1
|
Wei Y, Liu Y, Lei J, Jiang Q, Geng X, Guo Y, Zhang B. Quercetin-based treatment improves eggshell quality in aged laying hens by modulating immune response, eggshell gland health and serum metabolome. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025. [PMID: 40387095 DOI: 10.1002/jsfa.14359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 05/20/2025]
Abstract
BACKGROUND Eggshell quality is a critical determinant of egg product value and consumer preference. Deficient eggshells increase breakage susceptibility, leading to economic losses and reduced marketability. Dietary interventions hold promise for improving eggshell quality. Quercetin, a naturally occurring flavonoid, exhibits diverse biological activities relevant to eggshell formation. These include antioxidant and anti-inflammatory properties, and potential modulation of estrogen levels, which are known to influence eggshell quality. RESULTS A total of 160 46-week-old laying hens were randomly divided into two groups, with 8 replicates in each group and 10 chickens in each replicate. The control group was fed a corn-soybean meal basal diet, while the experimental group received a basal diet supplemented with 300 mg kg-1 quercetin. The trial period lasted for 10 weeks. The study showed that dietary supplementation with quercetin significantly increased eggshell thickness (P < 0.001). Eggshell ultrastructure analysis revealed significant increases in effective layer thickness (P < 0.001) and a marked decrease in the thickness ratio of the mammillary layer to total eggshell thickness (P < 0.001) with quercetin supplementation. Serum analysis indicated significantly higher levels of immunoglobulin A, immunoglobulin G, estrogen receptors and carbonic anhydrase-2 in hens supplemented with quercetin compared to controls (P < 0.05). Furthermore, quercetin supplementation reduced tubular gland edema and improved villus height, luminal epithelial cell height and gland duct diameter (P < 0.05). Quantitative real-time PCR analysis showed that quercetin supplementation altered immune responses in the liver, spleen and oviduct. Notably, quercetin supplementation increased metabolites associated with glycine, serine and threonine metabolism. These amino acids, key precursors of eggshell matrix proteins, showed increased metabolism, suggesting a potential mechanism by which quercetin supports eggshell biomineralization. CONCLUSION This study suggests that compromised eggshell quality might be associated with impaired biomineralization function in the eggshell gland, potentially due to tissue damage. Conversely, dietary quercetin supplementation significantly increased eggshell thickness. We propose a potential mechanism involving the activation of glycine, serine and threonine metabolic pathways, which might enhance the biomineralization capacity and overall health of the eggshell gland. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yi Wei
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yongfa Liu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jiaqi Lei
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qiuyu Jiang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiangfei Geng
- Beijing Lab Anim Sci Tech Develop Co. Ltd, Beijing, China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Bingkun Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
2
|
He L, Zhang L, Meng F, Wei J, Chen F, Qin S, Jin G, Cao H. Dietary emulsifier Polysorbate 80-induced lipotoxicity promotes intestinal senescence. Food Res Int 2025; 209:116165. [PMID: 40253120 DOI: 10.1016/j.foodres.2025.116165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 02/11/2025] [Accepted: 03/09/2025] [Indexed: 04/21/2025]
Abstract
Intestinal senescence, often characterized by increased oxidative stress, is linked to gastrointestinal disorders such as inflammatory bowel disease and colorectal cancer. While previous studies have suggested that diets rich in food additives, such as the emulsifier Polysorbate 80 (P80), may influence gut health, the impact of P80 exposure on intestinal senescence remains unclear. This study aimed to explore the effects of P80 on intestinal senescence in a senescence-accelerated mouse prone model. The results revealed that P80 exposure could damage the intestinal barrier, induce oxidative stress, and accelerate intestinal senescence. Mechanistically, P80 activated the peroxisome proliferator-activated receptor-α (PPARα) and fatty acid-binding protein 1 (FABP1) axis, increasing intestinal fatty acid absorption and triggering lipotoxicity, which promoted senescence. Additionally, P80 exacerbated D-galactose-induced epithelial cell senescence and lipid accumulation via the PPARα signalling pathway. Importantly, the PPARα antagonist GW6471 mitigated fatty acid uptake and reduced senescence in the intestine. In conclusion, the emulsifier P80 accelerated intestinal senescence by regulating the PPARα-FABP1 axis to induce intestinal fatty acid uptake and lipotoxicity, suggesting new insights into the adverse effects of food additives on gut health.
Collapse
Affiliation(s)
- Linlin He
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China
| | - Lan Zhang
- Department of Infective disease, Tianjin First Central Hospital, Tianjin, China
| | - Fanyi Meng
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China
| | - Jingge Wei
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China
| | - Fei Chen
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China
| | - Siqi Qin
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China
| | - Ge Jin
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China..
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China..
| |
Collapse
|
3
|
Lin W, Ruishi X, Caijiao X, Haoming L, Xuefeng H, Jiyou Y, Minqiang L, Shuo Z, Ming Z, Dongyang L, Xiaoxue F. Potential applications and mechanisms of natural products in mucosal-related diseases. Front Immunol 2025; 16:1594224. [PMID: 40370438 PMCID: PMC12075308 DOI: 10.3389/fimmu.2025.1594224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Accepted: 04/09/2025] [Indexed: 05/16/2025] Open
Abstract
The mucosal barrier serves as a crucial defense against external pathogens and allergens, being widely distributed across the respiratory, gastrointestinal, urogenital tracts, and oral cavity. Its disruption can lead to various diseases, including inflammatory bowel disease, asthma, urinary tract infections, and oral inflammation. Current mainstream treatments for mucosa-associated diseases primarily involve glucocorticoids and immunosuppressants, but their long-term use may cause adverse effects. Therefore, the development of safer and more effective therapeutic strategies has become a focus of research. Natural products, with their multi-target and multi-system regulatory advantages, offer a promising avenue for the treatment of mucosal diseases. This review summarizes the potential applications of natural products in diseases of mucosal barrier dysfunction through mechanisms such as immune modulation, inflammation inhibition, tight junction protein restoration, and gut microbiota regulation, with the aim of providing insights for the exploration of novel therapeutic strategies.
Collapse
Affiliation(s)
- Wang Lin
- Changchun University of Chinese Medicine, Changchun, China
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Xie Ruishi
- Changchun University of Chinese Medicine, Changchun, China
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Xu Caijiao
- Changchun University of Chinese Medicine, Changchun, China
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Luo Haoming
- Changchun University of Chinese Medicine, Changchun, China
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Hua Xuefeng
- The First People’s Hospital of Guangzhou, Department of Hepatobiliary and Pancreatic Surgery, Guangzhou, China
| | - Yao Jiyou
- The First People’s Hospital of Guangzhou, Department of Hepatobiliary and Pancreatic Surgery, Guangzhou, China
| | - Lu Minqiang
- The First People’s Hospital of Guangzhou, Department of Hepatobiliary and Pancreatic Surgery, Guangzhou, China
| | - Zhou Shuo
- Changchun University of Chinese Medicine, Changchun, China
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Zhu Ming
- Changchun University of Chinese Medicine, Changchun, China
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Li Dongyang
- Changchun University of Chinese Medicine, Changchun, China
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Fang Xiaoxue
- Changchun University of Chinese Medicine, Changchun, China
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
4
|
Zeng H, Ding L, Hou M, Liu Z, Pan L, Hang S. Enhancing palm kernel cake nutritional quality through combined bacterial fermentation and enzymatic hydrolysis. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025. [PMID: 40202090 DOI: 10.1002/jsfa.14265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 03/13/2025] [Accepted: 03/16/2025] [Indexed: 04/10/2025]
Abstract
BACKGROUND Palm kernel cake (PKC), a non-conventional feed resource, contains a large amount of crude fibre (CF), mainly manna-polysaccharides, which are key limiting factors in regard to monogastric animal production. In this study, we have developed a synergistic bacteria-enzyme co-fermentation system to enhance the nutritional profile of PKC and evaluated its digestion dynamics using a physiologically relevant porcine in vitro gastrointestinal model. RESULTS Sequential fermentation with Lactobacillus plantarum LY19 and Bacillus natto ND1 (48 h, 37 °C) degraded 3.0% crude fiber, yielding 9.30 g kg-1 reducing sugars. Enzymatic treatment (β-mannanase 45 U g-1 + cellulase 160 U g-1 + acid protease 125 U g-1) synergistically enhanced nutrient release: soluble protein increased 214% (0.72% to 2.26%), reducing sugars surged 13.8-fold (4.45 to 61.21 g kg-1), with 55.3% fibre reduction (15.40% to 6.88%). In vitro digestion demonstrated an improvement in regard to dry matter (7.1% increase) and protein digestibility (17.0% increase), whereas colonic fermentation showed decreased concentrations of short-chain fatty acids and gases production during 48 h. 16S ribosomal RNA analysis revealed increased beneficial Lachnospiraceae NK4A136 alongside decreased pathogens (i.e. Escherichia-Shigella) and fibre-degrading taxa (i.e. Christensenellaceae R-7, UCG-005). CONCLUSION The integrated bacterial-enzymatic co-fermentation process significantly enhanced the nutritional profile of PKC through fibre reduction, protein solubilisation, and sugar release. This pretreatment improved in vitro small intestinal digestibility and modulated colonic fermentation patterns, as evidenced by favourable microbial community shifts. These findings demonstrate the potential of this bioprocessing strategy to expand PKC utilisation in swine nutrition. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hui Zeng
- National Centre for International Research on Animal Gut Nutrition, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Liren Ding
- National Experimental Teaching Centre for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Meixin Hou
- National Centre for International Research on Animal Gut Nutrition, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Ziwen Liu
- National Centre for International Research on Animal Gut Nutrition, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Long Pan
- National Centre for International Research on Animal Gut Nutrition, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Suqin Hang
- National Centre for International Research on Animal Gut Nutrition, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| |
Collapse
|
5
|
Qin X, Chen M, He B, Chen Y, Zheng Y. Role of short-chain fatty acids in non-alcoholic fatty liver disease and potential therapeutic targets. Front Microbiol 2025; 16:1539972. [PMID: 40248431 PMCID: PMC12003400 DOI: 10.3389/fmicb.2025.1539972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/12/2025] [Indexed: 04/19/2025] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is increasing worldwide and has become the greatest potential risk for cirrhosis and hepatocellular carcinoma. The metabolites produced by the gut microbiota act as signal molecules that mediate the interaction between microorganisms and the host and have biphasic effects on human health. The gut microbiota and its metabolites, short-chain fatty acids (SCFAs), have been discovered to ameliorate many prevalent liver diseases, including NAFLD. Currently, SCFAs have attracted widespread attention as potential therapeutic targets for NAFLD, but the mechanism of action has not been fully elucidated. This article summarizes the mechanisms of short-chain fatty acids of gut microbiota metabolites to regulate the metabolism of glucose and lipid, maintain the intestinal barrier, alleviate the inflammatory response, and improve the oxidative stress to improve NAFLD, in order to provide a reference for clinical application.
