1
|
Pan C, Cao Y, Ge J, Li Y, Feng W, Yan J, Wu L, Lan Q, Lu G, Qi R, Luo Y. Mediation on the association between HPA axis hyperactivity and cognitive impairment by abnormal hippocampal function in people who lost their only child. J Affect Disord 2025; 382:39-47. [PMID: 40221054 DOI: 10.1016/j.jad.2025.04.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 12/05/2024] [Accepted: 04/08/2025] [Indexed: 04/14/2025]
Abstract
BACKGROUND People who have lost their only child (PLOCs) in China exhibit chronic hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis and a range of abnormal symptoms. The hippocampus may serve as a potential mediator between HPA axis dysregulation and the symptoms. However, the mechanisms underlying these developments remain unclear. METHODS Functional magnetic resonance imaging data were collected from 51 PLOCs and 29 healthy individuals. A linear regression model was utilized to explore the interrelationships between blood cortisol levels, hippocampal structure and function, and abnormal symptoms. Additionally, a mediation effect model was employed to examine the influence of the hippocampus on the relationship between blood cortisol levels and abnormal symptoms. RESULTS Compared with the healthy controls, the PLOCs had significantly reduced gray matter volume in the hippocampus, and increased degree centrality (DC) values in the right hippocampus. Additionally, the PLOCs exhibited more severe cognitive impairment and poorer immediate memory ability, which were significantly negatively correlated with blood cortisol levels. The mediation effect model revealed specific effects of DC values in the right hippocampus on the association between blood cortisol levels and MMSE scores and immediate memory scores. LIMITATIONS Cross-sectional design of this study could not demonstrate the causality. CONCLUSION The alterations in DC in the right hippocampus substantially mediated the relationship between HPA axis dysregulation and cognitive impairment in the sampled Chinese PLOCs. High blood cortisol levels led to cognitive impairment by causing changes in right hippocampal function.
Collapse
Affiliation(s)
- Chenyu Pan
- Department of Radiology, the Affiliated Yixing Hospital of Jiangsu University, Wuxi, China
| | - Yang Cao
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States of America
| | - Jiyuan Ge
- Department of Radiology, the Affiliated Yixing Hospital of Jiangsu University, Wuxi, China
| | - Yuefeng Li
- Department of Radiology, School of medicine Jiangsu University, Zhenjiang, China
| | - Wenxi Feng
- Department of Radiology, the Affiliated Yixing Hospital of Jiangsu University, Wuxi, China
| | - Jiaqi Yan
- Department of Radiology, the Affiliated Yixing Hospital of Jiangsu University, Wuxi, China
| | - Luoan Wu
- Department of Psychiatry, Yixing mental health center, Wuxi, China
| | - Qingyue Lan
- Department of Radiology, the Affiliated Yixing Hospital of Jiangsu University, Wuxi, China
| | - Guangming Lu
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Rongfeng Qi
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Yifeng Luo
- Department of Radiology, the Affiliated Yixing Hospital of Jiangsu University, Wuxi, China.
| |
Collapse
|
2
|
Wang W, An Q, Zou Y, Dai Y, Meng Q, Zhang Y. Lactoferrin alleviates the adverse effects of early-life inflammation on depression in adults by regulating the activation of microglia. Mol Med 2025; 31:50. [PMID: 39920579 PMCID: PMC11803964 DOI: 10.1186/s10020-025-01094-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 01/20/2025] [Indexed: 02/09/2025] Open
Abstract
Lactation is a crucial phase of brain development, and the events and nutrients during this period have long-term consequences for the occurrence of depression. This study investigated the effect and mechanism of lactoferrin (LF) deficiency during lactation on depression in adulthood. Lactation LF-deficient mice were established by nursing wild-type mice using LF systemic knockout mother mice. Additionally, 14-day-old mice were injected with lipopolysaccharide (LPS) and subjected to chronic unpredictable mild stress when they reached 6 weeks of age. The results show that lactation lactoferrin deficiency increases depression-like behavior in adult mice, and the mechanism is associated with heightened neuronal damage, abnormal microglial activation, and decreased BDNF in the hippocampus. In contrast, recombinant human lactoferrin promotes neuronal proliferation by upregulating ERK 1 and 2 phosphorylation and attenuates LPS-induced neuronal injury and microglial activation by inhibiting the activation of Toll-like receptor 4-nuclear factor-kappa B pathway in vitro. Our findings suggest that lactoferrin intake during lactation protects neurons by regulating microglial activation, thereby effectively reducing depressive symptoms in adults.
Collapse
Affiliation(s)
- Wenli Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qin An
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yunxia Zou
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yunping Dai
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Qingyong Meng
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yali Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.
| |
Collapse
|
3
|
Kim H, Choi HS, Han K, Sim W, Suh HJ, Ahn Y. Ashwagandha (Withania somnifera (L.) dunal) root extract containing withanolide a alleviates depression-like behavior in mice by enhancing the brain-derived neurotrophic factor pathway under unexpected chronic mild stress. JOURNAL OF ETHNOPHARMACOLOGY 2025; 340:119224. [PMID: 39674356 DOI: 10.1016/j.jep.2024.119224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 12/16/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ashwagandha (Withania somnifera (L.) Dunal) root or whole-plant extracts are used to treat anxiety, insomnia, and other nervous system disturbances. AIM OF THE STUDY We evaluated the neuroprotective and antidepressant effects of ashwagandha root extract (ARE) on corticosterone-exposed HT-22 cells and unpredictable chronic mild stress (UCMS)-challenged mice. MATERIALS AND METHODS The neuroprotective properties of ARE containing withanolide A were assessed in HT-22 cells subjected to corticosterone-induced oxidative stress. Additionally, the effects of ARE on depression-like behavior, stress-related hormones, and inflammatory cytokine levels were evaluated in a mouse model of UCMS. RESULTS In HT-22 cells, ARE (100 and 200 μg/mL) and its constituent, withanolide A (1.56 and 3.12 μg/mL), mitigated corticosterone-induced increases in MAO activity, ROS, and MDA levels. Treatment also reversed corticosterone-induced reductions in BDNF, TrkB, p-AKT, p-ERK, and p-CREB and normalized Nrf2 and Keap1 levels, thereby elevating HO-1 expression. In UCMS mice, ARE improved behavioral outcomes, increased sucrose preference, and reduced immobility in the forced swimming test while enhancing activity in the open field test and elevated plus maze. ARE decreased the levels of stress hormones (corticotropin-releasing hormone, adrenocorticotropic hormone, and corticosterone) and increased the levels of neurotransmitters (L-DOPA, 5-HTP, and serotonin). Histological analysis revealed that ARE reduced hippocampal cell loss. Additionally, ARE (60 and 100 mg/kg) restored decreased levels of p-AKT, p-ERK, and p-CREB and lowered inflammation-related proteins (Cox2, iNOS, IL-6, IL-1β, TNF-α). CONCLUSION These results indicate that ARE containing withanolide A exhibits notable neuroprotective and antidepressant properties.
Collapse
Affiliation(s)
- Hyeongyeong Kim
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea; Transdisciplinary Major in Learning Health Systems, Graduate School, Korea University, Seoul 02841, Republic of Korea.
| | - Hyeon-Son Choi
- Department of Food Nutrition, Sangmyung University, Seoul 03016, Republic of Korea.
| | - Kisoo Han
- Neo Cremar Co., Ltd., Seoul 06142, Republic of Korea.
| | - Wansup Sim
- Neo Cremar Co., Ltd., Seoul 06142, Republic of Korea.
| | - Hyung Joo Suh
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea; Transdisciplinary Major in Learning Health Systems, Graduate School, Korea University, Seoul 02841, Republic of Korea.
| | - Yejin Ahn
- Korea Food Research Institute, Wanju-gun, Jeonbuk STATE 55365, Republic of Korea.
| |
Collapse
|
4
|
Page CE, Epperson CN, Novick AM, Duffy KA, Thompson SM. Beyond the serotonin deficit hypothesis: communicating a neuroplasticity framework of major depressive disorder. Mol Psychiatry 2024; 29:3802-3813. [PMID: 38816586 PMCID: PMC11692567 DOI: 10.1038/s41380-024-02625-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024]
Abstract
The serotonin deficit hypothesis explanation for major depressive disorder (MDD) has persisted among clinicians and the general public alike despite insufficient supporting evidence. To combat rising mental health crises and eroding public trust in science and medicine, researchers and clinicians must be able to communicate to patients and the public an updated framework of MDD: one that is (1) accessible to a general audience, (2) accurately integrates current evidence about the efficacy of conventional serotonergic antidepressants with broader and deeper understandings of pathophysiology and treatment, and (3) capable of accommodating new evidence. In this article, we summarize a framework for the pathophysiology and treatment of MDD that is informed by clinical and preclinical research in psychiatry and neuroscience. First, we discuss how MDD can be understood as inflexibility in cognitive and emotional brain circuits that involves a persistent negativity bias. Second, we discuss how effective treatments for MDD enhance mechanisms of neuroplasticity-including via serotonergic interventions-to restore synaptic, network, and behavioral function in ways that facilitate adaptive cognitive and emotional processing. These treatments include typical monoaminergic antidepressants, novel antidepressants like ketamine and psychedelics, and psychotherapy and neuromodulation techniques. At the end of the article, we discuss this framework from the perspective of effective science communication and provide useful language and metaphors for researchers, clinicians, and other professionals discussing MDD with a general or patient audience.
Collapse
Affiliation(s)
- Chloe E Page
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - C Neill Epperson
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Family Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Helen and Arthur E. Johnson Depression Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Andrew M Novick
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Korrina A Duffy
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Scott M Thompson
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
5
|
Lyu Q, Shi LQ, Chen HY, Lu M, Liang XC, Ma XD, Zhou X, Ren L. Electroacupuncture combined with NSCs-Exo alters the response of hippocampal neurons in a chronic unpredictable mild stress paradigm in ovx rats. Life Sci 2024; 359:123235. [PMID: 39528081 DOI: 10.1016/j.lfs.2024.123235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/29/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Electroacupuncture (EA) is a form of Traditional Chinese Medicine (TCM) that combines acupuncture with microcurrents mimicking the body's bioelectricity to prevent and treat diseases. Previous studies have demonstrated its antidepressant-like effects in chronic unpredictable mild stress (CUMS)-induced ovariectomy (OVX) rats. Neural stem cell-derived exosomes (NSCs-Exo) are heterogeneous and targeted, effectively promoting nerve regeneration and repairing neuronal damage, while potentially conveying the effects of EA. However, the precise mechanism remains unclear. In this study, perimenopausal depressive disorder (PDD) rat model were established using a two-step protocol CUMS + OVX. Treatment with EA combined with NSCs-Exo (EA-Exo) significantly improved depression-like behaviors in PDD rats, as indicated by increased sucrose intake in the Sucrose Preference Test (SPT), reduced immobility in the Forced Swimming Test (FST), and prolonged activity in the Out-of-Field Test (OFT). EA-Exo treatment improved depression-like behaviors by increasing serum levels of 5-hydroxytryptamine (5-HT) and decreasing immobility in the FST. It also alleviated OVX-CUMS-induced disturbances in energy metabolism, inflammation, and oxidative stress responses by enhancing serum levels of 5-HT, dopamine (DA), ATP, superoxide dismutase (SOD), and interleukin-10 (IL-10), while reducing cyclic AMP (cAMP), interleukin-6 (IL-6), reactive oxygen species (ROS), and malondialdehyde (MDA). Furthermore, EA-Exo treatment reversed structural and functional impairments in hippocampal synapses and mitochondria. This was evidenced by reductions in hippocampal synaptic plasticity proteins PSD95, SYN, and GAP43, as well as decreased expression of energy metabolism pathway proteins AMPK, NRF1, PGC1α, and TFAM. These findings suggest that EA-Exo ameliorates depressive behavior in OVX-CUMS rats by modulating synaptic plasticity and activating the AMPK/NRF1/PGC1α/TFAM signaling pathway.
Collapse
Affiliation(s)
- Qin Lyu
- Graduate School, Liaoning University of Traditional Chinese Medicine, Shenyang 110847, China
| | - Liu-Qing Shi
- Graduate School, Liaoning University of Traditional Chinese Medicine, Shenyang 110847, China
| | - Hai-Yang Chen
- Department of Acupuncture and Moxibustion, Liaoning University of Traditional Chinese Medicine, Shenyang 110847, China
| | - Mei Lu
- Department of Acupuncture and Moxibustion, Liaoning University of Traditional Chinese Medicine, Shenyang 110847, China
| | - Xi-Cai Liang
- Experimental Animal Center, Liaoning University of Traditional Chinese Medicine, Shenyang 110847, China
| | - Xian-De Ma
- Teaching and Experiment Center, Liaoning University of Traditional Chinese Medicine, Shenyang 110847, China
| | - Xin Zhou
- Department of Acupuncture and Moxibustion, Liaoning University of Traditional Chinese Medicine, Shenyang 110847, China
| | - Lu Ren
- Liaoning University of Traditional Chinese Medicine, Shenyang, China.
| |
Collapse
|
6
|
Shang G, Zhou T, Yu X, Yan X, He K, Liu B, Feng Z, Xu J, Zhang Y, Yu X. Chronic hypercortisolism disrupts the principal functional gradient in Cushing's disease: A multi-scale connectomics and transcriptomics study. Neuroimage Clin 2024; 43:103652. [PMID: 39146836 PMCID: PMC11367515 DOI: 10.1016/j.nicl.2024.103652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/22/2024] [Accepted: 08/06/2024] [Indexed: 08/17/2024]
Abstract
Cushing's disease (CD) represents a state of cortisol excess, serving as a model to investigate the effects of prolonged hypercortisolism on functional brain. Potential alterations in the functional connectome of the brain may explain frequently reported cognitive deficits and affective disorders in CD patients. This study aims to elucidate the effects of chronic hypercortisolism on the principal functional gradient, which represents a hierarchical architecture with gradual transitions across cognitive processes, by integrating connectomics and transcriptomics approaches. Utilizing resting-state functional magnetic resonance imaging data from 140 participants (86 CD patients, 54 healthy controls) recruited at a single center, we explored the alterations in the principal gradient in CD patients. Further, we thoroughly explored the underlying associative mechanisms of the observed characteristic alterations with cognitive function domains, biological attributes, and neuropsychiatric representations, as well as gene expression profiles. Compared to healthy controls, CD patients demonstrated changes in connectome patterns in both primary and higher-order networks, exhibiting an overall converged trend along the principal gradient axis. The gradient values in CD patients' right prefrontal cortex and bilateral sensorimotor cortices exhibited a significant correlation with cortisol levels. Moreover, the cortical regions showing gradient alterations were principally associated with sensory information processing and higher-cognitive functions, as well as correlated with the gene expression patterns which involved synaptic components and function. The findings suggest that converged alterations in the principal gradient in CD patients may mediate the relationship between hypercortisolism and cognitive impairments, potentially involving genes regulating synaptic components and function.
