1
|
Lin P, Qin Z, Chen X, Zhang X, Lin Y, Wang Q, He L, Guo J, Xu D, He R, Wu H, Yao X, Yao Z. Deciphering the effective components of a TCM formula for atherosclerosis by three-dimensional pattern recognition of exogenous components correlated with endogenous metabolites. JOURNAL OF ETHNOPHARMACOLOGY 2025; 346:119647. [PMID: 40120703 DOI: 10.1016/j.jep.2025.119647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 03/01/2025] [Accepted: 03/15/2025] [Indexed: 03/25/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The deciphering of effective components is crucial for understanding the role they play and how they function in traditional Chinese medicine (TCM) formulae. However, this remains a significant challenge for these complex systems with multiple components, targets, and pathways, despite their therapeutic benefits. AIM OF THE STUDY Three-dimensional pattern recognition of exogenous components correlated with endogenous metabolites was proposed to discover the effective components of Gualou-Xiebai-Banxia decoction (GXB), a famous classical TCM formula for effective improvement of atherosclerosis (AS). MATERIALS AND METHODS The potential effective exogenous components were determined by three-dimensional pattern recognition of abundance, bioavailability and AS-related activity. The efficacy of GXB in attenuating AS was evaluated using an Apolipoprotein E-deficient (ApoE-/-) mice model subjected to a high-fat diet regimen. Plasma metabolomics was developed to dig out GXB efficacy-related endogenous metabolites. Next, the potential effective exogenous components and GXB efficacy-related endogenous metabolites were combined with AS targets to develop correlation analysis, so as to explore candidate effective components and potential mechanisms of GXB. Further, the effective components were validated by oxidized low-density lipoprotein-induced RAW 264.7 macrophages. RESULTS A total of 30 potential effective exogenous components in GXB were ascertained by three-dimensional pattern recognition after conducting Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) analysis. GXB demonstrated a significant ameliorative effect on atherosclerotic symptoms in ApoE-/- mice under a high-fat diet, as evidenced by decreasing serum lipid levels, atherosclerotic plaques (aorta and aortic root) and IL-6 content. Subsequently, metabolomics results revealed that it was associated with the regulation of endogenous metabolites, including organic acids, amino acid, fatty acids and glycerophospholipid. Next, the correlation analysis was constructed with AS targets by the network of "potential effective exogenous components-AS targets-endogenous metabolites", tentatively inferring that 18 exogenous components were candidate effective components, and lipid metabolism was the major regulation pathway of GXB. Furthermore, GXB suppressed lipid accumulation in vivo/vitro through increasing expressions of PPAGγ, ABCA1, ABCG1, and SR-B1 related to cholesterol efflux. Cucurbitacin B and 5 (6)-ene-macrostemonoside B were demonstrated as the effective components with inhibitory activity on foam cell formation and lipid accumulation. CONCLUSION Three-dimensional pattern recognition of exogenous components correlated with endogenous metabolites was proposed and effectively utilized to demystify the effective components of GXB in AS prevention. This strategy also provided a reference for the related studies of other classical TCM formulae.
Collapse
MESH Headings
- Animals
- Atherosclerosis/drug therapy
- Atherosclerosis/metabolism
- Atherosclerosis/blood
- Atherosclerosis/pathology
- Drugs, Chinese Herbal/pharmacology
- Drugs, Chinese Herbal/therapeutic use
- Drugs, Chinese Herbal/chemistry
- Drugs, Chinese Herbal/pharmacokinetics
- Mice
- RAW 264.7 Cells
- Male
- Diet, High-Fat
- Mice, Inbred C57BL
- Metabolomics/methods
- Medicine, Chinese Traditional
- Mice, Knockout, ApoE
- Disease Models, Animal
- Apolipoproteins E/genetics
- Macrophages/drug effects
- Macrophages/metabolism
Collapse
Affiliation(s)
- Pei Lin
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Zifei Qin
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Xuanjing Chen
- Xiamen Hospital of Traditional Chinese Medicine (The 8th Clinical Medical College of Beijing University of Chinese Medicine), Fujian, 361001, PR China; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Xinya Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Yihan Lin
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Qi Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Liangliang He
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Jianwen Guo
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Danping Xu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Rongrong He
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Huanlin Wu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China; Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, PR China.
| | - Xinsheng Yao
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, PR China.
| | - Zhihong Yao
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, PR China.
| |
Collapse
|
2
|
Chen Y, Lei Z, Gu D, Zhao H, Yu R, He Q, Xu M, Du H. Gut microbiota: A potential enhancing factor for the therapeutic efficacy of bioactive compounds in herbal medicines. Fitoterapia 2025; 183:106570. [PMID: 40288589 DOI: 10.1016/j.fitote.2025.106570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/14/2025] [Accepted: 04/24/2025] [Indexed: 04/29/2025]
Abstract
The therapeutic efficacy of herbal medicines (HMs) is often compromised by the low bioavailability of their bioactive compounds. However, emerging evidence highlights the crucial role of gut microbiota in enhancing their effectiveness. This review summarizes gut microbiota-mediated metabolism of key herbal components, including terpenoids, flavonoids, alkaloids, and quinones. Particular emphasis is placed on the diverse gut microbiota, enzymes, and metabolites that participate in the biotransformation pathways of these active components of HMs. Exploring the metabolism between the gut microbiota and bioactive compounds gives a better understanding of HMs with multiple components against multiple targets, complex mechanisms of action, and diverse physiological activities. This review underscores the critical importance of gut microbiota in modulating and potentially enhancing the pharmacological effects of HMs, which offers new insights into gut microbiota-mediated transformation pathways and molecular mechanisms of bioactive compounds and deepens the understanding of the therapeutic effects of HMs. Moreover, it suggests new research directions for studying HMs based on gut microbiota-mediated biotransformation.
Collapse
Affiliation(s)
- Yu Chen
- Department of Otolaryngology Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Ziqin Lei
- Department of Pharmacy, Affiliated Hospital of Southwest Jiaotong University, College of Medicine, Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu 610014, Sichuan, China
| | - Deying Gu
- Department of Otolaryngology Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Huiling Zhao
- Department of Otolaryngology Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Rong Yu
- Department of Otolaryngology Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Qin He
- Department of Pharmacy, Affiliated Hospital of Southwest Jiaotong University, College of Medicine, Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu 610014, Sichuan, China
| | - Min Xu
- Department of Pharmacy, Affiliated Hospital of Southwest Jiaotong University, College of Medicine, Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu 610014, Sichuan, China
| | - Huan Du
- Department of Pharmacy, Affiliated Hospital of Southwest Jiaotong University, College of Medicine, Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu 610014, Sichuan, China.
| |
Collapse
|
3
|
Lu W, Liu Z, Song Z, Wang C, Yu Z, Peng S, Tian Z, Lyu A, Ning Z. Vinegar-processed frankincense ameliorates ulcerative colitis by targeting BSH-active bacteria preference-mediated GDCA hydrolysis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 348:119845. [PMID: 40287117 DOI: 10.1016/j.jep.2025.119845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/12/2025] [Accepted: 04/19/2025] [Indexed: 04/29/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Frankincense, is extensively used in both traditional Chinese medicine (TCM) and Indian practices for the treatment of ulcerative colitis (UC). In TCM, it is typically subjected to process with vinegar, which is believed to enhance its therapeutic efficacy. However, the underlying mechanism has yet to be elucidated. AIM OF THE STUDY To elucidate the underlying mechanism of frankincense vinegar processing from the perspective of bile salt hydrolase (BSH)-active bacteria preference and glycodeoxycholic acid (GDCA) hydrolysis. MATERIALS AND METHODS Dextran sodium sulfate (DSS)-induced UC model was used to elucidate the superior improving effects of vinegar-processed frankincense (PF). 16S rRNA and metagenomic sequencing along with ultra-high performance liquid chromatography-triple quadrupole mass spectroscopy (UHPLC-TQ-MS) were employed to reveal the differential bacteria and its related disturbance of GDCA. The effects of PF and GDCA on BSH-active bacteria were confirmed using real-time quantitative polymerase chain reaction (RT-qPCR) and in vitro experiments. Finally, the pro-inflammatory effects of GDCA and the mechanisms by which PF ameliorates UC were verified by establishing a UC pseudo-sterile mice model with GDCA intervention. RESULTS PF exhibited remarkable mitigating effects on UC (P < 0.05 or P < 0.01). Specifically, PF enhanced the BSH activity of Bifidobacterium longum and Lactobacillus acidophilus (P < 0.01), thereby promoting their dissociation efficiency toward glycine-conjugated bile acids (G-CBAs), particularly GDCA (P < 0.01). Furthermore, PF reduced GDCA levels by regulating the dissociation efficiency of Bifidobacterium longum and Lactobacillus acidophilus toward GDCA, thereby alleviating GDCA-induced exacerbation of UC. CONCLUSION PF exhibits its superior amelioration effects on UC by enhancing the dissociation efficiency of Bifidobacteruum longum and Lactobacillus acidophilus towards G-CBAs, particularly GDCA.
Collapse
Affiliation(s)
- Wenjie Lu
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Zhenli Liu
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Zhiqian Song
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Chun Wang
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Zheng Yu
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Shitao Peng
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China; School of Chinese Medicine, Hong Kong Baptist University, Hongkong, 00825, China
| | - Ziqi Tian
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Aiping Lyu
- School of Chinese Medicine, Hong Kong Baptist University, Hongkong, 00825, China.
| | - Zhangchi Ning
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
4
|
Li N, Shang X, Shi L, Li Y, Mao T, Wang Q, Li J, Peng G. Effects of three Chinese herbal therapies on gut microbiota and short-chain fatty acid metabolism in patients with mild, moderate, and severe ulcerative colitis: Multi-center, randomized, controlled trials. Int Immunopharmacol 2025; 152:114444. [PMID: 40088871 DOI: 10.1016/j.intimp.2025.114444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 02/24/2025] [Accepted: 03/05/2025] [Indexed: 03/17/2025]
Abstract
BACKGROUND Traditional Chinese medicines, as a burgeoning field of medication, significantly alleviate ulcerative colitis (UC) by improving intestinal microbiota-metabolism. Our previous studies demonstrated the significant efficacy of Hudi Enteric-coated capsules (HDEC), Qingchang Wenzhong decoction (QCWZ), and Modified Wumei pill (MWMP) using a mouse model of colitis. However, the mechanism of these therapies through the modulation of microbiota-metabolism remains uncertain. OBJECTIVE Three multicenter randomized controlled trials were designed to explore the effects of three therapies on the microbiota-metabolism of UC patients with different severity. METHODS A total of 143 patients with different severities of UC were recruited from 10 hospitals. The clinical efficacy of HDEC for mild UC, QCWZ for moderate UC, and MWMP for severe UC (SUCs) was evaluated by colorectal Mayo scores and systemic inflammatory indicators. The 16S rRNA sequencing and metabolomics were used to analyze intestinal microbiota and metabolite profiles. RESULTS Three therapies used alone or combined with mesalazine (MS) were comparable to MS alone in improving Mayo scores and hematic inflammatory parameters. Microbial diversities and architectures of SUCs showed the greatest response to MWMP+MS than other medications, as reflected by the enriched Ruminococcus and Anaerostipes together with the reduced Enterococcus, Streptococcus, and Streptococcus anginosus. Furthermore, MWMP+MS boosted the production of the microbiota-derived short-chain fatty acids (SCFAs) of SUCs. These differential microbes and metabolites further displayed significant statistical relationships with clinical parameters. CONCLUSION Herbal therapies, especially MWMP+MS, effectively improve microbiota composition and SCFA metabolism, which correlates with the improvements of serum inflammatory markers and endoscopic findings in patients.
Collapse
Affiliation(s)
- Na Li
- Department of Immunology and Microbiology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Xuekai Shang
- Department of Immunology and Microbiology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Lei Shi
- Department of Gastroenterology, Dong Fang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yalan Li
- Department of Immunology and Microbiology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Tangyou Mao
- Department of Gastroenterology, Dong Fang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Qing Wang
- Department of Immunology and Microbiology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Junxiang Li
- Department of Gastroenterology, Dong Fang Hospital, Beijing University of Chinese Medicine, Beijing, China.
| | - Guiying Peng
- Department of Immunology and Microbiology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
5
|
Mizanur Rahaman M, Wangchuk P, Sarker S. A systematic review on the role of gut microbiome in inflammatory bowel disease: Spotlight on virome and plant metabolites. Microb Pathog 2025:107608. [PMID: 40250496 DOI: 10.1016/j.micpath.2025.107608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 04/14/2025] [Accepted: 04/16/2025] [Indexed: 04/20/2025]
Abstract
Inflammatory bowel diseases (IBD), including ulcerative colitis and Crohn's disease, arise from various factors such as dietary, genetic, immunological, and microbiological influences. The gut microbiota plays a crucial role in the development and treatment of IBD, though the exact mechanisms remain uncertain. Current research has yet to definitively establish the beneficial effects of the microbiome on IBD. Bacteria and viruses (both prokaryotic and eukaryotic) are key components of the microbiome uniquely related to IBD. Numerous studies suggest that dysbiosis of the microbiota, including bacteria, viruses, and bacteriophages, contributes to IBD pathogenesis. Conversely, some research indicates that bacteria and bacteriophages may positively impact IBD outcomes. Additionally, plant metabolites play a crucial role in alleviating IBD due to their anti-inflammatory and microbiome-modulating properties. This systematic review discusses the role of the microbiome in IBD patients and evaluates the potential connection between plant metabolites and the microbiome in the context of IBD pathophysiology.
Collapse
Affiliation(s)
- Md Mizanur Rahaman
- Biomedical Sciences and Molecular Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia
| | - Phurpa Wangchuk
- Biomedical Sciences and Molecular Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia; Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
| | - Subir Sarker
- Biomedical Sciences and Molecular Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia; Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia.
| |
Collapse
|
6
|
Khanna S, Kumar S, Sharma P, Daksh R, Nandakumar K, Shenoy RR. Flavonoids regulating NLRP3 inflammasome: a promising approach in alleviating diabetic peripheral neuropathy. Inflammopharmacology 2025:10.1007/s10787-025-01729-7. [PMID: 40205269 DOI: 10.1007/s10787-025-01729-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 01/25/2025] [Indexed: 04/11/2025]
Abstract
A common and serious side effect of diabetes is diabetic peripheral neuropathy (DPN), which is characterised by gradual nerve damage brought on by oxidative stress, chronic inflammation, and prolonged hyperglycemia. Studies identify NLRP3 inflammasome as a key mediator in the pathogenesis of DPN, connecting neuroinflammation and neuronal damage to metabolic failure. Because of their strong anti-inflammatory and antioxidant qualities, flavonoids, a broad class of naturally occurring polyphenols, have drawn interest as potential treatments for DPN. The various ways that flavonoids affect the NLRP3 inflammasome and their potential as a treatment for DPN are examined in this review. It has been demonstrated that flavonoids prevent NLRP3 activation, which lowers the release of pro-inflammatory cytokines including IL-1β and IL-18 and causes neuroinflammation. Flavonoids work mechanistically by reducing oxidative stress, altering important signalling pathways, and blocking the activities of NF-κB and caspase-1, which are both essential for the activation of the NLRP3 inflammasome. Preclinical research has shown that flavonoids have strong neuroprotective benefits, and few clinical evidence also points to the potential of flavonoids to improve nerve function and lessen neuropathic pain in diabetic patients. The current review emphasises how flavonoids may be used as a treatment strategy to target inflammation in DPN caused by the NLRP3 inflammasome. By targeting important inflammatory pathways, flavonoids provide a new way to slow the progression of this debilitating illness. Further investigation into the mechanisms, clinical translation, and novel drug delivery techniques could enhance the therapeutic efficacy of diabetic peripheral neuropathy.
