1
|
Khairi S, Wang CY, Anuraga G, Prayugo FB, Ansar M, Lesmana MHS, Irham LM, Shen CY, Chung MH. Integrative Analysis of DNA Methylation and microRNA Reveals GNPDA1 and SLC25A16 Related to Biopsychosocial Factors Among Taiwanese Women with a Family History of Breast Cancer. J Pers Med 2025; 15:134. [PMID: 40278313 PMCID: PMC12028518 DOI: 10.3390/jpm15040134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/05/2025] [Accepted: 03/27/2025] [Indexed: 04/26/2025] Open
Abstract
Biopsychosocial factors, including family history, influence the development of breast cancer. Malignancies in women with a family history of breast cancer may be detectable based on DNA methylation and microRNA. Objectives: The present study extended an integrative analysis of DNA methylation and microRNA to identify genes associated with biopsychosocial factors. Methods: We identified 3060 healthy women from the Taiwan Biobank and included 32 blood plasma samples for analysis of biopsychosocial factors and epigenetic changes. GEO databases and bioinformatics approaches were used for the identification and validation of potential genes. Results: Our integrative analysis revealed GNPDA1 and SLC25A16 as potential genes. Age, a family history of cancer, and alcohol consumption were associated with GNPDA1 and SLC25A16 based on the current data set and the GEO data set. GNPDA1 and SLC25A16 exhibited significant expression in breast cancer tissues based on UALCAN analysis, where they were overexpressed and underexpressed, respectively. Through a MethSurv analysis, GNPDA1 hypomethylation and SLC25A16 hypermethylation were associated with poor prognoses in terms of overall survival in breast cancer. Moreover, through a MetaCore functional enrichment analysis, GNPDA1 and SLC25A16 were associated with the BRCA1, BRCA2, and pro-oncogenic actions of the androgen receptor in breast cancer. Further, GNPDA1 and SLC25A16 were enriched in known targets of approved cancer drugs as potential genes associated with breast cancer. Conclusions: These two genes might serve as biomarkers for the early detection of breast cancer, especially for women with a family history of breast cancer.
Collapse
Affiliation(s)
- Sabiah Khairi
- School of Nursing, College of Nursing, Taipei Medical University, Taipei City 11031, Taiwan;
| | - Chih-Yang Wang
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei City 11031, Taiwan;
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei City 11031, Taiwan
| | - Gangga Anuraga
- Department of Statistics, Faculty of Science and Technology, Universitas PGRI Adi Buana, Surabaya 60234, Indonesia;
| | - Fidelia Berenice Prayugo
- Chang Gung Medical Education Research Centre (CG-MERC), Chang Gung Memorial Hospital, Taoyuan City 33302, Taiwan;
- School of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Muhamad Ansar
- Ph.D. Program in the Clinical Drug Development of Herbal Medicine, Taipei Medical University, Taipei City 110301, Taiwan;
| | - Mohammad Hendra Setia Lesmana
- Department of Mental Health and Community, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia;
| | | | - Chen-Yang Shen
- Institute of Biomedical Sciences, Academia Sinica, Taipei City 11529, Taiwan
- Master Program in Clinical Genomics and Proteomics, School of Pharmacy, Taipei Medical University, Taipei City 11031, Taiwan
- College of Public Health, China Medical University, Taichung City 406040, Taiwan
| | - Min-Huey Chung
- School of Nursing, College of Nursing, Taipei Medical University, Taipei City 11031, Taiwan;
- Department of Nursing, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| |
Collapse
|
2
|
Li H, Aguilar Meza L, Shahi SK, Zhang Z, Wen W, Hu D, Lin H, Mangalam A, Luo J. Effects of alcohol on gut microbiome in adolescent and adult MMTV-Wnt1 mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.17.643801. [PMID: 40166271 PMCID: PMC11957038 DOI: 10.1101/2025.03.17.643801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Breast cancer is the most commonly diagnosed cancer in women worldwide, with alcohol consumption recognized as a significant risk factor. While epidemiological studies consistently show a positive correlation between alcohol consumption and increased breast cancer risk, the underlying mechanisms remain unclear. Recent evidence suggests that the gut microbiome-the diverse collection of microorganisms, including bacteria, viruses, and fungi, residing in the gastrointestinal tract-plays a pivotal role in systemic health and disease. This is achieved through its regulation of key physiological processes such as metabolism, immune function, and inflammatory responses. Disruption of the gut microbiome (dysbiosis) has recently been implicated in the development of breast cancer. We hypothesized that alcohol exposure induces gut dysbiosis, which in turn drives systemic inflammation and carcinogenic processes. Previously, we demonstrated that alcohol exposure promotes mammary tumor growth and aggressiveness in MMTV-Wnt1 (Wnt1) transgenic mice, an established model for investigating mechanisms of alcohol-induced tumor promotion. In this study, we sought to determine whether alcohol exposure induces gut dysbiosis in adolescent and adult Wnt1 transgenic mice and their wild-type FVB counterparts. Our findings revealed that alcohol exposure significantly reduced microbiome richness in adult Wnt1 and FVB mice. Alcohol exposure also markedly altered microbiome composition in adolescents and adults in both strains. Additionally, we identified specific microbial taxa that were significantly affected by alcohol exposure. These results demonstrate that alcohol disrupts the gut microbiome in a preclinical breast cancer model, providing insights into the potential role of gut dysbiosis in alcohol-induced mammary tumor promotion and offering avenues for future research.
Collapse
|
3
|
Fanfarillo F, Caronti B, Lucarelli M, Francati S, Tarani L, Ceccanti M, Piccioni MG, Verdone L, Caserta M, Venditti S, Ferraguti G, Fiore M. Alcohol Consumption and Breast and Ovarian Cancer Development: Molecular Pathways and Mechanisms. Curr Issues Mol Biol 2024; 46:14438-14452. [PMID: 39727994 DOI: 10.3390/cimb46120866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024] Open
Abstract
Alcohol consumption has been consistently linked to an increased risk of several cancers, including breast and ovarian cancer. Despite substantial evidence supporting this association, the precise mechanisms underlying alcohol's contribution to cancer pathogenesis remain incompletely understood. This narrative review focuses on the key current literature on the biological pathways through which alcohol may influence the development of breast and ovarian cancer. Key mechanisms discussed include the modulation of estrogen levels, the generation of reactive oxygen species, the production of acetaldehyde, the promotion of chronic inflammation, and the induction of epigenetic changes. Alcohol's impact on estrogenic signaling, particularly in the regulation of estrogen and progesterone, is explored in the context of hormone-dependent cancers. Additionally, the role of alcohol-induced DNA damage, mutagenesis, and immune system modulation in tumor initiation and progression is examined. Overall, this review emphasizes the importance of alcohol as a modifiable risk factor for breast and ovarian cancer and highlights the need for further research to clarify its role in cancer biology.
Collapse
Affiliation(s)
- Francesca Fanfarillo
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Brunella Caronti
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Marco Lucarelli
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Silvia Francati
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Luigi Tarani
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Mauro Ceccanti
- SITAC, Società Italiana per il Trattamento dell'Alcolismo e le sue Complicanze, 00185 Rome, Italy
| | - Maria Grazia Piccioni
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Loredana Verdone
- Institute of Molecular Biology and Pathology (IBPM-CNR), 00161 Rome, Italy
| | - Micaela Caserta
- Institute of Molecular Biology and Pathology (IBPM-CNR), 00161 Rome, Italy
| | - Sabrina Venditti
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, 00161 Rome, Italy
| | - Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology (IBBC-CNR), Department of Sensory Organs, Sapienza University of Rome, 00161 Rome, Italy
| |
Collapse
|
4
|
Sun Y, Hu J, Wang R, Du X, Zhang X, E J, Zheng S, Zhou Y, Mou R, Li X, Zhang H, Xu Y, Liao Y, Jiang W, Liu L, Wang R, Zhu J, Xie R. Meaningful nomograms based on systemic immune inflammation index predicted survival in metastatic pancreatic cancer patients receiving chemotherapy. Cancer Med 2024; 13:e7453. [PMID: 38986683 PMCID: PMC11236459 DOI: 10.1002/cam4.7453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/15/2024] [Accepted: 06/24/2024] [Indexed: 07/12/2024] Open
Abstract
OBJECTIVE The purpose of the study is to construct meaningful nomogram models according to the independent prognostic factor for metastatic pancreatic cancer receiving chemotherapy. METHODS This study is retrospective and consecutively included 143 patients from January 2013 to June 2021. The receiver operating characteristic (ROC) curve with the area under the curve (AUC) is utilized to determine the optimal cut-off value. The Kaplan-Meier survival analysis, univariate and multivariable Cox regression analysis are exploited to identify the correlation of inflammatory biomarkers and clinicopathological features with survival. R software are run to construct nomograms based on independent risk factors to visualize survival. Nomogram model is examined using calibration curve and decision curve analysis (DCA). RESULTS The best cut-off values of 966.71, 0.257, and 2.54 for the systemic immunological inflammation index (SII), monocyte-to-lymphocyte ratio (MLR), and neutrophil-to-lymphocyte ratio (NLR) were obtained by ROC analysis. Cox proportional-hazards model revealed that baseline SII, history of drinking and metastasis sites were independent prognostic indices for survival. We established prognostic nomograms for primary endpoints of this study. The nomograms' predictive potential and clinical efficacy have been evaluated by calibration curves and DCA. CONCLUSION We constructed nomograms based on independent prognostic factors, these models have promising applications in clinical practice to assist clinicians in personalizing the management of patients.
Collapse
Affiliation(s)
- Yanan Sun
- Department of Digestive Internal MedicineHarbin Medical University Cancer HospitalHarbinHeilongjiangChina
| | - Jiahe Hu
- Department of Digestive Internal MedicineHarbin Medical University Cancer HospitalHarbinHeilongjiangChina
| | - Rongfang Wang
- Department of Digestive Internal MedicineHarbin Medical University Cancer HospitalHarbinHeilongjiangChina
| | - Xinlian Du
- Department of Digestive Internal MedicineHarbin Medical University Cancer HospitalHarbinHeilongjiangChina
| | - Xiaoling Zhang
- Department of Digestive Internal MedicineHarbin Medical University Cancer HospitalHarbinHeilongjiangChina
| | - Jiaoting E
- Department of Digestive Internal MedicineHarbin Medical University Cancer HospitalHarbinHeilongjiangChina
| | - Shaoyue Zheng
- Department of Digestive Internal MedicineHarbin Medical University Cancer HospitalHarbinHeilongjiangChina
| | - Yuxin Zhou
- Department of Digestive Internal MedicineHarbin Medical University Cancer HospitalHarbinHeilongjiangChina
| | - Ruishu Mou
- Department of Digestive Internal MedicineHarbin Medical University Cancer HospitalHarbinHeilongjiangChina
| | - Xuedong Li
- Department of Digestive Internal MedicineHarbin Medical University Cancer HospitalHarbinHeilongjiangChina
| | - Hanbo Zhang
- Department of Digestive Internal MedicineHarbin Medical University Cancer HospitalHarbinHeilongjiangChina
| | - Ying Xu
- Department of Digestive Internal MedicineHarbin Medical University Cancer HospitalHarbinHeilongjiangChina
| | - Yuan Liao
- Harbin Medical UniversityHarbinHeilongjiangChina
| | - Wenjie Jiang
- Harbin Medical UniversityHarbinHeilongjiangChina
| | - Lijia Liu
- Harbin Medical UniversityHarbinHeilongjiangChina
| | - Ruitao Wang
- Department of Internal MedicineHarbin Medical University Cancer HospitalHarbinHeilongjiangChina
| | - Jiuxin Zhu
- Department of Pharmacology, College of PharmacyHarbin Medical UniversityHarbinHeilongjiangChina
| | - Rui Xie
- Department of Digestive Internal MedicineHarbin Medical University Cancer HospitalHarbinHeilongjiangChina
| |
Collapse
|
5
|
Neagu AN, Bruno P, Johnson KR, Ballestas G, Darie CC. Biological Basis of Breast Cancer-Related Disparities in Precision Oncology Era. Int J Mol Sci 2024; 25:4113. [PMID: 38612922 PMCID: PMC11012526 DOI: 10.3390/ijms25074113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024] Open
Abstract
Precision oncology is based on deep knowledge of the molecular profile of tumors, allowing for more accurate and personalized therapy for specific groups of patients who are different in disease susceptibility as well as treatment response. Thus, onco-breastomics is able to discover novel biomarkers that have been found to have racial and ethnic differences, among other types of disparities such as chronological or biological age-, sex/gender- or environmental-related ones. Usually, evidence suggests that breast cancer (BC) disparities are due to ethnicity, aging rate, socioeconomic position, environmental or chemical exposures, psycho-social stressors, comorbidities, Western lifestyle, poverty and rurality, or organizational and health care system factors or access. The aim of this review was to deepen the understanding of BC-related disparities, mainly from a biomedical perspective, which includes genomic-based differences, disparities in breast tumor biology and developmental biology, differences in breast tumors' immune and metabolic landscapes, ecological factors involved in these disparities as well as microbiomics- and metagenomics-based disparities in BC. We can conclude that onco-breastomics, in principle, based on genomics, proteomics, epigenomics, hormonomics, metabolomics and exposomics data, is able to characterize the multiple biological processes and molecular pathways involved in BC disparities, clarifying the differences in incidence, mortality and treatment response for different groups of BC patients.