Collapse
Affiliation(s)
- Guosong Shang
- Department of Neurosurgery, The First Medical Centre of Chinese PLA General Hospital, Beijing, China; Chinese PLA Medical School, Beijing, China
| | - Tao Zhou
- Department of Neurosurgery, The First Medical Centre of Chinese PLA General Hospital, Beijing, China; Neurosurgery Institute, Chinese PLA General Hospital, Beijing, China
| | - Xiaoteng Yu
- Department of Urology, Peking University First Hospital, Beijing, China; Institute of Urology, Peking University, National Urological Cancer Center, Beijing, China
| | - Xinyuan Yan
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Kunyu He
- Department of Neurosurgery, The First Medical Centre of Chinese PLA General Hospital, Beijing, China; Chinese PLA Medical School, Beijing, China
| | - Bin Liu
- Department of Neurosurgery, The First Medical Centre of Chinese PLA General Hospital, Beijing, China; Chinese PLA Medical School, Beijing, China
| | - Zhebin Feng
- Department of Neurosurgery, PLA 942 Hospital, Yinchuan, Ningxia, China
| | - Junpeng Xu
- Department of Neurosurgery, The First Medical Centre of Chinese PLA General Hospital, Beijing, China; Chinese PLA Medical School, Beijing, China
| | - Yanyang Zhang
- Department of Neurosurgery, The First Medical Centre of Chinese PLA General Hospital, Beijing, China; Neurosurgery Institute, Chinese PLA General Hospital, Beijing, China.
| | - Xinguang Yu
- Department of Neurosurgery, The First Medical Centre of Chinese PLA General Hospital, Beijing, China; Chinese PLA Medical School, Beijing, China; Neurosurgery Institute, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
7
|
Sun R, Yuan H, Wang J, Zhu K, Xiong Y, Zheng Y, Ni X, Huang M. Rehmanniae Radix Preparata ameliorates behavioral deficits and hippocampal neurodevelopmental abnormalities in ADHD rat model. Front Neurosci 2024; 18:1402056. [PMID: 38872946 PMCID: PMC11169733 DOI: 10.3389/fnins.2024.1402056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/16/2024] [Indexed: 06/15/2024] Open
Abstract
Objectives Abnormal hippocampal neurodevelopment, particularly in the dentate gyrus region, may be a key mechanism of attention-deficit/hyperactivity disorder (ADHD). In this study, we investigate the effect of the most commonly used Chinese herb for the treatment of ADHD, Rehmanniae Radix Preparata (RRP), on behavior and hippocampal neurodevelopment in spontaneously hypertensive rats (SHR). Methods Behavior tests, including Morris water maze (MWM) test, open field test (OFT) and elevated plus maze (EPM) test were performed to assess the effect of RRP on hyperactive and impulsive behavior. Hippocampal neurodevelopment was characterized by transmission electron microscopy, immunofluorescence, Golgi staining and Nissl staining approaches. Regulatory proteins such as Trkb, CDK5, FGF2/FGFR1 were examined by Western blot analysis. Results The results showed that RRP could effectively control the impulsive and spontaneous behavior and improve the spatial learning and memory ability. RRP significantly reduced neuronal loss and increased the number of hippocampal stem cells, and promoted synaptic plasticity. In addition, FGF/FGFR signaling was upregulated after RRP treatment. Conclusion RRP can effectively reduce impulsive and spontaneous behavior and ameliorate hippocampal neurodevelopmental abnormalities in ADHD rat model.
Collapse
Affiliation(s)
- Ruxin Sun
- Department of Neurology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Haixia Yuan
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jing Wang
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Kanglin Zhu
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yu Xiong
- Department of Neurology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Yabei Zheng
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Xinqiang Ni
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Min Huang
- Department of Neurology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
8
|
Kniffin A, Bangasser DA, Parikh V. Septohippocampal cholinergic system at the intersection of stress and cognition: Current trends and translational implications. Eur J Neurosci 2024; 59:2155-2180. [PMID: 37118907 PMCID: PMC10875782 DOI: 10.1111/ejn.15999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 04/30/2023]
Abstract
Deficits in hippocampus-dependent memory processes are common across psychiatric and neurodegenerative disorders such as depression, anxiety and Alzheimer's disease. Moreover, stress is a major environmental risk factor for these pathologies and it exerts detrimental effects on hippocampal functioning via the activation of hypothalamic-pituitary-adrenal (HPA) axis. The medial septum cholinergic neurons extensively innervate the hippocampus. Although, the cholinergic septohippocampal pathway (SHP) has long been implicated in learning and memory, its involvement in mediating the adaptive and maladaptive impact of stress on mnemonic processes remains less clear. Here, we discuss current research highlighting the contributions of cholinergic SHP in modulating memory encoding, consolidation and retrieval. Then, we present evidence supporting the view that neurobiological interactions between HPA axis stress response and cholinergic signalling impact hippocampal computations. Finally, we critically discuss potential challenges and opportunities to target cholinergic SHP as a therapeutic strategy to improve cognitive impairments in stress-related disorders. We argue that such efforts should consider recent conceptualisations on the dynamic nature of cholinergic signalling in modulating distinct subcomponents of memory and its interactions with cellular substrates that regulate the adaptive stress response.
Collapse
Affiliation(s)
- Alyssa Kniffin
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA 19122
| | - Debra A. Bangasser
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA
| | - Vinay Parikh
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA 19122
| |
Collapse
|
9
|
Kadiyala S, Bhamidipati P, Malla RR. Neuroplasticity: Pathophysiology and Role in Major Depressive Disorder. Crit Rev Oncog 2024; 29:19-32. [PMID: 38989735 DOI: 10.1615/critrevoncog.2024051197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Neuroplasticity is characterized by the brain's ability to change its activity in response to extrinsic and intrinsic factors and is thought to be the mechanism behind all brain functions. Neuroplasticity causes structural and functional changes on a molecular level, specifically the growth of different regions in the brain and changes in synaptic and post-synaptic activities. The four types of neuroplasticity are homologous area adaption, compensatory masquerade, cross-modal reassignment, and map expansion. All of these help the brain work around injuries or new information inputs. In addition to baseline physical functions, neuroplasticity is thought to be the basis of emotional and mental regulations and the impairment of it can cause various mental illnesses. Concurrently, these mental illnesses further the damage of synaptic plasticity in the brain. Major depressive disorder (MDD) is one of the most common mental illnesses. It is affected by and accelerates the impairment of neuroplasticity. It is characterized by a chronically depressed state of mind that can impact the patient's daily life, including work life and interests. This review will focus on highlighting the physiological aspects of the disease and the role of neuroplasticity in the pathogenesis and pathology of the disorder. Moreover, the role of monoamine regulation and ketamine uptake will be discussed in terms of their antidepressant effects on the outcomes of MDD.
Collapse
Affiliation(s)
| | - Priyamvada Bhamidipati
- Cancer Biology Laboratory, Department of Biochemistry and Bioinformatics, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam 530045, Andhra Pradesh, India
| | - Rama Rao Malla
- Cancer Biology Laboratory, Department of Biochemistry and Bioinformatics, School of Science, Gandhi Institute of Technology and Management (GITAM) (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India; Department of Biochemistry and Bioinformatics, School of Science, GITAM (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India
| |
Collapse
|
10
|
Dandi Ε, Theotokis P, Petri MC, Sideropoulou V, Spandou E, Tata DA. Environmental enrichment initiated in adolescence restores the reduced expression of synaptophysin and GFAP in the hippocampus of chronically stressed rats in a sex-specific manner. Dev Psychobiol 2023; 65:e22422. [PMID: 37796476 DOI: 10.1002/dev.22422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 08/12/2023] [Accepted: 08/17/2023] [Indexed: 10/06/2023]
Abstract
This study aims at investigating whether environmental enrichment (EE) initiated in adolescence can alter chronic unpredictable stress (CUS)-associated changes in astroglial and synaptic plasticity markers in male and female rats. To this end, we studied possible alterations in hippocampal glial fibrillary acidic protein (GFAP) and synaptophysin (SYN) in CUS rats previously housed in EE. Wistar rats on postnatal day (PND) 23 were housed for 10 weeks in standard housing (SH) or enriched conditions. On PND 66, animals were exposed to CUS for 4 weeks. SYN and GFAP expressions were evaluated in CA1 and CA3 subfields and dentate gyrus (DG). CUS reduced the expression of SYN in all hippocampal areas, whereas lower GFAP expression was evident only in CA1 and CA3. The reduced expression of SYN in DG and CA3 was evident to male SH/CUS rats, whereas the reduced GFAP expression in CA1 and CA3 was limited to SH/CUS females. EE housing increased the hippocampal expression of both markers and protected against CUS-associated decreases. Our findings indicate that the decreases in the expression of SYN and GFAP following CUS are region and sex-specific and underline the neuroprotective role of EE against these CUS-associated changes.
Collapse
Affiliation(s)
- Εvgenia Dandi
- Laboratory of Cognitive Neuroscience, School of Psychology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Paschalis Theotokis
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Maria Christina Petri
- Laboratory of Cognitive Neuroscience, School of Psychology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Vaia Sideropoulou
- Laboratory of Cognitive Neuroscience, School of Psychology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evangelia Spandou
- Laboratory of Experimental Physiology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Despina A Tata
- Laboratory of Cognitive Neuroscience, School of Psychology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
11
|
Zavaliangos-Petropulu A, McClintock SM, Joshi SH, Taraku B, Al-Sharif NB, Espinoza RT, Narr KL. Hippocampal subfield volumes in treatment resistant depression and serial ketamine treatment. Front Psychiatry 2023; 14:1227879. [PMID: 37876623 PMCID: PMC10590913 DOI: 10.3389/fpsyt.2023.1227879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/11/2023] [Indexed: 10/26/2023] Open
Abstract
Introduction Subanesthetic ketamine is a rapidly acting antidepressant that has also been found to improve neurocognitive performance in adult patients with treatment resistant depression (TRD). Provisional evidence suggests that ketamine may induce change in hippocampal volume and that larger pre-treatment volumes might be related to positive clinical outcomes. Here, we examine the effects of serial ketamine treatment on hippocampal subfield volumes and relationships between pre-treatment subfield volumes and changes in depressive symptoms and neurocognitive performance. Methods Patients with TRD (N = 66; 31M/35F; age = 39.5 ± 11.1 years) received four ketamine infusions (0.5 mg/kg) over 2 weeks. Structural MRI scans, the National Institutes of Health Toolbox (NIHT) Cognition Battery, and Hamilton Depression Rating Scale (HDRS) were collected at baseline, 24 h after the first and fourth ketamine infusion, and 5 weeks post-treatment. The same data was collected for 32 age and sex matched healthy controls (HC; 17M/15F; age = 35.03 ± 12.2 years) at one timepoint. Subfield (CA1/CA3/CA4/subiculum/molecular layer/GC-ML-DG) volumes corrected for whole hippocampal volume were compared across time, between treatment remitters/non-remitters, and patients and HCs using linear regression models. Relationships between pre-treatment subfield volumes and clinical and cognitive outcomes were also tested. All analyses included Bonferroni correction. Results Patients had smaller pre-treatment left CA4 (p = 0.004) and GC.ML.DG (p = 0.004) volumes compared to HC, but subfield volumes remained stable following ketamine treatment (all p > 0.05). Pre-treatment or change in hippocampal subfield volumes over time showed no variation by remission status nor correlated with depressive symptoms (p > 0.05). Pre-treatment left CA4 was negatively correlated with improved processing speed after single (p = 0.0003) and serial ketamine infusion (p = 0.005). Left GC.ML.DG also negatively correlated with improved processing speed after single infusion (p = 0.001). Right pre-treatment CA3 positively correlated with changes in list sorting working memory at follow-up (p = 0.0007). Discussion These results provide new evidence to suggest that hippocampal subfield volumes at baseline may present a biomarker for neurocognitive improvement following ketamine treatment in TRD. In contrast, pre-treatment subfield volumes and changes in subfield volumes showed negligible relationships with ketamine-related improvements in depressive symptoms.
Collapse
Affiliation(s)
- Artemis Zavaliangos-Petropulu
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, United States
| | - Shawn M. McClintock
- Division of Psychology, Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, United States
| | - Shantanu H. Joshi
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, United States
| | - Brandon Taraku
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, United States
| | - Noor B. Al-Sharif
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, United States
| | - Randall T. Espinoza
- Jane and Terry Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, United States
| | - Katherine L. Narr
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, United States
- Jane and Terry Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
12
|
Schoenfeld TJ, Rhee D, Smith JA, Padmanaban V, Brockett AT, Jacobs HN, Cameron HA. Rewarded Maze Training Increases Approach Behavior in Rats Through Neurogenesis-Dependent Growth of Ventral Hippocampus-Prelimbic Circuits. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:725-733. [PMID: 37881563 PMCID: PMC10593943 DOI: 10.1016/j.bpsgos.2023.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 10/27/2023] Open
Abstract
Background Learning complex navigation routes increases hippocampal volume in humans, but it is not clear whether this growth impacts behaviors outside the learning situation or what cellular mechanisms are involved. Methods We trained rats with pharmacogenetic suppression of adult neurogenesis and littermate controls in 3 mazes over 3 weeks and tested novelty approach behavior several days after maze exposure. We then measured hippocampus and prelimbic cortex volumes using magnetic resonance imaging and assessed neuronal and astrocyte morphology. Finally, we investigated the activation and behavioral role of the ventral CA1 (vCA1)-to-prelimbic pathway using immediate-early genes and DREADDs (designer receptors exclusively activated by designer drugs). Results Maze training led to volume increase of both the vCA1 region of the hippocampus and the prelimbic region of the neocortex compared with rats that followed fixed paths. Growth was also apparent in individual neurons and astrocytes in these 2 regions, and behavioral testing showed increased novelty approach in maze-trained rats in 2 different tests. Suppressing adult neurogenesis prevented the effects on structure and approach behavior after maze training without affecting maze learning itself. The vCA1 neurons projecting to the prelimbic area were more activated by novelty in maze-trained animals, and suppression of this pathway decreased approach behavior. Conclusions Rewarded navigational learning experiences induce volumetric and morphologic growth in the vCA1 and prelimbic cortex and enhance activation of the circuit connecting these 2 regions. Both the structural and behavioral effects of maze training require ongoing adult neurogenesis, suggesting a role for new neurons in experience-driven increases in novelty exploration.
