1
|
Parrow NL, Li Y, Feola M, Guerra A, Casu C, Prasad P, Mammen L, Ali F, Vaicikauskas E, Rivella S, Ginzburg YZ, Fleming RE. Lobe specificity of iron binding to transferrin modulates murine erythropoiesis and iron homeostasis. Blood 2019; 134:1373-1384. [PMID: 31434707 PMCID: PMC6839954 DOI: 10.1182/blood.2018893099] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 08/12/2019] [Indexed: 12/13/2022] Open
Abstract
Transferrin, the major plasma iron-binding molecule, interacts with cell-surface receptors to deliver iron, modulates hepcidin expression, and regulates erythropoiesis. Transferrin binds and releases iron via either or both of 2 homologous lobes (N and C). To test the hypothesis that the specificity of iron occupancy in the N vs C lobe influences transferrin function, we generated mice with mutations to abrogate iron binding in either lobe (TfN-bl or TfC-bl). Mice homozygous for either mutation had hepatocellular iron loading and decreased liver hepcidin expression (relative to iron concentration), although to different magnitudes. Both mouse models demonstrated some aspects of iron-restricted erythropoiesis, including increased zinc protoporphyrin levels, decreased hemoglobin levels, and microcytosis. Moreover, the TfN-bl/N-bl mice demonstrated the anticipated effect of iron restriction on red cell production (ie, no increase in red blood cell [RBC] count despite elevated erythropoietin levels), along with a poor response to exogenous erythropoietin. In contrast, the TfC-bl/C-bl mice had elevated RBC counts and an exaggerated response to exogenous erythropoietin sufficient to ameliorate the anemia. Observations in heterozygous mice further support a role for relative N vs C lobe iron occupancy in transferrin-mediated regulation of iron homeostasis and erythropoiesis.
Collapse
Affiliation(s)
- Nermi L Parrow
- Department of Pediatrics, Saint Louis University School of Medicine, St. Louis, MO
| | - Yihang Li
- Department of Pediatrics, Saint Louis University School of Medicine, St. Louis, MO
| | - Maria Feola
- Division of Hematology-Oncology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Amaliris Guerra
- Division of Hematology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA; and
| | - Carla Casu
- Division of Hematology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA; and
| | - Princy Prasad
- Department of Pediatrics, Saint Louis University School of Medicine, St. Louis, MO
| | - Luke Mammen
- Department of Pediatrics, Saint Louis University School of Medicine, St. Louis, MO
| | - Faris Ali
- Department of Pediatrics, Saint Louis University School of Medicine, St. Louis, MO
| | - Edvinas Vaicikauskas
- Department of Pediatrics, Saint Louis University School of Medicine, St. Louis, MO
| | - Stefano Rivella
- Division of Hematology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA; and
| | - Yelena Z Ginzburg
- Division of Hematology-Oncology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Robert E Fleming
- Department of Pediatrics, Saint Louis University School of Medicine, St. Louis, MO
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO
| |
Collapse
|
2
|
Hamdi A, Roshan TM, Kahawita TM, Mason AB, Sheftel AD, Ponka P. Erythroid cell mitochondria receive endosomal iron by a "kiss-and-run" mechanism. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2859-2867. [PMID: 27627839 DOI: 10.1016/j.bbamcr.2016.09.008] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 08/24/2016] [Accepted: 09/08/2016] [Indexed: 12/11/2022]
Abstract
In erythroid cells, more than 90% of transferrin-derived iron enters mitochondria where ferrochelatase inserts Fe2+ into protoporphyrin IX. However, the path of iron from endosomes to mitochondrial ferrochelatase remains elusive. The prevailing opinion is that, after its export from endosomes, the redox-active metal spreads into the cytosol and mysteriously finds its way into mitochondria through passive diffusion. In contrast, this study supports the hypothesis that the highly efficient transport of iron toward ferrochelatase in erythroid cells requires a direct interaction between transferrin-endosomes and mitochondria (the "kiss-and-run" hypothesis). Using a novel method (flow sub-cytometry), we analyze lysates of reticulocytes after labeling these organelles with different fluorophores. We have identified a double-labeled population definitively representing endosomes interacting with mitochondria, as demonstrated by confocal microscopy. Moreover, we conclude that this endosome-mitochondrion association is reversible, since a "chase" with unlabeled holotransferrin causes a time-dependent decrease in the size of the double-labeled population. Importantly, the dissociation of endosomes from mitochondria does not occur in the absence of holotransferrin. Additionally, mutated recombinant holotransferrin, that cannot release iron, significantly decreases the uptake of 59Fe by reticulocytes and diminishes 59Fe incorporation into heme. This suggests that endosomes, which are unable to provide iron to mitochondria, cause a "traffic jam" leading to decreased endocytosis of holotransferrin. Altogether, our results suggest that a molecular mechanism exists to coordinate the iron status of endosomal transferrin with its trafficking. Besides its contribution to the field of iron metabolism, this study provides evidence for a new intracellular trafficking pathway of organelles.
Collapse
Affiliation(s)
- Amel Hamdi
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada; Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Tariq M Roshan
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Tanya M Kahawita
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada; Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Anne B Mason
- Department of Biochemistry, University of Vermont, Burlington, VT, USA
| | - Alex D Sheftel
- Spartan Bioscience Inc., Ottawa, Ontario, Canada; High Impact Editing, Ottawa, Ontario, Canada
| | - Prem Ponka
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada; Department of Physiology, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
3
|
Exploring the Fe(III) binding sites of human serum transferrin with EPR at 275 GHz. J Biol Inorg Chem 2014; 20:487-96. [DOI: 10.1007/s00775-014-1229-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 12/10/2014] [Indexed: 10/24/2022]
|
4
|
Deblonde GJP, Sturzbecher-Hoehne M, Mason AB, Abergel RJ. Receptor recognition of transferrin bound to lanthanides and actinides: a discriminating step in cellular acquisition of f-block metals. Metallomics 2013; 5:619-26. [PMID: 23446908 DOI: 10.1039/c3mt20237b] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Following an internal contamination event, the transport of actinide (An) and lanthanide (Ln) metal ions through the body is facilitated by endogenous ligands such as the human iron-transport protein transferrin (Tf). The recognition of resulting metallo-transferrin complexes (M2Tf) by the cognate transferrin receptor (TfR) is therefore a critical step for cellular uptake of these metal ions. A high performance liquid chromatography-based method has been used to probe the binding of M2Tf with TfR, yielding a direct measurement of the successive thermodynamic constants that correspond to the dissociation of TfR(M2Tf)2 and TfR(M2Tf) complexes for Fe(3+), Ga(3+), La(3+), Nd(3+), Gd(3+), Yb(3+), Lu(3+), (232)Th(4+), (238)UO2(2+), and (242)Pu(4+). Important features of this method are (i) its ability to distinguish both 1 : 1 and 1 : 2 complexes formed between the receptor and the metal-bound transferrin, and (ii) the requirement for very small amounts of each binding partner (<1 nmol of protein per assay). Consistent with previous reports, the strongest receptor affinity is found for Fe2Tf (Kd1 = 5 nM and Kd2 = 20 nM), while the lowest affinity was measured for Pu2Tf (Kd1 = 0.28 μM and Kd2 = 1.8 μM) binding to the TfR. Other toxic metal ions such as Th(IV) and U(VI), when bound to Tf, are well recognized by the TfR. Under the described experimental conditions, the relative stabilities of TfR:(MxTf)y adducts follow the order Fe(3+) >> Th(4+) ~ UO2(2+) ~ Cm(3+) > Ln(3+) ~ Ga(3+) >>> Yb(3+) ~ Pu(4+). This study substantiates a role for Tf in binding lanthanide fission products and actinides, and transporting them into cells by receptor-mediated endocytosis.
