1
|
Freitas CDT, Demarco D, Oliveira JS, Ramos MV. Review: Laticifer as a plant defense mechanism. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 346:112136. [PMID: 38810884 DOI: 10.1016/j.plantsci.2024.112136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 05/22/2024] [Accepted: 05/25/2024] [Indexed: 05/31/2024]
Abstract
Laticifers have been utilized as paradigms to enhance comprehension of specific facets of plant ecology and evolution. From the beginning of seedling growth, autonomous laticifer networks are formed throughout the plant structure, extending across all tissues and organs. The vast majority of identified products resulting from laticifer chemistry and metabolism are linked to plant defense. The latex, which is the fluid contained within laticifers, is maintained under pressure and has evolved to serve as a defense mechanism against both aggressors and invaders, irrespective of their capabilities or tactics. Remarkably, the latex composition varies among different species. The current goal is to understand the specific functions of various latex components in combating plant enemies. Therefore, the study of latex's chemical composition and proteome plays a critical role in advancing our understanding about plant defense mechanisms. Here, we will discuss some of these aspects.
Collapse
Affiliation(s)
- Cleverson D T Freitas
- Department of Biochemistry and Molecular Biology, Federal University of Ceara. Campus do Pici, Bloco 907, Fortaleza, Ceará CEP 60451-970, Brazil.
| | - Diego Demarco
- Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Jefferson S Oliveira
- Federal University of Delta of Parnaíba, Campus Ministro Reis Velloso, Parnaíba, PI, Brazil
| | - Márcio V Ramos
- Department of Biochemistry and Molecular Biology, Federal University of Ceara. Campus do Pici, Bloco 907, Fortaleza, Ceará CEP 60451-970, Brazil.
| |
Collapse
|
2
|
Freitas CDT, Souza DP, Grangeiro TB, Sousa JS, Lima IVM, Souza PFN, Lima CS, Gomes ADS, Monteiro-Moreira ACO, Aguiar TKB, Ramos MV. Proteomic analysis of Cryptostegia grandiflora latex, purification, characterization, and biological activity of two osmotin isoforms. Int J Biol Macromol 2023; 252:126529. [PMID: 37633557 DOI: 10.1016/j.ijbiomac.2023.126529] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/17/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Although latex fluids are found in >20,000 plant species, the biochemical composition and biological function of their proteins are still poorly explored. Thus, this work aimed to conduct a proteomic analysis of Cryptostegia grandiflora latex (CgLP) for subsequent purification and characterization of an antifungal protein. After 2D-SDS-PAGE and mass spectrometry, 27 proteins were identified in CgLP, including a polygalacturonase inhibitor, cysteine peptidases, pathogenesis-related proteins (PR-4), and osmotins. Then, two osmotin isoforms (CgOsm) were purified, and a unique N-terminal sequence was determined (1ATFDIRSNCPYTVWAAAVPGGGRRLDRGQTWTINVAPGTA40). The PCR products revealed a cDNA sequence of 609 nucleotides for CgOsm, which encoded a polypeptide with 203 amino acid residues. The structure of CgOsm has features of typical osmotin or thaumatin-like proteins (TLPs), such as 16 conserved Cys residues, REDDD and FF motifs, an acidic cleft, and three main domains. Atomic force microscopy (AFM) and bioinformatics suggested that CgOsm is associated with three chain units. This result was interesting since the literature describes osmotins and TLPs as monomers. AFM also showed that Fusarium falciforme spores treated with CgOsm were drastically damaged. Therefore, it is speculated that CgOsm forms pores in the membrane of these cells, causing the leakage of cytoplasmic content.
Collapse
Affiliation(s)
- Cleverson D T Freitas
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Campus do Pici, Bloco 907, Fortaleza, Ceará CEP 60451-970, Brazil.
| | - Diego P Souza
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Campus do Pici, Bloco 907, Fortaleza, Ceará CEP 60451-970, Brazil
| | - Thalles B Grangeiro
- Departamento de Biologia, Universidade Federal do Ceará, Campus do Pici, Bloco 906, Fortaleza, Ceará, Brazil
| | - Jeanlex S Sousa
- Departamento de Física, Universidade Federal do Ceará, Campus do Pici, Fortaleza, Ceará, Brazil
| | - Isis V M Lima
- Departamento de Física, Universidade Federal do Ceará, Campus do Pici, Fortaleza, Ceará, Brazil
| | - Pedro Filho N Souza
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Campus do Pici, Bloco 907, Fortaleza, Ceará CEP 60451-970, Brazil
| | - Cristiano S Lima
- Departamento de Fitotecnia, Universidade Federal do Ceará, , Campus do Pici, Bloco 805, Fortaleza, Ceará, Brazil
| | - Alexandre D'Emery S Gomes
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Campus do Pici, Bloco 907, Fortaleza, Ceará CEP 60451-970, Brazil
| | - Ana C O Monteiro-Moreira
- Centro de Biologia Experimental (NUBEX), Universidade de Fortaleza (UNIFOR), Fortaleza, Ceará, Brazil
| | - Tawanny K B Aguiar
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Campus do Pici, Bloco 907, Fortaleza, Ceará CEP 60451-970, Brazil
| | - Márcio V Ramos
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Campus do Pici, Bloco 907, Fortaleza, Ceará CEP 60451-970, Brazil.
| |
Collapse
|
3
|
Calotropis procera latex protein reduces inflammation and bone loss in ligature-induced period ontitis in male rats. Arch Oral Biol 2023; 147:105613. [PMID: 36739838 DOI: 10.1016/j.archoralbio.2023.105613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/07/2022] [Accepted: 01/01/2023] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Calotropis procera latex protein (CpLP) is a popular anti-inflammatory and therefore we aimed to study its effects on inflammatory bone loss. DESIGN Male Wistar rats were subjected to a ligature of molars. Groups of rats received intraperitoneally CpLP (0.3 mg/kg, 1 mg/kg, or 3 mg/kg) or saline (0.9% NaCl) one hour before ligature and then daily up to 11 days, compared to naïve. Gingiva was evaluated by myeloperoxidase activity and interleukin-1 beta (IL-1β) expression by ELISA. Bone resorption was evaluated in the region between the cement-enamel junction and the alveolar bone crest. The histology considered alveolar bone resorption and cementum integrity, leukocyte infiltration, and attachment level, followed by immunohistochemistry bone markers between 1st and 2nd molars. Systemically, the weight of the body and organs, and a leukogram were performed. RESULTS The periodontitis significantly increased myeloperoxidase activity and the IL-1β level. The increased bone resorption was histologically corroborated by periodontal destruction, leukocyte influx, and attachment loss, as well as the increasing receptor activator of the nuclear factor-kappa B ligand (RANKL)/osteoprotegerin (OPG) ratio, and Tartrate-resistant acid phosphatase (TRAP)+ cells when compared to naïve. CpLP significantly reduced myeloperoxidase activity, level of IL-1β, alveolar bone resorption, periodontal destruction, leukocyte influx, and attachment loss. The CpLp also reduced the RANKL/OPG ratio and TRAP+ cells, when compared with the saline group, and did not affect the systemic parameters. CONCLUSIONS CpLP exhibited a periodontal protective effect by reducing inflammation and restricting osteoclastic alveolar bone resorption in this rat model.
Collapse
|
4
|
Tavares LS, Mancebo BD, Santana LN, Adelson do Nascimento Silva A, Silva RLDO, Benko-Iseppon AM, Ramos MV, Monteiro do Nascimento CT, Grangeiro TB, Sousa JS, Mota RA, Júnior VADS, Lima-Filho JV. Recombinant osmotin inclusion bodies from Calotropis procera produced in E. coli BL21(DE3) prevent acute inflammation in a mouse model of listeriosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 102:154186. [PMID: 35617890 DOI: 10.1016/j.phymed.2022.154186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The osmotin from the medicinal plant Calotropis procera (CpOsm) has characteristics similar to adiponectin, a human protein with immunoregulatory actions. PURPOSE This study aimed to investigate whether recombinant osmotin inclusion bodies from C. procera (IB/rCpOsm) produced in E. coli BL21(DE3) can prevent infection-induced inflammation. A virulent strain of Listeria monocytogenes was used as an infection model. METHODS Cells of E. coli BL21(DE3) carrying the plasmid pET303-CpOsm were used to express the recombinant osmotin, which accumulated at reasonable levels as inclusion bodies (IB/rCpOsm). IB/rCpOsm were purified from induced cells and SDS-polyacrylamide gel electrophoresis followed by mass spectrometry analyses confirmed the identity of the major protein band (23 kDa apparent molecular mass) as CpOsm. Peritoneal macrophages (pMØ) from Swiss mice were cultured with IB/rCpOsm (1 or 10 µg/ml) in 96-well plates and then infected with L. monocytogenes. IB/rCpOsm (0.1, 1 or 10 mg/kg) was also administered intravenously to Swiss mice, which were then infected intraperitoneally with L. monocytogenes. RESULTS Pretreatment of the pMØ with IB/rCpOsm significantly increased cell viability after infection and reduced the intracellular bacterial load. The infiltration of neutrophils into the peritoneal cavity of mice pretreated with IB/rCpOsm at 10 mg/kg (but not 0.1 and 1 mg/kg) was reduced after infection. In these mice, the bacterial load was high in the peritoneal fluid and the liver, but histological damage was discrete. The treatments with IB/rCpOsm at 10 mg/kg significantly increased the expression of the anti-inflammatory cytokine IL-10. CONCLUSION This study shows that recombinant osmotin inclusion bodies from C. procera were bioactive and prompted anti-inflammatory actions at therapeutic dosages in the L. monocytogenes infection model.
