1
|
Jones HN, Wilson RL. A human cytotrophoblast-villous endothelium-fetal organ multi-cell model and the impact on gene and protein expression in placenta cytotrophoblast, fetal hepatocytes and fetal kidney epithelial cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.01.646643. [PMID: 40236240 PMCID: PMC11996472 DOI: 10.1101/2025.04.01.646643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Appropriate fetal growth during pregnancy requires multi-directional communication from the maternal, placental and fetal systems. Disruption in any of these signaling arms can have deleterious consequences for fetal growth and initiate developmental adaptations within fetal tissues and organs that are associated with both short- and long-term morbidities. In this proof-of-concept translational, human cell model study we aimed to identify the impacts of altered trophoblast stress response mechanisms and human insulin-like 1 growth factor ( hIGF1 ) nanoparticle gene therapy on gene and protein expression in fetal liver hepatocytes and fetal kidney epithelial cells. We utilized human cell lines: BeWo choriocarcinoma cells (trophoblast), Human Placental Micro-Vascular Endothelial Cells, and WRL68 (hepatocytes) or HEK293T/17 (kidney epithelium), in a co-culture model designed to mimic cytotrophoblast-villous endothelium-fetal organ communication. Trophoblast stress response mechanisms were increased by culturing BeWo cells in growth media without FBS. Stressed BeWo cells were also treated with a hIGF1 nanoparticle gene therapy known to mitigate cellular stress mechanisms. Stressed BeWo cells had increased expression of cellular stress mechanisms but not when IGF1 was over-expressed with a transient hIGF1 nanoparticle gene therapy. Stressed and Stressed+ hIGF1 BeWo cells had increased expression of gluconeogenesis and glycolysis rate-limiting enzymes. Gene and protein expression in fetal liver and kidney cells was not impacted by increased trophoblast stress or hIGF1 nanoparticle gene therapy. In conclusion, our data demonstrated that cytotrophoblast under stress turn on mechanisms involved in glucose production. Whether this is reflected in vivo remains uninvestigated but may represent a placental compensation mechanism in complicated pregnancies.
Collapse
|
2
|
Nunes LGA, Weingrill RB, Fredrick SBJ, Lorca R, Lee MJ, Atif SM, Chicco AJ, Rosario FJ, Urschitz J. Trophoblast-specific Deptor knockdown enhances trophoblast nutrient transport and fetal growth in mice. Acta Physiol (Oxf) 2025; 241:e70012. [PMID: 40042094 PMCID: PMC11932668 DOI: 10.1111/apha.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 01/16/2025] [Accepted: 01/18/2025] [Indexed: 03/26/2025]
Abstract
AIM Silencing of DEP-domain containing mTOR-interacting protein (DEPTOR), an endogenous inhibitor of the mammalian target of rapamycin (mTOR) pathway, increases mTOR signaling and System A/L amino acid transport activity in cultured primary human trophoblast cells. However, there is no evidence supporting the regulatory role of DEPTOR signaling in placental function in vivo. We hypothesized that trophoblast-specific Deptor knockdown (KD) in mice increases trophoblast mTOR signaling, amino acid transport, and enhances fetal growth. METHODS We generated trophoblast-specific DeptorKD transgenic mice, and at embryonic day 18.5, placentas were analyzed to confirm knockdown efficiency, specificity, and mTOR signaling pathway levels. Trophoblast plasma membrane (TPM) System A/L amino acid transport expression and activity were also determined. We also examined the relationship between birthweight and DEPTOR protein levels in human placentas collected at term from appropriate for gestational age (AGA) and large for gestational age (LGA) pregnancies. RESULTS Reducing trophoblast Deptor RNA levels increased placental mTOR signaling, System A/L transporter expression/activity, and fetal growth in mice. Similarly, human LGA placentas displayed decreased DEPTOR protein levels, inversely correlated to birthweight and BMI. CONCLUSIONS This is the first report showing that trophoblast-specific DeptorKD is sufficient to activate mTOR signaling, a master regulator of placental function, which increases the TPM System A and L amino acid transporter expression and activity. We also propose that Deptor expression is mechanistically linked to placental mTOR signaling and fetal growth. Furthermore, modulation of DEPTOR signaling may represent a promising approach to improve outcomes in pregnancies characterized by abnormal fetal growth.