Collapse
Affiliation(s)
- Timothy J. Schoenfeld
- Section on Neuroplasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
- Department of Psychological Science and Neuroscience, Belmont University, Nashville, Tennessee
| | - Diane Rhee
- Section on Neuroplasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Jesse A. Smith
- Section on Neuroplasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Varun Padmanaban
- Section on Neuroplasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Adam T. Brockett
- Department of Psychology and Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey
| | - Hannah N. Jacobs
- Section on Neuroplasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Heather A. Cameron
- Section on Neuroplasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
13
|
Li S, Yang C, Wu Z, Chen Y, He X, Liu R, Ma W, Deng S, Li J, Liu Q, Wang Y, Zhang W. Suppressive effects of bilobalide on depression-like behaviors induced by chronic unpredictable mild stress in mice. Food Funct 2023; 14:8409-8419. [PMID: 37615035 DOI: 10.1039/d3fo02681g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Background: Depression is a psychiatric disorder with depressed mood and even suicide attempts as the main clinical symptoms, and its pathogenesis has not yet been fully elucidated. Brain derived neurotrophic factor (BDNF) plays an important role in the pathogenesis of depression. Purpose: The main aim of the present study was to evaluate the effectiveness and reveal the potential mechanisms of bilobalide (BB) intervention in alleviating depression-like behaviors by using chronic unpredictable mild stress (CUMS) mice via mediating the BDNF pathway. Methods: Behavioral assessments were carried out by using the sucrose preference test (SPT), tail suspension test (TST), and forced swimming test (FST). CUMS mice were randomly divided into 5 groups: CUMS + solvent, CUMS + BB low, CUMS + BB medium, CUMS + BB high and CUMS + fluoxetine. Total serum levels of tumor necrosis factor (TNF-α) and interleukin-6 (IL-6) were measured by ELISA. Expression of TNF-α, IL-6, AKT, GSK3β, β-catenin, Trk-B and BDNF in the mouse hippocampus was assessed by western blotting. Results: BB treatment reduced the levels of pro-inflammatory cytokines (IL-6 and TNF-α) and increased the protein expression of BDNF in the hippocampus region of the CUMS mice. Moreover, BB treatment enhanced the AKT/GSK3β/β-catenin signaling pathway which is downstream of the BDNF receptor Trk-B in the hippocampus of these mice. Conclusions: Overall, the experimental results indicated that BB reverses CUMS-induced depression-like behavior. BB exerts antidepressant-like effects by inhibiting neuroinflammation and enhancing the function of neurotrophic factors.
Collapse
Affiliation(s)
- Shengnan Li
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230001, China.
| | - Chengying Yang
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230001, China.
| | - Zeyu Wu
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230001, China.
| | - Yuanli Chen
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230001, China
| | - Xiaoyu He
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230001, China
| | - Rui Liu
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230001, China.
| | - Wanru Ma
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230001, China.
| | - Shaohuan Deng
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230001, China.
| | - Jianwen Li
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230001, China.
| | - Qingsong Liu
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230001, China.
| | - Yunchun Wang
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230001, China.
| | - Wencheng Zhang
- Engineering Research Center of Bio-Process of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230001, China.
| |
Collapse
|
14
|
Elmer S, Schmitt R, Giroud N, Meyer M. The neuroanatomical hallmarks of chronic tinnitus in comorbidity with pure-tone hearing loss. Brain Struct Funct 2023; 228:1511-1534. [PMID: 37349539 PMCID: PMC10335971 DOI: 10.1007/s00429-023-02669-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023]
Abstract
Tinnitus is one of the main hearing impairments often associated with pure-tone hearing loss, and typically manifested in the perception of phantom sounds. Nevertheless, tinnitus has traditionally been studied in isolation without necessarily considering auditory ghosting and hearing loss as part of the same syndrome. Hence, in the present neuroanatomical study, we attempted to pave the way toward a better understanding of the tinnitus syndrome, and compared two groups of almost perfectly matched individuals with (TIHL) and without (NTHL) pure-tone tinnitus, but both characterized by pure-tone hearing loss. The two groups were homogenized in terms of sample size, age, gender, handedness, education, and hearing loss. Furthermore, since the assessment of pure-tone hearing thresholds alone is not sufficient to describe the full spectrum of hearing abilities, the two groups were also harmonized for supra-threshold hearing estimates which were collected using temporal compression, frequency selectivity und speech-in-noise tasks. Regions-of-interest (ROI) analyses based on key brain structures identified in previous neuroimaging studies showed that the TIHL group exhibited increased cortical volume (CV) and surface area (CSA) of the right supramarginal gyrus and posterior planum temporale (PT) as well as CSA of the left middle-anterior part of the superior temporal sulcus (STS). The TIHL group also demonstrated larger volumes of the left amygdala and of the left head and body of the hippocampus. Notably, vertex-wise multiple linear regression analyses additionally brought to light that CSA of a specific cluster, which was located in the left middle-anterior part of the STS and overlapped with the one found to be significant in the between-group analyses, was positively associated with tinnitus distress level. Furthermore, distress also positively correlated with CSA of gray matter vertices in the right dorsal prefrontal cortex and the right posterior STS, whereas tinnitus duration was positively associated with CSA and CV of the right angular gyrus (AG) and posterior part of the STS. These results provide new insights into the critical gray matter architecture of the tinnitus syndrome matrix responsible for the emergence, maintenance and distress of auditory phantom sensations.
Collapse
Affiliation(s)
- Stefan Elmer
- Department of Computational Linguistics, Computational Neuroscience of Speech & Hearing, University of Zurich, Zurich, Switzerland
- Competence Center Language & Medicine, University of Zurich, Zurich, Switzerland
| | - Raffael Schmitt
- Department of Computational Linguistics, Computational Neuroscience of Speech & Hearing, University of Zurich, Zurich, Switzerland
| | - Nathalie Giroud
- Department of Computational Linguistics, Computational Neuroscience of Speech & Hearing, University of Zurich, Zurich, Switzerland
- Center for Neuroscience Zurich, University and ETH of Zurich, Zurich, Switzerland
- Competence Center Language & Medicine, University of Zurich, Zurich, Switzerland
| | - Martin Meyer
- Department of Comparative Language Science, University of Zurich, Zurich, Switzerland
- Center for Neuroscience Zurich, University and ETH of Zurich, Zurich, Switzerland
- Center for the Interdisciplinary Study of Language Evolution (ISLE), University of Zurich, Zurich, Switzerland
- Cognitive Psychology Unit, Alpen-Adria University, Klagenfurt, Austria
| |
Collapse
|
15
|
Papp M, Gruca P, Litwa E, Lason M, Willner P. Optogenetic stimulation of transmission from prelimbic cortex to nucleus accumbens core overcomes resistance to venlafaxine in an animal model of treatment-resistant depression. Prog Neuropsychopharmacol Biol Psychiatry 2023; 123:110715. [PMID: 36610613 DOI: 10.1016/j.pnpbp.2023.110715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023]
Abstract
BACKGROUND Our earlier study demonstrated that repeated optogenetic stimulation of afferents from ventral hippocampus (vHIP) to the prelimbic region of medial prefrontal cortex (mPFC) overcame resistance to antidepressant treatment in Wistar-Kyoto (WKY) rats. These results suggested that antidepressant resistance may result from an insufficiency of transmission from vHIP to mPFC. Here we examined whether similar effects can be elicited from major output of mPFC; the pathway from to nucleus accumbens core (NAc). METHOD WKY rats were subjected to Chronic Mild Stress and were used in two sets of experiments: 1) they were treated acutely with optogenetic stimulation of afferents to NAc core originating from the mPFC, and 2) they were treated with chronic (5 weeks) venlafaxine (10 mg/kg) and/or repeated (once weekly) optogenetic stimulation of afferents to NAc originating from either mPFC or vHIP. RESULTS Chronic mild stress procedure decreased sucrose intake, open arm entries on elevated plus maze, and novel object recognition test. Acute optogenetic stimulation of the mPFC-NAc and vHIP-NAc pathways had no effect in sucrose or plus maze tests, but increased object recognition. Neither venlafaxine nor mPFC-NAc optogenetic stimulation alone was effective in reversing the effects of CMS, but the combination of chronic antidepressant and repeated optogenetic stimulation improved behaviour on all three measures. CONCLUSIONS The synergism between venlafaxine and mPFC-NAc optogenetic stimulation supports the hypothesis that the mechanisms of non-responsiveness of WKY rats involves a failure of antidepressant treatment to restore transmission in the mPFC-NAc pathway. Together with earlier results, this implicates insufficiency in a vHIP-mPFC-NAc circuit in non-responsiveness to antidepressant drugs.
Collapse
Affiliation(s)
- Mariusz Papp
- Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland.
| | - Piotr Gruca
- Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Ewa Litwa
- Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Magdalena Lason
- Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Paul Willner
- Department of Psychology, Swansea University, Swansea, UK
| |
Collapse
|
16
|
Jazvinšćak Jembrek M, Oršolić N, Karlović D, Peitl V. Flavonols in Action: Targeting Oxidative Stress and Neuroinflammation in Major Depressive Disorder. Int J Mol Sci 2023; 24:ijms24086888. [PMID: 37108052 PMCID: PMC10138550 DOI: 10.3390/ijms24086888] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Major depressive disorder is one of the most common mental illnesses that highly impairs quality of life. Pharmacological interventions are mainly focused on altered monoamine neurotransmission, which is considered the primary event underlying the disease's etiology. However, many other neuropathological mechanisms that contribute to the disease's progression and clinical symptoms have been identified. These include oxidative stress, neuroinflammation, hippocampal atrophy, reduced synaptic plasticity and neurogenesis, the depletion of neurotrophic factors, and the dysfunction of the hypothalamic-pituitary-adrenal (HPA) axis. Current therapeutic options are often unsatisfactory and associated with adverse effects. This review highlights the most relevant findings concerning the role of flavonols, a ubiquitous class of flavonoids in the human diet, as potential antidepressant agents. In general, flavonols are considered to be both an effective and safe therapeutic option in the management of depression, which is largely based on their prominent antioxidative and anti-inflammatory effects. Moreover, preclinical studies have provided evidence that they are capable of restoring the neuroendocrine control of the HPA axis, promoting neurogenesis, and alleviating depressive-like behavior. Although these findings are promising, they are still far from being implemented in clinical practice. Hence, further studies are needed to more comprehensively evaluate the potential of flavonols with respect to the improvement of clinical signs of depression.
Collapse
Affiliation(s)
- Maja Jazvinšćak Jembrek
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
- School of Medicine, Catholic University of Croatia, Ilica 242, 10000 Zagreb, Croatia
| | - Nada Oršolić
- Division of Animal Physiology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000 Zagreb, Croatia
| | - Dalibor Karlović
- School of Medicine, Catholic University of Croatia, Ilica 242, 10000 Zagreb, Croatia
- Department of Psychiatry, Sestre Milosrdnice University Hospital Center, 10000 Zagreb, Croatia
| | - Vjekoslav Peitl
- School of Medicine, Catholic University of Croatia, Ilica 242, 10000 Zagreb, Croatia
- Department of Psychiatry, Sestre Milosrdnice University Hospital Center, 10000 Zagreb, Croatia
| |
Collapse
|
17
|
Lisakovska O, Labudzynskyi D, Khomenko A, Isaev D, Savotchenko A, Kasatkina L, Savosko S, Veliky M, Shymanskyi I. Brain vitamin D3-auto/paracrine system in relation to structural, neurophysiological, and behavioral disturbances associated with glucocorticoid-induced neurotoxicity. Front Cell Neurosci 2023; 17:1133400. [PMID: 37020845 PMCID: PMC10067932 DOI: 10.3389/fncel.2023.1133400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/28/2023] [Indexed: 03/22/2023] Open
Abstract
IntroductionVitamin D3 (VD3) is a potent para/autocrine regulator and neurosteroid that can strongly influence nerve cell function and counteract the negative effects of glucocorticoid (GC) therapy. The aim of the study was to reveal the relationship between VD3 status and behavioral, structural-functional and molecular changes associated with GC-induced neurotoxicity.MethodsFemale Wistar rats received synthetic GC prednisolone (5 mg/kg b.w.) with or without VD3 (1000 IU/kg b.w.) for 30 days. Behavioral, histological, physiological, biochemical, molecular biological (RT-PCR, Western blotting) methods, and ELISA were used.Results and discussionThere was no difference in open field test (OFT), while forced swim test (FST) showed an increase in immobility time and a decrease in active behavior in prednisolone-treated rats, indicative of depressive changes. GC increased the perikaryon area, enlarged the size of the nuclei, and caused a slight reduction of cell density in CA1-CA3 hippocampal sections. We established a GC-induced decrease in the long-term potentiation (LTP) in CA1-CA3 hippocampal synapses, the amplitude of high K+-stimulated exocytosis, and the rate of Ca2+-dependent fusion of synaptic vesicles with synaptic plasma membranes. These changes were accompanied by an increase in nitration and poly(ADP)-ribosylation of cerebral proteins, suggesting the development of oxidative-nitrosative stress. Prednisolone upregulated the expression and phosphorylation of NF-κB p65 subunit at Ser311, whereas downregulating IκB. GC loading depleted the circulating pool of 25OHD3 in serum and CSF, elevated VDR mRNA and protein levels but had an inhibitory effect on CYP24A1 and VDBP expression. Vitamin D3 supplementation had an antidepressant-like effect, decreasing the immobility time and stimulating active behavior. VD3 caused a decrease in the size of the perikaryon and nucleus in CA1 hippocampal area. We found a recovery in depolarization-induced fusion of synaptic vesicles and long-term synaptic plasticity after VD3 treatment. VD3 diminished the intensity of oxidative-nitrosative stress, and suppressed the NF-κB activation. Its ameliorative effect on GC-induced neuroanatomical and behavioral abnormalities was accompanied by the 25OHD3 repletion and partial restoration of the VD3-auto/paracrine system.ConclusionGC-induced neurotoxicity and behavioral disturbances are associated with increased oxidative-nitrosative stress and impairments of VD3 metabolism. Thus, VD3 can be effective in preventing structural and functional abnormalities in the brain and behavior changes caused by long-term GC administration.
Collapse
Affiliation(s)
- Olha Lisakovska
- Department of Biochemistry of Vitamins and Coenzymes, Palladin Institute of Biochemistry, Kyiv, Ukraine
- *Correspondence: Olha Lisakovska,
| | - Dmytro Labudzynskyi
- Department of Biochemistry of Vitamins and Coenzymes, Palladin Institute of Biochemistry, Kyiv, Ukraine
| | - Anna Khomenko
- Department of Biochemistry of Vitamins and Coenzymes, Palladin Institute of Biochemistry, Kyiv, Ukraine
| | - Dmytro Isaev
- Department of Cellular Membranology, Bogomoletz Institute of Physiology, Kyiv, Ukraine
| | - Alina Savotchenko
- Department of Cellular Membranology, Bogomoletz Institute of Physiology, Kyiv, Ukraine
| | - Ludmila Kasatkina
- Research Laboratory for Young Scientists, Palladin Institute of Biochemistry, Kyiv, Ukraine
| | - Serhii Savosko
- Department of Histology and Embryology, Bogomolets National Medical University, Kyiv, Ukraine
| | - Mykola Veliky
- Department of Biochemistry of Vitamins and Coenzymes, Palladin Institute of Biochemistry, Kyiv, Ukraine
| | - Ihor Shymanskyi
- Department of Biochemistry of Vitamins and Coenzymes, Palladin Institute of Biochemistry, Kyiv, Ukraine
| |
Collapse
|
18
|
Baskerville R, McGrath T, Castell L. The effects of physical activity on glutamate neurotransmission in neuropsychiatric disorders. Front Sports Act Living 2023; 5:1147384. [PMID: 36949894 PMCID: PMC10025343 DOI: 10.3389/fspor.2023.1147384] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/17/2023] [Indexed: 03/08/2023] Open
Abstract
Physical activity (PA) is an effective way of increasing cognitive and emotional health and counteracting many psychiatric conditions. Numerous neurobiological models for depression have emerged in the past 30 years but many struggle to incorporate the effects of exercise. The hippocampus and pre-frontal cortex (PFC) containing predominantly glutamate neurotransmission, are the centres of changes seen in depression. There is therefore increasing interest in glutamatergic systems which offers new paradigms of understanding mechanisms connecting physical activity, stress, inflammation and depression, not explained by the serotonin theories of depression. Similar hippocampal glutamate dysfunction is observed in many other neuropsychiatric conditions. Excitatory glutamate neurones have high functionality, but also high ATP requirements and are therefore vulnerable to glucocorticoid or pro-inflammatory stress that causes mitochondrial dysfunction, with synaptic loss, culminating in depressed mood and cognition. Exercise improves mitochondrial function, angiogenesis and synaptogenesis. Within the glutamate hypothesis of depression, the mechanisms of stress and inflammation have been extensively researched, but PA as a mitigator is less understood. This review examines the glutamatergic mechanisms underlying depression and the evidence of physical activity interventions within this framework. A dynamic glutamate-based homeostatic model is suggested whereby stress, neuroinflammation and PA form counterbalancing influences on hippocampal cell functionality, which manifests as depression and other neuropsychiatric conditions when homeostasis is disrupted.