Collapse
Affiliation(s)
- Xiang Qin
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Mengyao Chen
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Beihui He
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuyan Chen
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Yuelin Zheng
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| |
Collapse
|
6
|
Liu D, Wei M, Fang Y, Yuan T, Sun Y, Xie H, Yan W, Yuan B, Zhuang B, Jin Y. Oral colon-retentive inulin gels protect against radiation-induced hematopoietic and gastrointestinal injury by improving gut homeostasis. Int J Biol Macromol 2025; 292:139199. [PMID: 39730057 DOI: 10.1016/j.ijbiomac.2024.139199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 12/29/2024]
Abstract
Ionizing radiation-induced injury often occurs in nuclear accidents or large-dose radiotherapy, leading to acute radiation syndromes characterized by hematopoietic and gastrointestinal injuries even to death. However, current radioprotective drugs are only used in hospitals with unavoidable side effects. Here, we heated the aqueous solution of inulin, a polysaccharide dietary fiber, forming colon-retentive gel as a radiation protector in radiotherapy. Mouse models were established after 60Co γ-ray irradiation of the total body or abdomen. Inulin gels were orally administered to the mice every day from 3 days pre-radiation to 3 days post-radiation. The hematopoietic system was well protected with good blood cell recovery and cell proliferation in the femur and spleen. Oral inulin gels increased the relative abundances of key commensal microorganisms including f_Lachnospiraceae, Akkermansia, Blautia, and short-chain fatty acid metabolites. The secretion of the anti-inflammation cytokines IL-22 and IL-10 in the intestinal cells also increased. Similarly, the expression of the tight junction proteins claudin-1 and occludin in the gut mucosa was affected. In an orthotopic murine colorectal cancer model, oral inulin gels followed by 10-Gy abdomen radiation improved the radiotherapy efficiency with low attenuated radiation injury. Taken the data together, these results suggest that oral inulin gels are a bioactive material against ionizing radiation-induced injury.
Collapse
Affiliation(s)
- Dongdong Liu
- Beijing Institute of Radiation Medicine, Beijing 100850, China; China Rehabilitation Science Institute, China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing 100068, China
| | - Meng Wei
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yubao Fang
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Tianyu Yuan
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yingbao Sun
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Hua Xie
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Wenrui Yan
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Bochuan Yuan
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Bo Zhuang
- Institute of NBC Defense, Beijing 102205, China.
| | - Yiguang Jin
- Beijing Institute of Radiation Medicine, Beijing 100850, China.
| |
Collapse
|
7
|
Xiao Y, Feng Y, Zhao J, Chen W, Lu W. Achieving healthy aging through gut microbiota-directed dietary intervention: Focusing on microbial biomarkers and host mechanisms. J Adv Res 2025; 68:179-200. [PMID: 38462039 PMCID: PMC11785574 DOI: 10.1016/j.jare.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/23/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024] Open
Abstract
BACKGROUND Population aging has become a primary global public health issue, and the prevention of age-associated diseases and prolonging healthy life expectancies are of particular importance. Gut microbiota has emerged as a novel target in various host physiological disorders including aging. Comprehensive understanding on changes of gut microbiota during aging, in particular gut microbiota characteristics of centenarians, can provide us possibility to achieving healthy aging or intervene pathological aging through gut microbiota-directed strategies. AIM OF REVIEW This review aims to summarize the characteristics of the gut microbiota associated with aging, explore potential biomarkers of aging and address microbiota-associated mechanisms of host aging focusing on intestinal barrier and immune status. By summarizing the existing effective dietary strategies in aging interventions, the probability of developing a diet targeting the gut microbiota in future is provided. KEY SCIENTIFIC CONCEPTS OF REVIEW This review is focused on three key notions: Firstly, gut microbiota has become a new target for regulating health status and lifespan, and its changes are closely related to age. Thus, we summarized aging-associated gut microbiota features at the levels of key genus/species and important metabolites through comparing the microbiota differences among centenarians, elderly people and younger people. Secondly, exploring microbiota biomarkers related to aging and discussing future possibility using dietary regime/components targeted to aging-related microbiota biomarkers promote human healthy lifespan. Thirdly, dietary intervention can effectively improve the imbalance of gut microbiota related to aging, such as probiotics, prebiotics, and postbiotics, but their effects vary among.
Collapse
Affiliation(s)
- Yue Xiao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, PR China.
| | - Yingxuan Feng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, PR China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, PR China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
8
|
Guo R, Song X, Li X, Zeng C, Chen Y, Li C, Yang J, Ou D. Effects of Red Clover Isoflavones on Growth Performance, Immune Function, and Cecal Microflora of Mice. Animals (Basel) 2025; 15:150. [PMID: 39858150 PMCID: PMC11758327 DOI: 10.3390/ani15020150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/25/2024] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Isoflavone components extracted from red clover have anti-inflammatory, antioxidant and immune boosting effects. We hypothesize that red clover isoflavones (RCIs) achieve health-promoting effects via altering the gut microbiota. A total of 48 mice (20 ± 2 g) were randomly divided into a control group, low-dose group (0.05% RCIs in feed), middle-dose group (0.1% RCIs in feed), and high-dose group (0.2% RCIs in feed) with 12 mice per group. The feeding period was 20 d. The results showed that RCIs can increase the daily gain and decrease the ratio of feed to gain in mice. The organ indexes and blood biochemical indexes of the mice in each RCI group were in the normal range, indicating that RCIs do not damage liver or kidney function. RCI supplementation increased serum immunity and altered the microbial community structure in the cecum of the mice. RCIs can increase the diversity of beneficial bacteria such as Bacteroidaceae, Muribaculaceae, and Akkermansiaceae, and reduced the pathogenic Staphylococcaceae. Therefore, supplementing the diet with RCIs results in improved growth performance and notable alterations in the cecal microbiota in mice, and has potential applications as a feed additive to improve livestock production.
Collapse
Affiliation(s)
- Rongrong Guo
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang 550025, China; (R.G.); (X.S.); (X.L.); (C.Z.); (Y.C.)
| | - Xuqin Song
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang 550025, China; (R.G.); (X.S.); (X.L.); (C.Z.); (Y.C.)
| | - Xiaodie Li
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang 550025, China; (R.G.); (X.S.); (X.L.); (C.Z.); (Y.C.)
| | - Cheng Zeng
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang 550025, China; (R.G.); (X.S.); (X.L.); (C.Z.); (Y.C.)
| | - Ying Chen
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang 550025, China; (R.G.); (X.S.); (X.L.); (C.Z.); (Y.C.)
| | - Chunjie Li
- Laboratory of Pulmonary and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, Sichuan University, Chengdu 610000, China;
| | - Jian Yang
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang 550025, China; (R.G.); (X.S.); (X.L.); (C.Z.); (Y.C.)
| | - Deyuan Ou
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang 550025, China; (R.G.); (X.S.); (X.L.); (C.Z.); (Y.C.)
| |
Collapse
|
9
|
Wang J, Shen Y, Li L, Li L, Zhang J, Li M, Qiu F. Lycopene attenuates D-galactose-induced memory and behavioral deficits by mediating microbiota-SCFAs-gut-brain axis balance in female CD-1 mice. J Nutr Biochem 2025; 135:109777. [PMID: 39370012 DOI: 10.1016/j.jnutbio.2024.109777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/16/2024] [Accepted: 09/30/2024] [Indexed: 10/08/2024]
Abstract
Aging impairs cognitive function, whereas nutritional intervention can delay aging and age-related diseases. Lycopene (LYC), a naturally occurring carotenoid, posses multiple health-promoting properties, including neuroprotective function. Here, the effects of LYC on memory and behavioral deficits induced by D-galactose (D-gal) treatment and the relative contribution of LYC-derived gut microbiota in these process were investigated. Results demonstrated that LYC showed effective protection on D-gal induced cognitive deficit and neuronal damage. Moreover, LYC treatment has beneficial effects on gut barrier damage, microbiota dysbiosis and levels of SCFAs in D-gal-induced subacute aging mice. Next, fecal microbiota transplantation (FMT) experiment was performed and increased SCFAs were observed in mice received stools from D-gal+LYC group when compared with D-gal-FMT group. Thus, we added SCFAs treatment served as a control group in order to evaluated whether the alterations of gut-brain axis could be attributed to LYC-reshaped gut microbiota and SCFAs. Results showed that recipient mice received SCFAs and stools from D-gal+LYC group have similar beneficial effects in improving gut and brain function, demonstrated as: improved intestinal health via elevating antioxidant enzymes contents, increasing the expressions of tight junctions proteins and protecting gut barrier, enhanced mice working memory capacity via alleviating hippocampal neurons impairment, improving synaptic function and enhancing mitochondrial function in the intestinal pseudo-aseptic mice. In conclusion, our results demonstrated that LYC-derived microbiome played a pivotal role in the regulation of cognitive functions during aging and enhanced SCFAs formation might be an important signaling molecule connecting gut microbiome and brain.
