23/2016] [Accepted: 10/07/2016] [Indexed: 05/03/2023]
Abstract
Cell cycle phase specific oscillation of gene transcription has long been recognized as an underlying principle for ordered processes during cell proliferation. The G1/S-specific and G2/M-specific cohorts of genes in plants are regulated by the E2F and the MYB3R transcription factors. Mutant analysis suggests that activator E2F functions might not be fully required for cell cycle entry. In contrast, the two activator-type MYB3Rs are part of positive feedback loops to drive the burst of mitotic gene expression, which is necessary at least to accomplish cytokinesis. Repressor MYB3Rs act outside the mitotic time window during cell cycle progression, and are important for the shutdown of mitotic genes to impose quiescence in mature organs. The two distinct classes of E2Fs and MYB3Rs together with the RETINOBLATOMA RELATED are part of multiprotein complexes that may be evolutionary related to what is known as DREAM complex in animals. In plants, there are multiple such complexes with distinct compositions and functions that may be involved in the coordinated cell cycle and developmental regulation of E2F targets and mitotic genes.
Collapse
Affiliation(s)
- Zoltán Magyar
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - László Bögre
- Royal Holloway, University of London, School of Biological Sciences, Egham, Surrey TW20 0EX, UK
| | - Masaki Ito
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan; JST, CREST, Chikusa, Nagoya 464-8601, Japan.
| |
Collapse
|
35
|
Gutierrez C. 25 Years of Cell Cycle Research: What's Ahead? TRENDS IN PLANT SCIENCE 2016; 21:823-833. [PMID: 27401252 DOI: 10.1016/j.tplants.2016.06.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 06/13/2016] [Accepted: 06/21/2016] [Indexed: 05/27/2023]
Abstract
We have reached 25 years since the first molecular approaches to plant cell cycle. Fortunately, we have witnessed an enormous advance in this field that has benefited from using complementary approaches including molecular, cellular, genetic and genomic resources. These studies have also branched and demonstrated the functional relevance of cell cycle regulators for virtually every aspect of plant life. The question is - where are we heading? I review here the latest developments in the field and briefly elaborate on how new technological advances should contribute to novel approaches that will benefit the plant cell cycle field. Understanding how the cell division cycle is integrated at the organismal level is perhaps one of the major challenges.
Collapse
Affiliation(s)
- Crisanto Gutierrez
- Centro de Biologia Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Nicolas Cabrera 1, 28049 Madrid, Spain.
| |
Collapse
|
36
|
Hulsmans S, Rodriguez M, De Coninck B, Rolland F. The SnRK1 Energy Sensor in Plant Biotic Interactions. TRENDS IN PLANT SCIENCE 2016; 21:648-661. [PMID: 27156455 DOI: 10.1016/j.tplants.2016.04.008] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/24/2016] [Accepted: 04/07/2016] [Indexed: 05/20/2023]
Abstract
Our understanding of plant biotic interactions has grown significantly in recent years with the identification of the mechanisms involved in innate immunity, hormone signaling, and secondary metabolism. The impact of such interactions on primary metabolism and the role of metabolic signals in the response of the plants, however, remain far less explored. The SnRK1 (SNF1-related kinase 1) kinases act as metabolic sensors, integrating very diverse stress conditions, and are key in maintaining energy homeostasis for growth and survival. Consistently, an important role is emerging for these kinases as regulators of biotic stress responses triggered by viral, bacterial, fungal, and oomycete infections as well as by herbivory. While this identifies SnRK1 as a promising target for directed modification or selection for more quantitative and sustainable resistance, its central function also increases the chances of unwanted side effects on growth and fitness, stressing the need for identification and in-depth characterization of the mechanisms and target processes involved. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Sander Hulsmans
- Laboratory of Molecular Plant Biology, Biology Department, University of Leuven-KU Leuven, Kasteelpark Arenberg 31, 3001 Heverlee-Leuven, Belgium
| | - Marianela Rodriguez
- Instituto de Fisiología y Recursos Genéticos Vegetales (IFRGV), Centro de Investigaciones Agropecuarias (CIAP), Instituto Nacional de Tecnología Agropecuaria (INTA), Camino 60 cuadras km 5.5 X5020ICA, Córdoba, Argentina
| | - Barbara De Coninck
- Centre of Microbial and Plant Genetics, Microbial and Molecular Systems Department, University of Leuven-KU Leuven, Kasteelpark Arenberg 20, 3001 Heverlee-Leuven, Belgium; Vlaams Instituut voor Biotechnologie (VIB), Department of Plant Systems Biology, Technologiepark 927, 9052 Gent, Belgium
| | - Filip Rolland
- Laboratory of Molecular Plant Biology, Biology Department, University of Leuven-KU Leuven, Kasteelpark Arenberg 31, 3001 Heverlee-Leuven, Belgium.
| |
Collapse
|
37
|
Abstract
Synthetic biology promises to create high-impact solutions to challenges in the areas of biotechnology, human/animal health, the environment, energy, materials and food security. Equally, synthetic biologists create tools and strategies that have the potential to help us answer important fundamental questions in biology. Warwick Integrative Synthetic Biology (WISB) pursues both of these mutually complementary 'build to apply' and 'build to understand' approaches. This is reflected in our research structure, in which a core theme on predictive biosystems engineering develops underpinning understanding as well as next-generation experimental/theoretical tools, and these are then incorporated into three applied themes in which we engineer biosynthetic pathways, microbial communities and microbial effector systems in plants. WISB takes a comprehensive approach to training, education and outreach. For example, WISB is a partner in the EPSRC/BBSRC-funded U.K. Doctoral Training Centre in synthetic biology, we have developed a new undergraduate module in the subject, and we have established five WISB Research Career Development Fellowships to support young group leaders. Research in Ethical, Legal and Societal Aspects (ELSA) of synthetic biology is embedded in our centre activities. WISB has been highly proactive in building an international research and training network that includes partners in Barcelona, Boston, Copenhagen, Madrid, Marburg, São Paulo, Tartu and Valencia.