Collapse
Affiliation(s)
- Gauthier J-P Deblonde
- Chemical Sciences Division, Glenn T. Seaborg Center, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
5
|
Luck AN, Mason AB. Structure and dynamics of drug carriers and their interaction with cellular receptors: focus on serum transferrin. Adv Drug Deliv Rev 2013. [PMID: 23183585 DOI: 10.1016/j.addr.2012.11.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Highly proliferative cells have a dramatically increased need for iron which results in the expression of an increased number of transferrin receptors (TFR). This insight makes the transferrin receptor on these cells an excellent candidate for targeted therapeutics. In this regard, it is critical to understand at a molecular level exactly how the TFR interacts with its ligand, hTF. Understanding of the hTF/TFR pathway could, in theory, maximize the use of this system for development of more effective small molecules or toxin-conjugates to specifically target cancer cells. Many strategies have been attempted with the objective of utilizing the hTF/TFR system to deliver drugs; these include conjugation of a toxin or drug to hTF or direct targeting of the TFR by antibodies. To date, in spite of all of the effort, there is a conspicuous absence of any successful candidate drugs reaching the clinic. We suggest that a lack of quantitative data to determine the basic biochemical properties of the drug carrier and the effects of drug-conjugation on the hTF-TFR interaction may have contributed to the failure to realize the full potential of this system. This review provides some guidelines for developing a more quantitative approach for evaluation of current and future hTF-drug conjugates.
Collapse
Affiliation(s)
- Ashley N Luck
- Department of Biochemistry, University of Vermont, College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405, USA
| | | |
Collapse
|
6
|
Majka G, Śpiewak K, Kurpiewska K, Heczko P, Stochel G, Strus M, Brindell M. A high-throughput method for the quantification of iron saturation in lactoferrin preparations. Anal Bioanal Chem 2013; 405:5191-200. [PMID: 23604471 PMCID: PMC3656221 DOI: 10.1007/s00216-013-6943-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 03/14/2013] [Accepted: 03/25/2013] [Indexed: 11/29/2022]
Abstract
Lactoferrin is considered as a part of the innate immune system that plays a crucial role in preventing bacterial growth, mostly via an iron sequestration mechanism. Recent data show that bovine lactoferrin prevents late-onset sepsis in preterm very low birth weight neonates by serving as an iron chelator for some bacterial strains; thus, it is very important to control the iron saturation level during diet supplementation. An accurate estimation of lactoferrin iron saturation is essential not only because of its clinical applications but also for a wide range of biochemical experiments. A comprehensive method for the quantification of iron saturation in lactoferrin preparations was developed to obtain a calibration curve enabling the determination of iron saturation levels relying exclusively on the defined ratio of absorbances at 280 and 466 nm (A280/466). To achieve this goal, selected techniques such as spectrophotometry, ELISA, and ICP-MS were combined. The ability to obtain samples of lactoferrin with determination of its iron content in a simple and fast way has been proven to be very useful. Furthermore, a similar approach could easily be implemented to facilitate the determination of iron saturation level for other metalloproteins in which metal binding results in the appearance of a distinct band in the visible part of the spectrum.
Collapse
Affiliation(s)
- Grzegorz Majka
- Department of Inorganic Chemistry, Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland
| | | | | | | | | | | | | |
Collapse
|
7
|
Scheve CS, Gonzales PA, Momin N, Stachowiak JC. Steric pressure between membrane-bound proteins opposes lipid phase separation. J Am Chem Soc 2013; 135:1185-8. [PMID: 23321000 DOI: 10.1021/ja3099867] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cellular membranes are densely crowded with a diverse population of integral and membrane-associated proteins. In this complex environment, lipid rafts, which are phase-separated membrane domains enriched in cholesterol and saturated lipids, are thought to organize the membrane surface. Specifically, rafts may help to concentrate proteins and lipids locally, enabling cellular processes such as assembly of caveolae, budding of enveloped viruses, and sorting of lipids and proteins in the Golgi. However, the ability of rafts to concentrate protein species has not been quantified experimentally. Here we show that when membrane-bound proteins become densely crowded within liquid-ordered membrane regions, steric pressure arising from collisions between proteins can destabilize lipid phase separations, resulting in a homogeneous distribution of proteins and lipids over the membrane surface. Using a reconstituted system of lipid vesicles and recombinant proteins, we demonstrate that protein-protein steric pressure creates an energetic barrier to the stability of phase-separated membrane domains that increases in significance as the molecular weight of the proteins increases. Comparison with a simple analytical model reveals that domains are destabilized when the steric pressure exceeds the approximate enthalpy of membrane mixing. These results suggest that a subtle balance of free energies governs the stability of phase-separated cellular membranes, providing a new perspective on the role of lipid rafts as concentrators of membrane proteins.
Collapse
Affiliation(s)
- Christine S Scheve
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | | | | | | |
Collapse
|
8
|
Zhang D, Lee HF, Pettit SC, Zaro JL, Huang N, Shen WC. Characterization of transferrin receptor-mediated endocytosis and cellular iron delivery of recombinant human serum transferrin from rice (Oryza sativa L.). BMC Biotechnol 2012. [PMID: 23194296 PMCID: PMC3521190 DOI: 10.1186/1472-6750-12-92] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background Transferrin (TF) plays a critical physiological role in cellular iron delivery via the transferrin receptor (TFR)-mediated endocytosis pathway in nearly all eukaryotic organisms. Human serum TF (hTF) is extensively used as an iron-delivery vehicle in various mammalian cell cultures for production of therapeutic proteins, and is also being explored for use as a drug carrier to treat a number of diseases by employing its unique TFR-mediated endocytosis pathway. With the increasing concerns over the risk of transmission of infectious pathogenic agents of human plasma-derived TF, recombinant hTF is preferred to use for these applications. Here, we carry out comparative studies of the TFR binding, TFR-mediated endocytosis and cellular iron delivery of recombinant hTF from rice (rhTF), and evaluate its suitability for biopharmaceutical applications. Result Through a TFR competition binding affinity assay with HeLa human cervic carcinoma cells (CCL-2) and Caco-2 human colon carcinoma cells (HTB-37), we show that rhTF competes similarly as hTF to bind TFR, and both the TFR binding capacity and dissociation constant of rhTF are comparable to that of hTF. The endocytosis assay confirms that rhTF behaves similarly as hTF in the slow accumulation in enterocyte-like Caco-2 cells and the rapid recycling pathway in HeLa cells. The pulse-chase assay of rhTF in Caco-2 and HeLa cells further illustrates that rice-derived rhTF possesses the similar endocytosis and intracellular processing compared to hTF. The cell culture assays show that rhTF is functionally similar to hTF in the delivery of iron to two diverse mammalian cell lines, HL-60 human promyelocytic leukemia cells (CCL-240) and murine hybridoma cells derived from a Sp2/0-Ag14 myeloma fusion partner (HB-72), for supporting their proliferation, differentiation, and physiological function of antibody production. Conclusion The functional similarity between rice derived rhTF and native hTF in their cellular iron delivery, TFR binding, and TFR-mediated endocytosis and intracellular processing support that rice-derived rhTF can be used as a safe and animal-free alternative to serum hTF for bioprocessing and biopharmaceutical applications.
Collapse
Affiliation(s)
- Deshui Zhang
- Ventria Bioscience, Fort Collins, CO 80524, USA.
| | | | | | | | | | | |
Collapse
|
9
|
Steere AN, Bobst CE, Zhang D, Pettit S, Kaltashov IA, Huang N, Mason AB. Biochemical and structural characterization of recombinant human serum transferrin from rice (Oryza sativa L.). J Inorg Biochem 2012; 116:37-44. [PMID: 23010327 PMCID: PMC3483368 DOI: 10.1016/j.jinorgbio.2012.07.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 06/29/2012] [Accepted: 07/02/2012] [Indexed: 11/18/2022]
Abstract
The Fe(3+) binding protein human serum transferrin (hTF) is well known for its role in cellular iron delivery via the transferrin receptor (TFR). A new application is the use of hTF as a therapy and targeted drug delivery system for a number of diseases. Recently, production of hTF in plants has been reported; such systems provide a relatively inexpensive, animal-free (eliminating potential contamination by animal pathogens) method to produce large amounts of recombinant proteins for such biopharmaceutical applications. Specifically, the production of Optiferrin (hTF produced in rice, Oryza sativa, from InVitria) has been shown to yield large amounts of functional protein for use in culture medium for cellular iron delivery to promote growth. In the present work we describe further purification (by gel filtration) and characterization of hTF produced in rice (purified Optiferrin) to determine its suitability in biopharmaceutical applications. The spectral, mass spectrometric, urea gel and kinetic analysis shows that purified Optiferrin is similar to recombinant nonglycosylated N-His tagged hTF expressed by baby hamster kidney cells and/or serum derived glycosylated hTF. Additionally, in a competitive immunoassay, iron-loaded Optiferrin is equivalent to iron-loaded N-His hTF in its ability to bind to the soluble portion of the TFR immobilized in an assay plate. As an essential requirement for any functional hTF, both lobes of purified Optiferrin bind Fe(3+) tightly yet reversibly. Although previously shown to be capable of delivering Fe(3+) to cells, the kinetics of iron release from iron-loaded Optiferrin™/sTFR and iron-loaded N-His hTF/sTFR complexes differ somewhat. We conclude that the purified Optiferrin might be suitable for consideration in biopharmaceutical applications.