Collapse
Affiliation(s)
- Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Carol I bvd. 20A, 700505 Iasi, Romania
| | - Pathea Bruno
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (P.B.); (K.R.J.); (G.B.)
| | - Kaya R. Johnson
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (P.B.); (K.R.J.); (G.B.)
| | - Gabriella Ballestas
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (P.B.); (K.R.J.); (G.B.)
| | - Costel C. Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (P.B.); (K.R.J.); (G.B.)
| |
Collapse
|
6
|
Li H, Xu M, Chen D, Wen W, Luo J. Pirfenidone ameliorates alcohol-induced promotion of breast cancer in mice. Front Oncol 2024; 14:1351839. [PMID: 38590657 PMCID: PMC10999600 DOI: 10.3389/fonc.2024.1351839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/14/2024] [Indexed: 04/10/2024] Open
Abstract
Purpose Alcohol consumption increases the risk of breast cancer and promotes cancer progression. Alcohol exposure could affect both processes of the mammary carcinogenesis, namely, the cell transformation and onset of tumorigenesis as well as cancer aggressiveness including metastasis and drug resistance/recurrence. However, the cellular and molecular mechanisms underlying alcohol tumor promotion remain unclear. There are four members of the mammalian p38 mitogen-activated protein kinase (MAPK) family, namely, p38α, p38β, p38γ and p38δ. We have previously demonstrated alcohol exposure selectively activated p38γ MAPK in breast cancer cells in vitro and in vivo. Pirfenidone (PFD), an antifibrotic compound approved for the treatment of idiopathic pulmonary fibrosis, is also a pharmacological inhibitor of p38γ MAPK. This study aimed to determine whether PFD is useful to inhibit alcohol-induced promotion of breast cancer. Methods Female adolescent (5 weeks) MMTV-Wnt1 mice were exposed to alcohol with a liquid diet containing 6.7% ethanol. Some mice received intraperitoneal (IP) injection of PFD (100 mg/kg) every other day. After that, the effects of alcohol and PFD on mammary tumorigenesis and metastasis were examined. Results Alcohol promoted the progression of mammary tumors in adolescent MMTV-Wnt1 mice. Treatment of PFD blocked tumor growth and alcohol-promoted metastasis. It also significantly inhibited alcohol-induced tumorsphere formation and cancer stem cell (CSC) population. Conclusion PFD inhibited mammary tumor growth and alcohol-promoted metastasis. Since PFD is an FDA-approved drug, the current findings may be helpful to re-purpose its application in treating aggressive breast cancer and alcohol-promoted mammary tumor progression.
Collapse
Affiliation(s)
- Hui Li
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Mei Xu
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Danlei Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Wen Wen
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Jia Luo
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
- Iowa City VA Health Care System, Iowa City, IA, United States
| |
Collapse
|
7
|
Neagu AN, Jayaweera T, Corrice L, Johnson K, Darie CC. Breast Cancer Exposomics. Life (Basel) 2024; 14:402. [PMID: 38541726 PMCID: PMC10971462 DOI: 10.3390/life14030402] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 12/15/2024] Open
Abstract
We are exposed to a mixture of environmental man-made and natural xenobiotics. We experience a wide spectrum of environmental exposure in our lifetime, including the effects of xenobiotics on gametogenesis and gametes that undergo fertilization as the starting point of individual development and, moreover, in utero exposure, which can itself cause the first somatic or germline mutation necessary for breast cancer (BC) initiation. Most xenobiotics are metabolized or/and bioaccumulate and biomagnify in our tissues and cells, including breast tissues, so the xenobiotic metabolism plays an important role in BC initiation and progression. Many considerations necessitate a more valuable explanation regarding the molecular mechanisms of action of xenobiotics which act as genotoxic and epigenetic carcinogens. Thus, exposomics and the exposome concept are based on the diversity and range of exposures to physical factors, synthetic chemicals, dietary components, and psychosocial stressors, as well as their associated biologic processes and molecular pathways. Existing evidence for BC risk (BCR) suggests that food-borne chemical carcinogens, air pollution, ionizing radiation, and socioeconomic status are closely related to breast carcinogenesis. The aim of this review was to depict the dynamics and kinetics of several xenobiotics involved in BC development, emphasizing the role of new omics fields related to BC exposomics, such as environmental toxicogenomics, epigenomics and interactomics, metagenomics, nutrigenomics, nutriproteomics, and nutrimiRomics. We are mainly focused on food and nutrition, as well as endocrine-disrupting chemicals (EDCs), involved in BC development. Overall, cell and tissue accumulation and xenobiotic metabolism or biotransformation can lead to modifications in breast tissue composition and breast cell morphology, DNA damage and genomic instability, epimutations, RNA-mediated and extracellular vesicle effects, aberrant blood methylation, stimulation of epithelial-mesenchymal transition (EMT), disruption of cell-cell junctions, reorganization of the actin cytoskeleton, metabolic reprogramming, and overexpression of mesenchymal genes. Moreover, the metabolism of xenobiotics into BC cells impacts almost all known carcinogenic pathways. Conversely, in our food, there are many bioactive compounds with anti-cancer potential, exerting pro-apoptotic roles, inhibiting cell cycle progression and proliferation, migration, invasion, DNA damage, and cell stress conditions. We can conclude that exposomics has a high potential to demonstrate how environmental exposure to xenobiotics acts as a double-edged sword, promoting or suppressing tumorigenesis in BC.
Collapse
Affiliation(s)
- Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Carol I Bvd. 20A, 700505 Iasi, Romania
| | - Taniya Jayaweera
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (T.J.); (L.C.); (K.J.)
| | - Lilian Corrice
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (T.J.); (L.C.); (K.J.)
| | - Kaya Johnson
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (T.J.); (L.C.); (K.J.)
| | - Costel C. Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (T.J.); (L.C.); (K.J.)
| |
Collapse
|
8
|
Loroña NC, Othus M, Malone KE, Linden HM, Tang MTC, Li CI. Alcohol, Smoking, and Risks of Breast Cancer Recurrence and Mortality among Women with Luminal, Triple-Negative, and HER2-Overexpressing Breast Cancer. Cancer Epidemiol Biomarkers Prev 2024; 33:288-297. [PMID: 38019269 PMCID: PMC10872526 DOI: 10.1158/1055-9965.epi-23-1081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/30/2023] [Accepted: 11/22/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND This study evaluates the relationship between smoking, alcohol, and breast cancer outcomes according to molecular subtype. METHODS This population-based prospective cohort consisted of 3,876 women ages 20 to 69 diagnosed with a first primary invasive breast cancer from 2004 to 2015 in the Seattle-Puget Sound region. Breast cancer was categorized into three subtypes based on estrogen receptor (ER), progesterone receptor (PR), and HER2 expressions: luminal (ER+), triple-negative (TN; ER-/PR-/HER2-), and HER2-overexpressing (H2E; ER-/HER2+). We fit Cox proportional hazards models to assess the association between alcohol consumption and smoking status at diagnosis and risks of recurrence, breast cancer-specific mortality, and all-cause mortality. RESULTS Histories of ever smoking [HR, 1.33; 95% confidence interval (CI), 1.01-1.74] and current smoking (HR, 1.59; 95% CI, 1.07-2.35) were associated with greater risk of breast cancer recurrence among TN cases. Smoking was also associated with greater risk of recurrence to bone among all cases and among luminal cases. Elevated risks of breast cancer-specific and all-cause mortality were observed among current smokers across all subtypes. Alcohol use was not positively associated with risk of recurrence or mortality overall; however, TN patients who drank four or more drinks per week had a decreased risk of recurrence (HR, 0.71; 95% CI, 0.51-0.98) and breast cancer-specific mortality (HR, 0.73; 95% CI, 0.55-0.97) compared with non-current drinkers. CONCLUSIONS Patients with breast cancer with a history of smoking at diagnosis have elevated risks of recurrence and mortality. IMPACT These findings underscore the need to prioritize smoking cessation among women diagnosed with breast cancer.
Collapse
Affiliation(s)
- Nicole C. Loroña
- Department of Epidemiology, University of Washington, Seattle, WA
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Megan Othus
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Kathleen E. Malone
- Department of Epidemiology, University of Washington, Seattle, WA
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
| | | | - Mei-Tzu C. Tang
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Christopher I. Li
- Department of Epidemiology, University of Washington, Seattle, WA
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
| |
Collapse
|
9
|
Neagu AN, Whitham D, Bruno P, Arshad A, Seymour L, Morrissiey H, Hukovic AI, Darie CC. Onco-Breastomics: An Eco-Evo-Devo Holistic Approach. Int J Mol Sci 2024; 25:1628. [PMID: 38338903 PMCID: PMC10855488 DOI: 10.3390/ijms25031628] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/21/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Known as a diverse collection of neoplastic diseases, breast cancer (BC) can be hyperbolically characterized as a dynamic pseudo-organ, a living organism able to build a complex, open, hierarchically organized, self-sustainable, and self-renewable tumor system, a population, a species, a local community, a biocenosis, or an evolving dynamical ecosystem (i.e., immune or metabolic ecosystem) that emphasizes both developmental continuity and spatio-temporal change. Moreover, a cancer cell community, also known as an oncobiota, has been described as non-sexually reproducing species, as well as a migratory or invasive species that expresses intelligent behavior, or an endangered or parasite species that fights to survive, to optimize its features inside the host's ecosystem, or that is able to exploit or to disrupt its host circadian cycle for improving the own proliferation and spreading. BC tumorigenesis has also been compared with the early embryo and placenta development that may suggest new strategies for research and therapy. Furthermore, BC has also been characterized as an environmental disease or as an ecological disorder. Many mechanisms of cancer progression have been explained by principles of ecology, developmental biology, and evolutionary paradigms. Many authors have discussed ecological, developmental, and evolutionary strategies for more successful anti-cancer therapies, or for understanding the ecological, developmental, and evolutionary bases of BC exploitable vulnerabilities. Herein, we used the integrated framework of three well known ecological theories: the Bronfenbrenner's theory of human development, the Vannote's River Continuum Concept (RCC), and the Ecological Evolutionary Developmental Biology (Eco-Evo-Devo) theory, to explain and understand several eco-evo-devo-based principles that govern BC progression. Multi-omics fields, taken together as onco-breastomics, offer better opportunities to integrate, analyze, and interpret large amounts of complex heterogeneous data, such as various and big-omics data obtained by multiple investigative modalities, for understanding the eco-evo-devo-based principles that drive BC progression and treatment. These integrative eco-evo-devo theories can help clinicians better diagnose and treat BC, for example, by using non-invasive biomarkers in liquid-biopsies that have emerged from integrated omics-based data that accurately reflect the biomolecular landscape of the primary tumor in order to avoid mutilating preventive surgery, like bilateral mastectomy. From the perspective of preventive, personalized, and participatory medicine, these hypotheses may help patients to think about this disease as a process governed by natural rules, to understand the possible causes of the disease, and to gain control on their own health.
Collapse
Affiliation(s)
- Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Carol I bvd. 20A, 700505 Iasi, Romania
| | - Danielle Whitham
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (D.W.); (P.B.); (A.A.); (L.S.); (H.M.); (A.I.H.)
| | - Pathea Bruno
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (D.W.); (P.B.); (A.A.); (L.S.); (H.M.); (A.I.H.)
| | - Aneeta Arshad
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (D.W.); (P.B.); (A.A.); (L.S.); (H.M.); (A.I.H.)
| | - Logan Seymour
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (D.W.); (P.B.); (A.A.); (L.S.); (H.M.); (A.I.H.)
| | - Hailey Morrissiey
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (D.W.); (P.B.); (A.A.); (L.S.); (H.M.); (A.I.H.)
| | - Angiolina I. Hukovic
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (D.W.); (P.B.); (A.A.); (L.S.); (H.M.); (A.I.H.)
| | - Costel C. Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (D.W.); (P.B.); (A.A.); (L.S.); (H.M.); (A.I.H.)
| |
Collapse
|
10
|
Chen S, Liu Y, Fong DYT, Zhou J, Chen H, Wan C. Health-related quality of life and its influencing factors in patients with breast cancer based on the scale QLICP-BR. Sci Rep 2023; 13:15176. [PMID: 37704676 PMCID: PMC10499782 DOI: 10.1038/s41598-023-41809-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 08/31/2023] [Indexed: 09/15/2023] Open
Abstract
Breast cancer is the most common cancer and the leading cause of cancer death among females worldwide. During the past 15 years, quality of life (QOL) has become an important aspect of breast cancer treatment. The purpose of this study was to evaluate QOL of breast cancer patients in China, and investigate its associations with sociodemographic and clinical variables. A cross-sectional study was conducted in 246 breast cancer patients in China. Recruited patients were surveyed for QOL using the QOL instruments for cancer patients-breast cancer QLICP-BR (V2.0). We assessed the associations between potential influencing factors and QOL using multiple linear regression models. The general mean QOL score for our population was 70.24 with SD = 8.70. Results indicated that medical insurance, drinking history, alkaline phosphatase, serum chloride ion level, serum calcium ion level, serum phosphorus ion level, mean corpuscular volume, mean corpuscular hemoglobin, red cell volume distribution width and platelet had significant associations with QOL of breast cancer patients. Our results emphasized that many factors are affecting QOL of breast cancer patients, which may provide a reference for targeted management or intervention strategies of breast cancer patients to improve their QOL.