Collapse
Affiliation(s)
- Saumya Khanna
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104
| | - Sachindra Kumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104
| | - Pratyasha Sharma
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104
| | - Rajni Daksh
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104
| | - Krishnadas Nandakumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104
| | - Rekha Raghuveer Shenoy
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104.
| |
Collapse
|
7
|
Chen W, Xu L, Wang L, Shan YN, Li Y, Zhu JS. Qing-Re-Hua-Shi Decoction ameliorates DSS-induced colitis by modulating multiple signaling pathways and remodeling the gut microbiota and metabolite profile. Front Cell Infect Microbiol 2025; 15:1541289. [PMID: 40242025 PMCID: PMC11999956 DOI: 10.3389/fcimb.2025.1541289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 03/13/2025] [Indexed: 04/18/2025] Open
Abstract
Background Clinically, Qing-Re-Hua-Shi Decoction (QRHSD) has been clinically used to treat ulcerative colitis (UC) with satisfactory outcomes and minimal side effects. However, its molecular mechanisms remain unclear. Purpose This study investigates the effects of QRHSD on DSS-induced colitis in mice, employing multi-omics analyses, including RNA-seq transcriptomics, 16S rRNA microbiomics, non-targeted metabolomics, and network pharmacology analysis. Methods The chemical composition of QRHSD was analyzed using quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS). A UC mice model was induced by 3% DSS for 7 days. The effects and mechanisms of QRHSD on UC were evaluated via hematoxylin and eosin, immunofluorescence assay, flow cytometry, western blot, RNA-seq transcriptomics, 16S rRNA microbiomics, non-targeted metabolomics, and network pharmacology. Correlation analyses and validation experiments explored links between transcriptomic, microbiome, metabolomic profiles, and UC-related clinical indices. Results UPLC-Q-TOF/MS identified 55 compounds in QRHSD. QRHSD significantly reduced clinical activity, histological changes, and inflammatory factors in UC mice, regulated Th17/Treg balance, and enhanced intestinal barrier integrity. 16S rRNA analysis showed that QRHSD altered gut microbiota composition, increasing beneficial bacteria (e.g., Lactobacillus) and decreasing harmful bacteria (e.g., Morganella). Non-targeted metabolomics revealed 507 metabolites associated with UC amelioration, enriched in pathways like bile secretion, ABC transporters, and amino acid biosynthesis. RNA-seq analysis, network pharmacology, and experimental verification showed that QRHSD significantly regulated key signaling pathways, including PI3K/AKT, NF-κB, and MAPK signaling pathways. Finally, correlation analysis highlighted connections among UC-related clinical factors, gut microbiota, and metabolites. Conclusion QRHSD could modulate the gut microbiota, metabolic homeostasis, and multiple signal pathways in the treatment of DSS-induced UC, revealing the mechanism of traditional Chinese medicine therapy for UC.
Collapse
Affiliation(s)
- Wei Chen
- Department of Gastroenterology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin Xu
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Long Wang
- Department of Gastroenterology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu-nan Shan
- School of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Yan Li
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jin-shui Zhu
- Department of Gastroenterology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Ran P, Jiang F, Pan L, Shu Y, Hu F, Wang Y, Zhao R, Wang W, Mu H, Wang J, Wei J, Fu G. Polysaccharide from Atractylodes macrocephala Koidz. alleviates pyrotinib-induced diarrhea through regulating cAMP/LKB1/AMPK/CFTR pathway and restoring gut microbiota and metabolites. Int J Biol Macromol 2025; 308:142512. [PMID: 40157659 DOI: 10.1016/j.ijbiomac.2025.142512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 03/06/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025]
Abstract
Polysaccharide from Atractylodes macrocephala Koidz. (PAMK), a bioactive component of Atractylodes macrocephala Koidz. (AMK), demonstrates a wide range of pharmacological activities, including the enhancement of gastrointestinal function and regulation of internal homeostasis. This study explores the potential of PAMK in alleviating pyrotinib-induced diarrhea and modulating gut microbiota and its metabolites. Pyrotinib is a tyrosine kinase inhibitor used in cancer treatment, is known for its side effect of diarrhea, which significantly diminishes patients' quality of life. Our prior research suggests that pyrotinib-induced diarrhea may be linked to CFTR-mediated dysregulation of chloride secretion. The present findings indicate that PAMK alleviates pyrotinib-induced diarrhea by reducing cAMP levels, activating the LKB1/AMPK pathway, and inhibiting CFTR activity, as confirmed by enzyme-linked immunosorbent assay (ELISA), qRT-PCR, and western blot analyses. PAMK effectively decreased CFTR-mediated chloride ion secretion in pyrotinib-treated cells, as shown by the MQAE assay. At specific doses, PAMK alleviated pyrotinib-induced diarrhea in rats and significantly restored intestinal barrier integrity. Furthermore, PAMK treatment rebalanced the gut microbiota, reversing the pyrotinib-induced increase in Clostridium and Erysipelotrichi species. Metabolomic profiling further highlighted the involvement of the AMPK signaling pathway. These findings provide a basis for future research aimed at developing cancer treatments with reduced side effects.
Collapse
Affiliation(s)
- Pancen Ran
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; The Second Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250013, China
| | - Fengxian Jiang
- Department of Radiation Oncology, The 960th Hospital of the PLA Joint Logistics Support Force, Jinan 250031, China
| | - Liying Pan
- The Second Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250013, China
| | - Yang Shu
- The Second Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250013, China
| | - Fangyan Hu
- School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Yahui Wang
- The Second Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250013, China
| | - Rui Zhao
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Weihao Wang
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Huaiqian Mu
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Juqiong Wang
- School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Jian Wei
- School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China.
| | - Guobin Fu
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; The Second Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250013, China; Department of Medical Oncology, The Third Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250031, China.
| |
Collapse
|
9
|
Liu X, Yang K, Jia Y, Yeertai Y, Wu C, Wang X, Jia Q, Gu Z, Cong J, Ling J. Chaihushugan powder regulates the gut microbiota to alleviate mitochondrial oxidative stress in the gastric tissues of rats with functional dyspepsia. Front Immunol 2025; 16:1549554. [PMID: 40040709 PMCID: PMC11876139 DOI: 10.3389/fimmu.2025.1549554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 01/29/2025] [Indexed: 03/06/2025] Open
Abstract
Introduction Functional dyspepsia (FD) is a prevalent functional gastrointestinal disorder associated with oxidative stress (OS) and dysbiosis. Chaihushugan powder (CHSGP) demonstrates efficacy in treating FD; however, the underlying therapeutic mechanism is not yet elucidated. This study aims to investigate the effects of CHSGP on OS and gut microbiota (GM) in FD rats, with a particular emphasis on the role of GM as a potential target for the antioxidant properties of CHSGP. Methods The FD rat model was established with a modified tail-clamp stimulation and the administration of the CHSGP decoction at a dosage of 9.6 g/kg via gavage for a duration of 4 weeks. The GM was depleted by the administration of a cocktail of metronidazole (200 mg/kg), ampicillin (200 mg/kg), neomycin sulfate (200 mg/kg), and vancomycin (100 mg/kg). Fecal microbiota transplantation (FMT) was performed with CHSGP-treated fecal supernatant at a dosage of 10 mL/kg. The gastrointestinal motility was measured using the rates of gastric emptying and small intestine propulsion. Hematoxylin and eosin staining was employed to elucidate the pathological changes, while the transmission electron microscope was used to examine the microstructures of the interstitial cells of Cajal (ICC). Chemiluminescence, colorimetric assay, immunofluorescence co-staining, and western blot assay were employed to identify the OS-related markers (ROS, SOD, NOX4, PRDX1, and TRX2). Sequencing of fecal microbiota was performed utilizing 16S rDNA. Results The CHSGP decoction promoted gastrointestinal motility, protected the microstructure of ICC, and reduced OS in FD rats. The GM composition was also regulated by CHSGP. However, these effects disappeared after microbiota depletion. Fortunately, the FMT therapy reinstated them. Conclusion Chaihushugan powder decoction might regulate the GM to alleviate mitochondrial OS in the gastric tissues of FD rats.
Collapse
Affiliation(s)
- Xuejiao Liu
- Department of Gastroenterology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Keming Yang
- Department of Gastroenterology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China
| | - Yuebo Jia
- Department of Gastroenterology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yeliya Yeertai
- Department of Gastroenterology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chenheng Wu
- Department of Gastroenterology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiangxiang Wang
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qingling Jia
- Department of Gastroenterology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhijian Gu
- Department of Gastroenterology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jun Cong
- Department of Gastroenterology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianghong Ling
- Department of Gastroenterology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
10
|
Castellanos-Ruiz D, Ojeda-Borbolla JG, Ruiz-García OV, Peña-Corona SI, Martínez-Peña AA, Ibarra-Rubio ME, Gavilanes-Ruiz M, Mendoza-Rodríguez CA. Uterine Microbiota and Bisphenols: Novel Influencers in Reproductive Health. J Xenobiot 2025; 15:26. [PMID: 39997369 PMCID: PMC11856463 DOI: 10.3390/jox15010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/10/2025] [Accepted: 01/24/2025] [Indexed: 02/26/2025] Open
Abstract
Infertility affects 8-12% of couples worldwide, and 30-75% of preclinical pregnancy losses are due to a failure during the implantation process. Exposure to endocrine disruptors, like bisphenols, among others, has been associated with the increase in infertility observed in the past decades. An increase in infertility has correlated with exposure to endocrine disruptors like bisphenols. The uterus harbors its own microbiota, and changes in this microbiota have been linked to several gynecological conditions, including reproductive failure. There are no studies on the effects of bisphenols on the uterine-microbiota composition, but some inferences can be gleaned by looking at the gut. Bisphenols can alter the gut microbiota, and the molecular mechanism by which gut microbiota regulates intestinal permeability involves Toll-like receptors (TLRs) and tight junction (TJ) proteins. TJs participate in embryo implantation in the uterus, but bisphenol exposure disrupts the expression and localization of TJ proteins. The aim of this review is to summarize the current knowledge on the microbiota of the female reproductive tract (FRT), its association with different reproductive diseases-particularly reproductive failure-the effects of bisphenols on microbiota composition and reproductive health, and the molecular mechanisms regulating uterine-microbiota interactions crucial for embryo implantation. This review also highlights existing knowledge gaps and outlines research needs for future risk assessments regarding the effects of bisphenols on reproduction.
Collapse
Affiliation(s)
- Dafne Castellanos-Ruiz
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico (M.E.I.-R.)
| | - J. Gerardo Ojeda-Borbolla
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico (M.E.I.-R.)
| | - Olga V. Ruiz-García
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico (M.E.I.-R.)
| | - Sheila I. Peña-Corona
- Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Annia A. Martínez-Peña
- División de Ciencias de la Salud, Universidad Intercontinental, A. C., Ciudad de México 14420, Mexico
| | - María Elena Ibarra-Rubio
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico (M.E.I.-R.)
| | - Marina Gavilanes-Ruiz
- Facultad de Química, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - C. Adriana Mendoza-Rodríguez
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico (M.E.I.-R.)
| |
Collapse
|
11
|
Yang Q, He WH, Xie L, Chen T, Liu RF, Hu JJ, Guo JY, Tan GZ, Wu FL, Gu P, Chen P, Chen Y. Oral administration of astilbin mitigates acetaminophen-induced acute liver injury in mice by modulating the gut microbiota. Acta Pharmacol Sin 2025; 46:416-429. [PMID: 39313515 PMCID: PMC11747501 DOI: 10.1038/s41401-024-01383-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/16/2024] [Accepted: 08/18/2024] [Indexed: 09/25/2024]
Abstract
Acetaminophen (APAP) overdose-induced acute liver injury (ALI) is characterized by extensive oxidative stress, and the clinical interventions for this adverse effect remain limited. Astilbin is an active compound found in the rhizome of Smilax glabra Roxb. with anti-inflammatory and antioxidant activities. Due to its low oral bioavailability, astilbin can accumulate in the intestine, which provides a basis for the interaction between astilbin and gut microbiota (GM). In the present study we investigated the protective effects of astilbin against APAP-induced ALI by focusing on the interaction between astilbin and GM. Mice were treated with astilbin (50 mg·kg-1·d-1, i.g.) for 7 days. After the last administration of astilbin for 2 h, the mice received APAP (300 mg/kg, i.g.) to induce ALI. We showed that oral administration of astilbin significantly alleviated APAP-induced ALI by altering the composition of GM and enriching beneficial metabolites including hydroxytyrosol (HT). GM depletion using an "antibiotics cocktail" or paraoral administration of astilbin abolished the hepatoprotective effects of astilbin. On the other hand, administration of HT (10 mg/kg, i.g.) caused similar protective effects in APAP-induced ALI mice. Transcriptomic analysis of the liver tissue revealed that HT inhibited reactive oxygen species and inflammation-related signaling in APAP-induced ALI; HT promoted activation of the Nrf2 signaling pathway to combat oxidative stress following APAP challenge in a sirtuin-6-dependent manner. These results highlight that oral astilbin ameliorates APAP-induced ALI by manipulating the GM and metabolites towards a more favorable profile, and provide an alternative therapeutic strategy for alleviating APAP-induced ALI.
Collapse
Affiliation(s)
- Qin Yang
- Department of Gastroenterology, The Seventh Affiliated Hospital of Southern Medical University, Foshan, 528244, China
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Wen-Hao He
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Li Xie
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Tao Chen
- Department of Physiology, School of Basic Medical Sciences, Gannan Medical University, Ganzhou, 341000, China
| | - Ruo-Fan Liu
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jia-Jia Hu
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jia-Yin Guo
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Guo-Zhu Tan
- Department of Gastroenterology, The Seventh Affiliated Hospital of Southern Medical University, Foshan, 528244, China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China
| | - Fu-Ling Wu
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Peng Gu
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Peng Chen
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Yu Chen
- Department of Gastroenterology, The Seventh Affiliated Hospital of Southern Medical University, Foshan, 528244, China.
| |
Collapse
|
12
|
Wu W, Sun Y, Niu S, Li X, Chen L, Xie S, Chang L, Wei S, Jing M, Li H, Zhao Y. Integrated Microbiome and Metabolomic to Explore the Mechanism of Coptisine in Alleviating Ulcerative Colitis. Phytother Res 2025; 39:676-697. [PMID: 39648789 PMCID: PMC11832363 DOI: 10.1002/ptr.8389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 08/20/2024] [Accepted: 11/03/2024] [Indexed: 12/10/2024]
Abstract
Coptisine (COP), a naturally occurring alkaloid, is known for its diverse pharmacological effects and its supportive role in intestinal health. Despite this, the detailed mechanisms behind its therapeutic benefits are not yet fully understood. The objective of this study is to investigate the therapeutic potential of COP for the treatment of Ulcerative Colitis (UC) and to delineate the critical pathways by which it exerts its therapeutic effects. To assess COP's therapeutic effectiveness, mice were administered COP and monitored for clinical symptoms, activity, and disease activity index (DAI) changes. Intestinal histopathology, mucosal barrier function, and gut microbiota structure were evaluated, along with metabolic profiling, focusing on Prenol lipids in the colon to identify COP-induced metabolic shifts. Mice treated with COP exhibited significant relief from diarrhea and bleeding, along with increased activity and a marked reduction in DAI scores. Histopathological evaluation revealed a reduction in intestinal inflammation, and the intestinal mucosal barrier function was notably enhanced. The gut microbiota composition in COP-treated mice showed improvements. Additionally, the levels of Prenol lipids in the colon were elevated by COP treatment, which is crucial for the recovery of intestinal function. Our study demonstrates that COP effectively ameliorates colitis symptoms by modulating colon Prenol lipids metabolism, particularly under the influence of key bacterial species. The findings of this study provide novel insights into the therapeutic mechanisms of COP in the treatment of UC.
Collapse
Affiliation(s)
- Wenbin Wu
- Graduate School of Chinese PLA General HospitalChinese PLA Medical SchoolBeijingChina
- Health Care Office of the Service Bureau of AgencyOffices Administration of the Central Military CommissionBeijingChina
- The Fifth Medical CenterChinese PLA General HospitalBeijingChina
| | - Yanling Sun
- The Fifth Medical CenterChinese PLA General HospitalBeijingChina
| | - Shengqi Niu
- The Fifth Medical CenterChinese PLA General HospitalBeijingChina
| | - Xing Li
- The Fifth Medical CenterChinese PLA General HospitalBeijingChina
| | - Lisheng Chen
- College of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Shuying Xie
- The Fifth Medical CenterChinese PLA General HospitalBeijingChina
| | - Lei Chang
- School of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouChina
| | - Shizhang Wei
- National Cancer CenterNational Clinical Research Center for CancerCancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Manyi Jing
- The Fifth Medical CenterChinese PLA General HospitalBeijingChina
| | - Haotian Li
- The Fifth Medical CenterChinese PLA General HospitalBeijingChina
| | - Yanling Zhao
- The Fifth Medical CenterChinese PLA General HospitalBeijingChina
| |
Collapse
|
13
|
Li L, Guan Y, Du Y, Chen Z, Xie H, Lu K, Kang J, Jin P. Exploiting omic-based approaches to decipher Traditional Chinese Medicine. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118936. [PMID: 39413937 DOI: 10.1016/j.jep.2024.118936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese Medicine (TCM), an ancient health system, faces significant research challenges due to the complexity of its active components and targets, as well as a historical lack of detailed annotation. However, recent advances in omics technologies have begun to unravel these complexities, providing a more informed and nuanced understanding of TCM's therapeutic potential in contemporary healthcare. AIM OF THE REVIEW This review summarizes the application of omics technologies in TCM modernization, emphasizing components analysis, quality control, biomarker discovery, target identification, and treatment optimization. In addition, future perspectives on using omics for precision TCM treatment are also discussed. MATERIALS AND METHODS We have explored several databases (including PubMed, ClinicalTrials, Google Scholar, and Web of Science) to review related articles, focusing on Traditional Chinese Medicine, Omics Strategy, Precision Medicine, Biomarkers, Quality Control, and Molecular Mechanisms. Paper selection criteria involved English grammar, publication date, high citations, and broad applicability, exclusion criteria included low credibility, non-English publications, and those full-text inaccessible ones. RESULTS TCM and the popularity of Chinese herbal medicines (CHMs) are gaining increasing attention worldwide. This is driven, in part, by a large number of technologies, especially omics strategy, which are aiding the modernization of TCM. They contribute to the quality control of CHMs, the identification of cellular targets, discovery of new drugs and, most importantly, the understanding of their mechanisms of action. CONCLUSION To fully integrate TCM into modern medicine, further development of robust omics strategies is essential. This vision includes personalized medicine, backed by advanced computational power and secure data infrastructure, to facilitate global acceptance and seamless integration of TCM practices.
