1
|
Qin X, Ye C, Chan YW, Wong AOL. Goldfish phoenixin: (I) structural characterization, tissue distribution, and novel function as a feedforward signal for feeding-induced food intake in fish model. Front Endocrinol (Lausanne) 2025; 16:1570716. [PMID: 40365230 PMCID: PMC12069048 DOI: 10.3389/fendo.2025.1570716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 03/25/2025] [Indexed: 05/15/2025] Open
Abstract
Phoenixin (PNX) is a novel peptide with diverse functions mediated by the orphan receptor GPR173. It also plays a role in appetite control, but the effect is not consistent across species and the mechanisms involved are still unclear. Using goldfish as a model, the mechanisms underlying feeding regulation by PNX were examined. In our study, two isoforms of PNX, PNXa and PNXb, and one form of GPR173 were cloned in goldfish and found to be highly conserved compared to their counterparts in other species based on sequence alignment, phylogenetic analysis, and in silico protein modeling. Using RT-PCR, PNXa/b and GPR173 were confirmed to be ubiquitously expressed at the tissue level. In goldfish, transcript expression of PNXa/b and GPR173 in the liver and brain areas including the telencephalon, hypothalamus, and optic tectum, were elevated by food intake but suppressed by fasting. Intraperitoneal (IP) and intracerebroventricular (ICV) injections of PNX20a and PNX20b, the mature peptides for PNXa and PNXb respectively, were both effective in increasing foraging behavior, surface motility, and food intake. Furthermore, the expression of orexigenic factors (neuropeptide Y (NPY), agouti-related peptide, orexin, and apelin) was elevated with parallel drops in anorexigenic signals (cholecystokinin, pro-opiomelanocortin, corticotropin-releasing hormone, and melanin-concentrating hormone) in the telencephalon, hypothalamus, and/or optic tectum. In the same brain areas, receptor expression for anorexigenic factors (leptin and adiponectin) was attenuated with concurrent rises in receptor levels for orexigenic signals (NPY and ghrelin). In our study, after IP injection of PNX20a/b, downregulation of leptin, adiponectin, and other feeding inhibitors expressed in the liver was also noted. Our findings reveal that PNX20a/b can serve as an orexigenic factor in goldfish. PNX signals (both central and peripheral) can be induced by food intake and act within the brain to trigger foraging and food consumption via differential modulation of appetite-regulating factors and their receptors in different brain areas. The feeding responses observed may also involve a hepatic component with PNX repression of feeding inhibitors expressed in the liver. The PNX signals induced by feeding may form a feedforward loop to maintain/prolong food intake during a meal prior to the onset of satiation response in our fish model.
Collapse
Affiliation(s)
| | | | | | - Anderson O. L. Wong
- School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
2
|
Kras K, Osiak-Wicha C, Arciszewski MB. Immunolocalization and quantification of the phoenixin and GPR173 in the gastrointestinal tract of Holstein-Friesian bulls. BMC Vet Res 2025; 21:76. [PMID: 39966825 PMCID: PMC11834677 DOI: 10.1186/s12917-025-04545-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 01/30/2025] [Indexed: 02/20/2025] Open
Abstract
Phoenixin (PNX), well-conserved but newly discovered neuropeptide, is involved in various physiological processes, such as food intake, cardiovascular functions, reproductive functions, and stress regulation. PNX is the predicted ligand of GPR173 receptor, but due to its relatively recent discovery in 2013, there is a lack of studies describing the exact mechanism of action of the peptide. In addition, the protein was not been well-studied in specific organs, particularly in the gastrointestinal tract (GIT) of ruminants, including domestic cattle, which are among the world's main livestock animals. Therefore, this study aimed to investigate the immunolocalization and quantification of PNX and GPR173 in the GIT of domestic cattle. Study material, including GIT sections of two age groups, calves and adult bulls (n = 6 per group), was obtained from a slaughterhouse. Enzyme-linked immunosorbent assay (ELISA) and immunohistochemical (IHC) analyses were performed. Analyses revealed low levels of PNX in the GIT of both age groups, with localization restricted to epithelial cells across all examined GIT segments, with statistically significant differences between age groups and GIT segments, which may result from the delayed development of forestomachs in calves. On the other hand, GPR173 levels were shown to be higher than those of PNX and to have a wider distribution extending beyond the epithelium to the blood vessels wall and the intrinsic nervous system. This may suggests that PNX is not the only ligand for this receptor. Overall, the results may suggest that both PNX and GPR173 could possibly play protective roles related to the immune response, regulate digestive and absorptive functions, and due to receptor presence in nerve fibres, may play a role in regulating GIT secretion and motility. These findings could potentially facilitate further research into the therapeutic potential of targeting PNX and GPR173 in managing gastrointestinal disorders in domestic cattle and other species, and can also be further used for experimental, clinical or pharmacological research into the treatment of eating disorders not only in humans, but also in farm animals.
Collapse
Affiliation(s)
- Katarzyna Kras
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-950, Lublin, Poland.
| | - Cezary Osiak-Wicha
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-950, Lublin, Poland
| | - Marcin B Arciszewski
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-950, Lublin, Poland
| |
Collapse
|
3
|
McIlwraith EK, Loganathan N, Mak KWY, He W, Belsham DD. Phoenixin knockout mice show no impairment in fertility or differences in metabolic response to a high-fat diet, but exhibit behavioral differences in an open field test. J Neuroendocrinol 2024; 36:e13398. [PMID: 38733120 DOI: 10.1111/jne.13398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/27/2024] [Accepted: 04/21/2024] [Indexed: 05/13/2024]
Abstract
Phoenixin (PNX) is a conserved secreted peptide that was identified 10 years ago with numerous studies published on its pleiotropic functions. PNX is associated with estrous cycle length, protection from a high-fat diet, and reduction of anxiety behavior. However, no study had yet evaluated the impact of deleting PNX in the whole animal. We sought to evaluate a mouse model lacking the PNX parent gene, small integral membrane protein 20 (Smim20), and the resulting effect on reproduction, energy homeostasis, and anxiety. We found that the Smim20 knockout mice had normal fertility and estrous cycle lengths. Consistent with normal fertility, the hypothalamii of the knockout mice showed no changes in the levels of reproduction-related genes, but the male mice had some changes in energy homeostasis-related genes, such as melanocortin receptor 4 (Mc4r). When placed on a high-fat diet, the wildtype and knockout mice responded similarly, but the male heterozygous mice gained slightly less weight. When placed in an open field test box, the female knockout mice traveled less distance in the outer zone, indicating alterations in anxiety or locomotor behavior. In summary, the homozygous knockout of PNX did not alter fertility and modestly alters a few neuroendocrine genes in response to a high-fat diet, especially in the female mice. However, it altered the behavior of mice in an open field test. PNX therefore may not be crucial for reproductive function or weight, however, we cannot rule out possible compensatory mechanisms in the knockout model. Understanding the role of PNX in physiology may ultimately lead to an enhanced understanding of neuroendocrine mechanisms involving this enigmatic peptide.
Collapse
Affiliation(s)
- Emma K McIlwraith
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Neruja Loganathan
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Kimberly W Y Mak
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Wenyuan He
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Denise D Belsham
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Obstetrics and Gynaecology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Muzammil AN, Barathan M, Yazid MD, Sulaiman N, Makpol S, Mohamed Ibrahim N, Jaafar F, Abdullah NAH. A systematic scoping review of the multifaceted role of phoenixin in metabolism: insights from in vitro and in vivo studies. Front Endocrinol (Lausanne) 2024; 15:1406531. [PMID: 39398330 PMCID: PMC11466790 DOI: 10.3389/fendo.2024.1406531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/02/2024] [Indexed: 10/15/2024] Open
Abstract
Phoenixin (PNX) is an emerging neuropeptide that plays a significant role in regulating metabolism and reproduction. This comprehensive review examines findings from human, in vivo, and in vitro studies to elucidate the functions of PNX in metabolic processes. PNX has been identified as a key player in essential metabolic pathways, including energy homeostasis, glucose, lipid and electrolyte metabolism, and mitochondrial dynamics. It modulates food and fluid intake, influences glucose and lipid profiles, and affects mitochondrial biogenesis and function. PNX is abundantly expressed in the hypothalamus, where it plays a crucial role in regulating reproductive hormone secretion and maintaining energy balance. Furthermore, PNX is also expressed in peripheral tissues such as the heart, spleen, and pancreas, indicating its involvement in the regulation of metabolism across central and peripheral systems. PNX is a therapeutic peptide that operates through the G protein-coupled receptor 173 (GPR173) at the molecular level. It activates signaling pathways such as cAMP-protein kinase A (PKA) and Epac-ERK, which are crucial for metabolic regulation. Research suggests that PNX may be effective in managing metabolic disorders like obesity and type 2 diabetes, as well as reproductive health issues like infertility. Since metabolic processes are closely linked to reproduction, further understanding of PNX's role in these areas is necessary to develop effective management/treatments. This review aims to highlight PNX's involvement in metabolism and identify gaps in current knowledge regarding its impact on human health. Understanding the mechanisms of PNX's action is crucial for the development of novel therapeutic strategies for the treatment of metabolic disorders and reproductive health issues, which are significant public health concerns globally.
Collapse
Affiliation(s)
- Adiba Najwa Muzammil
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Muttiah Barathan
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Muhammad Dain Yazid
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Nadiah Sulaiman
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Suzana Makpol
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Norlinah Mohamed Ibrahim
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Faizul Jaafar
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Nur Atiqah Haizum Abdullah
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
5
|
Osiak-Wicha C, Kras K, Tomaszewska E, Muszyński S, Arciszewski MB. Examining the Potential Applicability of Orexigenic and Anorexigenic Peptides in Veterinary Medicine for the Management of Obesity in Companion Animals. Curr Issues Mol Biol 2024; 46:6725-6745. [PMID: 39057043 PMCID: PMC11275339 DOI: 10.3390/cimb46070401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/27/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024] Open
Abstract
This review article comprehensively explores the role of orexigenic and anorexigenic peptides in the management of obesity in companion animals, with a focus on clinical applications. Obesity in domestic animals, particularly dogs and cats, is prevalent, with significant implications for their health and well-being. Factors contributing to obesity include overfeeding, poor-quality diet, lack of physical activity, and genetic predispositions. Despite the seriousness of this condition, it is often underestimated, with societal perceptions sometimes reinforcing unhealthy behaviors. Understanding the regulation of food intake and identifying factors affecting the function of food intake-related proteins are crucial in combating obesity. Dysregulations in these proteins, whether due to genetic mutations, enzymatic dysfunctions, or receptor abnormalities, can have profound health consequences. Molecular biology techniques play a pivotal role in elucidating these mechanisms, offering insights into potential therapeutic interventions. The review categorizes food intake-related proteins into anorexigenic peptides (inhibitors of food intake) and orexigenic peptides (enhancers of food intake). It thoroughly examines current research on regulating energy balance in companion animals, emphasizing the clinical application of various peptides, including ghrelin, phoenixin (PNX), asprosin, glucagon-like peptide 1 (GLP-1), leptin, and nesfatin-1, in veterinary obesity management. This comprehensive review aims to provide valuable insights into the complex interplay between peptides, energy balance regulation, and obesity in companion animals. It underscores the importance of targeted interventions and highlights the potential of peptide-based therapies in improving the health outcomes of obese pets.
Collapse
Affiliation(s)
- Cezary Osiak-Wicha
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-950 Lublin, Poland; (C.O.-W.); (K.K.)
| | - Katarzyna Kras
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-950 Lublin, Poland; (C.O.-W.); (K.K.)
| | - Ewa Tomaszewska
- Department of Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-950 Lublin, Poland;
| | - Siemowit Muszyński
- Department of Biophysics, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland;
| | - Marcin B. Arciszewski
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-950 Lublin, Poland; (C.O.-W.); (K.K.)
| |
Collapse
|
6
|
Can U, Akdu S, Şahinoğlu S. The Levels of Phoenixin-14 and Phoenixin-20 in Patients with Type 2 Diabetes Mellitus. Endocr Metab Immune Disord Drug Targets 2024; 24:1315-1322. [PMID: 38213155 DOI: 10.2174/0118715303267256231210060250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/03/2023] [Accepted: 09/26/2023] [Indexed: 01/13/2024]
Abstract
BACKGROUND New pathogenesis-related early detection markers are needed to prevent Type 2 Diabetes Mellitus (T2DM). OBJECTIVE We aimed to determine phoenixin (PNX)-14 and PNX-20 levels in T2DM patients and investigate their relationship with diabetes. METHODS 36 T2DM patients and 36 healthy controls were included in the study, and PNX-14 and PNX-20 levels in blood samples taken from the groups were measured by ELISA method. RESULTS Patients' serum PNX-14 and PNX-20 levels were statistically significantly lower than in controls (p <0.001). A negative correlation was detected between PNX-14 and BMI, fasting blood sugar, HbA1c%, and HOMA-IR. A negative correlation was found between PNX-20 and BMI, fasting insulin and glucose, HbA1c%, and HO-MA-IR. A positive correlation was noticed between PNX-14 and PNX-20 levels. In ROC analyses, PNX-14 and PNX-20 performed almost equally in predicting T2DM. In predicting T2DM, the area under the ROC curve for PNX-14 was 0.874 (cutoff value 413.4 ng/L, sensitivity 89 %, specificity 72%), and for PNX-20 was 0.858 (cutoff value 228.7 ng/L, sensitivity 80 %, specificity 83 %). CONCLUSION This study shows that serum PNX measurement may have a high level of evidence in predicting T2DM. PNX, related to pathogenesis, may be useful in diagnosing T2DM and other information to support clinical decision-making.