Collapse
Affiliation(s)
- Richard Baskerville
- Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, United Kingdom
- Correspondence: Richard Baskerville
| | | | | |
Collapse
|
19
|
Cai M, Park HR, Yang EJ. Nutraceutical Interventions for Post-Traumatic Stress Disorder in Animal Models: A Focus on the Hypothalamic–Pituitary–Adrenal Axis. Pharmaceuticals (Basel) 2022; 15:ph15070898. [PMID: 35890196 PMCID: PMC9324528 DOI: 10.3390/ph15070898] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 11/16/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) occurs after exposure to traumatic events and is characterized by overwhelming fear and anxiety. Disturbances in the hypothalamic–pituitary–adrenal (HPA) axis are involved in the pathogenesis of mood disorders, including anxiety, PTSD, and major depressive disorders. Studies have demonstrated the relationship between the HPA axis response and stress vulnerability, indicating that the HPA axis regulates the immune system, fear memory, and neurotransmission. The selective serotonin reuptake inhibitors (SSRIs), sertraline and paroxetine, are the only drugs that have been approved by the United States Food and Drug Administration for the treatment of PTSD. However, SSRIs require long treatment times and are associated with lower response and remission rates; therefore, additional pharmacological interventions are required. Complementary and alternative medicine therapies ameliorate HPA axis disturbances through regulation of gut dysbiosis, insomnia, chronic stress, and depression. We have described the cellular and molecular mechanisms through which the HPA axis is involved in PTSD pathogenesis and have evaluated the potential of herbal medicines for PTSD treatment. Herbal medicines could comprise a good therapeutic strategy for HPA axis regulation and can simultaneously improve PTSD-related symptoms. Finally, herbal medicines may lead to novel biologically driven approaches for the treatment and prevention of PTSD.
Collapse
|
20
|
Anxiety and hippocampal neuronal activity: Relationship and potential mechanisms. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2022; 22:431-449. [PMID: 34873665 DOI: 10.3758/s13415-021-00973-y] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/11/2021] [Indexed: 12/15/2022]
Abstract
The hippocampus has been implicated in modulating anxiety. It interacts with a variety of brain regions, both cortical and subcortical areas regulating emotion and stress responses, including prefrontal cortex, amygdala, hypothalamus, and the nucleus accumbens, to adjust anxiety levels in response to a variety of stressful conditions. Growing evidence indicates that anxiety is associated with increased neuronal excitability in the hippocampus, and alterations in local regulation of hippocampal excitability have been suggested to underlie behavioral disruptions characteristic of certain anxiety disorders. Furthermore, studies have shown that some anxiolytics can treat anxiety by altering the excitability and plasticity of hippocampal neurons. Hence, identifying cellular and molecular mechanisms and neural circuits that regulate hippocampal excitability in anxiety may be beneficial for developing targeted interventions for treatment of anxiety disorders particularly for the treatment-resistant cases. We first briefly review a role of the hippocampus in fear. We then review the evidence indicating a relationship between the hippocampal activity and fear/anxiety and discuss some possible mechanisms underlying stress-induced hippocampal excitability and anxiety-related behavior.
Collapse
|
21
|
Weerasinghe-Mudiyanselage PDE, Ang MJ, Kang S, Kim JS, Moon C. Structural Plasticity of the Hippocampus in Neurodegenerative Diseases. Int J Mol Sci 2022; 23:3349. [PMID: 35328770 PMCID: PMC8955928 DOI: 10.3390/ijms23063349] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 12/10/2022] Open
Abstract
Neuroplasticity is the capacity of neural networks in the brain to alter through development and rearrangement. It can be classified as structural and functional plasticity. The hippocampus is more susceptible to neuroplasticity as compared to other brain regions. Structural modifications in the hippocampus underpin several neurodegenerative diseases that exhibit cognitive and emotional dysregulation. This article reviews the findings of several preclinical and clinical studies about the role of structural plasticity in the hippocampus in neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, and multiple sclerosis. In this study, literature was surveyed using Google Scholar, PubMed, Web of Science, and Scopus, to review the mechanisms that underlie the alterations in the structural plasticity of the hippocampus in neurodegenerative diseases. This review summarizes the role of structural plasticity in the hippocampus for the etiopathogenesis of neurodegenerative diseases and identifies the current focus and gaps in knowledge about hippocampal dysfunctions. Ultimately, this information will be useful to propel future mechanistic and therapeutic research in neurodegenerative diseases.
Collapse
Affiliation(s)
- Poornima D. E. Weerasinghe-Mudiyanselage
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Korea; (P.D.E.W.-M.); (M.J.A.); (S.K.); (J.-S.K.)
| | - Mary Jasmin Ang
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Korea; (P.D.E.W.-M.); (M.J.A.); (S.K.); (J.-S.K.)
- College of Veterinary Medicine, University of the Philippines Los Baños, Los Baños 4031, Philippines
| | - Sohi Kang
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Korea; (P.D.E.W.-M.); (M.J.A.); (S.K.); (J.-S.K.)
| | - Joong-Sun Kim
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Korea; (P.D.E.W.-M.); (M.J.A.); (S.K.); (J.-S.K.)
| | - Changjong Moon
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Korea; (P.D.E.W.-M.); (M.J.A.); (S.K.); (J.-S.K.)
| |
Collapse
|
22
|
Mayer AR, Quinn DK. Neuroimaging Biomarkers of New-Onset Psychiatric Disorders Following Traumatic Brain Injury. Biol Psychiatry 2022; 91:459-469. [PMID: 34334188 PMCID: PMC8665933 DOI: 10.1016/j.biopsych.2021.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/24/2021] [Accepted: 06/06/2021] [Indexed: 02/07/2023]
Abstract
Traumatic brain injury (TBI) has traditionally been associated with cognitive and behavioral changes during both the acute and chronic phases of injury. Because of its noninvasive nature, neuroimaging has the potential to provide unique information on underlying macroscopic and microscopic biological mechanisms that may serve as causative agents for these neuropsychiatric sequelae. This broad scoping review identifies at least 4 common macroscopic pathways that exist between TBI and new-onset psychiatric disorders, as well as several examples of how neuroimaging is currently being utilized in clinical research. The review then critically examines the strengths and limitations of neuroimaging for elucidating TBI-related microscopic pathology, such as microstructural changes, neuroinflammation, proteinopathies, blood-brain barrier damage, and disruptions in cellular signaling. A summary is then provided for how neuroimaging is currently being used to investigate TBI-related pathology in new-onset neurocognitive disorders, depression, and posttraumatic stress disorder. Identified gaps in the literature include a lack of prospective studies to definitively associate imaging findings with the development of new-onset psychiatric disorders, as well as antemortem imaging studies subsequently confirmed with postmortem correlates in the same study cohort. Although the spatial resolution and specificity of imaging biomarkers has greatly improved over the last 2 decades, we conclude that neuroimaging biomarkers do not yet exist for the definitive in vivo diagnosis of cellular pathology. This represents a necessary next step for further elucidating causal relationships between TBI and new-onset psychiatric disorders.
Collapse
Affiliation(s)
- Andrew R. Mayer
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM 87106,Department of Neurology, University of New Mexico School of Medicine, Albuquerque, NM 87131,Department of Psychiatry and Behavioral Sciences, University of New Mexico School of Medicine, Albuquerque, NM 87131,Department of Psychology, University of New Mexico, Albuquerque, NM 87131,Corresponding author: Andrew Mayer, Ph.D., The Mind Research Network, Pete & Nancy Domenici Hall, 1101 Yale Blvd. NE, Albuquerque, NM 87106 USA; Tel: 505-272-0769; Fax: 505-272-8002;
| | - Davin K. Quinn
- Department of Psychiatry and Behavioral Sciences, University of New Mexico School of Medicine, Albuquerque, NM 87131
| |
Collapse
|
23
|
Wu-Chung EL, Leal SL, Denny BT, Cheng SL, Fagundes CP. Spousal caregiving, widowhood, and cognition: A systematic review and a biopsychosocial framework for understanding the relationship between interpersonal losses and dementia risk in older adulthood. Neurosci Biobehav Rev 2022; 134:104487. [PMID: 34971701 PMCID: PMC8925984 DOI: 10.1016/j.neubiorev.2021.12.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/23/2021] [Accepted: 12/06/2021] [Indexed: 01/18/2023]
Abstract
Accumulating research suggests that stressful life events, especially those that threaten close intimate bonds, are associated with an increased risk of dementia. Grieving the loss of a spouse, whether in the form of caregiving or after the death, ranks among 'life's most significant stressors', evoking intense psychological and physiological distress. Despite numerous studies reporting elevated dementia risk or poorer cognition among spousal caregivers and widow(er)s compared to controls, no review has summarized findings across cognitive outcomes (i.e., dementia incidence, cognitive impairment rates, cognitive performance) or proposed a theoretical model for understanding the links between partner loss and abnormal cognitive decline. The current systematic review summarizes findings across 64 empirical studies. Overall, both cross-sectional and longitudinal studies revealed an adverse association between partner loss and cognitive outcomes. In turn, we propose a biopsychosocial model of cognitive decline that explains how caregiving and bereavement may position some to develop cognitive impairment or Alzheimer's disease and related dementias. More longitudinal studies that focus on the biopsychosocial context of caregivers and widow(er)s are needed.
Collapse
Affiliation(s)
- E Lydia Wu-Chung
- Department of Psychological Sciences, Rice University, Houston, TX, United States.
| | - Stephanie L Leal
- Department of Psychological Sciences, Rice University, Houston, TX, United States
| | - Bryan T Denny
- Department of Psychological Sciences, Rice University, Houston, TX, United States
| | - Samantha L Cheng
- Department of Psychological Sciences, Rice University, Houston, TX, United States
| | - Christopher P Fagundes
- Department of Psychological Sciences, Rice University, Houston, TX, United States; Department of Behavioral Science, The University of Texas MD Anderson Cancer Center, Houston, TX, United States; Department of Psychiatry & Behavioral Sciences, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
24
|
Ishola IO, Olubodun-Obadun TG, Bakre OA, Ojo ES, Adeyemi OO. Kolaviron ameliorates chronic unpredictable mild stress-induced anxiety and depression: involvement of the HPA axis, antioxidant defense system, cholinergic, and BDNF signaling. Drug Metab Pers Ther 2022; 37:277-287. [PMID: 35218172 DOI: 10.1515/dmpt-2021-0125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 08/11/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES This study sought to investigate the beneficial effect of kolaviron (KV) (a biflavonoid) isolated from Garcinia kola seed on chronic unpredictable mild stress (CUMS)-induced anxiety- and depressive-like behavior. METHODS Male albino mice were randomly divided into six groups (n=8) as follows; Group I: vehicle-control unstressed; Group II: CUMS-control; Group III-V: CUMS + KV 1, 5 or 50 mg/kg, respectively, Group VI: KV (50 mg/kg, p.o.) unstressed mice. Animals were subjected to CUMS for 14 days, followed by estimation of depressive- and anxiety-like behavior from days 14-16. This was followed by biochemical assays for oxidative stress, hypothalamo-pituitary axis, cholinergic, and BDNF signaling. RESULTS CUMS caused significant reduction in time spent in open arms of elevated plus maze test (EPM) and increase in immobility time in tail suspension test (TST) and forced swim test (FST) ameliorated by KV treatments. KV administration also attenuated CUMS-induced malondialdehyde/nitrite generation and decrease in antioxidant enzymes activities in the prefrontal cortex and hippocampus. CUMS increased serum corticosterone, acetylcholinesterase activity, and reduced BDNF level in the PFC and hippocampus were attenuated by KV administration. CONCLUSIONS KV prevented CUMS induced anxiety- and depression-like behavior in mice through enhancement of antioxidant defense mechanisms, neurotrophic factors, and cholinergic systems.
Collapse
Affiliation(s)
- Ismail O Ishola
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria.,African Centre of Excellence for Drug Research, Herbal Medicine Development and Regulatory Science, Lagos, Nigeria
| | - Taiwo G Olubodun-Obadun
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Oluwasayo A Bakre
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Emmanuel S Ojo
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria.,Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Olufunmilayo O Adeyemi
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria.,African Centre of Excellence for Drug Research, Herbal Medicine Development and Regulatory Science, Lagos, Nigeria
| |
Collapse
|
25
|
McGrath T, Baskerville R, Rogero M, Castell L. Emerging Evidence for the Widespread Role of Glutamatergic Dysfunction in Neuropsychiatric Diseases. Nutrients 2022; 14:nu14050917. [PMID: 35267893 PMCID: PMC8912368 DOI: 10.3390/nu14050917] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/06/2022] [Accepted: 02/15/2022] [Indexed: 02/04/2023] Open
Abstract
The monoamine model of depression has long formed the basis of drug development but fails to explain treatment resistance or associations with stress or inflammation. Recent animal research, clinical trials of ketamine (a glutamate receptor antagonist), neuroimaging research, and microbiome studies provide increasing evidence of glutamatergic dysfunction in depression and other disorders. Glutamatergic involvement across diverse neuropathologies including psychoses, neurodevelopmental, neurodegenerative conditions, and brain injury forms the rationale for this review. Glutamate is the brain's principal excitatory neurotransmitter (NT), a metabolic and synthesis substrate, and an immune mediator. These overlapping roles and multiple glutamate NT receptor types complicate research into glutamate neurotransmission. The glutamate microcircuit comprises excitatory glutamatergic neurons, astrocytes controlling synaptic space levels, through glutamate reuptake, and inhibitory GABA interneurons. Astroglia generate and respond to inflammatory mediators. Glutamatergic microcircuits also act at the brain/body interface via the microbiome, kynurenine pathway, and hypothalamus-pituitary-adrenal axis. Disruption of excitatory/inhibitory homeostasis causing neuro-excitotoxicity, with neuronal impairment, causes depression and cognition symptoms via limbic and prefrontal regions, respectively. Persistent dysfunction reduces neuronal plasticity and growth causing neuronal death and tissue atrophy in neurodegenerative diseases. A conceptual overview of brain glutamatergic activity and peripheral interfacing is presented, including the common mechanisms that diverse diseases share when glutamate homeostasis is disrupted.
