1
|
Rogers A, Castro EM, Lotfipour S, Leslie FM. Dynorphinergic lateral hypothalamus to posterior ventral tegmental area pathway matures after adolescence in male rats. Neuropharmacology 2025; 270:110350. [PMID: 39938860 DOI: 10.1016/j.neuropharm.2025.110350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/23/2025] [Accepted: 02/07/2025] [Indexed: 02/14/2025]
Abstract
The highly plastic nature of the adolescent brain is well-known, and is thought to contribute to the unique susceptibility of adolescents to drugs of abuse. However, much investigation of adolescent plasticity has been focused on synaptic plasticity, as synapses are strengthened and pruned. Here, we show that dynorphin+ neurons in the lateral hypothalamus of adolescent male rats do not respond to low doses of intravenous combined nicotine + ethanol, while male adult lateral hypothalamus dynorphin+ neurons do. We also provide evidence that the dynorphinergic projection from the lateral hypothalamus to the posterior ventral tegmental area is not present in adolescent males, suggesting that axons are still extending during this time. Together, these results suggest a mechanism for the increased susceptibility of adolescent male rats to drug reward.
Collapse
Affiliation(s)
- Alexandra Rogers
- Department of Pharmaceutical Sciences, University of California, Irvine, 856 Health Sciences Road, Suite 5400, 92697-3958, Irvine, CA, USA.
| | - Emily M Castro
- Department of Pharmaceutical Sciences, University of California, Irvine, 856 Health Sciences Road, Suite 5400, 92697-3958, Irvine, CA, USA
| | - Shahrdad Lotfipour
- Department of Pharmaceutical Sciences, University of California, Irvine, 856 Health Sciences Road, Suite 5400, 92697-3958, Irvine, CA, USA
| | - Frances M Leslie
- Department of Pharmaceutical Sciences, University of California, Irvine, 856 Health Sciences Road, Suite 5400, 92697-3958, Irvine, CA, USA
| |
Collapse
|
2
|
Sun Q, Liu M, Guan W, Xiao X, Dong C, Bruchas MR, Zweifel LS, Li Y, Tian L, Li B. Dynorphin modulates reward-seeking actions through a pallido-amygdala cholinergic circuit. Neuron 2025:S0896-6273(25)00218-1. [PMID: 40239651 DOI: 10.1016/j.neuron.2025.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 02/07/2025] [Accepted: 03/13/2025] [Indexed: 04/18/2025]
Abstract
The endogenous opioid peptide dynorphin and its receptor κ-opioid receptor (KOR) have been implicated in divergent behaviors, but the underlying mechanisms remain elusive. Here, we show that dynorphin released from nucleus accumbens dynorphinergic neurons exerts powerful modulation over a ventral pallidum (VP) disinhibitory circuit, thereby controlling cholinergic transmission to the amygdala and reward-seeking behavior in mice. On one hand, dynorphin acts postsynaptically via KORs on VP GABAergic neurons to promote disinhibition of cholinergic neurons, which release acetylcholine into the amygdala to facilitate learning and invigorate actions. On the other hand, dynorphin also acts presynaptically via KORs on dynorphinergic terminals to limit its own release. Such autoinhibition keeps cholinergic neurons from prolonged activation and release of acetylcholine and prevents perseverant reward seeking. Our study reveals how dynorphin exquisitely modulates behavior through the cholinergic system and provides an explanation for why these neuromodulators are involved in motivational disorders, including depression and addiction.
Collapse
Affiliation(s)
- Qingtao Sun
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| | - Mingzhe Liu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Wuqiang Guan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Xiong Xiao
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chunyang Dong
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Davis, CA, USA; Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Michael R Bruchas
- Department of Anesthesiology & Pain Medicine, University of Washington, Seattle, WA 98195, USA
| | - Larry S Zweifel
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA
| | - Yulong Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
| | - Lin Tian
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Davis, CA, USA; Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Bo Li
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| |
Collapse
|
3
|
Neiswanger C, Ruiz MV, Kimball K, Lee JD, Land B, Berndt A, Chavkin C. G protein Inactivation as a Mechanism for Addiction Treatment. Biol Psychiatry 2025:S0006-3223(25)01109-6. [PMID: 40189004 DOI: 10.1016/j.biopsych.2025.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/07/2025] [Accepted: 03/24/2025] [Indexed: 04/25/2025]
Abstract
BACKGROUND The endogenous dynorphin/kappa opioid receptor (KOR) system in the brain mediates the dysphoric effects of stress, and KOR antagonists may have therapeutic potential for the treatment of drug addiction, depression, and psychosis. One class of KOR antagonists, the long-acting norBNI-like antagonists, have been suggested to act by causing KOR inactivation through a cJun-kinase mechanism rather than by competitive inhibition. METHODS In this study, we screened for other opioid ligands that might produce norBNI-like KOR inactivation and found that nalfurafine (a G-biased KOR agonist) and nalmefene (a KOR partial agonist) also produce long-lasting KOR inactivation. RESULTS Neither nalfurafine nor nalmefene are completely selective KOR ligands, but KOR inactivation was observed at doses 10-100 fold lower than necessary for mu opioid receptor actions. KOR inactivation is sex-dependent, and we show that nalfurafine causes peroxide production only during estrus (low-estrogen state) or following progesterone treatment of female mice. Because KOR inactivation recovers slowly, daily treatment with submaximal drug doses causes accumulating inhibition. Daily microdosing with nalfurafine or nalmefene blocked KORs responsible for antinociceptive effects, blocked KORs mediating stress-induced aversion, mitigated KOR-mediated dysphoria during acute and protracted withdrawal in opioid-dependent mice, and blocked KOR-induced prolactin secretion. In contrast, KORs mediating the diuretic and anti-pruritic effects were not regulated by JNK. CONCLUSIONS Both nalfurafine and nalmefene have long histories of safety and use in humans and could potentially be repurposed for the treatment of dynorphin-mediated stress disorders.
Collapse
Affiliation(s)
| | | | | | - Justin D Lee
- Bioengineering, University of Washington; Seattle, WA
| | | | - Andre Berndt
- Bioengineering, University of Washington; Seattle, WA
| | | |
Collapse
|
4
|
Lahti L, Volakakis N, Gillberg L, Yaghmaeian Salmani B, Tiklová K, Kee N, Lundén-Miguel H, Werkman M, Piper M, Gronostajski R, Perlmann T. Sox9 and nuclear factor I transcription factors regulate the timing of neurogenesis and ependymal maturation in dopamine progenitors. Development 2025; 152:dev204421. [PMID: 39995267 DOI: 10.1242/dev.204421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 02/14/2025] [Indexed: 02/26/2025]
Abstract
Correct timing of neurogenesis is crucial for generating the correct number and subtypes of glia and neurons in the embryo, and for preventing tumours and stem cell depletion in the adults. Here, we analyse how the midbrain dopamine (mDA) neuron progenitors transition into cell cycle arrest (G0) and begin to mature into ependymal cells. Comparison of mDA progenitors from different embryonic stages revealed upregulation of the genes encoding Sox9 and nuclear factor I transcription factors during development. Their conditional inactivation in the early embryonic midbrain led to delayed G0 entry and ependymal maturation in the entire midbrain ventricular zone, reduced gliogenesis and increased generation of neurons, including mDA neurons. In contrast, their inactivation in late embryogenesis did not result in mitotic re-entry, suggesting that these factors are necessary for G0 induction, but not for its maintenance. Our characterisation of adult ependymal cells by single-cell RNA sequencing and histology show that mDA-progenitor-derived cells retain several progenitor features but also secrete neuropeptides and contact neighbouring cells and blood vessels, indicating that these cells may form part of the circumventricular organ system.
Collapse
Affiliation(s)
- Laura Lahti
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | | | - Linda Gillberg
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | | | - Katarína Tiklová
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Nigel Kee
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | | | - Maarten Werkman
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Michael Piper
- The School of Biomedical Sciences and The Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Richard Gronostajski
- Genetics, Genomics & Bioinformatics Program, University at Buffalo, Buffalo, NY 14203, USA
| | - Thomas Perlmann
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
- Ludwig Institute for Cancer Research, 171 77 Stockholm, Sweden
| |
Collapse
|
5
|
Marchette RCN, Vendruscolo LF, Koob GF. The Dynorphin/-Opioid Receptor System at the Interface of Hyperalgesia/Hyperkatifeia and Addiction. CURRENT ADDICTION REPORTS 2025; 12:11. [PMID: 40124896 PMCID: PMC11925990 DOI: 10.1007/s40429-025-00618-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2024] [Indexed: 03/25/2025]
Abstract
Purpose of Review Drug addiction is characterized by compulsive drug seeking and use, accompanied by negative emotional states (hyperkatifeia) and heightened pain sensitivity (hyperalgesia) during withdrawal. Both hyperalgesia and hyperkatifeia are integral components of substance use disorders, negatively impacting treatment and recovery. The underlying neurobiological mechanisms of hyperalgesia and hyperkatifeia involve alterations of brain reward and stress circuits, including the dynorphin/κ-opioid receptor (KOR) system. The dynorphin/KOR system modulates pain perception, negative affect, and addictive behaviors. Here, we review the preclinical evidence of dynorphin/KOR signaling in opioid withdrawal-induced hyperalgesia and hyperkatifeia. Recent Findings In opioid dependence models, pharmacological and genetic interventions of the dynorphin/KOR system attenuate somatic and motivational signs of withdrawal and addictive-like behaviors, highlighting its therapeutic potential. Understanding the intricate interplay between dynorphin/KOR signaling, hyperalgesia, hyperkatifeia, and addiction offers novel insights into treatment strategies for opioid use disorder and other substance use disorders. Summary Further research is needed to elucidate precise mechanisms of the sexual dimorphism of dynorphin/KOR signaling and identify targeted interventions to mitigate hyperalgesia and hyperkatifeia and facilitate recovery from addiction.
Collapse
Affiliation(s)
- Renata C. N. Marchette
- Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, BRC Room 08A505.19, 251 Bayview Blvd, Baltimore, MD 21224 USA
| | - Leandro F. Vendruscolo
- Stress and Addiction Neuroscience Unit, Integrative Neuroscience Research Branch, Division of Intramural Clinical and Biological Research, National Institute on Drug Abuse, Intramural Research Program, and National Institute On Alcohol Abuse and Alcoholism, National Institutes of Health, Baltimore, MD 21224 USA
| | - George F. Koob
- Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, BRC Room 08A505.19, 251 Bayview Blvd, Baltimore, MD 21224 USA
| |
Collapse
|
6
|
Movahed M, Louzada RA, Blandino-Rosano M. Enhanced dynorphin expression and secretion in pancreatic beta-cells under hyperglycemic conditions. Mol Metab 2025; 92:102088. [PMID: 39736444 PMCID: PMC11846442 DOI: 10.1016/j.molmet.2024.102088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/27/2024] [Accepted: 12/21/2024] [Indexed: 01/01/2025] Open
Abstract
OBJECTIVE Dynorphin, an endogenous opioid peptide predominantly expressed in the central nervous system and involved in stress response, pain, and addiction, has intrigued researchers due to its expression in pancreatic β-cells. In this study, we aimed to characterize dynorphin expression in mouse and human islets and explore the mechanisms regulating its expression. METHODS We used primary mouse and human islets with unbiased published datasets to examine how glucose and other nutrients regulate dynorphin expression and secretion in islets. RESULTS The prodynorphin gene is significantly upregulated in β-cells under hyperglycemic conditions. In vitro studies revealed that increased glucose concentrations correlate with increased dynorphin expression, indicating a critical interplay involving Ca2+, CamKII, and CREB pathways in β-cells. Perifusion studies allowed us to measure the dynamic secretion of dynorphin in response to glucose from mouse and human islets for the first time. Furthermore, we confirmed that increased dynorphin content within the β-cells directly correlates with enhanced dynorphin secretion. Finally, our findings demonstrate a synergistic effect of palmitate in conjunction with high glucose, further amplifying dynorphin levels and secretion in pancreatic islets. CONCLUSIONS This study demonstrates that the opioid peptide prodynorphin is expressed in mouse and human β-cells. Prodynorphin levels are regulated in parallel with insulin in response to glucose, palmitate, and amino acids. Our findings elucidate the signaling pathways involved, with CamKII playing a key role in regulating prodynorphin levels in β-cells. Finally, our findings are the first to demonstrate active dynorphin secretion from mouse and human islets in response to glucose.