Collapse
Affiliation(s)
- Lance GA Nunes
- Institute for Biogenesis, University of Hawaii, John A Burns School of Medicine, Honolulu, HI, United States
| | - Rodrigo B Weingrill
- Institute for Biogenesis, University of Hawaii, John A Burns School of Medicine, Honolulu, HI, United States
| | | | - Ramon Lorca
- Department of Obstetrics and Gynecology, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States
| | - Men-Jean Lee
- Department of Obstetrics and Gynecology, University of Hawaii, John A Burns School of Medicine, Honolulu, HI, United States
| | - Shaikh M Atif
- Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States
| | - Adam J Chicco
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Fredrick J Rosario
- Department of Obstetrics and Gynecology, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States
| | - Johann Urschitz
- Institute for Biogenesis, University of Hawaii, John A Burns School of Medicine, Honolulu, HI, United States
| |
Collapse
|
3
|
Manapurath R, Chowdhury R, Taneja S, Bhandari N, Kurpad AV, Devi S, Dwarkanath P, Strand TA. Impact of linear growth-improving interventions on childhood overnutrition at 24 months: a randomized controlled trial. Am J Clin Nutr 2025:S0002-9165(25)00019-X. [PMID: 39923812 DOI: 10.1016/j.ajcnut.2025.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 12/18/2024] [Accepted: 01/16/2025] [Indexed: 02/11/2025] Open
Abstract
BACKGROUND Childhood malnutrition, both undernutrition and overnutrition, is a major health concern in many low- and middle-income countries (LMICs). Efforts to reduce early undernutrition could also lead to obesity. In an earlier study, we reported the successful impact of a package of preconception, pregnancy, postnatal, and/or early childhood interventions (health, nutrition, psychosocial support, and water, sanitation, and hygiene) delivered in the first 1000 d, on reducing stunting in low-to-middle-income populations, in comparison with routine care. However, the impact of these interventions on early body composition and subsequent overweight is not known. OBJECTIVES The objective of this study was to estimate the effect of a package of interventions directed at preventing stunting in the first 1000 d on body composition at 1 mo and childhood overweight and/or obesity at 24 mo of age. METHODS Infant body composition was measured by deuterium dilution at 1 mo of age, along with the prevalence of childhood overweight and/or obesity at 24 mo, defined by a body mass index-for-Age Z (BMIz) score >+2 standard deviation. RESULTS Children in the preconception, pregnancy, and early childhood intervention group and those in the pregnancy and early childhood intervention group had higher body mass index z scores than those in routine care. However, the prevalence of overweight and/or obesity was low (ranging from 0.0 to 1.3%). Pregnancy interventions significantly increased neonatal fat-free mass (mean difference 0.1 kg, 95% confidence interval [CI]: 0.01, 0.2). However, there was no significant change in fat mass. CONCLUSIONS Comprehensive interventions from preconception to early childhood improve linear growth but do not result in overweight and/or obesity at 24 mo. With better resultant linear and ponderal growth, they converge with the World Health Organization's "double-duty actions for nutrition" for LMIC settings, where childhood overweight and/or obesity is a growing concern. This trial was registered at Clinical Trials Registry - India as CTRI/2017/06/008908.
Collapse
Affiliation(s)
- Rukman Manapurath
- Centre for International Health, University of Bergen, Norway; Society for Applied Studies, New Delhi, India
| | | | | | | | | | - Sarita Devi
- St. Johns Research Institute, Bangalore, India
| | | | - Tor A Strand
- Centre for International Health, University of Bergen, Norway; Department of Research, Innlandet Hospital Trust, Lillehammer, Norway
| |
Collapse
|
4
|
Wang Z, Chen P, Liang Y, Wang F, Zhang Y. Negative energy balance affects perinatal ewe performance, rumen morphology, rumen flora structure, and placental function. J Anim Physiol Anim Nutr (Berl) 2024; 108:1747-1760. [PMID: 38958108 DOI: 10.1111/jpn.14009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/14/2024] [Accepted: 06/09/2024] [Indexed: 07/04/2024]
Abstract
This study investigated the effects of negative energy balance (NEB) on perinatal ewes, with a focus on changes in growth performance, serum biochemical parameters, rumen fermentation, ruminal bacteria composition, placental phenotype-related indicators, and expression levels of genes related to placental function. Twenty ewes at 130 days of gestation were randomly allocated to either the positive energy balance (PEB) or NEB groups. In the experiment, ewes in the PEB group were fed the same amount as their intake during the pre-feeding baseline period, while ewes in the NEB group were restricted to 70% of their individual baseline feed intake. The experiment was conducted until 42 days postpartum, and five double-lamb ewes per group were selected for slaughter. The results demonstrated that NEB led to a significant decrease in body weight, carcass weight, and the birth and weaning weights of lambs (P < 0.05). Additionally, NEB caused alterations in serum biochemical parameters, such as increased non-esterified fatty acids and β-hydroxybutyrate levels and decreased cholesterol and albumin levels (P < 0.05). Rumen fermentation and epithelial parameters were also affected, with a reduction in the concentrations of acetic acid, butyric acid, total acid and a decrease in the length of the rumen papilla (P < 0.05). Moreover, NEB induced changes in the structure and composition of ruminal bacteria, with significant differences in α-diversity indices and rumen microbial community composition (P < 0.05). Gene expression in rumen papilla and ewe placenta was also affected, impacting genes associated with glucose and amino acid transport, proliferation, apoptosis, and angiogenesis (P < 0.05). These findings screened the key microbiota in the rumen of ewes following NEB and highlighted the critical genes associated with rumen function. Furthermore, this study revealed the impact of NEB on placental function in ewes, providing a foundation for investigating how nutrition in ewes influences reproductive performance. This research demonstrates how nutrition regulates reproductive performance by considering the combined perspectives of rumen microbiota and placental function.