Collapse
Affiliation(s)
- Thomas McGrath
- Green Templeton College, University of Oxford, Oxford OX2 6HG, UK; (T.M.); (L.C.)
| | - Richard Baskerville
- Faculty of Health and Life Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
- Correspondence:
| | - Marcelo Rogero
- School of Public Health, University of Sao Paulo, Sao Paulo 01246-904, Brazil;
| | - Linda Castell
- Green Templeton College, University of Oxford, Oxford OX2 6HG, UK; (T.M.); (L.C.)
| |
Collapse
|
26
|
Sedaghat K, Naderian R, Pakdel R, Bandegi AR, Ghods Z. Regulatory effect of vitamin D on pro-inflammatory cytokines and anti-oxidative enzymes dysregulations due to chronic mild stress in the rat hippocampus and prefrontal cortical area. Mol Biol Rep 2021; 48:7865-7873. [PMID: 34642830 DOI: 10.1007/s11033-021-06810-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 10/05/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Chronic stress increases the production of pro-inflammatory cytokines and oxidative stress in the brain, which underlay cognitive and psychological problems. In addition to the anti-depressants, vitamin D is known to act as an anti-inflammatory and anti-oxidative agent. This study investigates the specific effects of vitamin D in protecting hippocampus and pre-frontal cortex (PFC) against chronic mild stress (CMS)-induced activation of pro-inflammatory cytokines IL-6 and TNF-α and decreasing the activation of anti-oxidative enzymes super oxide dismutase (SOD) and glutathione peroxidase (GPx). METHODS AND RESULTS Rats were exposed to CMS for 3 weeks. Two groups of rats received vitamin D (5 and 10 μg/kg) and another received fluoxetine (5 mg/kg) along with CMS. Control groups were not exposed to CMS, but received treatments similar to CMS groups. Serum corticosterone and IL-6, TNF-α and SOD and GPx levels in the hippocampus and PFC were measured at the end of three weeks. CMS significantly increased corticosterone, IL-6, TNF-α and decreased SOD and GPx levels (P < 0.0001) in hippocampus and PFC. Vitamin D treatment reduced corticosterone levels (P < 0.01), increased SOD (P < 0.0001) and GPx (P < 0.01) and decreased IL-6 and TNF-α (P < 0.0001) levels in the hippocampus and PFC compared to rats treated with vitamin D vehicle. Vitamin D-10 regulation of SOD and IL-6 levels was more effective than fluoxetine (P < 0.0001 and P < 0.01, respectively, in hippocampus). CONCLUSION This study suggests that vitamin D effectively protects the key regions of the brain related to cognition and affective behavior, against the inflammation and oxidative stress caused by the chronic stress.
Collapse
Affiliation(s)
- Katayoun Sedaghat
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran.
| | - Ramtin Naderian
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Roghayeh Pakdel
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Ahmad-Reza Bandegi
- Department of Biochemistry, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Zahra Ghods
- Department of Biochemistry, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
27
|
Papp M, Gruca P, Lason M, Litwa E, Solecki W, Willner P. Insufficiency of ventral hippocampus to medial prefrontal cortex transmission explains antidepressant non-response. J Psychopharmacol 2021; 35:1253-1264. [PMID: 34617804 PMCID: PMC8521380 DOI: 10.1177/02698811211048281] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND There is extensive evidence that antidepressant drugs restore normal brain function by repairing damage to ventral hippocampus (vHPC) and medial prefrontal cortex (mPFC). While the damage is more extensive in hippocampus, the evidence of treatments, such as deep brain stimulation, suggests that functional changes in prefrontal cortex may be more critical. We hypothesized that antidepressant non-response may result from an insufficiency of transmission from vHPC to mPFC. METHOD Antidepressant non-responsive Wistar Kyoto (WKY) rats were subjected to chronic mild stress (CMS), then treated with chronic daily administration of the antidepressant drug venlafaxine (VEN) and/or repeated weekly optogenetic stimulation (OGS) of afferents to mPFC originating from vHPC or dorsal HPC (dHPC). RESULTS As in many previous studies, CMS decreased sucrose intake, open-arm entries on the elevated plus maze (EPM), and novel object recognition (NOR). Neither VEN nor vHPC-mPFC OGS alone was effective in reversing the effects of CMS, but the combination of chronic VEN and repeated OGS restored normal behaviour on all three measures. dHPC-mPFC OGS restored normal behaviour in the EPM and NOR test irrespective of concomitant VEN treatment, and had no effect on sucrose intake. CONCLUSIONS The synergism between VEN and vHPC-mPFC OGS supports the hypothesis that the antidepressant non-responsiveness of WKY rats results from a failure of antidepressant treatment fully to restore transmission in the vHPC-mPFC pathway.
Collapse
Affiliation(s)
- Mariusz Papp
- Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland,Mariusz Papp, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, Krakow 31-343, Poland.
| | - Piotr Gruca
- Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Magdalena Lason
- Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Ewa Litwa
- Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Wojciech Solecki
- Department of Neurobiology and Neuropsychology, Institute of Applied Psychology, Jagiellonian University, Krakow, Poland
| | - Paul Willner
- Department of Psychology, Swansea University, Swansea, UK
| |
Collapse
|
28
|
Left-right asymmetric and smaller right habenula volume in major depressive disorder on high-resolution 7-T magnetic resonance imaging. PLoS One 2021; 16:e0255459. [PMID: 34343199 PMCID: PMC8330903 DOI: 10.1371/journal.pone.0255459] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 07/18/2021] [Indexed: 02/08/2023] Open
Abstract
The habenula (Hb) has been hypothesized to play an essential role in major depressive disorder (MDD) as it is considered to be an important node between fronto-limbic areas and midbrain monoaminergic structures based on animal studies. In this study, we aimed to investigate the differences in volume and T1 value of the Hb between patients with MDD and healthy control (HC) subjects. Analysis for the Hb volumes was performed using high-resolution 7-T magnetic resonance (MR) image data from 33 MDD patients and 36 healthy subjects. Two researchers blinded to the clinical data manually delineated the habenular nuclei and Hb volume, and T1 values were calculated based on overlapping voxels. We compared the Hb volume and T1 value between the MDD and HC groups and compared the volume and T1 values between the left and right Hbs in each group. Compared to HC subjects, MDD patients had a smaller right Hb volume; however, there was no significant volume difference in the left Hb between groups. In the MDD group, the right Hb was smaller in volume and lower in T1 value than the left Hb. The present findings suggest a smaller right Hb volume and left-right asymmetry of Hb volume in MDD. Future high-resolution 7-T MR imaging studies with larger sample sizes will be needed to derive a more definitive conclusion.
Collapse
|
29
|
Ziarniak K, Dudek M, Matuszewska J, Bijoch Ł, Skrzypski M, Celichowski J, Sliwowska JH. Two weeks of moderate intensity locomotor training increased corticosterone concentrations but did not alter the number of adropin-immunoreactive cells in the hippocampus of diabetic type 2 and control rats. Acta Histochem 2021; 123:151751. [PMID: 34229193 DOI: 10.1016/j.acthis.2021.151751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/18/2021] [Accepted: 06/29/2021] [Indexed: 10/20/2022]
Abstract
Adropin (ADR) plays a role in metabolism regulation and its alterations in obesity and diabetes have been found. Treatment with ADR was beneficial in metabolic diseases, and physical exercise increased ADR concentrations in obese patients. However, data on the distribution of ADR in the brain are sparse. The role of metabolic status and physical exercise on its expression in the brain is undiscovered. We hypothesized that diabetes type 2 (DM2) and/or exercise will alter number of ADR-immunoractive (-ir) cells in the rat brain. Animals were divided into groups: diabetes type 2 (receiving high-fat diet and injections of streptozotocin) and control (fed laboratory chow diet; C). Rats were further divided into: running group (2 weeks of forced exercise on a treadmill) and non-running group. Body mass, metabolic and hormonal profiles were assessed. Immunohistochemistry was run to study ADR-ir cells in the brain. We found that: 1) in DM2 animals, running decreased insulin and increased glucose concentrations; 2) in C rats, running decreased insulin concentrations and had no effect on glucose concentration in blood; 3) running increased corticosterone (CORT) concentrations in DM2 and C rats; 4) ADR-ir cells were detected in the hippocampus and ADR-ir fibers in the arcuate nucleus of the hypothalamus, which is a novel location; 5) metabolic status and running, however, did not change number of these cells. We concluded that 2 weeks of forced moderate intensity locomotor training induced stress response present as increased concentration of CORT and did not influence number of ADR-ir cells in the brain.
Collapse
|
30
|
Zhang JH, Yang HZ, Su H, Song J, Bai Y, Deng L, Feng CP, Guo HX, Wang Y, Gao X, Gu Y, Zhen Z, Lu Y. Berberine and Ginsenoside Rb1 Ameliorate Depression-Like Behavior in Diabetic Rats. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 49:1195-1213. [PMID: 34049474 DOI: 10.1142/s0192415x21500579] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Rhizoma coptidis (Huang-lian) and Asian ginseng have been widely used in the treatment of diabetes and other concurrent diseases with apparent effects. This study investigated the effects of the active ingredients of R. coptidis and ginseng, berberine and ginsenoside Rb1, on depression-like behavior in a rat diabetes model. The animal model was established via a high-fat diet and intraperitoneal injection of streptozotocin, while the animal's depression-like behavior was induced via chronic unpredictable mild stress. These experimental rats were divided into four groups: control, depression-like behavior (DLB), metformin plus fluoxetine hydrochloride (M+FH), and berberine plus ginsenoside Rb1 (B+GRb1) groups. Glucose metabolism and insulin resistance were evaluated by oral glucose test and glucose clamp study. Depression-like behavior was evaluated via behavioral analyses, including forced swim, sucrose preference, elevated plus maze, and open-field tests. HE and Nissl staining, plasma cortisol expression of adrenocorticotropic hormone, and brain-derived neurotrophic factor (BDNF) levels were assayed to explore the mechanisms of action. Compared with the control, rats in the DLB group had a significant increase in the levels of blood glucose and depression-like behavior. The B+GRb1 group significantly improved glucose metabolism and insulin resistance, reduced depression-like behavior, downregulated levels of plasma cortisol and adrenocorticotropic hormone under stress, and upregulated BDNF protein expression compared to the DLB rats. HE and Nissl staining data revealed that B+GRb1 protected neurons from pathological and morphological changes. Thus, berberine and ginsenoside Rb1 not only improved glucose metabolism in diabetic rats but also ameliorated their depression-like behavior under chronic unpredictable stress. Mechanistically, studied data with plasma hormonal levels and brain neuronal pathological/morphological changes supported the observed effects. The combination of berberine and ginsenoside Rb1 may have a clinical value in the management of diabetic patients with depression.
Collapse
Affiliation(s)
| | - Hui-Zeng Yang
- Tianjin Anding Hospital, Tianjian 300022, P. R. China
| | - Hao Su
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P. R. China
| | - Jun Song
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P. R. China
| | - Yu Bai
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P. R. China
| | - Lan Deng
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P. R. China
| | - Chun-Peng Feng
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P. R. China
| | - Hong-Xia Guo
- Langfang Normal University, Langfang 065000, P. R. China
| | - Yi Wang
- Tianjin Anding Hospital, Tianjian 300022, P. R. China
| | - Xin Gao
- Tianjin Anding Hospital, Tianjian 300022, P. R. China
| | - Yan Gu
- Tianjin Third Central Hospital, Tianjian 300170, P. R. China
| | - Zhong Zhen
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P. R. China
| | - Yao Lu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P. R. China
| |
Collapse
|
31
|
Bengtsson D, Ragnarsson O, Berinder K, Dahlqvist P, Edén Engström B, Ekman B, Höybye C, Burman P, Wahlberg J. Psychotropic Drugs in Patients with Cushing's Disease Before Diagnosis and at Long-Term Follow-Up: A Nationwide Study. J Clin Endocrinol Metab 2021; 106:1750-1760. [PMID: 33567076 PMCID: PMC8118365 DOI: 10.1210/clinem/dgab079] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Indexed: 11/24/2022]
Abstract
CONTEXT Psychiatric symptoms are common in Cushing's disease (CD) and seem only partly reversible following treatment. OBJECTIVE To investigate drug dispenses associated to psychiatric morbidity in CD patients before treatment and during long-term follow-up. DESIGN Nationwide longitudinal register-based study. SETTING University Hospitals in Sweden. SUBJECTS CD patients diagnosed between 1990 and 2018 (N = 372) were identified in the Swedish Pituitary Register. Longitudinal data was collected from 5 years before, at diagnosis, and during follow-up. Four matched controls per patient were included. Cross-sectional subgroup analysis of 76 patients in sustained remission was also performed. MAIN OUTCOME MEASURES Data from the Swedish Prescribed Drug Register and the Patient Register. RESULTS In the 5-year period before and at diagnosis, use of antidepressants (odds ratio [OR] 2.2 [95% confidence interval (CI) 1.3-3.7]) and 2.3 [1.6-3.5]), anxiolytics [2.9 (1.6-5.3) and 3.9 (2.3-6.6)], and sleeping pills [2.1 (1.2-3.7) and 3.8 (2.4-5.9)] was more common in CD than controls. ORs remained elevated at 5-year follow-up for antidepressants [2.4 (1.5-3.9)] and sleeping pills [3.1 (1.9-5.3)]. Proportions of CD patients using antidepressants (26%) and sleeping pills (22%) were unchanged at diagnosis and 5-year follow-up, whereas drugs for hypertension and diabetes decreased. Patients in sustained remission for median 9.3 years (interquartile range 8.1-10.4) had higher use of antidepressants [OR 2.0 (1.1-3.8)] and sleeping pills [2.4 (1.3-4.7)], but not of drugs for hypertension. CONCLUSIONS Increased use of psychotropic drugs in CD was observed before diagnosis and remained elevated regardless of remission status, suggesting persisting negative effects on mental health. The study highlights the importance of early diagnosis of CD, and the need for long-term monitoring of mental health.