Collapse
Affiliation(s)
- Miranda Movahed
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Ruy A Louzada
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Manuel Blandino-Rosano
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, Miller School of Medicine, University of Miami, Miami, FL, USA.
| |
Collapse
|
7
|
Neiswanger C, Ruiz MV, Kimball K, Lee JD, Land B, Berndt A, Chavkin C. G protein Inactivation as a Mechanism for Addiction Treatment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.16.628727. [PMID: 39763910 PMCID: PMC11702588 DOI: 10.1101/2024.12.16.628727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
The endogenous dynorphin/kappa opioid receptor (KOR) system in the brain mediates the dysphoric effects of stress, and KOR antagonists may have therapeutic potential for the treatment of drug addiction, depression, and psychosis. One class of KOR antagonists, the long-acting norBNI-like antagonists, have been suggested to act by causing KOR inactivation through a cJun-kinase mechanism rather than by competitive inhibition. In this study, we screened for other opioid ligands that might produce norBNI-like KOR inactivation and found that nalfurafine (a G-biased KOR agonist) and nalmefene (a KOR partial agonist) also produce long-lasting KOR inactivation. Neither nalfurafine nor nalmefene are completely selective KOR ligands, but KOR inactivation was observed at doses 10-100 fold lower than necessary for mu opioid receptor actions. Daily microdosing with nalfurafine or nalmefene blocked KORs responsible for antinociceptive effects, blocked KORs mediating stress-induced aversion, and mitigated the aversion during acute and protracted withdrawal in fentanyl-dependent mice. Both nalfurafine and nalmefene have long histories of safety and use in humans and could potentially be repurposed for the treatment of dynorphin-mediated stress disorders.
Collapse
Affiliation(s)
| | | | | | - Justin D. Lee
- Bioengineering, University of Washington; Seattle, WA
| | | | - Andre Berndt
- Bioengineering, University of Washington; Seattle, WA
| | | |
Collapse
|
8
|
Flores-Ramirez FJ, Illenberger JM, Martin-Fardon R. Interaction between corticotropin-releasing factor, orexin, and dynorphin in the infralimbic cortex may mediate exacerbated alcohol-seeking behavior. Neurobiol Stress 2024; 33:100695. [PMID: 39640001 PMCID: PMC11617300 DOI: 10.1016/j.ynstr.2024.100695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/28/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024] Open
Abstract
A major challenge for the treatment of alcohol use disorder (AUD) is relapse to alcohol use, even after protracted periods of self-imposed abstinence. Stress significantly contributes to the chronic relapsing nature of AUD, given its long-lasting ability to elicit intense craving and precipitate relapse. As individuals transition to alcohol dependence, compensatory allostatic mechanisms result in insults to hypothalamic-pituitary-adrenal axis function, mediated by corticotropin-releasing factor (CRF), which is subsequently hypothesized to alter brain reward pathways, influence affect, elicit craving, and ultimately perpetuate problematic drinking and relapse vulnerability. Orexin (OX; also called hypocretin) plays a well-established role in regulating diverse physiological processes, including stress, and has been shown to interact with CRF. Interestingly, most hypothalamic cells that express Ox mRNA also express Pdyn mRNA. Both dynorphin and OX are located in the same synaptic vesicles, and they are co-released. The infralimbic cortex (IL) of the medial prefrontal cortex (mPFC) has emerged as being directly involved in the compulsive nature of alcohol consumption during dependence. The IL is a CRF-rich region that receives OX projections from the hypothalamus and where OX receptor mRNA has been detected. Although not thoroughly understood, anatomical and behavioral pharmacology data suggest that CRF, OX, and dynorphin may interact, particularly in the IL, and that functional interactions between these three systems in the IL may be critical for the etiology and pervasiveness of compulsive alcohol seeking in dependent subjects that may render them vulnerable to relapse. The present review presents evidence of the role of the IL in AUD and discusses functional interactions between CRF, OX, and dynorphin in this structure and how they are related to exacerbated alcohol drinking and seeking.
Collapse
Affiliation(s)
- Francisco J. Flores-Ramirez
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
- Department of Psychology, California State University, San Marcos, CA, USA
| | | | - Rémi Martin-Fardon
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
9
|
Zangrandi L, Fogli B, Mutti A, Staritzbichler R, Most V, Hildebrand PW, Heilbronn R, Schwarzer C. Structure-function relationship of dynorphin B variants using naturally occurring amino acid substitutions. Front Pharmacol 2024; 15:1484730. [PMID: 39539623 PMCID: PMC11557314 DOI: 10.3389/fphar.2024.1484730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
Dynorphins (Dyn) represent the subset of endogenous opioid peptides with the highest binding affinity to kappa opioid receptors (KOPrs). Activation of the G-protein-coupled pathway of KOPrs has strong anticonvulsant effects. Dyn also bind to mu (MOPrs) and delta opioid receptors (DOPrs) with lower affinity and can activate the β-arrestin pathway. To fully exploit the therapeutic potential of dynorphins and reduce potential unwanted effects, increased selectivity for KOPrs combined with reduced activation of the mTOR complex would be favorable. Therefore, we investigated a series of dynorphin B (DynB) variants, substituted in one or two positions with naturally occurring amino acids for differential opioid receptor activation, applying competitive radio binding assays, GTPγS assays, PRESTO-Tango, and Western blotting on single-opioid receptor-expressing cells. Seven DynB derivatives displayed at least 10-fold increased selectivity for KOPrs over either MOPrs or DOPrs. The highest selectivity for KOPrs over MOPrs was obtained with DynB_G3M/Q8H, and the highest selectivity for KOPrs over DOPrs was obtained with DynB_L5S. Increased selectivity for KOPr over MOPr and DOPr was based on a loss of affinity or potency at MOPr and DOPr rather than a higher affinity or potency at KOPr. This suggests that the investigated amino acid exchanges in positions 3, 5, and 8 are of higher importance for binding and activation of MOPr or DOPr than of KOPr. In tests for signal transduction using the GTPγS assay, none of the DynB derivatives displayed increased potency. The three tested variants with substitutions of glycine to methionine in position 3 displayed reduced efficacy and are, therefore, considered partial agonists. The two most promising activating candidates were further investigated for functional selectivity between the G-protein and the β-arrestin pathway, as well as for activation of mTOR. No difference was detected in the respective read-outs, compared to wild-type DynB. Our data indicate that the assessment of affinity to KOPr alone is not sufficient to predict either potency or efficacy of peptidergic agonists on KOPr. Further assessment of downstream pathways is required to allow more reliable predictions of in vivo effects.
Collapse
Affiliation(s)
- Luca Zangrandi
- Institute of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
- Clinic for Neurology and Experimental Neurology, AG Gene Therapy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Barbara Fogli
- Institute of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Anna Mutti
- Institute of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - René Staritzbichler
- Institute of Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany
| | - Victoria Most
- Institute of Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany
| | - Peter W. Hildebrand
- Institute of Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Berlin, Germany
| | - Regine Heilbronn
- Clinic for Neurology and Experimental Neurology, AG Gene Therapy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christoph Schwarzer
- Institute of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
10
|
Sandoval-Caballero C, Jara J, Luarte L, Jiménez Y, Teske JA, Perez-Leighton C. Control of motivation for sucrose in the paraventricular hypothalamic nucleus by dynorphin peptides and the kappa opioid receptor. Appetite 2024; 200:107504. [PMID: 38768926 DOI: 10.1016/j.appet.2024.107504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/14/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
The dynorphin peptides are the endogenous ligands for the kappa opioid receptor (KOR) and regulate food intake. Administration of dynorphin-A1-13 (DYN) in the paraventricular hypothalamic nucleus (PVN) increases palatable food intake, and this effect is blocked by co-administration of the orexin-A neuropeptide, which is co-released with DYN in PVN from neurons located in the lateral hypothalamus. While PVN administration of DYN increases palatable food intake, whether it increases food-seeking behaviors has yet to be examined. We tested the effects of DYN and norBNI (a KOR antagonist) on the seeking and consumption of sucrose using a progressive ratio (PR) and demand curve (DC) tasks. In PVN, DYN did not alter the sucrose breaking point (BP) in the PR task nor the elasticity or intensity of demand for sucrose in the DC task. Still, DYN reduced the delay in obtaining sucrose and increased licks during sucrose intake in the PR task, irrespective of the co-administration of orexin-A. In PVN, norBNI increased the delay in obtaining sucrose and reduced licks during sucrose intake in the PR task while increasing elasticity without altering intensity of demand in the DC task. However, subcutaneous norBNI reduced the BP for sucrose and increased the delay in obtaining sucrose in the PR task while reducing the elasticity of demand. Together, these data show different effects of systemic and PVN blockade of KOR on food-seeking, consummatory behaviors, and incentive motivation for sucrose and suggest that KOR activity in PVN is necessary but not sufficient to drive seeking behaviors for palatable food.
Collapse
Affiliation(s)
- C Sandoval-Caballero
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - J Jara
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - L Luarte
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Y Jiménez
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - J A Teske
- School of Nutritional Sciences and Wellness, University of Arizona, Tucson, Arizona, USA
| | - C Perez-Leighton
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
11
|
Shi K, Bagchi S, Bickel J, Esfahani SH, Yin L, Cheng T, Karamyan VT, Aihara H. Structural basis of divergent substrate recognition and inhibition of human neurolysin. Sci Rep 2024; 14:18420. [PMID: 39117724 PMCID: PMC11310207 DOI: 10.1038/s41598-024-67639-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/15/2024] [Indexed: 08/10/2024] Open
Abstract
A zinc metallopeptidase neurolysin (Nln) processes diverse bioactive peptides to regulate signaling in the mammalian nervous system. To understand how Nln interacts with various peptides with dissimilar sequences, we determined crystal structures of Nln in complex with diverse peptides including dynorphins, angiotensin, neurotensin, and bradykinin. The structures show that Nln binds these peptides in a large dumbbell-shaped interior cavity constricted at the active site, making minimal structural changes to accommodate different peptide sequences. The structures also show that Nln readily binds similar peptides with distinct registers, which can determine whether the peptide serves as a substrate or a competitive inhibitor. We analyzed the activities and binding of Nln toward various forms of dynorphin A peptides, which highlights the promiscuous nature of peptide binding and shows how dynorphin A (1-13) potently inhibits the Nln activity while dynorphin A (1-8) is efficiently cleaved. Our work provides insights into the broad substrate specificity of Nln and may aid in the future design of small molecule modulators for Nln.
Collapse
Affiliation(s)
- Ke Shi
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Sounak Bagchi
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Jordis Bickel
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Shiva H Esfahani
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
- Department of Foundational Medical Studies, Oakland University, Rochester, MI, 48309, USA
| | - Lulu Yin
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Tiffany Cheng
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Vardan T Karamyan
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA.
- Department of Foundational Medical Studies, Oakland University, Rochester, MI, 48309, USA.
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
12
|
Sun Q, Liu M, Guan W, Xiao X, Dong C, Bruchas MR, Zweifel LS, Li Y, Tian L, Li B. Dynorphin modulates motivation through a pallido-amygdala cholinergic circuit. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.31.605785. [PMID: 39211114 PMCID: PMC11361169 DOI: 10.1101/2024.07.31.605785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The endogenous opioid peptide dynorphin and its receptor κ-opioid receptor (KOR) have been implicated in divergent behaviors, but the underlying mechanisms remain elusive. Here we show that dynorphin released from nucleus accumbens dynorphinergic neurons exerts powerful modulation over a ventral pallidum (VP) disinhibitory circuit, thereby controlling cholinergic transmission to the amygdala and motivational drive in mice. On one hand, dynorphin acts postsynaptically via KORs on local GABAergic neurons in the VP to promote disinhibition of cholinergic neurons, which release acetylcholine into the amygdala to invigorate reward-seeking behaviors. On the other hand, dynorphin also acts presynaptically via KORs on dynorphinergic terminals to limit its own release. Such autoinhibition keeps cholinergic neurons from prolonged activation and release of acetylcholine, and prevents perseverant reward seeking. Our study reveals how dynorphin exquisitely modulate motivation through cholinergic system, and provides an explanation for why these neuromodulators are involved in motivational disorders, including depression and addiction.