Collapse
Affiliation(s)
- Jia Wang
- Nutritional and Food Sciences Research Institute, Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, China; Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, Taiyuan, China.
| | - Yuqi Shen
- Nutritional and Food Sciences Research Institute, Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Lu Li
- Nutritional and Food Sciences Research Institute, Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Li Li
- Nutritional and Food Sciences Research Institute, Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Juan Zhang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengling Li
- Nutritional and Food Sciences Research Institute, Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Fubin Qiu
- Nutritional and Food Sciences Research Institute, Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan, China; Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
10
|
Moura IB, Buckley AM. Using nutrition to help recovery from infections. Curr Opin Gastroenterol 2025; 41:54-58. [PMID: 39633586 PMCID: PMC11623380 DOI: 10.1097/mog.0000000000001068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
PURPOSE OF REVIEW Antibiotics are a cornerstone of modern medicine, but antibiotic consumption can have depleting effects on the gut microbiota, potentially leading to gastrointestinal symptoms and other diseases, namely Clostridioides difficile infection. Because nutrition is a major driver of gut microbiota diversity and function, here we explore the current evidence on the potential of diets in alleviate the deleterious effects of antibiotics consumed during infections. RECENT FINDINGS Beneficial nutrients can enhance the symbiotic effect of the gut microbiota with the host, supporting anti-inflammatory responses and maintaining tight junction integrity. Short-chain fatty acids have been shown to positively affect the immune response, reducing the severity of C. difficile infection, whereas high-fibre diets have been shown to promote faster recovery of the gut microbiota after antibiotic therapy. SUMMARY The role of nutrition during infection is gaining momentum, with key findings exploring the effect of some nutrients in limiting the severity of infections and helping the microbiota recover from antibiotic-induced dysbiosis. Although this field is in its infancy, these findings open the possibility of personalised nutrition as a way of restoring microbiome diversity. But more work is needed to identify the most effective types and combinations of nutrients to achieve this.
Collapse
Affiliation(s)
- Ines B. Moura
- Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds
| | - Anthony M. Buckley
- Microbiome and Nutritional Sciences Group, School of Food Science and Nutrition, University of Leeds, Woodhouse Lane, Leeds, UK
| |
Collapse
|
11
|
Zhang J, Zhang J, Li K, Fu X, Liang Y, Zhang M, Zhuang S, Gao Y. Kaempferol and Vitamin E Improve Production Performance by Linking the Gut-Uterus Axis Through the Reproductive Hormones and Microbiota of Late-Laying Hens. Animals (Basel) 2024; 15:15. [PMID: 39794963 PMCID: PMC11718788 DOI: 10.3390/ani15010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 01/13/2025] Open
Abstract
This study evaluated the effects of kaempferol (KAE), and vitamin E (VE) on the performance, reproductive hormones, and the composition of the cecum and uterus microbiota in late-laying hens. A total of 192 49-week-old Jinghong No. 1 laying hens were randomly divided into four groups, with six replicates in each group and eight laying hens in each replicate, pre-reared for one week and formally tested for ten weeks. The CON group was fed basal diets, the VE group, the KAE group, and the KAE + VE group were fed a basal diet to which was added 0.2 g/kg VE, 0.4 g/kg KAE, and 0.2 g/kg VE + 0.4 g/kg KAE, respectively. The results are as follows. Compared to the CON group, the VE group, the KAE group, and the KAE + VE group significantly increased the egg production rate, average daily egg weight and significantly decreased the feed-to-egg ratio. The VE + KAE group significantly improved the Haugh unit. The VE group, the KAE group, and the KAE + VE group considerably enhanced the eggshell strength, eggshell relative weight, eggshell thickness, yolk color, and relative yolk weight. The serum E2 and LH levels of the KAE group and the KAE + VE group and the serum FSH levels of the KAE + VE group were significantly higher. In the ovary, the KAE group and the KAE + VE group's ESR1 gene expression levels were significantly higher, and the KAE + VE group's FSHR gene expression levels were markedly higher. In the uterus, the KAE group and the KAE + VE group's ESR1 gene expression levels were dramatically higher, and the KAE + VE group's ESR2 and FSHR gene expression levels were significantly higher. 16S rRNA gene sequencing revealed a significant aggregation of cecum and uterus colonies in the Beta diversity PCoA. In the cecum, Firmicutes, Bacteroidetes, and WPS-2 were the dominant phylums. In the uterus, the Firmicutes, Proteobacteria, and Bacteroidetes were the dominant phylums. The KAE + VE group's F/B was significantly higher at the phylum level than in the CON group and the VE group. In summary, the addition of VE and KAE to the diet can improve the production performance of late-laying hens, increase the content of reproductive hormones, and stabilize the cecal and uterus microbiota, which may be related to the hormone and microbiota linkage of the gut-uterus axis.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Animal Science, College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.Z.); (K.L.); (X.F.); (Y.L.); (M.Z.); (Y.G.)
| | - Jie Zhang
- Department of Animal Science, College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.Z.); (K.L.); (X.F.); (Y.L.); (M.Z.); (Y.G.)
| | - Kangle Li
- Department of Animal Science, College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.Z.); (K.L.); (X.F.); (Y.L.); (M.Z.); (Y.G.)
| | - Xinyue Fu
- Department of Animal Science, College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.Z.); (K.L.); (X.F.); (Y.L.); (M.Z.); (Y.G.)
| | - Yanhui Liang
- Department of Animal Science, College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.Z.); (K.L.); (X.F.); (Y.L.); (M.Z.); (Y.G.)
| | - Minling Zhang
- Department of Animal Science, College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.Z.); (K.L.); (X.F.); (Y.L.); (M.Z.); (Y.G.)
| | - Shaolong Zhuang
- Fujian Hexing Ecological Agriculture Science and Technology Co., Ltd., Quanzhou 362801, China;
| | - Yuyun Gao
- Department of Animal Science, College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.Z.); (K.L.); (X.F.); (Y.L.); (M.Z.); (Y.G.)
| |
Collapse
|
12
|
Huang J, Lu Y, Tian F, Ni Y. Association of body index with fecal microbiome in children cohorts with ethnic-geographic factor interaction: accurately using a Bayesian zero-inflated negative binomial regression model. mSystems 2024; 9:e0134524. [PMID: 39570024 DOI: 10.1128/msystems.01345-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 10/24/2024] [Indexed: 11/22/2024] Open
Abstract
The exponential growth of high-throughput sequencing (HTS) data on the microbial communities presents researchers with an unparalleled opportunity to delve deeper into the association of microorganisms with host phenotype. However, this growth also poses a challenge, as microbial data are complex, sparse, discrete, and prone to zero inflation. Herein, by utilizing 10 distinct counting models for analyzing simulated data, we proposed an innovative Bayesian zero-inflated negative binomial (ZINB) regression model that is capable of identifying differentially abundant taxa associated with distinctive host phenotypes and quantifying the effects of covariates on these taxa. Our proposed model exhibits excellent accuracy compared with conventional Hurdle and INLA models, especially in scenarios characterized by inflation and overdispersion. Moreover, we confirm that dispersion parameters significantly affect the accuracy of model results, with defects gradually alleviating as the number of analyzed samples increases. Subsequently applying our model to amplicon data in real multi-ethnic children cohort, we found that only a subset of taxa were identified as having zero inflation in real data, suggesting that the prevailing understanding and processing of microbial count data in most previous microbiome studies were overly dogmatic. In practice, our pipeline of integrating bacterial differential abundance in microbiome data and relevant covariates is effective and feasible. Taken together, our method is expected to be extended to the microbiota studies of various multi-cohort populations. IMPORTANCE The microbiome is closely associated with physical indicators of the body, such as height, weight, age and BMI, which can be used as measures of human health. Accurately identifying which taxa in the microbiome are closely related to indicators of physical development is valuable as microbial markers of regional child growth trajectory. Zero-inflated negative binomial (ZINB) model, a type of Bayesian generalized linear model, can be effectively modeled in complex biological systems. We present an innovative ZINB regression model that is capable of identifying differentially abundant taxa associated with distinctive host phenotypes and quantifying the effects of covariates on these taxa, and demonstrate that its accuracy is superior to traditional Hurdle and INLA models. Our pipeline of integrating bacterial differential abundance in microbiome data and relevant covariates is effective and feasible.
Collapse
Affiliation(s)
- Jian Huang
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory of Xinjiang Special Probiotics and Dairy Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Yanzhuan Lu
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory of Xinjiang Special Probiotics and Dairy Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yongqing Ni
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory of Xinjiang Special Probiotics and Dairy Technology, Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|
13
|
Xue X, Zhao Z, Zhao LB, Gao YH, Xu WH, Cai WM, Chen SH, Li TJ, Nie TY, Rui D, Ma Y, Qian XS, Lin JL, Liu L. Gut microbiota changes in healthy individuals, obstructive sleep apnea patients, and patients treated using continuous positive airway pressure: a whole-genome metagenomic analysis. Sleep Breath 2024; 29:11. [PMID: 39589660 DOI: 10.1007/s11325-024-03185-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 11/27/2024]
Abstract
PURPOSE This study investigated variations in gut microbiota among severe obstructive sleep apnea (OSA) patients and changes in gut microbiota after continuous positive airway pressure (CPAP) treatment. METHOD From November 2020 to August 2021, laboratory-based polysomnography (PSG) was used to measure sleep parameters in healthy controls, severe OSA patients, and severe OSA patients treated with CPAP for three months. A fully automated biochemical analyzer was used to evaluate routine blood tests and biochemical indicators. Whole-genome metagenomic analysis was used to determine the microbial composition of gut samples from all participants. The relationships between gut microbiota and hypertension were examined using correlation analysis. RESULT The relative abundances of Bacteroides, Firmicutes, and Parabacteroides were significantly lower at the species level. Enterobacterales and Turicibacter were significantly higher in participants with severe OSA than healthy controls. Negative correlations were identified between Bacteroides coprocola and systolic blood pressure (SBP) (r = - 0.710, P = 0.003) and diastolic blood pressure (DBP) (r = - 0.615, P = 0.015). Conversely, a positive correlation was found between Escherichia coli and SBP (r = 0.568, P = 0.027). CONCLUSION The metabolic pathways and gut microbiota differed significantly between the control group and individuals with severe OSA. Additionally, CPAP therapy substantially changed the metabolic pathways and gut microbial composition among patients diagnosed with severe OSA. Correlation analysis further revealed a strong association between Escherichia coli, Bacteroides coprocola, and blood pressure levels.