Collapse
Affiliation(s)
- Ashley N. Steere
- Department of Biochemistry, University of Vermont, College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405, USA
| | - Cedric E. Bobst
- Department of Chemistry, University of Massachusetts at Amherst, Amherst, MA 01003, USA
| | - Deshui Zhang
- Ventria Bioscience, 320 East Vine Drive, Fort Collins, CO 80524, USA
| | - Steve Pettit
- InVitria, 320 East Vine Drive, Fort Collins, CO 80524, USA
| | - Igor A. Kaltashov
- Department of Chemistry, University of Massachusetts at Amherst, Amherst, MA 01003, USA
| | - Ning Huang
- Ventria Bioscience, 320 East Vine Drive, Fort Collins, CO 80524, USA
| | - Anne B. Mason
- Department of Biochemistry, University of Vermont, College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405, USA
| |
Collapse
|
10
|
Kumar R, Mauk AG. Protonation and Anion Binding Control the Kinetics of Iron Release from Human Transferrin. J Phys Chem B 2012; 116:3795-807. [DOI: 10.1021/jp205879h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rajesh Kumar
- Department of Biochemistry
and Molecular Biology and the Centre for
Blood Research, Life Sciences Centre, 2350 Health Sciences
Mall, University of British Columbia, Vancouver,
BC V6T 1Z3 Canada
- School of Chemistry
and Biochemistry, Thapar University, Patiala 147004, India
| | - A. Grant Mauk
- Department of Biochemistry
and Molecular Biology and the Centre for
Blood Research, Life Sciences Centre, 2350 Health Sciences
Mall, University of British Columbia, Vancouver,
BC V6T 1Z3 Canada
| |
Collapse
|
11
|
Sheftel AD, Mason AB, Ponka P. The long history of iron in the Universe and in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1820:161-87. [PMID: 21856378 PMCID: PMC3258305 DOI: 10.1016/j.bbagen.2011.08.002] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 07/19/2011] [Accepted: 08/01/2011] [Indexed: 12/21/2022]
Abstract
BACKGROUND Not long after the Big Bang, iron began to play a central role in the Universe and soon became mired in the tangle of biochemistry that is the prima essentia of life. Since life's addiction to iron transcends the oxygenation of the Earth's atmosphere, living things must be protected from the potentially dangerous mix of iron and oxygen. The human being possesses grams of this potentially toxic transition metal, which is shuttling through his oxygen-rich humor. Since long before the birth of modern medicine, the blood-vibrant red from a massive abundance of hemoglobin iron-has been a focus for health experts. SCOPE OF REVIEW We describe the current understanding of iron metabolism, highlight the many important discoveries that accreted this knowledge, and describe the perils of dysfunctional iron handling. GENERAL SIGNIFICANCE Isaac Newton famously penned, "If I have seen further than others, it is by standing upon the shoulders of giants". We hope that this review will inspire future scientists to develop intellectual pursuits by understanding the research and ideas from many remarkable thinkers of the past. MAJOR CONCLUSIONS The history of iron research is a long, rich story with early beginnings, and is far from being finished. This article is part of a Special Issue entitled Transferrins: Molecular mechanisms of iron transport and disorders.
Collapse
Affiliation(s)
- Alex D. Sheftel
- University of Ottawa Heart Institute, 40 Ruskin St., Ottawa, ON K1Y 4W7, Canada
| | - Anne B. Mason
- Department of Biochemistry, College of Medicine, University of Vermont, 89 Beaumont Avenue, Burlington, VT 05405-0068, USA
| | - Prem Ponka
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Côte-Ste.-Catherine Rd., Montréal, QC H3T 1E2, and Departments of Physiology and Medicine, McGill University, Montréal, QC, Canada
| |
Collapse
|
12
|
Steere AN, Chasteen ND, Miller BF, Smith VC, MacGillivray RTA, Mason AB. Structure-based mutagenesis reveals critical residues in the transferrin receptor participating in the mechanism of pH-induced release of iron from human serum transferrin. Biochemistry 2012; 51:2113-21. [PMID: 22356162 DOI: 10.1021/bi3001038] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The recent crystal structure of two monoferric human serum transferrin (Fe(N)hTF) molecules bound to the soluble portion of the homodimeric transferrin receptor (sTFR) has provided new details about this binding interaction that dictates the delivery of iron to cells. Specifically, substantial rearrangements in the homodimer interface of the sTFR occur as a result of the binding of the two Fe(N)hTF molecules. Mutagenesis of selected residues in the sTFR highlighted in the structure was undertaken to evaluate the effect on function. Elimination of Ca(2+) binding in the sTFR by mutating two of four coordinating residues ([E465A,E468A]) results in low production of an unstable and aggregated sTFR. Mutagenesis of two histidines ([H475A,H684A]) at the dimer interface had little effect on the kinetics of release of iron at pH 5.6 from either lobe, reflecting the inaccessibility of this cluster to solvent. Creation of an H318A sTFR mutant allows assignment of a small pH-dependent initial decrease in the magnitude of the fluorescence signal to His318. Removal of the four C-terminal residues of the sTFR, Asp757-Asn758-Glu759-Phe760, eliminates pH-stimulated release of iron from the C-lobe of the Fe(2)hTF/sTFR Δ757-760 complex. The inability of this sTFR mutant to bind and stabilize protonated hTF His349 (a pH-inducible switch) in the C-lobe of hTF accounts for the loss. Collectively, these studies support a model in which a series of pH-induced events involving both TFR residue His318 and hTF residue His349 occurs to promote receptor-stimulated release of iron from the C-lobe of hTF.
Collapse
Affiliation(s)
- Ashley N Steere
- Department of Biochemistry, University of Vermont, College of Medicine, Burlington, Vermont 05405, United States
| | | | | | | | | | | |
Collapse
|
13
|
Noinaj N, Easley NC, Oke M, Mizuno N, Gumbart J, Boura E, Steere AN, Zak O, Aisen P, Tajkhorshid E, Evans RW, Gorringe AR, Mason AB, Steven AC, Buchanan SK. Structural basis for iron piracy by pathogenic Neisseria. Nature 2012; 483:53-8. [PMID: 22327295 PMCID: PMC3292680 DOI: 10.1038/nature10823] [Citation(s) in RCA: 205] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 01/09/2012] [Indexed: 11/20/2022]
Abstract
Neisseria are obligate human pathogens causing bacterial meningitis, septicaemia and gonorrhoea. Neisseria require iron for survival and can extract it directly from human transferrin for transport across the outer membrane. The transport system consists of TbpA, an integral outer membrane protein, and TbpB, a co-receptor attached to the cell surface; both proteins are potentially important vaccine and therapeutic targets. Two key questions driving Neisseria research are how human transferrin is specifically targeted, and how the bacteria liberate iron from transferrin at neutral pH. To address these questions, we solved crystal structures of the TbpA-transferrin complex and of the corresponding co-receptor TbpB. We characterized the TbpB-transferrin complex by small-angle X-ray scattering and the TbpA-TbpB-transferrin complex by electron microscopy. Our studies provide a rational basis for the specificity of TbpA for human transferrin, show how TbpA promotes iron release from transferrin, and elucidate how TbpB facilitates this process.
Collapse
Affiliation(s)
- Nicholas Noinaj
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Essential to iron homeostasis is the transport of iron by the bilobal protein human serum transferrin (hTF). Each lobe (N- and C-lobe) of hTF forms a deep cleft which binds a single Fe(3+). Iron-bearing hTF in the blood binds tightly to the specific transferrin receptor (TFR), a homodimeric transmembrane protein. After undergoing endocytosis, acidification of the endosome initiates the release of Fe(3+) from hTF in a TFR-mediated process. Iron-free hTF remains tightly bound to the TFR at acidic pH; following recycling back to the cell surface, it is released to sequester more iron. Efficient delivery of iron is critically dependent on hTF/TFR interactions. Therefore, identification of the pH-specific contacts between hTF and the TFR is crucial. Recombinant protein production has enabled deconvolution of this complex system. The studies reviewed herein support a model in which pH-induced interrelated events control receptor-stimulated iron release from each lobe of hTF.