Collapse
|
5
|
High-value pleiotropic genes for developing multiple stress-tolerant biofortified crops for 21st-century challenges. Heredity (Edinb) 2022; 128:460-472. [PMID: 35173311 PMCID: PMC8852949 DOI: 10.1038/s41437-022-00500-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 11/08/2022] Open
Abstract
The agriculture-based livelihood systems that are already vulnerable due to multiple challenges face immediate risk of increased crop failures due to weather vagaries. As breeders and biotechnologists, our strategy is to advance and innovate breeding for weather-proofing crops. Plant stress tolerance is a genetically complex trait. Additionally, crops rarely face a single type of stress in isolation, and it is difficult for plants to deal with multiple stresses simultaneously. One of the most helpful approaches to creating stress-resilient crops is genome editing and trans- or cis-genesis. Out of hundreds of stress-responsive genes, many have been used to impart tolerance against a particular stress factor, while a few used in combination for gene pyramiding against multiple stresses. However, a better approach would be to use multi-role pleiotropic genes that enable plants to adapt to numerous environmental stresses simultaneously. Herein we attempt to integrate and present the scattered information published in the past three decades about these pleiotropic genes for crop improvement and remodeling future cropping systems. Research articles validating functional roles of genes in transgenic plants were used to create groups of multi-role pleiotropic genes that could be candidate genes for developing weather-proof crop varieties. These biotech crop varieties will help create 'high-value farms' to meet the goal of a sustainable increase in global food productivity and stabilize food prices by ensuring a fluctuation-free assured food supply. It could also help create a gene repository through artificial gene synthesis for 'resilient high-value food production' for the 21st century.
Collapse
|
6
|
Zhang Y, Chen W, Sang X, Wang T, Gong H, Zhao Y, Zhao P, Wang H. Genome-Wide Identification of the Thaumatin-like Protein Family Genes in Gossypium barbadense and Analysis of Their Responses to Verticillium dahliae Infection. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122647. [PMID: 34961118 PMCID: PMC8708996 DOI: 10.3390/plants10122647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/05/2021] [Accepted: 11/05/2021] [Indexed: 06/14/2023]
Abstract
(1) Background: Plants respond to pathogen challenge by activating a defense system involving pathogenesis-related (PR) proteins. The PR-5 family includes thaumatin, thaumatin-like proteins (TLPs), and other related proteins. TLPs play an important role in response to biotic and abiotic stresses. Many TLP-encoding genes have been identified and functionally characterized in the model plant species. (2) Results: We identified a total of 90 TLP genes in the G. barbadense genome. They were phylogenetically classified into 10 subfamilies and distributed across 19 chromosomes and nine scaffolds. The genes were characterized by examining their exon-intron structures, promoter cis-elements, conserved domains, synteny and collinearity, gene family evolution, and gene duplications. Several TLP genes were predicted to be targets of miRNAs. Investigation of expression changes of 21 GbTLPs in a G. barbadense cultivar (Hai7124) resistance to Verticillium dahliae revealed 13 GbTLPs being upregulated in response to V. dahliae infection, suggesting a potential role of these GbTLP genes in disease response. (3) Conclusions: The results of this study allow insight into the GbTLP gene family, identify GbTLP genes responsive to V. dahliae infection, and provide candidate genes for future studies of their roles in disease resistance.
Collapse
Affiliation(s)
- Yilin Zhang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.Z.); (T.W.)
| | - Wei Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; (W.C.); (X.S.); (H.G.)
| | - Xiaohui Sang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; (W.C.); (X.S.); (H.G.)
| | - Ting Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.Z.); (T.W.)
| | - Haiyan Gong
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; (W.C.); (X.S.); (H.G.)
| | - Yunlei Zhao
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.Z.); (T.W.)
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; (W.C.); (X.S.); (H.G.)
| | - Pei Zhao
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.Z.); (T.W.)
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; (W.C.); (X.S.); (H.G.)
| | - Hongmei Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.Z.); (T.W.)
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; (W.C.); (X.S.); (H.G.)
| |
Collapse
|
7
|
Oliveira KAD, Araújo HN, Lima TID, Oliveira AG, Favero-Santos BC, Guimarães DSP, Freitas PAD, Neves RDJD, Vasconcelos RP, Almeida MGGD, Ramos MV, Silveira LR, Oliveira ACD. Phytomodulatory proteins isolated from Calotropis procera latex promote glycemic control by improving hepatic mitochondrial function in HepG2 cells. Saudi Pharm J 2021; 29:1061-1069. [PMID: 34588851 PMCID: PMC8463474 DOI: 10.1016/j.jsps.2021.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 07/04/2021] [Indexed: 12/03/2022] Open
Abstract
The medicinal uses of Calotropis procera are diverse, yet some of them are based on effects that still lack scientific support. Control of diabetes is one of them. Recently, latex proteins from C. procera latex (LP) have been shown to promote in vivo glycemic control by the inhibition of hepatic glucose production via AMP-activated protein kinase (AMPK). Glycemic control has been attributed to an isolated fraction of LP (CpPII), which is composed of cysteine peptidases (95%) and osmotin (5%) isoforms. Those proteins are extensively characterized in terms of chemistry, biochemistry and structural aspects. Furthermore, we evaluated some aspects of the mitochondrial function and cellular mechanisms involved in CpPII activity. The effect of CpPII on glycemic control was evaluated in fasting mice by glycemic curve and glucose and pyruvate tolerance tests. HepG2 cells was treated with CpPII, and cell viability, oxygen consumption, PPAR activity, production of lactate and reactive oxygen species, mitochondrial density and protein and gene expression were analyzed. CpPII reduced fasting glycemia, improved glucose tolerance and inhibited hepatic glucose production in control animals. Additionally, CpPII increased the consumption of ATP-linked oxygen and mitochondrial uncoupling, reduced lactate concentration, increased protein expression of mitochondrial complexes I, III and V, and activity of peroxisome-proliferator-responsive elements (PPRE), reduced the presence of reactive oxygen species (ROS) and increased mitochondrial density in HepG2 cells by activation of AMPK/PPAR. Our findings strongly support the medicinal use of the plant and suggest that CpPII is a potential therapy for prevention and/or treatment of type-2 diabetes. A common epitope sequence shared among the proteases and osmotin is possibly the responsible for the beneficial effects of CpPII.
Collapse
Key Words
- AMPK, AMP-activated kinase protein
- AUC, Area under the curve
- Bioactive proteins
- CTL, Control
- Calotropis procera
- CpPII, Major peptidase fraction treated with iodoacetamide
- DHE, Dihydroethidium
- DMEM, Dulbecco’s minimal essential medium
- DMSO, Dimethyl sulfoxide
- FCCP, Oligomycin carbonyl cyanide 4 (trifluoromethoxy) phenylhydrazine
- Folk medicine
- Glycemia
- HGP, Hepatic glucose production
- LP, Soluble latex proteins from Calotropis procera
- Latex
- MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
- OCR, Oxygen consumption rate
- OXPHOS, Oxidative phosphorylation
- PPAR, Peroxisome proliferator-activated receptor
- PPRE, PPAR response element
- ROS, Reactive oxygen species
- TBS-T, Tris buffered saline solution containing 0.1% Tween 20
- UCP2, Mitochondrial uncoupling protein 2
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Ariclecio Cunha de Oliveira
- Superior Institute of Biomedical Sciences, State University of Ceara, Fortaleza, Brazil
- Corresponding author.at: Superior Institute of Biomedical Sciences, State University of Ceara, Fortaleza, Ceara, Brazil.