Collapse
Affiliation(s)
- Daniel Bengtsson
- Department of Internal Medicine, Kalmar, Region of Kalmar County, Kalmar, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Correspondence: Daniel Bengtsson, MD, Department of Internal Medicine, Hälsogränd 2, 391 85 Kalmar, Sweden.
| | - Oskar Ragnarsson
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Endocrinology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Katarina Berinder
- Department of Endocrinology, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Per Dahlqvist
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Britt Edén Engström
- Department of Medical Sciences, Endocrinology and Mineral Metabolism, Uppsala University, Uppsala, Sweden
- Department of Endocrinology and Diabetes, Uppsala University Hospital, Uppsala, Sweden
| | - Bertil Ekman
- Department of Endocrinology in Linköping and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Charlotte Höybye
- Department of Endocrinology, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Pia Burman
- Department of Endocrinology, Skåne University Hospital, University of Lund, Malmö, Sweden
| | - Jeanette Wahlberg
- Department of Endocrinology in Linköping and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- Faculty of Medical Sciences, Örebro University, Örebro, Sweden
| |
Collapse
|
32
|
Wang Y, Wang Q, Xie J, Zhu Y, Zhang D, Li G, Zhu X, Li Y. Mediation on the Association Between Stressful Life Events and Depression by Abnormal White Matter Microstructures. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2021; 7:162-170. [PMID: 33775928 DOI: 10.1016/j.bpsc.2021.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/25/2021] [Accepted: 03/10/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Stressful life events (SLEs) are an important causal factor in depression; however, the mechanism by which SLEs cause depression remains unclear. Recent studies suggested that white matter (WM) microstructures might be a potential mediator between SLEs and depression. Hence, we aimed to investigate the concrete correspondence among them using mediation effect models. METHODS In participants (N = 194) with SLEs experience prospectively recruited from six residential communities, WM microstructures were detected with diffusion tensor imaging. The interrelationship among SLEs, WM microstructures, and depression was explored with multiple linear regression models and logistic regression models. Furthermore, the influence of WM microstructures on the association between SLEs and depression was tested with mediation effect models. RESULTS Successfully established mediation effect models showed the specific influence of fractional anisotropy of the corpus callosum and left uncinate fasciculus on the association between SLEs and depression onset (ab path = 0.032; ab path = 0.026, respectively) and between SLEs and depressive severity (ab path = 0.052; ab path = 0.067, respectively). In addition, significant total mediation effects on the association between SLEs and depression onset (ab path = 0.031) and severity (ab path = 0.075) through fractional anisotropy of the corpus callosum and left uncinate fasciculus were noted. CONCLUSIONS WM microstructure alterations impose a substantial mediation effect on the association between SLEs and depression, which suggest that changes in WM microstructure integrity might increase the risk of depression onset and unfavorable disease courses induced by the SLEs.
Collapse
Affiliation(s)
- Yun Wang
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China; Department of Clinical Psychology, Zhenjiang Mental Health Center, Zhenjiang, China
| | - Qi Wang
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jie Xie
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yan Zhu
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Danwei Zhang
- Department of Clinical Psychology, Zhenjiang Mental Health Center, Zhenjiang, China
| | - Guohai Li
- Department of Clinical Psychology, Zhenjiang Mental Health Center, Zhenjiang, China.
| | - Xiaolan Zhu
- Department of Central Laboratory, the Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yuefeng Li
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China; Department of Clinical Psychology, Zhenjiang Mental Health Center, Zhenjiang, China.
| |
Collapse
|
33
|
Hubachek S, Botdorf M, Riggins T, Leong HC, Klein DN, Dougherty LR. Hippocampal subregion volume in high-risk offspring is associated with increases in depressive symptoms across the transition to adolescence. J Affect Disord 2021; 281:358-366. [PMID: 33348179 PMCID: PMC7856102 DOI: 10.1016/j.jad.2020.12.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 11/18/2020] [Accepted: 12/05/2020] [Indexed: 11/16/2022]
Abstract
BACKGROUND The hippocampus has been implicated in the pathophysiology of depression. This study examined whether youth hippocampal subregion volumes were differentially associated with maternal depression history and youth's depressive symptoms across the transition to adolescence. METHODS 74 preadolescent offspring (Mage=10.74+/-0.84 years) of mothers with (n = 33) and without a lifetime depression history (n = 41) completed a structural brain scan. Youth depressive symptoms were assessed with clinical interviews and mother- and youth-reports prior to the neuroimaging assessment at age 9 (Mage=9.08+/-0.29 years), at the neuroimaging assessment, and in early adolescence (Mage=12.56+/-0.40 years). RESULTS Maternal depression was associated with preadolescent offspring's reduced bilateral hippocampal head volumes and increased left hippocampal body volume. Reduced bilateral head volumes were associated with offspring's increased concurrent depressive symptoms. Furthermore, reduced right hippocampal head volume mediated associations between maternal depression and increases in offspring depressive symptoms from age 9 to age 12. LIMITATIONS This study included a modest-sized sample that was oversampled for early temperamental characteristics, one neuroimaging assessment, and no correction for multiple comparisons. CONCLUSIONS Findings implicate reductions in hippocampal head volume in the intergenerational transmission of risk from parents to offspring.
Collapse
|
34
|
Krivanek TJ, Gale SA, McFeeley BM, Nicastri CM, Daffner KR. Promoting Successful Cognitive Aging: A Ten-Year Update. J Alzheimers Dis 2021; 81:871-920. [PMID: 33935078 PMCID: PMC8293659 DOI: 10.3233/jad-201462] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2021] [Indexed: 02/07/2023]
Abstract
A decade has passed since we published a comprehensive review in this journal addressing the topic of promoting successful cognitive aging, making this a good time to take stock of the field. Because there have been limited large-scale, randomized controlled trials, especially following individuals from middle age to late life, some experts have questioned whether recommendations can be legitimately offered about reducing the risk of cognitive decline and dementia. Despite uncertainties, clinicians often need to at least make provisional recommendations to patients based on the highest quality data available. Converging lines of evidence from epidemiological/cohort studies, animal/basic science studies, human proof-of-concept studies, and human intervention studies can provide guidance, highlighting strategies for enhancing cognitive reserve and preventing loss of cognitive capacity. Many of the suggestions made in 2010 have been supported by additional research. Importantly, there is a growing consensus among major health organizations about recommendations to mitigate cognitive decline and promote healthy cognitive aging. Regular physical activity and treatment of cardiovascular risk factors have been supported by all of these organizations. Most organizations have also embraced cognitively stimulating activities, a heart-healthy diet, smoking cessation, and countering metabolic syndrome. Other behaviors like regular social engagement, limiting alcohol use, stress management, getting adequate sleep, avoiding anticholinergic medications, addressing sensory deficits, and protecting the brain against physical and toxic damage also have been endorsed, although less consistently. In this update, we review the evidence for each of these recommendations and offer practical advice about behavior-change techniques to help patients adopt brain-healthy behaviors.
Collapse
Affiliation(s)
- Taylor J. Krivanek
- Center for Brain/Mind Medicine, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Hale Building for Transformative Medicine, Boston, MA, USA
| | - Seth A. Gale
- Center for Brain/Mind Medicine, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Hale Building for Transformative Medicine, Boston, MA, USA
| | - Brittany M. McFeeley
- Center for Brain/Mind Medicine, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Hale Building for Transformative Medicine, Boston, MA, USA
| | - Casey M. Nicastri
- Center for Brain/Mind Medicine, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Hale Building for Transformative Medicine, Boston, MA, USA
| | - Kirk R. Daffner
- Center for Brain/Mind Medicine, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Hale Building for Transformative Medicine, Boston, MA, USA
| |
Collapse
|
35
|
Fokidis HB, Brock T. Hurricane Irma induces divergent behavioral and hormonal impacts on an urban and forest population of invasive Anolis lizards: evidence for an urban resilience hypothesis. JOURNAL OF URBAN ECOLOGY 2020. [DOI: 10.1093/jue/juaa031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Hurricanes can have both profound short-term effects on animal populations and serve as long-term drivers of evolutionary change. Animals inhabiting varying habitats may differ in their response to hurricane impacts. Increasing evidence suggests that animals from urban areas exhibit different behavioral and physiological traits compared to rural counterparts, including attenuated hormonal stress responses and a lowered propensity for flight behavior. A unique opportunity was presented when Hurricane Irma hit Florida on 10 September 2017 and interrupted a study of invasive brown anoles (Anolis sagrei) at an urban and a forest. Using data collected before and after Hurricane Irma, we documented that forest anoles exhibited a greater avoidance of people and more male territorial behavior for a longer period of time following the hurricane. Post-hurricane both populations increased corticosterone concentrations post-capture stress, but urban anoles recovered 2 weeks faster than forest conspecifics. A dexamethasone suppression experiment suggested that these population differences were the result of forest anoles having a less effective negative feedback regulating corticosterone secretion. In the brain, forest anoles had higher corticosterone concentrations within the amygdala and parts of the cortex associated with stress than urban lizards. One explanation may be Hurricane Irma brought flooding and debris that altered the landscape leading to behavioral instability, and urban lizards already exhibited ecological adjustments that permitted a more rapid recovery (i.e. the ‘urban resilience’ hypothesis). Testing if urban animals are more resilient to natural disasters can inform conservationists interested in understanding their role in facilitating invasive species expansion and what their increasing presence may indicate for animal populations.
Collapse
Affiliation(s)
- H Bobby Fokidis
- Department of Biology, Rollins College, 1000 Holt Avenue, Winter Park, FL 32789-4499, USA
| | - Taylor Brock
- Department of Biology, Rollins College, 1000 Holt Avenue, Winter Park, FL 32789-4499, USA
| |
Collapse
|
36
|
Jafari Z, Kolb BE, Mohajerani MH. Noise exposure accelerates the risk of cognitive impairment and Alzheimer’s disease: Adulthood, gestational, and prenatal mechanistic evidence from animal studies. Neurosci Biobehav Rev 2020; 117:110-128. [DOI: 10.1016/j.neubiorev.2019.04.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/18/2019] [Accepted: 04/02/2019] [Indexed: 12/25/2022]
|
37
|
Costa R, Carvalho MSM, Brandão JDP, Moreira RP, Cunha TS, Casarini DE, Marcondes FK. Modulatory action of environmental enrichment on hormonal and behavioral responses induced by chronic stress in rats: Hypothalamic renin-angiotensin system components. Behav Brain Res 2020; 397:112928. [PMID: 32987059 DOI: 10.1016/j.bbr.2020.112928] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 09/10/2020] [Accepted: 09/18/2020] [Indexed: 02/07/2023]
Abstract
Environmental enrichment (EE) has been studied as a protocol that can improve brain plasticity and may protect against negative insults such as chronic stress. The aim of this study was to evaluate the effects of EE on the hormonal and behavioral responses induced by chronic mild unpredictable stress (CMS) in rats, considering the involvement of the renin-angiotensin system. Male adult rats were divided into 4 groups: control, CMS, EE, and CMS + EE, and the experimental protocol lasted for 7 weeks. EE was performed during 7 weeks, 5 days per week, 2 h per day. CMS was applied during weeks 3, 4, and 5. After the CMS (week 6), depression-like behavior was evaluated by forced swimming and sucrose consumption tests, anxiety level was evaluated using the elevated plus-maze test, and memory was evaluated using the Y-maze test. On week 7, the animals were euthanized and basal plasma levels of corticosterone and catecholamines were determined. The hypothalamus was isolated and tissue levels of angiotensin peptides were evaluated. CMS increased plasma corticosterone, norepinephrine, and epinephrine basal concentrations, induced depression-like behaviors, impaired memory, and increased hypothalamic angiotensin I, II, and IV concentrations. EE decreased stress hormones secretion, depression-like behaviors, memory impairment, and hypothalamic angiotensin II induced by stress. Reductions of anxiety-like behavior and norepinephrine secretion were observed in both stressed and unstressed groups. The results indicated that EE seemed to protect adult rats against hormonal and behavioral CMS effects, and that the reduction of angiotensin II could contribute to these effects.
Collapse
Affiliation(s)
- Rafaela Costa
- Department of Biosciences, Laboratory of Stress, Piracicaba Dental School, University of Campinas, Piracicaba, SP, Brazil
| | - Maeline Santos Morais Carvalho
- Department of Biosciences, Laboratory of Stress, Piracicaba Dental School, University of Campinas, Piracicaba, SP, Brazil
| | | | - Roseli Peres Moreira
- Nephrology Division, Department of Medicine, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Tatiana Sousa Cunha
- Science and Technology Institute, Federal University of São Paulo, São José Dos Campos, SP, Brazil
| | - Dulce Elena Casarini
- Nephrology Division, Department of Medicine, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Fernanda Klein Marcondes
- Department of Biosciences, Laboratory of Stress, Piracicaba Dental School, University of Campinas, Piracicaba, SP, Brazil.
| |
Collapse
|
38
|
Vadhan JD, Speth RC. The role of the brain renin-angiotensin system (RAS) in mild traumatic brain injury (TBI). Pharmacol Ther 2020; 218:107684. [PMID: 32956721 DOI: 10.1016/j.pharmthera.2020.107684] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2020] [Indexed: 02/07/2023]
Abstract
There is considerable interest in traumatic brain injury (TBI) induced by repeated concussions suffered by athletes in sports, military personnel from combat-and non-combat related activities, and civilian populations who suffer head injuries from accidents and domestic violence. Although the renin-angiotensin system (RAS) is primarily a systemic cardiovascular regulatory system that, when dysregulated, causes hypertension and cardiovascular pathology, the brain contains a local RAS that plays a critical role in the pathophysiology of several neurodegenerative diseases. This local RAS includes receptors for angiotensin (Ang) II within the brain parenchyma, as well as on circumventricular organs outside the blood-brain-barrier. The brain RAS acts primarily via the type 1 Ang II receptor (AT1R), exacerbating insults and pathology. With TBI, the brain RAS may contribute to permanent brain damage, especially when a second TBI occurs before the brain recovers from an initial injury. Agents are needed that minimize the extent of injury from an acute TBI, reducing TBI-mediated permanent brain damage. This review discusses how activation of the brain RAS following TBI contributes to this damage, and how drugs that counteract activation of the AT1R including AT1R blockers (ARBs), renin inhibitors, angiotensin-converting enzyme (ACE) inhibitors, and agonists at type 2 Ang II receptors (AT2) and at Ang (1-7) receptors (Mas) can potentially ameliorate TBI-induced brain damage.
Collapse
Affiliation(s)
- Jason D Vadhan
- College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States of America
| | - Robert C Speth
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, United States of America; School of Medicine, Georgetown University, Washington, DC, United States of America.
| |
Collapse
|
39
|
Janiri D, Simonetti A, Piras F, Ciullo V, Spalletta G, Sani G. Predominant polarity and hippocampal subfield volumes in Bipolar disorders. Bipolar Disord 2020; 22:490-497. [PMID: 31630469 DOI: 10.1111/bdi.12857] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVES Predominant polarity (PP) is a proposed course specifier for bipolar disorders (BD) based on patient lifetime mood episodes. Hippocampal subfield volumetric changes have been proposed as a neurobiological marker for BD and could be influenced by mood episodes. Our study aimed to test the hypothesis that patients with BD differ in hippocampal subfield volumes according to their PP. METHODS We assessed 172 outpatients, diagnosed with BD according to DSM-IV-TR criteria, and 150 healthy control (HC) participants. High-resolution magnetic resonance imaging was performed on all subjects and volumes of all hippocampal subfields were measured using FreeSurfer. RESULTS Patients with depressive PP (BD-DP) and with uncertain PP (BD-UP) but not with manic/hypomanic PP (BD-MP) showed a global reduction on all hippocampal subfield volumes with respect to HCs. When directly compared, BD-DP presented with smaller bilateral presubiculum/subiculum volumes than BD-MP. CONCLUSIONS Results support the potential utility of PP not only as a clinical but also as a neurobiological specifier of BD.