Collapse
Affiliation(s)
- Ummugulsum Can
- Konya City Hospital, Department of Biochemistry, Konya, Turkey
| | - Sadinaz Akdu
- Fethiye State Hospital, Department of Biochemistry, Muğla, Turkey
| | - Serdar Şahinoğlu
- Fethiye State Hospital, Department of Internal Medicine, Muğla, Turkey
| |
Collapse
|
7
|
Zhang J, Wang Z, Cong K, Qi J, Sun L. Phoenixin-20 ameliorates Sevoflurane inhalation-induced post-operative cognitive dysfunction in rats via activation of the PKA/CREB signaling. Aging (Albany NY) 2023; 15:14666-14676. [PMID: 38103264 PMCID: PMC10781492 DOI: 10.18632/aging.205177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/09/2023] [Indexed: 12/18/2023]
Abstract
Post-operative cognitive dysfunction (POCD) is a common complication after surgery due to the usage of anesthetics, such as Sevoflurane, which severely impacts the life quality of patients. Currently, the pathogenesis of Sevoflurane-induced POCD has not been fully elucidated but is reportedly involved with oxidative stress (OS) injury and aggravated inflammation. Phoenixin-20 (PNX-20) is a PNX peptide consisting of 20 amino acids with promising inhibitory effects on OS and inflammation. Herein, we proposed to explore the potential protective function of PNX-20 on Sevoflurane inhalation-induced POCD in rats. Sprague-Dawley (SD) rats were treated with 100 ng/g PNX-20 for 7 days with or without pre-inhalation with 2.2% Sevoflurane. Markedly increased escape latency and decreased time in the target quadrant in the Morris water maze (MWM) test, and aggravated pathological changes and apoptosis in the hippocampus tissue were observed in Sevoflurane-treated rats, which were markedly attenuated by PNX-20. Furthermore, the aggravated inflammation and OS in the hippocampus observed in Sevoflurane-treated rats were notably abolished by PNX-20. Moreover, the brain-derived neurotrophic factor (BDNF), protein kinase A (PKA), and phospho-cAMP response element binding protein/cAMP response element binding protein (p-CREB/CREB) levels were markedly decreased in Sevoflurane-treated rats, which were memorably increased by PNX-20. Our results indicated that PNX-20 ameliorated Sevoflurane inhalation-induced POCD in rats via the activation of PKA/CREB signaling, which might supply a new treatment approach for POCD.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Anesthesiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, Shandong, China
| | - Zhao Wang
- Department of Anesthesiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, Shandong, China
| | - Kun Cong
- Department of Anesthesiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, Shandong, China
| | - Jun Qi
- Department of Anesthesiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, Shandong, China
| | - Lining Sun
- Department of Anesthesiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, Shandong, China
| |
Collapse
|
8
|
Çimenli S, Kale İ, Muhcu M. Investigation of Serum Phoenixin-14 Concentration in Pregnant Women Diagnosed with Hyperemesis Gravidarum. Z Geburtshilfe Neonatol 2023; 227:347-353. [PMID: 37216963 DOI: 10.1055/a-2073-8652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
OBJECTIVE We aimed to investigate the relationship between the hyperemesis gravidarum (HG) and maternal serum phoenixin-14 (PNX-14) concentrations. MATERIALS AND METHODS This cross-sectional study was conducted with 88 pregnant women who applied to the Umraniye Training and Research Hospital Gynecology and Obstetrics Clinic between February 2022 and October 2022. The HG group consisted of 44 pregnant women diagnosed with HG between the 7th and 14th gestational weeks, and the control group consisted of 44 healthy pregnant women matched with the HG group in terms of age, BMI, and gestational week. Demographic characteristics, ultrasound findings, and laboratory outcomes were noted. The two groups were compared in terms of maternal serum PNX-14 concentrations. RESULTS Gestational age at blood sampling for PNX-14 was similar in both groups (p=1.000). While maternal serum PNX-14 concentration was 85.5 pg/ml in the HG group, it was 71.3 pg/ml in the control group (p=0.012). ROC analysis was performed to determine the value of maternal serum PNX-14 concentration in terms of predicting HG. AUC analysis of maternal serum PNX-14 for HG estimation was 0.656 (p=0.012, 95% CI=0.54-0.77). The optimal cutoff value for maternal serum PNX-14 concentration was determined as 79.81 pg/ml with 59% sensitivity and 59% specificity. CONCLUSION In this study, maternal serum PNX-14 concentration was found to be higher in pregnant women with HG, which indicates that high serum PNX-14 concentrations may have an anorexigenic effect on food intake in pregnancy. Concentrations of other PNX isoforms in HG and changes in PNX concentrations in pregnant women with HG who regained weight after treatment remain to be investigated.
Collapse
Affiliation(s)
- Sümeyye Çimenli
- Obstetrics and Gynecology, Umraniye Training and Research Hospital, Istanbul, Turkey
| | - İbrahim Kale
- Obstetrics and Gynecology, Umraniye Training and Research Hospital, Istanbul, Turkey
| | - Murat Muhcu
- Obstetrics and Gynecology, Maternal Fetal Unit, Umraniye Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
9
|
Schalla MA, Oerter S, Cubukova A, Metzger M, Appelt-Menzel A, Stengel A. Locked Out: Phoenixin-14 Does Not Cross a Stem-Cell-Derived Blood-Brain Barrier Model. Brain Sci 2023; 13:980. [PMID: 37508911 PMCID: PMC10377091 DOI: 10.3390/brainsci13070980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Phoenixin-14 is a recently discovered peptide regulating appetite. Interestingly, it is expressed in the gastrointestinal tract; however, its supposed receptor, GPR173, is predominantly found in hypothalamic areas. To date, it is unknown how peripherally secreted phoenixin-14 is able to reach its centrally located receptor. To investigate whether phoenixin is able to pass the blood-brain barrier, we used an in vitro mono-culture blood-brain barrier (BBB) model consisting of brain capillary-like endothelial cells derived from human induced-pluripotent stem cells (hiPSC-BCECs). The passage of 1 nMol and 10 nMol of phoenixin-14 via the mono-culture was measured after 30, 60, 90, 120, 150, 180, 210, and 240 min using a commercial ELISA kit. The permeability coefficients (PC) of 1 nMol and 10 nMol phoenixin-14 were 0.021 ± 0.003 and 0.044 ± 0.013 µm/min, respectively. In comparison with the PC of solutes known to cross the BBB in vivo, those of phoenixin-14 in both concentrations are very low. Here, we show that phoenixin-14 alone is not able to cross the BBB, suggesting that the effects of peripherally secreted phoenixin-14 depend on a co-transport mechanism at the BBB in vivo. The mechanisms responsible for phoenixin-14's orexigenic property along the gut-brain axis warrant further research.
Collapse
Affiliation(s)
- Martha A Schalla
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine; Charite-Universitätsmedizin BerlinCorporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 12203 Berlin, Germany
- Department of Gynecology and Obstetrics, HELIOS Kliniken GmbH, 78628 Rottweil, Germany
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Osianderstr. 5, 72076 Tübingen, Germany
| | - Sabrina Oerter
- Fraunhofer Institute for Silicate Research ISC, Translational Center Regenerative Therapies (TLC-RT), 97070 Würzburg, Germany
- Chair Tissue Engineering and Regenerative Medicine (TERM), University Hospital Würzburg, 97070 Würzburg, Germany
| | - Alevtina Cubukova
- Chair Tissue Engineering and Regenerative Medicine (TERM), University Hospital Würzburg, 97070 Würzburg, Germany
| | - Marco Metzger
- Fraunhofer Institute for Silicate Research ISC, Translational Center Regenerative Therapies (TLC-RT), 97070 Würzburg, Germany
- Chair Tissue Engineering and Regenerative Medicine (TERM), University Hospital Würzburg, 97070 Würzburg, Germany
| | - Antje Appelt-Menzel
- Fraunhofer Institute for Silicate Research ISC, Translational Center Regenerative Therapies (TLC-RT), 97070 Würzburg, Germany
- Chair Tissue Engineering and Regenerative Medicine (TERM), University Hospital Würzburg, 97070 Würzburg, Germany
| | - Andreas Stengel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine; Charite-Universitätsmedizin BerlinCorporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 12203 Berlin, Germany
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Osianderstr. 5, 72076 Tübingen, Germany
| |
Collapse
|
10
|
Liu T, Yang M, Wu Y, Bu G, Han X, Du X, Liang Q, Cao X, Huang A, Zeng X, Meng F. PNX14 but not PNX20 as a novel regulator of preadipocyte differentiation via activating Epac-ERK signaling pathway in Gallus gallus. Gen Comp Endocrinol 2023; 335:114232. [PMID: 36774983 DOI: 10.1016/j.ygcen.2023.114232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/31/2023] [Accepted: 02/09/2023] [Indexed: 02/12/2023]
Abstract
Small integral membrane protein 20 (SMIM20) could generate two main peptides, PNX14 and PNX20, which participate in multiple biological roles such as reproduction, inflammation and energy metabolism in mammals. However, little is known about their physiological functions in non-mammalian vertebrates. Using chicken (c-) as an animal model, we found cSMIM20 was moderately expressed in adipose tissues, and its expression was gradually increased during the differentiation of chicken preadipocytes, suggesting that it may play an important role in chicken adipogenesis. Further research showed cPNX14 could facilitate the differentiation of chicken preadipocytes into mature adipocytes by enhancing expression of adipogenic genes including PPARγ, CEBPα and FABP4, and promoting the formation of lipid droplets. This pro-adipogenic effect of cPNX14 was completely attenuated by Epac-specific and ERK inhibitor. Interestingly, cPNX20 failed to regulate the adipogenic genes and lipid droplet content. Collectively, our findings reveal that cPNX14 but not cPNX20 can serve as a novel adipogenesis mediator by activating the Epac-ERK signaling pathway in chickens.
Collapse
Affiliation(s)
- Tuoyuan Liu
- College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an 625014, PR China
| | - Ming Yang
- College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an 625014, PR China
| | - Yuping Wu
- College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an 625014, PR China
| | - Guixian Bu
- College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an 625014, PR China
| | - Xingfa Han
- College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an 625014, PR China
| | - Xiaogang Du
- College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an 625014, PR China
| | - Qiuxia Liang
- College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an 625014, PR China
| | - Xiaohan Cao
- College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an 625014, PR China
| | - Anqi Huang
- College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an 625014, PR China
| | - Xianyin Zeng
- College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an 625014, PR China
| | - Fengyan Meng
- College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an 625014, PR China.
| |
Collapse
|
11
|
Friedrich T, Stengel A. Current state of phoenixin-the implications of the pleiotropic peptide in stress and its potential as a therapeutic target. Front Pharmacol 2023; 14:1076800. [PMID: 36860304 PMCID: PMC9968724 DOI: 10.3389/fphar.2023.1076800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/04/2023] [Indexed: 02/15/2023] Open
Abstract
Phoenixin is a pleiotropic peptide, whose known functions have broadened significantly over the last decade. Initially first described as a reproductive peptide in 2013, phoenixin is now recognized as being implicated in hypertension, neuroinflammation, pruritus, food intake, anxiety as well as stress. Due to its wide field of involvement, an interaction with physiological as well as psychological control loops has been speculated. It has shown to be both able to actively reduce anxiety as well as being influenced by external stressors. Initial rodent models have shown that central administration of phoenixin alters the behavior of the subjects when confronted with stress-inducing situations, proposing an interaction with the perception and processing of stress and anxiety. Although the research on phoenixin is still in its infancy, there are several promising insights into its functionality, which might prove to be of value in the pharmacological treatment of several psychiatric and psychosomatic illnesses such as anorexia nervosa, post-traumatic stress disorder as well as the increasingly prevalent stress-related illnesses of burnout and depression. In this review, we aim to provide an overview of the current state of knowledge of phoenixin, its interactions with physiological processes as well as focus on the recent developments in stress response and the possible novel treatment options this might entail.