Collapse
Affiliation(s)
| | - Anne B. Mason
- Department of Biochemistry, University of Vermont, College of Medicine, Burlington, VT, USA
| |
Collapse
|
15
|
How the binding of human transferrin primes the transferrin receptor potentiating iron release at endosomal pH. Proc Natl Acad Sci U S A 2011; 108:13089-94. [PMID: 21788477 PMCID: PMC3156180 DOI: 10.1073/pnas.1105786108] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Delivery of iron to cells requires binding of two iron-containing human transferrin (hTF) molecules to the specific homodimeric transferrin receptor (TFR) on the cell surface. Through receptor-mediated endocytosis involving lower pH, salt, and an unidentified chelator, iron is rapidly released from hTF within the endosome. The crystal structure of a monoferric N-lobe hTF/TFR complex (3.22-Å resolution) features two binding motifs in the N lobe and one in the C lobe of hTF. Binding of Fe(N)hTF induces global and site-specific conformational changes within the TFR ectodomain. Specifically, movements at the TFR dimer interface appear to prime the TFR to undergo pH-induced movements that alter the hTF/TFR interaction. Iron release from each lobe then occurs by distinctly different mechanisms: Binding of His349 to the TFR (strengthened by protonation at low pH) controls iron release from the C lobe, whereas displacement of one N-lobe binding motif, in concert with the action of the dilysine trigger, elicits iron release from the N lobe. One binding motif in each lobe remains attached to the same α-helix in the TFR throughout the endocytic cycle. Collectively, the structure elucidates how the TFR accelerates iron release from the C lobe, slows it from the N lobe, and stabilizes binding of apohTF for return to the cell surface. Importantly, this structure provides new targets for mutagenesis studies to further understand and define this system.
Collapse
|
16
|
Kaltashov IA, Bobst CE, Zhang M, Leverence R, Gumerov DR. Transferrin as a model system for method development to study structure, dynamics and interactions of metalloproteins using mass spectrometry. Biochim Biophys Acta Gen Subj 2011; 1820:417-26. [PMID: 21726602 DOI: 10.1016/j.bbagen.2011.06.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 06/17/2011] [Accepted: 06/21/2011] [Indexed: 12/31/2022]
Abstract
BACKGROUND Transferrin (Tf) is a paradigmatic metalloprotein, which has been extensively studied in the past and still is a focal point of numerous investigation efforts owing to its unique role in iron homeostasis and enormous promise as a component of a wide range of therapies. SCOPE OF REVIEW Electrospray ionization mass spectrometry (ESI MS) is a potent analytical tool that has been used successfully to study various properties of Tf and Tf-based products, ranging from covalent structure and metal binding to conformation and interaction with their physiological partners. MAJOR CONCLUSIONS Various ESI MS-based techniques produce unique information on Tf properties and behavior that is highly complementary to information provided by other experimental techniques. GENERAL SIGNIFICANCE The experimental ESI MS-based techniques developed for Tf studies are not only useful for understanding of fundamental aspects of the iron-binding properties of this protein and optimizing Tf-based therapeutic products, but can also be applied to study a range of other metalloproteins. This article is part of a Special Issue entitled Transferrins: Molecular mechanisms of iron transport and disorders.
Collapse
Affiliation(s)
- Igor A Kaltashov
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, MA, USA.
| | | | | | | | | |
Collapse
|
17
|
Steere AN, Byrne SL, Chasteen ND, Mason AB. Kinetics of iron release from transferrin bound to the transferrin receptor at endosomal pH. Biochim Biophys Acta Gen Subj 2011; 1820:326-33. [PMID: 21699959 DOI: 10.1016/j.bbagen.2011.06.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 06/02/2011] [Accepted: 06/07/2011] [Indexed: 10/18/2022]
Abstract
BACKGROUND Human serum transferrin (hTF) is a bilobal glycoprotein that reversibly binds Fe(3+) and delivers it to cells by the process of receptor-mediated endocytosis. Despite decades of research, the precise events resulting in iron release from each lobe of hTF within the endosome have not been fully delineated. SCOPE OF REVIEW We provide an overview of the kinetics of iron release from hTF±the transferrin receptor (TFR) at endosomal pH (5.6). A critical evaluation of the array of biophysical techniques used to determine accurate rate constants is provided. GENERAL SIGNIFICANCE Delivery of Fe(3+)to actively dividing cells by hTF is essential; too much or too little Fe(3+) directly impacts the well-being of an individual. Because the interaction of hTF with the TFR controls iron distribution in the body, an understanding of this process at the molecular level is essential. MAJOR CONCLUSIONS Not only does TFR direct the delivery of iron to the cell through the binding of hTF, kinetic data demonstrate that it also modulates iron release from the N- and C-lobes of hTF. Specifically, the TFR balances the rate of iron release from each lobe, resulting in efficient Fe(3+) release within a physiologically relevant time frame. This article is part of a Special Issue entitled Molecular Mechanisms of Iron Transport and Disorders.
Collapse
Affiliation(s)
- Ashley N Steere
- Department of Biochemistry, University of Vermont, College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405, USA
| | | | | | | |
Collapse
|
18
|
Zhang D, Nandi S, Bryan P, Pettit S, Nguyen D, Santos MA, Huang N. Expression, purification, and characterization of recombinant human transferrin from rice (Oryza sativa L.). Protein Expr Purif 2010; 74:69-79. [PMID: 20447458 PMCID: PMC2926268 DOI: 10.1016/j.pep.2010.04.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 04/21/2010] [Accepted: 04/27/2010] [Indexed: 11/29/2022]
Abstract
Transferrin is an essential ingredient used in cell culture media due to its crucial role in regulating cellular iron uptake, transport, and utilization. It is also a promising drug carrier used to increase a drug's therapeutic index via the unique transferrin receptor-mediated endocytosis pathway. Due to the high risk of contamination with blood-borne pathogens from the use of human or animal plasma-derived transferrin, recombinant transferrin is preferred for use as a replacement for native transferrin. We expressed recombinant human transferrin in rice (Oryza sativa L.) at a high level of 1% seed dry weight (10 g/kg). The recombinant human transferrin was able to be extracted with saline buffers and then purified by a one step anion exchange chromatographic process to greater than 95% purity. The rice-derived recombinant human transferrin was shown to be not only structurally similar to the native human transferrin, but also functionally the same as native transferrin in terms of reversible iron binding and promoting cell growth and productivity. These results indicate that rice-derived recombinant human transferrin should be a safe and low cost alternative to human or animal plasma-derived transferrin for use in cell culture-based biopharmaceutical production of protein therapeutics and vaccines.
Collapse
Affiliation(s)
- Deshui Zhang
- Ventria Bioscience, 2860 W Covell Blvd., Suite 1, Davis, CA 95616
| | - Somen Nandi
- Ventria Bioscience, 2860 W Covell Blvd., Suite 1, Davis, CA 95616
| | - Paula Bryan
- Ventria Bioscience, 2860 W Covell Blvd., Suite 1, Davis, CA 95616
| | - Steve Pettit
- InVitria, 2120 Milestone Dr., Suite 102, Fort Collins, CO 80525
| | - Diane Nguyen
- Ventria Bioscience, 2860 W Covell Blvd., Suite 1, Davis, CA 95616
| | - Mary Ann Santos
- InVitria, 2120 Milestone Dr., Suite 102, Fort Collins, CO 80525
| | - Ning Huang
- Ventria Bioscience, 2860 W Covell Blvd., Suite 1, Davis, CA 95616
- InVitria, 2120 Milestone Dr., Suite 102, Fort Collins, CO 80525
| |
Collapse
|
19
|
Eckenroth BE, Mason AB, McDevitt ME, Lambert LA, Everse SJ. The structure and evolution of the murine inhibitor of carbonic anhydrase: a member of the transferrin superfamily. Protein Sci 2010; 19:1616-26. [PMID: 20572014 PMCID: PMC2975126 DOI: 10.1002/pro.439] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The original signature of the transferrin (TF) family of proteins was the ability to bind ferric iron with high affinity in the cleft of each of two homologous lobes. However, in recent years, new family members that do not bind iron have been discovered. One new member is the inhibitor of carbonic anhydrase (ICA), which as its name indicates, binds to and strongly inhibits certain isoforms of carbonic anhydrase. Recently, mouse ICA has been expressed as a recombinant protein in a mammalian cell system. Here, we describe the 2.4 Å structure of mouse ICA from a pseudomerohedral twinned crystal. As predicted, the structure is bilobal, comprised of two α-β domains per lobe typical of the other family members. As with all but insect TFs, the structure includes the unusual reverse γ-turn in each lobe. The structure is consistent with the fact that introduction of two mutations in the N-lobe of murine ICA (mICA) (W124R and S188Y) allowed it to bind iron with high affinity. Unexpectedly, both lobes of the mICA were found in the closed conformation usually associated with presence of iron in the cleft, and making the structure most similar to diferric pig TF. Two new ICA family members (guinea pig and horse) were identified from genomic sequences and used in evolutionary comparisons. Additionally, a comparison of selection pressure (dN/dS) on functional residues reveals some interesting insights into the evolution of the TF family including that the N-lobe of lactoferrin may be in the process of eliminating its iron binding function.