| |
Collapse
|
8
|
Amini MH, Ashraf K, Salim F, Meng Lim S, Ramasamy K, Manshoor N, Sultan S, Ahmad W. Important insights from the antimicrobial activity of Calotropis procera. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103181] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
9
|
Araujo Sousa B, Nascimento Silva O, Farias Porto W, Lima Rocha T, Paulino Silva L, Ferreira Leal AP, Buccini DF, Oluwagbamigbe Fajemiroye J, de Araujo Caldas R, Franco OL, Grossi-de-Sá MF, de la Fuente Nunez C, Moreno SE. Identification of the Active Principle Conferring Anti-Inflammatory and Antinociceptive Properties in Bamboo Plant. Molecules 2021; 26:3054. [PMID: 34065427 PMCID: PMC8160853 DOI: 10.3390/molecules26103054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 11/16/2022] Open
Abstract
Early plants began colonizing earth about 450 million years ago. During the process of coevolution, their metabolic cellular pathways produced a myriad of natural chemicals, many of which remain uncharacterized biologically. Popular preparations containing some of these molecules have been used medicinally for thousands of years. In Brazilian folk medicine, plant extracts from the bamboo plant Guadua paniculata Munro have been used for the treatment of infections and pain. However, the chemical basis of these therapeutic effects has not yet been identified. Here, we performed protein biochemistry and downstream pharmacological assays to determine the mechanisms underlying the anti-inflammatory and antinociceptive effects of an aqueous extract of the G. paniculata rhizome, which we termed AqGP. The anti-inflammatory and antinociceptive effects of AqGP were assessed in mice. We identified and purified a protein (AgGP), with an amino acid sequence similar to that of thaumatins (~20 kDa), capable of repressing inflammation through downregulation of neutrophil recruitment and of decreasing hyperalgesia in mice. In conclusion, we have identified the molecule and the molecular mechanism responsible for the anti-inflammatory and antinociceptive properties of a plant commonly used in Brazilian folk medicine.
Collapse
Affiliation(s)
- Bruna Araujo Sousa
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília CEP 70790-160, DF, Brazil; (B.A.S.); (W.F.P.); (O.L.F.); (M.F.G.-d.-S.)
| | - Osmar Nascimento Silva
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande CEP 79117-900, MS, Brazil; (O.N.S.); (A.P.F.L.); (D.F.B.); (R.d.A.C.)
- Centro Universitário de Anápolis, Unievangélica, Anápolis CEP 75083-515, GO, Brazil;
| | - William Farias Porto
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília CEP 70790-160, DF, Brazil; (B.A.S.); (W.F.P.); (O.L.F.); (M.F.G.-d.-S.)
- Porto Reports, Brasília CEP 72236-011, DF, Brazil
| | - Thales Lima Rocha
- Embrapa Recursos Genéticos e Biotecnologia (Cenargen), Brasília CEP 70770-917, DF, Brazil; (T.L.R.); (L.P.S.)
| | - Luciano Paulino Silva
- Embrapa Recursos Genéticos e Biotecnologia (Cenargen), Brasília CEP 70770-917, DF, Brazil; (T.L.R.); (L.P.S.)
| | - Ana Paula Ferreira Leal
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande CEP 79117-900, MS, Brazil; (O.N.S.); (A.P.F.L.); (D.F.B.); (R.d.A.C.)
| | - Danieli Fernanda Buccini
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande CEP 79117-900, MS, Brazil; (O.N.S.); (A.P.F.L.); (D.F.B.); (R.d.A.C.)
| | - James Oluwagbamigbe Fajemiroye
- Centro Universitário de Anápolis, Unievangélica, Anápolis CEP 75083-515, GO, Brazil;
- Núcleo de Estudos e Pesquisas Tóxico-Farmacológicas, Universidade Federal de Goiás, Goiânia 74605-220, GO, Brazil
| | - Ruy de Araujo Caldas
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande CEP 79117-900, MS, Brazil; (O.N.S.); (A.P.F.L.); (D.F.B.); (R.d.A.C.)
| | - Octávio Luiz Franco
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília CEP 70790-160, DF, Brazil; (B.A.S.); (W.F.P.); (O.L.F.); (M.F.G.-d.-S.)
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande CEP 79117-900, MS, Brazil; (O.N.S.); (A.P.F.L.); (D.F.B.); (R.d.A.C.)
- Departamento de Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Brasília CEP 70910-900, DF, Brazil
| | - Maria Fátima Grossi-de-Sá
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília CEP 70790-160, DF, Brazil; (B.A.S.); (W.F.P.); (O.L.F.); (M.F.G.-d.-S.)
- Embrapa Recursos Genéticos e Biotecnologia (Cenargen), Brasília CEP 70770-917, DF, Brazil; (T.L.R.); (L.P.S.)
| | - Cesar de la Fuente Nunez
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA;
- Department of Biological Engineering, The Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Electrical Engineering and Computer Science, The Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Susana Elisa Moreno
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande CEP 79117-900, MS, Brazil; (O.N.S.); (A.P.F.L.); (D.F.B.); (R.d.A.C.)
| |
Collapse
|
10
|
de Jesús-Pires C, Ferreira-Neto JRC, Pacifico Bezerra-Neto J, Kido EA, de Oliveira Silva RL, Pandolfi V, Wanderley-Nogueira AC, Binneck E, da Costa AF, Pio-Ribeiro G, Pereira-Andrade G, Sittolin IM, Freire-Filho F, Benko-Iseppon AM. Plant Thaumatin-like Proteins: Function, Evolution and Biotechnological Applications. Curr Protein Pept Sci 2021; 21:36-51. [PMID: 30887921 DOI: 10.2174/1389203720666190318164905] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/01/2019] [Accepted: 03/11/2019] [Indexed: 12/30/2022]
Abstract
Thaumatin-like proteins (TLPs) are a highly complex protein family associated with host defense and developmental processes in plants, animals, and fungi. They are highly diverse in angiosperms, for which they are classified as the PR-5 (Pathogenesis-Related-5) protein family. In plants, TLPs have a variety of properties associated with their structural diversity. They are mostly associated with responses to biotic stresses, in addition to some predicted activities under drought and osmotic stresses. The present review covers aspects related to the structure, evolution, gene expression, and biotechnological potential of TLPs. The efficiency of the discovery of new TLPs is below its potential, considering the availability of omics data. Furthermore, we present an exemplary bioinformatics annotation procedure that was applied to cowpea (Vigna unguiculata) transcriptome, including libraries of two tissues (root and leaf), and two stress types (biotic/abiotic) generated using different sequencing approaches. Even without using genomic sequences, the pipeline uncovered 56 TLP candidates in both tissues and stresses. Interestingly, abiotic stress (root dehydration) was associated with a high number of modulated TLP isoforms. The nomenclature used so far for TLPs was also evaluated, considering TLP structure and possible functions identified to date. It is clear that plant TLPs are promising candidates for breeding purposes and for plant transformation aiming a better performance under biotic and abiotic stresses. The development of new therapeutic drugs against human fungal pathogens also deserves attention. Despite that, applications derived from TLP molecules are still below their potential, as it is evident in our review.
Collapse
Affiliation(s)
- Carolline de Jesús-Pires
- Departamento de Genetica, Centro de Biociencias, Universidade Federal de Pernambuco (UFPE), Recife, Pernambuco, Brazil
| | | | - João Pacifico Bezerra-Neto
- Departamento de Genetica, Centro de Biociencias, Universidade Federal de Pernambuco (UFPE), Recife, Pernambuco, Brazil
| | - Ederson Akio Kido
- Departamento de Genetica, Centro de Biociencias, Universidade Federal de Pernambuco (UFPE), Recife, Pernambuco, Brazil
| | | | - Valesca Pandolfi
- Departamento de Genetica, Centro de Biociencias, Universidade Federal de Pernambuco (UFPE), Recife, Pernambuco, Brazil
| | | | - Eliseu Binneck
- Empresa Brasileira de Pesquisa Agropecuaria, Embrapa Soja, Londrina, Parana, Brazil
| | | | - Gilvan Pio-Ribeiro
- Departamento de Agronomia/Fitossanidade, Universidade Federal Rural de Pernambuco (UFRPE), Recife, Pernambuco, Brazil
| | - Genira Pereira-Andrade
- Departamento de Agronomia/Fitossanidade, Universidade Federal Rural de Pernambuco (UFRPE), Recife, Pernambuco, Brazil
| | - Ilza Maria Sittolin
- Empresa Brasileira de Pesquisa Agropecuaria, Embrapa Meio-Norte, Teresina, Piaui, Brazil
| | - Francisco Freire-Filho
- Empresa Brasileira de Pesquisa Agropecuaria, Embrapa Amazonia Oriental, Belem, Para, Brazil
| | - Ana Maria Benko-Iseppon
- Departamento de Genetica, Centro de Biociencias, Universidade Federal de Pernambuco (UFPE), Recife, Pernambuco, Brazil
| |
Collapse
|
11
|
Freitas CDTD, Nishi BC, do Nascimento CTM, Silva MZR, Bezerra EHS, Rocha BAM, Grangeiro TB, Oliveira JPBD, Souza PFN, Ramos MV. Characterization of Three Osmotin-Like Proteins from Plumeria rubra and Prospection for Adiponectin Peptidomimetics. Protein Pept Lett 2021; 27:593-603. [PMID: 31994998 DOI: 10.2174/0929866527666200129154357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 11/13/2019] [Accepted: 12/02/2019] [Indexed: 01/28/2023]
Abstract
BACKGROUND Osmotin-Like Proteins (OLPs) have been purified and characterized from different plant tissues, including latex fluids. Besides its defensive role, tobacco osmotin seems to induce adiponectin-like physiological effects, acting as an agonist. However, molecular information about this agonistic effect on adiponectin receptors has been poorly exploited and other osmotins have not been investigated yet. OBJECTIVE AND METHODS The present study involved the characterization of three OLPs from Plumeria rubra latex and molecular docking studies to evaluate the interaction between them and adiponectin receptors (AdipoR1 and AdipoR2). RESULTS P. rubra Osmotin-Like Proteins (PrOLPs) exhibited molecular masses from 21 to 25 kDa and isoelectric points ranging from 4.4 to 7.7. The proteins have 16 cysteine residues, which are involved in eight disulfide bonds, conserved in the same positions as other plant OLPs. The threedimensional (3D) models exhibited the three typical domains of OLPs, and molecular docking analysis showed that two PrOLP peptides interacted with two adiponectin receptors similarly to tobacco osmotin peptide. CONCLUSION As observed for tobacco osmotin, the latex osmotins of P. rubra exhibited compatible interactions with adiponectin receptors. Therefore, these plant defense proteins (without known counterparts in humans) are potential tools to study modulation of glucose metabolism in type II diabetes, where adiponectin plays a pivotal role in homeostasis.