Collapse
Affiliation(s)
- T. Friedrich
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - A. Stengel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany,Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Tübingen, Germany,*Correspondence: A. Stengel,
| |
Collapse
|
12
|
Friedrich T, Goebel-Stengel M, Schalla MA, Kobelt P, Rose M, Stengel A. Abdominal surgery increases activity in several phoenixin immunoreactive nuclei. Neurosci Lett 2023; 792:136938. [PMID: 36341925 DOI: 10.1016/j.neulet.2022.136938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Research on the peptide phoenixin has increased in recent years and greatly widened the known scope of its functions since its discovery in 2013. Involvement of phoenixin has since been shown in anxiety, food intake, reproduction as well as emotional and immunological stress. To further evaluate its involvement in stress reactions, this study aims to investigate the effects of abdominal surgery, a well-established physical stressor, on the activity of phoenixin-immunoreactive brain nuclei. METHODS Male Sprague-Dawley rats (n = 6/group) were subjected to either an abdominal surgery stress protocol or a sham operation. Animals in the verum group were anesthetized, the abdominal cavity opened and the cecum palpated, followed by closing of the abdomen and recovery. Sham operated animals only received inhalation anesthesia and time for recovery. All animals were subsequently sacrificed and brains processed and evaluated for c-Fos activity as well as phoenixin density. RESULTS Compared to control, abdominal surgery significantly increased c-Fos activity in the paraventricular nucleus (PVN, 6.4-fold, p < 0.001), the medial part of the nucleus of the solitary tract (mNTS, 3.8-fold, p < 0.001), raphe pallidus (RPa, 3.6-fold, p < 0.001), supraoptic nucleus (SON, 3.2-fold, p < 0.001), ventrolateral medulla (VLM, also called A1C1, 3.0-fold, p < 0.001), dorsal motor nucleus of vagus (DMN, 2.9-fold, p < 0.001), locus coeruleus (LC, 1.8-fold, p < 0.01) and Edinger-Westphal nucleus (EW, 1.6-fold, p < 0.05), while not significantly altering c-Fos activity in the amygdala (CeM, 1.3-fold, p > 0.05). Phoenixin immunoreactivity was not significantly affected by abdominal surgery (p > 0.05). CONCLUSION The observed abdominal surgery-related increase in activity in phoenixin immunoreactive nuclei compared to sham surgery controls supports the hypothesis of an involvement of phoenixin in stress reactions. Interestingly, various psychological and physical stressors lead to specific changes in activity and immunoreactivity in phoenixin-containing nuclei, giving rise to a stressor-specific involvement of phoenixin.
Collapse
Affiliation(s)
- Tiemo Friedrich
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Miriam Goebel-Stengel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany; Department of Internal Medicine, Helios Kliniken GmbH, Rottweil, Germany; Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Tübingen, Germany
| | - Martha Anna Schalla
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Peter Kobelt
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Matthias Rose
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Andreas Stengel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany; Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Tübingen, Germany.
| |
Collapse
|
13
|
Ozdemir-Kumral ZN, Sen E, Yapici HB, Atakul N, Domruk OF, Aldag Y, Sen LS, Kanpalta Mustafaoğlu F, Yuksel M, Akakin D, Erzik C, Haklar G, Imeryuz N. Phoenixin 14 ameloriates pancreatic injury in streptozotocin-induced diabetic rats by alleviating oxidative burden. J Pharm Pharmacol 2022; 74:1651-1659. [PMID: 36130115 DOI: 10.1093/jpp/rgac055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/04/2022] [Indexed: 02/05/2023]
Abstract
Phoenixin-14 (PNX) is a neuropeptide that has been shown to prevent oxidative damage and stimulates insulin secretion. We investigated the effects of PNX on pancreatic injury induced by streptozotocin (STZ), and nicotinamide (NAD). Male Sprague-Dawley rats, in control (C) and diabetic (STZ) groups, were treated with either saline, or PNX (0.45 nmol/kg, or 45 nmol/kg) daily for 3 days 1 week after STZ injection. Fasting blood glucose (FBG) and gastric emptying rate (GER) were measured. Tissue and blood samples were collected. PNX treatments prevented pancreatic damage and β cell loss. Increased luminol and lucigenin levels in the pancreas, ileum and liver tissues of STZ groups were alleviated by PNX treatment in pancreatic and ileal tissues. PNX0.45 decreased FBG without any change in insulin blood level and pancreatic mRNA. GER increased in all diabetic rats while PNX0.45 delayed GER only in the C group. PNX diminishes pancreatic damage and lowers FBG by reducing oxidative load.
Collapse
Affiliation(s)
| | - Eminenur Sen
- Marmara University School of Medicine, Istanbul, Turkey
| | | | | | | | - Yusra Aldag
- Marmara University School of Medicine, Istanbul, Turkey
| | - Leyla Semiha Sen
- Department of Physiology, Marmara University School of Medicine, Istanbul, Turkey.,Department of General Surgery, Marmara University School of Medicine, Istanbul, Turkey
| | | | - Meral Yuksel
- Department of Medical Laboratory Technics, Marmara University Vocational School of Health Services, Istanbul, Turkey
| | - Dilek Akakin
- Department of Histology and Embryology, Marmara University School of Medicine, Istanbul, Turkey
| | - Can Erzik
- Department of Medical Biology, Marmara University School of Medicine, Istanbul, Turkey
| | - Goncagul Haklar
- Department of Biochemistry, Marmara University School of Medicine, Istanbul, Turkey
| | - Neşe Imeryuz
- Department of Physiology, Marmara University School of Medicine, Istanbul, Turkey
| |
Collapse
|
14
|
Liang H, Zhao Q, Lv S, Ji X. Regulation and physiological functions of phoenixin. Front Mol Biosci 2022; 9:956500. [PMID: 36090042 PMCID: PMC9456248 DOI: 10.3389/fmolb.2022.956500] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/26/2022] [Indexed: 11/30/2022] Open
Abstract
Phoenixin is a newly discovered neuropeptide generated from small integral membrane protein 20. Phoenixin is a ligand for the G protein-coupled receptor 173 (GPR173) and has been detected in central and peripheral tissues of human, rats, mice, bovine, and zebrafish. It was initially involved in regulating reproductive function by stimulating the luteinizing hormone release from pituitary cells by increasing the level of gonadotropin-releasing hormone. Recently, many functions of phoenixin have been generalized, including regulation of food intake, memory, Alzheimer’s disease, anxiety, inflammation, neuronal and microglial activity, energy metabolism and body fluid balance, cardiovascular function, and endocrine activity. In addition, the interaction between phoenixin and nesfatin-1 have been revealed. The present article summarized the latest research progress on physiological function of phoenixin, suggesting that it is a potential target for novel drug development and clinical application.
Collapse
Affiliation(s)
- Han Liang
- The First Affiliated Hospital of Henan University, Henan University, Kaifeng, China
| | - Qian Zhao
- Institute of Molecular Medicine, Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Shuangyu Lv
- Institute of Molecular Medicine, Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
- *Correspondence: Shuangyu Lv, ; Xinying Ji,
| | - Xinying Ji
- Institute of Molecular Medicine, Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
- *Correspondence: Shuangyu Lv, ; Xinying Ji,
| |
Collapse
|
15
|
Basha EH, Eltokhy AKB, Eltantawy AF, Heabah NAE, Elshwaikh SL, El-Harty YM. Linking mitochondrial dynamics and fertility: promoting fertility by phoenixin through modulation of ovarian expression of GnRH receptor and mitochondrial dynamics proteins DRP-1 and Mfn-2. Pflugers Arch 2022; 474:1107-1119. [PMID: 35972578 PMCID: PMC9492611 DOI: 10.1007/s00424-022-02739-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/08/2022] [Accepted: 07/29/2022] [Indexed: 11/05/2022]
Abstract
Obesity is linked to reproductive disorders. Novel neuropeptide phoenixin demonstrated many therapeutic actions. In this study, we aim to evaluate phoenixin’s potential effect in obesity-induced infertility through modulating mitochondrial dynamics. Ninety adult female rats were divided to 4 groups: (I), fed with normal pellet diet; (II), given phoenixin; (III), fed with high-fat diet. Rats that developed obesity and infertility were divided to 2 groups: (III-A), received no further treatment; (III-B), given phoenixin. Our results showed that phoenixin treatment in obese infertile rats significantly decreased serum levels of insulin and testosterone and ovarian levels of dynamin-related protein1(Drp1),reactive oxygen species ROS, TNF-α, MDA, and caspase-3. Phoenixin treatment also significantly increased serum estrogen progesterone, LH, and FSH together with ovarian levels of GnRH receptor (GnRHR), mitofusin2(Mfn2), mitochondrial transmembrane potential (ΔΨm), and electron transport chain (ETC) complex-I significantly when compared with obese group. Ovarian histopathological changes were similarly improved by phoenixin. Our data demonstrate phoenixin’s role in improving obesity-induced infertility.
Collapse
Affiliation(s)
- Eman H Basha
- Department of Medical Physiology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Amira K B Eltokhy
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Asmaa Fawzy Eltantawy
- Department of Medical Pharmacology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Nehal A E Heabah
- Department of Pathology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | | | - Yasmeen M El-Harty
- Department of Medical Physiology, Faculty of Medicine, Tanta University, Tanta, Egypt.
| |
Collapse
|
16
|
Akdu S, Can U, Polat E. Investigation of serum phoenixin levels in patients with hypertension. Rev Assoc Med Bras (1992) 2022; 68:814-819. [PMID: 35766697 PMCID: PMC9575894 DOI: 10.1590/1806-9282.20220153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/26/2022] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE: Hypertension is a major modifiable risk factor for cardiovascular disease and
premature death worldwide. Phoenixin is a newly identified neuropeptide with
multiple bioactivity. However, there was no published data about phoenixin
levels in hypertension. The aim of this study was to evaluate the
relationship between phoenixin and hypertension. METHODS: This study was performed in 36 patients with hypertension and 36 healthy
controls. Serum phoenixin-14 and phoenixin-20 levels were determined by
Enzyme-Linked ImmunoSorbent Assay method. RESULTS: Serum phoenixin-14 and phoenixin-20 values were significantly lower in
hypertension patients compared with the control group (p<0.001). The
levels of phoenixin-14 were negatively correlated with weight (r=-0.376;
p<0.005), body mass index (r=-0.407; p<0.001), systolic blood pressure
(r=-0.586; p<0.001), and diastolic blood pressure (r=-0.319; p<0.01).
There was a negative correlation between serum phoenixin-20 and weight
(r=-0.378; p<0.005), body mass index (r=-0.383; p<0.005), systolic
blood pressure (r=-0.551; p<0.001), and diastolic blood pressure
(r=-0.306; p<0.01). We used receiver operating characteristic curve
analyses to compare the diagnosis value of Phoenixin-14 and Phoenixin-20
levels in hypertensive patients. We found that Phoenixin-14 value is an area
under the curve of 0.87 (cutoff value 404.7 ng/L, sensitivity 92%,
specificity 72%) and Phoenixin-20 value is an area under the curve of 0.83
(cutoff value 209.9 ng/L, sensitivity 86%, specificity 75%). Phoenixin-14
did nearly show equally compared to phoenixin-20 in predicting
hypertension. CONCLUSION: Serum phoenixin-14 and phoenixin-20 may be related to the pathogenesis of
hypertension. Our findings indicated that serum phoenixin-14 and
phoenixin-20 may serve as a novel biomarker for the diagnosis of
hypertension.
Collapse
Affiliation(s)
- Sadinaz Akdu
- Fethiye State Hospital, Department of Biochemistry - Muğla, Turkey
| | - Ummugulsum Can
- Konya City Hospital, Department of Biochemistry - Konya, Turkey
| | - Esra Polat
- Fethiye State Hospital, Department of Cardiology - Muğla, Turkey
| |
Collapse
|
17
|
Breton TS, Murray CA, Huff SR, Phaneuf AM, Tripp BM, Patuel SJ, Martyniuk CJ, DiMaggio MA. Phoenixin-14 alters transcriptome and steroid profiles in female green-spotted puffer (Dichotomyctere nigroviridis). Sci Rep 2022; 12:9454. [PMID: 35676522 PMCID: PMC9177834 DOI: 10.1038/s41598-022-13695-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/26/2022] [Indexed: 02/08/2023] Open
Abstract
Phoenixin (PNX) is a highly conserved, novel hormone with diverse functions, including hypothalamic control of reproduction, appetite modulation, and regulation of energy metabolism and inflammation. While some functions appear conserved across vertebrates, additional research is required to fully characterize these complex pleiotropic effects. For instance, very little is known about transcriptome level changes associated with PNX exposure, including responses in the hypothalamic-pituitary-gonadal (HPG) axis, which is critical in vertebrate reproduction. In addition, the PNX system may be especially complex in fish, where an additional receptor is likely present in some species. The purpose of this study was to assess hypothalamic and ovarian transcriptomes after PNX-14 administration in female vitellogenic green-spotted puffer (Dichotomyctere nigroviridis). Steroid-related changes were also assessed in the liver and blood plasma. Hypothalamic responses included pro-inflammatory signals such as interleukin 1β, possibly related to gut-brain axis functions, as well as suppression of cell proliferation. Ovarian responses were more widely downregulated across all identified pathways, which may reflect progression to a less transcriptionally active state in oocytes. Both organs shared regulation in transforming growth factor-β and extracellular matrix remodeling (periostin) pathways. Reproductive processes were in general downregulated, but both inhibiting (bone morphogenetic protein 15 and follistatin) and promoting (17-hydroxyprogesterone) factors for oocyte maturation were identified. Select genes involved in reproduction (vitellogenins, estrogen receptors) in the liver were unresponsive to PNX-14 and higher doses may be needed to induce reproductive effects in D. nigroviridis. These results reinforce the complexity of PNX actions in diverse tissues and highlight important roles for this hormone in regulating the immune response, energy metabolism, and cell growth.