Collapse
|
13
|
Duma GM, Cuozzo S, Wilson L, Danieli A, Bonanni P, Pellegrino G. Excitation/Inhibition balance relates to cognitive function and gene expression in temporal lobe epilepsy: a high density EEG assessment with aperiodic exponent. Brain Commun 2024; 6:fcae231. [PMID: 39056027 PMCID: PMC11272395 DOI: 10.1093/braincomms/fcae231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/22/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Patients with epilepsy are characterized by a dysregulation of excitation/inhibition balance (E/I). The assessment of E/I may inform clinicians during the diagnosis and therapy management, even though it is rarely performed. An accessible measure of the E/I of the brain represents a clinically relevant feature. Here, we exploited the exponent of the aperiodic component of the power spectrum of the electroencephalography (EEG) signal, as a non-invasive and cost-effective proxy of the E/I balance. We recorded resting-state activity with high-density EEG from 67 patients with temporal lobe epilepsy and 35 controls. We extracted the exponent of the aperiodic fit of the power spectrum from source-reconstructed EEG and tested differences between patients with epilepsy and controls. Spearman's correlation was performed between the exponent and clinical variables (age of onset, epilepsy duration and neuropsychology) and cortical expression of epilepsy-related genes derived from the Allen Human Brain Atlas. Patients with temporal lobe epilepsy showed a significantly larger exponent, corresponding to inhibition-directed E/I balance, in bilateral frontal and temporal regions. Lower E/I in the left entorhinal and bilateral dorsolateral prefrontal cortices corresponded to a lower performance of short-term verbal memory. Limited to patients with temporal lobe epilepsy, we detected a significant correlation between the exponent and the cortical expression of GABRA1, GRIN2A, GABRD, GABRG2, KCNA2 and PDYN genes. EEG aperiodic exponent maps the E/I balance non-invasively in patients with epilepsy and reveals a close relationship between altered E/I patterns, cognition and genetics.
Collapse
Affiliation(s)
- Gian Marco Duma
- Scientific Institute IRCCS E.Medea, Epilepsy and Clinical Neurophysiology Unit, 31015, Conegliano, Italy
| | - Simone Cuozzo
- Scientific Institute IRCCS E.Medea, Epilepsy and Clinical Neurophysiology Unit, 31015, Conegliano, Italy
| | - Luc Wilson
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Alberto Danieli
- Scientific Institute IRCCS E.Medea, Epilepsy and Clinical Neurophysiology Unit, 31015, Conegliano, Italy
| | - Paolo Bonanni
- Scientific Institute IRCCS E.Medea, Epilepsy and Clinical Neurophysiology Unit, 31015, Conegliano, Italy
| | - Giovanni Pellegrino
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London N6A5C1, Canada
| |
Collapse
|
14
|
Csikós V, Dóra F, Láng T, Darai L, Szendi V, Tóth A, Cservenák M, Dobolyi A. Social Isolation Induces Changes in the Monoaminergic Signalling in the Rat Medial Prefrontal Cortex. Cells 2024; 13:1043. [PMID: 38920671 PMCID: PMC11201939 DOI: 10.3390/cells13121043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/02/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024] Open
Abstract
(1) Background: The effects of short-term social isolation during adulthood have not yet been fully established in rats behaviourally, and not at all transcriptomically in the medial prefrontal cortex (mPFC). (2) Methods: We measured the behavioural effects of housing adult male rats in pairs or alone for 10 days. We also used RNA sequencing to measure the accompanying gene expression alterations in the mPFC of male rats. (3) Results: The isolated animals exhibited reduced sociability and social novelty preference, but increased social interaction. There was no change in their aggression, anxiety, or depression-like activity. Transcriptomic analysis revealed a differential expression of 46 genes between the groups. The KEGG pathway analysis showed that differentially expressed genes are involved in neuroactive ligand-receptor interactions, particularly in the dopaminergic and peptidergic systems, and addiction. Subsequent validation confirmed the decreased level of three altered genes: regulator of G protein signalling 9 (Rgs9), serotonin receptor 2c (Htr2c), and Prodynorphin (Pdyn), which are involved in dopaminergic, serotonergic, and peptidergic function, respectively. Antagonizing Htr2c confirmed its role in social novelty discrimination. (4) Conclusions: Social homeostatic regulations include monoaminergic and peptidergic systems of the mPFC.
Collapse
Affiliation(s)
- Vivien Csikós
- Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Fanni Dóra
- Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, 1094 Budapest, Hungary
| | - Tamás Láng
- Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, 1094 Budapest, Hungary
| | - Luca Darai
- Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Vivien Szendi
- Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Attila Tóth
- In Vivo Electrophysiology Research Group, Department of Physiology and Neurobiology, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Melinda Cservenák
- Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Arpád Dobolyi
- Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Eötvös Loránd University, 1117 Budapest, Hungary
| |
Collapse
|
15
|
Shiromani PJ, Vidal-Ortiz A. Most dynorphin neurons in the zona incerta-perifornical area are active in waking relative to non-rapid-eye movement and rapid-eye movement sleep. Sleep 2024; 47:zsae065. [PMID: 38447008 PMCID: PMC11494376 DOI: 10.1093/sleep/zsae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/26/2024] [Indexed: 03/08/2024] Open
Abstract
Dynorphin is an endogenous opiate localized in many brain regions and spinal cord, but the activity of dynorphin neurons during sleep is unknown. Dynorphin is an inhibitory neuropeptide that is coreleased with orexin, an excitatory neuropeptide. We used microendoscopy to test the hypothesis that, like orexin, the dynorphin neurons are wake-active. Dynorphin-cre mice (n = 3) were administered rAAV8-Ef1a-Con/Foff 2.0-GCaMP6M into the zona incerta-perifornical area, implanted with a GRIN lens (gradient reflective index), and electrodes to the skull that recorded sleep. One month later, a miniscope imaged calcium fluorescence in dynorphin neurons during multiple bouts of wake, non-rapid-eye movement (NREM), and rapid-eye movement (REM) sleep. Unbiased data analysis identified changes in calcium fluorescence in 64 dynorphin neurons. Most of the dynorphin neurons (72%) had the highest fluorescence during bouts of active and quiet waking compared to NREM or REM sleep; a subset (20%) were REM-max. Our results are consistent with the emerging evidence that the activity of orexin neurons can be classified as wake-max or REM-max. Since the two neuropeptides are coexpressed and coreleased, we suggest that dynorphin-cre-driven calcium sensors could increase understanding of the role of this endogenous opiate in pain and sleep.
Collapse
Affiliation(s)
- Priyattam J Shiromani
- Laboratory of Sleep Medicine and Chronobiology, Research Service, Ralph H. Johnson Veterans Healthcare System Charleston, SC, USA
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Aurelio Vidal-Ortiz
- Laboratory of Sleep Medicine and Chronobiology, Research Service, Ralph H. Johnson Veterans Healthcare System Charleston, SC, USA
| |
Collapse
|
16
|
Flores-Ramirez FJ, Illenberger JM, Pascasio G, Terenius L, Martin-Fardon R. LY2444296, a κ-opioid receptor antagonist, selectively reduces alcohol drinking in male and female Wistar rats with a history of alcohol dependence. Sci Rep 2024; 14:5804. [PMID: 38461355 PMCID: PMC10925033 DOI: 10.1038/s41598-024-56500-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/07/2024] [Indexed: 03/11/2024] Open
Abstract
Alcohol use disorder (AUD) remains a major public health concern. The dynorphin (DYN)/κ-opioid receptor (KOP) system is involved in actions of alcohol, particularly its withdrawal-associated negative affective states. This study tested the ability of LY2444296, a selective, short-acting, KOP antagonist, to decrease alcohol self-administration in dependent male and female Wistar rats at 8 h abstinence. Animals were trained to orally self-administer 10% alcohol (30 min/day for 21 sessions) and were made dependent via chronic intermittent alcohol vapor exposure for 6 weeks or exposed to air (nondependent). After 6 weeks, the effect of LY2444296 (0, 3, and 10 mg/kg, p.o.) was tested on alcohol self-administration at 8 h of abstinence. A separate cohort of rats was prepared in parallel, and their somatic withdrawal signs and alcohol self-administration were measured after LY2444296 administration at 8 h, 2 weeks, and 4 weeks abstinence. LY2444296 at 3 and 10 mg/kg significantly reduced physical signs of withdrawal in dependent rats at 8 h abstinence, only. Furthermore, 3 and 10 mg/kg selectively decreased alcohol self-administration in dependent rats at only 8 h abstinence. These results highlight the DYN/KOP system in actions of alcohol during acute abstinence, suggesting KOP antagonism could be beneficial for mitigating acute withdrawal signs and, in turn, significantly reduce excessive alcohol consumption associated with AUD.
Collapse
Affiliation(s)
- Francisco J Flores-Ramirez
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, SR-107, La Jolla, CA, 92037, USA.
| | - Jessica M Illenberger
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, SR-107, La Jolla, CA, 92037, USA
| | - Glenn Pascasio
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, SR-107, La Jolla, CA, 92037, USA
| | - Lars Terenius
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Rémi Martin-Fardon
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, SR-107, La Jolla, CA, 92037, USA
| |
Collapse
|
17
|
Wang A, Murphy J, Shteynman L, Daksla N, Gupta A, Bergese S. Novel Opioids in the Setting of Acute Postoperative Pain: A Narrative Review. Pharmaceuticals (Basel) 2023; 17:29. [PMID: 38256863 PMCID: PMC10819619 DOI: 10.3390/ph17010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Although traditional opioids such as morphine and oxycodone are commonly used in the management of acute postoperative pain, novel opioids may play a role as alternatives that provide potent pain relief while minimizing adverse effects. In this review, we discuss the mechanisms of action, findings from preclinical studies and clinical trials, and potential advantages of several novel opioids. The more established include oliceridine (biased ligand activity to activate analgesia and downregulate opioid-related adverse events), tapentadol (mu-opioid agonist and norepinephrine reuptake inhibitor), and cebranopadol (mu-opioid agonist with nociceptin opioid peptide activity)-all of which have demonstrated success in the clinical setting when compared to traditional opioids. On the other hand, dinalbuphine sebacate (DNS; semi-synthetic mu partial antagonist and kappa agonist), dual enkephalinase inhibitors (STR-324, PL37, and PL265), and endomorphin-1 analog (CYT-1010) have shown good efficacy in preclinical studies with future plans for clinical trials. Rather than relying solely on mu-opioid receptor agonism to relieve pain and risk opioid-related adverse events (ORAEs), novel opioids make use of alternative mechanisms of action to treat pain while maintaining a safer side-effect profile, such as lower incidence of nausea, vomiting, sedation, and respiratory depression as well as reduced abuse potential.
Collapse
Affiliation(s)
- Ashley Wang
- Department of Anesthesiology, Stony Brook University Hospital, Stony Brook, NY 11794, USA; (A.W.); (N.D.); (A.G.)
| | - Jasper Murphy
- Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (J.M.); (L.S.)
| | - Lana Shteynman
- Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (J.M.); (L.S.)
| | - Neil Daksla
- Department of Anesthesiology, Stony Brook University Hospital, Stony Brook, NY 11794, USA; (A.W.); (N.D.); (A.G.)
| | - Abhishek Gupta
- Department of Anesthesiology, Stony Brook University Hospital, Stony Brook, NY 11794, USA; (A.W.); (N.D.); (A.G.)
| | - Sergio Bergese
- Department of Anesthesiology, Stony Brook University Hospital, Stony Brook, NY 11794, USA; (A.W.); (N.D.); (A.G.)
- Department of Neurosurgery, Stony Brook University Hospital, Stony Brook, NY 11794, USA
| |
Collapse
|
18
|
Shu H, Liu S, Crawford J, Tao F. A female-specific role for trigeminal dynorphin in orofacial pain comorbidity. Pain 2023; 164:2801-2811. [PMID: 37463238 PMCID: PMC10790138 DOI: 10.1097/j.pain.0000000000002980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/01/2023] [Indexed: 07/20/2023]
Abstract
ABSTRACT Migraine is commonly reported in patients with temporomandibular disorders (TMDs), but little is known about the mechanisms underlying the comorbid condition. Here, we prepared a mouse model to investigate this comorbidity, in which masseter muscle tendon ligation (MMTL) was performed to induce a myogenic TMD, and the pre-existing TMD enabled a subthreshold dose of nitroglycerin (NTG) to produce migraine-like pain in mice. RNA sequencing followed by real-time quantitative polymerase chain reaction confirmation showed that MMTL plus NTG treatment increased prodynorphin ( Pdyn ) mRNA expression in the spinal trigeminal nucleus caudalis (Sp5C) of female mice but not in male mice. Chemogenetic inhibition of Pdyn -expressing neurons or microinjection of antidynorphin antiserum in the Sp5C alleviated MMTL-induced masseter hypersensitivity and diminished the MMTL-enabled migraine-like pain in female mice but not in male mice. Moreover, chemogenetic activation of Pdyn -expressing neurons or microinjection of dynorphin A (1-17) peptide in the Sp5C enabled a subthreshold dose of NTG to induce migraine-like pain in female mice but not in male mice. Taken together, our results suggest that trigeminal dynorphin has a female-specific role in the modulation of comorbid TMDs and migraine.