Collapse
Affiliation(s)
- Zhibo Wang
- Institute of Goats and Sheep Science, Nanjing Agricultural University, Nanjing, China
| | - Peiyong Chen
- Institute of Goats and Sheep Science, Nanjing Agricultural University, Nanjing, China
| | - Yaxu Liang
- Institute of Goats and Sheep Science, Nanjing Agricultural University, Nanjing, China
| | - Feng Wang
- Institute of Goats and Sheep Science, Nanjing Agricultural University, Nanjing, China
| | - Yanli Zhang
- Institute of Goats and Sheep Science, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
5
|
Li J, Bi Q, Pi Y, Jiang X, Li Y, Li X. Dietary Supplementation with 25-Hydroxyvitamin D 3 on Reproductive Performance and Placental Oxidative Stress in Primiparous Sows during Mid-to-Late Gestation. Antioxidants (Basel) 2024; 13:1090. [PMID: 39334749 PMCID: PMC11428878 DOI: 10.3390/antiox13091090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
The placenta plays a crucial role in nutrient transport and waste exchange between the dam and fetus, sustaining fetal growth. While the positive effects of 25-hydroxyvitamin D3 (25-OH-D3) on animal performance have been reported, its impact on placental function remains largely unknown. Therefore, this study aimed to investigate the effects of supplementing 25-OH-D3 in the diet of primiparous sows on reproductive performance, antioxidant capacity, placental oxidative stress, nutrient transport, and inflammatory response during mid-to-late gestation. A total of 45 healthy Landrace × Yorkshire primiparous sows on day 60 of gestation were selected and randomly allocated to three treatment groups based on body weight and backfat thickness: the control group (corn-soybean meal basal diet), the VD3 group (basal diet + 2000 IU VD3), and the 25-OH-D3 group (basal diet + 50 μg/kg 25-OH-D3). The results demonstrated that supplementation with 25-OH-D3 in the diet enhanced sows' average litter weight and birth weight during mid-to-late gestation. Additionally, plasma malondialdehyde (MDA) concentrations in sows significantly decreased in the VD3 and 25-OH-D3 groups (p < 0.05). Furthermore, lower gene expressions of placental HO-1, GPX2, IL-8, and IL-6 were found in the VD3 or 25-OH-D3 groups (p < 0.05 or p < 0.10), while higher gene expressions of GLUT1 and SNAT2 in the placenta of sows were observed in the VD3 and 25-OH-D3 groups, respectively (p < 0.05). These findings indicate that the supplementation of VD3 and 25-OH-D3 in the diet of sows can improve their plasma oxidative stress status, enhance placental antioxidant capacity and nutrient transport, and reduce placental inflammatory responses, with more pronounced improvements in sow performance observed in sows fed diets supplemented with 25-OH-D3.
Collapse
Affiliation(s)
- Jing Li
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qingyue Bi
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- College of Agriculture, Yanbian University, Yanji 133000, China
| | - Yu Pi
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xianren Jiang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yanpin Li
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xilong Li
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
6
|
Thornburg KL, Valent AM. Maternal Malnutrition and Elevated Disease Risk in Offspring. Nutrients 2024; 16:2614. [PMID: 39203750 PMCID: PMC11357549 DOI: 10.3390/nu16162614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/31/2024] [Accepted: 08/03/2024] [Indexed: 09/03/2024] Open
Abstract
US populations have seen dramatic increases in the prevalence of chronic disease over the past three generations. Rapid increases in type 2 diabetes and obesity have occurred in all the states but have been particularly striking in the Deep South. These increases have contributed to decreases in life expectancy and to painful elevations in health care costs. The causes of worsening population health are complex and incompletely understood. However, there is strong evidence that vulnerability to chronic conditions is determined in early life. Most chronic diseases are developmentally driven. There are specific stressors experienced in early life that influence epigenetic and structural changes during development. These include malnutrition, severe levels of social stress, toxic chemicals, and low oxygen levels. Most US populations have experienced a decrease in the quality of the food they consume as industrial foods have replaced garden-grown foods. Thus, the consumption of too few nutrients before and during pregnancy and during lactation influences the growth of the placenta and fetal organs and their level of resilience when faced with stresses in postnatal life and particularly as adults. Animal studies have shown that the effects of poor nutrition can be passed on to future generations. The most powerful way that the current epidemics of obesity and insulin resistance can be reversed is by providing key nutrients to prospective mothers and those already pregnant.