Collapse
Affiliation(s)
- Lei Li
- Department of anorectal Surgery, Hospital of Chengdu University of Traditional Chinese Medicine and Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Yueyue Guan
- Department of Encephalopathy, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China.
| | - Yongjun Du
- Department of anorectal Surgery, Hospital of Chengdu University of Traditional Chinese Medicine and Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Zhen Chen
- School of Clinical Medicine of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Haoyang Xie
- School of Clinical Medicine of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Kejin Lu
- Yunnan Yunke Cheracteristic Plant Extraction Laboratory, Kunming, Yunnan, 650106, China.
| | - Jian Kang
- Department of anorectal Surgery, Hospital of Chengdu University of Traditional Chinese Medicine and Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Ping Jin
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, 650091, China.
| |
Collapse
|
14
|
Li X, Xu R, Zhang D, Cai J, Zhou H, Song T, Wang X, Kong Q, Li L, Liu Z, He Z, Tang Z, Tan J, Zhang J. Baicalin: a potential therapeutic agent for acute kidney injury and renal fibrosis. Front Pharmacol 2025; 16:1511083. [PMID: 39911847 PMCID: PMC11795133 DOI: 10.3389/fphar.2025.1511083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 01/06/2025] [Indexed: 02/07/2025] Open
Abstract
Acute kidney injury (AKI) is a common critical clinical disease that is linked to significant morbidity, recurrence, and mortality. It is characterized by a fast and prolonged loss in renal function arising from numerous etiologies and pathogenic pathways. Renal fibrosis, defined as the excessive accumulation of collagen and proliferation of fibroblasts within renal tissues, contributes to the structural damage and functional decline of the kidneys, playing a pivotal role in the advancement of Chronic Kidney Disease (CKD). Until now, while continuous renal replacement therapy (CRRT) has been utilized in the management of severe AKI, there remains a dearth of effective targeted therapies for AKI stemming from diverse etiologies. Similarly, the identification of specific biomarkers and pharmacological targets for the treatment of renal fibrosis remains a challenge. Baicalin, a naturally occurring compound classified within the flavonoid group and commonly found in the Chinese herb Scutellaria baicalensis, has shown a range of pharmacological characteristics, such as antioxidant, anti-inflammatory, antifibrotic, antitumor and antiviral effects, as evidenced by research studies. Research shows that Baicalin has potential in treating kidney diseases like AKI and renal fibrosis. This review aims to summarize Baicalin's progress in these areas, including its molecular mechanism, application in treatment, and absorption, distribution, metabolism, and excretion. Baicalin's therapeutic effects are achieved through various pathways, including antioxidant, anti-inflammatory, antifibrosis, and regulation of apoptosis and cell proliferation. Besides, we also hope this review may give some enlightenment for treating AKI and renal fibrosis in clinical practice.
Collapse
Affiliation(s)
- Xiaoming Li
- Department of Immunology, Zunyi Medical University, Zunyi, China
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Rui Xu
- Department of Immunology, Zunyi Medical University, Zunyi, China
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Dan Zhang
- Zunyi Medical University Library Administrative Office, Zunyi, China
| | - Ji Cai
- Department of Immunology, Zunyi Medical University, Zunyi, China
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - He Zhou
- Department of Immunology, Zunyi Medical University, Zunyi, China
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Tao Song
- Department of Immunology, Zunyi Medical University, Zunyi, China
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Xianyao Wang
- Department of Immunology, Zunyi Medical University, Zunyi, China
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Qinghong Kong
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, China
| | - Liujin Li
- Department of Otolaryngology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhaohui Liu
- Department of Otolaryngology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhixu He
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, China
| | - Zhengzhen Tang
- Department of Pediatrics, The First People’s Hospital of Zunyi, Third Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jun Tan
- Department of Histology and Embryology, Zunyi Medical University, Zunyi, China
| | - Jidong Zhang
- Department of Immunology, Zunyi Medical University, Zunyi, China
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, China
| |
Collapse
|
15
|
Zhong YH, Wu XW, Zhang XY, Zhang SW, Feng Y, Zhang XM, Xu BB, Zhong GY, Huang HL, He JW, Zeng JX, Liang J. Intestinal microbiota-mediated serum pharmacochemistry reveals hepatoprotective metabolites of Platycodonis Radix against APAP-induced liver injury. J Chromatogr B Analyt Technol Biomed Life Sci 2025; 1251:124395. [PMID: 39644824 DOI: 10.1016/j.jchromb.2024.124395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/09/2024] [Accepted: 11/19/2024] [Indexed: 12/09/2024]
Abstract
The urgent need for new medications that regulate CYP2E1, CASP3, Nrf2, HO-1, TLR2, TLR4, STAT3, and NF-κB activities is paramount for the treatment of drug-induced liver injury (DILI), particularly from acetaminophen (APAP). Previous studies have suggested that platycosides of Platycodonis Radix exhibits hepatoprotective properties against APAP-induced liver injury (AILI), and their serum metabolites may be the effective agents. As the identify the serum metabolites of platycosides is a huge challenge, the mechanism whether platycosides exert effects through the serum metabolites regulating those targets still remain unclear. In this study, we propose a novel method termed intestinal microbiota-mediated serum pharmacochemistry (IMSP) to identify the serum metabolite profile of platycosides, using deglycosylated platycosides as template molecules. Our results identified a total of 44 prototype platycosides in the total platycosides fraction of Platycodonis Radix (PF). In rat serum, we identified 12 prototype platycosides and 45 metabolites derived from the 44 platycosides. Furthermore, our findings indicate that all 44 platycosides can enter the serum in the form of metabolites. The presence of these metabolites in serum is closely related to their oral bioavailability and the content of the prototypes. The in vivo animal experiments showed that the PF possessed significant anti-AILI effects and CYP2E1, CASP3, Nrf2, HO-1, TLR2, TLR4, STAT3, and NF-κB p65 regulation activities. And the in vitro cell experiments and molecular docking analyses further demonstrated that the hepatoprotective effects were mainly ascribed to the serum metabolites, which regulating targets of CYP2E1, CASP3, Nrf2, HO-1, TLR2, TLR4, STAT3, and NF-κB p65. Additionally, the activities of these metabolites are closely associated with their structures. In summary, the IMSP method significantly enhances the ability to identify platycoside metabolites in serum, reveals that all platycosides may contribute to anti-AILI activity through their metabolites, PF and some of these metabolites are promising candidate compounds for developing new medications with anti-AILI effects for the first time.
Collapse
Affiliation(s)
- Yuan-Han Zhong
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Xi-Wa Wu
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Xin-Yu Zhang
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Shou-Wen Zhang
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Yan Feng
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Xue-Mei Zhang
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Bing-Bing Xu
- Jiangxi Provincial Institute of Traditional Chinese Medicine, Nanchang 330046, China
| | - Guo-Yue Zhong
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Hui-Liang Huang
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Jun-Wei He
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Jin-Xiang Zeng
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China.
| | - Jian Liang
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China.
| |
Collapse
|
16
|
Liu J, Li B, Zhou X, Liu G, Li C, Hu Z, Peng R. Uncovering the mechanisms of Zhubi decoction against rheumatoid arthritis through an integrated study of network pharmacology, metabolomics, and intestinal flora. JOURNAL OF ETHNOPHARMACOLOGY 2025; 336:118736. [PMID: 39186991 DOI: 10.1016/j.jep.2024.118736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zhubi Decoction (ZBD) is a modified formulation derived from the classic traditional Chinese medicine prescription "Er-Xian Decoction" documented in the esteemed "Clinical Manual of Chinese Medical Prescription". While the utilization of ZBD has exhibited promising clinical outcomes in treating rheumatoid arthritis (RA), the precise bioactive chemical constituents and the underlying mechanisms involved in its therapeutic efficacy remain to be comprehensively determined. AIM OF THE STUDY This study aims to systematically examine ZBD's pharmacological effects and molecular mechanisms for RA alleviation. MATERIALS AND METHODS Utilizing the collagen-induced arthritis (CIA) rat model, we comprehensively evaluated the anti-rheumatoid arthritis effects of ZBD in vivo through various indices, such as paw edema, arthritis index, ankle diameter, inflammatory cytokine levels, pathological conditions, and micro-CT analysis. The UPLC-MS/MS technique was utilized to analyze the compounds of ZBD. The potential therapeutic targets and signaling pathways of ZBD in the management of RA were predicted using network pharmacology. To analyze comprehensive metabolic profiles and identify underlying metabolic pathways, we conducted a serum-based widely targeted metabolomics analysis utilizing LC-MS technology. Key targets and predicted pathways were further validated using immunofluorescent staining, which integrated findings from serum metabolomics and network pharmacology analysis. Additionally, we analyzed the gut microbiota composition in rats employing 16 S rDNA sequencing and investigated the effects of ZBD on the microbiota of CIA rats through bioinformatics and statistical methods. RESULTS ZBD exhibited remarkable efficacy in alleviating RA symptoms in CIA rats without notable side effects. This included reduced paw redness and swelling, minimized joint damage, improved the histopathology of cartilage and synovium, mitigated the inflammatory state, and lowered serum concentrations of cytokines TNF-α, IL-1β and IL-6. Notably, the effectiveness of ZBD was comparable to MTX. Network pharmacology analysis revealed inflammation and immunity-related signaling pathways, such as PI3K/AKT, MAPK, IL-17, and TNF signaling pathways, as vital mediators in the effectual mechanisms of ZBD. Immunofluorescence analysis validated ZBD's ability to inhibit PI3K/AKT pathway proteins. Serum metabolomics studies revealed that ZBD modulates 170 differential metabolites, partially restored disrupted metabolic profiles in CIA rats. With a notable impact on amino acids and their metabolites, and lipids and lipid-like molecules. Integrated analysis of metabolomics and network pharmacology identified 6 pivotal metabolite pathways and 3 crucial targets: PTGS2, GSTP1, and ALDH2. Additionally, 16 S rDNA sequencing illuminated that ZBD mitigated gut microbiota dysbiosis in the CIA group, highlighting key genera such as Ligilactobacillus, Prevotella_9, unclassified_Bacilli, and unclassified_rumen_bacterium_JW32. Correlation analysis disclosed a significant link between 47 distinct metabolites and specific bacterial species. CONCLUSION ZBD is a safe and efficacious TCM formulation, demonstrates efficacy in treating RA through its multi-component, multi-target, and multi-pathway mechanisms. The regulation of inflammation and immunity-related signaling pathways constitutes a crucial mechanism of ZBD's efficacy. Furthermore, ZBD modulates host metabolism and intestinal flora. The integrated analysis presents experimental evidence of ZBD for the management of RA.
Collapse
Affiliation(s)
- Jing Liu
- College of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, 430061, China.
| | - Bocun Li
- College of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, 430061, China.
| | - Xiaohong Zhou
- College of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, 430061, China.
| | - Guangya Liu
- College of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, 430061, China.
| | - Chao Li
- College of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, 430061, China.
| | - Zhaoduan Hu
- College of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, 430061, China.
| | - Rui Peng
- College of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, 430061, China.
| |
Collapse
|
17
|
Huang X, Geng H, Liang C, Xiong X, Du X, Zhuan Q, Liu Z, Meng L, Zhou D, Zhang L, Fu X, Qi X, Hou Y. Leonurine restrains granulosa cell ferroptosis through SLC7A11/GPX4 axis to promote the treatment of polycystic ovary syndrome. Free Radic Biol Med 2025; 226:330-347. [PMID: 39547522 DOI: 10.1016/j.freeradbiomed.2024.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/02/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine disorder marked by ovarian dysfunction and metabolic abnormality. This study explores the therapeutic potential of leonurine (SCM-198) in PCOS. Our results show that SCM-198 treatment significantly improved ovarian function, hormone disorders and insulin resistance while reducing granulosa cell ferroptosis. This study provides the first evidence that SCM-198 modulates the gut microbiota composition, increases the abundance of Christensenella minuta, and boosts butyrate levels. Transcriptomic and metabolomic analyses revealed that PCOS patients exhibit granulosa cell ferroptosis and decreased butyrate levels in follicular fluid. Butyrate was shown to alleviate ferroptosis in granulosa cells via the SLC7A11/TXNRD1/GPX4 pathway, as confirmed in vitro with KGN cells. The therapeutic mechanism of SCM-198 in the management of PCOS via the gut microbiota-ovary axis involves the enhancement of gut microbiota and its metabolites. This intervention improves ovarian function and alleviates PCOS symptoms by targeting ferroptosis in granulosa cells.
Collapse
Affiliation(s)
- Xiaohan Huang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Hucheng Geng
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Chunxiao Liang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xianglei Xiong
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Xingzhu Du
- State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qingrui Zhuan
- State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhiqiang Liu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Lin Meng
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Dan Zhou
- State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Luyao Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiangwei Fu
- State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xinyu Qi
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
| | - Yunpeng Hou
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China.
| |
Collapse
|
18
|
Zhang J, Pang H, Tang H, Tu Q, Xia F, Zhang H, Meng Y, Han G, Wang J, Qiu C. The pharmacodynamic and pharmacological mechanisms underlying nanovesicles of natural products: Developments and challenges. Pharmacol Ther 2025; 265:108754. [PMID: 39566562 DOI: 10.1016/j.pharmthera.2024.108754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 10/23/2024] [Accepted: 11/15/2024] [Indexed: 11/22/2024]
Abstract
Natural products such as Traditional Chinese Medicines (TCMs) show great advantages in the treatment and prevention of diseases, but the unclear effective ingredients and mechanisms are key obstacles to restrict their rapid development. Under the guidance of the theoretical guidance of reductionism and the theoretical of allopathic medicine, some researches have indeed achieved some breakthrough results. However, these incomplete methods mainly limited to direct actions or indirect actions (such as the intermediated substances mediated cross-organ or cross-system regulation) mechanism of single active ingredient derived from natural products, which are often inconsistent with Systemism and Harmonizing Medicine and make it difficult to reasonably explain the pharmacodynamics and pharmacological mechanism of most natural products. Actually, effective pharmaceutical ingredients often do not exist in the form of free monomers, but prefer to assembly nanovesicles (NVs) for a combinational pharmacological effect, mainly including self-assembled nanoparticles (SANs) and exosome-like nanoparticles (ELNs). These developments of NVs-based application are a good supplement to existing pharmacological mechanism research. Hence, this review focuses on the developments and strategies of the pharmacodynamics and pharmacological mechanism of NVs-based TCMs under the combining theory of traditional Chinese and western medicine. On this basis, a novel "multidimensional combination" research approach is proposed firstly, which will provide new strategies and directions for breaking through the bottleneck of pharmacological mechanism research, and promote the clinical application of innovative natural products including TCMs.