Collapse
Affiliation(s)
- Timothy S. Breton
- grid.266648.80000 0000 8760 9708Division of Natural Sciences, University of Maine at Farmington, Farmington, ME 04938 USA
| | - Casey A. Murray
- grid.15276.370000 0004 1936 8091Tropical Aquaculture Laboratory, Program in Fisheries and Aquatic Sciences, School of Forest, Fisheries, and Geomatics Sciences, Institute of Food and Agricultural Sciences, University of Florida, Ruskin, FL 33570 USA
| | - Sierra R. Huff
- grid.266648.80000 0000 8760 9708Division of Natural Sciences, University of Maine at Farmington, Farmington, ME 04938 USA
| | - Anyssa M. Phaneuf
- grid.266648.80000 0000 8760 9708Division of Natural Sciences, University of Maine at Farmington, Farmington, ME 04938 USA
| | - Bethany M. Tripp
- grid.266648.80000 0000 8760 9708Division of Natural Sciences, University of Maine at Farmington, Farmington, ME 04938 USA
| | - Sarah J. Patuel
- grid.15276.370000 0004 1936 8091Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611 USA
| | - Christopher J. Martyniuk
- grid.15276.370000 0004 1936 8091Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611 USA
| | - Matthew A. DiMaggio
- grid.15276.370000 0004 1936 8091Tropical Aquaculture Laboratory, Program in Fisheries and Aquatic Sciences, School of Forest, Fisheries, and Geomatics Sciences, Institute of Food and Agricultural Sciences, University of Florida, Ruskin, FL 33570 USA
| |
Collapse
|
18
|
Rajeswari JJ, Vélez EJ, Unniappan S. Liver and muscle-specific effects of phoenixin-20 on the insulin-like growth factor system mRNAs in zebrafish. Growth Horm IGF Res 2022; 63:101456. [PMID: 35305530 DOI: 10.1016/j.ghir.2022.101456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/15/2022] [Accepted: 03/06/2022] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Phoenixin-20 (Pnx-20) is a bioactive peptide with endocrine-like actions in vertebrates. Recent studies suggest Pnx-20 promotes growth hormone/insulin-like growth factors (Gh/Igf) axis, an important endocrine regulator of growth in mammals and fish. DESIGN In this research, we determined whether Pnx-20 affects the different members of the Igf family, its binding proteins and receptors (Igf-system) in zebrafish liver and muscle. RESULTS In vivo administration of Pnx-20 downregulated igfs, igf receptors (igfrs) and igf binding protein (igfbp) 5 mRNA expression in the liver of male and female zebrafish at both 1 and 6 h post-intraperitoneal (IP) injection. Interestingly, this effect occurred at a relatively earlier timepoint in female zebrafish suggesting sex-specific differences in Pnx-20 action. Besides, either 6 or 24 h in vitro incubations with Pnx-20 downregulated the expression of all igfs, igfrs and igfbp5 mRNAs (except igf2a) analyzed in a zebrafish liver cell (ZFL) line. Moreover, siRNA-mediated knockdown of Pnx-20 upregulated all Igf-system mRNAs analyzed in ZFL cells. Together, these results (both in vivo and in vitro) revealed a general suppressive action for both endogenous and exogenous Pnx-20 on the hepatic Igf-system of zebrafish. In contrast, a general sex-specific upregulation of the Igf-system mRNAs analyzed was found in the muscle of Pnx-20 injected fish. Future research should explore the sex- and time-differences observed in the present study. CONCLUSIONS Collectively, this research shows that Pnx-20 is a tissue-specific regulator of the liver (suppressor) and muscle (stimulant) Igf signaling in both male and female zebrafish.
Collapse
Affiliation(s)
- Jithine Jayakumar Rajeswari
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, S7N 5B4, Canada
| | - Emilio J Vélez
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, S7N 5B4, Canada
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, S7N 5B4, Canada.
| |
Collapse
|
19
|
Celik F, Aydin S. Blood and aqueous humor phoenixin, endocan and spexin in patients with diabetes mellitus and cataract with and without diabetic retinopathy. Peptides 2022; 150:170728. [PMID: 34971675 DOI: 10.1016/j.peptides.2021.170728] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 02/07/2023]
Abstract
Peptide phoenixin (PNX), endocan (EDC), and spexin (SPX) are associated with diabetes. Therefore, the purpose of this study was to investigate the levels of PNX, EDC and SPX in the blood and aqueous humor (AH) of patient with type 2 diabetes with and without DRP and cataract. 30 type 2 diabetes patients with cataract (DM + C), 30 DRP patient with cataract (DRP + C), 30 non-diabetic patient with only cataract and 30 control participants were enrolled into this study. PNX, EDC, and SPX were measured in blood and AH by ELISA. In patients with DRP + C, the levels of PNX and EDC were significantly higher in both AH and blood samples compared with the group of patients without DRP + C (<0.05). Also, in patients with DM + C, the levels of PNX and EDC were higher in both AH and blood samples compared with the group of patients without DM + C. However, in patients with DRP + C, the levels of SPX were significantly lower in both AH and blood samples compared with the group of patients without DRP + C (<0.05). Also, in patients with DM + C, the levels of SPX were also lower in both AH and blood samples compared with the group of patients without DM + C. These findings suggest that increased PNX, EDC, and decreased SPX amounts in blood and AH of DM + C and DRP + C groups when compared with control and cataract groups show that they might have a role in the pathophysiology of DM + C, especially in the DRP + C.
Collapse
Affiliation(s)
- Fatih Celik
- Department of Ophthalmology, Elazig Fethi Sekin City Hospital, Health Science University, Elazig Campus, Elazig, Turkey.
| | - Suleyman Aydin
- Department of Medical Biochemistry and Clinical Biochemistry, (Firat Hormones Research Group), School of Medicine, Firat University, Elazig, Turkey.
| |
Collapse
|
20
|
Abstract
Neuropeptides are a diverse class of signaling molecules in metazoans. They occur in all animals with a nervous system and also in neuron-less placozoans. However, their origin has remained unclear because no neuropeptide shows deep homology across lineages, and none have been found in sponges. Here, we identify two neuropeptide precursors, phoenixin (PNX) and nesfatin, with broad evolutionary conservation. By database searches, sequence alignments, and gene-structure comparisons, we show that both precursors are present in bilaterians, cnidarians, ctenophores, and sponges. We also found PNX and a secreted nesfatin precursor homolog in the choanoflagellate Salpingoeca rosetta. PNX, in particular, is highly conserved, including its cleavage sites, suggesting that prohormone processing occurs also in choanoflagellates. In addition, based on phyletic patterns and negative pharmacological assays, we question the originally proposed GPR-173 (SREB3) as a PNX receptor. Our findings revealed that secreted neuropeptide homologs derived from longer precursors have premetazoan origins and thus evolved before neurons.
Collapse
Affiliation(s)
| | - Daniel Thiel
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, UK
| | - Gáspár Jékely
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, UK
| |
Collapse
|
21
|
Inflammatory Stress Induced by Intraperitoneal Injection of LPS Increases Phoenixin Expression and Activity in Distinct Rat Brain Nuclei. Brain Sci 2022; 12:brainsci12020135. [PMID: 35203899 PMCID: PMC8870310 DOI: 10.3390/brainsci12020135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 11/17/2022] Open
Abstract
Due to phoenixin’s role in restraint stress and glucocorticoid stress, as well as its recently shown effects on the inflammasome, we aimed to investigate the effects of lipopolysaccharide (LPS)-induced inflammatory stress on the activity of brain nuclei-expressing phoenixin. Male Sprague Dawley rats (n = 6/group) were intraperitoneally injected with either LPS or control (saline). Brains were processed for c-Fos and phoenixin immunohistochemistry and the resulting slides were evaluated using ImageJ software. c-Fos was counted and phoenixin was evaluated using densitometry. LPS stress significantly increased c-Fos expression in the central amygdaloid nucleus (CeM, 7.2-fold), supraoptic nucleus (SON, 34.8 ± 17.3 vs. 0.0 ± 0.0), arcuate nucleus (Arc, 4.9-fold), raphe pallidus (RPa, 5.1-fold), bed nucleus of the stria terminalis (BSt, 5.9-fold), dorsal motor nucleus of the vagus nerve (DMN, 89-fold), and medial part of the nucleus of the solitary tract (mNTS, 121-fold) compared to the control-injected group (p < 0.05). Phoenixin expression also significantly increased in the CeM (1.2-fold), SON (1.5-fold), RPa (1.3-fold), DMN (1.3-fold), and mNTS (1.9-fold, p < 0.05), leading to a positive correlation between c-Fos and phoenixin in the RPa, BSt, and mNTS (p < 0.05). In conclusion, LPS stress induces a significant increase in activity in phoenixin immunoreactive brain nuclei that is distinctively different from restraint stress.
Collapse
|
22
|
Rajaei S, Zendehdel M, Rahnema M, Hassanpour S, Asle-Rousta M. Mediatory role of the central NPY, melanocortine and corticotrophin systems on phoenixin-14 induced hyperphagia in neonatal chicken. Gen Comp Endocrinol 2022; 315:113930. [PMID: 34673032 DOI: 10.1016/j.ygcen.2021.113930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/04/2021] [Accepted: 10/12/2021] [Indexed: 02/07/2023]
Abstract
Animal research indicates the neuropeptide Y (NPY), corticotrophin and melanocortin systems have a mediatory role in reward, however, how these substances interact with phenytoin-14 (PNX-14) induced food intake in birds remains to be identified. Accordingly, in this research eight tests were carried out to investigate the potential interactions of the NPY, melanocortin, as well as corticotrophin systems with PNX-14 on food consumption in neonatal chickens. In the first experiment, chickens were intracerebroventricular (ICV) injected with phosphate-buffered saline (PBS) and PNX-14 (0.8, 0.16, and 3.2 nmol). In second experiment, PBS, the antagonist of CRF1/CRF2 receptors (astressin-B, 30 μg) and PNX-14 + astressin-B were injected. In the rest of the experiments chicken received astressin2-B (CRF2 receptor antagonist; 30 µg), SHU9119 (MCR3/MCR4 receptor antagonist, 0.5nomol), MCL0020 (MCR4 receptor agonist, 0.5 nmol), B5063 (NPY1 receptor antagonist, 1.25 μg), SF22 (NPY2 receptor antagonist, 1.25 μg) and SML0891 (NPY5 receptor antagonist, 1.25 μg) rather than astressin-B. Then, cumulative intake of food was recorded for 2 h. Based on the findings, PNX-14 (0.16 and 3.2 nmol) led to increment in food consumption compared with the control (P < 0.05). Co-administration of the PNX-14 and astressin-B promoted PNX-14-induced hyperphagia (P < 0.05). Co-injection of the PNX-14 + astressin2-B potentiated hyperphagia PNX-14 (P < 0.05). Co-injection of PNX-14 + B5063 inhibited the effects of the PNX-14 (P < 0.05). The co-administration of the PNX-14 and SML0891 potentiated hypophagic effects of the PNX-14 (P < 0.05). The results showed that PNX-14-induced hyperphagia mediates via NPY1, NPY5, and CRF1/CRF2 receptors in neonatal chickens.