Collapse
Affiliation(s)
- Kent L. Thornburg
- OHSU Bob and Charlee Moore Institute for Nutrition and Wellness, School of Medicine, Oregon Health & Science University, Portland, OR 97239, USA;
- Center for Developmental Health, Knight Cardiovascular Institute, School of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Medicine, School of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Amy M. Valent
- OHSU Bob and Charlee Moore Institute for Nutrition and Wellness, School of Medicine, Oregon Health & Science University, Portland, OR 97239, USA;
- Department of Obstetrics & Gynecology, School of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
7
|
Zhang H, Zha X, Zhang B, Zheng Y, Liu X, Elsabagh M, Ma Y, Wang H, Shu G, Wang M. Dietary rumen-protected L-arginine or N-carbamylglutamate enhances placental amino acid transport and suppresses angiogenesis and steroid anabolism in underfed pregnant ewes. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 15:149-158. [PMID: 38023379 PMCID: PMC10679858 DOI: 10.1016/j.aninu.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/31/2023] [Accepted: 08/16/2023] [Indexed: 12/01/2023]
Abstract
This study aimed to investigate the effects of dietary supplementation of underfed Hu ewes from d 35 to 110 of gestation with either rumen-protected L-arginine (RP-Arg) or N-carbamylglutamate (NCG) on placental amino acid (AA) transport, angiogenic gene expression, and steroid anabolism. On d 35 of gestation, 32 Hu ewes carrying twin fetuses were randomly divided into four treatment groups, each consisting of eight ewes, and were fed the following diets: A diet providing 100% of NRC's nutrient requirements for pregnant ewes (CON); A diet providing 50% of NRC's nutrient requirements for pregnant ewes (RES); RES diet plus 5 g/d NCG (RES + NCG); or RES diet plus 20 g/d RP-Arg (RES + ARG). On the d 110 of pregnancy, blood samples were taken from the mother, and samples were collected from type A cotyledons (COT; the fetal portions of the placenta). The levels of 17β-estradiol and progesterone in the maternal serum and both the capillary area density (CAD) and capillary surface density (CSD) in type A COT were decreased in response to Arg or NCG supplementation when compared to the RES group. The concentrations of arginine, leucine, putrescine and spermidine in type A COT were higher (P < 0.05) in the RES + ARG or RES + NCG group than in the RES group. The mRNA expression levels of inducible nitric oxide synthase (iNOS) and solute carrier family 15, member 1 (SLC15A1) were increased (P < 0.05) while those of progesterone receptor (PGR) and fibroblast growth factor 2 (FGF2) were decreased in type A COT by supplementation with either NCG or RP-Arg compared to the RES group. The results suggest that providing underfed pregnant ewes from d 35 to 110 of gestation with a diet supplemented with NCG or RP-Arg improves placental AA transport, and reduces the expression of angiogenic growth factor genes and steroid anabolism, leading to better fetal development.
Collapse
Affiliation(s)
- Hao Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Xia Zha
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Bei Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Yi Zheng
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyun Liu
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Mabrouk Elsabagh
- Department of Animal Production and Technology, Faculty of Agricultural Sciences and Technologies, Niğde Ömer Halisdemir University, Nigde 51240, Turkey
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Kafrelsheikh University, KafrelSheikh, Egypt
| | - Yi Ma
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Hongrong Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Guihua Shu
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Department of Pediatrics, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou 225001, China
| | - Mengzhi Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
8
|
Hoover JH, Coker ES, Erdei E, Luo L, Begay D, MacKenzie D, Lewis J. Preterm Birth and Metal Mixture Exposure among Pregnant Women from the Navajo Birth Cohort Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:127014. [PMID: 38109118 PMCID: PMC10727039 DOI: 10.1289/ehp10361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND Preterm birth (PTB), defined as birth before 37 wk gestation, is associated with hypertension, diabetes, inadequate prenatal care, unemployment or poverty, and metal exposure. Indigenous individuals are more likely to have maternal risk factors associated with PTB compared with other populations in the United States; however, the role of environmental metals on PTB among pregnant Indigenous women remains uncertain. Previous research identified associations between PTB and individual metals, but there is limited investigation on metal mixtures and this birth outcome. OBJECTIVES We used a mixtures analysis framework to investigate the association between metal mixtures and PTB among pregnant Indigenous women from the Navajo Birth Cohort Study (NBCS). METHODS Maternal urine and blood samples were collected at the time of study enrollment and analyzed for metals by inductively coupled plasma dynamic reaction cell mass spectrometry. Bayesian Profile Regression was used to identify subgroups (clusters) of individuals with similar patterns of coexposure and to model association with PTB. RESULTS Results indicated six subgroups of maternal participants with distinct exposure profiles, including one group with low exposure to all metals and one group with total arsenic, cadmium, lead, and uranium concentrations exceeding representative concentrations calculated from the National Health and Nutrition Examination Survey (NHANES). Compared with the reference group (i.e., the lowest exposure subgroup), the subgroup with the highest overall exposure had a relative risk of PTB of 2.9 times (95% credible interval: 1.1, 6.1). Exposures in this subgroup were also higher overall than NHANES median values for women 14-45 years of age. DISCUSSION Given the wide range of exposures and elevated PTB risk for the most exposed subgroups in a relatively small study, follow-up investigation is recommended to evaluate associations between metal mixture profiles and other birth outcomes and to test hypothesized mechanisms of action for PTB and oxidative stress caused by environmental metals. https://doi.org/10.1289/EHP10361.