Collapse
Affiliation(s)
- Junzhe Zhang
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Huanhuan Pang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Huan Tang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qingchao Tu
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Fei Xia
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hao Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yuqing Meng
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Guang Han
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China.
| | - Jigang Wang
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Department of Biological Sciences, National University of Singapore, Singapore 119077, Singapore.
| | - Chong Qiu
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
19
|
Wen J, Wang S, Sun K, Wang H, Yuan Z, Deng W. Chang-Wei-Qing Combined with PD-1 Inhibitor Alleviates Colitis-Associated Colorectal Tumorigenesis by Modulating the Gut Microbiota and Restoring Intestinal Barrier. Biol Proced Online 2024; 26:32. [PMID: 39701930 DOI: 10.1186/s12575-024-00258-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/05/2024] [Indexed: 12/21/2024] Open
Abstract
Chang-Wei-Qing (CWQ) is a widely recognized Traditional Chinese Medicine (TCM) formulation composed of Astragalus, Codonopsis, Atractylodes, Poria, Coix seed, Akebia trifoliata Koidz, Sargentodoxa cuneata, and Vitis quinquangularis Rehd. This formulation has garnered significant interest for its positive effects in mitigating colorectal cancer, and when combined with PD-1, it affects some gut microbiota associated with tumor infiltrating lymphocytes cells. However, the biological rationale underlying the suppression of colitis-associated colorectal cancer (CAC) in AOM/DSS-treated mice by CWQ combined with PD-1 inhibitor remains to be explored. Our aim is to explore the chemopreventive effect of CWQ combined with PD-1 inhibitor on CAC, with a focus on modulating the gut microbiota. A mouse model of CAC was established using azoxymethane (AOM) and dextran sulfate sodium (DSS) treatment. Pathological evaluation of tissue samples included immunohistochemistry and hematoxylin and eosin staining. Intestinal barrier function was assessed by transmission electron microscopy. Fecal microbiota and metabolites were analyzed through 16 S rRNA gene sequencing and liquid chromatography-mass spectrometry, respectively. Mice treated with antibiotics served as models for fecal microbiota transplantation. CWQ combined with PD-1 inhibitor suppressed CAC in AOM/DSS-treated mice. This combined therapy effectively alleviated gut dysbiosis in the CAC model by increasing microbial diversity, enriching probiotic populations such as Limosilactobacillus and Bifidobacterium, and reducing pathogenic bacteria like Desulfovibrio. Additionally, CWQ combined with PD-1 inhibitor downregulated metabolites associated with the NF-kappa B signaling pathway. The combined treatment also significantly improved intestinal barrier function in CAC mice. Transmission electron microscopy of the CWQ combined with PD-1 inhibitor group showed enhanced cellular integrity, a relatively normal mitochondrial structure with intact membranes, and a more abundant, unexpanded endoplasmic reticulum, underscoring the protective effects of this combination on intestinal barrier integrity. Transcriptomic analysis further demonstrated that the combined therapy upregulated genes involved in tight and adherens junctions, while downregulating genes linked to innate immune responses. CWQ combined with PD-1 inhibitor can ameliorate dysbiosis in the AOM/DSS mouse model, with the metabolites of the gut microbiome potentially possessing anti-inflammatory activity. Moreover, CWQ combined with PD-1 inhibitor improves intestinal barrier function, thereby effectively inhibiting the occurrence and development of CAC.
Collapse
Affiliation(s)
- Junkai Wen
- Department of Oncology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 Lanxi Road, Shanghai, 200062, China
| | - Shunyun Wang
- Department of Oncology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 Lanxi Road, Shanghai, 200062, China
| | - Kexiang Sun
- Department of Oncology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 Lanxi Road, Shanghai, 200062, China
| | - Haoyue Wang
- Department of Oncology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 Lanxi Road, Shanghai, 200062, China
| | - Zeting Yuan
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 Lanxi Road, Shanghai, 200062, China.
| | - Wanli Deng
- Department of Oncology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 Lanxi Road, Shanghai, 200062, China.
| |
Collapse
|
20
|
Tanasă F, Nechifor M, Teacă CA. Essential Oils as Alternative Green Broad-Spectrum Biocides. PLANTS (BASEL, SWITZERLAND) 2024; 13:3442. [PMID: 39683235 DOI: 10.3390/plants13233442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/25/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024]
Abstract
Natural compounds from plants represent suitable options to replace synthetic biocides when employed against microorganisms in various applications. Essential oils (EOs) have attracted increased interest due to their biocompatible and rather innocuous nature, and complex biological activity (fungicide, biocide and anti-inflammatory, antioxidant, immunomodulatory action, etc.). EOs are complex mixtures of derived metabolites with high volatility obtained from various vegetal parts and employed to a great extent in different healthcare (natural cures, nutrition, phyto- and aromatherapy, spices) and cosmetics applications (perfumery, personal and beauty care), as well as in cleaning products, agriculture and pest control, food conservation and active packaging, or even for restauration and preservation of cultural artifacts. EOs can act in synergy with other compounds, organic and synthetic as well, when employed in different complex formulations. This review will illustrate the employment of EOs in different applications based on some of the most recent reports in a systematic and comprehensive, though not exhaustive, manner. Some critical assessments will also be included, as well as some perspectives in this regard.
Collapse
Affiliation(s)
- Fulga Tanasă
- Polyaddition and Photochemistry Department, "Petru Poni" Institute of Macromolecular Chemistry, 41A Gr. Ghica-Voda Alley, 700487 Iasi, Romania
| | - Marioara Nechifor
- Polyaddition and Photochemistry Department, "Petru Poni" Institute of Macromolecular Chemistry, 41A Gr. Ghica-Voda Alley, 700487 Iasi, Romania
| | - Carmen-Alice Teacă
- Center of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, 41A Gr. Ghica-Voda Alley, 700487 Iasi, Romania
| |
Collapse
|
21
|
Yang X, He M, Cao J, Tang Q, Yang B, Li T, Sun M. Acupuncture and Moxibustion for Inflammatory Bowel Disease: Regulatory Mechanisms Revealed by Microbiome and Metabolomic Analysis. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:1891-1923. [PMID: 39581856 DOI: 10.1142/s0192415x24500745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Acupuncture and moxibustion are widely acknowledged as effective complementary therapies for managing inflammatory bowel disease (IBD) in traditional Chinese medicine. However, the regulatory mechanisms by which these two therapies exert their therapeutic effects in IBD are yet to be fully elucidated. The objective of this study was to investigate the mechanisms of action underlying acupuncture and moxibustion and the regulative differences between them as therapeutic interventions for IBD. Using a dextran sodium sulfate-induced IBD mice model, the effects of the two treatments were evaluated by examination of body weight, stool samples, colon morphology, inflammatory factors, gut microbiota, and metabolites. The results indicated that both acupuncture and moxibustion mitigated body weight reduction; improved the structural characteristics of intestinal tissues; increased levels of anti-inflammatory cytokines including interleukin (IL)-10; and decreased levels of pro-inflammatory cytokines, including tumor necrosis factor-alpha (TNF-[Formula: see text]), nuclear factor kappa B (NF-[Formula: see text]B), IL-6, IL-1[Formula: see text], and IL-17. Acupuncture and moxibustion had distinct effects on the regulation of the intestinal microbiota and metabolic pathways in IBD mice. Moxibustion regulated a greater number of metabolic pathways than acupuncture, the majority of which were associated with amino acid metabolism, brain signal transmission, energy metabolism, and anti-inflammatory pathways. These findings provide a scientific basis for the differential applications of acupuncture and moxibustion in clinical practice.
Collapse
Affiliation(s)
- Xinyue Yang
- School of Medicine, Lishui University, Lishui 323000, Zhejiang Province, P. R. China
- Changchun University of Chinese Medicine, Changchun 130117, Jilin Province, P. R. China
| | - Min He
- Changchun University of Chinese Medicine, Changchun 130117, Jilin Province, P. R. China
| | - Jiazhen Cao
- Changchun University of Chinese Medicine, Changchun 130117, Jilin Province, P. R. China
| | - Qingqing Tang
- Changchun University of Chinese Medicine, Changchun 130117, Jilin Province, P. R. China
| | - Bo Yang
- Changchun University of Chinese Medicine, Changchun 130117, Jilin Province, P. R. China
| | - Tie Li
- Changchun University of Chinese Medicine, Changchun 130117, Jilin Province, P. R. China
| | - Mengmeng Sun
- Changchun University of Chinese Medicine, Changchun 130117, Jilin Province, P. R. China
| |
Collapse
|
22
|
Ng CYJ, Zhong L, Ng HS, Goh KS, Zhao Y. Managing Type 2 Diabetes Mellitus via the Regulation of Gut Microbiota: A Chinese Medicine Perspective. Nutrients 2024; 16:3935. [PMID: 39599721 PMCID: PMC11597546 DOI: 10.3390/nu16223935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Type 2 Diabetes Mellitus (T2DM) is a metabolic disorder characterized by insulin resistance and inadequate insulin production. Given the increased frequency of T2DM and the health issues it can cause, there is an increasing need to develop alternative T2DM management strategies. One such approach is Chinese Medicine (CM), a complementary therapy widely used in T2DM treatment. Given the emphasis on gut microbiota in current research, studying CM in the treatment of T2DM via gut microbiota modulation could be beneficial. Scope and approach: The use of various CM methods for managing T2DM via gut microbiota modulation is highlighted in this review. Following an introduction of the gut microbiota and its role in T2DM pathogenesis, we will review the potential interactions between gut microbiota and T2DM. Thereafter, we will review various CM treatment modalities that modulate gut microbiota and provide perspectives for future research. Key findings and discussion: In T2DM, Akkermansia, Bifidobacterium, and Firmicutes are examples of gut microbiota commonly imbalanced. Studies have shown that CM therapies can modulate gut microbiota, leading to beneficial effects such as reduced inflammation, improved metabolism, and improved immunity. Among these treatment modalities, Chinese Herbal Medicine and acupuncture are the most well-studied, and several in vivo studies have demonstrated their potential in managing T2DM by modulating gut microbiota. However, the underlying biomolecular mechanisms of actions are not well elucidated, which is a key area for future research. Future studies could also investigate alternate CM therapies such as moxibustion and CM exercises and conduct large-scale clinical trials to validate their effectiveness in treatment.
Collapse
Affiliation(s)
- Chester Yan Jie Ng
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Linda Zhong
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Han Seong Ng
- Singapore General Hospital, Outram Rd., Singapore 169608, Singapore
- Academy of Chinese Medicine Singapore, 705 Serangoon Road, Singapore 328127, Singapore
| | - Kia Seng Goh
- Academy of Chinese Medicine Singapore, 705 Serangoon Road, Singapore 328127, Singapore
- Singapore College of Traditional Chinese Medicine, 640 Lor 4 Toa Payoh, Singapore 319522, Singapore
| | - Yan Zhao
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
- Academy of Chinese Medicine Singapore, 705 Serangoon Road, Singapore 328127, Singapore
| |
Collapse
|
23
|
Huang M, Zhang Y, Ni M, Shen M, Tao Y, Shen W, Sun D, Li L, Xu C, Tan J, Lai Y, Yu C, Tao L, Fan M, Cheng H. Shen-Bai-Jie-Du decoction suppresses the progression of colorectal adenoma to carcinoma through regulating gut microbiota and short-chain fatty acids. Chin Med 2024; 19:149. [PMID: 39465423 PMCID: PMC11514841 DOI: 10.1186/s13020-024-01019-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/07/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND Shen-Bai-Jie-Du decoction (SBJDD), a traditional Chinese herb formula developed based on evidence-based medicine, is efficacy to reduce the recurrence and carcinogenesis of colorectal adenoma. However, the mechanism of SBJDD to treat colorectal adenoma remains unclear. The present study aims to investigate the efficacy and mechanism of SBJDD on colorectal adenoma carcinogenesis from the aspects of regulating gut microbiota and short-chain fatty acids (SCFAs). METHODS Twenty-one patients diagnosed with colorectal adenoma were recruited in the study and required to take SBJDD for four consecutive weeks. Analysis of gut microbiota was conducted using 16S rRNA gene amplicon sequencing, while levels of SCFAs in fecal and serum samples were determined through HPLC-MS/MS. Additionally, twenty-four Apcmin/+ mice were randomly assigned to normal diet (ND), high-fat diet (HFD), and SBJDD groups. The pharmacological effects and mechanism of SBJDD on colorectal adenoma carcinogenesis were assessed using RT-qPCR, HE staining, IHC staining, Western blot, IF staining, and Flow cytometry assays. RESULTS Our clinical study has shown that SBJDD can regulate the gut microbiota composition and enhance SCFAs production in patients with colorectal adenoma. SBJDD alleviated colorectal adenoma formation and carcinogenesis, as well as protected the integrity of the intestinal barrier in the Apcmin/+ mice model compared to the HFD group. Additionally, SBJDD was found to regulate gut microbiota capable of producing SCFAs. G protein-coupled receptors GPR43, GPR41, and GPR109a were effectively activated in the SBJDD group, while HDAC1 and HDAC3 were inhibited. Furthermore, decreased expression levels of interleukin 1 beta (IL-1β) and interleukin 6 (IL-6), along with elevated expression level of interleukin 10 (IL-10), were observed in the colorectal tissue of the SBJDD group. Finally, SBJDD exhibited the ability to reduce the proportion of M1-type macrophages while increasing the proportion of M2-type macrophages. CONCLUSIONS Our study objectively demonstrated the pharmacological effects of SBJDD in inhibiting the progression of colorectal adenoma and investigated its mechanisms in terms of regulating gut microbiota, increasing SCFAs, and reducing colorectal inflammation.
Collapse
Affiliation(s)
- Min Huang
- The First Clinical Medical College, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ye Zhang
- The First Clinical Medical College, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Department of Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Mingxin Ni
- The First Clinical Medical College, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Meng Shen
- The First Clinical Medical College, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- The First Affiliated Hospital of Soochow University, Soochow, 215123, China
| | - Yuquan Tao
- The First Clinical Medical College, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Weixing Shen
- The First Clinical Medical College, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Dongdong Sun
- The First Clinical Medical College, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Liu Li
- The First Clinical Medical College, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Changliang Xu
- The First Clinical Medical College, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jiani Tan
- The First Clinical Medical College, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yueyang Lai
- The First Clinical Medical College, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Chengtao Yu
- The First Clinical Medical College, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lihuiping Tao
- The First Clinical Medical College, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Minmin Fan
- The First Clinical Medical College, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Haibo Cheng
- The First Clinical Medical College, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Department of Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China.
| |
Collapse
|
24
|
Yan X, Bai X, Fu R, Duan Z, Zeng W, Zhu C. Ginsenoside compound K alleviates D-galactose-induced mild cognitive impairment by modulating gut microbiota-mediated short-chain fatty acid metabolism. Food Funct 2024; 15:9037-9052. [PMID: 39150321 DOI: 10.1039/d4fo03216k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
The occurrence and progression of mild cognitive impairment (MCI) are closely related to dysbiosis of the gut microbiota. Ginsenoside compound K (CK), a bioactive component of ginseng, has been shown to alleviate gut microbiota dysbiosis and neural damage. However, the mechanisms by which CK regulates the gut microbiota to improve MCI remain unexplored. In this study, an MCI mouse model induced by D-galactose was used, and 16S rRNA gene sequencing, metabolomics, transcriptomics, and integrative multi-omics analyses were employed to investigate the potential mechanisms by which CK alleviates MCI through modulation of the gut microbiota. The results demonstrated that CK repaired intestinal barrier dysfunction caused by MCI, improved blood-brain barrier (BBB) integrity, inhibited activation of microglial cells and astrocytes, and significantly ameliorated MCI. Furthermore, CK enhanced gut microbiota diversity, notably enriched beneficial bacteria such as Akkermansia, and modulated the levels of short-chain fatty acids (SCFAs), particularly increasing propionate, thereby alleviating gut microbiota dysbiosis caused by MCI. Germ-free experiments confirmed that gut microbiota is a key factor for ginsenoside CK in relieving MCI. Further investigation revealed that CK regulated the TLR4-MyD88-NF-κB signaling pathway through modulation of gut microbiota-mediated propionate metabolism, significantly reducing systemic inflammation and alleviating MCI. Our findings provide a new theoretical basis for using CK as a potential means of modulating the gut microbiota for the treatment of MCI.
Collapse
Affiliation(s)
- Xiaojun Yan
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710127, China.
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710127, China
| | - Xue Bai
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710127, China.
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710127, China
| | - Rongzhan Fu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710127, China.
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710127, China
| | - Zhiguang Duan
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710127, China.
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710127, China
| | - Wen Zeng
- Xi'an Honghui Hospital, 710054, China
| | - Chenhui Zhu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710127, China.
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710127, China
| |
Collapse
|
25
|
Zhang D, Cheng H, Wu J, Zhou Y, Tang F, Liu J, Feng W, Peng C. The energy metabolism-promoting effect of aconite is associated with gut microbiota and bile acid receptor TGR5-UCP1 signaling. Front Pharmacol 2024; 15:1392385. [PMID: 39323631 PMCID: PMC11422068 DOI: 10.3389/fphar.2024.1392385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/18/2024] [Indexed: 09/27/2024] Open
Abstract
Introduction As a widely used traditional Chinese medicine with hot property, aconite can significantly promote energy metabolism. However, it is unclear whether the gut microbiota and bile acids contribute to the energy metabolism-promoting properties of aconite. The aim of this experiment was to verify whether the energy metabolism-promoting effect of aconite aqueous extract (AA) is related to gut microbiota and bile acid (BA) metabolism. Methods The effect of AA on energy metabolism in rats was detected based on body weight, body temperature, and adipose tissue by HE staining and immunohistochemistry. In addition, 16S rRNA high-throughput sequencing and targeted metabolomics were used to detect changes in gut microbiota and BA concentrations, respectively. Antibiotic treatment and fecal microbiota transplantation (FMT) were also performed to demonstrate the importance of gut microbiota. Results Rats given AA experienced an increase in body temperature, a decrease in body weight, and an increase in BAT (brown adipose tissue) activity and browning of WAT (white adipose tissue). Sequencing analysis and targeted metabolomics indicated that AA modulated gut microbiota and BA metabolism. The energy metabolism promotion of AA was found to be mediated by gut microbiota, as demonstrated through antibiotic treatment and FMT. Moreover, the energy metabolism-promoting effect of aconite is associated with the bile acid receptor TGR5 (Takeda G-protein-coupled receptor 5)-UCP1 (uncoupling protein 1) signaling pathway. Conclusion The energy metabolism-promoting effect of aconite is associated with gut microbiota and bile acid receptor TGR5-UCP1 signaling.