Collapse
Affiliation(s)
- Hui Shu
- Department of Biomedical Sciences, Texas A&M University
School of Dentistry, Dallas, Texas, USA
| | - Sufang Liu
- Department of Biomedical Sciences, Texas A&M University
School of Dentistry, Dallas, Texas, USA
| | - Joshua Crawford
- Department of Biomedical Sciences, Texas A&M University
School of Dentistry, Dallas, Texas, USA
| | - Feng Tao
- Department of Biomedical Sciences, Texas A&M University
School of Dentistry, Dallas, Texas, USA
- Center for Craniofacial Research and Diagnosis, Texas
A&M University School of Dentistry, Dallas, Texas, USA
| |
Collapse
|
19
|
Zanker J, Hüser D, Savy A, Lázaro-Petri S, Hammer EM, Schwarzer C, Heilbronn R. Evaluation of the SH-SY5Y cell line as an in vitro model for potency testing of a neuropeptide-expressing AAV vector. Front Mol Neurosci 2023; 16:1280556. [PMID: 38098942 PMCID: PMC10720649 DOI: 10.3389/fnmol.2023.1280556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/23/2023] [Indexed: 12/17/2023] Open
Abstract
Viral vectors have become important tools for basic research and clinical gene therapy over the past years. However, in vitro testing of vector-derived transgene function can be challenging when specific post-translational modifications are needed for biological activity. Similarly, neuropeptide precursors need to be processed to yield mature neuropeptides. SH-SY5Y is a human neuroblastoma cell line commonly used due to its ability to differentiate into specific neuronal subtypes. In this study, we evaluate the suitability of SH-SY5Y cells in a potency assay for neuropeptide-expressing adeno-associated virus (AAV) vectors. We looked at the impact of neuronal differentiation and compared single-stranded (ss) AAV and self-complementary (sc) AAV transduction at increasing MOIs, RNA transcription kinetics, as well as protein expression and mature neuropeptide production. SH-SY5Y cells proved highly transducible with AAV1 already at low MOIs in the undifferentiated state and even better after neuronal differentiation. Readouts were GFP or neuropeptide mRNA expression. Production of mature neuropeptides was poor in undifferentiated cells. By contrast, differentiated cells produced and sequestered mature neuropeptides into the medium in a MOI-dependent manner.
Collapse
Affiliation(s)
- Jeanette Zanker
- Department of Neurology, AG Gene Therapy, Berlin Institute of Health, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Daniela Hüser
- Department of Neurology, AG Gene Therapy, Berlin Institute of Health, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Adrien Savy
- Department of Neurology, AG Gene Therapy, Berlin Institute of Health, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sara Lázaro-Petri
- Department of Neurology, AG Gene Therapy, Berlin Institute of Health, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Eva-Maria Hammer
- Department of Neurology, AG Gene Therapy, Berlin Institute of Health, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christoph Schwarzer
- Institute of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Regine Heilbronn
- Department of Neurology, AG Gene Therapy, Berlin Institute of Health, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
20
|
Gernez E, Lee GR, Niguet JP, Zerimech F, Bennis A, Grzych G. Nitrous Oxide Abuse: Clinical Outcomes, Pharmacology, Pharmacokinetics, Toxicity and Impact on Metabolism. TOXICS 2023; 11:962. [PMID: 38133363 PMCID: PMC10747624 DOI: 10.3390/toxics11120962] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/22/2023] [Accepted: 11/26/2023] [Indexed: 12/23/2023]
Abstract
The recreational use of nitrous oxide (N2O), also called laughing gas, has increased significantly in recent years. In 2022, the European Monitoring Centre for Drugs and Drug Addiction (EMCDDA) recognized it as one of the most prevalent psychoactive substances used in Europe. Chronic nitrous oxide (N2O) exposure can lead to various clinical manifestations. The most frequent symptoms are neurological (sensitive or motor disorders), but there are also other manifestations like psychiatric manifestations or cardiovascular disorders (thrombosis events). N2O also affects various neurotransmitter systems, leading to its anesthetic, analgesic, anxiolytic and antidepressant properties. N2O is very challenging to measure in biological matrices. Thus, in cases of N2O intoxication, indirect biomarkers such as vitamin B12, plasma homocysteine and plasma MMA should be explored for diagnosis and assessment. Others markers, like oxidative stress markers, could be promising but need to be further investigated.
Collapse
Affiliation(s)
- Emeline Gernez
- CHU de Lille, Centre de Biologie Pathologie Génétique, 59000 Lille, France; (E.G.); (F.Z.)
| | | | - Jean-Paul Niguet
- Service de Neurologie, Hôpital Saint Vincent de Paul–GHICL, 59000 Lille, France;
| | - Farid Zerimech
- CHU de Lille, Centre de Biologie Pathologie Génétique, 59000 Lille, France; (E.G.); (F.Z.)
| | - Anas Bennis
- Assistance Publique—Hôpitaux de Paris, Service de Neurologie, Groupe Hospitalier Universitaire Paris Sud, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France;
| | - Guillaume Grzych
- CHU de Lille, Centre de Biologie Pathologie Génétique, 59000 Lille, France; (E.G.); (F.Z.)
| |
Collapse
|
21
|
Santos-Toscano R, Arevalo MA, Garcia-Segura LM, Grassi D, Lagunas N. Interaction of gonadal hormones, dopaminergic system, and epigenetic regulation in the generation of sex differences in substance use disorders: A systematic review. Front Neuroendocrinol 2023; 71:101085. [PMID: 37543184 DOI: 10.1016/j.yfrne.2023.101085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/07/2023]
Abstract
Substance use disorder (SUD) is a chronic condition characterized by pathological drug-taking and seeking behaviors. Remarkably different between males and females, suggesting that drug addiction is a sexually differentiated disorder. The neurobiological bases of sex differences in SUD include sex-specific reward system activation, influenced by interactions between gonadal hormone level changes, dopaminergic reward circuits, and epigenetic modifications of key reward system genes. This systematic review, adhering to PICOS and PRISMA-P 2015 guidelines, highlights the sex-dependent roles of estrogens, progesterone, and testosterone in SUD. In particular, estradiol elevates and progesterone reduces dopaminergic activity in SUD females, whilst testosterone and progesterone augment SUD behavior in males. Finally, SUD is associated with a sex-specific increase in the rate of opioid and monoaminergic gene methylation. The study reveals the need for detailed research on gonadal hormone levels, dopaminergic or reward system activity, and epigenetic landscapes in both sexes for efficient SUD therapy development.
Collapse
Affiliation(s)
- Raquel Santos-Toscano
- School of Medicine, University of Central Lancashire, 135A Adelphi St, Preston PR1 7BH, United Kingdom
| | - Maria Angeles Arevalo
- Neuroactive Steroids Lab, Cajal Institute, CSIC, Avenida Doctor Arce 37, 28002 Madrid, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Luis Miguel Garcia-Segura
- Neuroactive Steroids Lab, Cajal Institute, CSIC, Avenida Doctor Arce 37, 28002 Madrid, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Daniela Grassi
- Neuroactive Steroids Lab, Cajal Institute, CSIC, Avenida Doctor Arce 37, 28002 Madrid, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Anatomy, Histology and Neuroscience, Autonoma University of Madrid, Calle Arzobispo Morcillo 4, 28029 Madrid, Spain.
| | - Natalia Lagunas
- Neuroactive Steroids Lab, Cajal Institute, CSIC, Avenida Doctor Arce 37, 28002 Madrid, Spain; Department of Legal Medicine, Psychiatry and Pathology, School of Medicine, Complutense University of Madrid, Ciudad Universitaria, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| |
Collapse
|
22
|
Sánchez ML, Rodríguez FD, Coveñas R. Involvement of the Opioid Peptide Family in Cancer Progression. Biomedicines 2023; 11:1993. [PMID: 37509632 PMCID: PMC10377280 DOI: 10.3390/biomedicines11071993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Peptides mediate cancer progression favoring the mitogenesis, migration, and invasion of tumor cells, promoting metastasis and anti-apoptotic mechanisms, and facilitating angiogenesis/lymphangiogenesis. Tumor cells overexpress peptide receptors, crucial targets for developing specific treatments against cancer cells using peptide receptor antagonists and promoting apoptosis in tumor cells. Opioids exert an antitumoral effect, whereas others promote tumor growth and metastasis. This review updates the findings regarding the involvement of opioid peptides (enkephalins, endorphins, and dynorphins) in cancer development. Anticancer therapeutic strategies targeting the opioid peptidergic system and the main research lines to be developed regarding the topic reviewed are suggested. There is much to investigate about opioid peptides and cancer: basic information is scarce, incomplete, or absent in many tumors. This knowledge is crucial since promising anticancer strategies could be developed alone or in combination therapies with chemotherapy/radiotherapy.
Collapse
Affiliation(s)
- Manuel Lisardo Sánchez
- Laboratory of Neuroanatomy of the Peptidergic Systems, Institute of Neurosciences of Castilla and León (INCYL), University of Salamanca, 37007 Salamanca, Spain
| | - Francisco D Rodríguez
- Department of Biochemistry and Molecular Biology, Faculty of Chemical Sciences, University of Salamanca, 37007 Salamanca, Spain
- Group GIR-USAL: BMD (Bases Moleculares del Desarrollo), University of Salamanca, 37007 Salamanca, Spain
| | - Rafael Coveñas
- Laboratory of Neuroanatomy of the Peptidergic Systems, Institute of Neurosciences of Castilla and León (INCYL), University of Salamanca, 37007 Salamanca, Spain
- Group GIR-USAL: BMD (Bases Moleculares del Desarrollo), University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
23
|
Pirino BE, Kelley AM, Karkhanis AN, Barson JR. A critical review of effects on ethanol intake of the dynorphin/kappa opioid receptor system in the extended amygdala: From inhibition to stimulation. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2023; 47:1027-1038. [PMID: 37042026 PMCID: PMC10289127 DOI: 10.1111/acer.15078] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/13/2023]
Abstract
The dynorphin (DYN)/kappa opioid receptor (KOR) system has increasingly been investigated as a possible pharmacotherapeutic target for alcohol use disorder, but findings on the direction of its effects have been mixed. Activation of KORs by DYN has been shown to elicit dysphoric effects, and the DYN/KOR system has canonically been considered particularly important in driving alcohol intake through negative reinforcement in dependent states. However, this review also highlights its activity in opposing the positive reinforcement that drives alcohol intake at earlier stages. Both DYN and KORs are concentrated in the extended amygdala, a set of interconnected regions that includes the bed nucleus of the stria terminalis, central nucleus of the amygdala, and nucleus accumbens shell. This review focuses on the role of the DYN/KOR system in the extended amygdala in ethanol use. It begins by examining the effects of ethanol on the expression of DYN/KOR in the extended amygdala, expression of DYN/KOR in alcohol-preferring and alcohol-avoiding animals, and the effects of knocking out DYN/KOR genes on ethanol intake. Then, it examines the effects on ethanol use in both dependent and nondependent states from systemic pharmacological manipulations of DYN/KOR and from specific manipulation of this system in regions of the extended amygdala. We propose that greater expression and binding of DYN/KOR, by reducing the positive reinforcement that drives early stages of intake, initially acts to prevent the escalation of ethanol drinking. However, prolonged, binge-like, or intermittent ethanol intake enhances levels of DYN/KOR in the extended amygdala such that the system ultimately facilitates the negative reinforcement that drives later stages of ethanol drinking. This review highlights the potential of the DYN/KOR system as a target that can affect different outcomes across different stages of ethanol drinking and the development of alcohol use disorder.