Collapse
Affiliation(s)
- Brian E Eckenroth
- Department of Biochemistry, University of VermontBurlington, Vermont 05405
| | - Anne B Mason
- Department of Biochemistry, University of VermontBurlington, Vermont 05405
| | - Meghan E McDevitt
- Department of Biology, Chatham UniversityPittsburgh, Pennsylvania 15232
| | - Lisa A Lambert
- Department of Biology, Chatham UniversityPittsburgh, Pennsylvania 15232
| | - Stephen J Everse
- Department of Biochemistry, University of VermontBurlington, Vermont 05405,*Correspondence to: Stephen J. Everse, Department of Biochemistry, University of Vermont, College of Medicine, 89 Beaumont Ave, Burlington, VT 05405. E-mail:
| |
Collapse
|
20
|
Rooijakkers SHM, Rasmussen SL, McGillivray SM, Bartnikas TB, Mason AB, Friedlander AM, Nizet V. Human transferrin confers serum resistance against Bacillus anthracis. J Biol Chem 2010; 285:27609-13. [PMID: 20615872 DOI: 10.1074/jbc.m110.154930] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The innate immune system in humans consists of both cellular and humoral components that collaborate to eradicate invading bacteria from the body. Here, we discover that the gram-positive bacterium Bacillus anthracis, the causative agent of anthrax, does not grow in human serum. Fractionation of serum by gel filtration chromatography led to the identification of human transferrin as the inhibiting factor. Purified transferrin blocks growth of both the fully virulent encapsulated B. anthracis Ames and the non-encapsulated Sterne strain. Growth inhibition was also observed in serum of wild-type mice but not of hypotransferrinemic mice that only have approximately 1% circulating transferrin levels. We were able to definitely assign the bacteriostatic activity of transferrin to its iron-binding function: neither iron-saturated transferrin nor a recombinant transferrin mutant unable to bind iron could inhibit growth of B. anthracis. Additional iron could restore bacterial growth in human serum. The observation that other important gram-positive pathogens are not inhibited by transferrin suggests they have evolved effective mechanisms to circumvent serum iron deprivation. These findings provide a better understanding of human host defense mechanisms against anthrax and provide a mechanistic basis for the antimicrobial activity of human transferrin.
Collapse
Affiliation(s)
- Suzan H M Rooijakkers
- Department of Pediatrics, University of California, San Diego, La Jolla, California 92093, USA.
| | | | | | | | | | | | | |
Collapse
|
21
|
Byrne SL, Steere AN, Chasteen ND, Mason AB. Identification of a kinetically significant anion binding (KISAB) site in the N-lobe of human serum transferrin. Biochemistry 2010; 49:4200-7. [PMID: 20397659 DOI: 10.1021/bi1003519] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human serum transferrin (hTF) binds two ferric iron ions which are delivered to cells in a transferrin receptor (TFR) mediated process. Critical to the delivery of iron to cells is the binding of hTF to the TFR and the efficient release of iron orchestrated by the interaction. Within the endosome, iron release from hTF is also aided by lower pH, the presence of anions, and a chelator yet to be identified. We have recently shown that three of the four residues comprising a loop in the N-lobe (Pro142, Lys144, and Pro145) are critical to the high-affinity interaction of hTF with the TFR. In contrast, Arg143 in this loop does not participate in the binding isotherm. In the current study, the kinetics of iron release from alanine mutants of each of these four residues (placed into both diferric and monoferric N-lobe backgrounds) have been determined +/- the TFR. The R143A mutation greatly retards the rate of iron release from the N-lobe in the absence of the TFR but has considerably less of an effect in its presence. Our data definitively show that Arg143 serves as a kinetically significant anion binding (KISAB) site that is, by definition, sensitive to salt concentration and critical to the conformational change necessary to induce iron release from the N-lobe of hTF (in the absence of the TFR). This is the first identification of an authentic KISAB site in the N-lobe of hTF. The effect of the single R143A mutation on the kinetic profile of iron release provides a dramatic illustration of the dynamic nature of hTF.
Collapse
Affiliation(s)
- Shaina L Byrne
- Department of Biochemistry, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, Vermont 05405, USA
| | | | | | | |
Collapse
|
22
|
Noncanonical interactions between serum transferrin and transferrin receptor evaluated with electrospray ionization mass spectrometry. Proc Natl Acad Sci U S A 2010; 107:8123-8. [PMID: 20404192 DOI: 10.1073/pnas.0914898107] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The primary route of iron acquisition in vertebrates is the transferrin receptor (TfR) mediated endocytotic pathway, which provides cellular entry to the metal transporter serum transferrin (Tf). Despite extensive research efforts, complete understanding of Tf-TfR interaction mechanism is still lacking owing to the complexity of this system. Electrospray ionization mass spectrometry (ESI MS) is used in this study to monitor the protein/receptor interaction and demonstrate the ability of metal-free Tf to associate with TfR at neutral pH. A set of Tf variants is used in a series of competition and displacement experiments to bracket TfR affinity of apo-Tf at neutral pH (0.2-0.6 microM). Consistent with current models of endosomal iron release from Tf, acidification of the protein solution results in a dramatic change of binding preferences, with apo-Tf becoming a preferred receptor binder. Contrary to the current models implying that the apo-Tf/TfR complex dissociates almost immediately upon exposure to the neutral environment at the cell surface, our data indicate that this complex remains intact. Iron-loaded Tf displaces apo-Tf from TfR, making it available for the next cycle of iron binding, transport and delivery to tissues. However, apo-Tf may still interfere with the cellular uptake of engineered Tf molecules whose TfR affinity is affected by various modifications (e.g., conjugation to cytotoxic molecules). This work also highlights the great potential of ESI MS as a tool capable of providing precise details of complex protein-receptor interactions under conditions that closely mimic the environment in which these encounters occur in physiological systems.
Collapse
|
23
|
James NG, Ross JA, Mason AB, Jameson DM. Excited-state lifetime studies of the three tryptophan residues in the N-lobe of human serum transferrin. Protein Sci 2010; 19:99-110. [PMID: 19916167 DOI: 10.1002/pro.287] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The energy transfer from the three Trp residues at positions 8, 128, and 264 within the human serum transferrin (hTF) N-lobe to the ligand to metal charge transfer band has been investigated by monitoring changes in Trp fluorescence emission and lifetimes. The fluorescence emission from hTF N-lobe is dominated by Trp264, as revealed by an 82% decrease in the quantum yield when this Trp residue is absent. Fluorescence lifetimes were determined by multifrequency phase fluorometry of mutants containing one or two Trp residues. Decays of these samples are best described by two or three discrete lifetimes or by a unimodal Lorentzian distribution. The discrete lifetimes and the center of the lifetime distribution for samples containing Trp128 and Trp264 are affected by iron. The distribution width narrows on iron removal and is consistent with a decrease in dynamic mobility of the dominant fluorophore, Trp264. Both the quantum yield and the lifetimes are lower when iron is present, however, not proportionally. The greater effect of iron on quantum yields is indicative of nonexcited state quenching, i.e., static quenching. The results of these experiments provide quantitative data strongly suggesting that Förster resonance energy transfer is not the sole source of Trp quenching in the N-lobe of hTF.