Collapse
Affiliation(s)
- Dandan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hao Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yaochuan Zhou
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fei Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Juan Liu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wuwen Feng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
26
|
Chang Y, Ou Q, Zhou X, Nie K, Zheng P, Liu J, Chen L, Yan H, Guo D, Zhang S. Jianpi Jiedu decoction suppresses colorectal cancer growth by inhibiting M2 polarization of TAMs through the tryptophan metabolism-AhR pathway. Int Immunopharmacol 2024; 138:112610. [PMID: 38963982 DOI: 10.1016/j.intimp.2024.112610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/16/2024] [Accepted: 06/29/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND Traditional Chinese medicine, JianpiJiedu decoction (JPJDF), has been utilized in colorectal cancer (CRC) treatment for over forty years. The potential of JPJDF to inhibit CRC through modulation of intestinal microbiota and their metabolites remains uncertain. AIMS This study aims to further investigate the therapeutic mechanisms of JPJDF in CRC. METHODS CAC mouse models were developed using azoxymethane (AOM) and dextran sulfate sodium (DSS). Intestinal tissues and contents underwent 16S rRNA gene sequencing and untargeted metabolomics analysis. Serum levels of IL-1β and TNF-α were measured using ELISA. Immunohistochemistry was utilized to assess the expression of Ki67, ZO-1, Occludin, CD68, and CD206. Furthermore, western blotting was performed to evaluate the protein expression of AhR and NF-κB. RESULTS JPJDF inhibited colorectal tumourigenesis in AOM/DSS treated mice, while also suppressing tumor cell proliferation and upregulating the expression of tight junction proteins. The results of 16S rRNA gene sequencing analysis revealed that JPJDF altered intestinal microbiota composition by increasing the abundance of beneficial bacteria. Additionally, JPJDF reduced tryptophan metabolites, effectively alleviating inflammation and significantly restoring intestinal barrier function in CAC mice. Molecular biology experiments confirmed that JPJDF suppressed the expression levels of AhR and M2-type tumor-associated macrophages, thereby promoting anti-tumor immunity and exerting inhibitory effects on CAC growth. CONCLUSION JPJDF can regulate the tryptophan metabolism-AhR pathway by modulating the gut microbiota, reducing intestinal inflammation, improving intestinal barrier function, enhancing anti-tumor immunity, and effectively inhibiting CAC growth.
Collapse
Affiliation(s)
- Yonglong Chang
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, 410011, China
| | - Qinling Ou
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, 410011, China
| | - Xuhui Zhou
- Department of Addiction Medicine, Hunan Institute of Mental Health, Brain Hospital of Hunan Province (The Second People's Hospital of Hunan Province), Changsha, Hunan, 410007, China
| | - Kechao Nie
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Piao Zheng
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Jinhui Liu
- College of Integrated Traditional Chinese & Western Medicine, Hunan University of Traditional Chinese Medicine, Changsha, Hunan, 410208, China
| | - Linzi Chen
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Haixia Yan
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Duanyang Guo
- College of Integrated Traditional Chinese & Western Medicine, Hunan University of Traditional Chinese Medicine, Changsha, Hunan, 410208, China
| | - Sifang Zhang
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, 410011, China.
| |
Collapse
|
27
|
Jia R, Shao S, Zhang P, Yuan Y, Rong W, An Z, Lv S, Feng Y, Liu N, Feng Q, Wang Y, Li Q. PRM1201 effectively inhibits colorectal cancer metastasis via shaping gut microbiota and short- chain fatty acids. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155795. [PMID: 38878524 DOI: 10.1016/j.phymed.2024.155795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 05/28/2024] [Accepted: 06/02/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND PRM1201 is a traditional medicine with beneficial effects against colorectal cancer (CRC) metastasis. However, the underlying mechanism of this action remains to be determined. HYPOTHESIS Remodeling microbiota and short-chain fatty acids (SCFAs) metabolism might be a potential mechanism to explain the anti-metastatic action of PRM1201, as this gut-microbiota dependent effect involves downregulation of histone deacetylation and EMT. METHODS To investigate this possibility, clinical specimens were sequenced and the correlation between the anti-metastatic efficacy of PRM1201 and the restoration of SCFA-producing bacteria was studied. To obtain solid causal evidence, a mouse metastasis model was established to detect the influence of PRM1201 on cancer metastasis. Specifically, 16S amplicon sequencing, ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) analysis, and bacterial manipulation were used to examine the gut microbiota-driven anti-metastatic action of PRM1201. RESULTS Clinical data showed that PRM1201 increased both the number of SCFA-producing bacteria and generation of SCFAs in the feces of CRC patients. A positive correlation between the anti-metastatic efficacy of PRM1201 and the restoration of SCFAs observed. The animal experiments demonstrated that PRM1201 effectively blocked CRC metastasis in a dose-dependent manner. PRM1201 treatment modulated the composition of gut microbiota, and promoted the proliferation of beneficial SCFAs producers such as Akkermansia, Lachnospiraceae_NK4A136_group and Blautia, while simultaneously reducing the abundance of pathogenic bacteria like Escherichia-Shigella. In addition, PRM1201 led to augmentation of SCFAs content. Further results indicated that the anti-cancer metastatic mechanism of PRM1201 was linked to inhibition of histone deacetylation and suppression of epithelial-to-mesenchymal transition (EMT) in metastatic lesions. Microbiota depletion treatment and fecal microbiota transplantation (FMT) underscored the microbiota-dependent nature of this phenomenon. Moreover, this anti-colorectal cancer metastatic effect and mechanism of total SCFAs and single SCFA were also confirmed. CONCLUSION In summary, PRM1201 exerts its anti-metastatic effects by modulating SCFA-producing bacteria and enhancing the production of SCFAs. Furthermore, the prebiotic-like actions of PRM1201, along with the PRM1201-treated bacteria, function as inhibitors of histone deacetylases (DHACs) thereby effectively suppressing EMT events.
Collapse
Affiliation(s)
- Ru Jia
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shiyun Shao
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Pingping Zhang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yuan Yuan
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wenqing Rong
- Department of Medical Oncology, Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China
| | - Ziming An
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Institute of Liver Diseases, Shanghai 201203, China
| | - Sheng Lv
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Institute of Liver Diseases, Shanghai 201203, China
| | - Yuanyuan Feng
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ningning Liu
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qin Feng
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Institute of Liver Diseases, Shanghai 201203, China; Central Laboratory, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Key Laboratory of Liver and Kidney Diseases, Shanghai University of Traditional Chinese Medicine, Ministry of Education, Shanghai 201203, China.
| | - Yan Wang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qi Li
- Department of Chinese Medicine & Integrative Medicine, Shanghai Geriatric Medical Center, Zhongshan Hospital, Fudan University, 2560 Chunshen Road, Shanghai 201104, China.
| |
Collapse
|
28
|
Chen Z, Xu W, Luo J, Liu L, Peng X. Lonicera japonica Fermented by Lactobacillus plantarum Improve Multiple Patterns Driven Osteoporosis. Foods 2024; 13:2649. [PMID: 39272415 PMCID: PMC11393950 DOI: 10.3390/foods13172649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/08/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024] Open
Abstract
Osteoporosis (OP) represents a global health challenge. Certain functional food has the potential to mitigate OP. Honeysuckle (Lonicera japonica) solution has medicinal effects, such as anti-inflammatory and immune enhancement, and can be used in functional foods such as health drinks and functional snacks. The composition of honeysuckle changed significantly after fermentation, and 376 metabolites were enriched. In this study, we used dexamethasone to induce OP in the rat model. Research has confirmed the ability of FS (fermented Lonicera japonica solution) to enhance bone mineral density (BMD), repair bone microarchitectural damage, and increase blood calcium levels. Markers such as tartrate-resistant acid phosphatase-5b (TRACP-5b) and pro-inflammatory cytokines (TNF-α and IL-6) were notably decreased, whereas osteocalcin (OCN) levels increased after FS treatment. FS intervention in OP rats restored the abundance of 6 bacterial genera and the contents of 17 serum metabolites. The results of the Spearman correlation analysis showed that FS may alleviate OP by restoring the abundance of 6 bacterial genera and the contents of 17 serum metabolites, reducing osteoclast differentiation, promoting osteoblast differentiation, and reducing the inflammatory response. This study revealed that Lactobacillus plantarum-fermented honeysuckle alleviated OP through intestinal bacteria and serum metabolites and provided a theoretical basis for the development of related functional foods.
Collapse
Affiliation(s)
- Zimin Chen
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Weiye Xu
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Jianming Luo
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Liu Liu
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Xichun Peng
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| |
Collapse
|
29
|
Li D, Li X, Zhang X, Chen J, Wang Z, Yu Z, Wu M, Liu L. Geniposide for treating atherosclerotic cardiovascular disease: a systematic review on its biological characteristics, pharmacology, pharmacokinetics, and toxicology. Chin Med 2024; 19:111. [PMID: 39164773 PMCID: PMC11334348 DOI: 10.1186/s13020-024-00981-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/11/2024] [Indexed: 08/22/2024] Open
Abstract
In recent years, the prevalence and fatality rates of atherosclerotic cardiovascular disease have not only shown a consistent rise that cannot be ignored, but have also become a pressing social health problem that requires urgent attention. While interventional surgery and drug therapy offer significant therapeutic results, they often come with common side effects. Geniposide, an active component extracted from the Chinese medicine Gardenia jasminoides Ellis, shows promise in the management of cardiac conditions. This review comprehensively outlines the underlying pharmacological mechanisms by which geniposide exerts its effects on atherosclerosis. Geniposide exhibits a range of beneficial effects including alleviating inflammation, inhibiting the development of macrophage foam cells, improving lipid metabolism, and preventing platelet aggregation and thrombosis. It also demonstrates mitochondrial preservation, anti-apoptotic effects, and modulation of autophagy. Moreover, geniposide shows potential in improving oxidative stress and endoplasmic reticulum stress by maintaining the body's antioxidant and oxidative balance. Additionally, this review comprehensively details the biological properties of geniposide, including methods of extraction and purification, as well as its pharmacokinetics and toxicological characteristics. It further discusses the clinical applications of related biopharmaceuticals, emphasizing the potential of geniposide in the prevention and treatment of atherosclerotic cardiovascular diseases. Furthermore, it highlights the limitations of current research, aiming to provide insights for future studies.
Collapse
Affiliation(s)
- Dexiu Li
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Xiaoya Li
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Xiaonan Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Jiye Chen
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Zeping Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Zongliang Yu
- Beijing University of Chinese Medicine, Beijing, China
| | - Min Wu
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Longtao Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China.
| |
Collapse
|
30
|
Zhang S, Kang T, Malacrinò A, Zhang Z, Zhang Z, Lin W, Wu H. Pseudostellaria heterophylla improves intestinal microecology through modulating gut microbiota and metabolites in mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6174-6185. [PMID: 38459926 DOI: 10.1002/jsfa.13453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/14/2024] [Accepted: 03/09/2024] [Indexed: 03/11/2024]
Abstract
BACKGROUND Pseudostellaria heterophylla is a Chinese medicine and healthy edible that is widely used to for its immunomodulatory, antioxidant, antidiabetic and antitussive properties. However, the potential function of P. heterophylla in intestinal microecology remains unclear. In this study, we investigated the impact of P. heterophylla on immune functions and evaluated its potential to regulate the gut microbiota and metabolome. RESULTS The results showed that P. heterophylla significantly increased the content of red blood cells, total antioxidant capacity and expression of immune factors, and decreased platelet counts when compared to the control under cyclophosphamide injury. In addition, P. heterophylla altered the diversity and composition of the gut bacterial community; increased the abundance of potentially beneficial Akkermansia, Roseburia, unclassified Clostridiaceae, Mucispirillum, Anaeroplasma and Parabacteroides; and decreased the relative abundance of pathogenic Cupriavidus and Staphylococcus in healthy mice. Metabolomic analyses showed that P. heterophylla significantly increased the content of functional oligosaccharides, common oligosaccharides, vitamins and functional substances. Probiotics and pathogens were regulated by metabolites across 11 pathways in the bacterial-host co-metabolism network. CONCLUSION We demonstrated that P. heterophylla increased the abundance of probiotics and decreased pathogens, and further stimulated host microbes to produce beneficial secondary metabolites for host health. Our studies highlight the role of P. heterophylla in gut health and provide new insights for the development of traditional Chinese medicine in the diet. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shengkai Zhang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tao Kang
- Laboratory of Rhizosphere Ecology Processes and Management, College of Resource and Environment, Anhui Agricultural University, Hefei, China
| | - Antonino Malacrinò
- Department of Agriculture, Università degli Studi Mediterranea di Reggio Calabria, Reggio Calabria, Italy
| | - Zhen Zhang
- Laboratory of Rhizosphere Ecology Processes and Management, College of Resource and Environment, Anhui Agricultural University, Hefei, China
| | - Zhongyi Zhang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenxiong Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hongmiao Wu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Laboratory of Rhizosphere Ecology Processes and Management, College of Resource and Environment, Anhui Agricultural University, Hefei, China
| |
Collapse
|
31
|
Ren S, Ren C, Zhao Y, Niu H, Xie Y. Comprehensive fecal metabolomics and gut microbiota study of the protective mechanism of herbal pair Polygonum hydropiper-Coptis chinensis in rats with stress-induced gastric mucosal damage. Front Pharmacol 2024; 15:1435166. [PMID: 39193339 PMCID: PMC11347758 DOI: 10.3389/fphar.2024.1435166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024] Open
Abstract
Introduction: Stress-related gastric mucosal lesions (SGMLs) are the most common complication in critical care patients. Previous studies have demonstrated that herbal pair (HP), Polygonum hydropiper-Coptis chinensis (HP P-C) has the anti-SGML effect. However, the underlying mechanism of HP P-C against SGML remains elusive. This study aimed to elucidate how HP P-C extracts exert their protective effects on SGML by examining the role of gut microbiota and metabolites. Methods: SD rats were pretreated with different doses of HP P-C extracts for 6 days, followed by inducing SGML with water-immersion restraint stress (WIRS). After a comprehensive evaluation of serum and gastric tissue indicators in rats, 16S rRNA sequencing and metabolomics analyses were conducted to assess the impact of HP P-C on the fecal microorganisms and metabolites and their correlation. Results: Animal experiment suggested that pretreatment with HP P-C effectively reduced the gastric mucosal lesions, remarkably increased superoxide dismutase (SOD) activity in SGML model rats induced by WIRS. 16S rRNA sequencing analysis showed that HP P-C altered the composition of gut microbiota by raising the abundance of Lactobacillus and Akkermansia. In addition, metabolomics data identified seventeen main differential metabolites related to WIRS-induced gastric mucosal injury, primarily involving in tyrosine metabolism and betalain biosynthesis. HP P-C was found to regulate tyrosine metabolism and betalain biosynthesis by down-regulating the tyramine, L-tyrosine and L-dopa and up -regulating the gentisic acid and dopaquinone. Conclusion: Taken together, this study indicated that HP P-C could effectively protect against WIRS-induced gastric mucosal lesions by modulating intestinal flora and metabolites.
Collapse
Affiliation(s)
- Shouzhong Ren
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, Hainan, China
| | - Chenhui Ren
- School of Life Sciences, Hainan University, Haikou, Hainan, China
| | - Yamei Zhao
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, Hainan, China
| | - Haiyan Niu
- Department of Pathology, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Yiqiang Xie
- College of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan, China
| |
Collapse
|
32
|
Li P, Hon SSM, Tsang MSM, Kan LLY, Lai AYT, Chan BCL, Leung PC, Wong CK. Integrating 16S rRNA Sequencing, Microflora Metabolism, and Network Pharmacology to Investigate the Mechanism of SBL in Alleviating HDM-Induced Allergic Rhinitis. Int J Mol Sci 2024; 25:8655. [PMID: 39201342 PMCID: PMC11354307 DOI: 10.3390/ijms25168655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/09/2024] [Accepted: 07/20/2024] [Indexed: 09/02/2024] Open
Abstract
Allergic rhinitis (AR) is a series of allergic reactions to allergens in the nasal mucosa and is one of the most common allergic diseases that affect both children and adults. Shi-Bi-Lin (SBL) is the modified formula of Cang Er Zi San (CEZS), a traditional Chinese herbal formula used for treating AR. Our study aims to elucidate the anti-inflammatory effects and mechanisms of SBL in house dust mite-induced AR by regulating gut microflora metabolism. In vivo studies showed that nasal allergies and the infiltration of inflammatory cells in the nasal epithelium were significantly suppressed by SBL. Moreover, SBL restored the impaired nasal epithelial barrier function with an increased tight junction protein expression and reduced the endothelial nitric oxide synthase (eNOS). Interestingly, SBL significantly reconstituted the abundance and composition of gut microbiota in AR mice; it increased the relative abundance of potentially beneficial genera and decreased the relative abundance of harmful genera. SBL also restored immune-related metabolisms, which were significantly increased and correlated with suppressing inflammatory cytokines. Furthermore, a network analysis and molecular docking indicated IL-6 was a possible target drug candidate for the SBL treatment. SBL dramatically reduced the IL-6 level in the nasal lavage fluid (NALF), suppressing the IL-6 downstream Erk1/2 and AKT/PI3K signaling pathways. In conclusion, our study integrates 16S rRNA sequencing, microflora metabolism, and network pharmacology to explain the immune mechanism of SBL in alleviating HDM-induced allergic rhinitis.