Collapse
Affiliation(s)
- Breanne E. Pirino
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, P.A. 19129
| | - Abigail M. Kelley
- Department of Psychology, Binghamton University – SUNY, Binghamton, N.Y. 13902
| | | | - Jessica R. Barson
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, P.A. 19129
| |
Collapse
|
24
|
Chen Y, Wang CY, Zan GY, Yao SY, Deng YZ, Shu XL, Wu WW, Ma Y, Wang YJ, Yu CX, Liu JG. Upregulation of dynorphin/kappa opioid receptor system in the dorsal hippocampus contributes to morphine withdrawal-induced place aversion. Acta Pharmacol Sin 2023; 44:538-545. [PMID: 36127507 PMCID: PMC9958091 DOI: 10.1038/s41401-022-00987-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/22/2022] [Indexed: 11/09/2022]
Abstract
Aversive emotion of opioid withdrawal generates motivational state leading to compulsive drug seeking and taking. Kappa opioid receptor (KOR) and its endogenous ligand dynorphin have been shown to participate in the regulation of aversive emotion. In the present study, we investigated the role of dynorphin/KOR system in the aversive emotion following opioid withdrawal in acute morphine-dependent mice. We found that blockade of KORs before pairing by intracerebroventricular injection of KOR antagonist norBNI (20, 40 μg) attenuated the development of morphine withdrawal-induced conditioned place aversion (CPA) behavior. We further found that morphine withdrawal increased dynorphin A expression in the dorsal hippocampus, but not in the amygdala, prefrontal cortex, nucleus accumbens, and thalamus. Microinjection of norBNI (20 μg) into the dorsal hippocampus significantly decreased morphine withdrawal-induced CPA behavior. We further found that p38 MAPK was significantly activated in the dorsal hippocampus after morphine withdrawal, and the activation of p38 MAPK was blocked by pretreatment with norBNI. Accordingly, microinjection of p38 MAPK inhibitor SB203580 (5 μg) into the dorsal hippocampus significantly decreased morphine withdrawal-produced CPA behavior. This study demonstrates that upregulation of dynorphin/KOR system in the dorsal hippocampus plays a critical role in the formation of aversive emotion associated with morphine withdrawal, suggesting that KOR antagonists may have therapeutic value for the treatment of opioid withdrawal-induced mood-related disorders.
Collapse
Affiliation(s)
- Yan Chen
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Chen-Yao Wang
- CAS Key Laboratory of Receptor Research and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No. 19 A Yuquan Road, Beijing, 100049, China
| | - Gui-Ying Zan
- CAS Key Laboratory of Receptor Research and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Song-Yu Yao
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ying-Zhi Deng
- CAS Key Laboratory of Receptor Research and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Xue-Lian Shu
- CAS Key Laboratory of Receptor Research and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No. 19 A Yuquan Road, Beijing, 100049, China
| | - Wei-Wei Wu
- CAS Key Laboratory of Receptor Research and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Yan Ma
- CAS Key Laboratory of Receptor Research and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Yu-Jun Wang
- CAS Key Laboratory of Receptor Research and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Road, Shanghai, 201203, China.
| | - Chang-Xi Yu
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China.
| | - Jing-Gen Liu
- CAS Key Laboratory of Receptor Research and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Road, Shanghai, 201203, China
| |
Collapse
|
25
|
Hughes AC, Pollard BG, Xu B, Gammons JW, Chapman P, Bikoff JB, Schwarz LA. A Novel Single Vector Intersectional AAV Strategy for Interrogating Cellular Diversity and Brain Function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.07.527312. [PMID: 36798174 PMCID: PMC9934562 DOI: 10.1101/2023.02.07.527312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
As the discovery of cellular diversity in the brain accelerates, so does the need for functional tools that target cells based on multiple features, such as gene expression and projection target. By selectively driving recombinase expression in a feature-specific manner, one can utilize intersectional strategies to conditionally promote payload expression only where multiple features overlap. We developed Conditional Viral Expression by Ribozyme Guided Degradation (ConVERGD), a single-construct intersectional targeting strategy that combines a self-cleaving ribozyme with traditional FLEx switches. ConVERGD offers benefits over existing platforms, such as expanded intersectionality, the ability to accommodate larger and more complex payloads, and a vector design that is easily modified to better facilitate rapid toolkit expansion. To demonstrate its utility for interrogating neural circuitry, we employed ConVERGD to target an unexplored subpopulation of norepinephrine (NE)-producing neurons within the rodent locus coeruleus (LC) identified via single-cell transcriptomic profiling to co-express the stress-related endogenous opioid gene prodynorphin (Pdyn). These studies showcase ConVERGD as a versatile tool for targeting diverse cell types and reveal Pdyn-expressing NE+ LC neurons as a small neuronal subpopulation capable of driving anxiogenic behavioral responses in rodents.
Collapse
Affiliation(s)
- Alex C. Hughes
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, 38105
| | - Brittany G. Pollard
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, 38105
| | - Beisi Xu
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN, 38105
| | - Jesse W. Gammons
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, 38105
- Present address: Department of Pediatrics, Stanford University, Stanford, CA, 94305
| | - Phillip Chapman
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, 38105
| | - Jay B. Bikoff
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, 38105
| | - Lindsay A. Schwarz
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, 38105
- Lead contact
| |
Collapse
|
26
|
Yáñez-Gómez F, Ramos-Miguel A, García-Sevilla JA, Manzanares J, Femenía T. Regulation of Cortico-Thalamic JNK1/2 and ERK1/2 MAPKs and Apoptosis-Related Signaling Pathways in PDYN Gene-Deficient Mice Following Acute and Chronic Mild Stress. Int J Mol Sci 2023; 24:ijms24032303. [PMID: 36768626 PMCID: PMC9916432 DOI: 10.3390/ijms24032303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
The crosstalk between the opioidergic system and mitogen-activated protein kinases (MAPKs) has a critical role in mediating stress-induced behaviors related to the pathophysiology of anxiety. The present study evaluated the basal status and stress-induced alterations of cortico-thalamic MAPKs and other cell fate-related signaling pathways potentially underlying the anxiogenic endophenotype of PDYN gene-deficient mice. Compared to littermates, PDYN knockout (KO) mice had lower cortical and or thalamic amounts of the phospho-activated MAPKs c-Jun N-terminal kinase (JNK1/2) and extracellular signal-regulated kinase (ERK1/2). Similarly, PDYN-KO animals displayed reduced cortico-thalamic densities of total and phosphorylated (at Ser191) species of the cell fate regulator Fas-associated protein with death domain (FADD) without alterations in the Fas receptor. Exposure to acute restraint and chronic mild stress stimuli induced the robust stimulation of JNK1/2 and ERK1/2 MAPKs, FADD, and Akt-mTOR pathways, without apparent increases in apoptotic rates. Interestingly, PDYN deficiency prevented stress-induced JNK1/2 and FADD but not ERK1/2 or Akt-mTOR hyperactivations. These findings suggest that cortico-thalamic MAPK- and FADD-dependent neuroplasticity might be altered in PDYN-KO mice. In addition, the results also indicate that the PDYN gene (and hence dynorphin release) may be required to stimulate JNK1/2 and FADD (but not ERK1/2 or Akt/mTOR) pathways under environmental stress conditions.
Collapse
Affiliation(s)
- Fernando Yáñez-Gómez
- Laboratorio de Neurofarmacología, IUNICS, Universitat de les Illes Balears, Crta. Valldemossa km 7.5, 07122 Palma de Mallorca, Spain
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
| | - Alfredo Ramos-Miguel
- Department of Pharmacology, University of the Basque Country (UPV/EHU), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barrio Sarriena S/N, 48940 Leioa, Spain
- BioCruces Bizkaia Health Research Institute, Plaza de Cruces 12, 48903 Barakaldo, Spain
- Correspondence:
| | - Jesús A. García-Sevilla
- Laboratorio de Neurofarmacología, IUNICS, Universitat de les Illes Balears, Crta. Valldemossa km 7.5, 07122 Palma de Mallorca, Spain
| | - Jorge Manzanares
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - Teresa Femenía
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
| |
Collapse
|
27
|
Wang Y, Zhuang Y, DiBerto JF, Zhou XE, Schmitz GP, Yuan Q, Jain MK, Liu W, Melcher K, Jiang Y, Roth BL, Xu HE. Structures of the entire human opioid receptor family. Cell 2023; 186:413-427.e17. [PMID: 36638794 DOI: 10.1016/j.cell.2022.12.026] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/11/2022] [Accepted: 12/13/2022] [Indexed: 01/13/2023]
Abstract
Opioids are effective analgesics, but their use is beset by serious side effects, including addiction and respiratory depression, which contribute to the ongoing opioid crisis. The human opioid system contains four opioid receptors (μOR, δOR, κOR, and NOPR) and a set of related endogenous opioid peptides (EOPs), which show distinct selectivity toward their respective opioid receptors (ORs). Despite being key to the development of safer analgesics, the mechanisms of molecular recognition and selectivity of EOPs to ORs remain unclear. Here, we systematically characterize the binding of EOPs to ORs and present five structures of EOP-OR-Gi complexes, including β-endorphin- and endomorphin-bound μOR, deltorphin-bound δOR, dynorphin-bound κOR, and nociceptin-bound NOPR. These structures, supported by biochemical results, uncover the specific recognition and selectivity of opioid peptides and the conserved mechanism of opioid receptor activation. These results provide a structural framework to facilitate rational design of safer opioid drugs for pain relief.
Collapse
Affiliation(s)
- Yue Wang
- The CAS Key Laboratory of Receptor Research and the State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Youwen Zhuang
- The CAS Key Laboratory of Receptor Research and the State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Jeffrey F DiBerto
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - X Edward Zhou
- Department of Structural Biology, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Gavin P Schmitz
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Qingning Yuan
- The CAS Key Laboratory of Receptor Research and the State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; The Shanghai Advanced Electron Microscope Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Manish K Jain
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Weiyi Liu
- The CAS Key Laboratory of Receptor Research and the State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Karsten Melcher
- Department of Structural Biology, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Yi Jiang
- The CAS Key Laboratory of Receptor Research and the State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Lingang Laboratory, Shanghai 200031, China
| | - Bryan L Roth
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA.
| | - H Eric Xu
- The CAS Key Laboratory of Receptor Research and the State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
28
|
Yang R, Tuan RRL, Hwang FJ, Bloodgood DW, Kong D, Ding JB. Dichotomous regulation of striatal plasticity by dynorphin. Mol Psychiatry 2023; 28:434-447. [PMID: 36460726 PMCID: PMC10188294 DOI: 10.1038/s41380-022-01885-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 12/05/2022]
Abstract
Modulation of corticostriatal plasticity alters the information flow throughout basal ganglia circuits and represents a fundamental mechanism for motor learning, action selection, and reward. Synaptic plasticity in the striatal direct- and indirect-pathway spiny projection neurons (dSPNs and iSPNs) is regulated by two distinct networks of GPCR signaling cascades. While it is well-known that dopamine D2 and adenosine A2a receptors bi-directionally regulate iSPN plasticity, it remains unclear how D1 signaling modulation of synaptic plasticity is counteracted by dSPN-specific Gi signaling. Here, we show that striatal dynorphin selectively suppresses long-term potentiation (LTP) through Kappa Opioid Receptor (KOR) signaling in dSPNs. Both KOR antagonism and conditional deletion of dynorphin in dSPNs enhance LTP counterbalancing with different levels of D1 receptor activation. Behaviorally, mice lacking dynorphin in D1 neurons show comparable motor behavior and reward-based learning, but enhanced flexibility during reversal learning. These findings support a model in which D1R and KOR signaling bi-directionally modulate synaptic plasticity and behavior in the direct pathway.
Collapse
Affiliation(s)
- Renzhi Yang
- Biology Graduate Program, Stanford University, Stanford, CA, USA
| | - Rupa R Lalchandani Tuan
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
- Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, CA, USA
| | - Fuu-Jiun Hwang
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | | | - Dong Kong
- Division of Endocrinology, Department of Pediatrics, F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jun B Ding
- Department of Neurosurgery, Stanford University, Stanford, CA, USA.
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.