Collapse
Affiliation(s)
- Nicholas G James
- Department of Biochemistry, University of Vermont, College of Medicine, Burlington, Vermont 05405, USA.
| | | | | | | |
Collapse
|
24
|
Structural and functional characterization of recombinant human serum transferrin secreted from Pichia pastoris. Biosci Biotechnol Biochem 2010; 74:309-15. [PMID: 20139607 DOI: 10.1271/bbb.90635] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Serum transferrin is an iron-binding glycoprotein with a bilobal structure. It binds iron ions in the blood serum and delivers them into target cells via transferrin receptor. We identified structural and functional characteristics of recombinant human transferrin which is produced in the yeast Pichia pastoris. Using the signal sequence of the alpha factor of the yeast Saccharomyces cerevisiae, high-level secretion was obtained, up to 30 mg/l of culture medium. Correct processing at designed sites was confirmed by N-terminal sequence analysis. Carbohydrate modification was determined by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) analysis after digestion with endo-beta-N-acetylglucosaminidase H. Reflecting the secondary structure, the circular dichroism spectrum of the recombinant protein was indistinguishable from that of serum transferrin. Consequently, the recombinant product had an iron binding function just as the serum specimen has: two Fe(3+) sites existed in a recombinant transferrin molecule, as estimated by titration analysis using visible absorption, fluorescence spectra, and electrophoretic behavior in urea denaturing polyacrylamide gel electrophoresis (PAGE).
Collapse
|
25
|
Properties of a homogeneous C-lobe prepared by introduction of a TEV cleavage site between the lobes of human transferrin. Protein Expr Purif 2010; 72:32-41. [PMID: 20064616 DOI: 10.1016/j.pep.2010.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 01/04/2010] [Accepted: 01/05/2010] [Indexed: 11/20/2022]
Abstract
Essential to iron transport and delivery, human serum transferrin (hTF) is a bilobal glycoprotein capable of reversibly binding one ferric ion in each lobe (the N- and C-lobes). A complete description of iron release from hTF, as well as insight into the physiological significance of the bilobal structure, demands characterization of the isolated lobes. Although production of large amounts of isolated N-lobe and full-length hTF has been well documented, attempts to produce the C-lobe (by recombinant and/or proteolytic approaches) have met with more limited success. Our new strategy involves replacing the hepta-peptide, PEAPTDE (comprising the bridge between the lobes) with the sequence ENLYFQ/G in a His-tagged non-glycosylated monoferric hTF construct, designated Fe(C)hTF. The new bridge sequence of this construct, designated Fe(C)TEV hTF, is readily cleaved by the tobacco etch virus (TEV) protease yielding non-glycosylated C-lobe. Following nickel column chromatography (to remove the N-lobe and the TEV protease which are both His tagged), the homogeneity of the C-lobe has been confirmed by mass spectroscopy. Differing reactivity with a monoclonal antibody specific to the C-lobe indicates that introduction of the TEV cleavage site into the bridge alters its conformation. The spectral and kinetic properties of the isolated C-lobe differ significantly from those of the isolated N-lobe.
Collapse
|
26
|
Separation by hydrophobic interaction chromatography and structural determination by mass spectrometry of mannosylated glycoforms of a recombinant transferrin-exendin-4 fusion protein from yeast. J Chromatogr A 2010; 1217:225-34. [DOI: 10.1016/j.chroma.2009.10.057] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Revised: 10/15/2009] [Accepted: 10/22/2009] [Indexed: 11/19/2022]
|
27
|
Byrne SL, Chasteen ND, Steere AN, Mason AB. The unique kinetics of iron release from transferrin: the role of receptor, lobe-lobe interactions, and salt at endosomal pH. J Mol Biol 2009; 396:130-40. [PMID: 19917294 DOI: 10.1016/j.jmb.2009.11.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 11/04/2009] [Accepted: 11/10/2009] [Indexed: 10/20/2022]
Abstract
Transferrins are a family of bilobal iron-binding proteins that play the crucial role of binding ferric iron and keeping it in solution, thereby controlling the levels of this important metal. Human serum transferrin (hTF) carries one iron in each of two similar lobes. Understanding the detailed mechanism of iron release from each lobe of hTF during receptor-mediated endocytosis has been extremely challenging because of the active participation of the transferrin receptor (TFR), salt, a chelator, lobe-lobe interactions, and the low pH within the endosome. Our use of authentic monoferric hTF (unable to bind iron in one lobe) or diferric hTF (with iron locked in one lobe) provided distinct kinetic end points, allowing us to bypass many of the previous difficulties. The capture and unambiguous assignment of all kinetic events associated with iron release by stopped-flow spectrofluorimetry, in the presence and in the absence of the TFR, unequivocally establish the decisive role of the TFR in promoting efficient and balanced iron release from both lobes of hTF during one endocytic cycle. For the first time, the four microscopic rate constants required to accurately describe the kinetics of iron removal are reported for hTF with and without the TFR. Specifically, at pH 5.6, the TFR enhances the rate of iron release from the C-lobe (7-fold to 11-fold) and slows the rate of iron release from the N-lobe (6-fold to 15-fold), making them more equivalent and producing an increase in the net rate of iron removal from Fe(2)hTF. Calculated cooperativity factors, in addition to plots of time-dependent species distributions in the absence and in the presence of the TFR, clearly illustrate the differences. Accurate rate constants for the pH and salt-induced conformational changes in each lobe precisely delineate how delivery of iron within the physiologically relevant time frame of 2 min might be accomplished.
Collapse
Affiliation(s)
- Shaina L Byrne
- Department of Biochemistry, College of Medicine, University of Vermont, 89 Beaumont Avenue, Burlington, VT 05405, USA
| | | | | | | |
Collapse
|
28
|
James NG, Byrne SL, Steere AN, Smith VC, MacGillivray RTA, Mason AB. Inequivalent contribution of the five tryptophan residues in the C-lobe of human serum transferrin to the fluorescence increase when iron is released. Biochemistry 2009; 48:2858-67. [PMID: 19281173 DOI: 10.1021/bi8022834] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human serum transferrin (hTF), with two Fe3+ binding lobes, transports iron into cells. Diferric hTF preferentially binds to a specific receptor (TFR) on the surface of cells, and the complex undergoes clathrin dependent receptor-mediated endocytosis. The clathrin-coated vesicle fuses with an endosome where the pH is lowered, facilitating iron release from hTF. On a biologically relevant time scale (2-3 min), the factors critical to iron release include pH, anions, a chelator, and the interaction of hTF with the TFR. Previous work, in which the increase in the intrinsic fluorescence signal was used to monitor iron release from the hTF/TFR complex, established that the TFR significantly enhances the rate of iron release from the C-lobe of hTF. In the current study, the role of the five C-lobe Trp residues in reporting the fluorescence change has been evaluated (+/-sTFR). Only four of the five recombinant Trp --> Phe mutants produced well. A single slow rate constant for iron release is found for the monoferric C-lobe (FeC hTF) and the four Trp mutants in the FeC hTF background. The three Trp residues equivalent to those in the N-lobe differed from the N-lobe and each other in their contributions to the fluorescent signal. Two rate constants are observed for the FeC hTF control and the four Trp mutants in complex with the TFR: k(obsC1) reports conformational changes in the C-lobe initiated by the TFR, and k(obsC2) is ascribed to iron release. Excitation at 295 nm (Trp only) and at 280 nm (Trp and Tyr) reveals interesting and significant differences in the rate constants for the complex.