Collapse
Affiliation(s)
- Cleverson D T de Freitas
- Departamento de Bioquimica e Biologia Molecular, Universidade Federal do Ceara, Centro de Ciencias, Bloco 907, Campus do Pici. Fortaleza, Ceara, CEP 60440-900, Brazil
| | - Beatriz C Nishi
- Departamento de Bioquimica e Biologia Molecular, Universidade Federal do Ceara, Centro de Ciencias, Bloco 907, Campus do Pici. Fortaleza, Ceara, CEP 60440-900, Brazil
| | - Camila T M do Nascimento
- Departamento de Bioquimica e Biologia Molecular, Universidade Federal do Ceara, Centro de Ciencias, Bloco 907, Campus do Pici. Fortaleza, Ceara, CEP 60440-900, Brazil
| | - Maria Z R Silva
- Departamento de Bioquimica e Biologia Molecular, Universidade Federal do Ceara, Centro de Ciencias, Bloco 907, Campus do Pici. Fortaleza, Ceara, CEP 60440-900, Brazil
| | - Eduardo H S Bezerra
- Departamento de Bioquimica e Biologia Molecular, Universidade Federal do Ceara, Centro de Ciencias, Bloco 907, Campus do Pici. Fortaleza, Ceara, CEP 60440-900, Brazil
| | - Bruno A M Rocha
- Departamento de Bioquimica e Biologia Molecular, Universidade Federal do Ceara, Centro de Ciencias, Bloco 907, Campus do Pici. Fortaleza, Ceara, CEP 60440-900, Brazil
| | - Thalles B Grangeiro
- Departamento de Biologia, Fortaleza, Universidade Federal de Ceara, Ceara, Brazil
| | - João P B de Oliveira
- Departamento de Bioquimica e Biologia Molecular, Universidade Federal do Ceara, Centro de Ciencias, Bloco 907, Campus do Pici. Fortaleza, Ceara, CEP 60440-900, Brazil
| | - Pedro F Noronha Souza
- Departamento de Bioquimica e Biologia Molecular, Universidade Federal do Ceara, Centro de Ciencias, Bloco 907, Campus do Pici. Fortaleza, Ceara, CEP 60440-900, Brazil
| | - Márcio V Ramos
- Departamento de Bioquimica e Biologia Molecular, Universidade Federal do Ceara, Centro de Ciencias, Bloco 907, Campus do Pici. Fortaleza, Ceara, CEP 60440-900, Brazil
| |
Collapse
|
12
|
Bashir MA, Silvestri C, Ahmad T, Hafiz IA, Abbasi NA, Manzoor A, Cristofori V, Rugini E. Osmotin: A Cationic Protein Leads to Improve Biotic and Abiotic Stress Tolerance in Plants. PLANTS 2020; 9:plants9080992. [PMID: 32759884 PMCID: PMC7464907 DOI: 10.3390/plants9080992] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/27/2020] [Accepted: 08/03/2020] [Indexed: 12/16/2022]
Abstract
Research on biologically active compounds has been increased in order to improve plant protection against various environmental stresses. Among natural sources, plants are the fundamental material for studying these bioactive compounds as their immune system consists of many peptides, proteins, and hormones. Osmotin is a multifunctional stress-responsive protein belonging to pathogenesis-related 5 (PR-5) defense-related protein family, which is involved in inducing osmo-tolerance in plants. In this scenario, the accumulation of osmotin initiates abiotic and biotic signal transductions. These proteins work as antifungal agents against a broad range of fungal species by increasing plasma membrane permeability and dissipating the membrane potential of infecting fungi. Therefore, overexpression of tobacco osmotin protein in transgenic plants protects them from different stresses by reducing reactive oxygen species (ROS) production, limiting lipid peroxidation, initiating programmed cell death (PCD), and increasing proline content and scavenging enzyme activity. Other than osmotin, its homologous proteins, osmotin-like proteins (OLPs), also have dual function in plant defense against osmotic stress and have strong antifungal activity.
Collapse
Affiliation(s)
- Muhammad Ajmal Bashir
- Department of Horticulture, PMAS Arid Agriculture University, Rawalpindi 46300, Pakistan; (M.A.B.); (T.A.); (I.A.H.); (N.A.A.)
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy; (V.C.); (E.R.)
| | - Cristian Silvestri
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy; (V.C.); (E.R.)
- Correspondence: ; Tel.: +39-761-357533
| | - Touqeer Ahmad
- Department of Horticulture, PMAS Arid Agriculture University, Rawalpindi 46300, Pakistan; (M.A.B.); (T.A.); (I.A.H.); (N.A.A.)
| | - Ishfaq Ahmad Hafiz
- Department of Horticulture, PMAS Arid Agriculture University, Rawalpindi 46300, Pakistan; (M.A.B.); (T.A.); (I.A.H.); (N.A.A.)
| | - Nadeem Akhtar Abbasi
- Department of Horticulture, PMAS Arid Agriculture University, Rawalpindi 46300, Pakistan; (M.A.B.); (T.A.); (I.A.H.); (N.A.A.)
| | - Ayesha Manzoor
- Barani Agricultural Research Institute, Chakwal 48800, Pakistan;
| | - Valerio Cristofori
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy; (V.C.); (E.R.)
| | - Eddo Rugini
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy; (V.C.); (E.R.)
| |
Collapse
|
13
|
Zhao Q, Qiu B, Li S, Zhang Y, Cui X, Liu D. Osmotin-Like Protein Gene from Panax notoginseng Is Regulated by Jasmonic Acid and Involved in Defense Responses to Fusarium solani. PHYTOPATHOLOGY 2020; 110:1419-1427. [PMID: 32301678 DOI: 10.1094/phyto-11-19-0410-r] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Osmotin and osmotin-like proteins (OLPs) play important roles in plant defense responses. The full-length cDNA sequence of an OLP gene was cloned from Panax notoginseng using rapid amplification of cDNA-end technology and named PnOLP1. A quantitative reverse transcription-PCR analysis showed that the signaling molecules methyl jasmonate, salicylic acid, ethylene, and hydrogen peroxide induced PnOLP1 expression to different degrees. In addition, the expression level of PnOLP1 rapidly increased within 48 h of inoculating P. notoginseng with the root rot pathogen Fusarium solani. Subcellular localization revealed that PnOLP1 localized to the cell wall. A prokaryotic expression vector containing PnOLP1 was constructed and transformed into Escherichia coli BL21 (DE3), and in vitro antifungal assays were performed using the purified recombinant PnOLP1 protein. The recombinant PnOLP1 protein had strong inhibitory effects on the mycelial growth of F. oxysporum, F. graminearum, and F. solani. A plant PnOLP1-overexpression vector was constructed and transfected into tobacco, and the resistance of T2 transgenic tobacco against F. solani was significantly enhanced compared with wild-type tobacco. Moreover, a PnOLP1 RNAi vector was constructed and transferred to the P. notoginseng leaves for transient expression, and the decrease of PnOLP1 expression level in P. notoginseng leaves increased the susceptibility to F. solani. Thus, PnOLP1 is an important disease resistance gene involved in the defense responses of P. notoginseng to F. solani.