Collapse
Affiliation(s)
- Joseph H. Hoover
- Community Environmental Health Program, College of Pharmacy, Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
- Department of Environmental Science, College of Agriculture, Life and Environmental Sciences, University of Arizona, Tucson, Arizona, USA
| | - Eric S. Coker
- British Columbia Centre for Disease Control, Vancouver, British Columbia, Canada
| | - Esther Erdei
- Community Environmental Health Program, College of Pharmacy, Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Li Luo
- Department of Internal Medicine and Comprehensive Cancer Center, University of New Mexico, Albuquerque, New Mexico, USA
| | - David Begay
- Community Environmental Health Program, College of Pharmacy, Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Debra MacKenzie
- Community Environmental Health Program, College of Pharmacy, Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - NBCS Study Team
- Community Environmental Health Program, College of Pharmacy, Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Johnnye Lewis
- Community Environmental Health Program, College of Pharmacy, Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| |
Collapse
|
9
|
da Silva ACR, Yadegari A, Tzaneva V, Vasanthan T, Laketic K, Shearer J, Bainbridge SA, Harris C, Adamo KB. Metabolomics to Understand Alterations Induced by Physical Activity during Pregnancy. Metabolites 2023; 13:1178. [PMID: 38132860 PMCID: PMC10745110 DOI: 10.3390/metabo13121178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
Physical activity (PA) and exercise have been associated with a reduced risk of cancer, obesity, and diabetes. In the context of pregnancy, maintaining an active lifestyle has been shown to decrease gestational weight gain (GWG) and lower the risk of gestational diabetes mellitus (GDM), hypertension, and macrosomia in offspring. The main pathways activated by PA include BCAAs, lipids, and bile acid metabolism, thereby improving insulin resistance in pregnant individuals. Despite these known benefits, the underlying metabolites and biological mechanisms affected by PA remain poorly understood, highlighting the need for further investigation. Metabolomics, a comprehensive study of metabolite classes, offers valuable insights into the widespread metabolic changes induced by PA. This narrative review focuses on PA metabolomics research using different analytical platforms to analyze pregnant individuals. Existing studies support the hypothesis that exercise behaviour can influence the metabolism of different populations, including pregnant individuals and their offspring. While PA has shown considerable promise in maintaining metabolic health in non-pregnant populations, our comprehension of metabolic changes in the context of a healthy pregnancy remains limited. As a result, further investigation is necessary to clarify the metabolic impact of PA within this unique group, often excluded from physiological research.
Collapse
Affiliation(s)
- Ana Carolina Rosa da Silva
- School of Human Kinetics, Faculty of Health Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (A.C.R.d.S.)
| | - Anahita Yadegari
- School of Human Kinetics, Faculty of Health Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (A.C.R.d.S.)
| | - Velislava Tzaneva
- School of Human Kinetics, Faculty of Health Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (A.C.R.d.S.)
| | - Tarushika Vasanthan
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, ON M5G 2A7, Canada
| | - Katarina Laketic
- Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Jane Shearer
- Department of Biochemistry and Molecular Biology, Faculty of Kinesiology, Cumming School of Medicine and Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Shannon A. Bainbridge
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, Ottawa, ON K1N 6N5, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Cory Harris
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada;
| | - Kristi B. Adamo
- School of Human Kinetics, Faculty of Health Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (A.C.R.d.S.)
| |
Collapse
|
10
|
Rubin JM, Pinter SZ, Halloran KM, Pallas BD, Fowlkes JB, Vyas AK, Padmanabhan V, Kripfgans OD. Placental assessment using spectral analysis of the envelope of umbilical venous waveforms in sheep. Placenta 2023; 142:119-127. [PMID: 37699274 PMCID: PMC10954287 DOI: 10.1016/j.placenta.2023.08.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/14/2023]
Abstract
INTRODUCTION This study was designed to test the efficacy of an ultrasound flow measurement method to evaluate placental function in a hyperandrogenic sheep model that produces placental morphologic changes and an intrauterine growth restriction (IUGR) phenotype. MATERIALS AND METHODS Pregnant ewes were assigned randomly between control (n = 12) and testosterone-treatment (T-treated, n = 22) groups. The T-treated group was injected twice weekly intramuscularly (IM) with 100 mg testosterone propionate. Control sheep were injected with corn oil vehicle. Lambs were delivered at 119.5 ± 0.48 days gestation. At the time of delivery of each lamb, flow spectra were generated from one fetal artery and two fetal veins, and the spectral envelopes examined using fast Fourier transform analysis. Base 10 logarithms of the ratio of the amplitudes of the maternal and fetal spectral peaks (LRSP) in the venous power spectrum were compared in the T-treated and control populations. In addition, we calculated the resistive index (RI) for the artery defined as ((peak systole - min diastole)/peak systole). Two-tailed T-tests were used for comparisons. RESULTS LRSPs, after removal of significant outliers, were -0.158 ± 0.238 for T-treated and 0.057 ± 0.213 for control (p = 0.015) animals. RIs for the T-treated sheep fetuses were 0.506 ± 0.137 and 0.497 ± 0.086 for controls (p = 0.792) DISCUSSION: LRSP analysis distinguishes between T-treated and control sheep, whereas RIs do not. LRSP has the potential to identify compromised pregnancies.