Collapse
Affiliation(s)
- Peiting Li
- Institute of Chinese Medicine, State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China; (P.L.); (S.S.-M.H.); (M.S.-M.T.); (L.L.-Y.K.); (A.Y.-T.L.); (B.C.-L.C.); (P.-C.L.)
| | - Sharon Sze-Man Hon
- Institute of Chinese Medicine, State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China; (P.L.); (S.S.-M.H.); (M.S.-M.T.); (L.L.-Y.K.); (A.Y.-T.L.); (B.C.-L.C.); (P.-C.L.)
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Miranda Sin-Man Tsang
- Institute of Chinese Medicine, State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China; (P.L.); (S.S.-M.H.); (M.S.-M.T.); (L.L.-Y.K.); (A.Y.-T.L.); (B.C.-L.C.); (P.-C.L.)
- China-Australia International Research Centre for Chinese Medicine, School of Health and Biomedical Sciences, STEM College, RMIT University, Bundoora, VIC 3083, Australia
| | - Lea Ling-Yu Kan
- Institute of Chinese Medicine, State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China; (P.L.); (S.S.-M.H.); (M.S.-M.T.); (L.L.-Y.K.); (A.Y.-T.L.); (B.C.-L.C.); (P.-C.L.)
| | - Andrea Yin-Tung Lai
- Institute of Chinese Medicine, State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China; (P.L.); (S.S.-M.H.); (M.S.-M.T.); (L.L.-Y.K.); (A.Y.-T.L.); (B.C.-L.C.); (P.-C.L.)
| | - Ben Chung-Lap Chan
- Institute of Chinese Medicine, State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China; (P.L.); (S.S.-M.H.); (M.S.-M.T.); (L.L.-Y.K.); (A.Y.-T.L.); (B.C.-L.C.); (P.-C.L.)
| | - Ping-Chung Leung
- Institute of Chinese Medicine, State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China; (P.L.); (S.S.-M.H.); (M.S.-M.T.); (L.L.-Y.K.); (A.Y.-T.L.); (B.C.-L.C.); (P.-C.L.)
| | - Chun-Kwok Wong
- Institute of Chinese Medicine, State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China; (P.L.); (S.S.-M.H.); (M.S.-M.T.); (L.L.-Y.K.); (A.Y.-T.L.); (B.C.-L.C.); (P.-C.L.)
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- Li Dak Sum Yip Yio Chin R&D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
33
|
Liu C, Yang L, Wei W, Fu P. Efficacy of probiotics/synbiotics supplementation in patients with chronic kidney disease: a systematic review and meta-analysis of randomized controlled trials. Front Nutr 2024; 11:1434613. [PMID: 39166132 PMCID: PMC11333927 DOI: 10.3389/fnut.2024.1434613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 07/17/2024] [Indexed: 08/22/2024] Open
Abstract
Background Chronic kidney disease (CKD) is a serious and steadily growing health problem worldwide. Probiotic and synbiotic supplementation are expected to improve kidney function in CKD patients by altering imbalanced intestinal flora, regulating microbiota metabolites, modulating the brain-gut axis, and reducing inflammation. Objectives Our aim is to report the latest and largest pooled analyses and evidence updates to explore whether probiotic and synbiotic have beneficial effects on renal function and general conditions in patients with CKD. Methods We conducted a systematic literature search using PubMed, Embase, Web of Science, and the Cochrane Central Register of Controlled Trials from inception until 1 December 2023. Eligible literatures were screened according to inclusion and exclusion criteria, data were extracted, and a systematic review and meta-analysis was performed. Measurements included renal function-related markers, inflammatory markers, uremic toxins, lipid metabolism-related markers and electrolytes levels. Results Twenty-one studies were included. The results showed that probiotic/synbiotic significantly reduced blood urea nitrogen (BUN) (standardized mean difference (SMD), -0.23, 95% confidence interval (CI) -0.41, -0.04; p = 0.02, I2 = 10%) and lowered c-reactive protein level (CRP) (SMD: -0.34; 95% CI: -0.62, -0.07; p = 0.01, I2 = 37%) in CKD patients, compared with the control group. Conclusion In summary, probiotic/synbiotic supplementation seems to be effective in improving renal function indices and inflammation indices in CKD patients. Subgroup analyses suggested that longer-term supplementation is more favorable for CKD patients, but there is a high degree of heterogeneity in the results of partial subgroup analyses. The efficacy of probiotic/synbiotic in treating CKD needs to be supported by more evidence from large-scale clinical studies. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42024526836, Unique identifier: CRD42024526836.
Collapse
Affiliation(s)
| | | | | | - Ping Fu
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
34
|
Huang Q, Yang G, Tang C, Dou B, Hu Y, Liu H, Wu X, Zhang H, Wang H, Xu L, Yang XD, Xu Y, Zheng Y. Rujin Jiedu decoction protects against influenza virus infection by modulating gut microbiota. Heliyon 2024; 10:e34055. [PMID: 39071618 PMCID: PMC11277438 DOI: 10.1016/j.heliyon.2024.e34055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/30/2024] [Accepted: 07/03/2024] [Indexed: 07/30/2024] Open
Abstract
Background Rujin Jiedu decoction (RJJDD) is a classical prescription of Traditional Chinese Medicine that has long been applied to treat pneumonia caused by external infection, but whether and how it benefits influenza virus therapy remains largely unclear. The aim of this study was to investigate the anti-inflammatory effect of RJJDD on the mouse model of influenza and to explore its potential mechanism. Methods The mice were mock-infected with PBS or infected with PR8 virus followed by treatment with RJJDD or antiviral oseltamivir. The weight loss and morbidity of mice were monitored daily. Network pharmacology is used to explore the potential pathways that RJJDD may modulate. qRT-PCR and ELISA were performed to assess the expression of inflammatory cytokines in the lung tissue and macrophages. The intestinal feces were collected for 16S rDNA sequencing to assess the changes in gut microbiota. Results We demonstrate that RJJDD protects against IAV-induced pneumonia. Comprehensive network pharmacology analyses of the Mass Spec-identified components of RJJDD suggest that RJJDD may act through down-regulating key signaling pathways producing inflammatory cytokines, which was experimentally confirmed by cytokine expression analysis in IAV-infected mouse lung tissues and IAV single-strand RNA mimic R837-induced macrophages. Furthermore, gut microbiota analysis indicates that RJJDD prevented IAV-induced dysbiosis of host intestinal flora, thereby offering a mechanistic explanation for RJJDD's efficacy in influenza pneumonia. Conclusion This study defines a previously uncharacterized role for RJJDD in protecting against influenza likely by maintaining homeostasis of gut microbiota, and provides a new therapeutic option for severe influenza.
Collapse
Affiliation(s)
- Qilin Huang
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Guizhen Yang
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chenchen Tang
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Biao Dou
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - You Hu
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hui Liu
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiao Wu
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Huan Zhang
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Haikun Wang
- CAS Key Laboratory of Molecular Virology and Immunology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Lirong Xu
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiao-Dong Yang
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yanwu Xu
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yuejuan Zheng
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Center for Traditional Chinese Medicine and Immunology Research, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
35
|
Zhou Y, Zhang D, Cheng H, Wu J, Liu J, Feng W, Peng C. Repairing gut barrier by traditional Chinese medicine: roles of gut microbiota. Front Cell Infect Microbiol 2024; 14:1389925. [PMID: 39027133 PMCID: PMC11254640 DOI: 10.3389/fcimb.2024.1389925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/14/2024] [Indexed: 07/20/2024] Open
Abstract
Gut barrier is not only part of the digestive organ but also an important immunological organ for the hosts. The disruption of gut barrier can lead to various diseases such as obesity and colitis. In recent years, traditional Chinese medicine (TCM) has gained much attention for its rich clinical experiences enriched in thousands of years. After orally taken, TCM can interplay with gut microbiota. On one hand, TCM can modulate the composition and function of gut microbiota. On the other hand, gut microbiota can transform TCM compounds. The gut microbiota metabolites produced during the actions of these interplays exert noticeable pharmacological effects on the host especially gut barrier. Recently, a large number of studies have investigated the repairing and fortifying effects of TCM on gut barriers from the perspective of gut microbiota and its metabolites. However, no review has summarized the mechanism behand this beneficiary effects of TCM. In this review, we first briefly introduce the unique structure and specific function of gut barrier. Then, we summarize the interactions and relationship amidst gut microbiota, gut microbiota metabolites and TCM. Further, we summarize the regulative effects and mechanisms of TCM on gut barrier including physical barrier, chemical barrier, immunological barrier, and microbial barrier. At last, we discuss the effects of TCM on diseases that are associated gut barrier destruction such as ulcerative colitis and type 2 diabetes. Our review can provide insights into TCM, gut barrier and gut microbiota.
Collapse
Affiliation(s)
- Yaochuan Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dandan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hao Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinlu Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Juan Liu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wuwen Feng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
36
|
Xu W, Yu P, Shao S, Xie Z, Wu Y, Liu J, Xu T, Cai G, Yang H. Oligosaccharides from black ginseng innovatively prepared by low-temperature steam-heating process ameliorate cognitive impairment in Alzheimer's disease mice via the Keap-1/Nrf2 pathway. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5625-5638. [PMID: 38372395 DOI: 10.1002/jsfa.13394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/04/2024] [Accepted: 02/19/2024] [Indexed: 02/20/2024]
Abstract
BACKGROUND Our objective in this study was to evaluate the effectiveness of oligosaccharides extracted from black ginseng (OSBG), innovatively prepared by a low-temperature steam-heating process, in the improvement of learning and memory impairment in mice, as well as the mechanism(s). RESULTS Eight carbohydrates involving isomaltose and maltotetraose were detected in black gensing; monosaccharide residues including mannose and rhamnose were also discovered. OSBG-treated mice showed significant amelioration in recognition and spatial memory deficits compared to the scopolamine group. OSBG could decrease acetylcholinesterase activity in a tissue-dependent fashion but not in a dose-dependent manner. Furthermore, in contrast, OSBG administration resulted in significant upregulation superoxide dismutase, glutathione, glutathione peroxidase (GPx), and Kelch-like ECH-associated protein 1, downregulation of malondialdehyde and nuclear factor erythroid 2-related factor 2 in the tissues. Finally, at the genus level, we observed that the OSBG interventions increased the relative abundance of probiotics (e.g., Barnesiella, Staphylococcus, Clostridium_XlVb) and decreased pernicious bacteria such as Eisenbergiella and Intestinimonas, compared to the Alzheimer's disease mouse model group. Herein, our results demonstrate that OSBG restores the composition of the scopolamine-induced intestinal microbiota in mice, providing homeostasis of gut microbiota and providing evidence for microbiota-regulated therapeutic potential. CONCLUSION Our results showed for the first time a clear role for OSBG in improving scopolamine-induced memory impairment by inhibiting cholinergic dysfunction in a tissue-dependent manner. Additionally, OSBG administration relieved oxidative stress by activating the Keap-1/Nrf2 pathway and modulating the gut microbiota. Collectively, OSBG may be a promising target for neuroprotective antioxidants for improving memory and cognition in Alzheimer's disease patients. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Weiyin Xu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Peng Yu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Simeng Shao
- The Public Experimental Center, Changchun University of Chinese Medicine, Changchun, China
| | - Zhaoyang Xie
- The Public Experimental Center, Changchun University of Chinese Medicine, Changchun, China
| | - Yi Wu
- The Public Experimental Center, Changchun University of Chinese Medicine, Changchun, China
| | - Jianing Liu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Tianyang Xu
- Innovation Practice Center, Changchun University of Chinese Medicine, Changchun, China
| | - Guangzhi Cai
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Hongmei Yang
- The Public Experimental Center, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
37
|
Guan Y, Wu D, Wang H, Liu N. Microbiome-driven anticancer therapy: A step forward from natural products. MLIFE 2024; 3:219-230. [PMID: 38948147 PMCID: PMC11211674 DOI: 10.1002/mlf2.12118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/25/2023] [Accepted: 01/25/2024] [Indexed: 07/02/2024]
Abstract
Human microbiomes, considered as a new emerging and enabling cancer hallmark, are increasingly recognized as critical effectors in cancer development and progression. Manipulation of microbiome revitalizing anticancer therapy from natural products shows promise toward improving cancer outcomes. Herein, we summarize our current understanding of the human microbiome-driven molecular mechanisms impacting cancer progression and anticancer therapy. We highlight the potential translational and clinical implications of natural products for cancer prevention and treatment by developing targeted therapeutic strategies as adjuvants for chemotherapy and immunotherapy against tumorigenesis. The challenges and opportunities for future investigations using modulation of the microbiome for cancer treatment are further discussed in this review.
Collapse
Affiliation(s)
- Yunxuan Guan
- State Key Laboratory of Systems Medicine for Cancer, Center for Single‐Cell Omics, School of Public HealthShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Di Wu
- State Key Laboratory of Systems Medicine for Cancer, Center for Single‐Cell Omics, School of Public HealthShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Hui Wang
- State Key Laboratory of Systems Medicine for Cancer, Center for Single‐Cell Omics, School of Public HealthShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ning‐Ning Liu
- State Key Laboratory of Systems Medicine for Cancer, Center for Single‐Cell Omics, School of Public HealthShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
38
|
Li W, Guan S, Hu X, Zhao H, Cai J, Li X, Zhang X, Zhu W, Pan X, Li S, Tian J. Lysimachia capillipes Hemsl. saponins ameliorate colorectal cancer in mice via regulating gut microbiota and restoring metabolic profiles. Fitoterapia 2024; 175:105959. [PMID: 38615754 DOI: 10.1016/j.fitote.2024.105959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/14/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
Lysimachia capillipes Hemsl., a traditional Chinese medicine (TCM), is commonly prescribed for its anti-inflammatory and anti-tumor properties. Pharmacological studies have demonstrated that Lysimachia capillipes Hemsl. saponins (LCS) are the primary bioactive component. However, its mechanism for treating colorectal cancer (CRC) is still unknown. Increasing evidence suggests a close relationship between CRC, intestinal flora, and host metabolism. Thus, this study aims to investigate the mechanism of LCS amelioration of CRC from the perspective of the gut microbiome and metabolome. As a result, seven gut microbiotas and fourteen plasma metabolites were significantly altered between the control and model groups. Among them, one gut microbiota genera (Monoglobus) and six metabolites (Ureidopropionic acid, Cytosine, L-Proline, 3-hydroxyanthranilic acid, Cyclic AMP and Suberic acid) showed the most pronounced callback trend after LCS administration. Subsequently, the correlation analysis revealed significant associations between 68 pairs of associated metabolites and gut microbes, with 13 pairs of strongly associated metabolites regulated by the LCS. Taken together, these findings indicate that the amelioration of CRC by LCS is connected to the regulation of intestinal flora and the recasting of metabolic abnormalities. These insights highlight the potential of LCS as a candidate drug for the treatment of CRC.