Collapse
Affiliation(s)
- Qin Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500,Yunnan, China
- Yunnan Provincial Key Laboratory of Panax notoginseng, Kunming, 650500, Yunnan, China
| | - Bingling Qiu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500,Yunnan, China
- Yunnan Provincial Key Laboratory of Panax notoginseng, Kunming, 650500, Yunnan, China
| | - Shan Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500,Yunnan, China
- Yunnan Provincial Key Laboratory of Panax notoginseng, Kunming, 650500, Yunnan, China
| | - Yingpeng Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500,Yunnan, China
- Yunnan Provincial Key Laboratory of Panax notoginseng, Kunming, 650500, Yunnan, China
| | - Xiuming Cui
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500,Yunnan, China
- Yunnan Provincial Key Laboratory of Panax notoginseng, Kunming, 650500, Yunnan, China
| | - Diqiu Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500,Yunnan, China
- Yunnan Provincial Key Laboratory of Panax notoginseng, Kunming, 650500, Yunnan, China
| |
Collapse
|
14
|
Ramos MV, Freitas APF, Leitão RFC, Costa DVS, Cerqueira GS, Martins DS, Martins CS, Alencar NMN, Freitas LBN, Brito GAC. Anti-inflammatory latex proteins of the medicinal plant Calotropis procera: a promising alternative for oral mucositis treatment. Inflamm Res 2020; 69:951-966. [PMID: 32488316 DOI: 10.1007/s00011-020-01365-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 02/21/2020] [Accepted: 05/20/2020] [Indexed: 01/19/2023] Open
Abstract
OBJECTIVE AND DESIGN Oral mucositis (OM) is an intense inflammatory reaction progressing to tissue damage and ulceration. The medicinal uses of Calotropis procera are supported by anti-inflammatory capacity. PII-IAA, a highly homogenous cocktail of laticifer proteins (LP) prepared from the latex of C. procera, with recognized pharmacological properties was tested to treat OM. MATERIALS AND SUBJECTS Male Golden Sirius hamsters were used in all treatments. TREATMENT The latex protein samples were injected i.p. (5 mg/Kg) 24 h before mucositis induction (mechanical trauma) and 24 h later. METHODS Histology, cytokine measurements [ELISA], and macroscopic evaluation [scores] were performed. RESULTS PII-IAA eliminated OM, accompanied by total disappearance of myeloperoxidase activity and release of IL-1b, as well as reduced TNF-a. Oxidative stress was relieved by PII-IAA treatment, as revealed by MDA and GSH measurements. PII-IAA also reduced the expression of adhesion molecules (ICAM-1) and Iba-1, two important markers of inflammation, indicating modulatory effects. Histological analyses of the cheek epithelium revealed greater deposition of type I collagen fibers in animals given PII-IAA compared with the control group. This performance was only reached when LPPII was treated with iodoacetamide (IAA), an irreversible inhibitor of proteolytic activity of cysteine proteases. The endogenous proteolytic activity of LPPII induced adverse effects in animals. Candidate proteins involved in the phytomodulatory activity are proposed. CONCLUSIONS Therapy was successful in treating OM with the laticifer protein fraction, containing peptidases and osmotin, from Calotropis procera. The effective candidate from the latex proteins for therapeutic use is PII-IAA.
Collapse
Affiliation(s)
- Márcio V Ramos
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil.
| | - Ana Paula F Freitas
- Universidade da Integração Internacional da Lusofonia Afro-Brasileira (UNILAB), Redenção, Ceará, Brazil
| | - Renata F C Leitão
- Departamento de Morfologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Deiziane V S Costa
- Departamento de Morfologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Gilberto S Cerqueira
- Departamento de Morfologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Dainesy S Martins
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Conceição S Martins
- Departamento de Morfologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Nylane M N Alencar
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Larissa Barbosa N Freitas
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Gerly Anne C Brito
- Departamento de Morfologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil.
| |
Collapse
|
15
|
Freitas CDT, Silva RO, Ramos MV, Porfírio CTMN, Farias DF, Sousa JS, Oliveira JPB, Souza PFN, Dias LP, Grangeiro TB. Identification, characterization, and antifungal activity of cysteine peptidases from Calotropis procera latex. PHYTOCHEMISTRY 2020; 169:112163. [PMID: 31605904 DOI: 10.1016/j.phytochem.2019.112163] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/26/2019] [Accepted: 10/02/2019] [Indexed: 05/07/2023]
Abstract
Cysteine peptidases (EC 3.4.22) are the most abundant enzymes in latex fluids. However, their physiological functions are still poorly understood, mainly related to defense against phytopathogens. The present study reports the cDNA cloning and sequencing of five undescribed cysteine peptidases from Calotropis procera (Aiton) Dryand (Apocynaceae) as well as some in silico analyses. Of these, three cysteine peptidases (CpCP1, CpCP2, and CpCP3) were purified. Their enzymatic kinetics were determined and they were assayed for their efficacy in inhibiting the hyphal growth of phytopathogenic fungi. The mechanism of action was investigated by fluorescence and atomic force microscopy as well as by induction of reactive oxygen species (ROS). The deduced amino acid sequences showed similar biochemical characteristics and high sequence homology with several other papain-like cysteine peptidases. Three-dimensional models showed two typical cysteine peptidase domains (L and R domains), forming a "V-shaped" active site containing the catalytic triad (Cys, His, and Asn). Proteolysis of CpCP1 was higher at pH 7.0, whereas for CpCP2 and CpCP3 it was higher at 7.5. All peptidases exhibited optimum activity at 35 °C and followed Michaelis-Menten kinetics. However, the major difference among them was that CpCP1 exhibited highest Vmax, Km, Kcat and catalytic efficiency. All peptidases were deleterious to the two fungi tested, with IC50 of around 50 μg/mL. The peptidases promoted membrane permeabilization, morphological changes with leakage of cellular content, and induction of ROS in F. oxysporum spores. These results corroborate the hypothesis that latex cysteine peptidases play a role in defense against fungi.
Collapse
Affiliation(s)
- Cleverson D T Freitas
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Centro de Ciências, Campus do Pici, Fortaleza, Ceará, CEP, 60440-900, Brazil.
| | - Rafaela O Silva
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Centro de Ciências, Campus do Pici, Fortaleza, Ceará, CEP, 60440-900, Brazil
| | - Márcio V Ramos
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Centro de Ciências, Campus do Pici, Fortaleza, Ceará, CEP, 60440-900, Brazil
| | - Camila T M N Porfírio
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Centro de Ciências, Campus do Pici, Fortaleza, Ceará, CEP, 60440-900, Brazil
| | - Davi F Farias
- Departamento de Biologia Molecular, Universidade Federal da Paraíba, Campus I, CEP, 58051-900, João Pessoa, Brazil
| | - Jeanlex S Sousa
- Departamento de Física, Universidade Federal do Ceará, Fortaleza, Brazil
| | - João P B Oliveira
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Centro de Ciências, Campus do Pici, Fortaleza, Ceará, CEP, 60440-900, Brazil
| | - Pedro F N Souza
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Centro de Ciências, Campus do Pici, Fortaleza, Ceará, CEP, 60440-900, Brazil
| | - Lucas P Dias
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Centro de Ciências, Campus do Pici, Fortaleza, Ceará, CEP, 60440-900, Brazil
| | | |
Collapse
|
16
|
Barbosa MS, da Silva Souza B, Silva Sales AC, de Sousa JDL, da Silva FDS, Araújo Mendes MG, da Costa KRL, de Oliveira TM, Daboit TC, de Oliveira JS. Antifungal Proteins from Plant Latex. Curr Protein Pept Sci 2019; 21:497-506. [PMID: 31746293 DOI: 10.2174/1389203720666191119101756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 06/26/2019] [Accepted: 11/13/2019] [Indexed: 01/29/2023]
Abstract
Latex, a milky fluid found in several plants, is widely used for many purposes, and its proteins have been investigated by researchers. Many studies have shown that latex produced by some plant species is a natural source of biologically active compounds, and many of the hydrolytic enzymes are related to health benefits. Research on the characterization and industrial and pharmaceutical utility of latex has progressed in recent years. Latex proteins are associated with plants' defense mechanisms, against attacks by fungi. In this respect, there are several biotechnological applications of antifungal proteins. Some findings reveal that antifungal proteins inhibit fungi by interrupting the synthesis of fungal cell walls or rupturing the membrane. Moreover, both phytopathogenic and clinical fungal strains are susceptible to latex proteins. The present review describes some important features of proteins isolated from plant latex which presented in vitro antifungal activities: protein classification, function, molecular weight, isoelectric point, as well as the fungal species that are inhibited by them. We also discuss their mechanisms of action.