Collapse
Affiliation(s)
- Nicholas G James
- Department of Biochemistry, College of Medicine, University of Vermont, 89 Beaumont Avenue, Burlington 05405, Vermont, USA
| | | | | | | | | | | |
Collapse
|
29
|
Mason AB, Byrne SL, Everse SJ, Roberts SE, Chasteen ND, Smith VC, MacGillivray RTA, Kandemir B, Bou-Abdallah F. A loop in the N-lobe of human serum transferrin is critical for binding to the transferrin receptor as revealed by mutagenesis, isothermal titration calorimetry, and epitope mapping. J Mol Recognit 2009; 22:521-9. [PMID: 19693784 PMCID: PMC4479294 DOI: 10.1002/jmr.979] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Transferrin (TF) is a bilobal transport protein that acquires ferric iron from the diet and holds it tightly within the cleft of each lobe (thereby preventing its hydrolysis). The iron is delivered to actively dividing cells by receptor mediated endocytosis in which diferric TF preferentially binds to TF receptors (TFRs) on the cell surface and the entire complex is taken into an acidic endosome. A combination of lower pH, a chelator, inorganic anions, and the TFR leads to the efficient release of iron from each lobe. Identification of residues/regions within both TF and TFR required for high affinity binding has been an ongoing goal in the field. In the current study, we created human TF (hTF) mutants to identify a region critical to the interaction with the TFR which also constitutes part of an overlapping epitope for two monoclonal antibodies (mAbs) to the N-lobe, one of which was previously shown to block binding of hTF to the TFR. Four single point mutants, P142A, R143A, K144A, and P145A in the N-lobe, were placed into diferric hTF. Isothermal titration calorimetry (ITC) revealed that three of the four residues (Pro142, Lys144, and Pro145) in this loop are essential to TFR binding. Additionally, Lys144 is common to the recognition of both mAbs which show different sensitivities to the three other residues. Taken together these studies prove that this loop is required for binding of the N-lobe of hTF to the TFR, provide a more precise description of the role of each residue in the loop in the interaction with the TFR, and confirm that the N-lobe is essential to high affinity binding of diferric hTF to TFR.
Collapse
Affiliation(s)
- Anne B Mason
- Department of Biochemistry, College of Medicine, University of Vermont, 89 Beaumont Avenue, Burlington, VT 05405, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Byrne SL, Mason AB. Human serum transferrin: a tale of two lobes. Urea gel and steady state fluorescence analysis of recombinant transferrins as a function of pH, time, and the soluble portion of the transferrin receptor. J Biol Inorg Chem 2009; 14:771-81. [PMID: 19290554 PMCID: PMC2733522 DOI: 10.1007/s00775-009-0491-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Accepted: 03/02/2009] [Indexed: 10/21/2022]
Abstract
Iron release from human serum transferrin (hTF) has been studied extensively; however, the molecular details of the mechanism(s) remain incomplete. This is in part due to the complexity of this process, which is influenced by lobe-lobe interactions, the transferrin receptor (TFR), the salt effect, the presence of a chelator, and acidification within the endosome, resulting in iron release. The present work brings together many of the concepts and assertions derived from previous studies in a methodical, uniform, and visual manner. Examination of earlier work reveals some uncertainty due to sample and technical limitations. We have used a combination of steady-state fluorescence and urea gels to evaluate the effect of conformation, pH, time, and the soluble portion of the TFR (sTFR) on iron release from each lobe of hTF. The use of authentic recombinant monoferric and locked species removes any possibility of cross-contamination by acquisition of iron. Elimination of detergent by use of the sTFR provides a further technical advantage. We find that iron release from the N-lobe is very sensitive to the conformation of the C-lobe, but is insensitive to the presence of the sTFR or to changes in pH (between 5.6 and 6.4). Specifically, when the cleft of the C-lobe is locked, the urea gels indicate that only about half of the iron is completely removed from the cleft of the N-lobe. Iron release from the C-lobe is most affected by the presence of the sTFR and changes in pH, but is unaffected by the conformation of the N-lobe. A model for iron release from diferric hTF is provided to delineate our findings.
Collapse
Affiliation(s)
- Shaina L. Byrne
- Department of Biochemistry, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405-0068, USA e-mail: ;
| | - Anne B. Mason
- Department of Biochemistry, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405-0068, USA e-mail: ;
| |
Collapse
|
31
|
James NG, Byrne SL, Mason AB. Incorporation of 5-hydroxytryptophan into transferrin and its receptor allows assignment of the pH induced changes in intrinsic fluorescence when iron is released. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1794:532-40. [PMID: 19103311 DOI: 10.1016/j.bbapap.2008.11.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Revised: 11/11/2008] [Accepted: 11/19/2008] [Indexed: 10/21/2022]
Abstract
Human serum transferrin (hTF) is a bilobal glycoprotein that transports iron to cells. At neutral pH, diferric hTF binds with nM affinity to the transferrin receptor (TFR) on the cell surface. The complex is taken into the cell where, at the acidic pH of the endosome ( approximately pH 5.6), iron is released. Since iron coordination strongly quenches the intrinsic tryptophan fluorescence of hTF, the increase in the fluorescent signal reports the rate constant(s) of iron release. At pH 5.6, the TFR considerably enhances iron release from the C-lobe (with little effect on iron release from the N-lobe). The recombinant soluble TFR is a dimer with 11 tryptophan residues per monomer. In the hTF/TFR complex these residues could contribute to and compromise the readout ascribed to iron release from hTF. We report that compared to Fe(C) hTF alone, the increase in the fluorescent signal from the preformed complex of Fe(C) hTF and the TFR at pH 5.6 is significantly quenched (75%). To dissect the contributions of hTF and the TFR to the change in fluorescence, 5-hydroxytryptophan was incorporated into each using our mammalian expression system. Selective excitation of the samples at 280 or 315 nm shows that the TFR contributes little or nothing to the increase in fluorescence when ferric iron is released from Fe(C) hTF. Quantum yield determinations of TFR, Fe(C) hTF and the Fe(C) hTF/TFR complex strongly support our interpretation of the kinetic data.
Collapse
Affiliation(s)
- Nicholas G James
- Department of Biochemistry, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405-0068, USA
| | | | | |
Collapse
|
32
|
Mason AB, Judson GL, Bravo MC, Edelstein A, Byrne SL, James NG, Roush ED, Fierke CA, Bobst CE, Kaltashov IA, Daughtery MA. Evolution reversed: the ability to bind iron restored to the N-lobe of the murine inhibitor of carbonic anhydrase by strategic mutagenesis. Biochemistry 2008; 47:9847-55. [PMID: 18712936 DOI: 10.1021/bi801133d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The murine inhibitor of carbonic anhydrase (mICA) is a member of the superfamily related to the bilobal iron transport protein transferrin (TF), which binds a ferric ion within a cleft in each lobe. Although the gene encoding ICA in humans is classified as a pseudogene, an apparently functional ICA gene has been annotated in mice, rats, cows, pigs, and dogs. All ICAs lack one (or more) of the amino acid ligands in each lobe essential for high-affinity coordination of iron and the requisite synergistic anion, carbonate. The reason why ICA family members have lost the ability to bind iron is potentially related to acquiring a new function(s), one of which is inhibition of certain carbonic anhydrase (CA) isoforms. A recombinant mutant of the mICA (W124R/S188Y) was created with the goal of restoring the ligands required for both anion (Arg124) and iron (Tyr188) binding in the N-lobe. Absorption and fluorescence spectra definitively show that the mutant binds ferric iron in the N-lobe. Electrospray ionization mass spectrometry confirms the presence of both ferric iron and carbonate. At the putative endosomal pH of 5.6, iron is released by two slow processes indicative of high-affinity coordination. Induction of specific iron binding implies that (1) the structure of mICA resembles those of other TF family members and (2) the N-lobe can adopt a conformation in which the cleft closes when iron binds. Because the conformational change in the N-lobe indicated by metal binding does not impact the inhibitory activity of mICA, inhibition of CA was tentatively assigned to the C-lobe. Proof of this assignment is provided by limited trypsin proteolysis of porcine ICA.
Collapse
Affiliation(s)
- Anne B Mason
- Department of Biochemistry, College of Medicine, University of Vermont, Burlington, Vermont 05405, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Giannetti AM, Halbrooks PJ, Mason AB, Vogt TM, Enns CA, Björkman PJ. The molecular mechanism for receptor-stimulated iron release from the plasma iron transport protein transferrin. Structure 2008; 13:1613-23. [PMID: 16271884 DOI: 10.1016/j.str.2005.07.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2005] [Revised: 07/19/2005] [Accepted: 07/23/2005] [Indexed: 01/08/2023]
Abstract
Human transferrin receptor 1 (TfR) binds iron-loaded transferrin (Fe-Tf) and transports it to acidic endosomes where iron is released in a TfR-facilitated process. Consistent with our hypothesis that TfR binding stimulates iron release from Fe-Tf at acidic pH by stabilizing the apo-Tf conformation, a TfR mutant (W641A/F760A-TfR) that binds Fe-Tf, but not apo-Tf, cannot stimulate iron release from Fe-Tf, and less iron is released from Fe-Tf inside cells expressing W641A/F760A-TfR than cells expressing wild-type TfR (wtTfR). Electron paramagnetic resonance spectroscopy shows that binding at acidic pH to wtTfR, but not W641A/F760A-TfR, changes the Tf iron binding site > or =30 A from the TfR W641/F760 patch. Mutation of Tf histidine residues predicted to interact with the W641/F760 patch eliminates TfR-dependent acceleration of iron release. Identification of TfR and Tf residues critical for TfR-facilitated iron release, yet distant from a Tf iron binding site, demonstrates that TfR transmits long-range conformational changes and stabilizes the conformation of apo-Tf to accelerate iron release from Fe-Tf.