Collapse
Affiliation(s)
- Shu Chen
- The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, China
- Key Laboratory for Quality of Life and Psychological Assessment and Intervention, Research Center for Quality of Life and Applied Psychology, Guangdong Medical University, Dongguan, China
| | - Yuxi Liu
- The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, China
| | | | - Jiali Zhou
- Key Laboratory for Quality of Life and Psychological Assessment and Intervention, Research Center for Quality of Life and Applied Psychology, Guangdong Medical University, Dongguan, China
| | - Huanwei Chen
- Central Hospital of Guangdong Nongken, Zhanjiang, China
| | - Chonghua Wan
- The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, China.
- Key Laboratory for Quality of Life and Psychological Assessment and Intervention, Research Center for Quality of Life and Applied Psychology, Guangdong Medical University, Dongguan, China.
| |
Collapse
|
11
|
Matou-Nasri S, Aldawood M, Alanazi F, Khan AL. Updates on Triple-Negative Breast Cancer in Type 2 Diabetes Mellitus Patients: From Risk Factors to Diagnosis, Biomarkers and Therapy. Diagnostics (Basel) 2023; 13:2390. [PMID: 37510134 PMCID: PMC10378597 DOI: 10.3390/diagnostics13142390] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is usually the most malignant and aggressive mammary epithelial tumor characterized by the lack of expression for estrogen receptors and progesterone receptors, and the absence of epidermal growth factor receptor (HER)2 amplification. Corresponding to 15-20% of all breast cancers and well-known by its poor clinical outcome, this negative receptor expression deprives TNBC from targeted therapy and makes its management therapeutically challenging. Type 2 diabetes mellitus (T2DM) is the most common ageing metabolic disorder due to insulin deficiency or resistance resulting in hyperglycemia, hyperinsulinemia, and hyperlipidemia. Due to metabolic and hormonal imbalances, there are many interplays between both chronic disorders leading to increased risk of breast cancer, especially TNBC, diagnosed in T2DM patients. The purpose of this review is to provide up-to-date information related to epidemiology and clinicopathological features, risk factors, diagnosis, biomarkers, and current therapy/clinical trials for TNBC patients with T2DM compared to non-diabetic counterparts. Thus, in-depth investigation of the diabetic complications on TNBC onset, development, and progression and the discovery of biomarkers would improve TNBC management through early diagnosis, tailoring therapy for a better outcome of T2DM patients diagnosed with TNBC.
Collapse
Affiliation(s)
- Sabine Matou-Nasri
- Blood and Cancer Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (MNG-HA), Riyadh 11481, Saudi Arabia
- Biosciences Department, Faculty of the School for Systems Biology, George Mason University, Manassas, VA 22030, USA
| | - Maram Aldawood
- Blood and Cancer Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (MNG-HA), Riyadh 11481, Saudi Arabia
- Post Graduate and Zoology Department, King Saud University, Riyadh 12372, Saudi Arabia
| | - Fatimah Alanazi
- Blood and Cancer Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (MNG-HA), Riyadh 11481, Saudi Arabia
- Biosciences Department, Faculty of the School for Systems Biology, George Mason University, Manassas, VA 22030, USA
| | - Abdul Latif Khan
- Tissue Biobank, KAIMRC, MNG-HA, Riyadh 11481, Saudi Arabia
- Pathology and Clinical Laboratory Medicine, King Abdulaziz Medical City (KAMC), Riyadh 11564, Saudi Arabia
| |
Collapse
|
12
|
Neagu AN, Whitham D, Bruno P, Morrissiey H, Darie CA, Darie CC. Omics-Based Investigations of Breast Cancer. Molecules 2023; 28:4768. [PMID: 37375323 DOI: 10.3390/molecules28124768] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Breast cancer (BC) is characterized by an extensive genotypic and phenotypic heterogeneity. In-depth investigations into the molecular bases of BC phenotypes, carcinogenesis, progression, and metastasis are necessary for accurate diagnoses, prognoses, and therapy assessments in predictive, precision, and personalized oncology. This review discusses both classic as well as several novel omics fields that are involved or should be used in modern BC investigations, which may be integrated as a holistic term, onco-breastomics. Rapid and recent advances in molecular profiling strategies and analytical techniques based on high-throughput sequencing and mass spectrometry (MS) development have generated large-scale multi-omics datasets, mainly emerging from the three "big omics", based on the central dogma of molecular biology: genomics, transcriptomics, and proteomics. Metabolomics-based approaches also reflect the dynamic response of BC cells to genetic modifications. Interactomics promotes a holistic view in BC research by constructing and characterizing protein-protein interaction (PPI) networks that provide a novel hypothesis for the pathophysiological processes involved in BC progression and subtyping. The emergence of new omics- and epiomics-based multidimensional approaches provide opportunities to gain insights into BC heterogeneity and its underlying mechanisms. The three main epiomics fields (epigenomics, epitranscriptomics, and epiproteomics) are focused on the epigenetic DNA changes, RNAs modifications, and posttranslational modifications (PTMs) affecting protein functions for an in-depth understanding of cancer cell proliferation, migration, and invasion. Novel omics fields, such as epichaperomics or epimetabolomics, could investigate the modifications in the interactome induced by stressors and provide PPI changes, as well as in metabolites, as drivers of BC-causing phenotypes. Over the last years, several proteomics-derived omics, such as matrisomics, exosomics, secretomics, kinomics, phosphoproteomics, or immunomics, provided valuable data for a deep understanding of dysregulated pathways in BC cells and their tumor microenvironment (TME) or tumor immune microenvironment (TIMW). Most of these omics datasets are still assessed individually using distinct approches and do not generate the desired and expected global-integrative knowledge with applications in clinical diagnostics. However, several hyphenated omics approaches, such as proteo-genomics, proteo-transcriptomics, and phosphoproteomics-exosomics are useful for the identification of putative BC biomarkers and therapeutic targets. To develop non-invasive diagnostic tests and to discover new biomarkers for BC, classic and novel omics-based strategies allow for significant advances in blood/plasma-based omics. Salivaomics, urinomics, and milkomics appear as integrative omics that may develop a high potential for early and non-invasive diagnoses in BC. Thus, the analysis of the tumor circulome is considered a novel frontier in liquid biopsy. Omics-based investigations have applications in BC modeling, as well as accurate BC classification and subtype characterization. The future in omics-based investigations of BC may be also focused on multi-omics single-cell analyses.
Collapse
Affiliation(s)
- Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, "Alexandru Ioan Cuza" University of Iasi, Carol I Bvd, No. 20A, 700505 Iasi, Romania
| | - Danielle Whitham
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA
| | - Pathea Bruno
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA
| | - Hailey Morrissiey
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA
| | - Celeste A Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA
| | - Costel C Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA
| |
Collapse
|
13
|
Booth L, McCausland T, Keric D, Kennington K, Stevens-Cutler J, Scott L, Pettigrew S. Evaluating an alcohol harm-reduction campaign advising drinkers of the alcohol-cancer link. Addict Behav 2023; 145:107760. [PMID: 37269794 DOI: 10.1016/j.addbeh.2023.107760] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/27/2023] [Accepted: 05/24/2023] [Indexed: 06/05/2023]
Abstract
INTRODUCTION Public awareness of the alcohol-cancer link is low. Provision of this information could reduce alcohol consumption and related harms. The Spread campaign is a multi-media education campaign implemented in Western Australia to inform people about the carcinogenic properties of alcohol and associated harms. The aims of the present study were to (i) examine attitudinal and behavioural outcomes of the Spread campaign and (ii) identify demographic and drinking status factors associated with enactment of harm-reduction behaviours resulting from exposure. METHOD A cross sectional survey of Western Australian drinkers (consumed alcohol at least a few times in the previous 12 months, n = 760) examined campaign recognition, campaign perceptions, and behaviours resulting from campaign exposure. Chi-square analyses and a generalised linear model were used to identify demographic and alcohol-related factors associated with behavioural outcomes. RESULTS Around two-thirds of respondents recognised the campaign (65%), and of these, 22% reported successfully reducing how often or how much they drank due to seeing the campaign. Three quarters (73%) of all respondents considered the campaign message about the alcohol-cancer link to be believable. Respondents drinking at levels above the Australian guideline were less likely to have positive perceptions of the campaign than those complying with the guideline, but were more likely to report enacting the assessed harm-reduction behaviours as a result of campaign exposure. DISCUSSION AND CONCLUSION The results suggest that provision of information about the alcohol-cancer link has the potential to motivate reduced alcohol consumption. Implementing such campaigns could constitute an effective alcohol harm-reduction strategy.
Collapse
Affiliation(s)
- Leon Booth
- The George Institute for Global Health, University of New South Wales, 1 King St, Newtown, NSW 2042, Australia.
| | - Tahnee McCausland
- Mental Health Commission, Western Australian Government, 1/1 Nash St, Perth, WA 6000, Australia.
| | - Danica Keric
- Cancer Council Western Australia, Level 1/420 Bagot Road, Subiaco, WA 6008, Australia.
| | - Kelly Kennington
- Mental Health Commission, Western Australian Government, 1/1 Nash St, Perth, WA 6000, Australia.
| | - James Stevens-Cutler
- Mental Health Commission, Western Australian Government, 1/1 Nash St, Perth, WA 6000, Australia.
| | - Lucy Scott
- Mental Health Commission, Western Australian Government, 1/1 Nash St, Perth, WA 6000, Australia.
| | - Simone Pettigrew
- The George Institute for Global Health, University of New South Wales, 1 King St, Newtown, NSW 2042, Australia.
| |
Collapse
|
14
|
Zhai Z, Yamauchi T, Shangraw S, Hou V, Matsumoto A, Fujita M. Ethanol Metabolism and Melanoma. Cancers (Basel) 2023; 15:1258. [PMID: 36831600 PMCID: PMC9954650 DOI: 10.3390/cancers15041258] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Malignant melanoma is the deadliest form of skin cancer. Despite significant efforts in sun protection education, melanoma incidence is still rising globally, drawing attention to other socioenvironmental risk factors for melanoma. Ethanol and acetaldehyde (AcAH) are ubiquitous in our diets, medicines, alcoholic beverages, and the environment. In the liver, ethanol is primarily oxidized to AcAH, a toxic intermediate capable of inducing tumors by forming adducts with proteins and DNA. Once in the blood, ethanol and AcAH can reach the skin. Although, like the liver, the skin has metabolic mechanisms to detoxify ethanol and AcAH, the risk of ethanol/AcAH-associated skin diseases increases when the metabolic enzymes become dysfunctional in the skin. This review highlights the evidence linking cutaneous ethanol metabolism and melanoma. We summarize various sources of skin ethanol and AcAH and describe how the reduced activity of each alcohol metabolizing enzyme affects the sensitivity threshold to ethanol/AcAH toxicity. Data from the Gene Expression Omnibus database also show that three ethanol metabolizing enzymes (alcohol dehydrogenase 1B, P450 2E1, and catalase) and an AcAH metabolizing enzyme (aldehyde dehydrogenase 2) are significantly reduced in melanoma tissues.
Collapse
Affiliation(s)
- Zili Zhai
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Takeshi Yamauchi
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Sarah Shangraw
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Vincent Hou
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Akiko Matsumoto
- Department of Social Medicine, School of Medicine, Saga University, Saga 849-8501, Japan
| | - Mayumi Fujita
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Veterans Affairs Medical Center, VA Eastern Colorado Health Care System, Aurora, CO 80045, USA
| |
Collapse
|
15
|
Xu M, Li H, Chen D, Wu H, Wen W, Xu H, Frank J, Chen G, Luo J. Adolescent- and adult-initiated alcohol exposure in mice differentially promotes tumorigenesis and metastasis of breast cancer. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2023; 47:251-262. [PMID: 36462938 PMCID: PMC10906809 DOI: 10.1111/acer.14986] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 11/08/2022] [Accepted: 11/21/2022] [Indexed: 12/05/2022]
Abstract
BACKGROUND Alcohol exposure increases the risk of breast cancer. Alcohol consumption by adolescents is a serious social and public health issue. This study investigated the impact of adolescent alcohol consumption on mammary tumorigenesis and progression and compared it to that of adult alcohol exposure in animal models. METHODS Female adolescent (5 weeks) and adult (8 weeks) MMTV-Wnt1 mice were exposed to alcohol either chronically or acutely. For chronic alcohol exposure, animals were fed a liquid diet containing 6.7% ethanol for 23 weeks. For acute exposure, animals were treated with ethanol (2.5 g/kg, 25% w/v) via intraperitoneal (IP) injection for 15 days. RESULTS In control animals, the tumor latency was 18.5 to 22 weeks. Both chronic and acute alcohol exposure in adolescent mice significantly shortened the tumor latency to 9.5 and 8.4 weeks, respectively. However, adult-initiated alcohol exposure had little effect on the tumor latency. Both adolescent- and adult-initiated alcohol exposure significantly increased lung metastasis. Adolescent-initiated alcohol exposure but not adult-initiated alcohol exposure increased the breast cancer stem cell population. Adolescent-initiated alcohol exposure significantly altered the proliferation of mammary epithelial cells, ductal growth, and the formation of terminal end buds in the mammary glands. Adolescent-initiated alcohol exposure but not adult-initiated alcohol exposure increased estradiol levels in the blood. Acute adolescent alcohol exposure also significantly increased blood progesterone levels. Furthermore, adolescent-initiated alcohol exposure activated PAK1 and p38γ MAPK, critical regulators of mammary tumorigenesis and aggressiveness, respectively, while adult-initiated alcohol exposure activated only p38γ MAPK. In addition, both adolescent and adult alcohol exposure significantly decreased the levels of a prognostic marker miR200b. CONCLUSIONS Adolescent-initiated alcohol exposure enhanced both tumorigenesis and aggressiveness of mammary tumors, while adult-initiated alcohol exposure mainly promoted tumor metastasis. Thus, adolescent mice were more sensitive than adult mice in response to alcohol-induced tumor promotion.