Collapse
Affiliation(s)
- Mayck Silva Barbosa
- Laboratory of Biochemistry of Laticifer Plants, Federal University of Piaui, Campus Ministro Reis Velloso, Parnaiba- PI, Brazil
| | - Bruna da Silva Souza
- Laboratory of Biochemistry of Laticifer Plants, Federal University of Piaui, Campus Ministro Reis Velloso, Parnaiba- PI, Brazil
| | - Ana Clara Silva Sales
- Laboratory of Biochemistry of Laticifer Plants, Federal University of Piaui, Campus Ministro Reis Velloso, Parnaiba- PI, Brazil
| | - Jhoana D'arc Lopes de Sousa
- Laboratory of Biochemistry of Laticifer Plants, Federal University of Piaui, Campus Ministro Reis Velloso, Parnaiba- PI, Brazil
| | | | - Maria Gabriela Araújo Mendes
- Group of Advanced Studies in Medical Mycology, Federal University of Piaui, Campus Ministro Reis Velloso, Parnaiba-PI, Brazil
| | - Káritta Raquel Lustoza da Costa
- Group of Advanced Studies in Medical Mycology, Federal University of Piaui, Campus Ministro Reis Velloso, Parnaiba-PI, Brazil
| | - Taiane Maria de Oliveira
- Research Center on Biodiversity and Biotechnology, Federal University of Piaui, Campus Ministro Reis Velloso, Parnaiba-PI, Brazil
| | - Tatiane Caroline Daboit
- Group of Advanced Studies in Medical Mycology, Federal University of Piaui, Campus Ministro Reis Velloso, Parnaiba-PI, Brazil
| | - Jefferson Soares de Oliveira
- Laboratory of Biochemistry of Laticifer Plants, Federal University of Piaui, Campus Ministro Reis Velloso, Parnaiba- PI, Brazil
| |
Collapse
|
17
|
Ramos MV, Demarco D, da Costa Souza IC, de Freitas CDT. Laticifers, Latex, and Their Role in Plant Defense. TRENDS IN PLANT SCIENCE 2019; 24:553-567. [PMID: 30979674 DOI: 10.1016/j.tplants.2019.03.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 03/11/2019] [Accepted: 03/12/2019] [Indexed: 06/09/2023]
Abstract
Latex, a sap produced by cells called laticifers, occurs in plants of wide taxonomic diversity. Plants exude latex sap in response to physical damage. Questions about the function of latex or the underlying mechanisms persist, but a role in defense is likely. The presence of constitutive peptidases in latex sap in addition to inducible and de novo synthesized pathogenesis-related proteins (PR-proteins), raises the question about the role that each sap component plays to protect plants and how synergism occurs among sap proteins in the course of herbivory or infection. Here we discuss a variety of functions for laticifer and latex in plant defense. We propose that latex peptidases build the front line of defense against herbivores or pathogens.
Collapse
Affiliation(s)
- Márcio Viana Ramos
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Campus do Pici, Bloco 907, Fortaleza-Ceará, CEP 60451-970, Brazil.
| | - Diego Demarco
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, CEP 05508-090, Brazil
| | - Isabel Cristina da Costa Souza
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Campus do Pici, Bloco 907, Fortaleza-Ceará, CEP 60451-970, Brazil
| | - Cleverson Diniz Teixeira de Freitas
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Campus do Pici, Bloco 907, Fortaleza-Ceará, CEP 60451-970, Brazil
| |
Collapse
|
18
|
Freitas CD, Silva MZ, Oliveira JP, Silva AF, Ramos MV, de Sousa JS. Study of milk coagulation induced by chymosin using atomic force microscopy. FOOD BIOSCI 2019. [DOI: 10.1016/j.fbio.2019.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
19
|
Sousa AJS, Silva CFB, Sousa JS, Monteiro JE, Freire JEC, Sousa BL, Lobo MDP, Monteiro-Moreira ACO, Grangeiro TB. A thermostable chitinase from the antagonistic Chromobacterium violaceum that inhibits the development of phytopathogenic fungi. Enzyme Microb Technol 2019; 126:50-61. [PMID: 31000164 DOI: 10.1016/j.enzmictec.2019.03.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/30/2019] [Accepted: 03/30/2019] [Indexed: 01/19/2023]
Abstract
The biocontrol activity of some soil strains of Chromobacterium sp. against pathogenic fungi has been attributed to secreted chitinases. The aim of this work was to characterize biochemically a recombinant chitinase (CvChi47) from C. violaceum ATCC 12472 and to investigate its effects on phytopathogenic fungi. CvChi47 is a modular enzyme with 450 amino acid residues, containing a type I signal peptide at the N-terminal region, followed by one catalytic domain belonging to family 18 of the glycoside hydrolases, and two type-3 chitin-binding domains at the C-terminal end. The recombinant enzyme was expressed in Escherichia coli as a His-tagged protein and purified to homogeneity. The native signal peptide of CvChi47 was used to direct its secretion into the culture medium, from where the recombinant product was purified by affinity chromatography on chitin and immobilized metal. The purified protein showed an apparent molecular mass of 46 kDa, as estimated by denaturing polyacrylamide gel electrophoresis, indicating the removal of the signal peptide. CvChi47 was a thermostable protein, retaining approximately 53.7% of its activity when heated at 100 °C for 1 h. The optimum hydrolytic activity was observed at 60 °C and pH 5. The recombinant chitinase inhibited the conidia germination of the phytopathogenic fungi Fusarium oxysporum and F. guttiforme, hence preventing mycelial growth. Furthermore, atomic force microscopy experiments revealed a pronounced morphological alteration of the cell surface of conidia incubated with CvChi47 in comparison to untreated cells. Taken together, these results show the potential of CvChi47 as a molecular tool to control plant diseases caused by these Fusarium species.
Collapse
Affiliation(s)
- Antônio J S Sousa
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências, Universidade Federal do Ceará (UFC), Fortaleza, CE, Brazil
| | - Christiana F B Silva
- Embrapa Agroindústria Tropical, Laboratório de Patologia Pós-colheita, Fortaleza, CE, Brazil
| | - Jeanlex S Sousa
- Departamento de Física, Centro de Ciências, UFC, Fortaleza, CE, Brazil
| | - José E Monteiro
- Laboratório de Genética Molecular, Departamento de Biologia, Centro de Ciências, UFC, Fortaleza, CE, Brazil
| | - José E C Freire
- Laboratório de Genética Molecular, Departamento de Biologia, Centro de Ciências, UFC, Fortaleza, CE, Brazil
| | - Bruno L Sousa
- Faculdade de Filosofia Dom Aureliano Matos, Universidade Estadual do Ceará, Av. Dom Aureliano Matos, 2060, Limoeiro do Norte, CE, 62930-000, Brazil
| | - Marina D P Lobo
- Núcleo de Biologia Experimental (Nubex), Universidade de Fortaleza (UNIFOR), Fortaleza, CE, Brazil
| | - Ana C O Monteiro-Moreira
- Núcleo de Biologia Experimental (Nubex), Universidade de Fortaleza (UNIFOR), Fortaleza, CE, Brazil
| | - Thalles B Grangeiro
- Laboratório de Genética Molecular, Departamento de Biologia, Centro de Ciências, UFC, Fortaleza, CE, Brazil.
| |
Collapse
|
20
|
Lopes FES, da Costa HPS, Souza PFN, Oliveira JPB, Ramos MV, Freire JEC, Jucá TL, Freitas CDT. Peptide from thaumatin plant protein exhibits selective anticandidal activity by inducing apoptosis via membrane receptor. PHYTOCHEMISTRY 2019; 159:46-55. [PMID: 30577001 DOI: 10.1016/j.phytochem.2018.12.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 06/09/2023]
Abstract
Osmotin- and thaumatin-like proteins (OLPs and TLPs) have been associated with plant defense responses to different biotic stresses. In the present work, several in silico sequences from OLPs and TLPs were investigated by means of bioinformatics tools aiming to prospect for antimicrobial peptides. The peptide sequences chosen were further synthesized and characterized, and their activities and action mechanisms were assayed against some phytopathogenic fungi, bacteria and yeasts of clinical importance. From this survey approach, four peptide sequences (GDCKATSC, CPRALKVPGGCN, IVGQCPAKLKA, and CAADIVGQCPAKLK) were selected considering some chemical parameters commonly attributed to antimicrobial peptides. Antimicrobial assays showed that these peptides were unable to inhibit mycelial growth of phytopathogenic fungi and they did not affect bacterial cell growth. Nevertheless, significant inhibitory activity was found for CPRALKVPGGCN and CAADIVGQCPAKLK against Candida albicans and Saccharomyces cerevisiae. Fluorescence and scanning electron microscopy assays suggested that CAADIVGQCPAKLK did not damage the overall cell structure, or its activity was negligible on yeast membrane and cell wall integrity. However, it induced the production of reactive oxygen species (ROS) and apoptosis. Molecular docking analysis showed that CAADIVGQCPAKLK had strong affinity to interact with specific plasma membrane receptors of C. albicans and S. cerevisiae, which have been described as promoting the induction of apoptosis. The results indicate that CAADIVGQCPAKLK can be a valuable target for the development of a desired antimicrobial agent against the pathogen C. albicans.