Collapse
Affiliation(s)
- Anthony M Giannetti
- Division of Biology 114-96, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | | | | | |
Collapse
|
34
|
James NG, Mason AB. Protocol to determine accurate absorption coefficients for iron-containing transferrins. Anal Biochem 2008; 378:202-7. [PMID: 18471984 DOI: 10.1016/j.ab.2008.04.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Revised: 04/03/2008] [Accepted: 04/06/2008] [Indexed: 11/19/2022]
Abstract
An accurate protein concentration is an essential component of most biochemical experiments. The simplest method to determine a protein concentration is by measuring the A(280) using an absorption coefficient (epsilon) and applying the Beer-Lambert law. For some metalloproteins (including all transferrin family members), difficulties arise because metal binding contributes to the A(280) in a nonlinear manner. The Edelhoch method is based on the assumption that the epsilon of a denatured protein in 6 M guanidine-HCl can be calculated from the number of the tryptophan, tyrosine, and cystine residues. We extend this method to derive epsilon values for both apo- and iron-bound transferrins. The absorbance of an identical amount of iron-containing protein is measured in (i) 6 M guanidine-HCl (denatured, no iron), (ii) pH 7.4 buffer (nondenatured with iron), and (iii) pH 5.6 (or lower) buffer with a chelator (nondenatured without iron). Because the iron-free apoprotein has an identical A(280) under nondenaturing conditions, the difference between the reading at pH 7.4 and the lower pH directly reports the contribution of the iron. The method is fast and consumes approximately 1mg of sample. The ability to determine accurate epsilon values for transferrin mutants that bind iron with a wide range of affinities has proven to be very useful; furthermore, a similar approach could easily be followed to determine epsilon values for other metalloproteins in which metal binding contributes to the A(280).
Collapse
Affiliation(s)
- Nicholas G James
- Department of Biochemistry, College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | | |
Collapse
|
35
|
Wang F, Lothrop A, James N, Griffiths T, Lambert L, Leverence R, Kaltashov I, Andrews N, MacGillivray R, Mason A. A novel murine protein with no effect on iron homoeostasis is homologous with transferrin and is the putative inhibitor of carbonic anhydrase. Biochem J 2007; 406:85-95. [PMID: 17511619 PMCID: PMC1948979 DOI: 10.1042/bj20070384] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In a search for genes that modify iron homoeostasis, a gene (1300017J02Rik) was located immediately upstream of the murine TF (transferrin) gene. However, expression of the 1300017J02Rik gene product was not responsive to a number of modulators of iron metabolism. Specifically, expression was not altered in mouse models of iron disorders including mice with deficiencies in the haemochromatosis protein Hfe, the recombination-activating protein, Rag, beta2-microglobulin, TF, ceruloplasmin or Hb, or in mice with microcytic anaemia. Additionally, neither lipopolysaccharide nor hypoxia treatment resulted in any significant changes in the 1300017J02Rik expression level. The genomic DNA sequence suggested that the 1300017J02Rik gene product might be a protein equivalent to the pICA {porcine ICA [inhibitor of CA (carbonic anhydrase)]}. The coding region for the murine 1300017J02Rik gene was placed into the pNUT expression vector. Transformed BHK cells (baby-hamster kidney cells) were transfected with this plasmid, resulting in secretion of recombinant mICA (murine ICA) into the tissue culture medium. Following purification to homogeneity, the yield of mICA from the BHK cells was found to be considerably greater (at least 4-fold) than the yield of pICA from a previously reported Pichia pastoris (yeast) expression system. MS showed that the recombinant mICA was a glycoprotein that associated with CA in a 1:1 stoichiometry. Despite its high sequence similarity to TF, titration experiments showed that mICA was unable to bind iron specifically. Although enzymatic assays revealed that mICA was able to inhibit CA, it is unclear if this is its sole or even its major function since, to date, humans and other primates appear to lack functional ICA. Lastly, we note that this member of the TF superfamily is a relatively recent addition resulting from a tandem duplication event.
Collapse
Affiliation(s)
- Fudi Wang
- *Division of Hematology/Oncology, Children's Hospital Boston, and Harvard Medical School, Boston, MA 02115, U.S.A
| | - Adam P. Lothrop
- †Department of Biochemistry, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405-0068, U.S.A
| | - Nicholas G. James
- †Department of Biochemistry, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405-0068, U.S.A
| | - Tanya A. M. Griffiths
- ‡Department of Biochemistry and Molecular Biology and Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | - Lisa A. Lambert
- §Department of Biology, Chatham University, Woodland Road, Pittsburgh, PA 15232, U.S.A
| | - Rachael Leverence
- ∥Department of Chemistry, University of Massachusetts at Amherst, Amherst, MA 01003, U.S.A
| | - Igor A. Kaltashov
- ∥Department of Chemistry, University of Massachusetts at Amherst, Amherst, MA 01003, U.S.A
| | - Nancy C. Andrews
- *Division of Hematology/Oncology, Children's Hospital Boston, and Harvard Medical School, Boston, MA 02115, U.S.A
| | - Ross T. A. MacGillivray
- ‡Department of Biochemistry and Molecular Biology and Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | - Anne B. Mason
- †Department of Biochemistry, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405-0068, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
36
|
Wally J, Halbrooks PJ, Vonrhein C, Rould MA, Everse SJ, Mason AB, Buchanan SK. The crystal structure of iron-free human serum transferrin provides insight into inter-lobe communication and receptor binding. J Biol Chem 2006; 281:24934-44. [PMID: 16793765 PMCID: PMC1895924 DOI: 10.1074/jbc.m604592200] [Citation(s) in RCA: 199] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Serum transferrin reversibly binds iron in each of two lobes and delivers it to cells by a receptor-mediated, pH-dependent process. The binding and release of iron result in a large conformational change in which two subdomains in each lobe close or open with a rigid twisting motion around a hinge. We report the structure of human serum transferrin (hTF) lacking iron (apo-hTF), which was independently determined by two methods: 1) the crystal structure of recombinant non-glycosylated apo-hTF was solved at 2.7-A resolution using a multiple wavelength anomalous dispersion phasing strategy, by substituting the nine methionines in hTF with selenomethionine and 2) the structure of glycosylated apo-hTF (isolated from serum) was determined to a resolution of 2.7A by molecular replacement using the human apo-N-lobe and the rabbit holo-C1-subdomain as search models. These two crystal structures are essentially identical. They represent the first published model for full-length human transferrin and reveal that, in contrast to family members (human lactoferrin and hen ovotransferrin), both lobes are almost equally open: 59.4 degrees and 49.5 degrees rotations are required to open the N- and C-lobes, respectively (compared with closed pig TF). Availability of this structure is critical to a complete understanding of the metal binding properties of each lobe of hTF; the apo-hTF structure suggests that differences in the hinge regions of the N- and C-lobes may influence the rates of iron binding and release. In addition, we evaluate potential interactions between apo-hTF and the human transferrin receptor.
Collapse
Affiliation(s)
- Jeremy Wally
- From National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, 50 South Drive, Bethesda, MD 20892 USA
| | - Peter J. Halbrooks
- Department of Biochemistry, University of Vermont, College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405 USA
| | - Clemens Vonrhein
- Global Phasing Ltd., Sheraton House, Castle Park, Cambridge, CB3 0AX, UK, and
| | - Mark A. Rould
- Department of Molecular Physiology and Biophysics, University of Vermont, College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405 USA
| | - Stephen J. Everse
- Department of Biochemistry, University of Vermont, College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405 USA
| | - Anne B. Mason
- Department of Biochemistry, University of Vermont, College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405 USA
| | - Susan K. Buchanan
- From National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, 50 South Drive, Bethesda, MD 20892 USA
| |
Collapse
|