Collapse
Affiliation(s)
- Delfina Janiri
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Lucio Bini Center, Rome, Italy
| | - Alessio Simonetti
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy.,Lucio Bini Center, Rome, Italy.,Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Fabrizio Piras
- IRCCS Santa Lucia Foundation, Laboratory of Neuropsychiatry, Rome, Italy
| | - Valentina Ciullo
- IRCCS Santa Lucia Foundation, Laboratory of Neuropsychiatry, Rome, Italy
| | - Gianfranco Spalletta
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA.,IRCCS Santa Lucia Foundation, Laboratory of Neuropsychiatry, Rome, Italy
| | - Gabriele Sani
- Lucio Bini Center, Rome, Italy.,NESMOS Department (Neurosciences, Mental Health, and Sensory Organs), Sapienza University of Rome, School of Medicine and Psychology, Sant'Andrea Hospital, Rome, Italy.,Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
40
|
Heinrich B, Schmitt B, Bölsterli BK, Critelli H, Huber R, Fattinger S. Disparate effects of hormones and vigabatrin on sleep slow waves in patients with West syndrome - An indication of their mode of action? J Sleep Res 2020; 30:e13137. [PMID: 32657499 DOI: 10.1111/jsr.13137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/17/2020] [Accepted: 06/08/2020] [Indexed: 01/22/2023]
Abstract
Synaptic downscaling during sleep, a physiological process to restore synaptic homeostasis and maintain learning efficiency and healthy brain development, has been related to a reduction of the slope of sleep slow waves (SSW). However, such synaptic downscaling seems not to be reflected in high-amplitude SSW. Recently we have shown reduced SSW slopes during hormonal treatment (adrenocorticotrophic hormone, prednisolone) in patients with West syndrome (WS). Yet, whether this reduction was related to successful treatment or reflects a specific effect of hormone therapy is unknown. Thus, we retrospectively analysed nap electroencephalograms of 61 patients with WS successfully treated with hormones, vigabatrin (VGB), or both. The slope of SSW during treatment (T1) and 2-7 months later (T2) when hormonal treatment was tapered off were compared between the treatment groups and healthy, age-matched controls. At T1 hormone treatment reduced the slope of low-amplitude SSW, whereas VGB increased the slope of high-amplitude SSW (linear mixed effect model: FGroup = 7.04, p < 0.001; FAmplitude = 1,646.68, p < 0.001; FGroup*Amplitude = 3.38, p < 0.001). At T2, untreated patients did not differ anymore from healthy controls, whereas those still under VGB showed the same alterations as those with VGB at T1. This result indicates a disparate effect of VGB and hormone on the SSW slope. In particular, hormones seem to reduce the slope of cortical generated low-amplitude SSW, similar to the physiological synaptic downscaling during sleep. Thus, a loss of functional neuronal connectivity might be an alternative explanation of the antiepileptic effect of hormonal treatment.
Collapse
Affiliation(s)
- Bianka Heinrich
- Department of Neuropediatrics, University Children's Hospital Zurich, Zürich, Switzerland
| | - Bernhard Schmitt
- Department of Neuropediatrics, University Children's Hospital Zurich, Zürich, Switzerland.,Pediatric Sleep Disorders Center, University Children's Hospital Zurich, Zürich, Switzerland.,Children's Research Center, University Children's Hospital Zurich, Zürich, Switzerland
| | - Bigna K Bölsterli
- Department of Neuropediatrics, University Children's Hospital Zurich, Zürich, Switzerland.,Pediatric Sleep Disorders Center, University Children's Hospital Zurich, Zürich, Switzerland.,Children's Research Center, University Children's Hospital Zurich, Zürich, Switzerland
| | - Hanne Critelli
- Department of Neuropediatrics, University Children's Hospital Zurich, Zürich, Switzerland.,Pediatric Sleep Disorders Center, University Children's Hospital Zurich, Zürich, Switzerland
| | - Reto Huber
- Pediatric Sleep Disorders Center, University Children's Hospital Zurich, Zürich, Switzerland.,Children's Research Center, University Children's Hospital Zurich, Zürich, Switzerland.,Child Development Center, University Children's Hospital Zurich, Zürich, Switzerland.,Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, Zürich, Switzerland
| | - Sara Fattinger
- Pediatric Sleep Disorders Center, University Children's Hospital Zurich, Zürich, Switzerland.,Children's Research Center, University Children's Hospital Zurich, Zürich, Switzerland.,Child Development Center, University Children's Hospital Zurich, Zürich, Switzerland
| |
Collapse
|
41
|
Chen F, Polsinelli B, Nava N, Treccani G, Elfving B, Müller HK, Musazzi L, Popoli M, Nyengaard JR, Wegener G. Structural Plasticity and Molecular Markers in Hippocampus of Male Rats after Acute Stress. Neuroscience 2020; 438:100-115. [DOI: 10.1016/j.neuroscience.2020.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 05/03/2020] [Accepted: 05/04/2020] [Indexed: 12/19/2022]
|
42
|
Ho TC, Gutman B, Pozzi E, Grabe HJ, Hosten N, Wittfeld K, Völzke H, Baune B, Dannlowski U, Förster K, Grotegerd D, Redlich R, Jansen A, Kircher T, Krug A, Meinert S, Nenadic I, Opel N, Dinga R, Veltman DJ, Schnell K, Veer I, Walter H, Gotlib IH, Sacchet MD, Aleman A, Groenewold NA, Stein DJ, Li M, Walter M, Ching CRK, Jahanshad N, Ragothaman A, Isaev D, Zavaliangos‐Petropulu A, Thompson PM, Sämann PG, Schmaal L. Subcortical shape alterations in major depressive disorder: Findings from the ENIGMA major depressive disorder working group. Hum Brain Mapp 2020; 43:341-351. [PMID: 32198905 PMCID: PMC8675412 DOI: 10.1002/hbm.24988] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/01/2020] [Accepted: 03/06/2020] [Indexed: 12/11/2022] Open
Abstract
Alterations in regional subcortical brain volumes have been investigated as part of the efforts of an international consortium, ENIGMA, to identify reliable neural correlates of major depressive disorder (MDD). Given that subcortical structures are comprised of distinct subfields, we sought to build significantly from prior work by precisely mapping localized MDD‐related differences in subcortical regions using shape analysis. In this meta‐analysis of subcortical shape from the ENIGMA‐MDD working group, we compared 1,781 patients with MDD and 2,953 healthy controls (CTL) on individual measures of shape metrics (thickness and surface area) on the surface of seven bilateral subcortical structures: nucleus accumbens, amygdala, caudate, hippocampus, pallidum, putamen, and thalamus. Harmonized data processing and statistical analyses were conducted locally at each site, and findings were aggregated by meta‐analysis. Relative to CTL, patients with adolescent‐onset MDD (≤ 21 years) had lower thickness and surface area of the subiculum, cornu ammonis (CA) 1 of the hippocampus and basolateral amygdala (Cohen's d = −0.164 to −0.180). Relative to first‐episode MDD, recurrent MDD patients had lower thickness and surface area in the CA1 of the hippocampus and the basolateral amygdala (Cohen's d = −0.173 to −0.184). Our results suggest that previously reported MDD‐associated volumetric differences may be localized to specific subfields of these structures that have been shown to be sensitive to the effects of stress, with important implications for mapping treatments to patients based on specific neural targets and key clinical features.
Collapse
Affiliation(s)
- Tiffany C. Ho
- Department of Psychiatry & Weill Institute for Neurosciences San Francisco California USA
- Department of Psychiatry & Behavioral Sciences Stanford University Stanford California USA
- Department of Psychology Stanford University Stanford California USA
| | - Boris Gutman
- Department of Biomedical Engineering Illinois Institute of Technology Chicago Illinois USA
| | - Elena Pozzi
- Melbourne Neuropsychiatry Centre, Department of Psychiatry The University of Melbourne & Melbourne Health Melbourne Australia
- Orygen, The National Centre of Excellence in Youth Mental Health Parkville Australia
| | - Hans J. Grabe
- Department of Psychiatry and Psychotherapy University Medicine Greifswald Germany
- German Centre of Neurodegenerative Diseases (DZNE) site Greifswald/Rostock Germany
| | - Norbert Hosten
- Department of Diagnostic Radiology and Neuroradiology University Medicine Greifswald Germany
| | - Katharina Wittfeld
- Department of Psychiatry and Psychotherapy University Medicine Greifswald Germany
- German Centre of Neurodegenerative Diseases (DZNE) site Greifswald/Rostock Germany
| | - Henry Völzke
- Institute for Community Medicine University Medicine Greifswald Germany
| | - Bernhard Baune
- Department of Psychiatry University of Münster Münster Germany
- Department of Psychiatry, Melbourne Medical School The University of Melbourne Melbourne Australia
| | - Udo Dannlowski
- Department of Psychiatry University of Münster Münster Germany
| | | | | | - Ronny Redlich
- Department of Psychiatry University of Münster Münster Germany
| | - Andreas Jansen
- Department of Psychiatry Philipps‐University Marburg Germany
| | - Tilo Kircher
- Department of Psychiatry Philipps‐University Marburg Germany
| | - Axel Krug
- Department of Psychiatry Philipps‐University Marburg Germany
| | - Susanne Meinert
- Department of Psychiatry University of Münster Münster Germany
| | - Igor Nenadic
- Department of Psychiatry Philipps‐University Marburg Germany
| | - Nils Opel
- Department of Psychiatry University of Münster Münster Germany
| | - Richard Dinga
- Department of Psychiatry, Amsterdam University Medical Centers VU University Medical Center, GGZ inGeest, Amsterdam Neuroscience Amsterdam The Netherlands
| | - Dick J. Veltman
- Department of Psychiatry, Amsterdam University Medical Centers VU University Medical Center, GGZ inGeest, Amsterdam Neuroscience Amsterdam The Netherlands
| | - Knut Schnell
- Department of Psychiatry and Psychotherapy University Medical Center Göttingen Göttingen Germany
| | - Ilya Veer
- Division of Mind and Brain Research, Department of Psychiatry and Psychotherapy CCM, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin Humboldt‐Universität zu Berlin, and Berlin Institute of Health Berlin Germany
| | - Henrik Walter
- Division of Mind and Brain Research, Department of Psychiatry and Psychotherapy CCM, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin Humboldt‐Universität zu Berlin, and Berlin Institute of Health Berlin Germany
| | - Ian H. Gotlib
- Department of Psychology Stanford University Stanford California USA
| | - Matthew D. Sacchet
- Department of Psychiatry & Behavioral Sciences Stanford University Stanford California USA
- McLean Hospital and Department of Psychiatry Harvard Medical School Belmont Massachusetts USA
| | - André Aleman
- University of Groningen, University Medical Center Groningen, Department of Neuroscience Groningen The Netherlands
| | - Nynke A. Groenewold
- University of Groningen, University Medical Center Groningen, Department of Neuroscience Groningen The Netherlands
- University of Groningen, University Medical Center Groningen Interdisciplinary Center Psychopathology and Emotion Regulation (ICPE) Groningen The Netherlands
| | - Dan J. Stein
- Department of Psychiatry and Mental Health University of Cape Town South Africa
| | - Meng Li
- Max Planck Institute for Biological Cybernetics Tuebingen Germany
| | - Martin Walter
- Department of Psychiatry University Tuebingen Germany
| | - Christopher R. K. Ching
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute Keck USC School of Medicine California USA
| | - Neda Jahanshad
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute Keck USC School of Medicine California USA
| | - Anjanibhargavi Ragothaman
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute Keck USC School of Medicine California USA
| | - Dmitry Isaev
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute Keck USC School of Medicine California USA
| | - Artemis Zavaliangos‐Petropulu
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute Keck USC School of Medicine California USA
| | - Paul M. Thompson
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute Keck USC School of Medicine California USA
| | | | - Lianne Schmaal
- Orygen, The National Centre of Excellence in Youth Mental Health Parkville Australia
- Centre for Youth Mental Health The University of Melbourne Melbourne Australia
| |
Collapse
|
43
|
Oh HM, Lee JS, Kim SW, Oh YT, Kim WY, Lee SB, Cho YR, Jeon YJ, Cho JH, Son CG. Uwhangchungsimwon, A Standardized Herbal Drug, Exerts an Anti-Depressive Effect in a Social Isolation Stress-Induced Mouse Model. Front Pharmacol 2020; 10:1674. [PMID: 32082167 PMCID: PMC7005224 DOI: 10.3389/fphar.2019.01674] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/23/2019] [Indexed: 12/28/2022] Open
Abstract
INTRODUCTION Uwhangchungsimwon (UCW) is one of the most representative standardized herbal drugs for the treatment of central nervous system diseases, including mood disorders, and has been used for over 600 years in Korea and China. In spite of the long clinical application of UCW, no experimental evidence for its use against depressive disorders exists. Here, we performed an animal study to investigate the anti-depressive effect of UCW and the underlying mechanisms. METHODS A social isolation-induced depressive-like model was produced using C57BL/6J male mice by housing the mice individually for 31 days, and the mice underwent daily oral administration of distilled water, UCW (100, 200, 400 mg/kg) or fluoxetine (20 mg/kg) during the final 17 days. A tail suspension test (TST), forced swimming test (FST), and open field test (OFT) were used to explore the effects of UCW on depressive-like behaviors. 5-Hydroxytryptamine (5-HT) was measured in the dorsal raphe nuclei (DRN) using immunofluorescence. The serum corticosterone level was measured with its receptor and catecholamine, along with cAMP response element-binding protein (CREB) and brain-derived neurotrophic factor (BDNF) in the hippocampus. RESULTS Social isolation stress effectively induced depressive-like behaviors, and UCW treatment significantly improved the symptoms of depressive-like behavior in the FST, TST, and OFT. The isolation stress-induced depletion of 5-HT was significantly ameliorated by UCW treatment. UCW also attenuated the activation of the glucocorticoid receptor (GR) and the elevated serum corticosterone level, as well as the hippocampal levels of dopamine and norepinephrine. Dexametasone-derived translocation of GR was inhibited by UCW treatment in PC12 cells and HT22 cells. In addition, alterations of tryptophan hydroxylase 2 (TPH2), BDNF, and CREB in the protein analyses were notably regulated by UCW treatment. CONCLUSIONS These results provide animal-based evidence for the anti-depressive effect of UCW, and its underlying mechanisms may involve regulating the serotonergic system, the hypothalamic-pituitary-adrenal (HPA) axis, and neurotrophin.