Collapse
Affiliation(s)
- Mei Xu
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Hui Li
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Danlei Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Huaxun Wu
- Institute of Clinical Pharmacology, Anhui Medical University; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, China
| | - Wen Wen
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Hong Xu
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Jacqueline Frank
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Gang Chen
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Jia Luo
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Iowa City VA Health Care System, Iowa City, IA 52246, USA
| |
Collapse
|
16
|
Nong FF, Liang YQ, Xing SP, Xiao YF, Chen HH, Wen B. Alcohol promotes epithelial mesenchymal transformation-mediated premetastatic niche formation of colorectal cancer by activating interaction between laminin-γ2 and integrin-β1. World J Gastroenterol 2022; 28:5154-5174. [PMID: 36188720 PMCID: PMC9516679 DOI: 10.3748/wjg.v28.i35.5154] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/23/2022] [Accepted: 08/22/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a common malignant tumor. Alcohol consumption is positively correlated with CRC malignant metastasis; however, the mechanism is unclear. The interaction between laminin-γ2 (LAMC2) and integrin-β1 (ITGB1) plays a role in premetastatic niche signaling, which may induce epithelial mesenchymal transformation (EMT) and lead to metastasis.
AIM To investigate the effects of alcohol on CRC metastasis from the molecular mechanism of the premetastatic niche.
METHODS The interaction between LAMC2 and ITGB1 was measured by Duolink assay, and the expression levels of LAMC2, ITGB1 and focal adhesion kinase (FAK), snail, fibronectin, N-cadherin and special AT-rich sequence binding protein 1 (SATB1) were measured by quantitative real-time polymerase chain reaction, immunohistochemistry and western blotting. Interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α) and IL-6 levels were measured via enzyme-linked immunosorbent assay, histopathological assessment via hematoxylin eosin staining, and determination of aberrant crypt foci via methylene blue.
RESULTS The lymph node metastasis rate was higher in the alcohol group than non-alcohol group. There was a significant increase in interaction signals between LAMC2 and ITGB1, and an increase in phosphorylate-FAK/FAK, snail, fibronectin, N-cadherin and SATB1, whereas E-cadherin was reduced in the alcohol group compared to the non-alcohol group in both animal and clinical samples. Serum IL-1β, TNF-α and IL-6 were higher in alcohol group than in non-alcohol group. Alcohol may promote CRC metastasis by influencing the molecular mechanism of the premetastatic niche.
CONCLUSION Our study suggests that alcohol promotes EMT-mediated premetastatic niche formation of CRC by activating the early interaction between LAMC2 and ITGB1 and lead to CRC metastasis.
Collapse
Affiliation(s)
- Fei-Fei Nong
- Pi-Wei Institute, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510000, Guangdong Province, China
| | - Yu-Qi Liang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510000, Guangdong Province, China
| | - Shang-Ping Xing
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, School of Pharmacy, Guangxi Medical University, Nanning 530022, Guangxi Zhuang Autonomous Region, China
| | - Yin-Fang Xiao
- Pi-Wei Institute, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510000, Guangdong Province, China
| | - Hui-Hui Chen
- Pi-Wei Institute, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510000, Guangdong Province, China
| | - Bin Wen
- Pi-Wei Institute, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510000, Guangdong Province, China
| |
Collapse
|
17
|
Liu N, Yang DW, Wu YX, Xue WQ, Li DH, Zhang JB, He YQ, Jia WH. Burden, trends, and risk factors for breast cancer in China from 1990 to 2019 and its predictions until 2034: an up-to-date overview and comparison with those in Japan and South Korea. BMC Cancer 2022; 22:826. [PMID: 35906569 PMCID: PMC9334732 DOI: 10.1186/s12885-022-09923-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 07/21/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The difference in epidemiological characteristics of breast cancer (BC) across countries is valuable for BC management and prevention. The study evaluated the up-to-date burden, trends, and risk factors of BC in China, Japan and South Korea during 1990-2019 and predicted the BC burden until 2034. METHODS Data on incident cases, deaths, disability-adjusted life-years (DALYs) and age-standardized rate (ASR) of BC were extracted from the Global Burden of Disease Study 2019. Trend analysis and prediction until 2034 were conducted by estimated annual percentage change and a Bayesian age-period-cohort model, respectively. Besides, the attributable burden to BC risk factors was also estimated. RESULTS In 2019, the number of BC incident cases, deaths and DALYs in China were 375,484, 96,306 and 2,957,453, respectively. The ASR of incidence increased, while that of death and DALYs decreased for Chinese females and Japanese and South Korean males during 1990-2019. High body-mass-index (BMI) was the largest contributor to Chinese female BC deaths and DALYs, while alcohol use was the greatest risk factor for Japanese and South Korean as well as Chinese males. The incident cases and deaths were expected to continue increase during 2020-2034 (except for Japanese female incident cases). CONCLUSIONS China had the greatest burden of BC among the three countries. Incident cases and deaths of BC were projected to increase over the next 15 years in China, particularly among Chinese males. Effective prevention and management strategies are urgently necessary for BC control in China.
Collapse
Affiliation(s)
- Na Liu
- Department of Oncology, Luohe Central Hospital, Luohe, 462000, China.
| | - Da-Wei Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Yan-Xia Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Wen-Qiong Xue
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Dan-Hua Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Jiang-Bo Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Yong-Qiao He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Wei-Hua Jia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
18
|
Tanabe S, O’Brien J, Tollefsen KE, Kim Y, Chauhan V, Yauk C, Huliganga E, Rudel RA, Kay JE, Helm JS, Beaton D, Filipovska J, Sovadinova I, Garcia-Reyero N, Mally A, Poulsen SS, Delrue N, Fritsche E, Luettich K, La Rocca C, Yepiskoposyan H, Klose J, Danielsen PH, Esterhuizen M, Jacobsen NR, Vogel U, Gant TW, Choi I, FitzGerald R. Reactive Oxygen Species in the Adverse Outcome Pathway Framework: Toward Creation of Harmonized Consensus Key Events. FRONTIERS IN TOXICOLOGY 2022; 4:887135. [PMID: 35875696 PMCID: PMC9298159 DOI: 10.3389/ftox.2022.887135] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/13/2022] [Indexed: 02/05/2023] Open
Abstract
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are formed as a result of natural cellular processes, intracellular signaling, or as adverse responses associated with diseases or exposure to oxidizing chemical and non-chemical stressors. The action of ROS and RNS, collectively referred to as reactive oxygen and nitrogen species (RONS), has recently become highly relevant in a number of adverse outcome pathways (AOPs) that capture, organize, evaluate and portray causal relationships pertinent to adversity or disease progression. RONS can potentially act as a key event (KE) in the cascade of responses leading to an adverse outcome (AO) within such AOPs, but are also known to modulate responses of events along the AOP continuum without being an AOP event itself. A substantial discussion has therefore been undertaken in a series of workshops named "Mystery or ROS" to elucidate the role of RONS in disease and adverse effects associated with exposure to stressors such as nanoparticles, chemical, and ionizing and non-ionizing radiation. This review introduces the background for RONS production, reflects on the direct and indirect effects of RONS, addresses the diversity of terminology used in different fields of research, and provides guidance for developing a harmonized approach for defining a common event terminology within the AOP developer community.
Collapse
Affiliation(s)
- Shihori Tanabe
- Division of Risk Assessment, Center for Biological Safety and Research, National Institute of Health Sciences, Kawasaki, Japan
| | - Jason O’Brien
- Wildlife Toxicology Research Section, Environment and Climate Change Canada, Toronto, ON, Canada
| | - Knut Erik Tollefsen
- Norwegian Institute for Water Research (NIVA), Oslo, Norway
- Norwegian University of Life Sciences (NMBU), Ås, Norway
- Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Youngjun Kim
- Korea Institute of Science and Technology (KIST) Europe, Saarbrücken, Germany
| | | | | | | | | | | | | | | | | | - Iva Sovadinova
- RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Natalia Garcia-Reyero
- U.S. Army Engineer Research and Development Center (ERDC), Vicksburg, MS, United States
| | - Angela Mally
- Department of Toxicology, University of Würzburg, Würzburg, Germany
| | - Sarah Søs Poulsen
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Nathalie Delrue
- Organisation for Economic Co-operation and Development (OECD), Paris, France
| | - Ellen Fritsche
- Group of Alternative Method Development for Environmental Toxicity Testing, IUF—Leibniz-Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Karsta Luettich
- Philip Morris International R&D, Philip Morris Products SA, Neuchatel, Switzerland
| | - Cinzia La Rocca
- Center for Gender-specific Medicine, Italian National Institute of Health, Rome, Italy
| | - Hasmik Yepiskoposyan
- Philip Morris International R&D, Philip Morris Products SA, Neuchatel, Switzerland
| | - Jördis Klose
- Group of Alternative Method Development for Environmental Toxicity Testing, IUF—Leibniz-Research Institute for Environmental Medicine, Duesseldorf, Germany
| | | | - Maranda Esterhuizen
- University of Helsinki, Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, Lahti, Finland, and Helsinki Institute of Sustainability Science (HELSUS), Helsinki, Finland
| | | | - Ulla Vogel
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Timothy W. Gant
- UK Health Security Agency, Public Health England, London, United Kingdom
| | - Ian Choi
- Korea Institute of Science and Technology (KIST) Europe, Saarbrücken, Germany
| | | |
Collapse
|
19
|
Xu W, Wu L, Xu M, Luo J, Chen G. Ethanol Exposure Up-Regulates PD-L1/PD-1 Immune Checkpoint Pathway and Promotes Mammary Tumor Development. Front Oncol 2022; 12:874156. [PMID: 35756611 PMCID: PMC9213659 DOI: 10.3389/fonc.2022.874156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/19/2022] [Indexed: 11/21/2022] Open
Abstract
Alcohol consumption in women enhances breast cancer incidence and ethanol is the main causal factor. Compromised host immunity through immunosuppression facilitates the development of many types of cancer, including breast cancer. Immune cells in breast tissues, particularly tumor-infiltrating CD8 cytotoxic T cells, play a critical role in the host anti-tumor immunity against breast tumorigenesis. These cytotoxic T cells are the major immune cells to carry out anti-tumor immunity through their cytotoxic effector function, which can be regulated by immune checkpoint pathways. The PD-1/PD-L1 pathway (the interaction between programmed death-1, PD-1, and its ligand, programmed death-ligand 1, PD-L1) is the best characterized one. However, the effects of ethanol exposure on T cell anti-tumor immunity and how that may contribute to ethanol-enhanced mammary tumorigenicity remain unknown. FVB.Cg-Tg(Wnt1)1Hev/J transgenic mice develop spontaneous mammary tumors starting around the age of 2-3 months and have been a widely-used mouse model for breast cancer research. Using this mouse model, the current study determined the effects of ethanol on the PD-L1/PD-1 pathway and how that may contribute to mammary tumorigenesis. The results indicated that ethanol exposure enhanced mammary tumor formation accompanied with an up-regulation of PD-1/PD-L1 pathway (increased PD-L1 levels in tumor tissue cells and the amount of PD-1-expressing tumor-infiltrating CD8 T cells) and inhibited T cell anti-tumor function, while inhibition of PD-1/PD-L1 restored T cell anti-tumor effector function and mitigated ethanol-enhanced tumorigenesis.