Collapse
Affiliation(s)
- Wei Li
- Key Laboratory for Molecular Medicine and Chinese Medicine Preparations, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310002, China; College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Shenghong Guan
- Key Laboratory for Molecular Medicine and Chinese Medicine Preparations, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310002, China; College of Pharmacy Science, Zhejiang University of Technology, Hangzhou 310027, China
| | - Xueli Hu
- Key Laboratory for Molecular Medicine and Chinese Medicine Preparations, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310002, China; College of Pharmacy Science, Zhejiang Chinese Medical University, Hangzhou 310027, China
| | - Huan Zhao
- Key Laboratory for Molecular Medicine and Chinese Medicine Preparations, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310002, China; Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310002, China
| | - Jinhong Cai
- Key Laboratory for Molecular Medicine and Chinese Medicine Preparations, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310002, China; College of Pharmacy Science, Zhejiang University of Technology, Hangzhou 310027, China
| | - Xiaohan Li
- Key Laboratory for Molecular Medicine and Chinese Medicine Preparations, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310002, China
| | - Xiaoyong Zhang
- Key Laboratory for Molecular Medicine and Chinese Medicine Preparations, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310002, China
| | - Wei Zhu
- Key Laboratory for Molecular Medicine and Chinese Medicine Preparations, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310002, China
| | - Xin Pan
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Shouxin Li
- Key Laboratory for Molecular Medicine and Chinese Medicine Preparations, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310002, China
| | - Jingkui Tian
- Key Laboratory for Molecular Medicine and Chinese Medicine Preparations, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310002, China.
| |
Collapse
|
39
|
Ma T, Ji P, Wu FL, Li CC, Dong JQ, Yang HC, Wei YM, Hua YL. Research on the mechanism of Guanyu Zhixie Granule in intervening gastric ulcers in rats based on network pharmacology and multi-omics. Front Vet Sci 2024; 11:1390473. [PMID: 38835897 PMCID: PMC11149358 DOI: 10.3389/fvets.2024.1390473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/22/2024] [Indexed: 06/06/2024] Open
Abstract
Objective Guanyu Zhixie Granule (GYZXG) is a traditional Chinese medicine compound with definite efficacy in intervening in gastric ulcers (GUs). However, the effect mechanisms on GU are still unclear. This study aimed to explore its mechanism against GU based on amalgamated strategies. Methods The comprehensive chemical characterization of the active compounds of GYZXG was conducted using UHPLC-Q/TOF-MS. Based on these results, key targets and action mechanisms were predicted through network pharmacology. GU was then induced in rats using anhydrous ethanol (1 mL/200 g). The intervention effects of GYZXG on GU were evaluated by measuring the inhibition rate of GU, conducting HE staining, and assessing the levels of IL-6, TNF-α, IL-10, IL-4, Pepsin (PP), and epidermal growth factor (EGF). Real-time quantitative PCR (RT-qPCR) was used to verify the mRNA levels of key targets and pathways. Metabolomics, combined with 16S rRNA sequencing, was used to investigate and confirm the action mechanism of GYZXG on GU. The correlation analysis between differential gut microbiota and differential metabolites was conducted using the spearman method. Results For the first time, the results showed that nine active ingredients and sixteen targets were confirmed to intervene in GU when using GYZXG. Compared with the model group, GYZXG was found to increase the ulcer inhibition rate in the GYZXG-M group (p < 0.05), reduce the levels of IL-6, TNF-α, PP in gastric tissue, and increase the levels of IL-10, IL-4, and EGF. GYZXG could intervene in GU by regulating serum metabolites such as Glycocholic acid, Epinephrine, Ascorbic acid, and Linoleic acid, and by influencing bile secretion, the HIF-1 signaling pathway, and adipocyte catabolism. Additionally, GYZXG could intervene in GU by altering the gut microbiota diversity and modulating the relative abundance of Bacteroidetes, Bacteroides, Verrucomicrobia, Akkermansia, and Ruminococcus. The differential gut microbiota was strongly associated with serum differential metabolites. KEGG enrichment analysis indicated a significant role of the HIF-1 signaling pathway in GYZXG's intervention on GU. The changes in metabolites within metabolic pathways and the alterations in RELA, HIF1A, and EGF mRNA levels in RT-qPCR experiments provide further confirmation of this result. Conclusion GYZXG can intervene in GU induced by anhydrous ethanol in rats by regulating gut microbiota and metabolic disorders, providing a theoretical basis for its use in GU intervention.
Collapse
Affiliation(s)
- Ting Ma
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Peng Ji
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Fan-Lin Wu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Chen-Chen Li
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Jia-Qi Dong
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Hao-Chi Yang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yan-Ming Wei
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yong-Li Hua
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
40
|
Wang R, Zheng X, Feng Z, Feng Y, Ying Z, Wang B, Dou B. Hydrothermal carbonization of Chinese medicine residues: Formation of humic acids and combustion performance of extracted hydrochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171792. [PMID: 38508251 DOI: 10.1016/j.scitotenv.2024.171792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/19/2024] [Accepted: 03/16/2024] [Indexed: 03/22/2024]
Abstract
Aiming at the sustainable management of high-moisture Chinese medicine residues (CMR), an alternative way integrating hydrothermal carbonization (HTC), humic acids (HAs) extraction and combustion of remained hydrochar has been proposed in this study. Effect of HTC temperature, HTC duration, and feedwater pH on the mass yield and properties of HAs was examined. The associated formation mechanism of HAs during HTC was proposed. The combustion performance of remained hydrochar after HAs extraction was evaluated. Results show that the positive correlation between hydrochar yield and HAs yield is observed. According to three-dimensional excitation emission matrix (3D EEM) fluorescence intensity, the best quality of HAs is achieved with a yield of 8.17 % at feedwater pH of 13 and HTC temperature of 200 °C. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy analyses show abundant aromatic and aliphatic structure as well as oxygenated functional groups in HAs, which is like commercial HAs (HA-C). Besides, in terms of comprehensive combustion index (CCI), HTC can improve the combustion performance of CMR, while it becomes a bit worse after HAs extraction. Higher weighted mean apparent activation energy (Em) of hydrochar indicating its highly thermal stability. HAs extraction reduces Em and CCI of remained hydrochar. However, it can be regarded a potential renewable energy. This work confirms a more sustainable alternative way for CMR comprehensive utilization in near future.
Collapse
Affiliation(s)
- Rui Wang
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Xiaoyuan Zheng
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| | - Zhenyang Feng
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Yuheng Feng
- Thermal and Environment Engineering Institute, School of Mechanical Engineering, Tongji University, Shanghai 200092, PR China
| | - Zhi Ying
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Bo Wang
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Binlin Dou
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| |
Collapse
|
41
|
Chen Z, Wu S, Huang L, Li J, Li X, Zeng Y, Chen Z, Chen M. Colonic microflora and plasma metabolite-based comparative analysis of unilateral ureteral obstruction-induced chronic kidney disease after treatment with the Chinese medicine FuZhengHuaYuJiangZhuTongLuo and AST-120. Heliyon 2024; 10:e24987. [PMID: 38333870 PMCID: PMC10850519 DOI: 10.1016/j.heliyon.2024.e24987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 02/10/2024] Open
Abstract
Background Many researchers have investigated the use of Chinese herbs to delay the progression of chronic kidney disease (CKD) through their effects on colonic microflora and microbiota-derived metabolites. However, whether FuZhengHuaYuJiangZhuTongLuo (FZHY) has effects that are similar to those of AST-120 on CKD needs to be elucidated. Methods In this study, we compared the effects of FZHY and AST-120 on the colonic microbiota and plasma metabolites in the CKD rat model. We developed a unilateral ureteral obstruction (UUO)-induced CKD rat model and then administered FZHY and AST-120 to these model rats. Non-targeted metabolomic LC-MS analysis, 16S rRNA sequencing, and histopathological staining were performed on plasma, stool, and kidney tissues, respectively, and the joint correlation between biomarkers and metabolites of candidate bacteria was analyzed. Results Our results showed that administering FZHY and AST-120 effectively ameliorated UUO-induced abnormal renal function and renal fibrosis and regulated the composition of microbiota and metabolites. Compared to the UUO model group, the p_Firmicutes and o_Peptostreptococcales_Tissierellales were increased, while 14 negative ion metabolites were upregulated and 21 were downregulated after FZHY treatment. Additionally, 40 positive ion metabolites were upregulated and 63 were downregulated. On the other hand, AST-120 treatment resulted in an increase in the levels of g_Prevotellaceae_NK3B31_group and f_Prevotellaceae, as well as 12 upregulated and 23 downregulated negative ion metabolites and 56 upregulated and 63 downregulated positive ion metabolites. Besides, FZHY increased the levels of candidate bacterial biomarkers that were found to be negatively correlated with some poisonous metabolites, such as 4-hydroxyretinoic acid, and positively correlated with beneficial metabolites, such as l-arginine. AST-120 increased the levels of candidate bacterial biomarkers that were negatively correlated with some toxic metabolites, such as glycoursodeoxycholic acid, 4-ethylphenol, and indole-3-acetic acid. Conclusion FZHY and AST-120 effectively reduced kidney damage, in which, the recovery of some dysregulated bacteria and metabolites are probably involved. As their mechanisms of regulation were different, FZHY might play a complementary role to AST-120 in treating CKD.
Collapse
Affiliation(s)
- Ziwei Chen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, China
| | - Shaobo Wu
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, China
| | - Li Huang
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, China
| | - Jing Li
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, China
| | - Xueying Li
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, China
| | - Yu Zeng
- Department of Clinical Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, China
| | - Zejun Chen
- Department of Nephrology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu Traditional Chinese and Western Medicine Hospital, Chengdu First People's Hospital, Chengdu, Sichuan 610072, China
| | - Ming Chen
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, China
| |
Collapse
|
42
|
Liu S, Zhong M, Wu H, Su W, Wang Y, Li P. Potential Beneficial Effects of Naringin and Naringenin on Long COVID-A Review of the Literature. Microorganisms 2024; 12:332. [PMID: 38399736 PMCID: PMC10892048 DOI: 10.3390/microorganisms12020332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19) caused a severe epidemic due to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Recent studies have found that patients do not completely recover from acute infections, but instead, suffer from a variety of post-acute sequelae of SARS-CoV-2 infection, known as long COVID. The effects of long COVID can be far-reaching, with a duration of up to six months and a range of symptoms such as cognitive dysfunction, immune dysregulation, microbiota dysbiosis, myalgic encephalomyelitis/chronic fatigue syndrome, myocarditis, pulmonary fibrosis, cough, diabetes, pain, reproductive dysfunction, and thrombus formation. However, recent studies have shown that naringenin and naringin have palliative effects on various COVID-19 sequelae. Flavonoids such as naringin and naringenin, commonly found in fruits and vegetables, have various positive effects, including reducing inflammation, preventing viral infections, and providing antioxidants. This article discusses the molecular mechanisms and clinical effects of naringin and naringenin on treating the above diseases. It proposes them as potential drugs for the treatment of long COVID, and it can be inferred that naringin and naringenin exhibit potential as extended long COVID medications, in the future likely serving as nutraceuticals or clinical supplements for the comprehensive alleviation of the various manifestations of COVID-19 complications.
Collapse
Affiliation(s)
- Siqi Liu
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-Evaluation of Post-Market Traditional Chinese Medicine, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (S.L.); (M.Z.); (H.W.); (W.S.); (Y.W.)
| | - Mengli Zhong
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-Evaluation of Post-Market Traditional Chinese Medicine, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (S.L.); (M.Z.); (H.W.); (W.S.); (Y.W.)
| | - Hao Wu
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-Evaluation of Post-Market Traditional Chinese Medicine, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (S.L.); (M.Z.); (H.W.); (W.S.); (Y.W.)
| | - Weiwei Su
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-Evaluation of Post-Market Traditional Chinese Medicine, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (S.L.); (M.Z.); (H.W.); (W.S.); (Y.W.)
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China
| | - Yonggang Wang
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-Evaluation of Post-Market Traditional Chinese Medicine, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (S.L.); (M.Z.); (H.W.); (W.S.); (Y.W.)
| | - Peibo Li
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-Evaluation of Post-Market Traditional Chinese Medicine, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (S.L.); (M.Z.); (H.W.); (W.S.); (Y.W.)
| |
Collapse
|
43
|
Liu J, Jiang J, Lan Y, Li C, Han R, Wang J, Wang T, Zhao Z, Fan Z, He L, Fang J. Metagenomic analysis of oral and intestinal microbiome of patients during the initial stage of orthodontic treatment. Am J Orthod Dentofacial Orthop 2024; 165:161-172.e3. [PMID: 37966405 DOI: 10.1016/j.ajodo.2023.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/01/2023] [Accepted: 07/01/2023] [Indexed: 11/16/2023]
Abstract
INTRODUCTION This prospective study analyzed changes in the oral and intestinal microbiomes in patients before and after fixed orthodontic treatment, elucidating the impacts of fixed orthodontic treatment on patient health and metabolism. METHODS Metagenomic analysis was conducted on stool, dental plaque, and saliva samples from 10 fixed orthodontic patients. All the samples were sequenced with Illumina NovaSeq 6000 with a paired-end sequencing length of 150 bp. Identification of taxa in metagenomes and functional annotation of genes of the microbiota were performed using the data after quality control. Clinical periodontal parameters, including the gingiva index, plaque index, and pocket probing depth, were examined at each time point in triplicates. Patients also received a table to record their oral hygiene habits of brushing, flossing, and dessert consumption frequency over 1 month. RESULTS The brushing and flossing times per day of patients were significantly increased after treatment compared with baseline. The number of times a patient ate dessert daily was also fewer after treatment than at baseline. In addition, the plaque index decreased significantly, whereas the pH value of saliva, gingiva index, and pocket probing depth did not change. No significant differences were observed between the participants before and after orthodontic treatment regarding alpha-diversity analysis of the gut, dental plaque, or saliva microbiota. However, on closer analysis, periodontal disease-associated bacteria levels in the oral cavity remain elevated. Alterations in gut microbiota were also observed after orthodontic treatment. CONCLUSIONS The richness and diversity of the microbiome did not change significantly during the initial stage of fixed orthodontic treatment. However, the levels of periodontal disease-associated bacteria increased.
Collapse
Affiliation(s)
- Jialing Liu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jiyang Jiang
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Yue Lan
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Chengyan Li
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Ruiying Han
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jiao Wang
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Tianyi Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Zhenxin Fan
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Libang He
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| | - Jie Fang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
44
|
Su J, Chen XM, Xie YL, Li MQ, Shang Q, Zhang DK, Cai XF, Liu H, Huang HZ, Zheng C, Han L. Clinical efficacy, pharmacodynamic components, and molecular mechanisms of antiviral granules in the treatment of influenza: A systematic review. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:117011. [PMID: 37567423 DOI: 10.1016/j.jep.2023.117011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/29/2023] [Accepted: 08/06/2023] [Indexed: 08/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Antiviral Granules (AG) are derived from the classical famous prescription, which is composed of 9 traditional Chinese medicines, namely Radix Isatidis (called Banlangen, BLG in Chinese), Forsythiae Fructus (called Lianqiao, LQ in Chinese), Gypsum fibrosum, Anemarrhenae Rhizoma (called Zhimu, ZM in Chinese), Phragmitis Rhizoma (called Lugen, LG in Chinese), Rehmanniae Radix (called Dihuang, DH in Chinese), Pogostemonis Herba (called Guanghuoxiang, GHX in Chinese), Acori Tatarinowii Rhizoma (called Shichangpu, SCP in Chinese), and Curcumae Radix (called Yujin, YJ in Chinese), and has shown an excellent therapeutic effect in clinical treatment of influenza. However, there are few studies on the anti-influenza mechanism of AG, and the mechanism of action is still unclear. AIM OF THE STUDY The purpose is to provide the latest information about the clinical efficacy, pharmacodynamic composition and mechanism of AG based on scientific literature, so as to enhance the utilization of AG in the treatment of influenza and related diseases, and promote the development and innovation of novel anti-influenza drugs targeting the influenza virus. MATERIALS AND METHODS Enter the data retrieval room, search for Antiviral Granules, as well as the scientific names, common names, and Chinese names of each Chinese medicine. Additionally, search for the relevant clinical applications, pharmacodynamic composition, pharmacological action, and molecular mechanism of both Antiviral Granules and single-ingredient medicines. Keywords includes terms such as "antiviral granules", "influenza", "Isatis indigotica Fort.", "Radix Isatidis", "Banlangeng", "pharmacology", "clinical application", "pharmacologic action", etc. and their combinations. Obtain results from the Web of Science, PubMed, Google Scholar, Sci Finder Scholar, CNKI and other resources. RESULTS AG is effective in the treatment of influenza and is often used in combination with other drugs to treat viral diseases. Its chemical composition is complex, including alkaloids, polysaccharides, volatile oils, steroid saponins, phenylpropanoids, terpenoids and other compounds. These compounds have a variety of pharmacological activities, which can interfere with the replication cycle of the influenza virus, regulate RIG-I-MAVS, JAK/STAT, TLRs/MyD88, NF-κB signaling pathways and related cytokines, regulate intestinal microorganisms, and protect both the lungs and extrapulmonary organs. CONCLUSIONS AG can overcome the limitations of traditional antiviral drug therapy, play a synergistic role in fighting influenza virus with the characteristics of multi-component, multi-pathway and multi-target therapy, and reverse the bodily function damage caused by influenza virus. AG may be a potential drug in the prevention and treatment of influenza and related diseases.