Collapse
Affiliation(s)
- Francisco E S Lopes
- Universidade Federal do Ceará, Departamento de Bioquímica e Biologia Molecular, CEP 60.440-970, Fortaleza, Ceará, Brazil
| | - Helen P S da Costa
- Universidade Federal do Ceará, Departamento de Bioquímica e Biologia Molecular, CEP 60.440-970, Fortaleza, Ceará, Brazil
| | - Pedro F N Souza
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - João P B Oliveira
- Universidade Federal do Ceará, Departamento de Bioquímica e Biologia Molecular, CEP 60.440-970, Fortaleza, Ceará, Brazil
| | - Márcio V Ramos
- Universidade Federal do Ceará, Departamento de Bioquímica e Biologia Molecular, CEP 60.440-970, Fortaleza, Ceará, Brazil
| | - José E C Freire
- Faculdade UniNassau, Campus Parangaba, Av. Dr. Silas Munguba, 403-433, Parangaba, Fortaleza, Ceará, Brazil
| | - Thiago L Jucá
- Refinaria de Lubrificantes e Derivados do Nordeste (Lubnor), Petrobras, Fortaleza, Ceará, Brazil
| | - Cleverson D T Freitas
- Universidade Federal do Ceará, Departamento de Bioquímica e Biologia Molecular, CEP 60.440-970, Fortaleza, Ceará, Brazil.
| |
Collapse
|
21
|
Gene Cloning, Expression, and Antifungal Activities of Permatin from Naked Oat (Avena nuda). Probiotics Antimicrob Proteins 2018; 11:299-309. [PMID: 29717420 DOI: 10.1007/s12602-018-9422-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Thaumatin-like proteins (TLPs) are the products of a large, highly complex gene family involved in host defense. TLPs also belong to the pathogenesis-related family 5 (PR-5) of plant defense proteins. Most TLPs exhibit potential antifungal activities, and their accumulation in the plant is related to many physiological processes. In this study, a gene encoding TLP named permatin with an open reading frame of 678 bp encoding a protein of 225 amino acids with a calculated molecular mass of 23.5 kDa was cloned from naked oat leaves. Phylogenetic analysis revealed that permatin shares high homology with a number of other TLPs among diverse taxa. Model of structure by homology modeling showed that permatin consists of an acidic cleft region consistent with most TLPs. Recombinant NusA-permatin was overexpressed in Escherichia coli strain BL21 and purified by Heparin column combined with Sephacryl S-200 column. The protein exhibited antifungal activity to Fusarium oxysporum (half maximal inhibitory concentration, IC50 = 21.42 μM). Morphological observation showed that NusA-permatin can induce mycelium deformation of F. oxysporum, the cell membrane is blurred, and the diaphragm is not obvious. NusA-permatin also causes membrane permeabilization and reactive oxygen species accumulation in the mycelium of F. oxysporum. Permatin may play an important role in the disease resistance responses of plants against pathogen attacks through its antifungal activity.
Collapse
|
22
|
Ullah A, Hussain A, Shaban M, Khan AH, Alariqi M, Gul S, Jun Z, Lin S, Li J, Jin S, Munis MFH. Osmotin: A plant defense tool against biotic and abiotic stresses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 123:149-159. [PMID: 29245030 DOI: 10.1016/j.plaphy.2017.12.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 12/05/2017] [Accepted: 12/06/2017] [Indexed: 05/18/2023]
Abstract
Plants are prone to a number of pathogens and abiotic stresses that cause various disorders. However, plants possess a defense mechanism to cope with these stresses. The osmotin protein belongs to the PR-5 family of Pathogenesis-related (PR) proteins, which are produced in response to diseases caused by various biotic and abiotic stresses. Osmotin uses a signal transduction pathway to inhibit the activity of defensive cell wall barriers and increases its own cytotoxic efficiency. However, in response to cytotoxic effects, this pathway stimulates a mitogen-activated protein kinase (MAPK) cascade that triggers changes in the cell wall and enables osmotin's entrance into the plasma membrane. This mechanism involves cell wall binding and membrane perturbation, although the complete mechanism of osmotin activity has not been fully elucidated. Osmotin possesses an acidic cleft that is responsible for communication with its receptor in the plasma membrane of fungi. Osmotin is also involved in the initiation of apoptosis and programmed cell death, whereas its overexpression causes the accumulation of proline in transgenic plants. A higher concentration of osmotin can cause the lysis of hyphae tips. This review highlights the role of osmotin protein in the plant defense mechanism and its mode of action against numerous pathogens in wild and transgenic plants.
Collapse
Affiliation(s)
- Abid Ullah
- College of Plant Science and Technology, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Amjad Hussain
- College of Plant Science and Technology, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Muhammad Shaban
- College of Plant Science and Technology, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Aamir Hamid Khan
- College of Plant Science and Technology, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Muna Alariqi
- College of Plant Science and Technology, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Summia Gul
- Department of Biology, Institute of Microbiology, Heinrich Heine University Düsseldorf, Germany
| | - Zhang Jun
- College of Plant Science and Technology, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Sun Lin
- College of Plant Science and Technology, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Jianying Li
- College of Plant Science and Technology, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Shuangxia Jin
- College of Plant Science and Technology, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China.
| | - Muhammad Farooq Hussain Munis
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan; University of California, Department of Plant Pathology, 354 Hutchison Hall, One Shields Ave, Davis, CA 95616-8680, USA.
| |
Collapse
|
23
|
Souza ICC, Ramos MV, Costa JH, Freitas CDT, Oliveira RSB, Moreno FB, Moreira RA, Carvalho CPS. The osmotin of Calotropis procera latex is not expressed in laticifer-free cultivated callus and under salt stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 119:312-318. [PMID: 28938177 DOI: 10.1016/j.plaphy.2017.09.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 08/10/2017] [Accepted: 09/12/2017] [Indexed: 06/07/2023]
Abstract
The latex of Calotropis procera has previously been reported to contain osmotin. This protein (CpOsm) inhibited phytopathogens and this was mechanistically characterized. Here, the time-course profile of CpOsm transcripts was examined in the salt-stressed cultivated callus of C. procera in order to better understand its role in the physiology of the plant. Stressed callus (80 mM NaCl) showed an unbalanced content of organic compounds (proline and total soluble sugar) and inorganic ions (Na+, Cl-, and K+). Under salt treatment, the transcripts of CpOsm were detected after 12 h and slightly increased to a maximum at day seven, followed by reduction. Interestingly, CpOsm was not detected in the soluble protein fraction recovered from the salt-stressed callus as probed by electrophoresis, dot/Western blotting and mass spectrometry. The results suggested that (1) CpOsm is not constitutive in cultivated cells (laticifer-free tissues); (2) CpOsm transcripts appear under salt-stressed conditions; (3) the absence of CpOsm in the protein fractions of stressed cultivated cells indicated that salt-induced transcripts were not used for protein synthesis and this accounts to the belief that CpOsm may be a true laticifer protein in C. procera. More effort will be needed to unveil this process. In this study we show evidences that CpOsm gene is responsive to salt stress. However the corresponding protein is not produced in cultivated cells. Therefore, presently the hypothesis that CpOsm is involved in abiotic stress is not fully supported.