- Stanford Bio-X, Stanford University, Stanford, CA, USA.
| |
Collapse
|
29
|
Wallace TL, Martin WJ, Arnsten AF. Kappa opioid receptor antagonism protects working memory performance from mild stress exposure in Rhesus macaques. Neurobiol Stress 2022; 21:100493. [DOI: 10.1016/j.ynstr.2022.100493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/29/2022] Open
|
30
|
Ji MJ, Gao ZQ, Yang J, Cai JH, Li KX, Wang J, Zhang H, Zhou CH, Cao JL, Liu C. Dynorphin promotes stress-induced depressive behaviors by inhibiting ventral pallidal neurons in rats. Acta Physiol (Oxf) 2022; 236:e13882. [PMID: 36039689 DOI: 10.1111/apha.13882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 01/29/2023]
Abstract
AIM Endogenous dynorphin signaling via kappa opioid receptors (KORs) plays a key role in producing the depressive and aversive consequences of stress. We investigated the behavioral effects of the dynorphin/KOR system in the ventral pallidum (VP) and studied the underlying mechanisms. METHODS To investigate the effects of dynorphin on the VP, we conducted behavioral experiments after microinjection of drugs or shRNA and brain-slice electrophysiological recordings. Histological tracing and molecular biological experiments were used to identify the distribution of KORs and the possible sources of dynorphin projections to the VP. RESULTS An elevated dynorphin concentration and increased KOR activity were observed in the VP after acute stress. Infusion of dynorphin-A into the VP produced depressive-like phenotypes including anhedonia and despair and anxiety behaviors, but did not alter locomotor behavior. Mechanistically, dynorphin had an inhibitory effect on VP neurons-reducing their firing rate and inhibiting excitatory transmission-through direct activation of KORs and modulation of downstream G-protein-gated inwardly rectifying potassium (GIRK) channels and high-voltage gated calcium channels (VGCCs). Tracing revealed direct innervation of VP neurons by dynorphin-positive projections; potential sources of these dynorphinergic projections include the nucleus accumbens, amygdala, and hypothalamus. Blockade of dynorphin/KOR signaling in the VP by drugs or viral knock-down of KORs significantly reduced despair behavior in rats. CONCLUSIONS Endogenous dynorphinergic modulation of the VP plays a critical role in mediating depressive reactions to stress.
Collapse
Affiliation(s)
- Miao-Jin Ji
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Zhi-Qiang Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Jiao Yang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Ji-Heng Cai
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Ke-Xue Li
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
| | - Jie Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Hongxing Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Cheng-Hua Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Jun-Li Cao
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Chao Liu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, School of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
31
|
Kopruszinski CM, Vizin R, Watanabe M, Martinez AL, de Souza LHM, Dodick DW, Porreca F, Navratilova E. Exploring the neurobiology of the premonitory phase of migraine preclinically - a role for hypothalamic kappa opioid receptors? J Headache Pain 2022; 23:126. [PMID: 36175828 PMCID: PMC9524131 DOI: 10.1186/s10194-022-01497-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/31/2022] [Indexed: 11/21/2022] Open
Abstract
Background The migraine premonitory phase is characterized in part by increased thirst, urination and yawning. Imaging studies show that the hypothalamus is activated in the premonitory phase. Stress is a well know migraine initiation factor which was demonstrated to engage dynorphin/kappa opioid receptors (KOR) signaling in several brain regions, including the hypothalamus. This study proposes the exploration of the possible link between hypothalamic KOR and migraine premonitory symptoms in rodent models. Methods Rats were treated systemically with the KOR agonist U-69,593 followed by yawning and urination monitoring. Apomorphine, a dopamine D1/2 agonist, was used as a positive control for yawning behaviors. Urination and water consumption following systemic administration of U-69,593 was also assessed. To examine if KOR activation specifically in the hypothalamus can promote premonitory symptoms, AAV8-hSyn-DIO-hM4Di (Gi-DREADD)-mCherry viral vector was microinjected into the right arcuate nucleus (ARC) of female and male KORCRE or KORWT mice. Four weeks after the injection, clozapine N-oxide (CNO) was administered systemically followed by the assessment of urination, water consumption and tactile sensory response. Results Systemic administration of U-69,593 increased urination but did not produce yawning in rats. Systemic KOR agonist also increased urination in mice as well as water consumption. Cell specific Gi-DREADD activation (i.e., inhibition through Gi-coupled signaling) of KORCRE neurons in the ARC also increased water consumption and the total volume of urine in mice but did not affect tactile sensory responses. Conclusion Our studies in rodents identified the KOR in a hypothalamic region as a mechanism that promotes behaviors consistent with clinically-observed premonitory symptoms of migraine, including increased thirst and urination but not yawning. Importantly, these behaviors occurred in the absence of pain responses, consistent with the emergence of the premonitory phase before the headache phase. Early intervention for preventive treatment even before the headache phase may be achievable by targeting the hypothalamic KOR. Supplementary Information The online version contains supplementary material available at 10.1186/s10194-022-01497-7.
Collapse
Affiliation(s)
| | - Robson Vizin
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Moe Watanabe
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Ashley L Martinez
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | | | | | - Frank Porreca
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA.,Department of Collaborative Research, Mayo Clinic, Scottsdale, USA
| | - Edita Navratilova
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA. .,Department of Collaborative Research, Mayo Clinic, Scottsdale, USA.
| |
Collapse
|
32
|
El Hayek SA, Shatila MA, Adnan JA, Geagea LE, Kobeissy F, Talih FR. Is there a therapeutic potential in combining bupropion and naltrexone in schizophrenia? Expert Rev Neurother 2022; 22:737-749. [PMID: 36093756 DOI: 10.1080/14737175.2022.2124369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION A sustained-release tablet composed of a combination of the dopamine and norepinephrine reuptake inhibitor bupropion (BUP) and the µ-opioid receptor antagonist naltrexone (NAT) is marketed under the brand name Contrave by Orexigen Therapeutics for appetite control. Minimal literature is available regarding the use of combination bupropion and naltrexone (BUPNAT) in individuals with schizophrenia. AREAS COVERED In this review, we propose a theoretical model where BUPNAT may have a therapeutic effect in the treatment of schizophrenia. We explore the pathways targeted by the constituent drugs BUP and NAT and summarize the literature on their efficacy and possible adverse effects. We then look at the potential use of BUPNAT in schizophrenia. EXPERT OPINION Research has hinted that BUP's dopaminergic properties affect the same striatal pathways involved in schizophrenia. NAT, via opioid receptor antagonism, indirectly increases striatal dopamine release by disinhibiting nicotinic acetylcholine receptors. As such, we hypothesize that BUPNAT can have a therapeutic effect in schizophrenia, particularly on negative symptoms. We also suggest that it may ameliorate comorbidities frequently seen in this group of patients, including obesity, smoking, and substance use. Further research and clinical data are needed to elucidate the potential clinical benefits of BUPNAT in the treatment of schizophrenia.
Collapse
Affiliation(s)
- Samer A. El Hayek
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Malek A. Shatila
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Jana A. Adnan
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Luna E. Geagea
- Department of Psychiatry, American University of Beirut, Beirut, Lebanon
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Farid R. Talih
- Department of Psychiatry, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
33
|
Lee YS. Peptidomimetics and Their Applications for Opioid Peptide Drug Discovery. Biomolecules 2022; 12:biom12091241. [PMID: 36139079 PMCID: PMC9496382 DOI: 10.3390/biom12091241] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Despite various advantages, opioid peptides have been limited in their therapeutic uses due to the main drawbacks in metabolic stability, blood-brain barrier permeability, and bioavailability. Therefore, extensive studies have focused on overcoming the problems and optimizing the therapeutic potential. Currently, numerous peptide-based drugs are being marketed thanks to new synthetic strategies for optimizing metabolism and alternative routes of administration. This tutorial review briefly introduces the history and role of natural opioid peptides and highlights the key findings on their structure-activity relationships for the opioid receptors. It discusses details on opioid peptidomimetics applied to develop therapeutic candidates for the treatment of pain from the pharmacological and structural points of view. The main focus is the current status of various mimetic tools and the successful applications summarized in tables and figures.
Collapse
Affiliation(s)
- Yeon Sun Lee
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| |
Collapse
|
34
|
Liu L, Liu Z, Zeng C, Xu Y, He L, Fang Q, Chen Z. Dynorphin/KOR inhibits neuronal autophagy by activating mTOR signaling pathway to prevent acute seizure epilepsy. Cell Biol Int 2022; 46:1814-1824. [PMID: 35989483 DOI: 10.1002/cbin.11874] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 06/08/2022] [Accepted: 06/27/2022] [Indexed: 11/11/2022]
Abstract
In previous studies, we found that dynorphin exerts antiepileptic effect by activating the kappa opioid receptor (KOR). However, the role of neuronal autophagy in dynorphin/KOR-mediated antiepileptic is still unclear. This study aimed to investigate the molecular mechanism of dynorphin's antiepileptic effect by inhibiting autophagy and reducing neuronal apoptosis. Here, a pilocarpine-induced rat model of epilepsy was established and hippocampal neurons were treated with Mg2+ -free exposed for epileptiform activity induction. The real-time polymerase chain reaction and Western blot analysis were used to evaluate messenger RNA and protein expression. The TdT-mediated dUTP-biotin nick end labeling staining and flow cytometry were used to analyze cell apoptosis in vivo and in vitro. Neuron cells viability was detected by Cell Counting Kit-8 assay. Immunofluorescent staining and green fluorescent protein-light chain 3 immunofluorescence were used to measure autophagy in vivo and in vitro. Results showed that overexpression of prodynorphin alleviated neuronal apoptosis, activated the mammalian target of rapamycin (mTOR) signaling pathway, and inhibited neuronal autophagy in epileptic rats. Dynorphin inhibited Mg2+ -free-induced seizure-like neuron apoptosis, partially reversing the effect of Mg2+ -free on the mTOR signaling pathway and seizure-like neuron autophagy. Further, using rapamycin, we found that dynorphin inhibited Mg2+ -free-induced seizure-like neuron autophagy and apoptosis by activating the mTOR signaling pathway. In conclusion, dynorphin inhibits autophagy by activating the mTOR signaling pathway and has a protective effect on epilepsy acute seizure and epilepsy-induced brain injury.
Collapse
Affiliation(s)
- Lin Liu
- Department of Paediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zuoliang Liu
- Intensive Care Unit, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chunyun Zeng
- Department of Paediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yingtong Xu
- Department of Paediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Li He
- Department of Paediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qing Fang
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhiheng Chen
- Department of Paediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
35
|
Casello SM, Flores RJ, Yarur HE, Wang H, Awanyai M, Arenivar MA, Jaime-Lara RB, Bravo-Rivera H, Tejeda HA. Neuropeptide System Regulation of Prefrontal Cortex Circuitry: Implications for Neuropsychiatric Disorders. Front Neural Circuits 2022; 16:796443. [PMID: 35800635 PMCID: PMC9255232 DOI: 10.3389/fncir.2022.796443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 04/27/2022] [Indexed: 01/08/2023] Open
Abstract
Neuropeptides, a diverse class of signaling molecules in the nervous system, modulate various biological effects including membrane excitability, synaptic transmission and synaptogenesis, gene expression, and glial cell architecture and function. To date, most of what is known about neuropeptide action is limited to subcortical brain structures and tissue outside of the central nervous system. Thus, there is a knowledge gap in our understanding of neuropeptide function within cortical circuits. In this review, we provide a comprehensive overview of various families of neuropeptides and their cognate receptors that are expressed in the prefrontal cortex (PFC). Specifically, we highlight dynorphin, enkephalin, corticotropin-releasing factor, cholecystokinin, somatostatin, neuropeptide Y, and vasoactive intestinal peptide. Further, we review the implication of neuropeptide signaling in prefrontal cortical circuit function and use as potential therapeutic targets. Together, this review summarizes established knowledge and highlights unknowns of neuropeptide modulation of neural function underlying various biological effects while offering insights for future research. An increased emphasis in this area of study is necessary to elucidate basic principles of the diverse signaling molecules used in cortical circuits beyond fast excitatory and inhibitory transmitters as well as consider components of neuropeptide action in the PFC as a potential therapeutic target for neurological disorders. Therefore, this review not only sheds light on the importance of cortical neuropeptide studies, but also provides a comprehensive overview of neuropeptide action in the PFC to serve as a roadmap for future studies in this field.
Collapse
Affiliation(s)
- Sanne M. Casello
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Rodolfo J. Flores
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Hector E. Yarur
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Huikun Wang
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Monique Awanyai
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Miguel A. Arenivar
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Rosario B. Jaime-Lara
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
| | - Hector Bravo-Rivera
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Hugo A. Tejeda
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Hugo A. Tejeda,
| |
Collapse
|
36
|
Bousiges O, Blanc F. Biomarkers of Dementia with Lewy Bodies: Differential Diagnostic with Alzheimer's Disease. Int J Mol Sci 2022; 23:ijms23126371. [PMID: 35742814 PMCID: PMC9223587 DOI: 10.3390/ijms23126371] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 02/04/2023] Open
Abstract
Dementia with Lewy Bodies (DLB) is a common form of cognitive neurodegenerative disease. Only one third of patients are correctly diagnosed due to the clinical similarity mainly with Alzheimer’s disease (AD). In this review, we evaluate the interest of different biomarkers: cerebrospinal fluid (CSF), brain MRI, FP-CIT SPECT, MIBG SPECT, PET by focusing more specifically on differential diagnosis between DLB and AD. FP-CIT SPECT is of high interest to discriminate DLB and AD, but not at the prodromal stage (i.e., MCI). MIBG SPECT with decreased cardiac sympathetic activity, perfusion SPECT with occipital hypoperfusion, FDG PET with occipital hypometabolism and cingulate island signs are of interest at the dementia stage but with a lower validity. Brain MRI has shown differences in group study with lower grey matter concentration of the Insula in prodromal DLB, but its interest in clinical routines is not demonstrated. Concerning CSF biomarkers, many studies have already examined the relevance of AD biomarkers but also alpha-synuclein assays in DLB, so we will focus as comprehensively as possible on other biomarkers (especially those that do not appear to be directly related to synucleinopathy) that may be of interest in the differential diagnosis between AD and DLB. Furthermore, we would like to highlight the growing interest in CSF synuclein RT-QuIC, which seems to be an excellent discrimination tool but its application in clinical routine remains to be demonstrated, given the non-automation of the process.