Collapse
Affiliation(s)
- Wenhua Xu
- Department Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, United States
- Department of Neurology, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Linqing Wu
- Department Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, United States
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Mei Xu
- Department Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Jia Luo
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Gang Chen
- Department Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, United States
| |
Collapse
|
20
|
Liu F, Gao X, Li Z, Zhang X, Fan H, Yu G, Bello BK, Feng X, Li D, Teng D, Chen Y, Zhao P, Fu M, Dong J. Protective Effects of Scutellarin on Acute Alcohol Intestinal Injury. Chem Biodivers 2022; 19:e202100856. [PMID: 35263019 DOI: 10.1002/cbdv.202100856] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/09/2022] [Indexed: 11/09/2022]
Abstract
The present study aims to investigate the roles of scutellarin (SCU) on acute alcohol intestinal injury. Mice were divided into six groups: alcohol, three administration, negative control and positive drug bifendate control. The administration group mice were intraperitoneally injected with SCU for 3 consecutive days followed by alcohol gavage at an interval of 1 h. After the mice were sacrificed, colon tissue damage was evaluated by histopathological examination; the activities of inducible nitric oxide synthase (iNOS) and catalase (CAT), as well as the content of malondialdehyde (MDA) were detected using biochemical kits; the levels of inflammatory cytokines mRNA were determined by real-time fluorescence quantitative PCR; the protein expression levels of hemeoxygenase-1 (HO-1) and phosphorylated nuclear factor-ĸB p65 were measured via western blotting. The results showed that alcohol induced severe colon morphological degradation, epithelia atrophy, and more inflammatory cells infiltration in the submucosa. SCU treatment prevented this process, especially in the middle and high dose groups. Alcohol treatment caused excessive lipid peroxidation product accumulation of MDA, restrained the activity of antioxidant enzyme CAT, induced HO-1 expression in the colon, whereas low dose SCU treatment significantly down-regulated the MDA level, enhanced the CAT level, and accelerated HO-1 signals. SCU prevented alcohol stimulation triggered inflammatory response in colon tissues through significantly downregulating the iNOS activity, transcript levels of Tnf-α, Il-1β and Il-6, and phosphorylation levels of NF-κB p65. These findings suggest that SCU protects the colon via antioxidant and anti-inflammatory mechanisms, making it a promising drug against alcohol-induced colon damage.
Collapse
Affiliation(s)
- Feixue Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xuzhu Gao
- Department of Central Laboratory, The Second People's Hospital of Lianyungang City, Lianyungang, 222000, China
| | - Zhixing Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xiao Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Hui Fan
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Guili Yu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Babatunde Kazeem Bello
- State Key Laboratory of Rice Biology, Lianyungang Academy of Agricultural Sciences, Lianyungang, 222000, China
| | - Xin Feng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Debang Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Daoyang Teng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yi Chen
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China
| | - PanPan Zhao
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Mian Fu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Jingquan Dong
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China
| |
Collapse
|
21
|
Menéndez-Acebal C, Martínez-González MA, Bes-Rastrollo M, Moreno-Montañés J, García-Layana A, Gea A. The influence of alcohol intake in myopia development or progression: The SUN cohort study. Drug Alcohol Depend 2021; 229:109149. [PMID: 34741875 DOI: 10.1016/j.drugalcdep.2021.109149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/27/2021] [Accepted: 10/21/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Myopia is a highly prevalent disorder, and one of the first causes of blindness. In turn, alcohol consumption has been shown to be a risk factor for many diseases and a main contributor to the global burden of disease. However, no studies have investigated the relationship between alcohol intake and myopia. Our aim was to prospectively assess the association between alcohol intake and the development or progression of myopia. METHODS In a Spanish dynamic prospective cohort (the SUN Project) we assessed 15,642 university graduates, recruited between 1999 and 2018 and followed up biennially through mailed questionnaires. Alcohol intake was assessed with a validated 136-item food frequency questionnaire. Development or progression of myopia was collected in subsequent questionnaires during follow-up every two years. RESULTS Alcohol intake was linearly and significantly associated with a higher risk of myopia development or progression: the OR for 10-year incidence/progression of myopia was 1.05, 95% CI 1.01-1.09 per each 10-grams increase in alcohol intake. CONCLUSIONS Alcohol consumption might lead to the development or progression of myopia, although confirmation is needed for the mechanisms through which this association may occur, thus further research is needed to verify these findings.
Collapse
Affiliation(s)
| | - Miguel A Martínez-González
- Department of Preventive Medicine and Public Health. University of Navarra, Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, Pamplona, Spain; Biomedical Research Network Center for Pathophysiology of Obesity and Nutrition (CIBEROBN), Carlos III Health Institute, Madrid, Spain; Department of Nutrition, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Maira Bes-Rastrollo
- Department of Preventive Medicine and Public Health. University of Navarra, Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, Pamplona, Spain; Biomedical Research Network Center for Pathophysiology of Obesity and Nutrition (CIBEROBN), Carlos III Health Institute, Madrid, Spain
| | - Javier Moreno-Montañés
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain; Department of Ophthalmology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Alfredo García-Layana
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain; Department of Ophthalmology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Alfredo Gea
- Department of Preventive Medicine and Public Health. University of Navarra, Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, Pamplona, Spain; Biomedical Research Network Center for Pathophysiology of Obesity and Nutrition (CIBEROBN), Carlos III Health Institute, Madrid, Spain.
| |
Collapse
|
22
|
Zeng J, Li M, Xu JY, Xiao H, Yang X, Fan JX, Wu K, Chen S. Aberrant ROS Mediate Cell Cycle and Motility in Colorectal Cancer Cells Through an Oncogenic CXCL14 Signaling Pathway. Front Pharmacol 2021; 12:764015. [PMID: 34744744 PMCID: PMC8563703 DOI: 10.3389/fphar.2021.764015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/04/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Reactive oxygen species (ROS) act as signal mediators to induce tumorigenesis. Objective: This study aims to explore whether chemokine CXCL14 is involved in the proliferation and migration of ROS-induced colorectal cancer (CRC) cells. Methods: The proliferative and migratory capacities of CRC cells treated with or without H2O2 were measured by various methods, including the CKK-8 assay, colony formation assay, flow cytometry, wounding healing assay, and migration assay. Results: The results revealed that H2O2 promoted the proliferation and migration of CRC cells by regulating the cell cycle progression and the epithelial to mesenchymal transition (EMT) process. Furthermore, we noted that the expression level of CXCL14 was elevated in both HCT116 cells and SW620 cells treated with H2O2. An antioxidant N-Acetyl-l-cysteine (NAC) pretreatment could partially suppress the CXCL14 expression in CRC cells treated with H2O2. Next, we constructed CRC cell lines stably expressing CXCL14 (HCT116/CXCL14 and SW620/CXCL14) and CRC cell lines with empty plasmid vectors (HCT116/Control and SW620/Control) separately. We noted that both H2O2 treatment and CXCL14 over-expression could up-regulate the expression levels of cell cycle-related and EMT-related proteins. Moreover, the level of phosphorylated ERK (p-ERK) was markedly higher in HCT116/CXCL14 cells when compared with that in HCT116/Control cells. CXCL14-deficiency significantly inhibited the phosphorylation of ERK compared with control (i.e., scrambled shNCs). H2O2 treatment could partially restore the expression levels of CXCL14 and p-ERK in HCT116/shCXCL14 cells. Conclusion: Our studies thus suggest that aberrant ROS may promote colorectal cancer cell proliferation and migration through an oncogenic CXCL14 signaling pathway.
Collapse
Affiliation(s)
- Jun Zeng
- Department of Genetics and Cell Biology, College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Mei Li
- Department of Genetics and Cell Biology, College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Jun-Yu Xu
- Department of Genetics and Cell Biology, College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Heng Xiao
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xian Yang
- Department of Genetics and Cell Biology, College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Jiao-Xiu Fan
- Department of Genetics and Cell Biology, College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Kang Wu
- Shenzhen Luohu People's Hospital, the Third Affiliated Hospital of Shenzhen University, Shenzhen, China.,South China Hospital, Shenzhen University, Shenzhen, China
| | - Shuang Chen
- Department of Dermatovenereology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
23
|
Park SH, Hoang T, Kim J. Dietary Factors and Breast Cancer Prognosis among Breast Cancer Survivors: A Systematic Review and Meta-Analysis of Cohort Studies. Cancers (Basel) 2021; 13:cancers13215329. [PMID: 34771493 PMCID: PMC8582373 DOI: 10.3390/cancers13215329] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary While most systematic reviews have focused on the association between dietary factors and breast cancer incidence, this current study focuses on the association between comprehensive dietary factors and breast cancer prognosis among breast cancer survivors by systematic review and meta-analysis. We reviewed a total of 63 cohort studies to assess the association between dietary factors and breast cancer prognosis by subgroup analysis with prediagnostic or postdiagnostic dietary intake, menopausal status, and dietary or supplementary micronutrient intake. We found that unhealthy dietary patterns, including the intake of beer and saturated fat, exacerbated the risk of breast cancer prognosis; however, the supplementation of most vitamins was desirable for breast cancer prognosis. Therefore, this study’s systematic review and meta-analysis provide useful dietary information for the development of dietary guidelines/recommendations to improve prognosis among breast cancer survivors. Abstract Few studies have summarized the association between dietary factors and breast cancer (BC) prognosis among breast cancer survivors (BCS). Therefore, we carried out a systematic review and meta-analysis to determine the associations between dietary factors and BC prognosis among BCS. We performed a literature search in PubMed and Embase to investigate the association between dietary factors and BC prognosis. We applied a random-effects model to compute the hazard ratio/relative risk and their 95% confidence intervals and heterogeneity (Higgins I2) and to generate forest plots using STATA. Among the 2279 papers identified, 63 cohort studies were included in the systematic review and meta-analysis. Our main finding was that higher consumption of beer and saturated fat negatively affected BC prognosis. However, the intake of lignans, fiber, multivitamins, and antioxidants was negatively associated with the risk of mortality. Furthermore, we performed subgroup analyses by menopausal status and dietary or supplementary micronutrient intake. Most trends were similar to the main findings; in particular, the vitamin C, vitamin D, and vitamin E supplements decreased the risk of mortality. This study’s current systematic review and meta-analysis provide comprehensive dietary information for the development of dietary guidelines/recommendations to improve prognosis among BCS.
Collapse
Affiliation(s)
- Sin-Hye Park
- Department of Food Science and Nutrition, Hallym University, Chuncheon 24252, Kangwon-do, Korea;
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang 10408, Gyeonggi-do, Korea;
| | - Tung Hoang
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang 10408, Gyeonggi-do, Korea;
| | - Jeongseon Kim
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang 10408, Gyeonggi-do, Korea;
- Correspondence:
| |
Collapse
|
24
|
Shimonosono M, Tanaka K, Flashner S, Takada S, Matsuura N, Tomita Y, Sachdeva UM, Noguchi E, Sangwan V, Ferri L, Momen-Heravi F, Yoon AJ, Klein-Szanto AJ, Diehl JA, Nakagawa H. Alcohol Metabolism Enriches Squamous Cell Carcinoma Cancer Stem Cells That Survive Oxidative Stress via Autophagy. Biomolecules 2021; 11:1479. [PMID: 34680112 PMCID: PMC8533166 DOI: 10.3390/biom11101479] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Alcohol (ethanol) consumption is a major risk factor for head and neck and esophageal squamous cell carcinomas (SCCs). However, how ethanol (EtOH) affects SCC homeostasis is incompletely understood. METHODS We utilized three-dimensional (3D) organoids and xenograft tumor transplantation models to investigate how EtOH exposure influences intratumoral SCC cell populations including putative cancer stem cells defined by high CD44 expression (CD44H cells). RESULTS Using 3D organoids generated from SCC cell lines, patient-derived xenograft tumors, and patient biopsies, we found that EtOH is metabolized via alcohol dehydrogenases to induce oxidative stress associated with mitochondrial superoxide generation and mitochondrial depolarization, resulting in apoptosis of the majority of SCC cells within organoids. However, CD44H cells underwent autophagy to negate EtOH-induced mitochondrial dysfunction and apoptosis and were subsequently enriched in organoids and xenograft tumors when exposed to EtOH. Importantly, inhibition of autophagy increased EtOH-mediated apoptosis and reduced CD44H cell enrichment, xenograft tumor growth, and organoid formation rate. CONCLUSIONS This study provides mechanistic insights into how EtOH may influence SCC cells and establishes autophagy as a potential therapeutic target for the treatment of EtOH-associated SCC.
Collapse
Affiliation(s)
- Masataka Shimonosono
- Herbert Irving Comprehensive Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA; (M.S.); (S.F.); (S.T.); (N.M.); (Y.T.); (U.M.S.); (F.M.-H.); (A.J.Y.)
| | - Koji Tanaka
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan;
| | - Samuel Flashner
- Herbert Irving Comprehensive Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA; (M.S.); (S.F.); (S.T.); (N.M.); (Y.T.); (U.M.S.); (F.M.-H.); (A.J.Y.)
| | - Satoshi Takada
- Herbert Irving Comprehensive Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA; (M.S.); (S.F.); (S.T.); (N.M.); (Y.T.); (U.M.S.); (F.M.-H.); (A.J.Y.)
| | - Norihiro Matsuura
- Herbert Irving Comprehensive Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA; (M.S.); (S.F.); (S.T.); (N.M.); (Y.T.); (U.M.S.); (F.M.-H.); (A.J.Y.)
| | - Yasuto Tomita
- Herbert Irving Comprehensive Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA; (M.S.); (S.F.); (S.T.); (N.M.); (Y.T.); (U.M.S.); (F.M.-H.); (A.J.Y.)
| | - Uma M. Sachdeva
- Herbert Irving Comprehensive Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA; (M.S.); (S.F.); (S.T.); (N.M.); (Y.T.); (U.M.S.); (F.M.-H.); (A.J.Y.)
- Department of Surgery, Division of Thoracic Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Eishi Noguchi
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA;
| | - Veena Sangwan
- Department of Surgery, Montreal General Hospital, McGill University, Montreal, QC H3G 1A4, Canada; (V.S.); (L.F.)
| | - Lorenzo Ferri
- Department of Surgery, Montreal General Hospital, McGill University, Montreal, QC H3G 1A4, Canada; (V.S.); (L.F.)
| | - Fatemeh Momen-Heravi
- Herbert Irving Comprehensive Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA; (M.S.); (S.F.); (S.T.); (N.M.); (Y.T.); (U.M.S.); (F.M.-H.); (A.J.Y.)