Collapse
Affiliation(s)
- Xin Xue
- Department of Pulmonary and Critical Care Medicine of the Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Zhe Zhao
- Department of Vasculocardiology, Second Medical Center of Chinese, PLA General Hospital, Beijing, 100853, China
| | - Li-Bo Zhao
- Department of Vasculocardiology, Second Medical Center of Chinese, PLA General Hospital, Beijing, 100853, China
| | - Ying-Hui Gao
- Department of Sleep Medicine, Peking University International Hospital, Beijing, 102206, China
| | - Wei-Hao Xu
- Department of Geriatrics, Guangdong Provincial Geriatrics Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| | - Wei-Meng Cai
- Department of Pulmonary and Critical Care Medicine, Second Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Shao-Hua Chen
- Department of Pulmonary and Critical Care Medicine, Second Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Tian-Jiao Li
- Medical College, Yan' an University, Yan'an, China
| | - Ting-Yu Nie
- Medical College, Yan' an University, Yan'an, China
| | - Dong Rui
- Department of Pulmonary and Critical Care Medicine, Second Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Yao Ma
- Department of Pulmonary and Critical Care Medicine, Second Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Xiao-Shun Qian
- Department of Pulmonary and Critical Care Medicine of the Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Jun-Ling Lin
- Department of Respiratory and Critical Care Medicine, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, 100020, China.
| | - Lin Liu
- Department of Pulmonary and Critical Care Medicine of the Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
14
|
Fan S, Zhang Q, She J, Dai X. Agar oligosaccharides improve the intestinal health of induced-aging mice by maintaining intestinal homeostasis via balancing the ISCs proliferation and differentiation. Eur J Nutr 2024; 64:9. [PMID: 39546038 DOI: 10.1007/s00394-024-03512-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/18/2024] [Indexed: 11/17/2024]
Abstract
PURPOSE Aging is a process that accompanies a decline in the function of various tissues and organs, especially affecting intestinal health. Agarose oligosaccharide (AOS) can prolong the lifespan of organisms and protect the intestine in the previous study. It was examined to evaluate the effects of AOS on intestinal health, and the potential associations between intestinal homeostasis and health status were further validated. METHODS D-galactose-induced aging mice were used to investigate the role of AOS in promoting intestinal health by determining intestinal physiology, microbiota and stem cells. RESULTS AOS supplementation decreased the clinical frailty index of aging mice with increasing intestinal length and crypt depth; moreover, it decreased the average flatulence index and PCNA protein content in the intestine. Besides, AOS contributed to the diversity of the gut microbiota by increasing the relative abundance of Bacteroidetes and other bacteria that could produce short-chain fatty acids. Furthermore, AOS affected the expression of proinflammatory factors in aging mice, promoting the proliferative equilibrium of intestinal stem cells. CONCLUSION These findings confirmed that AOS could improve intestinal health in aging mice by maintaining intestinal homeostasis, which provides new insights into the potential application of AOS as a prebiotic.
Collapse
Affiliation(s)
- Shuhang Fan
- College of Life Sciences, China Jiliang University, Hangzhou, 310018, China
| | - Qianyi Zhang
- College of Life Sciences, China Jiliang University, Hangzhou, 310018, China
| | - Jianyi She
- College of Life Sciences, China Jiliang University, Hangzhou, 310018, China
| | - Xianjun Dai
- College of Life Sciences, China Jiliang University, Hangzhou, 310018, China.
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, Hangzhou, 310018, China.
| |
Collapse
|
15
|
Wang Y, Cao X, Ma J, Liu S, Jin X, Liu B. Unveiling the Longevity Potential of Natural Phytochemicals: A Comprehensive Review of Active Ingredients in Dietary Plants and Herbs. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24908-24927. [PMID: 39480905 PMCID: PMC11565747 DOI: 10.1021/acs.jafc.4c07756] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/25/2024] [Accepted: 10/25/2024] [Indexed: 11/02/2024]
Abstract
Ancient humans used dietary plants and herbs to treat disease and to pursue eternal life. Today, phytochemicals in dietary plants and herbs have been shown to be the active ingredients, some of which have antiaging and longevity-promoting effects. Here, we summarize 210 antiaging phytochemicals in dietary plants and herbs, systematically classify them into 8 groups. We found that all groups of phytochemicals can be categorized into six areas that regulate organism longevity: ROS levels, nutrient sensing network, mitochondria, autophagy, gut microbiota, and lipid metabolism. We review the role of these processes in aging and the molecular mechanism of the health benefits through phytochemical-mediated regulation. Among these, how phytochemicals promote longevity through the gut microbiota and lipid metabolism is rarely highlighted in the field. Our understanding of the mechanisms of phytochemicals based on the above six aspects may provide a theoretical basis for the further development of antiaging drugs and new insights into the promotion of human longevity.
Collapse
Affiliation(s)
- Yu Wang
- State
Key Laboratory of Subtropical Silviculture, School of Forestry and
Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Xiuling Cao
- State
Key Laboratory of Subtropical Silviculture, School of Forestry and
Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Jin Ma
- State
Key Laboratory of Subtropical Silviculture, School of Forestry and
Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Shenkui Liu
- State
Key Laboratory of Subtropical Silviculture, School of Forestry and
Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Xuejiao Jin
- State
Key Laboratory of Subtropical Silviculture, School of Forestry and
Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Beidong Liu
- State
Key Laboratory of Subtropical Silviculture, School of Forestry and
Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, Gothenburg 41390, Sweden
| |
Collapse
|
16
|
Ziaei R, Shahdadian F, Bagherniya M, Karav S, Sahebkar A. Nutritional factors and physical frailty: Highlighting the role of functional nutrients in the prevention and treatment. Ageing Res Rev 2024; 101:102532. [PMID: 39374829 DOI: 10.1016/j.arr.2024.102532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/19/2024] [Accepted: 09/30/2024] [Indexed: 10/09/2024]
Abstract
Physical frailty, an age-related decline in the physiological capacity and function of various organs, is associated with higher vulnerability to unfavorable health outcomes. The mechanisms proposed for physical frailty including increased inflammation and oxidative stress are closely related to nutritional status. In addition to traditional nutritional factors such as protein malnutrition and nutrient deficiencies, emerging evidence has focused on the role of functional nutrients including polyphenols, carotenoids, probiotics, prebiotics, omega-3 long-chain polyunsaturated fatty acids (n-3 PUFAs), β-hydroxy-β-methylbutyrate (HMB), coenzyme Q10 (CoQ10), and L-carnitine in modifying the risk of physical frailty syndrome. Although several clinical trials have suggested the beneficial effects of supplementation with polyphenols, HMB, and prebiotics on frailty indices, the current evidence is still not robust to support recommendations on the routine clinical use of such functional nutrients for the management of frailty. Similarly, the association between CoQ10 and frailty was mainly assessed in observational studies, and more randomized controlled trials are needed in this regard. A limited number of studies have reported the beneficial effect of L-carnitine supplementation on frailty indices. Since carnitine is mainly found in skeletal muscle and its measurement is thus challenging due to ethical constraints, it is necessary to examine the effect of different doses of L-carnitine on frailty and its indices in future studies. A large number of interventional studies evaluated the impact of n-3 PUFA supplementation on physical frailty in the elderly and many of them reported improved physical performance following supplementation, especially when combined with resistance training programs. Although promising findings from experimental and observational studies have been reported on functional nutrients, high-quality evidence from randomized controlled trials as well as detailed mechanistic studies are still required to affirm their role in the prevention and/or treatment of physical frailty. This review aims to describe the current state of research on functional nutrients that may modify the development or prognosis of frailty syndrome.
Collapse
Affiliation(s)
- Rahele Ziaei
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farnaz Shahdadian
- Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Bagherniya
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran; Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Canakkale Onsekiz Mart University, Canakkale 17100, Turkey
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
17
|
Jin S, Zheng Y, Li D, Liu X, Zhu T, Wang S, Liu Z, Liu Y. Effect of genistein supplementation on microenvironment regulation of breast tumors in obese mice. Breast Cancer Res 2024; 26:147. [PMID: 39456028 PMCID: PMC11515845 DOI: 10.1186/s13058-024-01904-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Obesity is an important risk factor for breast cancer in women before and after menopause. Adipocytes, key mediators in the tumor microenvironment, play a pivotal role in the relationship between obesity with cancer. However, the potential of dietary components in modulating this relationship remains underexplored. Genistein, a soy-derived isoflavone, has shown promise in reducing breast cancer risk, attenuating obesity-associated inflammation, and improving insulin resistance. However, there are no reports examining whether genistein has the ability to reduce the effects of obesity on breast tumor development. In this study, we constructed a mammary tumor model in ovariectomized obese mice and examined the effects of genistein on body condition and tumor growth. Moreover, the effects of genistein on the tumor microenvironment were examined via experimental observation of peritumoral adipocytes and macrophages. In addition, we further investigated the effect of genistein on adipocyte and breast cancer cell crosstalk via coculture experiments. Our findings indicate that dietary genistein significantly alleviates obesity, systemic inflammation, and metabolic disorders induced by a high-fat diet in ovariectomized mice. Notably, it also inhibits tumor growth in vivo. The impact of genistein extends to the tumor microenvironment, where it reduces the production of cancer-associated adipocytes (CAAs) and the recruitment of M2d-subtype macrophages. In vitro, genistein mitigates the transition of adipocytes into CAAs and inhibits the expression of inflammatory factors by activating PPAR-γ pathway and degrading nuclear NF-κB. Furthermore, it impedes the acquisition of invasive properties and epithelial‒mesenchymal transition in breast cancer cells under CAA-induced inflammation, disrupting the Wnt3a/β-catenin pathway. Intriguingly, the PPAR-γ inhibitor T0070907 counteracted the effects of genistein in the coculture system, underscoring the specificity of its action. Our study revealed that genistein can mitigate the adverse effects of obesity on breast cancer by modulating the tumor microenvironment. These findings provide new insights into how genistein intake and a soy-based diet can reduce breast cancer risk.
Collapse
Affiliation(s)
- Shengzi Jin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yingce Zheng
- College of Life Sciences, Northeast Agricultural University, No. 600 Changjiang Road, Harbin, 150030, PR China
| | - Ding Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xingyao Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Tingting Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shuang Wang
- College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, 311300, PR China
| | - Zhonghua Liu
- College of Life Sciences, Northeast Agricultural University, No. 600 Changjiang Road, Harbin, 150030, PR China.
| | - Yun Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, No. 600 Changjiang Road, Harbin, 150030, PR China.
| |
Collapse
|
18
|
Sokal-Dembowska A, Jarmakiewicz-Czaja S, Filip R. Flavonoids and Their Role in Preventing the Development and Progression of MAFLD by Modifying the Microbiota. Int J Mol Sci 2024; 25:11187. [PMID: 39456969 PMCID: PMC11508831 DOI: 10.3390/ijms252011187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
With the increasing prevalence and serious health consequences of metabolic-associated fatty liver disease (MAFLD), early diagnosis and intervention are key to effective treatment. Recent studies highlight the important role of dietary factors, including the use of flavonoids, in improving liver health. These compounds possess anti-inflammatory, antioxidant, and liver-protective properties. Flavonoids have been shown to affect the gut microbiota, which plays a key role in liver function and disease progression. Therefore, their role in preventing the development and progression of MAFLD through modulation of the microbiome seems to be of interest. This narrative review aims to consolidate the current evidence on the effects of selected flavonoids on MAFLD progression, their potential mechanisms of action, and the implications for the development of personalized dietary interventions for the management of liver disease.