Collapse
Affiliation(s)
- Olivier Bousiges
- Laboratory of Biochemistry and Molecular Biology, University Hospital of Strasbourg, 67000 Strasbourg, France
- Team IMIS, ICube Laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), University of Strasbourg and CNRS, 67000 Strasbourg, France;
- CM2R (Research and Resources Memory Centre), Geriatrics Department, Day Hospital and Cognitive-Behavioral Unit University Hospitals of Strasbourg, 67000 Strasbourg, France
- Correspondence:
| | - Frédéric Blanc
- Team IMIS, ICube Laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), University of Strasbourg and CNRS, 67000 Strasbourg, France;
- CM2R (Research and Resources Memory Centre), Geriatrics Department, Day Hospital and Cognitive-Behavioral Unit University Hospitals of Strasbourg, 67000 Strasbourg, France
| |
Collapse
|
37
|
Yakhnitsa V, Ji G, Hein M, Presto P, Griffin Z, Ponomareva O, Navratilova E, Porreca F, Neugebauer V. Kappa Opioid Receptor Blockade in the Amygdala Mitigates Pain Like-Behaviors by Inhibiting Corticotropin Releasing Factor Neurons in a Rat Model of Functional Pain. Front Pharmacol 2022; 13:903978. [PMID: 35694266 PMCID: PMC9177060 DOI: 10.3389/fphar.2022.903978] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/09/2022] [Indexed: 01/06/2023] Open
Abstract
Functional pain syndromes (FPS) occur in the absence of identifiable tissue injury or noxious events and include conditions such as migraine, fibromyalgia, and others. Stressors are very common triggers of pain attacks in various FPS conditions. It has been recently demonstrated that kappa opioid receptors (KOR) in the central nucleus of amygdala (CeA) contribute to FPS conditions, but underlying mechanisms remain unclear. The CeA is rich in KOR and encompasses major output pathways involving extra-amygdalar projections of corticotropin releasing factor (CRF) expressing neurons. Here we tested the hypothesis that KOR blockade in the CeA in a rat model of FPS reduces pain-like and nocifensive behaviors by restoring inhibition of CeA-CRF neurons. Intra-CeA administration of a KOR antagonist (nor-BNI) decreased mechanical hypersensitivity and affective and anxiety-like behaviors in a stress-induced FPS model. In systems electrophysiology experiments in anesthetized rats, intra-CeA application of nor-BNI reduced spontaneous firing and responsiveness of CeA neurons to peripheral stimulation. In brain slice whole-cell patch-clamp recordings, nor-BNI increased feedforward inhibitory transmission evoked by optogenetic and electrical stimulation of parabrachial afferents, but had no effect on monosynaptic excitatory transmission. Nor-BNI decreased frequency, but not amplitude, of spontaneous inhibitory synaptic currents, suggesting a presynaptic action. Blocking KOR receptors in stress-induced FPS conditions may therefore represent a novel therapeutic strategy.
Collapse
Affiliation(s)
- Vadim Yakhnitsa
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Guangchen Ji
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Matthew Hein
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Peyton Presto
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Zack Griffin
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Olga Ponomareva
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Edita Navratilova
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Frank Porreca
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
38
|
Costas-Ferreira C, Durán R, Faro LRF. Toxic Effects of Glyphosate on the Nervous System: A Systematic Review. Int J Mol Sci 2022; 23:4605. [PMID: 35562999 PMCID: PMC9101768 DOI: 10.3390/ijms23094605] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/11/2022] [Accepted: 04/18/2022] [Indexed: 12/21/2022] Open
Abstract
Glyphosate, a non-selective systemic biocide with broad-spectrum activity, is the most widely used herbicide in the world. It can persist in the environment for days or months, and its intensive and large-scale use can constitute a major environmental and health problem. In this systematic review, we investigate the current state of our knowledge related to the effects of this pesticide on the nervous system of various animal species and humans. The information provided indicates that exposure to glyphosate or its commercial formulations induces several neurotoxic effects. It has been shown that exposure to this pesticide during the early stages of life can seriously affect normal cell development by deregulating some of the signaling pathways involved in this process, leading to alterations in differentiation, neuronal growth, and myelination. Glyphosate also seems to exert a significant toxic effect on neurotransmission and to induce oxidative stress, neuroinflammation and mitochondrial dysfunction, processes that lead to neuronal death due to autophagy, necrosis, or apoptosis, as well as the appearance of behavioral and motor disorders. The doses of glyphosate that produce these neurotoxic effects vary widely but are lower than the limits set by regulatory agencies. Although there are important discrepancies between the analyzed findings, it is unequivocal that exposure to glyphosate produces important alterations in the structure and function of the nervous system of humans, rodents, fish, and invertebrates.
Collapse
Affiliation(s)
| | | | - Lilian R. F. Faro
- Department of Functional Biology and Health Sciences, Faculty of Biology, Universidade de Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain; (C.C.-F.); (R.D.)
| |
Collapse
|
39
|
Hulme H, Fridjonsdottir E, Vallianatou T, Shariatgorji R, Nilsson A, Li Q, Bezard E, Andrén PE. Basal ganglia neuropeptides show abnormal processing associated with L-DOPA-induced dyskinesia. NPJ Parkinsons Dis 2022; 8:41. [PMID: 35418178 PMCID: PMC9007979 DOI: 10.1038/s41531-022-00299-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 03/04/2022] [Indexed: 12/23/2022] Open
Abstract
L-DOPA administration is the primary treatment for Parkinson’s disease (PD) but long-term administration is usually accompanied by hyperkinetic side-effects called L-DOPA-induced dyskinesia (LID). Signaling neuropeptides of the basal ganglia are affected in LID and changes in the expression of neuropeptide precursors have been described, but the final products formed from these precursors have not been well defined and regionally mapped. We therefore used mass spectrometry imaging to visualize and quantify neuropeptides in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine exposed parkinsonian and LID Macaca mulatta brain samples. We found that dyskinesia severity correlated with the levels of some abnormally processed peptides — notably, des-tyrosine dynorphins, substance P (1-7), and substance P (1-9) — in multiple brain regions. Levels of the active neuropeptides; dynorphin B, dynorphin A (1-8), α-neoendorphin, substance P (1-11), and neurokinin A, in the globus pallidus and substantia nigra correlated with putaminal levels of L-DOPA. Our results demonstrate that the abundance of selected active neuropeptides is associated with L-DOPA concentrations in the putamen, emphasizing their sensitivity to L-DOPA. Additionally, levels of truncated neuropeptides (which generally exhibit reduced or altered receptor affinity) correlate with dyskinesia severity, particularly for peptides associated with the direct pathway (i.e., dynorphins and tachykinins). The increases in tone of the tachykinin, enkephalin, and dynorphin neuropeptides in LID result in abnormal processing of neuropeptides with different biological activity and may constitute a functional compensatory mechanism for balancing the increased L-DOPA levels across the whole basal ganglia.
Collapse
Affiliation(s)
- Heather Hulme
- Department of Pharmaceutical Biosciences, Medical Mass Spectrometry Imaging, Uppsala University, Uppsala, Sweden.,Science for Life Laboratory, Spatial Mass Spectrometry, Uppsala University, Uppsala, Sweden
| | - Elva Fridjonsdottir
- Department of Pharmaceutical Biosciences, Medical Mass Spectrometry Imaging, Uppsala University, Uppsala, Sweden
| | - Theodosia Vallianatou
- Department of Pharmaceutical Biosciences, Medical Mass Spectrometry Imaging, Uppsala University, Uppsala, Sweden
| | - Reza Shariatgorji
- Department of Pharmaceutical Biosciences, Medical Mass Spectrometry Imaging, Uppsala University, Uppsala, Sweden.,Science for Life Laboratory, Spatial Mass Spectrometry, Uppsala University, Uppsala, Sweden
| | - Anna Nilsson
- Department of Pharmaceutical Biosciences, Medical Mass Spectrometry Imaging, Uppsala University, Uppsala, Sweden.,Science for Life Laboratory, Spatial Mass Spectrometry, Uppsala University, Uppsala, Sweden
| | - Qin Li
- Motac Neuroscience, Manchester, M15 6WE, UK
| | - Erwan Bezard
- Motac Neuroscience, Manchester, M15 6WE, UK.,Université de Bordeaux, Institut des Maladies Neurodégénératives, Bordeaux, France.,Centre National de la Recherche Scientifique, Institut des Maladies Neurodégénératives, Bordeaux, France
| | - Per E Andrén
- Department of Pharmaceutical Biosciences, Medical Mass Spectrometry Imaging, Uppsala University, Uppsala, Sweden. .,Science for Life Laboratory, Spatial Mass Spectrometry, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
40
|
Psycho-Neuro-Endocrine-Immunological Basis of the Placebo Effect: Potential Applications beyond Pain Therapy. Int J Mol Sci 2022; 23:ijms23084196. [PMID: 35457014 PMCID: PMC9028312 DOI: 10.3390/ijms23084196] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 12/12/2022] Open
Abstract
The placebo effect can be defined as the improvement of symptoms in a patient after the administration of an innocuous substance in a context that induces expectations regarding its effects. During recent years, it has been discovered that the placebo response not only has neurobiological functions on analgesia, but that it is also capable of generating effects on the immune and endocrine systems. The possible integration of changes in different systems of the organism could favor the well-being of the individuals and go hand in hand with conventional treatment for multiple diseases. In this sense, classic conditioning and setting expectations stand out as psychological mechanisms implicated in the placebo effect. Recent advances in neuroimaging studies suggest a relationship between the placebo response and the opioid, cannabinoid, and monoaminergic systems. Likewise, a possible immune response conditioned by the placebo effect has been reported. There is evidence of immune suppression conditioned through the insular cortex and the amygdala, with noradrenalin as the responsible neurotransmitter. Finally, a conditioned response in the secretion of different hormones has been determined in different studies; however, the molecular mechanisms involved are not entirely known. Beyond studies about its mechanism of action, the placebo effect has proved to be useful in the clinical setting with promising results in the management of neurological, psychiatric, and immunologic disorders. However, more research is needed to better characterize its potential use. This review integrates current knowledge about the psycho-neuro-endocrine-immune basis of the placebo effect and its possible clinical applications.
Collapse
|
41
|
Petrocelli G, Pampanella L, Abruzzo PM, Ventura C, Canaider S, Facchin F. Endogenous Opioids and Their Role in Stem Cell Biology and Tissue Rescue. Int J Mol Sci 2022; 23:3819. [PMID: 35409178 PMCID: PMC8998234 DOI: 10.3390/ijms23073819] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 01/25/2023] Open
Abstract
Opioids are considered the oldest drugs known by humans and have been used for sedation and pain relief for several centuries. Nowadays, endogenous opioid peptides are divided into four families: enkephalins, dynorphins, endorphins, and nociceptin/orphanin FQ. They exert their action through the opioid receptors (ORs), transmembrane proteins belonging to the super-family of G-protein-coupled receptors, and are expressed throughout the body; the receptors are the δ opioid receptor (DOR), μ opioid receptor (MOR), κ opioid receptor (KOR), and nociceptin/orphanin FQ receptor (NOP). Endogenous opioids are mainly studied in the central nervous system (CNS), but their role has been investigated in other organs, both in physiological and in pathological conditions. Here, we revise their role in stem cell (SC) biology, since these cells are a subject of great scientific interest due to their peculiar features and their involvement in cell-based therapies in regenerative medicine. In particular, we focus on endogenous opioids' ability to modulate SC proliferation, stress response (to oxidative stress, starvation, or damage following ischemia-reperfusion), and differentiation towards different lineages, such as neurogenesis, vasculogenesis, and cardiogenesis.