- Cancer Biology and Immunology Laboratory, College of Dental Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Angela J. Yoon
- Herbert Irving Comprehensive Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA; (M.S.); (S.F.); (S.T.); (N.M.); (Y.T.); (U.M.S.); (F.M.-H.); (A.J.Y.)
- Department of Pathology & Cell Biology, Division of Oral & Maxillofacial Pathology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | | | - J. Alan Diehl
- Case Comprehensive Cancer Center, Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Hiroshi Nakagawa
- Herbert Irving Comprehensive Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA; (M.S.); (S.F.); (S.T.); (N.M.); (Y.T.); (U.M.S.); (F.M.-H.); (A.J.Y.)
- Department of Medicine, Division of Digestive and Liver Diseases, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
25
|
Zhao K, Huang Z, Si Y, Sun L, Yu J, Meng X. Use of Chemoradiotherapy as a Treatment Option for Patients with Limited-Stage Primary Small Cell Carcinoma of the Esophagus. Cancer Manag Res 2021; 13:613-623. [PMID: 33531834 PMCID: PMC7846826 DOI: 10.2147/cmar.s278914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/25/2020] [Indexed: 12/12/2022] Open
Abstract
Purpose Currently, there are no standard treatments for primary small cell carcinoma of the esophagus (PSCCE), particularly in cases of limited-stage disease. This retrospective study aimed to assess the treatment strategies and the relevant prognostic factors of limited-stage PSCCE (LS-PSCCE). Patients and Methods We retrospectively evaluated 129 patients with LS-PSCCE between June 2009 and December 2018. The χ2 test was performed to examine the frequencies between different groups. The Kaplan-Meier and log-rank methods were used to estimate and compare survival rates. Univariate and multivariate analyses were performed to determine the prognostic factors for overall survival (OS). Results Through a median follow-up of 23 months, the median OS of all patients was 25.0 months and the median recurrence-free survival (RFS) was 15.0 months. Univariate and multivariate analyses showed that alcohol abuse (p=0.046) and TNM stage (p<0.001) were independent prognostic factors. There was no significant difference in OS and RFS rates between the patients treated with chemoradiotherapy (CRT) and those treated with surgery and chemotherapy with or without radiotherapy (S+CT±RT) (p>0.05). Patients who received concurrent CRT had better OS and RFS than those who received sequential CRT (p<0.05). Postoperative adjuvant RT for high-risk patients can further improve the local control rate but has no significant effect on OS. Conclusion LS-PSCCE patients treated with CRT had similar OS and RFS compared to those treated with S+CT±RT. This study shows that concurrent CRT confers a survival advantage for patients with LS-PSCCE compared to those with sequential CRT.
Collapse
Affiliation(s)
- Kaikai Zhao
- Department of Radiation Oncology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, People's Republic of China
| | - Zhaoqin Huang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People's Republic of China
| | - Youjiao Si
- Department of Radiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, People's Republic of China
| | - Liangchao Sun
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, People's Republic of China
| | - Jinming Yu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, People's Republic of China
| | - Xiangjiao Meng
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, People's Republic of China
| |
Collapse
|
26
|
Sun Q, Xie W, Wang Y, Chong F, Song M, Li T, Xu L, Song C. Alcohol Consumption by Beverage Type and Risk of Breast Cancer: A Dose-Response Meta-Analysis of Prospective Cohort Studies. Alcohol Alcohol 2021; 55:246-253. [PMID: 32090238 DOI: 10.1093/alcalc/agaa012] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/09/2020] [Accepted: 01/27/2020] [Indexed: 02/07/2023] Open
Abstract
AIMS Alcohol intake has been shown to increase the risk of breast cancer. However, the dose-response analysis of different alcoholic beverages (spirits, wine and beer) is not clear. Our meta-analysis aims to provide a dose-response estimation between different alcohols and breast cancer risk. METHODS Search of PubMed and Web of Science and manual searches were conducted up to 1 December 2018, and summary relative risks (RRs) and attributable risk percentage (ARP) for alcohol intake on the development of breast cancer were calculated. Dose-response meta-analysis modeled relationships between drinking type and breast cancer risk. Sources of heterogeneity were explored, and sensitivity analyses were conducted to test the robustness of findings. RESULTS In total, 22 cohort studies and 45,350 breast cancer cases were included. Current drinkers for ER+ had an increased risk compared with never drinkers. In dose-response analysis, there was a statistically significant linear trend with breast cancer risk increasing gradually by total alcohol and wine dose: when adding 10 g per day, the risk increased by 10.5% (RR = 1.10, 95%CI = 1.08-1.13) in total alcohol and 8.9% (RR = 1.08, 95%CI = 1.04-1.14) in wine. For postmenopausal women, the risk increases by 11.1% (RR = 1.11, 95%CI = 1.09-1.13) with every 10 g of total alcohol increase. Furthermore, the breast cancer alcohol-attributed percentage is higher in Europe than in North America and Asia. CONCLUSIONS The effect of drinking on the incidence of breast cancer is mainly manifested in ER+ breast cancer. Quantitative analysis showed total drinking had a significant risk for breast cancer, especially for postmenopausal women. However, for different alcohols, just wine intake has the similar results.
Collapse
Affiliation(s)
- Qiuyu Sun
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, Henan, China.,Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, China
| | - Weihong Xie
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Yanli Wang
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, Henan, China.,Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, China
| | - Feifei Chong
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, Henan, China.,Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, China
| | - Mengmeng Song
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, Henan, China.,Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, China
| | - Tiandong Li
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, Henan, China.,Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, China
| | - Linping Xu
- Department of Teaching and Research, Henan Tumor Hospital, No. 127, Dongming Road, Zhengzhou 450003, Henan, China
| | - Chunhua Song
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, Henan, China.,Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, 40 Daxue Road, Zhengzhou 450052, China
| |
Collapse
|
27
|
Ho C, Lin CY. Genes Associated with Calcium Signaling are Involved in Alcohol-Induced Breast Cancer Growth. Alcohol Clin Exp Res 2020; 45:79-91. [PMID: 33222221 DOI: 10.1111/acer.14521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/26/2020] [Accepted: 11/16/2020] [Indexed: 11/27/2022]
Abstract
BACKGROUND Alcohol consumption is a risk factor for breast cancer, contributing to up to nearly 23,000 new cases each year. Mechanistic studies show that alcohol increases tumor aggressiveness and metastatic potential, promotes angiogenesis, induces chronic inflammation, and dysregulates RNA polymerase III-related genes. Alcohol has also been shown to affect estrogen signaling in breast cancer, including in our study of the transcriptomic effects of alcohol in breast cancer cells. METHODS To elucidate mechanisms of action of alcohol in breast cancer, we carried out secondary analyses of our alcohol-responsive transcriptome data using gene ontology and pathway databases and analysis tools and cistromic data analysis of candidate transcription factors which may mediate the transcriptomic alterations. Predicted alcohol-responsive pathways and mechanisms were perturbed and examined experimentally in breast cancer cells. The clinical relevance of identified genes was determined by expression profiles in patient samples and correlation with disease outcomes and alcohol consumption in previously published study cohorts. RESULTS Gene ontology analysis showed that alcohol alters the expression of many metabolism-related genes, and cistromic data of differentially expressed genes revealed the potential involvement of nuclear factor of activated T cells 3 (NFATC3) in mediating the transcriptomic effects of alcohol. Pathway analysis also predicted regulation of calcium signaling by alcohol in breast cancer cells. Chemical perturbation of this pathway reversed the effect of alcohol on breast cancer cell growth and reduced the elevated cytosolic Ca2+ levels induced by alcohol. Expression levels of alcohol-responsive genes in tumor samples from breast cancer patients are associated with poor disease outcomes. Moreover, expression of some of these genes was altered in breast cancer patients who consumed alcohol previously as compared to those who did not drink. CONCLUSION Alcohol alters expression of genes that regulate intracellular calcium levels and downstream signaling pathways which drive breast cancer cell proliferation and disease progression.
Collapse
Affiliation(s)
- Charles Ho
- From the, Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Science & Engineering Research Center, Houston, Texas, USA
| | - Chin-Yo Lin
- From the, Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Science & Engineering Research Center, Houston, Texas, USA
| |
Collapse
|
28
|
Koual M, Tomkiewicz C, Cano-Sancho G, Antignac JP, Bats AS, Coumoul X. Environmental chemicals, breast cancer progression and drug resistance. Environ Health 2020; 19:117. [PMID: 33203443 PMCID: PMC7672852 DOI: 10.1186/s12940-020-00670-2] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 10/21/2020] [Indexed: 05/04/2023]
Abstract
Breast cancer (BC) is one of the most common causes of cancer in the world and the second leading cause of cancer deaths among women. Mortality is associated mainly with the development of metastases. Identification of the mechanisms involved in metastasis formation is, therefore, a major public health issue. Among the proposed risk factors, chemical environment and pollution are increasingly suggested to have an effect on the signaling pathways involved in metastatic tumor cells emergence and progression. The purpose of this article is to summarize current knowledge about the role of environmental chemicals in breast cancer progression, metastasis formation and resistance to chemotherapy. Through a scoping review, we highlight the effects of a wide variety of environmental toxicants, including persistent organic pollutants and endocrine disruptors, on invasion mechanisms and metastatic processes in BC. We identified the epithelial-to-mesenchymal transition and cancer-stemness (the stem cell-like phenotype in tumors), two mechanisms suspected of playing key roles in the development of metastases and linked to chemoresistance, as potential targets of contaminants. We discuss then the recently described pro-migratory and pro-invasive Ah receptor signaling pathway and conclude that his role in BC progression is still controversial. In conclusion, although several pertinent pathways for the effects of xenobiotics have been identified, the mechanisms of actions for multiple other molecules remain to be established. The integral role of xenobiotics in the exposome in BC needs to be further explored through additional relevant epidemiological studies that can be extended to molecular mechanisms.
Collapse
Affiliation(s)
- Meriem Koual
- INSERM UMR-S1124, 3TS, Toxicologie Pharmacologie et Signalisation Cellulaire, Université de Paris, Paris, France.
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges-Pompidou, Service de Chirurgie Cancérologique Gynécologique et du Sein, Paris, France.
- Faculté de Médecine, Université de Paris, Paris, France.
| | - Céline Tomkiewicz
- INSERM UMR-S1124, 3TS, Toxicologie Pharmacologie et Signalisation Cellulaire, Université de Paris, Paris, France
- Faculté de Médecine, Université de Paris, Paris, France
| | | | | | - Anne-Sophie Bats
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges-Pompidou, Service de Chirurgie Cancérologique Gynécologique et du Sein, Paris, France
- Faculté de Médecine, Université de Paris, Paris, France
- INSERM UMR-S1147, Equipe labellisée Ligue Nationale Contre le Cancer, Université de Paris, Paris, France
| | - Xavier Coumoul
- INSERM UMR-S1124, 3TS, Toxicologie Pharmacologie et Signalisation Cellulaire, Université de Paris, Paris, France.
- Faculté de Médecine, Université de Paris, Paris, France.
| |
Collapse
|
29
|
Bershtein LM. [Letter to the editorial office of the journal "Problems of Endocrinology" in connection with the publication of an editorial by prof. P.O.Rumyantsev "Oncoendocrinology - an innovative interdisciplinary platform for personalized medicine"]. PROBLEMY ENDOKRINOLOGII 2020; 66:82-83. [PMID: 33351363 DOI: 10.14341/probl12589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 09/24/2020] [Indexed: 11/06/2022]
Abstract
The publication of this article is undoubtedly a significant and positive phenomenon, while the initiative of the journal «Problems of Endocrinology» with the introduction of a new section «Oncoendocrinology» should be welcomed and will serve to unite the efforts of specialists of various profiles in the appropriate direction.
Collapse
|
30
|
Abstract
Globally, more than 2 million new cases of breast cancer are reported annually. The United States alone has more than 496,000 new cases every year. The worldwide prevalence is approximately 6.8 million cases. Although many risk factors for breast cancer are not modifiable, understanding the role of the factors that can be altered is critical. Alcohol consumption is a modifiable factor. Studies of alcohol in relation to breast cancer incidence have included hundreds of thousands of women. Evidence is consistent that intake, even intake of less than 10–15 grams per day, is associated with increased risk of this disease. In addition, evidence, although less extensive, shows that possible early indicators of risk, such as benign breast disease and increased breast density, are associated with alcohol consumption. Evidence is less strong for differences based on geographic region, beverage type, drinking pattern, or breast cancer subtype. Some studies have examined the association between alcohol and recurrence or survival after a breast cancer diagnosis. These findings are less consistent. Public awareness of alcohol as a risk factor for breast cancer is low, and public health measures to increase that awareness are warranted.