Collapse
Affiliation(s)
- Aneta Sokal-Dembowska
- Institute of Health Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland.; (S.J.-C.)
| | - Sara Jarmakiewicz-Czaja
- Institute of Health Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland.; (S.J.-C.)
| | - Rafał Filip
- Institute of Medicine, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
- Department of Gastroenterology with IBD Unit, Clinical Hospital No. 2, 35-301 Rzeszow, Poland
| |
Collapse
|
19
|
Yan Z, Li Y, Xia T, Wang K, Liao Z, Zhang L, Wang Y, Shen P, Bai Z, Wang N, Zhou W, Ni Z, Dou Y, Gao Y. Revitalizing gut health: Liangxue guyuan yishen decoction promotes akkermansia muciniphila -induced intestinal stem cell recovery post-radiation in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155888. [PMID: 39084128 DOI: 10.1016/j.phymed.2024.155888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/28/2024] [Accepted: 07/15/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND The efficacy of Liangxue Guyuan Yishen Decoction (LGYD), a traditional Chinese medicine, has been scientifically proven in the treatment of radiation-induced intestinal injury (RIII) and preservation of intestinal integrity and function following high-dose radiation exposure. However, further investigation is required to comprehensively elucidate the precise mechanisms underlying the therapeutic effects of LGYD in order to provide potential pharmaceutical options for radiation protection. PURPOSE This study aims to elucidate the potential mechanism through which LGYD exerts its therapeutic effects on RIII by modulating the gut microbiota (GM). METHODS 16 s rRNA analysis was employed to assess the impact of varying doses of whole body irradiation (WBI) on GM in order to establish an appropriate model for this study. The effects of LGYD on GM and SCFA were evaluated using 16 s rRNA and Quantification of SCFA. UHPLC-QE-MS was utilized to identify the active components in LGYD as well as LGYD drug containing serum (LGYD-DS). Subsequently, immunofluorescence and immunohistochemical staining were conducted to validate the influence of LGYD and/or characteristic microbiota on RIII recovery in vivo. The effects of LGYD-DS, characteristic flora, and SCFA on intestinal stem cell (ISC) were assessed by measuring organoid surface area in intestinal organoid model. RESULTS The species composition and abundance of GM were significantly influenced by whole-body irradiation with a dose of 8.5 Gy, which was used as in vivo model. LGYD significantly improves the survival rate and promotes recovery from RIII. Additionally, LGYD exhibited a notable increase in the abundance of Akkermansia muciniphila (AKK) and levels of SCFA, particularly isobutyric acid. LGYD-DS consisted of seven main components derived from herbs of LGYD. In vivo experiments indicated that both LGYD and AKK substantially enhanced the survival rate after radiation and facilitated the recovery process for intestinal structure and function. In the organoid model, treatment with LGYD-DS, AKK supernatant or isobutyric acid significantly increased organoid surface area. CONCLUSIONS LGYD has the potential to enhance RIII by promoting the restoration of intestinal stem cell, which is closely associated with the upregulation of AKK abundance and production of SCFA, particularly isobutyric acid.
Collapse
Affiliation(s)
- Ziqiao Yan
- Department of Traditional Chinese Medicine, the Sixth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, PR China; Chinese PLA Medical School, Chinese People's Liberation Army (PLA) General Hospital, Beijing, PR China; Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, PR China
| | - Yangshuo Li
- Department of Traditional Chinese Gynecology, The First Affiliated Hospital of Naval Medical University, Shanghai, PR China
| | - Tiantian Xia
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, PR China; Medical College of Qinghai University, Xining, PR China
| | - Kaili Wang
- Department of Traditional Chinese Medicine, the Sixth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, PR China
| | - Zebin Liao
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, PR China
| | - Liangliang Zhang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, PR China; School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Yuguo Wang
- Department of Traditional Chinese Medicine, the Sixth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, PR China
| | - Pan Shen
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, PR China
| | - Zhijie Bai
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, PR China
| | - Ningning Wang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, PR China
| | - Wei Zhou
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, PR China
| | - Zhexin Ni
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, PR China.
| | - Yongqi Dou
- Department of Traditional Chinese Medicine, the Sixth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, PR China; Chinese PLA Medical School, Chinese People's Liberation Army (PLA) General Hospital, Beijing, PR China.
| | - Yue Gao
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, PR China; Medical College of Qinghai University, Xining, PR China; School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, PR China; State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, PR China.
| |
Collapse
|
20
|
Natale A, Fiori F, Parpinel M, Pelucchi C, Negri E, La Vecchia C, Rossi M. Dietary Isoflavones Intake and Gastric Cancer. Nutrients 2024; 16:2771. [PMID: 39203907 PMCID: PMC11356980 DOI: 10.3390/nu16162771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
Dietary isoflavones have been associated with a lower risk of gastric cancer (GC), but the evidence for this association is still limited. We investigated the association between isoflavone intake and GC risk using data from a case-control study including 230 incident, histologically confirmed GC cases and 547 controls with acute, non-neoplastic conditions. Dietary information was collected through a validated food frequency questionnaire (FFQ) and isoflavone intake was estimated using ad hoc databases. We estimated the odds ratios (OR) and the corresponding 95% confidence intervals (CI) of GC using logistic regression models, including terms for total energy intake and other major confounders. The OR for the highest versus the lowest tertile of intake was 0.65 (95%CI = 0.44-0.97, p for trend = 0.04) for daidzein, 0.75 (95%CI = 0.54-1.11, p for trend = 0.15) for genistein, and 0.66 (95%CI = 0.45-0.99, p for trend = 0.05) for total isoflavones. Stratified analyses by sex, age, education, and smoking showed no heterogeneity. These findings indicate a favorable effect of dietary isoflavones on GC.
Collapse
Affiliation(s)
- Arianna Natale
- Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza 2023–2027, University of Milan, 20133 Milan, Italy; (A.N.); (M.R.)
| | - Federica Fiori
- Department of Medicine-DAME, University of Udine, 33100 Udine, Italy; (F.F.); (M.P.)
| | - Maria Parpinel
- Department of Medicine-DAME, University of Udine, 33100 Udine, Italy; (F.F.); (M.P.)
| | - Claudio Pelucchi
- Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza 2023–2027, University of Milan, 20133 Milan, Italy; (A.N.); (M.R.)
| | - Eva Negri
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy;
| | - Carlo La Vecchia
- Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza 2023–2027, University of Milan, 20133 Milan, Italy; (A.N.); (M.R.)
| | - Marta Rossi
- Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza 2023–2027, University of Milan, 20133 Milan, Italy; (A.N.); (M.R.)
| |
Collapse
|
21
|
Wang J, Zhang J, Yu ZL, Chung SK, Xu B. The roles of dietary polyphenols at crosstalk between type 2 diabetes and Alzheimer's disease in ameliorating oxidative stress and mitochondrial dysfunction via PI3K/Akt signaling pathways. Ageing Res Rev 2024; 99:102416. [PMID: 39002644 DOI: 10.1016/j.arr.2024.102416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/06/2024] [Accepted: 07/06/2024] [Indexed: 07/15/2024]
Abstract
Alzheimer's disease (AD) is a fatal neurodegenerative disease in which senile plaques and neurofibrillary tangles are crucially involved in its physiological and pathophysiological processes. Growing animal and clinical studies have suggested that AD is also comorbid with some metabolic diseases, including type 2 diabetes mellitus (T2DM), and therefore, it is often considered brain diabetes. AD and T2DM share multiple molecular and biochemical mechanisms, including impaired insulin signaling, oxidative stress, gut microbiota dysbiosis, and mitochondrial dysfunction. In this review article, we mainly introduce oxidative stress and mitochondrial dysfunction and explain their role and the underlying molecular mechanism in T2DM and AD pathogenesis; then, according to the current literature, we comprehensively evaluate the possibility of regulating oxidative homeostasis and mitochondrial function as therapeutics against AD. Furthermore, considering dietary polyphenols' antioxidative and antidiabetic properties, the strategies for applying them as potential therapeutical interventions in patients with AD symptoms are assessed.
Collapse
Affiliation(s)
- Jingwen Wang
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China; Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Jingyang Zhang
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China
| | - Zhi-Ling Yu
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Sookja Kim Chung
- Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China.