Collapse
Affiliation(s)
- Isabel C C Souza
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Campus do Pici, Cx. Postal 6033, CEP 60451-970, Fortaleza, CE, Brazil
| | - Márcio V Ramos
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Campus do Pici, Cx. Postal 6033, CEP 60451-970, Fortaleza, CE, Brazil.
| | - José H Costa
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Campus do Pici, Cx. Postal 6033, CEP 60451-970, Fortaleza, CE, Brazil
| | - Cleverson D T Freitas
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Campus do Pici, Cx. Postal 6033, CEP 60451-970, Fortaleza, CE, Brazil
| | | | - Frederico B Moreno
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Campus do Pici, Cx. Postal 6033, CEP 60451-970, Fortaleza, CE, Brazil
| | - Renato A Moreira
- Núcleo de Biologia Experimental (NUBEX), Centro de Ciências da Saúde, Universidade de Fortaleza (UNIFOR), Fortaleza, CE, Brazil
| | - Cristina P S Carvalho
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Campus do Pici, Cx. Postal 6033, CEP 60451-970, Fortaleza, CE, Brazil.
| |
Collapse
|
24
|
de Alencar NMN, da Silveira Bitencourt F, de Figueiredo IST, Luz PB, Lima-Júnior RCP, Aragão KS, Magalhães PJC, de Castro Brito GA, Ribeiro RA, de Freitas APF, Ramos MV. Side-Effects of Irinotecan (CPT-11), the Clinically Used Drug for Colon Cancer Therapy, Are Eliminated in Experimental Animals Treated with Latex Proteins fromCalotropis procera(Apocynaceae). Phytother Res 2016; 31:312-320. [DOI: 10.1002/ptr.5752] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 10/30/2016] [Accepted: 11/04/2016] [Indexed: 12/23/2022]
Affiliation(s)
| | | | | | - Patrícia Bastos Luz
- Departamento de Fisiologia e Farmacologia/UFC; Coronel Nunes de Melo, 1127 Rodolfo Teófilo 60430-270 Ceará Brazil
| | - Roberto César P. Lima-Júnior
- Departamento de Fisiologia e Farmacologia/UFC; Coronel Nunes de Melo, 1127 Rodolfo Teófilo 60430-270 Ceará Brazil
| | - Karoline Sabóia Aragão
- Departamento de Fisiologia e Farmacologia/UFC; Coronel Nunes de Melo, 1127 Rodolfo Teófilo 60430-270 Ceará Brazil
| | - Pedro Jorge Caldas Magalhães
- Departamento de Fisiologia e Farmacologia/UFC; Coronel Nunes de Melo, 1127 Rodolfo Teófilo 60430-270 Ceará Brazil
| | | | - Ronaldo Albuquerque Ribeiro
- Departamento de Fisiologia e Farmacologia/UFC; Coronel Nunes de Melo, 1127 Rodolfo Teófilo 60430-270 Ceará Brazil
| | - Ana Paula Fragoso de Freitas
- Departamento de Fisiologia e Farmacologia/UFC; Coronel Nunes de Melo, 1127 Rodolfo Teófilo 60430-270 Ceará Brazil
| | - Marcio Viana Ramos
- Departamento de Bioquímica e Biologia Molecular/UFC; Campus do Pici, Caixa Postal 6033 60451-970 Ceará Brazil
| |
Collapse
|
25
|
Freitas CDT, Viana CA, Vasconcelos IM, Moreno FBB, Lima-Filho JV, Oliveira HD, Moreira RA, Monteiro-Moreira ACO, Ramos MV. First insights into the diversity and functional properties of chitinases of the latex of Calotropis procera. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 108:361-371. [PMID: 27521700 DOI: 10.1016/j.plaphy.2016.07.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 07/31/2016] [Indexed: 05/07/2023]
Abstract
Chitinases (EC 3.2.1.14) found in the latex of Calotropis procera (Ait) R. Br. were studied. The proteins were homogeneously obtained after two ion exchange chromatography steps. Most proteins were identified individually in 15 spots on 2-D gel electrophoresis with isoelectric points ranging from 4.6 to 6.0 and molecular masses extending from 27 to 30 kDa. Additionally, 66 kDa proteins were identified as chitinases in SDS-PAGE. Their identities were further confirmed by mass spectrometry (MS) analysis of the tryptic digests of each spot and MS analysis of the non-digested proteins. Positive reaction for Schiff's reagent suggested the proteins are glycosylated. The chitinases exhibited high catalytic activity toward to colloidal chitin at pH 5.0, and this activity underwent decay in the presence of increasing amounts of reducing agent dithiothreitol. Spore germination and hyphae growth of two phytopathogenic fungi were inhibited only marginally by the chitinases but were affected differently. This suggested a complex relationship might exist between the specificity of the proteins toward the fungal species. The chitinases showed potent insecticidal activity against the Bruchidae Callosobruchus maculatus, drastically reducing survival, larval weight and adult emergence. It is concluded that closely related chitinases are present in the latex of C. procera, and the first experimental evidence suggests these proteins are involved more efficiently in defence strategies against insects rather than fungi.
Collapse
Affiliation(s)
- Cleverson D T Freitas
- Departamento de Bioquímica e Biologia Molecular da Universidade Federal do Ceará, Campus do Pici, Cx. Postal 6033, Fortaleza, CE CEP 60451-970, Brazil.
| | - Carolina A Viana
- Departamento de Bioquímica e Biologia Molecular da Universidade Federal do Ceará, Campus do Pici, Cx. Postal 6033, Fortaleza, CE CEP 60451-970, Brazil
| | - Ilka M Vasconcelos
- Departamento de Bioquímica e Biologia Molecular da Universidade Federal do Ceará, Campus do Pici, Cx. Postal 6033, Fortaleza, CE CEP 60451-970, Brazil
| | - Frederico B B Moreno
- Centro de Ciências da Saúde, Universidade de Fortaleza (UNIFOR), Fortaleza, CE, Brazil
| | - José V Lima-Filho
- Departamento de Biologia, Universidade Federal Rural de Pernambuco, Recife, PE, Brazil
| | - Hermogenes D Oliveira
- Departamento de Bioquímica e Biologia Molecular da Universidade Federal do Ceará, Campus do Pici, Cx. Postal 6033, Fortaleza, CE CEP 60451-970, Brazil
| | - Renato A Moreira
- Centro de Ciências da Saúde, Universidade de Fortaleza (UNIFOR), Fortaleza, CE, Brazil
| | | | - Márcio V Ramos
- Departamento de Bioquímica e Biologia Molecular da Universidade Federal do Ceará, Campus do Pici, Cx. Postal 6033, Fortaleza, CE CEP 60451-970, Brazil.
| |
Collapse
|
26
|
Wang J, Yao L, Li B, Meng Y, Ma X, Lai Y, Si E, Ren P, Yang K, Shang X, Wang H. Comparative Proteomic Analysis of Cultured Suspension Cells of the Halophyte Halogeton glomeratus by iTRAQ Provides Insights into Response Mechanisms to Salt Stress. FRONTIERS IN PLANT SCIENCE 2016; 7:110. [PMID: 26904073 PMCID: PMC4746295 DOI: 10.3389/fpls.2016.00110] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 01/21/2016] [Indexed: 05/23/2023]
Abstract
Soil salinity severely threatens land use capability and crop yields worldwide. An analysis of the molecular mechanisms of salt tolerance in halophytes will contribute to the development of salt-tolerant crops. In this study, a combination of physiological characteristics and iTRAQ-based proteomic approaches was conducted to investigate the molecular mechanisms underlying the salt response of suspension cell cultures of halophytic Halogeton glomeratus. These cells showed halophytic growth responses comparable to those of the whole plant. In total, 97 up-regulated proteins and 192 down-regulated proteins were identified as common to both 200 and 400 mM NaCl concentration treatments. Such salinity responsive proteins were mainly involved in energy, carbohydrate metabolism, stress defense, protein metabolism, signal transduction, cell growth, and cytoskeleton metabolism. Effective regulatory protein expression related to energy, stress defense, and carbohydrate metabolism play important roles in the salt-tolerance of H. glomeratus suspension cell cultures. However, known proteins regulating Na(+) efflux from the cytoplasm and its compartmentalization into the vacuole did not change significantly under salinity stress suggesting our existing knowledge concerning Na(+) extrusion and compartmentalization in halophytes needs to be evaluated further. Such data are discussed in the context of our current understandings of the mechanisms involved in the salinity response of the halophyte, H. glomeratus.
Collapse
Affiliation(s)
- Juncheng Wang
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm EnhancementLanzhou, China
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural UniversityLanzhou, China
| | - Lirong Yao
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm EnhancementLanzhou, China
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural UniversityLanzhou, China
| | - Baochun Li
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm EnhancementLanzhou, China
- Department of Botany, College of Life Science and Technology, Gansu Agricultural UniversityLanzhou, China
| | - Yaxiong Meng
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm EnhancementLanzhou, China
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural UniversityLanzhou, China
| | - Xiaole Ma
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm EnhancementLanzhou, China
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural UniversityLanzhou, China
| | - Yong Lai
- Department of Agriculture and Forestry, College of Agriculture and Animal Husbandry, Qinghai UniversityXining, China
| | - Erjing Si
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm EnhancementLanzhou, China
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural UniversityLanzhou, China
| | - Panrong Ren
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm EnhancementLanzhou, China
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural UniversityLanzhou, China
| | - Ke Yang
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm EnhancementLanzhou, China
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural UniversityLanzhou, China
| | - Xunwu Shang
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural UniversityLanzhou, China
| | - Huajun Wang
- Gansu Provincial Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm EnhancementLanzhou, China
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural UniversityLanzhou, China
| |
Collapse
|