Collapse
Affiliation(s)
- Sahar Rajaei
- Department of Physiology, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | - Morteza Zendehdel
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, 14155-6453 Tehran, Iran.
| | - Mehdi Rahnema
- Department of Physiology, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | - Shahin Hassanpour
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | |
Collapse
|
23
|
McIlwraith EK, Zhang N, Belsham DD. The Regulation of Phoenixin: A Fascinating Multidimensional Peptide. J Endocr Soc 2021; 6:bvab192. [PMID: 35059547 PMCID: PMC8763610 DOI: 10.1210/jendso/bvab192] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Indexed: 02/07/2023] Open
Abstract
The phoenixin (PNX) peptide is linked to the control of reproduction, food intake, stress, and inflammation. However, little is known about what regulates its gene and protein expression, information that is critical to understand the physiological role of PNX. In this review, we summarize what is known about the transcriptional control of Pnx and its receptor Gpr173. A main function of PNX is as a positive regulator of the hypothalamic-pituitary-gonadal axis, but there is a lack of research on its control by reproductive hormones and peptides. PNX is also associated with food intake, and its expression is linked to feeding status, fatty acids, and glucose. It is influenced by environmental and hormonal-induced stress. The regulation of Pnx in most contexts remains an enigma, in part due to conflicting and negative results. An extensive analysis of the response of the Pnx gene to factors related to reproduction, metabolism, stress, and inflammation is required. Analysis of the Pnx promoter and epigenetic regulation must be considered to understand how this level of control contributes to its pleiotropic effects. PNX is now linked to a broad range of functions, but more research on its gene regulation is required to understand its place in overall physiology and therapeutic potential.
Collapse
Affiliation(s)
| | - Ningtong Zhang
- Department of Physiology, University of Toronto, ON, Canada
| | - Denise D Belsham
- Department of Physiology, University of Toronto, ON, Canada
- Department of Medicine, University of Toronto, ON, Canada
- Department of Obstetrics and Gynaecology, University of Toronto, ON, Canada
| |
Collapse
|
24
|
Role of the Novel Peptide Phoenixin in Stress Response and Possible Interactions with Nesfatin-1. Int J Mol Sci 2021; 22:ijms22179156. [PMID: 34502065 PMCID: PMC8431171 DOI: 10.3390/ijms22179156] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 12/23/2022] Open
Abstract
The novel peptide phoenixin was shown to be involved in several physiological processes ranging from reproduction to food intake. Interest in this protein has steadily increased over the last few years and its known implications have become much broader, playing a role in glucose homeostasis, anxiety, nociception, and pruritus. Phoenixin is expressed in a multitude of organs such as the small intestine, pancreas, and in the hypothalamus, as well as several other brain nuclei influencing numerous physiological functions. Its highly conserved amino-acid sequence amongst species leads to the assumption, that phoenixin might be involved in essential physiological functions. Its co-expression and opposing functionality to the extensively studied peptide nesfatin-1 has given rise to the idea of a possible counterbalancing role. Several recent publications focused on phoenixin’s role in stress reactions, namely restraint stress and lipopolysaccharide-induced inflammation response, in which also nesfatin-1 is known to be altered. This review provides an overview on the phoenixins and nesfatin-1 properties and putative effects, and especially highlights the recent developments on their role and interaction in the response to response.
Collapse
|
25
|
Mukherjee K, Unniappan S. Mouse gastric mucosal endocrine cells are sources and sites of action of Phoenixin-20. Peptides 2021; 141:170551. [PMID: 33862165 DOI: 10.1016/j.peptides.2021.170551] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/09/2021] [Accepted: 04/06/2021] [Indexed: 02/07/2023]
Abstract
Energy homeostasis is is determined by food intake and energy expenditure, which are partly regulated by the cross-talk between central and peripheral hormonal signals. Phoenixin (PNX) is a recently discovered pleiotropic neuropeptide with isoforms of 14 (PNX-14) and 20 (PNX-20) amino acids. It is a potent reproductive peptide in vertebrates, regulating the hypothalamo-pituitary-gonadal axis (HPG). It has been identified as a regulator of food intake during light phase when injected intracerebroventricularly in rats. In addition, plasma levels of PNX also increased after food intake in rats, suggesting that it might have possible roles in energy homeostasis. We hypothesized that gut is a source and site of action of PNX in mice. Immunoreactivity for PNX and its putative receptor, super-conserved receptor expressed in brain (SREB3; also known as the G-protein coupled receptor 173/GPR 173) was found in the stomach and intestine of male C57/BL6 J mice, and in MGN3-1 (mouse stomach endocrine) cells and STC-1 (mouse enteroendocrine) cells. In MGN3-1 cells, PNX-20 significantly upregulated ghrelin (10 nM) and ghrelin-O-acyl transferase (GOAT) mRNAs (1000 nM) at 6 h. In STC-1 cells, it significantly suppressed CCK (100 nM) at 2 h. No effects were found on other intestinal hormones tested (glucagon like peptide-1, glucose dependent insulinotropic polypeptide, and peptide YY). Together, these results indicate that PNX-20 is produced in the gut, and it could act directly on gut cells to regulate metabolic hormones.
Collapse
Affiliation(s)
- Kundanika Mukherjee
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada.
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada.
| |
Collapse
|
26
|
Breton TS, Sampson WGB, Clifford B, Phaneuf AM, Smidt I, True T, Wilcox AR, Lipscomb T, Murray C, DiMaggio MA. Characterization of the G protein-coupled receptor family SREB across fish evolution. Sci Rep 2021; 11:12066. [PMID: 34103644 PMCID: PMC8187511 DOI: 10.1038/s41598-021-91590-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/28/2021] [Indexed: 12/20/2022] Open
Abstract
The SREB (Super-conserved Receptors Expressed in Brain) family of G protein-coupled receptors is highly conserved across vertebrates and consists of three members: SREB1 (orphan receptor GPR27), SREB2 (GPR85), and SREB3 (GPR173). Ligands for these receptors are largely unknown or only recently identified, and functions for all three are still beginning to be understood, including roles in glucose homeostasis, neurogenesis, and hypothalamic control of reproduction. In addition to the brain, all three are expressed in gonads, but relatively few studies have focused on this, especially in non-mammalian models or in an integrated approach across the entire receptor family. The purpose of this study was to more fully characterize sreb genes in fish, using comparative genomics and gonadal expression analyses in five diverse ray-finned (Actinopterygii) species across evolution. Several unique characteristics were identified in fish, including: (1) a novel, fourth euteleost-specific gene (sreb3b or gpr173b) that likely emerged from a copy of sreb3 in a separate event after the teleost whole genome duplication, (2) sreb3a gene loss in Order Cyprinodontiformes, and (3) expression differences between a gar species and teleosts. Overall, gonadal patterns suggested an important role for all sreb genes in teleost testicular development, while gar were characterized by greater ovarian expression that may reflect similar roles to mammals. The novel sreb3b gene was also characterized by several unique features, including divergent but highly conserved amino acid positions, and elevated brain expression in puffer (Dichotomyctere nigroviridis) that more closely matched sreb2, not sreb3a. These results demonstrate that SREBs may differ among vertebrates in genomic structure and function, and more research is needed to better understand these roles in fish.
Collapse
Affiliation(s)
- Timothy S Breton
- Division of Natural Sciences, University of Maine at Farmington, Farmington, ME, USA.
| | - William G B Sampson
- Division of Natural Sciences, University of Maine at Farmington, Farmington, ME, USA
| | - Benjamin Clifford
- Science Department, Southern Maine Community College, South Portland, ME, USA
| | - Anyssa M Phaneuf
- Division of Natural Sciences, University of Maine at Farmington, Farmington, ME, USA
| | - Ilze Smidt
- Department of Biology, Bates College, Lewiston, ME, USA
| | - Tamera True
- Division of Natural Sciences, University of Maine at Farmington, Farmington, ME, USA
| | - Andrew R Wilcox
- Division of Natural Sciences, University of Maine at Farmington, Farmington, ME, USA
| | - Taylor Lipscomb
- Tropical Aquaculture Laboratory, Program in Fisheries and Aquatic Sciences, School of Forest Resources and Conservation, Institute of Food and Agricultural Sciences, University of Florida, Ruskin, FL, USA.,Livingston Stone National Fish Hatchery, US Fish and Wildlife Service, Shasta Lake, CA, USA
| | - Casey Murray
- Tropical Aquaculture Laboratory, Program in Fisheries and Aquatic Sciences, School of Forest Resources and Conservation, Institute of Food and Agricultural Sciences, University of Florida, Ruskin, FL, USA
| | - Matthew A DiMaggio
- Tropical Aquaculture Laboratory, Program in Fisheries and Aquatic Sciences, School of Forest Resources and Conservation, Institute of Food and Agricultural Sciences, University of Florida, Ruskin, FL, USA
| |
Collapse
|
27
|
Dalvi P, Loganathan N, Mcilwraith EK, Tran A, Belsham DD. Hypothalamic Cell Models. CELLULAR ENDOCRINOLOGY IN HEALTH AND DISEASE 2021:27-77. [DOI: 10.1016/b978-0-12-819801-8.00002-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
28
|
Schalla MA, Goebel-Stengel M, Friedrich T, Kühne SG, Kobelt P, Rose M, Stengel A. Restraint stress affects circulating NUCB2/nesfatin-1 and phoenixin levels in male rats. Psychoneuroendocrinology 2020; 122:104906. [PMID: 33059202 DOI: 10.1016/j.psyneuen.2020.104906] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 12/27/2022]
Abstract
The two peptides phoenixin and nesfatin-1 are colocalized in hypothalamic nuclei involved in the mediation of food intake and behavior. Phoenixin stimulates food intake and is anxiolytic, while nesfatin-1 is an anorexigenic peptide shown to increase anxiety and anhedonia. Interestingly, central activation of both peptides can be stimulated by restraint stress giving rise to a role in the mediation of stress. Thus, the aim of the study was to test whether also peripheral circulating levels of NUCB2/nesfatin-1 and phoenixin are altered by restraint stress. Male ad libitum fed Sprague Dawley rats equipped with a chronic intravenous catheter were subjected to restraint stress and plasma levels of NUCB2/nesfatin-1, phoenixin and cortisol were measured over a period of 240 min and compared to levels of freely moving rats. Peripheral cortisol levels were significantly increased in restrained rats at 30, 60, 120 and 240 min compared to controls (p < 0.05). In contrast, restraint stress decreased plasma phoenixin levels at 15 min compared to unstressed conditions (0.8-fold, p < 0.05). Circulating NUCB2/nesfatin-1 levels were increased only at 240 min in restrained rats compared to those in unstressed controls (1.3-fold, p < 0.05). In addition, circulating NUCB2/nesfatin-1 levels correlated positively with phoenixin levels (r = 0.378, p < 0.001), while neither phoenixin nor nesfatin-1 were associated with cortisol levels (r = 0.0275, and r=-0.143, p> 0.05). These data suggest that both peptides, NUCB2/nesfatin-1 and phoenixin, are affected by restraint stress, although less pronounced than circulating cortisol.
Collapse
Affiliation(s)
- M A Schalla
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - M Goebel-Stengel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany; Department of Internal Medicine, HELIOS Kliniken GmbH, Rottweil, Germany; Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Tübingen, Germany
| | - T Friedrich
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - S G Kühne
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - P Kobelt
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - M Rose
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany; Department of Quantitative Health Sciences, University of Massachusetts Medical School, Worcester, MA, USA
| | - A Stengel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany; Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Tübingen, Germany.
| |
Collapse
|
29
|
Billert M, Rak A, Nowak KW, Skrzypski M. Phoenixin: More than Reproductive Peptide. Int J Mol Sci 2020; 21:ijms21218378. [PMID: 33171667 PMCID: PMC7664650 DOI: 10.3390/ijms21218378] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/03/2020] [Accepted: 11/05/2020] [Indexed: 12/11/2022] Open
Abstract
Phoenixin (PNX) neuropeptide is a cleaved product of the Smim20 protein. Its most common isoforms are the 14- and 20-amino acid peptides. The biological functions of PNX are mediated via the activation of the GPR173 receptor. PNX plays an important role in the central nervous system (CNS) and in the female reproductive system where it potentiates LH secretion and controls the estrus cycle. Moreover, it stimulates oocyte maturation and increases the number of ovulated oocytes. Nevertheless, PNX not only regulates the reproduction system but also exerts anxiolytic, anti-inflammatory, and cell-protective effects. Furthermore, it is involved in behavior, food intake, sensory perception, memory, and energy metabolism. Outside the CNS, PNX exerts its effects on the heart, ovaries, adipose tissue, and pancreatic islets. This review presents all the currently available studies demonstrating the pleiotropic effects of PNX.
Collapse
Affiliation(s)
- Maria Billert
- Department of Animal Physiology, Biochemistry and Biostructure, Poznań University of Life Sciences, 60-637 Poznań, Poland; (M.B.); (K.W.N.)
| | - Agnieszka Rak
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, 30-387 Kraków, Poland;
| | - Krzysztof W. Nowak
- Department of Animal Physiology, Biochemistry and Biostructure, Poznań University of Life Sciences, 60-637 Poznań, Poland; (M.B.); (K.W.N.)
| | - Marek Skrzypski
- Department of Animal Physiology, Biochemistry and Biostructure, Poznań University of Life Sciences, 60-637 Poznań, Poland; (M.B.); (K.W.N.)