| |
Collapse
|
22
|
Lin L, Tang R, Liu Y, Li Z, Li H, Yang H. Research on the anti-aging mechanisms of Panax ginseng extract in mice: a gut microbiome and metabolomics approach. Front Pharmacol 2024; 15:1415844. [PMID: 38966558 PMCID: PMC11222675 DOI: 10.3389/fphar.2024.1415844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/29/2024] [Indexed: 07/06/2024] Open
Abstract
Introduction: Aged-related brain damage and gut microbiome disruption are common. Research affirms that modulating the microbiota-gut-brain axis can help reduce age-related brain damage. Methods: Ginseng, esteemed in traditional Chinese medicine, is recognized for its anti-aging capabilities. However, previous Ginseng anti-aging studies have largely focused on diseased animal models. To this end, efforts were hereby made to explore the potential neuroprotective effects of fecal microbiota transplantation (FMT) from Ginseng-supplemented aged mice to those pre-treated with antibiotics. Results: As a result, FMT with specific modifications in natural aging mice improved animal weight gain, extended the telomere length, anti-oxidative stress in brain tissue, regulated the serum levels of cytokine, and balanced the proportion of Treg cells. Besides, FMT increased the abundance of beneficial bacteria of Lachnospiraceae, Dubosiella, Bacteroides, etc. and decreased the levels of potential pathogenic bacteria of Helicobacter and Lachnoclostridium in the fecal samples of natural aged mice. This revealed that FMT remarkably reshaped gut microbiome. Additionally, FMT-treated aged mice showed increased levels of metabolites of Ursolic acid, β-carotene, S-Adenosylmethionine, Spermidine, Guanosine, Celecoxib, Linoleic acid, etc., which were significantly positively correlated with critical beneficial bacteria above. Additionally, these identified critical microbiota and metabolites were mainly enriched in the pathways of Amino acid metabolism, Lipid metabolism, Nucleotide metabolism, etc. Furthermore, FMT downregulated p53/p21/Rb signaling and upregulated p16/p14, ATM/synapsin I/synaptophysin/PSD95, CREB/ERK/AKT signaling in brain damage following natural aging. Discussion: Overall, the study demonstrates that reprogramming of gut microbiota by FMT impedes brain damage in the natural aging process, possibly through the regulation of microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Longfei Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ruying Tang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuling Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhiyong Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hui Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang, China
| | - Hongjun Yang
- China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
23
|
Zhang H, Xiang X, Wang C, Li T, Xiao X, He L. Different effects of acute and chronic oxidative stress on the intestinal flora and gut-liver axis in weaned piglets. Front Microbiol 2024; 15:1414486. [PMID: 38952442 PMCID: PMC11215049 DOI: 10.3389/fmicb.2024.1414486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/04/2024] [Indexed: 07/03/2024] Open
Abstract
Introduction Oxidative stress plays a pivotal role in modulating the balance of intestinal flora and the gut-liver axis, while also serving as a key determinant of the growth potential of weaned piglets. However, few studies have subdivided and compared acute and chronic oxidative stress. Methods In this study, an intestinal model of acute oxidative stress in weaned piglets using paraquat (PQ) and a chronic oxidative stress model using D-galactosa in weaned piglets were conducted. And we further systematically compare their effects. Results Both acute and chronic oxidative stress models impaired intestinal barrier function and liver function. Chronic stress caused by D-galactose can result in severe redox dysregulation, while acute stress caused by paraquat can lead to inflammation and liver damage. Additionally, the components involved in the CAR pathway were expressed differently. Chronic or acute oxidative stress can reduce the diversity and composition of intestinal flora. In the PQ group, the richness of Mogibacterium and Denitratisoma improved, but in the D-gal group, the richness of Catenisphaera and Syntrophococcus increased. Discussion Not only does this research deepen our understanding of the effects of acute and chronic oxidative stress on intestinal functions, but it also characterizes characteristic changes in the gut flora, potentially identifying novel therapeutic targets and opening new avenues for future research.
Collapse
Affiliation(s)
- Hongyu Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People’s Hospital), Changsha, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Laboratory of Animal Nutrition and Hunan Health, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Xuan Xiang
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Chenyu Wang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Laboratory of Animal Nutrition and Hunan Health, College of Life Sciences, Hunan Normal University, Changsha, China
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Tiejun Li
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Xuping Xiao
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People’s Hospital), Changsha, China
| | - Liuqin He
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Laboratory of Animal Nutrition and Hunan Health, College of Life Sciences, Hunan Normal University, Changsha, China
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| |
Collapse
|
24
|
Dai H, Jiang Y, Liu S, Li D, Zhang X. Dietary flavonoids modulate the gut microbiota: A new perspective on improving autism spectrum disorder through the gut-brain axis. Food Res Int 2024; 186:114404. [PMID: 38729686 DOI: 10.1016/j.foodres.2024.114404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 05/12/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder with an unknown etiology. It is associated with various factors and causes great inconvenience to the patient's life. The gut-brain axis (GBA), which serves as a bidirectional information channel for exchanging information between the gut microbiota and the brain, is vital in studying many neurodegenerative diseases. Dietary flavonoids provide anti-inflammatory and antioxidant benefits, as well as regulating the structure and function of the gut microbiota. The occurrence and development of ASD are associated with dysbiosis of the gut microbiota. Modulation of gut microbiota can effectively improve the severity of ASD. This paper reviews the links between gut microbiota, flavonoids, and ASD, focusing on the mechanism of dietary flavonoids in regulating ASD through the GBA.
Collapse
Affiliation(s)
- Haochen Dai
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, PR China
| | - Yuhan Jiang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, PR China
| | - Shuxun Liu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China.
| | - Dandan Li
- Sinograin Chengdu Storage Research Institute Co., Ltd, Chengdu 610091, PR China
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, PR China.
| |
Collapse
|
25
|
Hou Q, Li G, Pan X, Zhong X, Geng X, Yang X, Yang X, Zhang B. Long-term supplementation of genistein improves immune homeostasis in the aged gut and extends the laying cycle of aged laying hens. Poult Sci 2024; 103:103670. [PMID: 38598909 PMCID: PMC11017059 DOI: 10.1016/j.psj.2024.103670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/06/2024] [Accepted: 03/14/2024] [Indexed: 04/12/2024] Open
Abstract
Aging is associated with alterations in gut function, including intestinal inflammation, leaky gut, and impaired epithelial regeneration. Rejuvenating the aged gut is imperative to extend the laying cycle of aged laying hens. Genistein is known to have beneficial effects on age-related diseases, but its precise role in homeostasis of the aged gut of laying hens remains to be elucidated. In this study, 160 45-wk-old Hyline Brown laying hens were continuously fed a basal diet or a diet supplemented with 40 mg/kg genistein until they reached 100 wk of age. The results revealed that long-term genistein supplementation led to an improvement in the egg production rate and feed conversion ratio, as well as an increase in egg quality. Moreover, the expression levels of senescence markers, such as β-galactosidase, P16, and P21, were decreased in the gut of genistein-treated aged laying hens. Furthermore, genistein ameliorated gut dysfunctions, such as intestinal inflammation, leaky gut, and impaired epithelial regeneration. Treg cell-derived IL-10 plays a crucial role in the genistein-induced regulation of age-related intestinal inflammation. This study demonstrates that long-term consumption of genistein improves homeostasis in the aged gut and extends the laying cycle of aged laying hens. Moreover, the link between genistein and Treg cells provides a rationale for dietary intervention against age-associated gut dysfunction.
Collapse
Affiliation(s)
- Qihang Hou
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Guang Li
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science & Technology, China Agricultural University, Haidian District, Beijing 100193, China
| | - Xianjie Pan
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science & Technology, China Agricultural University, Haidian District, Beijing 100193, China
| | - Xiang Zhong
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiangfei Geng
- Beijing Lab Anim Sci Tech Develp Co., LTD, Beijing 100193, China
| | - Xin Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Bingkun Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science & Technology, China Agricultural University, Haidian District, Beijing 100193, China.
| |
Collapse
|
26
|
Chen L, Zhao L, Zhang G, Li Z, Qu L, Luo L. Long-term administration of royal jelly regulates age-related disorders and improves gut function in naturally aging mice. Food Funct 2024; 15:5272-5286. [PMID: 38629388 DOI: 10.1039/d4fo00781f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
A natural aging mouse model can exhibit physiological characteristics that closely resemble those of human aging. Through long-term observation, it reflects the occurrence and development of the aging process more accurately. Although numerous beneficial effects of royal jelly (RJ) have been extensively demonstrated in multiple experimental models, the effects of RJ on naturally aging mice have not yet been investigated. In this study, middle-aged male C57BL/6J mice were given RJ for 9 consecutive months to investigate its impact on the intestinal barrier function, gut microbiota, short-chain fatty acids (SCFAs) content and possible mechanisms. The results confirmed that RJ modulated serum lipids by reducing the levels of total cholesterol (TC), triglycerides (TG), and low-density lipoprotein cholesterol (LDL-C). Additionally, it protected the liver by increasing antioxidant enzyme levels while decreasing inflammatory cytokines TNF-α (by 51.97%), IL-6 (by 29.73%), and IL-1β (by 43.89%). Furthermore, RJ inhibited the expression of cell cycle-dependent kinase inhibitors including p16, p21, and p53. Importantly, RJ ameliorated gut dysfunctions by inhibiting reduction of tight junction proteins and reducing inflammatory cytokines content in the colon. We also observed an alteration in gut microbiota characterized by an elevated ratio of Firmicutes to Bacteroides (F/B) along with increased abundance of beneficial bacteria, i.e., Lachnospiraceae NK4A136 and Akkermansia. Correlation analysis revealed positive associations between most bacterial genera and SCFAs production. Functional profiling of gut microbiota composition indicated that RJ intervention regulated amino acid metabolism, glycan biosynthesis, and cofactor/vitamin metabolism. Overall, our findings provide an effective dietary intervention strategy for modulating age-associated frailty through the modulation of the gut microbiota.
Collapse
Affiliation(s)
- Lili Chen
- Key Laboratory of Geriatric Nutrition and Health Ministry of Education, College of Food and Health, Beijing Technology and Business University, Beijing, 100048, China.
- School of Life Science, Jiangxi Science & Technology Normal University, Nanchang, 330013, China.
| | - Li Zhao
- School of Life Science, Jiangxi Science & Technology Normal University, Nanchang, 330013, China.
| | - Gaowei Zhang
- Key Laboratory of Geriatric Nutrition and Health Ministry of Education, College of Food and Health, Beijing Technology and Business University, Beijing, 100048, China.
| | - Zhuozhen Li
- Key Laboratory of Geriatric Nutrition and Health Ministry of Education, College of Food and Health, Beijing Technology and Business University, Beijing, 100048, China.
| | - Liangliang Qu
- Key Laboratory of Geriatric Nutrition and Health Ministry of Education, College of Food and Health, Beijing Technology and Business University, Beijing, 100048, China.
| | - Liping Luo
- Key Laboratory of Geriatric Nutrition and Health Ministry of Education, College of Food and Health, Beijing Technology and Business University, Beijing, 100048, China.
| |
Collapse
|
27
|
Dong S, Zeng Q, He W, Cheng W, Zhang L, Zhong R, He W, Fang X, Wei H. Effect of Lactobacillus plantarum BFS1243 on a female frailty model induced by fecal microbiota transplantation in germ-free mice. Food Funct 2024; 15:3993-4009. [PMID: 38516869 DOI: 10.1039/d3fo05282f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Frailty, a complex geriatric syndrome, significantly impedes the goal of achieving 'healthy aging'. Increasing evidence suggests a connection between gut microbiota, systemic inflammation, and disease. However, it remains to be determined whether interventions targeting the intestinal flora can effectively ameliorate frailty. Our research involved fecal microbiota transplantation (FMT) experiments on germ-free (GF) mice, dividing these mice into three groups: a group receiving transplants from healthy elderly individuals (HF group), a group of frailty patients (FF group), and the FF group supplemented with Lactobacillus plantarum BFS1243 (FFL group). Our findings indicated a significant shift in the gut microbiota of the FF group, in contrast to the HF group, characterized by decreased Akkermansia and increased Enterocloster, Parabacteroides, and Eisenbergiella. Concurrently, there was a reduction in amino acids and SCFAs, with BFS1243 partially mitigating these changes. The FF group exhibited an upregulation of inflammatory markers, including PGE2, CRP, and TNF-α, and a downregulation of irisin, all of which were moderated by BFS1243 treatment. Furthermore, BFS1243 improved intestinal barrier integrity and physical endurance in the FF mice. Correlation analysis revealed a negative association between SCFA-producing species and metabolites like lysine and butyric acid with pro-inflammatory factors. In conclusion, our study conclusively demonstrated that alterations in the gut microbiota of elderly individuals can lead to physical frailty, likely due to detrimental effects on the intestinal barrier and a pro-inflammatory state. These findings underscore the potential of gut microbiome modulation as a clinical strategy for treating frailty.