Collapse
Affiliation(s)
- Jo L Freudenheim
- School of Public Health and Health Professions, University at Buffalo, Buffalo, New York
| |
Collapse
|
31
|
Ahlgrén-Rimpiläinen AJ, Arffman M, Suvisaari J, Manderbacka K, Lumme S, Keskimäki I, Huovinen R, Pukkala E. Excess mortality from breast cancer in female breast cancer patients with severe mental illness. Psychiatry Res 2020; 286:112801. [PMID: 32001004 DOI: 10.1016/j.psychres.2020.112801] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/13/2020] [Accepted: 01/19/2020] [Indexed: 02/07/2023]
Abstract
Women with a history of severe mental illness (SMI) have elevated breast cancer mortality. Few studies have compared cancer-specific mortality in women with breast cancer with or without SMI to reveal gaps in breast cancer treatment outcomes. We compared breast-cancer specific mortality in women with or without SMI and investigated effects of stage at presentation, comorbidity, and differences in cancer treatment. Women with their first breast cancer diagnosis in 1990-2013 (n = 80,671) were identified from the Finnish Cancer Registry, their preceding hospital admissions due to SMI (n = 4,837) from the Hospital Discharge Register and deaths from the Causes of Death Statistics. Competing risk models were used in statistical analysis. When controlling for age, year of cancer diagnosis, and comorbidity, breast cancer mortality was significantly elevated in patients with SMI. Relative mortality was highest in breast cancer patients with non-affective psychosis, partly explained by stage at presentation. Mortality was also significantly elevated in breast cancer patients with a substance use disorder and mood disorder. Patients with SMI received radiotherapy significantly less often than patients without SMI. Our findings emphasize the need to improve early detection of breast cancer in women with SMI and the collaboration between mental health care and oncological teams.
Collapse
Affiliation(s)
| | - Martti Arffman
- National Institute for Health and Welfare, Health and Social Systems Research, P.O. Box 30, Helsinki 00271, Finland
| | - Jaana Suvisaari
- National Institute for Health and Welfare, Mental Health Unit, P.O. Box 30, Helsinki 00271, Finland
| | - Kristiina Manderbacka
- National Institute for Health and Welfare, Health and Social Systems Research, P.O. Box 30, Helsinki 00271, Finland
| | - Sonja Lumme
- National Institute for Health and Welfare, Health and Social Systems Research, P.O. Box 30, Helsinki 00271, Finland
| | - Ilmo Keskimäki
- National Institute for Health and Welfare, Health and Social Systems Research, P.O. Box 30, Helsinki 00271, Finland; Tampere University, Faculty of Social Sciences, P.O. Box 100, 33014, Tampere, Finland
| | - Riikka Huovinen
- Department of Oncology and Radiotherapy, Turku University Hospital, P.O. Box 52, Turku 20521, Finland
| | - Eero Pukkala
- Tampere University, Faculty of Social Sciences, P.O. Box 100, 33014, Tampere, Finland; Finnish Cancer Registry, Institute for Statistical and Epidemiological Cancer Research, Unioninkatu 22, Helsinki 00130, Finland
| |
Collapse
|
32
|
Cheng HG, Gonzalez-Reymundez A, Li I, Pathak A, Pathak DR, de los Campos G, Vazquez AI. Breast cancer survival and the expression of genes related to alcohol drinking. PLoS One 2020; 15:e0228957. [PMID: 32078659 PMCID: PMC7032692 DOI: 10.1371/journal.pone.0228957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 01/27/2020] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the leading cause of cancer-related disease in women. Cumulative evidence supports a causal role of alcohol intake and breast cancer incidence. In this study, we explore the change on expression of genes involved in the biological pathways through which alcohol has been hypothesized to impact breast cancer risk, to shed new insights on possible mechanisms affecting the survival of breast cancer patients. Here, we performed differential expression analysis at individual genes and gene set levels, respectively, across survival and breast cancer subtype data. Information about postdiagnosis breast cancer survival was obtained from 1977 Caucasian female participants in the Molecular Taxonomy of Breast Cancer International Consortium. Expression of 16 genes that have been linked in the literature to the hypothesized alcohol-breast cancer pathways, were examined. We found that the expression of 9 out of 16 genes under study were associated with cancer survival within the first 4 years of diagnosis. Results from gene set analysis confirmed a significant differential expression of these genes as a whole too. Although alcohol consumption is not analyzed, nor available for this dataset, we believe that further study on these genes could provide important information for clinical recommendations about potential impact of alcohol drinking on breast cancer survival.
Collapse
Affiliation(s)
- Hui G. Cheng
- Department of Epidemiology & Biostatistics, Michigan State University, MI, United States of America
| | - Agustin Gonzalez-Reymundez
- Department of Epidemiology & Biostatistics, Michigan State University, MI, United States of America
- The Institute for Quantitative Health Science and Engineering, Michigan State University, MI, United States of America
| | - Irene Li
- Department of Epidemiology & Biostatistics, Michigan State University, MI, United States of America
| | - Ania Pathak
- Department of Epidemiology & Biostatistics, Michigan State University, MI, United States of America
| | - Dorothy R. Pathak
- Department of Epidemiology & Biostatistics, Michigan State University, MI, United States of America
| | - Gustavo de los Campos
- Department of Epidemiology & Biostatistics, Michigan State University, MI, United States of America
- The Institute for Quantitative Health Science and Engineering, Michigan State University, MI, United States of America
| | - Ana Ines Vazquez
- Department of Epidemiology & Biostatistics, Michigan State University, MI, United States of America
- The Institute for Quantitative Health Science and Engineering, Michigan State University, MI, United States of America
| |
Collapse
|
33
|
Kapoor PM, Lindström S, Behrens S, Wang X, Michailidou K, Bolla MK, Wang Q, Dennis J, Dunning AM, Pharoah PDP, Schmidt MK, Kraft P, García-Closas M, Easton DF, Milne RL, Chang-Claude J. Assessment of interactions between 205 breast cancer susceptibility loci and 13 established risk factors in relation to breast cancer risk, in the Breast Cancer Association Consortium. Int J Epidemiol 2020; 49:216-232. [PMID: 31605532 PMCID: PMC7426027 DOI: 10.1093/ije/dyz193] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Previous gene-environment interaction studies of breast cancer risk have provided sparse evidence of interactions. Using the largest available dataset to date, we performed a comprehensive assessment of potential effect modification of 205 common susceptibility variants by 13 established breast cancer risk factors, including replication of previously reported interactions. METHODS Analyses were performed using 28 176 cases and 32 209 controls genotyped with iCOGS array and 44 109 cases and 48 145 controls genotyped using OncoArray from the Breast Cancer Association Consortium (BCAC). Gene-environment interactions were assessed using unconditional logistic regression and likelihood ratio tests for breast cancer risk overall and by estrogen-receptor (ER) status. Bayesian false discovery probability was used to assess the noteworthiness of the meta-analysed array-specific interactions. RESULTS Noteworthy evidence of interaction at ≤1% prior probability was observed for three single nucleotide polymorphism (SNP)-risk factor pairs. SNP rs4442975 was associated with a greater reduction of risk of ER-positive breast cancer [odds ratio (OR)int = 0.85 (0.78-0.93), Pint = 2.8 x 10-4] and overall breast cancer [ORint = 0.85 (0.78-0.92), Pint = 7.4 x 10-5) in current users of estrogen-progesterone therapy compared with non-users. This finding was supported by replication using OncoArray data of the previously reported interaction between rs13387042 (r2 = 0.93 with rs4442975) and current estrogen-progesterone therapy for overall disease (Pint = 0.004). The two other interactions suggested stronger associations between SNP rs6596100 and ER-negative breast cancer with increasing parity and younger age at first birth. CONCLUSIONS Overall, our study does not suggest strong effect modification of common breast cancer susceptibility variants by established risk factors.
Collapse
Affiliation(s)
- Pooja Middha Kapoor
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine, University of Heidelberg, Heidelberg, Germany
| | - Sara Lindström
- Department of Epidemiology, University of Washington School of Public Health, Seattle, WA, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Sabine Behrens
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Xiaoliang Wang
- Department of Epidemiology, University of Washington School of Public Health, Seattle, WA, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Kyriaki Michailidou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Department of Electron Microscopy/Molecular Pathology and Cyprus School of Molecular Medicine, Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - Manjeet K Bolla
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Qin Wang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Alison M Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Paul D P Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Marjanka K Schmidt
- Division of Molecular Pathology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Peter Kraft
- Program in Genetic Epidemiology and Statistical Genetics, Boston, MA, USA
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Montserrat García-Closas
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Roger L Milne
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
- Precision Medicine, Monash University, Clayton, VIC, Australia
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Cancer Epidemiology Group, University Cancer Center Hamburg (UCCH), Hamburg, Germany
| | | |
Collapse
|
34
|
Williams ED, Gao D, Redfern A, Thompson EW. Controversies around epithelial-mesenchymal plasticity in cancer metastasis. Nat Rev Cancer 2019; 19:716-732. [PMID: 31666716 PMCID: PMC7055151 DOI: 10.1038/s41568-019-0213-x] [Citation(s) in RCA: 287] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/18/2019] [Indexed: 02/07/2023]
Abstract
Experimental evidence accumulated over decades has implicated epithelial-mesenchymal plasticity (EMP), which collectively encompasses epithelial-mesenchymal transition and the reverse process of mesenchymal-epithelial transition, in tumour metastasis, cancer stem cell generation and maintenance, and therapeutic resistance. However, the dynamic nature of EMP processes, the apparent need to reverse mesenchymal changes for the development of macrometastases and the likelihood that only minor cancer cell subpopulations exhibit EMP at any one time have made such evidence difficult to accrue in the clinical setting. In this Perspectives article, we outline the existing preclinical and clinical evidence for EMP and reflect on recent controversies, including the failure of initial lineage-tracing experiments to confirm a major role for EMP in dissemination, and discuss accumulating data suggesting that epithelial features and/or a hybrid epithelial-mesenchymal phenotype are important in metastasis. We also highlight strategies to address the complexities of therapeutically targeting the EMP process that give consideration to its spatially and temporally divergent roles in metastasis, with the view that this will yield a potent and broad class of therapeutic agents.
Collapse
Affiliation(s)
- Elizabeth D Williams
- Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
- Translational Research Institute (TRI), Brisbane, Queensland, Australia
- Australian Prostate Cancer Research Centre - Queensland (APCRC-Q) and Queensland Bladder Cancer Initiative (QBCI), Brisbane, Queensland, Australia
| | - Dingcheng Gao
- Department of Cardiothoracic Surgery, Department of Cell and Developmental Biology and Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Andrew Redfern
- Department of Medicine, School of Medicine, University of Western Australia, Fiona Stanley Hospital Campus, Perth, Western Australia, Australia
| | - Erik W Thompson
- Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, Queensland, Australia.
- Translational Research Institute (TRI), Brisbane, Queensland, Australia.
| |
Collapse
|
35
|
Xu Z, Ding W, Deng X. PM 2.5, Fine Particulate Matter: A Novel Player in the Epithelial-Mesenchymal Transition? Front Physiol 2019; 10:1404. [PMID: 31849690 PMCID: PMC6896848 DOI: 10.3389/fphys.2019.01404] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 10/31/2019] [Indexed: 12/12/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) refers to the conversion of epithelial cells to mesenchymal phenotype, which endows the epithelial cells with enhanced migration, invasion, and extracellular matrix production abilities. These characteristics link EMT with the pathogenesis of organ fibrosis and cancer progression. Recent studies have preliminarily established that fine particulate matter with an aerodynamic diameter of less than 2.5 μm (PM2.5) is correlated with EMT initiation. In this pathological process, PM2.5 particles, excessive reactive oxygen species (ROS) derived from PM2.5, and certain components in PM2.5, such as ions and polyaromatic hydrocarbons (PAHs), have been implicated as potential EMT mediators that are linked to the activation of transforming growth factor β (TGF-β)/SMADs, NF-κB, growth factor (GF)/extracellular signal-regulated protein kinase (ERK), GF/phosphatidylinositol 3-kinase (PI3K)/Akt, wingless/integrated (Wnt)/β-catenin, Notch, Hedgehog, high mobility group box B1 (HMGB1)-receptor for advanced glycation end-products (RAGE), and aryl hydrocarbon receptor (AHR) signaling cascades and to cytoskeleton rearrangement. These pathways directly and indirectly transduce pro-EMT signals that regulate EMT-related gene expression in epithelial cells, finally inducing the characteristic alterations in morphology and functions of epithelia. In addition, novel associations between autophagy, ATP citrate lyase (ACLY), and exosomes with PM2.5-induced EMT have also been summarized. However, some debates and paradoxes remain to be consolidated. This review discusses the potential molecular mechanisms underlying PM2.5-induced EMT, which might account for the latent role of PM2.5 in cancer progression and fibrogenesis.