- Correspondence: ; Tel.: +48-6184-637-24
| |
Collapse
|
30
|
Yang F, Huang P, Shi L, Liu F, Tang A, Xu S. Phoenixin 14 Inhibits High-Fat Diet-Induced Non-Alcoholic Fatty Liver Disease in Experimental Mice. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:3865-3874. [PMID: 33061293 PMCID: PMC7519838 DOI: 10.2147/dddt.s258857] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 08/07/2020] [Indexed: 12/13/2022]
Abstract
Introduction Nonalcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases. The development of NAFLD is closely associated with hepatic lipotoxicity, inflammation, and oxidative stress. The new concept of NAFLD treatment is to seek molecular control of lipid metabolism and hepatic redox hemostasis. Phoenixin is a newly identified neuropeptide with pleiotropic effects. This study investigated the effects of phoenixin 14 against high-fat diet (HFD)-induced NAFLD in mice. Materials and Methods For this study, we used HFD-induced NAFLD mice models to analyze the effect of phonenixin14. The mice were fed on HFD and normal diet and also given phoenixin 14 (100 ng/g body weight) by gastrogavage for 10 weeks. The peripheral blood samples were collected for biochemical assays. The liver tissues were examined for HFD-induced tissue fibrosis, lipid deposition and oxidative activity including SOD, GSH, and MDA. The liver tissues were analyzed for the inflammatory cytokines and oxidative stress pathway genes. Results The results indicate that phoenixin 14 significantly ameliorated HFD-induced obesity and fatty liver. The biochemical analysis of blood samples revealed that phoenixin 14 ameliorated HFD-induced elevated circulating alanine aminotransferase (ALT), aspartate aminotransferase (AST), total cholesterol, and triglyceride levels, suggesting that phoenixin 14 has a protective role in liver function and lipid metabolism. Hematoxylin-eosin (HE) and Oil Red O staining of the liver showed that phoenixin 14 alleviated HFD-induced tissue damage and lipid deposition in the liver. Furthermore, the mice administered with phoenixin 14 had increased hepatic SOD activity, increased production of GSH and reduced MDA activity, as well as reduced production of TNF-α and IL-6 suggesting that phoenixin 14 exerts beneficial effects against inflammation and ROS. The findings suggest an explanation of how mechanistically phoenixin 14 ameliorated HFD-induced reduced activation of the SIRT1/AMPK and NRF2/HO-1 pathways. Conclusion Collectively, this study revealed that phoenixin 14 exerts a protective effect in experimental NAFLD mice. Phoenixin could be of the interest in preventive modulation of NAFLD.
Collapse
Affiliation(s)
- Fan Yang
- Department of Endocrinology, Guilin People's Hospital, Guilin, Guangxi 541002, People's Republic of China
| | - Ping Huang
- Department of Endocrinology, Guilin People's Hospital, Guilin, Guangxi 541002, People's Republic of China
| | - Liandong Shi
- Department of Ultrasonography, Guilin People's Hospital, Guilin, Guangxi 541002, People's Republic of China
| | - Feng Liu
- Department of Ministry of Health Care, Guilin People's Hospital, Guilin, Guangxi 541002, People's Republic of China
| | - Aimei Tang
- Department of Ministry of Health Care, Guilin People's Hospital, Guilin, Guangxi 541002, People's Republic of China
| | - Shaohui Xu
- Department of Endocrinology, Guilin People's Hospital, Guilin, Guangxi 541002, People's Republic of China
| |
Collapse
|
31
|
Skowron K, Kurnik-Łucka M, Dadański E, Bętkowska-Korpała B, Gil K. Backstage of Eating Disorder-About the Biological Mechanisms behind the Symptoms of Anorexia Nervosa. Nutrients 2020; 12:E2604. [PMID: 32867089 PMCID: PMC7551451 DOI: 10.3390/nu12092604] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022] Open
Abstract
Anorexia nervosa (AN) represents a disorder with the highest mortality rate among all psychiatric diseases, yet our understanding of its pathophysiological components continues to be fragmentary. This article reviews the current concepts regarding AN pathomechanisms that focus on the main biological aspects involving central and peripheral neurohormonal pathways, endocrine function, as well as the microbiome-gut-brain axis. It emerged from the unique complexity of constantly accumulating new discoveries, which hamper the ability to look at the disease in a more comprehensive way. The emphasis is placed on the mechanisms underlying the main symptoms and potential new directions that require further investigation in clinical settings.
Collapse
Affiliation(s)
- Kamil Skowron
- Department of Pathophysiology, Jagiellonian University Medical College, Czysta St 18, 31-121 Krakow, Poland; (K.S.); (M.K.-Ł.); (E.D.)
| | - Magdalena Kurnik-Łucka
- Department of Pathophysiology, Jagiellonian University Medical College, Czysta St 18, 31-121 Krakow, Poland; (K.S.); (M.K.-Ł.); (E.D.)
| | - Emil Dadański
- Department of Pathophysiology, Jagiellonian University Medical College, Czysta St 18, 31-121 Krakow, Poland; (K.S.); (M.K.-Ł.); (E.D.)
| | - Barbara Bętkowska-Korpała
- Department of Psychiatry, Jagiellonian University Medical College, Institute of Medical Psychology, Jakubowskiego St 2, 30-688 Krakow, Poland;
| | - Krzysztof Gil
- Department of Pathophysiology, Jagiellonian University Medical College, Czysta St 18, 31-121 Krakow, Poland; (K.S.); (M.K.-Ł.); (E.D.)
| |
Collapse
|
32
|
Schalla MA, Kühne SG, Friedrich T, Kobelt P, Goebel-Stengel M, Long M, Rivalan M, Winter Y, Mori M, Rose M, Stengel A. Central blockage of nesfatin-1 has anxiolytic effects but does not prevent corticotropin-releasing factor-induced anxiety in male rats. Biochem Biophys Res Commun 2020; 529:773-777. [DOI: 10.1016/j.bbrc.2020.05.163] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 05/21/2020] [Indexed: 11/24/2022]
|
33
|
Lepiarczyk E, Bossowska A, Majewska M, Skowrońska A, Kaleczyc J, Majewski M. Distribution and chemical coding of phoenixin-immunoreactive nerve structures in the spinal cord of the pig. Ann Anat 2020; 232:151559. [PMID: 32569824 DOI: 10.1016/j.aanat.2020.151559] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/05/2020] [Accepted: 06/05/2020] [Indexed: 02/07/2023]
Abstract
Phoenixin (PNX) is a newly described peptide found in both neural and non-neural tissues. Until now, no attempts have been made to investigate the expression of PNX in the nervous system of animals other than laboratory rodents, in which an enzyme immunoassay revealed the highest quantity of the substance in the spinal cord. Since the domestic pig, due to its anatomical and histological resemblance to humans, is often used as an animal model in biomedical investigations, the present study was designed to examine PNX-immunoreactivity in the spinal cords of female pigs (n=5). The spinal cords were dissected and divided into the cervical, thoracic, lumbar, sacral and coccygeal segments, which were sectioned transversally into 10-μm-thick serial sections. The sections from each spinal cord segment were processed for double-labelling immunohistochemistry using antibodies against PNX in a mixture with those against calcitonin gene-related peptide (CGRP), substance P (SP) or choline acetyltransferase (CHAT). The PNX-immunoreactivity had a similar distribution in the grey matter of all the spinal cord sections examined and was mainly observed in varicose nerve fibres (NF) that formed a dense plexus in laminae I and II of the dorsal horn. Nearly all of the PNX-immunoreactive NF stained also for CGRP or SP and, interestingly, many of them were CHAT-positive. The present study has provided for the first time the detailed information on the arrangement and chemical features of nerve structures expressing PNX-immunoreactivity in the spinal cord of a large mammal. The exact function of PNX in the spinal cord is not known yet. However, the distribution pattern and immunohistochemical characteristics of PNX-IR NF clearly suggest that this peptite most likely plays a role in spinal noxious signalling.
Collapse
Affiliation(s)
- Ewa Lepiarczyk
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury in Olsztyn, Warszawska 30, 10-082 Olsztyn, Poland.
| | - Agnieszka Bossowska
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury in Olsztyn, Warszawska 30, 10-082 Olsztyn, Poland.
| | - Marta Majewska
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury in Olsztyn, Warszawska 30, 10-082 Olsztyn, Poland.
| | - Agnieszka Skowrońska
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury in Olsztyn, Warszawska 30, 10-082 Olsztyn, Poland.
| | - Jerzy Kaleczyc
- Department of Animal Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-719 Olsztyn, Poland.
| | - Mariusz Majewski
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury in Olsztyn, Warszawska 30, 10-082 Olsztyn, Poland.
| |
Collapse
|
34
|
Grover HM, Smith PM, Ferguson AV. Phoenixin influences the excitability of nucleus of the solitary tract neurones, effects which are modified by environmental and glucocorticoid stress. J Neuroendocrinol 2020; 32:e12855. [PMID: 32436241 DOI: 10.1111/jne.12855] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/26/2020] [Accepted: 04/09/2020] [Indexed: 12/14/2022]
Abstract
Phoenixin (PNX) is a neuropeptide shown to play roles in the control of reproduction. The nucleus of the solitary tract (NTS), a critical autonomic integrating centre in the hindbrain, is one of many areas with dense expression of PNX. Using coronal NTS slices obtained from male Sprague-Dawley rats, the present study characterised the effects of PNX on both spike frequency and membrane potential of NTS neurones. Extracellular recordings demonstrated that bath-applied 10 nmol L-1 PNX increased the firing frequency in 32% of NTS neurones, effects which were confirmed with patch-clamp recordings showing that 50% of NTS neurones tested depolarised in response to application of the peptide. Surprisingly, the responsiveness to PNX in NTS neurones then declined suddenly to 9% (P < 0.001). This effect was subsequently attributed to stress associated with construction in our animal care facility because PNX responsiveness was again observed in slices from rats delivered and maintained in a construction-free facility. We then examined whether this loss of PNX responsiveness could be replicated in rats placed on a chronic stress regimen involving ongoing corticosterone (CORT) treatment in the construction-free facility. Slices from animals treated in this way showed a similar lack of neuronal responsiveness to PNX (9.1 ± 3.9%) within 2 weeks of CORT treatment. These effects were specific to PNX responsiveness because CORT treatment had no effect on the responsiveness of NTS neurones to angiotensin II. These results are the first to implicate PNX with respect to directly controlling the excitability of NTS neurones and also provide intriguing data showing the plasticity of these effects associated with environmental and glucocorticoid stress levels of the animal.
Collapse
Affiliation(s)
- Hanna M Grover
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Pauline M Smith
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | | |
Collapse
|
35
|
Friedrich T, Schalla MA, Lommel R, Goebel-Stengel M, Kobelt P, Rose M, Stengel A. Restraint stress increases the expression of phoenixin immunoreactivity in rat brain nuclei. Brain Res 2020; 1743:146904. [PMID: 32474019 DOI: 10.1016/j.brainres.2020.146904] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/01/2020] [Accepted: 05/22/2020] [Indexed: 12/14/2022]
Abstract
Phoenixin is a recently discovered peptide, which has been associated with reproduction, anxiety and food intake. Based on a considerable co-localization it has been linked to nesfatin-1, with a possible antagonistic mode of action. Since nesfatin-1 is known to play a role in anxiety and the response to stress, this study aims to investigate the effects of a well-established psychological stress model, restraint stress, on phoenixin-expressing brain nuclei and phoenixin expression in rats. Male Sprague-Dawley rats were subjected to restraint stress (n = 8) or left undisturbed (control, n = 6) and the brains processed for c-Fos- and phoenixin immunohistochemistry. The number of c-Fos expressing cells was counted and phoenixin expression assessed semiquantitatively. Restraint stress significantly increased c-Fos expression in the dorsal motor nucleus of vagus nerve (DMN, 52-fold, p < 0.001), raphe pallidus (RPa, 15-fold, p < 0.001), medial part of the nucleus of the solitary tract (mNTS, 16-fold, p < 0.001), central amygdaloid nucleus, medial division (CeM, 9-fold, p = 0.01), supraoptic nucleus (SON, 9-fold, p < 0.001) and the arcuate nucleus (Arc, 2.5-fold, p < 0.03) compared to control animals. Also phoenixin expression significantly increased in the DMN (17-fold, p < 0.001), RPa (2-fold, p < 0.001) and mNTS (1.6-fold, p < 0.001) with positive correlations between c-Fos and phoenixin (r = 0.74-0.85; p < 0.01) in these nuclei. This pattern of activation suggests an involvement of phoenixin in response to restraint stress. Whether phoenixin mediates stress effects or is activated in a counterbalancing fashion will have to be further investigated.