Collapse
Affiliation(s)
- Jonathan M Rubin
- University of Michigan Department of Radiology, Medical Sciences Building 1, 1301 Catherine St, Ann Arbor, MI, 48109-2026, USA.
| | - Stephen Z Pinter
- University of Michigan Department of Radiology, Medical Sciences Building 1, 1301 Catherine St, Ann Arbor, MI, 48109-2026, USA.
| | - Katherine M Halloran
- University of Michigan Department of Pediatrics, 7510 MSRB1, 1150 W. Medical Center Dr, Ann Arbor, MI, 48109-5718, USA.
| | - Brooke D Pallas
- University of Michigan Address Unit Lab Animal Medicine, 2800 Plymouth Rd. NCRC-G090, Ann Arbor, MI, 48109-2800, USA.
| | - J Brian Fowlkes
- University of Michigan Department of Radiology, Medical Sciences Building 1, 1301 Catherine St, Ann Arbor, MI, 48109-2026, USA.
| | - Arpita K Vyas
- Washington University in St. Louis Department of Pediatrics, St. Louis Children's Hospital, 1 Children's Place, St. Louis, MO, 63110, USA.
| | - Vasantha Padmanabhan
- University of Michigan Department of Pediatrics, 7510 MSRB1, 1150 W. Medical Center Dr, Ann Arbor, MI, 48109-5718, USA.
| | - Oliver D Kripfgans
- University of Michigan Department of Radiology, Medical Sciences Building 1, 1301 Catherine St, Ann Arbor, MI, 48109-2026, USA.
| |
Collapse
|
11
|
Guadagnin AR, Fehlberg LK, Thomas B, Sugimoto Y, Shinzato I, Cardoso FC. Feeding rumen-protected lysine prepartum alters placental metabolism at a transcriptional level. J Dairy Sci 2023; 106:6567-6576. [PMID: 37532623 DOI: 10.3168/jds.2022-22390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 02/24/2023] [Indexed: 08/04/2023]
Abstract
Rumen-protected Lys (RPL) fed to Holstein cows prepartum resulted in a greater intake and improved health of their calves during the first 6 wk of life. However, whether increased supply of Lys in late gestation can influence placental tissue and, if so, which pathways are affected remain to be investigated. Therefore, we hypothesize that feeding RPL during late gestation could modulate placental metabolism, allowing for improved passage of nutrients to the fetus and thus influencing the offspring development. Therefore, we aimed to determine the effects of feeding RPL (AjiPro-L Generation 3, Ajinomoto Health and Nutrition North America) prepartum (0.54% DM of TMR) on mRNA gene expression profiles of placental samples of Holstein cows. Seventy multiparous Holstein cows were randomly assigned to 1 of 2 dietary treatments, consisting of TMR top-dressed with RPL (PRE-L) or without (control, CON), fed from 27 ± 5 d prepartum until calving. After natural delivery (6.87 ± 3.32 h), placentas were rinsed with physiological saline (0.9% sodium chloride solution) to clean any dirtiness from the environment and weighed. Then, 3 placentomes were collected, one from each placental region (cranial, central, and caudal), combined and flash-frozen in liquid nitrogen to evaluate the expression of transcripts and proteins related to protein metabolism and inflammation. Placental weights did not differ from cows in PRE-L (15.5 ± 4.03 kg) and cows in CON (14.5 ± 4.03 kg). Feeding RPL prepartum downregulated the expression of NOS3 (nitric oxide synthase 3), involved in vasodilation processes, and SOD1, which encodes the enzyme superoxide dismutase, involved in oxidative stress processes. Additionally, feeding RPL prepartum upregulated the expression of transcripts involved in energy metabolism (SLC2A3, glucose transporter 3; and PCK1, phosphoenolpyruvate carboxykinase 1), placental metabolism and cell proliferation (FGF2, fibroblast growth factor 2; FGF2R, fibroblast growth factor 2 receptor; and PGF, placental growth factor), Met metabolism (MAT2A, methionine adenosyltransferase 2-α), and tended to upregulate IGF2R (insulin-like growth factor 2 receptor). Placental FGF2 and LRP1 (low-density lipoprotein receptor-related protein 1) protein abundance were greater for cows that received RPL prepartum than cows in CON. In conclusion, feeding RPL to prepartum dairy cows altered uteroplacental expression of genes and proteins involved in cell proliferation, and in metabolism and transport of glucose. Such changes are illustrated by increased expression of SLC2A3 and PCK1 and increased protein abundance of FGF2 and LRP1 in uteroplacental tissue of cows consuming RPL.