Collapse
Affiliation(s)
- John McCarthy
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, U.K.
| |
Collapse
|
38
|
Smakowska E, Kong J, Busch W, Belkhadir Y. Organ-specific regulation of growth-defense tradeoffs by plants. CURRENT OPINION IN PLANT BIOLOGY 2016; 29:129-37. [PMID: 26802804 DOI: 10.1016/j.pbi.2015.12.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/07/2015] [Accepted: 12/08/2015] [Indexed: 05/22/2023]
Abstract
Plants grow while also defending themselves against phylogenetically unrelated pathogens. Because defense and growth are both costly programs, a plant's success in colonizing resource-scarce environments requires tradeoffs between the two. Here, we summarize efforts aimed at understanding how plants use iterative tradeoffs to modulate differential organ growth when defenses are elicited. First, we focus on shoots to illustrate how light, in conjunction with the growth hormone gibberellin (GA) and the defense hormone jasmonic acid (JA), act to finely regulate defense and growth programs in this organ. Second, we expand on the regulation of growth-defense trade-offs in the root, a less well-studied topic despite the critical role of this organ in acquiring resources in an environment deeply entrenched with disparate populations of microbes.
Collapse
Affiliation(s)
- Elwira Smakowska
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr Bohr Gasse 3, Vienna 1030, Austria
| | - Jixiang Kong
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr Bohr Gasse 3, Vienna 1030, Austria
| | - Wolfgang Busch
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr Bohr Gasse 3, Vienna 1030, Austria
| | - Youssef Belkhadir
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr Bohr Gasse 3, Vienna 1030, Austria.
| |
Collapse
|
39
|
Guiguet A, Dubreuil G, Harris MO, Appel HM, Schultz JC, Pereira MH, Giron D. Shared weapons of blood- and plant-feeding insects: Surprising commonalities for manipulating hosts. JOURNAL OF INSECT PHYSIOLOGY 2016; 84:4-21. [PMID: 26705897 DOI: 10.1016/j.jinsphys.2015.12.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 12/14/2015] [Accepted: 12/15/2015] [Indexed: 05/04/2023]
Abstract
Insects that reprogram host plants during colonization remind us that the insect side of plant-insect story is just as interesting as the plant side. Insect effectors secreted by the salivary glands play an important role in plant reprogramming. Recent discoveries point to large numbers of salivary effectors being produced by a single herbivore species. Since genetic and functional characterization of effectors is an arduous task, narrowing the field of candidates is useful. We present ideas about types and functions of effectors from research on blood-feeding parasites and their mammalian hosts. Because of their importance for human health, blood-feeding parasites have more tools from genomics and other - omics than plant-feeding parasites. Four themes have emerged: (1) mechanical damage resulting from attack by blood-feeding parasites triggers "early danger signals" in mammalian hosts, which are mediated by eATP, calcium, and hydrogen peroxide, (2) mammalian hosts need to modulate their immune responses to the three "early danger signals" and use apyrases, calreticulins, and peroxiredoxins, respectively, to achieve this, (3) blood-feeding parasites, like their mammalian hosts, rely on some of the same "early danger signals" and modulate their immune responses using the same proteins, and (4) blood-feeding parasites deploy apyrases, calreticulins, and peroxiredoxins in their saliva to manipulate the "danger signals" of their mammalian hosts. We review emerging evidence that plant-feeding insects also interfere with "early danger signals" of their hosts by deploying apyrases, calreticulins and peroxiredoxins in saliva. Given emerging links between these molecules, and plant growth and defense, we propose that these effectors interfere with phytohormone signaling, and therefore have a special importance for gall-inducing and leaf-mining insects, which manipulate host-plants to create better food and shelter.
Collapse
Affiliation(s)
- Antoine Guiguet
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS - Université François-Rabelais de Tours, 37200 Tours, France; Département de Biologie, École Normale Supérieure de Lyon, 69007 Lyon, France
| | - Géraldine Dubreuil
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS - Université François-Rabelais de Tours, 37200 Tours, France
| | - Marion O Harris
- Department of Entomology, North Dakota State University, Fargo, ND 58105, USA; Le Studium Loire Valley Institute for Advanced Studies, 45000 Orléans, France
| | - Heidi M Appel
- Life Science Center, University of Missouri, Columbia, MO 65211, USA
| | - Jack C Schultz
- Life Science Center, University of Missouri, Columbia, MO 65211, USA
| | - Marcos H Pereira
- Le Studium Loire Valley Institute for Advanced Studies, 45000 Orléans, France; Laboratório de Fisiologia de Insectos Hematófagos, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - David Giron
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS - Université François-Rabelais de Tours, 37200 Tours, France.
| |
Collapse
|