Collapse
Affiliation(s)
- Sashuang Dong
- Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510030, P. R. China.
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong, 510630, P. R. China.
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, 512000, P. R. China
| | - Qi Zeng
- Department of Geriatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510030, P. R. China.
| | - Weimin He
- Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510030, P. R. China.
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong, 510630, P. R. China.
| | - Wei Cheng
- Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510030, P. R. China.
| | - Ling Zhang
- Department of Geriatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510030, P. R. China.
| | - Ruimin Zhong
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, 512000, P. R. China
| | - Wen He
- Department of Geriatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510030, P. R. China.
| | - Xiang Fang
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong, 510630, P. R. China.
| | - Hong Wei
- Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510030, P. R. China.
| |
Collapse
|
28
|
Liao C, Cui J, Gao M, Wang B, Ito K, Guo Y, Zhang B. Dual-sgRNA CRISPRa System for Enhanced MK-7 Production and Salmonella Infection Mitigation in Bacillus subtilis natto Applied to Caco-2 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4301-4316. [PMID: 38344988 DOI: 10.1021/acs.jafc.3c08866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
This study optimized the menaquinone-7 (MK-7) synthetic pathways in Bacillus subtilis (B. subtilis) natto NB205, a strain that originated from natto, to enhance its MK-7 production. Utilizing mutation breeding, we developed NBMK308, a mutant strain that demonstrated a significant 117.23% increase in MK-7 production. A comprehensive transcriptome analysis identified two key genes, ispA and ispE, as being critical in MK-7 synthesis. The dual-sgRNA CRISPRa system was utilized to achieve precise regulation of ispA and ispE in the newly engineered strain, A3E3. This strategic modulation resulted in a significant enhancement of MK-7 production, achieving increases of 20.02% and 201.41% compared to traditional overexpression systems and the original strain NB205, respectively. Furthermore, the fermentation supernatant from A3E3 notably inhibited Salmonella invasion in Caco-2 cells, showcasing its potential for combating such infections. The safety of the dual-sgRNA CRISPRa system was confirmed through cell assays. The utilization of the dual-sgRNA CRISPRa system in this study was crucial for the precise regulation of key genes in MK-7 synthesis, leading to a remarkable increase in production and demonstrating additional therapeutic potential in inhibiting pathogenic infections. This approach effectively combined the advantages of microbial fermentation and biotechnology, addressing health and nutritional challenges.
Collapse
Affiliation(s)
- Chaoyong Liao
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing 100091, China
| | - Jian Cui
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing 100091, China
| | - Mingkun Gao
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing 100091, China
| | - Bo Wang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing 100091, China
| | - Koichi Ito
- Department of Food and Physiological Models, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Ibaraki 113-8654, Japan
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing 100091, China
| | - Bingkun Zhang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing 100091, China
| |
Collapse
|
29
|
Kadyan S, Park G, Hochuli N, Miller K, Wang B, Nagpal R. Resistant starches from dietary pulses improve neurocognitive health via gut-microbiome-brain axis in aged mice. Front Nutr 2024; 11:1322201. [PMID: 38352704 PMCID: PMC10864001 DOI: 10.3389/fnut.2024.1322201] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 01/10/2024] [Indexed: 02/16/2024] Open
Abstract
Introduction Cognitive decline is a common consequence of aging. Dietary patterns that lack fibers and are high in saturated fats worsen cognitive impairment by triggering pro-inflammatory pathways and metabolic dysfunctions. Emerging evidence highlights the neurocognitive benefits of fiber-rich diets and the crucial role of gut-microbiome-brain signaling. However, the mechanisms of this diet-microbiome-brain regulation remain largely unclear. Methods Accordingly, we herein investigated the unexplored neuroprotective mechanisms of dietary pulses-derived resistant starch (RS) in improving aging-associated neurocognitive function in an aged (60-weeks old) murine model carrying a human microbiome. Results and discussion Following 20-weeks dietary regimen which included a western-style diet without (control; CTL) or with 5% w/w fortification with RS from pinto beans (PTB), black-eyed-peas (BEP), lentils (LEN), chickpeas (CKP), or inulin fiber (INU), we find that RS, particularly from LEN, ameliorate the cognitive impairments induced by western diet. Mechanistically, RS-mediated improvements in neurocognitive assessments are attributed to positive remodeling of the gut microbiome-metabolome arrays, which include increased short-chain fatty acids and reduced branched-chain amino acids levels. This microbiome-metabolite-brain signaling cascade represses neuroinflammation, cellular senescence, and serum leptin/insulin levels, while enhancing lipid metabolism through improved hepatic function. Altogether, the data demonstrate the prebiotic effects of RS in improving neurocognitive function via modulating the gut-brain axis.
Collapse
Affiliation(s)
- Saurabh Kadyan
- The Gut Biome Lab, Department of Health, Nutrition, and Food Sciences, College of Education, Health, and Human Sciences, Florida State University, Tallahassee, FL, United States
| | - Gwoncheol Park
- The Gut Biome Lab, Department of Health, Nutrition, and Food Sciences, College of Education, Health, and Human Sciences, Florida State University, Tallahassee, FL, United States
| | - Nathaniel Hochuli
- The Gut Biome Lab, Department of Health, Nutrition, and Food Sciences, College of Education, Health, and Human Sciences, Florida State University, Tallahassee, FL, United States
| | - Katelyn Miller
- The Gut Biome Lab, Department of Health, Nutrition, and Food Sciences, College of Education, Health, and Human Sciences, Florida State University, Tallahassee, FL, United States
| | - Bo Wang
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, United States
| | - Ravinder Nagpal
- The Gut Biome Lab, Department of Health, Nutrition, and Food Sciences, College of Education, Health, and Human Sciences, Florida State University, Tallahassee, FL, United States
| |
Collapse
|
30
|
Muraleedharan A, Ray SK. Epigallocatechin-3-Gallate and Genistein for Decreasing Gut Dysbiosis, Inhibiting Inflammasomes, and Aiding Autophagy in Alzheimer's Disease. Brain Sci 2024; 14:96. [PMID: 38275516 PMCID: PMC10813550 DOI: 10.3390/brainsci14010096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/13/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
There are approximately 24 million cases of Alzheimer's disease (AD) worldwide, and the number of cases is expected to increase four-fold by 2050. AD is a neurodegenerative disease that leads to severe dementia in most patients. There are several neuropathological signs of AD, such as deposition of amyloid beta (Aβ) plaques, formation of neurofibrillary tangles (NFTs), neuronal loss, activation of inflammasomes, and declining autophagy. Several of these hallmarks are linked to the gut microbiome. The gastrointestinal (GI) tract contains microbial diversity, which is important in regulating several functions in the brain via the gut-brain axis (GBA). The disruption of the balance in the gut microbiota is known as gut dysbiosis. Recent studies strongly support that targeting gut dysbiosis with selective bioflavonoids is a highly plausible solution to attenuate activation of inflammasomes (contributing to neuroinflammation) and resume autophagy (a cellular mechanism for lysosomal degradation of the damaged components and recycling of building blocks) to stop AD pathogenesis. This review is focused on two bioflavonoids, specifically epigallocatechin-3-gallate (EGCG) and genistein (GS), as a possible new paradigm of treatment for maintaining healthy gut microbiota in AD due to their implications in modulating crucial AD signaling pathways. The combination of EGCG and GS has a higher potential than either agent alone to attenuate the signaling pathways implicated in AD pathogenesis. The effects of EGCG and GS on altering gut microbiota and GBA were also explored, along with conclusions from various delivery methods to increase the bioavailability of these bioflavonoids in the body.
Collapse
Affiliation(s)
- Ahalya Muraleedharan
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA;
| | - Swapan K. Ray
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| |
Collapse
|
31
|
Liu J, Liu J, Zhou S, Fu Y, Yang Q, Li Y. Effects of quercetin and daidzein on egg quality, lipid metabolism, and cecal short-chain fatty acids in layers. Front Vet Sci 2023; 10:1301542. [PMID: 38188719 PMCID: PMC10766699 DOI: 10.3389/fvets.2023.1301542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/27/2023] [Indexed: 01/09/2024] Open
Abstract
In this study, the effects of quercetin and daidzein on egg quality, lipid metabolism, and cecal short-chain fatty acids (SCFAs) were compared in layers. Hyline brown layers at 385 days of age with a similar laying rate (81.36% ± 0.62%) and body weight (2.10 kg ± 0.04 kg) were randomly divided into three treatments, six replicates per treatment, and 20 layers per replicate. Layers in control, quercetin, and daidzein treatment were fed by a basal diet supplemented with 0 mg/kg, 500 mg/kg quercetin, and 30 mg/kg of daidzein for 10 weeks. Results showed that eggshell strength and albumen height in week 4, egg yolk diameter in week 10, and eggshell thickness and egg yolk height in weeks 4 and 10 were significantly increased in the quercetin treatment (P ≤ 0.05); contents of phospholipid (PL) and lecithin (LEC) in egg yolk and high-density lipoprotein (HDL) content in serum were significantly increased; however, contents of malondialdehyde (MDA), total cholesterol (TC), and triglyceride (TG) in egg yolk, contents of TC, TG, low-density lipoprotein (LDL), and very-low-density lipoprotein (VLDL) in serum, and contents of TC and TG in the liver were significantly decreased in the quercetin treatment (P ≤ 0.05); contents of isobutyric acid and valeric acid were significantly increased in the cecum of the quercetin treatment (P ≤ 0.05), compared with control. Moreover, egg yolk height in week 10 and eggshell thickness in weeks 4 and 10 were significantly increased in the daidzein treatment (P ≤ 0.05); contents of MDA, TC, and TG in egg yolk, TC, TG, and VLDL in serum, and TC and TG in liver were significantly decreased in the daidzein treatment (P ≤ 0.05); and HDL content was significantly increased in serum of the daidzein treatment (P ≤ 0.05) compared with control. However, daidzein did not affect SCFA content in the cecum. In conclusion, egg quality was improved by quercetin and daidzein by increasing the antioxidant ability of egg yolk and by regulating lipid metabolism in layers. Quercetin worked better than daidzein in improving egg quality under this experimental condition.