Collapse
Affiliation(s)
- A R Guadagnin
- Department of Animal Sciences, University of Illinois Urbana-Champaign, IL 61801
| | - L K Fehlberg
- Department of Animal Sciences, University of Illinois Urbana-Champaign, IL 61801
| | - B Thomas
- Department of Animal Sciences, University of Illinois Urbana-Champaign, IL 61801
| | | | | | - F C Cardoso
- Department of Animal Sciences, University of Illinois Urbana-Champaign, IL 61801.
| |
Collapse
|
12
|
Van Gilst D, Puchkina AV, Roelants JA, Kervezee L, Dudink J, Reiss IKM, Van Der Horst GTJ, Vermeulen MJ, Chaves I. Effects of the neonatal intensive care environment on circadian health and development of preterm infants. Front Physiol 2023; 14:1243162. [PMID: 37719464 PMCID: PMC10500197 DOI: 10.3389/fphys.2023.1243162] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/18/2023] [Indexed: 09/19/2023] Open
Abstract
The circadian system in mammals ensures adaptation to the light-dark cycle on Earth and imposes 24-h rhythmicity on metabolic, physiological and behavioral processes. The central circadian pacemaker is located in the brain and is entrained by environmental signals called Zeitgebers. From here, neural, humoral and systemic signals drive rhythms in peripheral clocks in nearly every mammalian tissue. During pregnancy, disruption of the complex interplay between the mother's rhythmic signals and the fetal developing circadian system can lead to long-term health consequences in the offspring. When an infant is born very preterm, it loses the temporal signals received from the mother prematurely and becomes totally dependent on 24/7 care in the Neonatal Intensive Care Unit (NICU), where day/night rhythmicity is usually blurred. In this literature review, we provide an overview of the fetal and neonatal development of the circadian system, and short-term consequences of disruption of this process as occurs in the NICU environment. Moreover, we provide a theoretical and molecular framework of how this disruption could lead to later-life disease. Finally, we discuss studies that aim to improve health outcomes after preterm birth by studying the effects of enhancing rhythmicity in light and noise exposure.
Collapse
Affiliation(s)
- D. Van Gilst
- Department of Molecular Genetics, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - A. V. Puchkina
- Department of Developmental Biology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - J. A. Roelants
- Department of Neonatal and Pediatric Intensive Care, Division of Neonatology, Erasmus University Medical Center Rotterdam-Sophia Children’s Hospital, Rotterdam, Netherlands
| | - L. Kervezee
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - J. Dudink
- Department of Neonatology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - I. K. M. Reiss
- Department of Neonatal and Pediatric Intensive Care, Division of Neonatology, Erasmus University Medical Center Rotterdam-Sophia Children’s Hospital, Rotterdam, Netherlands
| | - G. T. J. Van Der Horst
- Department of Molecular Genetics, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - M. J. Vermeulen
- Department of Neonatal and Pediatric Intensive Care, Division of Neonatology, Erasmus University Medical Center Rotterdam-Sophia Children’s Hospital, Rotterdam, Netherlands
| | - I. Chaves
- Department of Molecular Genetics, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
13
|
Lintao RCV, Kammala AK, Vora N, Yaklic JL, Menon R. Fetal membranes exhibit similar nutrient transporter expression profiles to the placenta. Placenta 2023; 135:33-42. [PMID: 36913807 DOI: 10.1016/j.placenta.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/09/2023]
Abstract
INTRODUCTION During pregnancy, the growth of the fetus is supported by the exchange of nutrients, waste, and other molecules between maternal and fetal circulations in the utero-placental unit. Nutrient transfer, in particular, is mediated by solute transporters such as solute carrier (SLC) and adenosine triphosphate-binding cassette (ABC) proteins. While nutrient transport has been extensively studied in the placenta, the role of human fetal membranes (FM), which was recently reported to have a role in drug transport, in nutrient uptake remains unknown. OBJECTIVES This study determined nutrient transport expression in human FM and FM cells and compared expression with placental tissues and BeWo cells. METHODS RNA sequencing (RNA-Seq) of placental and FM tissues and cells was done. Genes of major solute transporter groups, such as SLC and ABC, were identified. Proteomic analysis of cell lysates was performed via nano-liquid chromatography-tandem mass spectrometry (nanoLC-MS/MS) to confirm expression at a protein level. RESULTS We determined that FM tissues and cells derived from the fetal membrane tissues express nutrient transporter genes, and their expression is similar to that seen in the placenta or BeWo cells. In particular, transporters involved in macronutrient and micronutrient transfer were identified in both placental and FM cells. Consistent with RNA-Seq findings, carbohydrate transporters (3), vitamin transport-related proteins (8), amino acid transporters (21), fatty acid transport-related proteins (9), cholesterol transport-related proteins (6) and nucleoside transporters (3) were identified in BeWo and FM cells, with both groups sharing similar nutrient transporter expression. CONCLUSION This study determined the expression of nutrient transporters in human FMs. This knowledge is the first step in improving our understanding of nutrient uptake kinetics during pregnancy. Functional studies are required to determine the properties of nutrient transporters in human FMs.