Collapse
Affiliation(s)
- T Friedrich
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charite - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - M A Schalla
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charite - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - R Lommel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charite - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - M Goebel-Stengel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charite - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany; Department of Internal Medicine, Helios Kliniken GmbH, Rottweil, Germany; Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Tübingen, Germany
| | - P Kobelt
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charite - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - M Rose
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charite - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - A Stengel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charite - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany; Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Tübingen, Germany.
| |
Collapse
|
36
|
Phoenixin-20 Stimulates mRNAs Encoding Hypothalamo-Pituitary-Gonadal Hormones, is Pro-Vitellogenic, and Promotes Oocyte Maturation in Zebrafish. Sci Rep 2020; 10:6264. [PMID: 32286445 PMCID: PMC7156445 DOI: 10.1038/s41598-020-63226-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/21/2020] [Indexed: 12/12/2022] Open
Abstract
Phoenixin-20 (PNX-20) is a bioactive peptide with hormone-like actions in vertebrates. In mammals, PNX stimulates hypothalamo-pituitary-gonadal hormones and regulate reproductive processes. Our immunohisto/cytochemical studies show PNX-like and the putative PNX receptor, SREB3-like immunoreactivity in the gonads of zebrafish, and in zebrafish liver (ZFL) cells. Intraperitoneal injection of zebrafish PNX-20 upregulates mRNAs encoding both salmon gonadotropin-releasing hormone (GnRH), and chicken GnRH-II and kisspeptin and its receptor in zebrafish hypothalamus. Similarly, luteinizing hormone receptor mRNA expression in the testis, follicle-stimulating hormone receptor in the ovary, and the kisspeptin system were upregulated in the gonads of PNX-20 injected fish. We also observed the upregulation of genes involved in the sex steroidogenic pathway (cyp11a1, cyp17a1, 17βhsd, cyp19a1a) in the gonads of PNX-20 administered fish. PNX-20 upregulates the expression of vitellogenin isoforms and estrogen receptor (esr2a and 2b) mRNAs in ZFL cells in vitro. Meanwhile, siRNA-mediated knockdown of PNX-20 resulted in the downregulation of all vitellogenin transcripts, further suggesting its possible role in vitellogenesis. PNX-20 treatment resulted in a significant increase in germinal vesicle breakdown in zebrafish follicles in vitro. Collectively, these results provide strong evidence for PNX-20 effects on the HPG axis and liver to promote reproduction in zebrafish.
Collapse
|
37
|
Rajeswari JJ, Blanco AM, Unniappan S. Phoenixin-20 suppresses food intake, modulates glucoregulatory enzymes, and enhances glycolysis in zebrafish. Am J Physiol Regul Integr Comp Physiol 2020; 318:R917-R928. [PMID: 32208925 DOI: 10.1152/ajpregu.00019.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Phoenixin is a 20-amino acid peptide (PNX-20) cleaved from the small integral membrane protein 20 (SMIM20), with multiple biological roles in mammals. However, its role in nonmammalian vertebrates is poorly understood. This research aimed to determine whether PNX-20 influences feeding and metabolism in zebrafish. The mRNAs encoding SMIM20 and its putative receptor, super conserved receptor expressed in brain 3 (SREB3), are present in both central and peripheral tissues of zebrafish. Immunohistochemical analysis confirmed the presence of PNX-like immunoreactivity in the gut and in zebrafish liver (ZFL) cell line. We also found that short-term fasting (7 days) significantly decreased smim20 mRNA expression in the brain, gut, liver, gonads, and muscle, which suggests a role for PNX-20 in food intake regulation. Indeed, single intraperitoneal injection of 1,000 ng/g body wt PNX-20 reduced feeding in both male and female zebrafish, likely in part by enhancing hypothalamic cart and reducing hypothalamic/gut preproghrelin mRNAs. Furthermore, the present results demonstrated that PNX-20 modulates the expression of genes involved in glucose transport and metabolism in ZFL cells. In general terms, such PNX-induced modulation of gene expression was characterized by the upregulation of glycolytic genes and the downregulation of gluconeogenic genes. A kinetic study of the ATP production rate from both glycolytic and mitochondrial pathways demonstrated that PNX-20-treated ZFL cells exhibited significantly higher ATP production rate associated with glycolysis than control cells. This confirms a positive role for PNX-20 on glycolysis. Together, these results indicate that PNX-20 is an anorexigen with important metabolic roles in zebrafish.
Collapse
Affiliation(s)
- Jithine Jayakumar Rajeswari
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Ayelén Melisa Blanco
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.,Facultade de Bioloxía and Centro de Investigación Mariña, Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Universidade de Vigo, Vigo, Pontevedra, Spain
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
38
|
Wei P, Keller C, Li L. Neuropeptides in gut-brain axis and their influence on host immunity and stress. Comput Struct Biotechnol J 2020; 18:843-851. [PMID: 32322366 PMCID: PMC7160382 DOI: 10.1016/j.csbj.2020.02.018] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 02/04/2020] [Accepted: 02/25/2020] [Indexed: 02/08/2023] Open
Abstract
In recent decades, neuropeptides have been found to play a major role in communication along the gut-brain axis. Various neuropeptides are expressed in the central and peripheral nervous systems, where they facilitate the crosstalk between the nervous systems and other major body systems. In addition to being critical to communication from the brain in the nervous systems, neuropeptides actively regulate immune functions in the gut in both direct and indirect ways, allowing for communication between the immune and nervous systems. In this mini review, we discuss the role of several neuropeptides, including calcitonin gene-related peptide (CGRP), pituitary adenylate cyclase-activating polypeptide (PACAP), corticotropin-releasing hormone (CRH) and phoenixin (PNX), in the gut-brain axis and summarize their functions in immunity and stress. We choose these neuropeptides to highlight the diversity of peptide communication in the gut-brain axis.
Collapse
Key Words
- ACTH, adrenocorticotrophic hormone
- Antimicrobial peptides
- CGRP, calcitonin gene-related peptide
- CNS, central nervous system
- CRH, corticotropin-releasing hormone
- CRLR, calcitonin receptor like receptor
- Gut-brain axis
- HPA axis, hypothalamic–pituitary–adrenal axis
- Hypothalamic–pituitary–adrenal axis
- Immunity
- LPS, lipopolysaccharides
- NPY, neuropeptide Y
- Neuropeptide
- PACAP, pituitary adenylate cyclase-activating polypeptide
- PNX, phoenixin
- RAMP1, receptor activity-modifying protein1
- SP, substance P
- Stress
- TRPV1, transient receptor potential vanilloid receptor-1
- VIP, vasoactive intestinal peptide
- α-MSH, α-melanocyte-stimulating hormone
Collapse
Affiliation(s)
- Pingli Wei
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Caitlin Keller
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
- Corresponding author at: School of Pharmacy & Department of Chemistry, University of Wisconsin-Madison, 777 Highland Ave, Madison, WI 53705, USA.
| |
Collapse
|
39
|
Phoenixin-14 protects human brain vascular endothelial cells against oxygen-glucose deprivation/reoxygenation (OGD/R)-induced inflammation and permeability. Arch Biochem Biophys 2020; 682:108275. [DOI: 10.1016/j.abb.2020.108275] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 01/08/2020] [Accepted: 01/16/2020] [Indexed: 11/19/2022]
|
40
|
Billert M, Kołodziejski PA, Strowski MZ, Nowak KW, Skrzypski M. Phoenixin-14 stimulates proliferation and insulin secretion in insulin producing INS-1E cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:118533. [DOI: 10.1016/j.bbamcr.2019.118533] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 12/25/2022]
|
41
|
Guvenc G, Altinbas B, Kasikci E, Ozyurt E, Bas A, Udum D, Niaz N, Yalcin M. Contingent role of phoenixin and nesfatin-1 on secretions of the male reproductive hormones. Andrologia 2019; 51:e13410. [PMID: 31637758 DOI: 10.1111/and.13410] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/17/2019] [Accepted: 08/06/2019] [Indexed: 12/18/2022] Open
Abstract
Phoenixin (PNX) and nesfatin-1 are localised in the hypothalamus and the pituitary gland. Moreover, the most of the PNX-expressing neurons in the hypothalamus also co-express nesfatin-1. These outcomes may suggest that there is an interaction between PNX and nesfatin-1, at least in terms of neuroendocrine-mediated regulations. Hence, the study was planned to find out the effects of centrally delivered PNX and nesfatin-1 on male sex hormones or to show the interactive association of intracerebroventricularly (ICV) injected PNX+nesfatin-1 combination on the release of male hormones. PNX and nesfatin-1, single or together, were delivered ICV to different male Wistar Albino rat groups. Both PNX and nesfatin-1 induced a significant enhancement in plasma FSH, LH and testosterone without inducing any alteration in plasma GnRH in the rats. The central combinatorial treatment of both the neuropeptides produced a more potent rise in male plasma hormone levels than treating with single neuropeptide. In summary, our preliminary data show that centrally delivered PNX and nesfatin-1 can affect plasma male hormone levels. Moreover, that the combinatorial treatment with both the neuropeptides in male rats leading to a more potent effect on the plasma male hormone levels might suggest that both these neuropeptides act synergistically in terms of regulation of male HPGA.
Collapse
Affiliation(s)
- Gokcen Guvenc
- Department of Physiology, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa, Turkey
| | - Burcin Altinbas
- Department of Physiology, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa, Turkey.,Department of Physiology, Faculty of Medicine, Sanko University, Gaziantep, Turkey
| | - Esra Kasikci
- Department of Physiology, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa, Turkey
| | - Ebru Ozyurt
- Department of Physiology, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa, Turkey
| | - Aysenur Bas
- Department of Molecular Biology and Genetic, Faculty of Science and Art, Bursa Uludag University, Bursa, Turkey
| | - Duygu Udum
- Department of Biochemistry, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa, Turkey
| | - Nasir Niaz
- Department of Physiology, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa, Turkey.,Department of Physiology and Biochemistry, Faculty of Bio-Sciences, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Murat Yalcin
- Department of Physiology, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa, Turkey
| |
Collapse
|
42
|
Intracerebroventricular injection of phoenixin alters feeding behavior and activates nesfatin-1 immunoreactive neurons in rats. Brain Res 2019; 1715:188-195. [DOI: 10.1016/j.brainres.2019.03.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 03/21/2019] [Accepted: 03/28/2019] [Indexed: 01/20/2023]
|
43
|
Schalla MA, Stengel A. The role of phoenixin in behavior and food intake. Peptides 2019; 114:38-43. [PMID: 30953667 DOI: 10.1016/j.peptides.2019.04.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/11/2019] [Accepted: 04/02/2019] [Indexed: 12/30/2022]
Abstract
The recently discovered peptide phoenixin was initially implicated in reproduction as a regulator of gonadotropin-releasing hormone (GnRH)-stimulated luteinizing hormone (LH) release from the pituitary. Subsequently, various functions of phoenixin have been demonstrated including mediation of itching sensation, stimulation of vasopressin secretion, stimulation of white adipogenesis and hypothalamic nutrient sensing. Subsequently, additional actions of phoenixin have been described, namely effects on behavior. A systematic search of four data bases was performed and original articles selected accordingly. The present systematic review will present the current knowledge on the effects of phoenixin on different behaviors such as anxiety and food intake as well as cognition. Lastly, gaps in knowledge will be mentioned to stimulate further research.