Collapse
Affiliation(s)
- Giovannamaria Petrocelli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (G.P.); (L.P.); (P.M.A.); (F.F.)
| | - Luca Pampanella
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (G.P.); (L.P.); (P.M.A.); (F.F.)
| | - Provvidenza M. Abruzzo
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (G.P.); (L.P.); (P.M.A.); (F.F.)
| | - Carlo Ventura
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (G.P.); (L.P.); (P.M.A.); (F.F.)
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB)–Eldor Lab, at the Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy
| | - Silvia Canaider
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (G.P.); (L.P.); (P.M.A.); (F.F.)
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB)–Eldor Lab, at the Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy
| | - Federica Facchin
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (G.P.); (L.P.); (P.M.A.); (F.F.)
- National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB)–Eldor Lab, at the Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy
| |
Collapse
|
42
|
Rezaei Z, Alaei H, Reisi P. Effects of electrical stimulation and temporary inactivation of basolateral amygdala on morphine-induced conditioned place preference in rats. Neurosci Lett 2022; 774:136519. [DOI: 10.1016/j.neulet.2022.136519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/28/2022] [Accepted: 02/08/2022] [Indexed: 10/19/2022]
|
43
|
Zan GY, Sun X, Wang YJ, Liu R, Wang CY, Du WJ, Guo LB, Chai JR, Li QL, Liu ZQ, Liu JG. Amygdala dynorphin/κ opioid receptor system modulates depressive-like behavior in mice following chronic social defeat stress. Acta Pharmacol Sin 2022; 43:577-587. [PMID: 34035484 PMCID: PMC8888759 DOI: 10.1038/s41401-021-00677-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 04/02/2021] [Indexed: 02/03/2023]
Abstract
Major depression disorder is a severe and recurrent neuropsychological disorder characterized by lowered mood and social activity and cognitive impairment. Owing to unclear molecular mechanisms of depression, limited interventions are available in clinic. In this study we investigated the role of dynorphin/κ opioid receptor system in the development of depression. Mice were subjected to chronic social defeat stress for 14 days. Chronic social defeat stress induced significant social avoidance in mice characterized by decreased time duration in the interaction zone and increased time duration in the corner zone. Pre-administration of a κ opioid receptor antagonist norBNI (10 mg/kg, i.p.) could prevent the development of social avoidance induced by chronic social defeat stress. Social avoidance was not observed in κ opioid receptor knockout mice subjected to chronic social defeat stress. We further revealed that social defeat stress activated c-fos and ERK signaling in the amygdala without affecting the NAc, hippocampus and hypothalamus, and ERK activation was blocked by systemic injection of norBNI. Finally, the expression of dynorphin A, the endogenous ligand of κ opioid receptor, was significantly increased in the amygdala following social defeat stress; microinjection of norBNI into the amygdala prevented the development of depressive-like behaviors caused by social defeat stress. The present study demonstrates that upregulated dynorphin/κ opioid receptor system in the amygdala leads to the emergence of depression following chronic social defeat stress, and sheds light on κ opioid receptor antagonists as potential therapeutic agents for the prevention and treatment of depression following chronic stress.
Collapse
Affiliation(s)
- Gui-ying Zan
- grid.24516.340000000123704535Department of Anesthesiology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China ,grid.419093.60000 0004 0619 8396Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiang Sun
- grid.252251.30000 0004 1757 8247Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Yu-jun Wang
- grid.419093.60000 0004 0619 8396Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Rui Liu
- grid.24516.340000000123704535Department of Anesthesiology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China
| | - Chen-yao Wang
- grid.419093.60000 0004 0619 8396Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-jia Du
- grid.24516.340000000123704535Department of Anesthesiology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China
| | - Liu-bin Guo
- grid.419093.60000 0004 0619 8396Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jing-rui Chai
- grid.419093.60000 0004 0619 8396Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Qing-lin Li
- grid.252251.30000 0004 1757 8247Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Zhi-qiang Liu
- grid.24516.340000000123704535Department of Anesthesiology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China
| | - Jing-gen Liu
- grid.419093.60000 0004 0619 8396Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
44
|
Chen M, Lei B, Wang M, Sun H, Zhang X, Shi J, Fan J, Yao Q, Du S, Qu H, Cheng Y, Ma S, Zhang M, Zhan S. Using PCG-Arginine nanoparticle mediated intranasal delivery of dynorphin A (1–8) to improve neuroprotection in MCAO rats. J Drug Deliv Sci Technol 2022; 68:103059. [DOI: 10.1016/j.jddst.2021.103059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
45
|
Fundamentals of the Dynorphins/Kappa Opioid Receptor System: From Distribution to Signaling and Function. Handb Exp Pharmacol 2022; 271:3-21. [PMID: 33754230 PMCID: PMC9013522 DOI: 10.1007/164_2021_433] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
This chapter provides a general introduction to the dynorphins (DYNs)/kappa opioid receptor (KOR) system, including DYN peptides, neuroanatomy of the DYNs/KOR system, cellular signaling, and in vivo behavioral effects of KOR activation and inhibition. It is intended to serve as a primer for the book and to provide a basic background for the chapters in the book.
Collapse
|
46
|
Aldrich JV, McLaughlin JP. Peptide Kappa Opioid Receptor Ligands and Their Potential for Drug Development. Handb Exp Pharmacol 2022; 271:197-220. [PMID: 34463847 DOI: 10.1007/164_2021_519] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ligands for kappa opioid receptors (KOR) have potential uses as non-addictive analgesics and for the treatment of pruritus, mood disorders, and substance abuse. These areas continue to have major unmet medical needs. Significant advances have been made in recent years in the preclinical development of novel opioid peptides, notably ones with structural features that inherently impart stability to proteases. Following a brief discussion of the potential therapeutic applications of KOR agonists and antagonists, this review focuses on two series of novel opioid peptides, all-D-amino acid tetrapeptides as peripherally selective KOR agonists for the treatment of pain and pruritus without centrally mediated side effects, and macrocyclic tetrapeptides based on CJ-15,208 that can exhibit different opioid profiles with potential applications such as analgesics and treatments for substance abuse.
Collapse
Affiliation(s)
- Jane V Aldrich
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA.
| | - Jay P McLaughlin
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
47
|
Considerations on Using Antibodies for Studying the Dynorphins/Kappa Opioid Receptor System. Handb Exp Pharmacol 2022; 271:23-38. [PMID: 34085120 PMCID: PMC9125580 DOI: 10.1007/164_2021_467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Antibodies are important tools for protein and peptide research, including for the kappa opioid receptor (KOR) and dynorphins (Dyns). Well-characterized antibodies are essential for rigorous and reproducible research. However, lack of validation of antibody specificity has been thought to contribute significantly to the reproducibility crisis in biomedical research. Since 2003, many scientific journals have required documentation of validation of antibody specificity and use of knockout mouse tissues as a negative control is strongly recommended. Lack of specificity of antibodies against many G protein-coupled receptors (GPCRs) after extensive testing has been well-documented, but antibodies generated against partial sequences of the KOR have not been similarly investigated. For the dynorphins, differential processing has been described in distinct brain areas, resulting in controversial findings in immunohistochemistry (IHC) when different antibodies were used. In this chapter, we summarized accepted approaches for validation of antibody specificity. We discussed two KOR antibodies most commonly used in IHC and described generation and characterization of KOR antibodies and phospho-KOR specific antibodies in western blotting or immunoblotting (IB). In addition, applying antibodies targeting prodynorphin or mature dynorphin A illustrates the diversity of results obtained regarding the distribution of dynorphins in distinct brain areas.
Collapse
|
48
|
Trofimova IN, Gaykalova AA. Emotionality vs. Other Biobehavioural Traits: A Look at Neurochemical Biomarkers for Their Differentiation. Front Psychol 2021; 12:781631. [PMID: 34987450 PMCID: PMC8720768 DOI: 10.3389/fpsyg.2021.781631] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/01/2021] [Indexed: 12/15/2022] Open
Abstract
This review highlights the differential contributions of multiple neurochemical systems to temperament traits related and those that are unrelated to emotionality, even though these systems have a significant overlap. The difference in neurochemical biomarkers of these traits is analysed from the perspective of the neurochemical model, Functional Ensemble of Temperament (FET) that uses multi-marker and constructivism principles. Special attention is given to a differential contribution of hypothalamic-pituitary hormones and opioid neuropeptides implicated in both emotional and non-emotional regulation. The review highlights the role of the mu-opioid receptor system in dispositional emotional valence and the role of the kappa-opioid system in dispositional perceptual and behavioural alertness. These opioid receptor (OR) systems, microbiota and cytokines are produced in three neuroanatomically distinct complexes in the brain and the body, which all together integrate dispositional emotionality. In contrast, hormones could be seen as neurochemical biomarkers of non-emotional aspects of behavioural regulation related to the construction of behaviour in fast-changing and current situations. As examples of the role of hormones, the review summarised their contribution to temperament traits of Sensation Seeking (SS) and Empathy (EMP), which FET considers as non-emotionality traits related to behavioural orientation. SS is presented here as based on (higher) testosterone (fluctuating), adrenaline and (low) cortisol systems, and EMP, as based on (higher) oxytocin, reciprocally coupled with vasopressin and (lower) testosterone. Due to the involvement of gonadal hormones, there are sex and age differences in these traits that could be explained by evolutionary theory. There are, therefore, specific neurochemical biomarkers differentiating (OR-based) dispositional emotionality and (hormones-based) body's regulation in fast-changing events. Here we propose to consider dispositional emotionality associated with OR systems as emotionality in a true sense, whereas to consider hormonal ensembles regulating SS and EMP as systems of behavioural orientation and not emotionality.
Collapse
Affiliation(s)
- Irina N. Trofimova
- Laboratory of Collective Intelligence, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | | |
Collapse
|
49
|
Trofimova I. Contingent Tunes of Neurochemical Ensembles in the Norm and Pathology: Can We See the Patterns? Neuropsychobiology 2021; 80:101-133. [PMID: 33721867 DOI: 10.1159/000513688] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/07/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS Progress in the development of DSM/ICD taxonomies has revealed limitations of both label-based and dimensionality approaches. These approaches fail to address the contingent, nonlinear, context-dependent, and transient nature of those biomarkers linked to specific symptoms of psychopathology or to specific biobehavioural traits of healthy people (temperament). The present review aims to highlight the benefits of a functional constructivism approach in the analysis of neurochemical biomarkers underlying temperament and psychopathology. METHOD A review was performed. RESULTS Eight systems are identified, and 7 neurochemical ensembles are described in detail. None of these systems is represented by a single neurotransmitter; all of them work in ensembles with each other. The functionality and relationships of these systems are presented here in association with their roles in action construction, with brief examples of psychopathology. The review introduces formal symbols for these systems to facilitate their more compact analysis in the future. CONCLUSION This analysis demonstrates the possibility of constructivism-based unifying taxonomies of temperament (in the framework of the neurochemical model functional ensemble of temperament) and classifications of psychiatric disorders. Such taxonomies would present the biobehavioural individual differences as consistent behavioural patterns generated within a formally structured space of parameters related to the generation of behaviour.
Collapse
Affiliation(s)
- Irina Trofimova
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada,
| |
Collapse
|
50
|
Experience-dependent myelination following stress is mediated by the neuropeptide dynorphin. Neuron 2021; 109:3619-3632.e5. [PMID: 34536353 DOI: 10.1016/j.neuron.2021.08.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 07/14/2021] [Accepted: 08/13/2021] [Indexed: 11/22/2022]
Abstract
Emerging evidence implicates experience-dependent myelination in learning and memory. However, the specific signals underlying this process remain unresolved. We demonstrate that the neuropeptide dynorphin, which is released from neurons upon high levels of activity, promotes experience-dependent myelination. Following forced swim stress, an experience that induces striatal dynorphin release, we observe increased striatal oligodendrocyte precursor cell (OPC) differentiation and myelination, which is abolished by deleting dynorphin or blocking its endogenous receptor, kappa opioid receptor (KOR). We find that dynorphin also promotes developmental OPC differentiation and myelination and demonstrate that this effect requires KOR expression specifically in OPCs. We characterize dynorphin-expressing neurons and use genetic sparse labeling to trace their axonal projections. Surprisingly, we find that they are unmyelinated normally and following forced swim stress. We propose a new model whereby experience-dependent and developmental myelination is mediated by unmyelinated, neuropeptide-expressing neurons that promote OPC differentiation for the myelination of neighboring axons.
Collapse
|