Collapse
Affiliation(s)
| | | | | | | | | | - Yao Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| |
Collapse
|
32
|
Dai R, Huang J, Cui L, Sun R, Qiu X, Wang Y, Sun Y. Gut microbiota and metabolites in estrus cycle and their changes in a menopausal transition rat model with typical neuroendocrine aging. Front Endocrinol (Lausanne) 2023; 14:1282694. [PMID: 38161977 PMCID: PMC10755682 DOI: 10.3389/fendo.2023.1282694] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/13/2023] [Indexed: 01/03/2024] Open
Abstract
Background Neuroendocrine alterations in the mid-life hypothalamus coupled with reproductive decline herald the initiation of menopausal transition. The certain feature and contribution of gut microflora and metabolites to neuroendocrine changes in the menopausal transition remain largely unknown. Methods Fecal samples of rats experiencing different reproductive stages were collected and processed for 16S rRNA and liquid chromatography-mass spectrometry sequencing. The differences of gut microbiota and metabolites between young and middle-aged rats during proestrus and diestrus were analyzed, and their relationships to neuroendocrine aging were then examined. Results At the genus level, Anaeroyorax, Rikenella, Tyzzerella_3, and Atopostipes were abundant at proestrus, while Romboutsia, Turicibacter, Clostridium_sensu_stricto_1, Ruminococcaceae_NK4A214_group, CHKCI002, Ruminococcaceae_UCG-010, Staphylococcus, Family_XII_AD3011_group, Ruminococcaceae UCG-011, and Christensenellaceae_R_7_group were enriched in the diestrus of middle-aged rats. DNF00809, Phocea, and Lachnospiraceae_UCG-006 were found abundant during proestrus instead, while Bacteroides, Lactobacillus, Erysipelatoclostridium, Anaeroplasma, Anaerofustis, Parasutterella, and Enterococcus were enriched at the diestrus of young female individuals. Discriminatory metabolites were identified involving 90 metabolic pathways among the animal sets, which were enriched for steroid hormone biosynthesis, arachidonic metabolism, primary bile acid synthesis, and ovarian steroidogenesis. A total of 21 metabolites lacking in hormone-associated changes in middle-aged female individuals presented positive or negative correlations with the circulating luteinizing hormone, bile acid, fibroblast growth factor 19, and gut hormones. Moreover, close correlations were detected between the intestinal bacteria and their metabolites. Conclusion This study documents specific gut microbial composition changes and concomitant shifting trends of metabolites during menopausal transition, which may initiate the gut-brain dysfunction in neuroendocrine aging.
Collapse
Affiliation(s)
- Ruoxi Dai
- Hospital and Institute of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Jianqin Huang
- Hospital and Institute of Obstetrics and Gynecology, Fudan University, Shanghai, China
- The Academy of Integrative Medicine, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Disease, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Liyuan Cui
- Hospital and Institute of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Ruiqi Sun
- Department of Clinical Medicine, Clinical College of Anhui Medical University, Hefei, China
| | - Xuemin Qiu
- Hospital and Institute of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Yan Wang
- Hospital and Institute of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Yan Sun
- Hospital and Institute of Obstetrics and Gynecology, Fudan University, Shanghai, China
- The Academy of Integrative Medicine, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Disease, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| |
Collapse
|
33
|
Gao M, Wang J, Lv Z. Supplementing Genistein for Breeder Hens Alters the Growth Performance and Intestinal Health of Offspring. Life (Basel) 2023; 13:1468. [PMID: 37511844 PMCID: PMC10381885 DOI: 10.3390/life13071468] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/31/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Recent research revealed that dietary genistein supplementation for breeder hens can improve the immune function of offspring chicks. However, it remains unknown whether this maternal effect could improve the intestinal health of offspring. This study was conducted to explore the mechanism involved in the maternal effect of genistein on the intestinal mucosa and microbial homeostasis of chicken offspring. A total of 120 Qiling breeder hens were fed a basal diet, a 20 mg/kg genistein-supplemented diet, or a 40 mg/kg genistein-supplemented diet for 4 weeks before collecting their eggs. After hatching, 180 male offspring (60 chickens from each group) were randomly selected and divided into three groups: (1) the offspring of hens fed a basal diet (CON); (2) the offspring of hens fed a low-dose genistein-supplemented diet (LGE); (3) the offspring of hens fed a high-dose genistein-supplemented diet (HGE). At 17 d, 72 male offspring (48 chickens from CON and 24 chickens from LGE) were divided into three groups: (1) the offspring of hens fed a basal diet (CON); (2) the CON group challenged with LPS (LPS); (3) the LGE group challenged with LPS (LPS + LGE). The results showed that maternal genistein supplementation increased the birth weight and serum level of total protein (TP), followed by improved intestinal villus morphology. Continuously, the maternal effect on the body weight of chicks lasted until 21 d. Additionally, it was observed that maternal genistein supplementation exhibited protective effects against LPS-induced morphological damage and intestinal mucosal barrier dysfunction by upregulating the expression of tight junction proteins, specifically ZO-1, Claudin1, E-cadherin, and Occludin, at 21 d. Using 16S rRNA gene sequencing, we demonstrated that maternal supplementation of genistein has the potential to facilitate the maturation of newly hatched chicken offspring by enhancing the abundance of Escherichia coli. Additionally, maternal genistein supplementation can effectively reduce the abundance of Gammaproteobacteria, thus mitigating the risk of bacterial diversity impairment of LPS. In light of these findings, maternal genistein supplementation holds promise as a potential strategy for ameliorating intestinal mucosal damage and modulating the microbiome in chicken offspring.
Collapse
Affiliation(s)
- Mingkun Gao
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jiao Wang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zengpeng Lv
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
34
|
Liao C, Cui J, Lei J, Guo Y, Zhang B. Effects of Bacillus subtilis Natto NB205 and Its Mutant NBMK308 on Egg Quality in Aging Laying Hens. Life (Basel) 2023; 13:1109. [PMID: 37240754 PMCID: PMC10223476 DOI: 10.3390/life13051109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/02/2023] [Accepted: 04/13/2023] [Indexed: 05/28/2023] Open
Abstract
In aging laying hens, reproductive changes reduce egg quality. Bacillus subtilis natto (B. subtilis) is a versatile bacterium with high vitamin K2 content, providing health benefits for animals and humans. This study investigated the effect of B. subtilis natto NB205 and its mutant NBMK308 on egg quality in aging laying hens. Results showed that NB205 and NBMK308 supplementation significantly improved albumen height (p < 0.001), Haugh units (p < 0.05), and eggshell thickness (p < 0.001) compared to the control group. Supplementation also increased ovalbumin expression, regulated tight junction (TJ) proteins, reduced pro-inflammatory cytokine levels, and improved the health and productivity of aging laying hens by regulating key apoptosis-related genes in the magnum part of the oviduct. There were differences in the expression of vitamin K-dependent proteins (VKDPs) in the magnum between NB205 and NBMK308, but no significant differences in the improvement of egg quality. Supplementation with NB205 and NBMK308 can improve egg quality in aging laying hens.
Collapse
Affiliation(s)
| | | | | | | | - Bingkun Zhang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
35
|
Sun H, Zhang Q, Xu C, Mao A, Zhao H, Chen M, Sun W, Li G, Zhang T. Different Diet Energy Levels Alter Body Condition, Glucolipid Metabolism, Fecal Microbiota and Metabolites in Adult Beagle Dogs. Metabolites 2023; 13:metabo13040554. [PMID: 37110212 PMCID: PMC10143615 DOI: 10.3390/metabo13040554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/31/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Diet energy is a key component of pet food, but it is usually ignored during pet food development and pet owners also have limited knowledge of its importance. This study aimed to explore the effect of diet energy on the body condition, glucolipid metabolism, fecal microbiota and metabolites of adult beagles and analyze the relation between diet and host and gut microbiota. Eighteen healthy adult neutered male beagles were selected and randomly divided into three groups. Diets were formulated with three metabolizable energy (ME) levels: the low-energy (Le) group consumed a diet of 13.88 MJ/kg ME; the medium-energy (Me) group consumed a diet of 15.04 MJ/kg ME; and the high-energy (He) group consumed a diet of 17.05 MJ/kg ME. Moreover, the protein content of all these three diets was 29%. The experiment lasted 10 weeks, with a two-week acclimation period and an eight-week test phase. Body weight, body condition score (BCS), muscle condition score (MCS) and body fat index (BFI) decreased in the Le group, and the changes in these factors in the Le group were significantly higher than in the other groups (p < 0.05). The serum glucose and lipid levels of the Le and He groups changed over time (p < 0.05), but those of the Me group were stable (p > 0.05). The fecal pH of the Le and He groups decreased at the end of the trial (p < 0.05) and we found that the profiles of short-chain fatty acids (SCFAs) and bile acids (BAs) changed greatly, especially secondary BAs (p < 0.05). As SCFAs and secondary BAs are metabolites of the gut microbiota, the fecal microbiota was also measured. Fecal 16S rRNA gene sequencing found that the Me group had higher α-diversity indices (p < 0.05). The Me group had notably higher levels of gut probiotics, such as Faecalibacterium prausnitzii, Bacteroides plebeius and Blautia producta (p < 0.05). The diet-host-fecal microbiota interactions were determined by network analysis, and fecal metabolites may help to determine the best physical condition of dogs, assisting pet food development. Overall, feeding dogs low- or high-energy diets was harmful for glucostasis and promoted the relative abundance of pathogenic bacteria in the gut, while a medium-energy diet maintained an ideal body condition. We concluded that dogs that are fed a low-energy diet for an extended period may become lean and lose muscle mass, but diets with low energy levels and 29% protein may not supply enough protein for dogs losing weight.
Collapse
Affiliation(s)
- Haoran Sun
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Qiaoru Zhang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Chao Xu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Aipeng Mao
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Hui Zhao
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Miao Chen
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Weili Sun
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266000, China
| | - Guangyu Li
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266000, China
| | - Tietao Zhang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| |
Collapse
|