Collapse
Affiliation(s)
- Hyeon-Muk Oh
- College of Korean Medicine, Daejeon University, Daejeon, South Korea
| | - Jin-Seok Lee
- Liver and Immunology Research Center, Daejeon Korean Medicine Hospital of Daejeon University, Daejeon, South Korea
| | - Seo-Woo Kim
- College of Korean Medicine, Daejeon University, Daejeon, South Korea
| | - Young-Taeck Oh
- College of Korean Medicine, Daejeon University, Daejeon, South Korea
| | - Won-Yong Kim
- Liver and Immunology Research Center, Daejeon Korean Medicine Hospital of Daejeon University, Daejeon, South Korea
| | - Sung-Bae Lee
- Liver and Immunology Research Center, Daejeon Korean Medicine Hospital of Daejeon University, Daejeon, South Korea
| | - Yong-Rae Cho
- Liver and Immunology Research Center, Daejeon Korean Medicine Hospital of Daejeon University, Daejeon, South Korea
| | - Yoo-Jin Jeon
- Liver and Immunology Research Center, Daejeon Korean Medicine Hospital of Daejeon University, Daejeon, South Korea
| | - Jung-Hyo Cho
- Liver and Immunology Research Center, Daejeon Korean Medicine Hospital of Daejeon University, Daejeon, South Korea
| | - Chang-Gue Son
- Liver and Immunology Research Center, Daejeon Korean Medicine Hospital of Daejeon University, Daejeon, South Korea
| |
Collapse
|
44
|
Tanaka H, Sawano T, Konishi N, Harada R, Takeuchi C, Shin Y, Sugiura H, Nakatani J, Fujimoto T, Yamagata K. Serotonin induces Arcadlin in hippocampal neurons. Neurosci Lett 2020; 721:134783. [PMID: 31981722 DOI: 10.1016/j.neulet.2020.134783] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/16/2019] [Accepted: 01/21/2020] [Indexed: 01/06/2023]
Abstract
The monoamine hypothesis does not fully explain the delayed onset of recovery after antidepressant treatment or the mechanisms of recovery after electroconvulsive therapy (ECT). The common mechanism that operates both in ECT and monoaminergic treatment presumably involves molecules induced in both of these conditions. A spine density modulator, Arcadlin (Acad), the rat orthologue of human Protocadherin-8 (PCDH8) and of Xenopus and zebrafish Paraxial protocadherin (PAPC), is induced by both electroconvulsive seizure (ECS) and antidepressants; however, its cellular mechanism remains elusive. Here we confirm induction of Arcadlin upon stimulation of an N-methyl-d-aspartate (NMDA) receptor in cultured hippocampal neurons. Stimulation of an NMDA receptor also induced acute (20 min) and delayed (2 h) phosphorylation of the p38 mitogen-activated protein (MAP) kinase; the delayed phosphorylation was not obvious in Acad-/- neurons, suggesting that it depends on Arcadlin induction. Exposure of highly mature cultured hippocampal neurons to 1-10 μM serotonin for 4 h resulted in Arcadlin induction and p38 MAP kinase phosphorylation. Co-application of the NMDA receptor antagonist d-(-)-2-amino-5-phosphonopentanoic acid (APV) completely blocked Arcadlin induction and p38 MAP kinase phosphorylation. Finally, administration of antidepressant fluoxetine in mice for 16 days induced Arcadlin expression in the hippocampus. Our data indicate that the Arcadlin-p38 MAP kinase pathway is a candidate neural network modulator that is activated in hippocampal neurons under the dual regulation of serotonin and glutamate and, hence, may play a role in antidepressant therapies.
Collapse
Affiliation(s)
- Hidekazu Tanaka
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Japan.
| | - Toshinori Sawano
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Japan
| | - Naoko Konishi
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Japan
| | - Risako Harada
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Japan
| | - Chiaki Takeuchi
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Japan
| | - Yuki Shin
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Japan
| | - Hiroko Sugiura
- Synaptic Plasticity Project, Tokyo Metropolitan Institute of Medical Science, Japan
| | - Jin Nakatani
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Japan
| | - Takahiro Fujimoto
- Department of Pathology and Applied Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Japan
| | - Kanato Yamagata
- Synaptic Plasticity Project, Tokyo Metropolitan Institute of Medical Science, Japan
| |
Collapse
|
45
|
Mao Y, Fisher DW, Yang S, Keszycki RM, Dong H. Protein-protein interactions underlying the behavioral and psychological symptoms of dementia (BPSD) and Alzheimer's disease. PLoS One 2020; 15:e0226021. [PMID: 31951614 PMCID: PMC6968845 DOI: 10.1371/journal.pone.0226021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 11/19/2019] [Indexed: 12/25/2022] Open
Abstract
Alzheimer’s Disease (AD) is a devastating neurodegenerative disorder currently affecting 45 million people worldwide, ranking as the 6th highest cause of death. Throughout the development and progression of AD, over 90% of patients display behavioral and psychological symptoms of dementia (BPSD), with some of these symptoms occurring before memory deficits and therefore serving as potential early predictors of AD-related cognitive decline. However, the biochemical links between AD and BPSD are not known. In this study, we explored the molecular interactions between AD and BPSD using protein-protein interaction (PPI) networks built from OMIM (Online Mendelian Inheritance in Man) genes that were related to AD and two distinct BPSD domains, the Affective Domain and the Hyperactivity, Impulsivity, Disinhibition, and Aggression (HIDA) Domain. Our results yielded 8 unique proteins for the Affective Domain (RHOA, GRB2, PIK3R1, HSPA4, HSP90AA1, GSK3beta, PRKCZ, and FYN), 5 unique proteins for the HIDA Domain (LRP1, EGFR, YWHAB, SUMO1, and EGR1), and 6 shared proteins between both BPSD domains (APP, UBC, ELAV1, YWHAZ, YWHAE, and SRC) and AD. These proteins might suggest specific targets and pathways that are involved in the pathogenesis of these BPSD domains in AD.
Collapse
Affiliation(s)
- Yimin Mao
- School of Information and Technology, Jiangxi University of Science and Technology, Jiangxi, China
- Applied Science Institute, Jiangxi University of Science and Technology, Jiangxi, China
| | - Daniel W. Fisher
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Shuxing Yang
- School of Information and Technology, Jiangxi University of Science and Technology, Jiangxi, China
| | - Rachel M. Keszycki
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Hongxin Dong
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
46
|
Puryear CB, Brooks J, Tan L, Smith K, Li Y, Cunningham J, Todtenkopf MS, Dean RL, Sanchez C. Opioid receptor modulation of neural circuits in depression: What can be learned from preclinical data? Neurosci Biobehav Rev 2020; 108:658-678. [DOI: 10.1016/j.neubiorev.2019.12.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 12/02/2019] [Accepted: 12/05/2019] [Indexed: 12/14/2022]
|
47
|
Morgan A, Kondev V, Bedse G, Baldi R, Marcus D, Patel S. Cyclooxygenase-2 inhibition reduces anxiety-like behavior and normalizes enhanced amygdala glutamatergic transmission following chronic oral corticosterone treatment. Neurobiol Stress 2019; 11:100190. [PMID: 31467944 PMCID: PMC6710559 DOI: 10.1016/j.ynstr.2019.100190] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/27/2019] [Accepted: 08/05/2019] [Indexed: 12/16/2022] Open
Abstract
Chronic stress increases the probability of receiving an anxiety, depression, or chronic illness diagnosis. Pharmacological interventions that reduce the behavioral and physiological effects of chronic stress in animal models may represent novel approaches for the treatment of stress-related psychiatric disorders. Here, we examined the effects of cyclooxygenase-2 (COX-2) inhibition on anxiety-like behaviors and amygdala glutamatergic signaling after chronic non-invasive oral corticosterone (CORT) administration in mice. Treatment with the highly selective COX-2 inhibitor Lumiracoxib (LMX) reversed anxiety-like behavior induced by chronic CORT. Specifically, acute and repeated administration of LMX 5 mg kg−1 reduced chronic CORT-induced anxiety-like behavior measured using the elevated-plus maze, elevated-zero maze, and light-dark box tests. In contrast, LMX did not affect anxiety-like behaviors in naïve mice. Ex vivo electrophysiology studies revealed that repeated LMX treatment normalized chronic CORT-induced increases in spontaneous excitatory glutamatergic currents recorded from anterior, but not posterior, basolateral amygdala neurons. These data indicate COX-2 inhibition can reverse chronic CORT-induced increases in anxiety-like behaviors and amygdala glutamatergic signaling, and support further clinical investigation of selective COX-2 inhibitors for the treatment of affective and stress-related psychiatric disorders.
Collapse
Affiliation(s)
- Amanda Morgan
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Veronika Kondev
- The Vanderbilt Brain Institute, Vanderbilt University School of Medicine, TN, 37232, USA
| | - Gaurav Bedse
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Rita Baldi
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - David Marcus
- The Vanderbilt Brain Institute, Vanderbilt University School of Medicine, TN, 37232, USA
| | - Sachin Patel
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.,Department of Molecular Physiology & Biophysics and Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA.,The Vanderbilt Brain Institute, Vanderbilt University School of Medicine, TN, 37232, USA
| |
Collapse
|
48
|
Tang XP, Guo XH, Geng D, Weng LJ. d-Limonene protects PC12 cells against corticosterone-induced neurotoxicity by activating the AMPK pathway. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 70:103192. [PMID: 31103492 DOI: 10.1016/j.etap.2019.05.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/29/2019] [Accepted: 05/01/2019] [Indexed: 06/09/2023]
Abstract
The stress-induced hormone corticosterone initiates oxidative stress and inflammatory responses, culminating in cell apoptosis and neurological changes. We assessed the effects of d-Limonene on a PC12 cellular model of corticosterone-induced neurotoxicity, and whether these effects involved the AMP-activated protein kinase (AMPKα) pathway. PC12 cells were treated with corticosterone with or without d-limonene for 24 h. Western blots were performed to measure activation of AMPK pathway members [Silent mating type information regulation 2 homolog-1 (SIRT1), AMPKα, and nuclear factor (NFκB)], reactive oxygen species, inflammatory cytokines, and markers of apoptosis. Terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) was used to measure cell death after treatment. d-Limonene reversed the effects of corticosterone on PC12 cells: it decreased the levels of malondialdehyde (MDA) and nitric oxide (NO), activities of NADPH oxidase (p67-phox and p47-phox), expression of pro-inflammatory markers [inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin 6 (IL-6), interleukin 1β (IL-1β), and tumor necrosis factor α (TNF-α)], and expression of pro-apoptotic proteins [Bcl2 associated with X protein (Bax) and cleaved caspase-3)]. d-Limonene also increased levels of the antioxidant enzymes superoxide dismutase 1 (SOD1) and heme oxygenase 1 (HO-1) and the anti-apoptotic protein Bcl-2 while decreasing the number of TUNEL-positive cells. d-limonene significantly activated AMPKα and suppressed NF-κB nuclear translocation through up-regulation of SIRT1. Addition of compound C, an AMPK inhibitor, severely weakened these neuroprotective effects of d-limonene. d-Limonene has a neuroprotective effect on corticosterone-induced PC12 cell injury induced by activating the AMPKα signaling pathway, and thereby inhibiting reactive oxygen species and inflammatory factors. These data suggest that d-limonene might protect against neuronal death to improve depressive symptoms.
Collapse
Affiliation(s)
- Xue-Ping Tang
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian, China
| | - Xiao-Hua Guo
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian, China
| | - Di Geng
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian, China
| | - Lian-Jin Weng
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian, China.
| |
Collapse
|
49
|
Jiang Y, Botchway BOA, Hu Z, Fang M. Overexpression of SIRT1 Inhibits Corticosterone-Induced Autophagy. Neuroscience 2019; 411:11-22. [PMID: 31146010 DOI: 10.1016/j.neuroscience.2019.05.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 05/18/2019] [Accepted: 05/20/2019] [Indexed: 01/25/2023]
Abstract
Individuals continuously confronted with various stresses in modern life generate high levels of cortisol (corticosterone in rodents), the major glucocorticoid secreted by adrenal gland when hypothalamic-pituitary-adrenal axis is activated. Chronic stress can induce constant release of glucocorticoid and cause many serious health problems, such as mental disorders, cardiovascular diseases and autoimmune diseases. Many studies have suggested the neurotoxic effect of corticosterone is mediated through increased oxidative stress and apoptosis. Although SIRT1 has been shown to be protective against conditions such as DNA damage and oxidative stress through autophagy regulation, the exact role of SIRT1 and autophagy in corticosterone-induced stress is still unclear. By utilizing a cellular stress model of exposing cells to corticosterone, our study found that there were a dose-dependent decrease in SIRT1 and an increase in LC3B II/I expressions with increasing concentrations of corticosterone. In combination with SIRT1 overexpression and knockdown plasmids, the regulation of SIRT1 expression in vitro demonstrated that SIRT can inhibit corticosterone-induced autophagy and enhance cell apoptosis. These findings might help us better understand the role of SIRT1 and autophagy activation in chronic stress.
Collapse
Affiliation(s)
- Yuting Jiang
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
| | - Benson O A Botchway
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhiying Hu
- Hangzhou Red Cross Hospital, Hangzhou, China
| | - Marong Fang
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
50
|
Wong APY, French L, Leonard G, Perron M, Pike GB, Richer L, Veillette S, Pausova Z, Paus T. Inter-Regional Variations in Gene Expression and Age-Related Cortical Thinning in the Adolescent Brain. Cereb Cortex 2019; 28:1272-1281. [PMID: 28334178 DOI: 10.1093/cercor/bhx040] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Indexed: 12/16/2022] Open
Abstract
Age-related decreases in cortical thickness observed during adolescence may be related to fluctuations in sex and stress hormones. We examine this possibility by relating inter-regional variations in age-related cortical thinning (data from the Saguenay Youth Study) to inter-regional variations in expression levels of relevant genes (data from the Allen Human Brain Atlas); we focus on genes coding for glucocorticoid receptor (NR3C1), androgen receptor (AR), progesterone receptor (PGR), and estrogen receptors (ESR1 and ESR2). Across 34 cortical regions (Desikan-Killiany parcellation), age-related cortical thinning varied as a function of mRNA expression levels of NR3C1 in males (R2 = 0.46) and females (R2 = 0.30) and AR in males only (R2 = 0.25). Cortical thinning did not vary as a function of expression levels of PGR, ESR1, or ESR2 in either sex; this might be due to the observed low consistency of expression profiles of these 3 genes across donors. Inter-regional levels of the NR3C1 and AR expression interacted with each other vis-à-vis cortical thinning: age-related cortical thinning varied as a function of NR3C1 mRNA expression in brain regions with low (males: R2 = 0.64; females: R2 = 0.58) but not high (males: R2 = 0.0045; females: R2 = 0.15) levels of AR mRNA expression. These results suggest that glucocorticoid and androgen receptors contribute to cortical maturation during adolescence.
Collapse
Affiliation(s)
- Angelita Pui-Yee Wong
- Department of Psychology, University of Toronto, Toronto M5S 3G3, Canada.,Rotman Research Institute, Baycrest, Toronto M6A 2E1, Canada
| | - Leon French
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto M5T 1R8, Canada.,Department of Psychiatry, University of Toronto, Toronto M5T 1R8, Canada
| | - Gabriel Leonard
- Montreal Neurological Institute, McGill University, Montréal H3A 2B4, Canada
| | - Michel Perron
- ECOBES, Cégep de Jonquière, Jonquière G7X 7W2, Canada.,University of Quebec in Chicoutimi, Chicoutimi G7H 2B1, Canada
| | - G Bruce Pike
- Department of Radiology and Hotchkiss Brain Institute, University of Calgary, Calgary T2N 4N1, Canada
| | - Louis Richer
- University of Quebec in Chicoutimi, Chicoutimi G7H 2B1, Canada
| | - Suzanne Veillette
- ECOBES, Cégep de Jonquière, Jonquière G7X 7W2, Canada.,University of Quebec in Chicoutimi, Chicoutimi G7H 2B1, Canada
| | - Zdenka Pausova
- The Hospital for Sick Children, University of Toronto, Toronto M5G 1X8, Canada
| | - Tomáš Paus
- Department of Psychology, University of Toronto, Toronto M5S 3G3, Canada.,Rotman Research Institute, Baycrest, Toronto M6A 2E1, Canada.,Department of Psychiatry, University of Toronto, Toronto M5T 1R8, Canada.,Child Mind Institute, New York, NY 10022, USA
| |
Collapse
|