Collapse
Affiliation(s)
- Martha A Schalla
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine; Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Andreas Stengel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine; Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Department of Psychosomatic Medicine and Psychotherapy, Medical University Hospital Tübingen, Tübingen, Germany.
| |
Collapse
|
44
|
Suszka‐Świtek A, Pałasz A, Filipczyk Ł, Menezes IC, Mordecka‐Chamera K, Angelone T, Bogus K, Bacopoulou F, Worthington JJ, Wiaderkiewicz R. The Gn
RH
analogues affect novel neuropeptide
SMIM
20/phoenixin and
GPR
173 receptor expressions in the female rat hypothalamic–pituitary–gonadal (
HPG
) axis. Clin Exp Pharmacol Physiol 2019; 46:350-359. [DOI: 10.1111/1440-1681.13061] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/21/2018] [Accepted: 12/28/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Aleksandra Suszka‐Świtek
- Department of Histology School of Medicine in Katowice Medical University of Silesia Katowice Poland
| | - Artur Pałasz
- Department of Histology School of Medicine in Katowice Medical University of Silesia Katowice Poland
| | - Łukasz Filipczyk
- Department of Histology School of Medicine in Katowice Medical University of Silesia Katowice Poland
| | - Itiana Castro Menezes
- Department of Neurosciences and Behaviour Faculty of Medicine University of São Paulo São Paulo Brazil
| | - Kinga Mordecka‐Chamera
- Department of Histology School of Medicine in Katowice Medical University of Silesia Katowice Poland
| | - Tommaso Angelone
- Laboratory of Cellular and Molecular Cardiac Physiology Department of Biology, Ecology and Earth Sciences University of Calabria Arcavacata di Rende Italy
| | - Katarzyna Bogus
- Department of Histology School of Medicine in Katowice Medical University of Silesia Katowice Poland
| | - Flora Bacopoulou
- Center for Adolescent Medicine and UNESCO Chair on Adolescent Health Care First Department of Pediatrics School of Medicine National and Kapodistrian University of Athens ‘Aghia Sophia’ Children's Hospital Athens Greece
| | - John J. Worthington
- Division of Biomedical and Life Sciences Faculty of Health and Medicine Lancaster University Lancaster UK
| | - Ryszard Wiaderkiewicz
- Department of Histology School of Medicine in Katowice Medical University of Silesia Katowice Poland
| |
Collapse
|
45
|
Kühne SG, Schalla MA, Friedrich T, Kobelt P, Goebel-Stengel M, Long M, Rivalan M, Winter Y, Rose M, Stengel A. Nesfatin-1 30-59 Injected Intracerebroventricularly Increases Anxiety, Depression-Like Behavior, and Anhedonia in Normal Weight Rats. Nutrients 2018; 10:nu10121889. [PMID: 30513901 PMCID: PMC6315806 DOI: 10.3390/nu10121889] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/09/2018] [Accepted: 11/19/2018] [Indexed: 11/30/2022] Open
Abstract
Nesfatin-1 is a well-established anorexigenic peptide. Recent studies indicated an association between nesfatin-1 and anxiety/depression-like behavior. However, it is unclear whether this effect is retained in obesity. The aim was to investigate the effect of nesfatin-130-59—the active core of nesfatin-1—on anxiety and depression-like behavior in normal weight (NW) and diet-induced (DIO) obese rats. Male rats were intracerebroventricularly (ICV) cannulated and received nesfatin-130-59 (0.1, 0.3, or 0.9 nmol/rat) or vehicle 30 min before testing. Nesfatin-130-59 at a dose of 0.3 nmol reduced sucrose consumption in the sucrose preference test in NW rats compared to vehicle (–33%, p < 0.05), indicating depression-like/anhedonic behavior. This dose was used for all following experiments. Nesfatin-130-59 also reduced cookie intake during the novelty-induced hypophagia test (−62%, p < 0.05). Moreover, nesfatin-130-59 reduced the number of entries into the center zone in the open field test (−45%, p < 0.01) and the visits of open arms in the elevated zero maze test (−39%, p < 0.01) in NW rats indicating anxiety. Interestingly, DIO rats showed no behavioral alterations after the injection of nesfatin-130-59 (p > 0.05). These results indicate an implication of nesfatin-130-59 in the mediation of anxiety and depression-like behavior/anhedonia under normal weight conditions, while in DIO rats, a desensitization might occur.
Collapse
Affiliation(s)
- Stephanie Gladys Kühne
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 12203 Berlin, Germany.
| | - Martha Anna Schalla
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 12203 Berlin, Germany.
| | - Tiemo Friedrich
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 12203 Berlin, Germany.
| | - Peter Kobelt
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 12203 Berlin, Germany.
| | - Miriam Goebel-Stengel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 12203 Berlin, Germany.
- Department of Internal Medicine, Helios Clinic, 78628 Rottweil, Germany.
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, 72076 Tübingen, Germany.
| | - Melissa Long
- Cognitive Neurobiology, Berlin Mouse Clinic for Neurology and Psychiatry, Humboldt University, 10117 Berlin, Germany.
| | - Marion Rivalan
- Cognitive Neurobiology, Berlin Mouse Clinic for Neurology and Psychiatry, Humboldt University, 10117 Berlin, Germany.
| | - York Winter
- Cognitive Neurobiology, Berlin Mouse Clinic for Neurology and Psychiatry, Humboldt University, 10117 Berlin, Germany.
| | - Matthias Rose
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 12203 Berlin, Germany.
| | - Andreas Stengel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 12203 Berlin, Germany.
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, 72076 Tübingen, Germany.
| |
Collapse
|
46
|
Phoenixin participated in regulation of food intake and growth in spotted scat, Scatophagus argus. Comp Biochem Physiol B Biochem Mol Biol 2018; 226:36-44. [DOI: 10.1016/j.cbpb.2018.07.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 07/22/2018] [Accepted: 07/30/2018] [Indexed: 12/19/2022]
|
47
|
McIlwraith EK, Loganathan N, Belsham DD. Phoenixin Expression Is Regulated by the Fatty Acids Palmitate, Docosahexaenoic Acid and Oleate, and the Endocrine Disrupting Chemical Bisphenol A in Immortalized Hypothalamic Neurons. Front Neurosci 2018; 12:838. [PMID: 30524225 PMCID: PMC6262291 DOI: 10.3389/fnins.2018.00838] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 10/29/2018] [Indexed: 01/22/2023] Open
Abstract
Phoenixin (PNX) is a newly identified reproductive peptide required for the estrous cycle. It is most highly expressed in the hypothalamus, where it is a positive regulator of gonadotropin-releasing hormone (GnRH) and kisspeptin. However, it is unknown what signals lie upstream of Pnx to coordinate its effects on GnRH and kisspeptin. We investigated the effects of the hormones, estrogen and leptin; the fatty acids, palmitate, docosahexaenoic acid (DHA), oleate and palmitoleate; and the endocrine disrupting chemical BPA on Pnx mRNA levels. We also examined whether the signaling pathways of nitric oxide, lipopolysaccharide, cAMP and protein kinase C could alter Pnx expression. Immortalized hypothalamic neurons were treated from 2 to 24 h with these compounds and Pnx mRNA levels were measured with RT-qPCR. Unexpectedly, only BPA as well as the fatty acids, palmitate, DHA and oleate, could alter Pnx expression; therefore suggesting that Pnx may fulfill a nutrient-sensing role in the hypothalamus. Our study is the first to delineate potential regulators of this novel neuropeptide, and our findings provide some insight into the functional role of PNX in the hypothalamus.
Collapse
Affiliation(s)
- Emma K McIlwraith
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Neruja Loganathan
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Denise D Belsham
- Department of Physiology, University of Toronto, Toronto, ON, Canada.,Department of Obstetrics and Gynaecology, University of Toronto, Toronto, ON, Canada.,Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
48
|
Wang M, Chen HP, Zhai Y, Jiang DN, Liu JY, Tian CX, Wu TL, Zhu CH, Deng SP, Li GL. Phoenixin: Expression at different ovarian development stages and effects on genes ralated to reproduction in spotted scat, Scatophagus argus. Comp Biochem Physiol B Biochem Mol Biol 2018; 228:17-25. [PMID: 30423433 DOI: 10.1016/j.cbpb.2018.10.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 10/30/2018] [Indexed: 12/23/2022]
Abstract
Phoenixin (Pnx), a recently discovered neuropeptide, has been implicated in reproduction. Pnx mainly exists in two active isoforms, phoenixin-14 (Pnx-14) and phoenixin-20 (Pnx-20). However, little is known about the functions of Pnx in teleosts. To determine the roles of Pnx in the regulation of reproduction in Scatophagus argus, the physiological characterization of the Pnx was analyzed. During ovary development, the expression of pnx in phase IV was higher than in phase II and III in the hypothalamus. In the pituitary, pnx expression was highest in phase IV, moderate in phase III, and lowest in phase II. When hypothalamus and pituitary fragments were cultured in vitro with Pnx-14 and Pnx-20 (10 nM and 100 nM) for 6 h, the expression of GnRHR (gonadotropin releasing hormone receptor), lh (luteinizing hormone) and fsh (follicular stimulating hormone) in the pituitary increased significantly, except GnRH (gonadotropin releasing hormone) in the hypothalamus. Similarly, the expression of GnRHR, lh and fsh in the pituitary increased significantly after injecting S. argus with Pnx-14 and Pnx-20 (10 ng/g and 100 ng/g body weight (bw)), except GnRHR and fsh treated with 10 ng/gbw Pnx-20 in the pituitary and GnRHs in the hypothalamus. These results indicate that Pnx may not only stimulate the reproduction of the S. argus through the hypothalamic-pituitary-gonadal (HPG) axis, but also directly through the pituitary.
Collapse
Affiliation(s)
- Mei Wang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Zhanjiang 524088, China
| | - Hua-Pu Chen
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Zhanjiang 524088, China
| | - Yi Zhai
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Zhanjiang 524088, China
| | - Dong-Neng Jiang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Zhanjiang 524088, China
| | - Jian-Ye Liu
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Zhanjiang 524088, China
| | - Chang-Xu Tian
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Zhanjiang 524088, China
| | - Tian-Li Wu
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Zhanjiang 524088, China
| | - Chun-Hua Zhu
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Zhanjiang 524088, China
| | - Si-Ping Deng
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Zhanjiang 524088, China; Marine Ecology and Aquaculture Environment of Zhanjiang, Zhanjiang 524088, China.
| | - Guang-Li Li
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Zhanjiang 524088, China.
| |
Collapse
|
49
|
Phoenixin-14 stimulates differentiation of 3T3-L1 preadipocytes via cAMP/Epac-dependent mechanism. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:1449-1457. [PMID: 30251651 DOI: 10.1016/j.bbalip.2018.09.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 09/03/2018] [Accepted: 09/17/2018] [Indexed: 11/20/2022]
Abstract
Phoenixin-14 (PNX) is a newly discovered peptide produced by proteolytic cleavage of the small integral membrane protein 20 (Smim20). Previous studies showed that PNX is involved in controlling reproduction, pain, anxiety and memory. Furthermore, in humans, PNX positively correlates with BMI suggesting a potential role of PNX in controlling fat accumulation in obesity. Since the influence of PNX on adipose tissue formation has not been so far demonstrated, we investigated the effects of PNX on proliferation and differentiation of preadipocytes using 3T3-L1 and rat primary preadipocytes. We detected Smim20 and Gpr173 mRNA in 3T3-L1 preadipocytes as well as in rat primary preadipocytes. Furthermore, we found that PNX peptide is produced and secreted from 3T3-L1 and rat primary adipocytes. PNX increased 3T3-L1 preadipocytes proliferation and viability. PNX stimulated the expression of adipogenic genes (Pparγ, C/ebpβ and Fabp4) in 3T3-L1 adipocytes. 3T3-L1 preadipocytes differentiated in the presence of PNX had increased lipid content. Stimulation of cell proliferation and differentiation by PNX was also confirmed in rat preadipocytes. PNX failed to induce AKT phosphorylation, however, PNX increased cAMP levels in 3T3-L1 cells. Suppression of Epac signalling attenuated PNX-induced Pparγ expression without affecting cell proliferation. Our data show that PNX stimulates differentiation of 3T3-L1 and rat primary preadipocytes into mature adipocytes via cAMP/Epac-dependent pathway. In conclusion our data shows that phoenixin promotes white adipogenesis, thereby may be involved in controlling body mass regulation.
Collapse
|
50
|
Stein LM, Haddock CJ, Samson WK, Kolar GR, Yosten GLC. The phoenixins: From discovery of the hormone to identification of the receptor and potential physiologic actions. Peptides 2018; 106:45-48. [PMID: 29933026 PMCID: PMC6092957 DOI: 10.1016/j.peptides.2018.06.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/12/2018] [Accepted: 06/19/2018] [Indexed: 01/02/2023]
Abstract
Using a series of classical protein purification techniques, coupled with more modern molecular approaches, a family of neuropeptides, the Phoenixins, was identified to be produced in brain and heart, and to bind selectively in pituitary gland, ovary and brain. These same binding sites were revealed, using a novel receptor identification strategy, to express the orphan G protein-coupled receptor, GPR173, the expression of which was required for the actions of phoenixin both in vivo and in vitro. In fact, studies using small interfering RNA molecules to compromise GPR173 expression revealed the physiologic relevance of the initially reported pharmacologic actions of the peptides. Those include not only the reproductive actions of the peptides in brain and pituitary gland, but also a CNS site of action in the maintenance of fluid and electrolyte homeostasis. Additional pharmacologic actions of the phoenixins have been described and the race is on to establish the physiologic relevance of those actions as well as the therapeutic potential of phoenixin analogs.
Collapse
Affiliation(s)
- Lauren M Stein
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Christopher J Haddock
- Departments of Pharmacology and Physiology, Saint Louis University, St. Louis, MO, 63104, United States
| | - Willis K Samson
- Departments of Pharmacology and Physiology, Saint Louis University, St. Louis, MO, 63104, United States
| | - Grant R Kolar
- Department of Pathology, Saint Louis University, St. Louis, MO, 63104, United States
| | - Gina L C Yosten
- Departments of Pharmacology and Physiology, Saint Louis University, St. Louis, MO, 63104, United States.
| |
Collapse
|