Collapse
Affiliation(s)
- Juan Su
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xin-Ming Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yi-Ling Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Meng-Qi Li
- Pharmacy Department, Sichuan Nursing Vocational College, Chengdu, 610100, China
| | - Qiang Shang
- Sichuan Provincial Engineering Research Center for Antiviral Chinese Medicine Industrialization, Sichuan Guangda Pharmaceutical Co., Ltd., Pengzhou, 611930, China
| | - Ding-Kun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Sichuan Provincial Engineering Research Center of Innovative Re-development of Famous Classical Formulas, Tianfu TCM Innovation Harbour, Chengdu University of Traditional Chinese Medicine, Pengzhou, 611930, China
| | - Xin-Fu Cai
- Sichuan Provincial Engineering Research Center for Antiviral Chinese Medicine Industrialization, Sichuan Guangda Pharmaceutical Co., Ltd., Pengzhou, 611930, China
| | - Hui Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Hao-Zhou Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy/Academy for Interdiscipline, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan, 620010, China.
| | - Chuan Zheng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Li Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
45
|
Gou H, Su H, Liu D, Wong CC, Shang H, Fang Y, Zeng X, Chen H, Li Y, Huang Z, Fan M, Wei C, Wang X, Zhang X, Li X, Yu J. Traditional Medicine Pien Tze Huang Suppresses Colorectal Tumorigenesis Through Restoring Gut Microbiota and Metabolites. Gastroenterology 2023; 165:1404-1419. [PMID: 37704113 DOI: 10.1053/j.gastro.2023.08.052] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 08/02/2023] [Accepted: 08/26/2023] [Indexed: 09/15/2023]
Abstract
BACKGROUND & AIMS Pien Tze Huang (PZH) is a well-established traditional medicine with beneficial effects against inflammation and cancer. We aimed to explore the chemopreventive effect of PZH in colorectal cancer (CRC) through modulating gut microbiota. METHODS CRC mouse models were established by azoxymethane plus dextran sulfate sodium treatment or in Apcmin/+ mice treated with or without PZH (270 mg/kg and 540 mg/kg). Gut barrier function was determined by means of intestinal permeability assays and transmission electron microscopy. Fecal microbiota and metabolites were analyzed by means of metagenomic sequencing and liquid chromatography mass spectrometry, respectively. Germ-free mice or antibiotic-treated mice were used as models of microbiota depletion. RESULTS PZH inhibited colorectal tumorigenesis in azoxymethane plus dextran sulfate sodium-treated mice and in Apcmin/+ mice in a dose-dependent manner. PZH treatment altered the gut microbiota profile, with an increased abundance of probiotics Pseudobutyrivibrio xylanivorans and Eubacterium limosum, while pathogenic bacteria Aeromonas veronii, Campylobacter jejuni, Collinsella aerofaciens, and Peptoniphilus harei were depleted. In addition, PZH increased beneficial metabolites taurine and hypotaurine, bile acids, and unsaturated fatty acids, and significantly restored gut barrier function. Transcriptomic profiling revealed that PZH inhibited PI3K-Akt, interleukin-17, tumor necrosis factor, and cytokine-chemokine signaling. Notably, the chemopreventive effect of PZH involved both microbiota-dependent and -independent mechanisms. Fecal microbiota transplantation from PZH-treated mice to germ-free mice partly recapitulated the chemopreventive effects of PZH. PZH components ginsenoside-F2 and ginsenoside-Re demonstrated inhibitory effects on CRC cells and primary organoids, and PZH also inhibited tumorigenesis in azoxymethane plus dextran sulfate sodium-treated germ-free mice. CONCLUSIONS PZH manipulated gut microbiota and metabolites toward a more favorable profile, improved gut barrier function, and suppressed oncogenic and pro-inflammatory pathways, thereby suppressing colorectal carcinogenesis.
Collapse
Affiliation(s)
- Hongyan Gou
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shenzhen Research Institute, Hong Kong Special Administrative Region, China
| | - Hao Su
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shenzhen Research Institute, Hong Kong Special Administrative Region, China
| | - Dehua Liu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shenzhen Research Institute, Hong Kong Special Administrative Region, China
| | - Chi Chun Wong
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shenzhen Research Institute, Hong Kong Special Administrative Region, China
| | - Haiyun Shang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shenzhen Research Institute, Hong Kong Special Administrative Region, China
| | - Yi Fang
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xianyi Zeng
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shenzhen Research Institute, Hong Kong Special Administrative Region, China
| | - Huarong Chen
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shenzhen Research Institute, Hong Kong Special Administrative Region, China; Department of Anesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Yan Li
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shenzhen Research Institute, Hong Kong Special Administrative Region, China
| | - Ziheng Huang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shenzhen Research Institute, Hong Kong Special Administrative Region, China
| | - Miao Fan
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chunxian Wei
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shenzhen Research Institute, Hong Kong Special Administrative Region, China
| | - Xin Wang
- Department of Pathology, the First Hospital of Hebei Medical University, Hebei, China
| | - Xiang Zhang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shenzhen Research Institute, Hong Kong Special Administrative Region, China
| | - Xiaoxing Li
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shenzhen Research Institute, Hong Kong Special Administrative Region, China.
| |
Collapse
|
46
|
Wang CY, Ndraha N, Wu RS, Liu HY, Lin SW, Yang KM, Lin HY. An Overview of the Potential of Food-Based Carbon Dots for Biomedical Applications. Int J Mol Sci 2023; 24:16579. [PMID: 38068902 PMCID: PMC10706188 DOI: 10.3390/ijms242316579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/16/2023] [Accepted: 11/19/2023] [Indexed: 12/18/2023] Open
Abstract
Food-based carbon dots (CDs) hold significant importance across various fields, ranging from biomedical applications to environmental and food industries. These CDs offer unique advantages over traditional carbon nanomaterials, including affordability, biodegradability, ease of operation, and multiple bioactivities. This work aims to provide a comprehensive overview of recent developments in food-based CDs, focusing on their characteristics, properties, therapeutic applications in biomedicine, and safety assessment methods. The review highlights the potential of food-based CDs in biomedical applications, including antibacterial, antifungal, antivirus, anticancer, and anti-immune hyperactivity. Furthermore, current strategies employed for evaluating the safety of food-based CDs have also been reported. In conclusion, this review offers valuable insights into their potential across diverse sectors and underscores the significance of safety assessment measures to facilitate their continued advancement and application.
Collapse
Affiliation(s)
- Chen-Yow Wang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan; (C.-Y.W.); (N.N.); (H.-Y.L.); (S.-W.L.); (K.-M.Y.)
| | - Nodali Ndraha
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan; (C.-Y.W.); (N.N.); (H.-Y.L.); (S.-W.L.); (K.-M.Y.)
- Department of Food Science, National Taiwan Ocean University, Keelung 202301, Taiwan
| | - Ren-Siang Wu
- Division of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan;
| | - Hsin-Yun Liu
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan; (C.-Y.W.); (N.N.); (H.-Y.L.); (S.-W.L.); (K.-M.Y.)
| | - Sin-Wei Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan; (C.-Y.W.); (N.N.); (H.-Y.L.); (S.-W.L.); (K.-M.Y.)
| | - Kuang-Min Yang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan; (C.-Y.W.); (N.N.); (H.-Y.L.); (S.-W.L.); (K.-M.Y.)
| | - Hung-Yun Lin
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202301, Taiwan
| |
Collapse
|
47
|
Wu YJ, Wang L, Wang KX, Du JR, Long FY. Modulation of Xiongdanjiuxin pills on the gut-liver axis in high-fat diet rats. Life Sci 2023; 333:122134. [PMID: 37778415 DOI: 10.1016/j.lfs.2023.122134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/23/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
AIM Xiongdanjiuxin pill (XP) is a traditional Chinese medicine formula for the prevention and treatment of hyperlipidemia (HLP) and related complications. In this study, the gut-liver axis was used as the breakthrough point to analyze the therapeutic effect and potential mechanism of XP on HLP model rats and related complications. MAIN METHODS We used high-fat diet (HFD) to establish the HLP model of rats and treated them with XP. The 16S rRNA sequencing method was used to explore the effect of XP on the gut microbiota of HFD rats, and the effects of XP on ileum pathology, intestinal barrier and circulatory inflammation in HFD rats were also investigated. We further explored the molecular mechanism of XP treating liver inflammation in rats with HFD by regulating toll-like receptor 4 (TLR4) signaling. KEY FINDINGS We found that XP could regulate the imbalance of gut microbiota in HFD rats, and up-regulate the expression of tight junction protein in intestinal epithelium of HFD rats, thereby improving the intestinal barrier damage and intestinal inflammatory response. In addition, XP could significantly reduce the levels of inflammatory cytokines in HFD rats, and inhibit TLR4 signaling pathway, thereby reducing liver inflammation in HFD rats. SIGNIFICANCE XP can effectively improve the imbalance of gut-liver axis in hyperlipidemic rats and alleviate the inflammatory damage of liver. Its mechanism may be related to regulating the disorder of gut microbiota and inhibiting TLR4 signal pathway, so as to achieve the therapeutic effect on hyperlipidemic fatty liver in rats.
Collapse
Affiliation(s)
- Yi-Jin Wu
- Department of Pharmacology, West China School of Pharmacy, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan University, Chengdu, Sichuan, China
| | - Liu Wang
- Department of Pharmacology, West China School of Pharmacy, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan University, Chengdu, Sichuan, China
| | - Ke-Xin Wang
- Department of Pharmacology, West China School of Pharmacy, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan University, Chengdu, Sichuan, China
| | - Jun-Rong Du
- Department of Pharmacology, West China School of Pharmacy, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan University, Chengdu, Sichuan, China.
| | - Fang-Yi Long
- Department of Pharmacology, West China School of Pharmacy, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan University, Chengdu, Sichuan, China; Laboratory Medicine Center, Sichuan Provincial Maternity and Child Health Care Hospital, Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, Sichuan, China.
| |
Collapse
|
48
|
Ma L, Ji L, Wang T, Zhai Z, Su P, Zhang Y, Wang Y, Zhao W, Wu Z, Yu H, Zhao H. Research progress on the mechanism of traditional Chinese medicine regulating intestinal microbiota to combat influenza a virus infection. Virol J 2023; 20:260. [PMID: 37957630 PMCID: PMC10644525 DOI: 10.1186/s12985-023-02228-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 11/05/2023] [Indexed: 11/15/2023] Open
Abstract
Influenza A viruses (IAV) are a prevalent respiratory pathogen that can cause seasonal flu and global pandemics, posing a significant global public health threat. Emerging research suggests that IAV infections may disrupt the balance of gut microbiota, while gut dysbiosis can affect disease progression in IAV patients. Therefore, restoring gut microbiota balance may represent a promising therapeutic target for IAV infections. Traditional Chinese medicine, with its ability to regulate gut microbiota, offers significant potential in preventing and treating IAV. This article provides a comprehensive review of the relationship between IAV and gut microbiota, highlighting the impact of gut microbiota on IAV infections. It also explores the mechanisms and role of traditional Chinese medicine in regulating gut microbiota for the prevention and treatment of IAV, presenting novel research avenues for traditional Chinese medicine-based IAV treatments.
Collapse
Affiliation(s)
- LanYing Ma
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shangdong Province, China
| | - Lingyun Ji
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tong Wang
- School of Nursing, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhe Zhai
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shangdong Province, China
| | - PeiWei Su
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shangdong Province, China
| | - YaNan Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shangdong Province, China
- Shandong Co-innovation Center of Classic Traditional Chinese Medicine Formula, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuan Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shangdong Province, China
- Shandong Co-innovation Center of Classic Traditional Chinese Medicine Formula, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - WenXiao Zhao
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shangdong Province, China
- School of Nursing, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - ZhiChun Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shangdong Province, China
- Shandong Co-innovation Center of Classic Traditional Chinese Medicine Formula, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - HuaYun Yu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shangdong Province, China
- Shandong Co-innovation Center of Classic Traditional Chinese Medicine Formula, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - HaiJun Zhao
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shangdong Province, China.
- Shandong Co-innovation Center of Classic Traditional Chinese Medicine Formula, Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
49
|
Zhao M, Wang P, Sun X, Yang D, Zhang S, Meng X, Zhang M, Gao X. Detrimental Impacts of Pharmaceutical Excipient PEG400 on Gut Microbiota and Metabolome in Healthy Mice. Molecules 2023; 28:7562. [PMID: 38005284 PMCID: PMC10673170 DOI: 10.3390/molecules28227562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/02/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Polyethylene glycol 400 (PEG400) is a widely used pharmaceutical excipient in the field of medicine. It not only enhances the dispersion stability of the main drug but also facilitates the absorption of multiple drugs. Our previous study found that the long-term application of PEG400 as an adjuvant in traditional Chinese medicine preparations resulted in wasting and weight loss in animals, which aroused our concern. In this study, 16S rRNA high-throughput sequencing technology was used to analyze the diversity of gut microbiota, and LC-MS/MS Q-Exactive Orbtriap metabolomics technology was used to analyze the effect of PEG400 on the metabolome of healthy mice, combined with intestinal pathological analysis, aiming to investigate the effects of PEG400 on healthy mice. These results showed that PEG400 significantly altered the structure of gut microbiota, reduced the richness and diversity of intestinal flora, greatly increased the abundance of Akkermansia muciniphila (A. muciniphila), increased the proportion of Bacteroidetes to Firmicutes, and reduced the abundance of many beneficial bacteria. Moreover, PEG400 changed the characteristics of fecal metabolome in mice and induced disorders in lipid and energy metabolism, thus leading to diarrhea, weight loss, and intestinal inflammation in mice. Collectively, these findings provide new evidence for the potential effect of PEG400 ingestion on a healthy host.
Collapse
Affiliation(s)
- Mei Zhao
- School of Basic Medicine, Guizhou Medical University, Guiyang 550025, China;
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; (P.W.); (X.S.); (D.Y.); (S.Z.); (X.M.)
- Microbiology and Biochemical Pharmaceutical Engineering Research Center, Guizhou Medical University, Guiyang 550025, China
| | - Pengjiao Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; (P.W.); (X.S.); (D.Y.); (S.Z.); (X.M.)
- Microbiology and Biochemical Pharmaceutical Engineering Research Center, Guizhou Medical University, Guiyang 550025, China
| | - Xiaodong Sun
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; (P.W.); (X.S.); (D.Y.); (S.Z.); (X.M.)
- Microbiology and Biochemical Pharmaceutical Engineering Research Center, Guizhou Medical University, Guiyang 550025, China
| | - Dan Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; (P.W.); (X.S.); (D.Y.); (S.Z.); (X.M.)
- Microbiology and Biochemical Pharmaceutical Engineering Research Center, Guizhou Medical University, Guiyang 550025, China
| | - Shuo Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; (P.W.); (X.S.); (D.Y.); (S.Z.); (X.M.)
- Microbiology and Biochemical Pharmaceutical Engineering Research Center, Guizhou Medical University, Guiyang 550025, China
- Experimental Animal Center, Guizhou Medical University, Guiyang 550025, China
| | - Xiaoxia Meng
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; (P.W.); (X.S.); (D.Y.); (S.Z.); (X.M.)
- Microbiology and Biochemical Pharmaceutical Engineering Research Center, Guizhou Medical University, Guiyang 550025, China
- School of Medicine and Health Management, Guizhou Medical University, Guiyang 550025, China
| | - Min Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; (P.W.); (X.S.); (D.Y.); (S.Z.); (X.M.)
- Microbiology and Biochemical Pharmaceutical Engineering Research Center, Guizhou Medical University, Guiyang 550025, China
| | - Xiuli Gao
- School of Basic Medicine, Guizhou Medical University, Guiyang 550025, China;
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; (P.W.); (X.S.); (D.Y.); (S.Z.); (X.M.)
- Microbiology and Biochemical Pharmaceutical Engineering Research Center, Guizhou Medical University, Guiyang 550025, China
| |
Collapse
|
50
|
Zhu R, Gao Y, Dong J, Li Z, Ren Z. The changes of gut microbiota and metabolites in different drug-induced liver injuries. J Med Microbiol 2023; 72. [PMID: 38015063 DOI: 10.1099/jmm.0.001778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
Abstract
The increasing incidence of drug-induced liver injury (DILI) has become a major concern. Gut microbiota, as another organ of the human body, has been studied in various tumors, cardiovascular metabolic diseases, inflammatory bowel disease and human immunity. The studies mentioned above have confirmed its important impact on the occurrence and development of DILI. The gut-liver axis explains the close relationship between the gut and the liver, and it may be a pathway by which gut microbes contribute to DILI. In addition, the interaction between drugs and gut microbes affects both separately, which in turn may have positive or negative effects on the body, including DILI. There are both common and specific changes in liver injury caused by different drugs. The alteration of metabolites in DILI is also a new direction of therapeutic exploration. The application of microbiomics, metabolomics and other multi-omics to DILI has also explored new ideas for DILI. In this review, we conclude the alterations of gut microbes and metabolites under different DILI, and the significance of applying gut microbiome-metabolomics to DILI, so as to explore the metabolic characteristics of DILI and possible novel metabolic biomarkers.
Collapse
Affiliation(s)
- Ruirui Zhu
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250000, PR China
- Gene Hospital of Henan Province; Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| | - Yinghui Gao
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
- Gene Hospital of Henan Province; Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| | - Jianxia Dong
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
- Gene Hospital of Henan Province; Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| | - Zhiqin Li
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
- Gene Hospital of Henan Province; Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| | - Zhigang Ren
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250000, PR China
- Gene Hospital of Henan Province; Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| |
Collapse
|