Collapse
Affiliation(s)
- Zihan Xu
- Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenjun Ding
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaobei Deng
- Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
36
|
Killelea BK, Gallagher EJ, Feldman SM, Port E, King T, Boolbol SK, Franco R, Fei K, Le Roith D, Bickell NA. The effect of modifiable risk factors on breast cancer aggressiveness among black and white women. Am J Surg 2019; 218:689-694. [PMID: 31375248 DOI: 10.1016/j.amjsurg.2019.07.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/22/2019] [Accepted: 07/16/2019] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Although breast cancer incidence is higher among white women, black women are more likely to have aggressive tumors with less favorable histology, and to have a worse prognosis. Obesity and alcohol consumption have been identified as two modifiable risk factors for breast cancer, while physical activity may offer protection. Little however is known about the association of these factors with race on the severity of breast cancer. METHODS Data collected as part of a large prospective study looking at insulin resistance and race among women with breast cancer was queried for patient characteristics, lifestyle factors and tumor characteristics. The association with Nottingham Prognostic Index (NPI) was assessed with different models using univariate and multivariate linear regression. RESULTS Among 746 women in our cohort, 82% (n = 615) were white and 18% (n = 131) were black, mean age 58 years. Black patients were more likely to have high BMI (31.0 vs. 26.7, p < 0.0001), comorbidities (69% vs 55%, p = 0.01), self-reported poor diet (70% vs 42%, p < 0.001), be sedentary (56% vs 46%, p = 0.03) and were less likely to consume alcohol (8% vs 32%, p < 0.0001) compared to white patients. Overall, 137 (18%) of the patients had poorer prognosis (NPI > 4.4), which was significantly associated with younger age (55.6 vs 58.5 years, p = 0.02), black race (27% vs 15%, p = 0.001), triple negative cancer (15% vs 6%, p = 0.003), and poor diet (54% vs 45%, p = 0.046) compared to patients with better prognosis (NPI ≤ 4.4). On multivariate analysis, (model R2 = 0.12; p < 0.001), age (β = -0.011 per year, p = 0.002), healthy diet (β = -0.195, p = 0.02), and exercise (β = -0.004, p = 0.02) were associated with better prognosis, while black race (β = 0.247, p = 0.02) and triple negative cancer (β = 0.908, p < 0.0001) were associated with poor prognosis. Neither alcohol use nor BMI was significantly associated with NPI. CONCLUSION Among modifiable risk factors, diet and exercise are associated with NPI. Unmodifiable factors including race and biologic subtype remain the most important determinants of prognosis.
Collapse
Affiliation(s)
- Brigid K Killelea
- 310 Cedar St, LH 118, Yale University School of Medicine, Department of Surgery, New Haven, CT 06510, USA.
| | - Emily J Gallagher
- Icahn School of Medicine at Mt. Sinai, Department of Internal Medicine, New York, NY 10029, USA
| | - Sheldon M Feldman
- Montefiore Medical Center, Department of Surgery, Bronx, NY 10467, USA
| | - Elisa Port
- Icahn School of Medicine at Mt. Sinai, Department of Surgery, New York, NY 10029, USA
| | - Tari King
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Susan K Boolbol
- Icahn School of Medicine at Mt. Sinai, Department of Surgery, New York, NY 10029, USA
| | - Rebeca Franco
- Icahn School of Medicine at Mt. Sinai, Department of Health Evidence and Policy, New York, NY 10029, USA
| | - Kezhen Fei
- Icahn School of Medicine at Mt. Sinai, Department of Health Evidence and Policy, New York, NY 10029, USA
| | - Derek Le Roith
- Icahn School of Medicine at Mt. Sinai, Department of Internal Medicine, New York, NY 10029, USA
| | - Nina A Bickell
- Icahn School of Medicine at Mt. Sinai, Department of Internal Medicine, New York, NY 10029, USA
| |
Collapse
|
37
|
Zakhari S, Hoek JB. Epidemiology of Moderate Alcohol Consumption and Breast Cancer: Association or Causation? Cancers (Basel) 2018; 10:E349. [PMID: 30249004 PMCID: PMC6210419 DOI: 10.3390/cancers10100349] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 09/20/2018] [Accepted: 09/20/2018] [Indexed: 02/07/2023] Open
Abstract
Epidemiological studies have been used to show associations between modifiable lifestyle habits and the incidence of breast cancer. Among such factors, a history of alcohol use has been reported in multiple studies and meta-analyses over the past decades. However, associative epidemiological studies that were interpreted as evidence that even moderate alcohol consumption increases breast cancer incidence have been controversial. In this review, we consider the literature on the relationship between moderate or heavy alcohol use, both in possible biological mechanisms and in variations in susceptibility due to genetic or epigenetic factors. We argue that there is a need to incorporate additional approaches to move beyond the associations that are reported in traditional epidemiological analyses and incorporate information on molecular pathologic signatures as a requirement to posit causal inferences. In particular, we point to the efforts of the transdisciplinary field of molecular pathological epidemiology (MPE) to evaluate possible causal relationships, if any, of alcohol consumption and breast cancer. A wider application of the principles of MPE to this field would constitute a giant step that could enhance our understanding of breast cancer and multiple modifiable risk factors, a step that would be particularly suited to the era of "personalized medicine".
Collapse
Affiliation(s)
- Samir Zakhari
- Science Office, Distilled Spirits Council, Washington, DC 20005, USA.
| | - Jan B Hoek
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
38
|
Chen Z, Jiang Z, Zhang W, He B. Silencing the expression of copine-III enhances the sensitivity of hepatocellular carcinoma cells to the molecular targeted agent sorafenib. Cancer Manag Res 2018; 10:3057-3067. [PMID: 30214300 PMCID: PMC6124461 DOI: 10.2147/cmar.s167781] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background The application of the oral targeted therapeutic agent sorafenib provides new hope for patients suffering from advanced stages of hepatocellular carcinoma (HCC), but the prognosis of such patients remains poor due to the rapid development of the multidrug resistance process in cancer pathogenesis. The present work evaluated whether copine-III, a novel cancer regulator encoded by the CPNE3 gene, would be a potential indicator of sorafenib resistance in HCC treatment. Materials and methods The endogenous expression of copine-III in clinical specimens was examined by quantitative polymerase chain reaction. Copine-III siRNA was transfected into HCC cells to downregulate copine-III expression. The effect of copine-III on sorafenib’s antitumor activation was identified by in vitro and in vivo experiments (MTT, Transwell, and flow cytometry as well as a nude mice model). Results High levels of copine-III in clinical specimens are related to poor prognosis of advanced HCC patients on sorafenib treatment. Infection of Ad-siCPNE3 significantly decreased the endogenous expression of copine-III and enhanced the susceptibility of MHCC97-H cells to sorafenib: the IC50 value decreased from 1.15±0.11 to 0.25±0.05 μmol/L. Moreover, silencing copine-III enhanced the effect of sorafenib on apoptosis, in vitro invasion/migration, and subcutaneous or intrahepatic growth of MHCC97-H cells in nude mice. Conclusion Copine-III is a novel potential indicator of prognosis for patients who received sorafenib for advanced HCC treatment.
Collapse
Affiliation(s)
- Zhuo Chen
- The Affiliated Cancer Hospital of Zhengzhou University/Henan Cancer Hospital, Zhengzhou 450008, People's Republic of China,
| | - Zhengkui Jiang
- The Affiliated Cancer Hospital of Zhengzhou University/Henan Cancer Hospital, Zhengzhou 450008, People's Republic of China,
| | - Wenzhou Zhang
- The Affiliated Cancer Hospital of Zhengzhou University/Henan Cancer Hospital, Zhengzhou 450008, People's Republic of China,
| | - Baoxia He
- The Affiliated Cancer Hospital of Zhengzhou University/Henan Cancer Hospital, Zhengzhou 450008, People's Republic of China,
| |
Collapse
|
39
|
Redfern AD, Spalding LJ, Thompson EW. The Kraken Wakes: induced EMT as a driver of tumour aggression and poor outcome. Clin Exp Metastasis 2018; 35:285-308. [PMID: 29948647 DOI: 10.1007/s10585-018-9906-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 05/23/2018] [Indexed: 02/06/2023]
Abstract
Epithelial mesenchymal transition (EMT) describes the shift of cells from an epithelial form to a contact independent, migratory, mesenchymal form. In cancer the change is linked to invasion and metastasis. Tumour conditions, including hypoxia, acidosis and a range of treatments can trigger EMT, which is implicated in the subsequent development of resistance to those same treatments. Consequently, the degree to which EMT occurs may underpin the entire course of tumour progression and treatment response in a patient. In this review we look past the protective effect of EMT against the initial treatment, to the role of the mesenchymal state, once triggered, in promoting disease growth, spread and future treatment insensitivity. In patients a correlation was found between the propensity of a treatment to induce EMT and failure of that treatment to provide a survival benefit, implicating EMT induction in accelerated tumour progression after treatment cessation. Looking to the mechanisms driving this detrimental effect; increased proliferation, suppressed apoptosis, stem cell induction, augmented angiogenesis, enhanced metastatic dissemination, and immune tolerance, can all result from treatment-induced EMT and could worsen outcome. Evidence also suggests EMT induction with earlier therapies attenuates benefits of later treatments. Looking beyond epithelial tumours, de-differentiation also has therapy-attenuating effects and reversal thereof may yield similar rewards. A range of potential therapies are in development that may address the diverse mechanisms and molecular control systems involved in EMT-induced accelerated progression. Considering the broad reaching effects of mesenchymal shift identified, successful deployment of such treatments could substantially improve patient outcomes.
Collapse
Affiliation(s)
- Andrew D Redfern
- School of Medicine, University of Western Australia (UWA), Harry Perkins Building, Fiona Stanley Hospital Campus, Robin Warren Drive, Murdoch, WA, 6150, Australia.
| | - Lisa J Spalding
- School of Medicine, University of Western Australia (UWA), Harry Perkins Building, Fiona Stanley Hospital Campus, Robin Warren Drive, Murdoch, WA, 6150, Australia
| | - Erik W Thompson
- Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, Australia.,Translational Research Institute, Woolloongabba, Australia.,Department of Surgery, University of Melbourne, Melbourne, Australia
| |
Collapse
|
40
|
Jabbar S, Reuhl K, Sarkar DK. Prenatal alcohol exposure increases the susceptibility to develop aggressive prolactinomas in the pituitary gland. Sci Rep 2018; 8:7720. [PMID: 29769550 PMCID: PMC5955957 DOI: 10.1038/s41598-018-25785-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/12/2018] [Indexed: 02/07/2023] Open
Abstract
Excess alcohol use is known to promote development of aggressive tumors in various tissues in human patients, but the cause of alcohol promotion of tumor aggressiveness is not clearly understood. We used an animals model of fetal alcohol exposure that is known to promote tumor development and determined if alcohol programs the pituitary to acquire aggressive prolactin-secreting tumors. Our results show that pituitaries of fetal alcohol-exposed rats produced increased levels of intra-pituitary aromatase protein and plasma estrogen, enhanced pituitary tissue growth, and upon estrogen challenge developed prolactin-secreting tumors (prolactinomas) that were hemorrhagic and often penetrated into the surrounding tissue. Pituitary tumors of fetal alcohol-exposed rats produced higher levels of hemorrhage-associated genes and proteins and multipotency genes and proteins. Cells of pituitary tumor of fetal alcohol exposed rat grew into tumor spheres in ultra-low attachment plate, expressed multipotency genes, formed an increased number of colonies, showed enhanced cell migration, and induced solid tumors following inoculation in immunodeficient mice. These data suggest that fetal alcohol exposure programs the pituitary to develop aggressive prolactinoma after estrogen treatment possibly due to increase in stem cell niche within the tumor microenvironment.
Collapse
Affiliation(s)
- Shaima Jabbar
- The Endocrine Program, Department of Animal Sciences, Rutgers, The State University of New Jersey, 67 Poultry Lane, New Brunswick, NJ, 08901, USA.,Endocrinology and Animal Biosciences Graduate Program, Rutgers, The State University of New Jersey, 84 Lipman Drive, New Brunswick, NJ, 08901, USA
| | - Kenneth Reuhl
- The Environmental and Occupational Health Sciences Institute, Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 140, Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Dipak K Sarkar
- The Endocrine Program, Department of Animal Sciences, Rutgers, The State University of New Jersey, 67 Poultry Lane, New Brunswick, NJ, 08901, USA. .,The Environmental and Occupational Health Sciences Institute, Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 140, Frelinghuysen Road, Piscataway, NJ, 08854, USA.
| |
Collapse
|
41
|
Xu M, Luo J. Alcohol and Cancer Stem Cells. Cancers (Basel) 2017; 9:cancers9110158. [PMID: 29156633 PMCID: PMC5704176 DOI: 10.3390/cancers9110158] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/14/2017] [Accepted: 11/17/2017] [Indexed: 12/12/2022] Open
Abstract
Heavy alcohol consumption has been associated with increased risk of several cancers, including cancer of the colon, rectum, female breast, oral cavity, pharynx, larynx, liver, and esophagus. It appears that alcohol exposure not only promotes carcinogenesis but also enhances the progression and aggressiveness of existing cancers. The molecular mechanisms underlying alcohol tumor promotion, however, remain unclear. Cancer stem cells (CSC), a subpopulation of cancer cells with self-renewal and differentiation capacity, play an important role in tumor initiation, progression, metastasis, recurrence, and therapy resistance. The recent research evidence suggests that alcohol increases the CSC population in cancers, which may underlie alcohol-induced tumor promotion. This review discusses the recent progress in the research of alcohol promotion of CSC and underlying cellular/molecular mechanisms. The review will further explore the therapeutic potential of CSC inhibition in treating alcohol-induced tumor promotion.
Collapse
Affiliation(s)
- Mei Xu
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, 1095 Veterans Drive, Lexington, KY 40536, USA.
| | - Jia Luo
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, 1095 Veterans Drive, Lexington, KY 40536, USA.
| |
Collapse
|