Collapse
Affiliation(s)
- Ryan C V Lintao
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX, 77555-1062, USA; College of Medicine, University of the Philippines Manila, 547 Pedro Gil St., Manila, 1000, Philippines
| | - Ananth Kumar Kammala
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX, 77555-1062, USA.
| | - Natasha Vora
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX, 77555-1062, USA; John Sealy School of Medicine, University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX, 77555-1062, USA
| | - Jerome L Yaklic
- Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX, 77555-1062, USA
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX, 77555-1062, USA.
| |
Collapse
|
14
|
Wilson RL, Lampe K, Gupta MK, Duvall CL, Jones HN. Nanoparticle-mediated transgene expression of insulin-like growth factor 1 in the growth restricted guinea pig placenta increases placenta nutrient transporter expression and fetal glucose concentrations. Mol Reprod Dev 2022; 89:540-553. [PMID: 36094907 PMCID: PMC10947605 DOI: 10.1002/mrd.23644] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/23/2022] [Accepted: 08/28/2022] [Indexed: 12/25/2022]
Abstract
Fetal growth restriction (FGR) significantly contributes to neonatal and perinatal morbidity and mortality. Currently, there are no effective treatment options for FGR during pregnancy. We have developed a nanoparticle gene therapy targeting the placenta to increase expression of human insulin-like growth factor 1 (hIGF1) to correct fetal growth trajectories. Using the maternal nutrient restriction guinea pig model of FGR, an ultrasound-guided, intraplacental injection of nonviral, polymer-based hIGF1 nanoparticle containing plasmid with the hIGF1 gene and placenta-specific Cyp19a1 promotor was administered at mid-pregnancy. Sustained hIGF1 expression was confirmed in the placenta 5 days after treatment. Whilst increased hIGF1 did not change fetal weight, circulating fetal glucose concentration were 33%-67% higher. This was associated with increased expression of glucose and amino acid transporters in the placenta. Additionally, hIGF1 nanoparticle treatment increased the fetal capillary volume density in the placenta, and reduced interhaemal distance between maternal and fetal circulation. Overall, our findings, that trophoblast-specific increased expression of hIGF1 results in changes to glucose transporter expression and increases fetal glucose concentrations within a short time period, highlights the translational potential this treatment could have in correcting impaired placental nutrient transport in human pregnancies complicated by FGR.
Collapse
Affiliation(s)
- Rebecca L. Wilson
- Center for Research in Perinatal Outcomes, University of Florida College of Medicine, Gainesville, Florida, USA
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Kristin Lampe
- Center for Fetal and Placental Research, Cincinnati Children’s Hospital and Medical Center, Cincinnati, Ohio, USA
| | - Mukesh K. Gupta
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Craig L. Duvall
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Helen N. Jones
- Center for Research in Perinatal Outcomes, University of Florida College of Medicine, Gainesville, Florida, USA
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida, USA
| |
Collapse
|
15
|
Rubin JM, Fowlkes JB, Pinter SZ, Treadwell MC, Kripfgans OD. Umbilical Vein Pulse Wave Spectral Analysis: A Possible Method for Placental Assessment Through Evaluation of Maternal and Fetal Flow Components. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2022; 41:2445-2457. [PMID: 34935157 PMCID: PMC10204125 DOI: 10.1002/jum.15927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 05/25/2023]
Abstract
OBJECTIVES Placental blood flow analysis is complicated by having both maternal and fetal flow components. Using the Fast Fourier Transform (FFT) of the umbilical venous pulse wave spectra (PW) envelope, we could simultaneously assess maternal/fetal blood flow in the placenta and investigate if normal and intrauterine growth restriction (IUGR)/pre-eclamptic pregnancies could be distinguished. METHODS This retrospective study included normal gestations (N = 11) and gestations with IUGR, pre-eclampsia, or both (N = 13). Umbilical vein PW were acquired and spectral envelopes were identified as a function of time and analyzed by FFT. Base-10 logarithms of the ratios of the maternal/fetal spectral peaks (LRSP) were compared in normal and IUGR/pre-eclamptic populations (two-tailed t-test). Body mass index (BMI), gestational age at scan time, placental position, and weight-normalized umbilical vein blood volume flow (two-tailed t-test, analysis of variance [ANOVA] analysis) were tested. P < .05 was considered significant. RESULTS The LRSP for normal and IUGR/pre-eclamptic pregnancies were 0.141 ± 0.180 and -0.072 ± 0.262 (mean ± standard deviation), respectively (P = .033). We detected differences between normal gestations and combinations of LRSP and weight-normalized umbilical venous blood flows. Placental effects based on LRSPs and blood flow may act synergistically in cases with both pre-eclampsia and IUGR (P = .014). No other significant associations were seen. CONCLUSIONS In this preliminary study, we showed that umbilical venous flow contains markers related to placental maternal/fetal blood flow, which can be used to assess IUGR and pre-eclampsia. When coupled with umbilical cord blood flow, this new marker may potentially identify the primary causes of the two conditions.
Collapse
Affiliation(s)
- Jonathan M Rubin
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - J Brian Fowlkes
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Stephen Z Pinter
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Marjorie C Treadwell
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
| | | |
Collapse
|
16
|
Gibson C, de Ruijter-Villani M, Stout TAE. Insulin-like growth factor system components expressed at the conceptus-maternal interface during the establishment of equine pregnancy. Front Vet Sci 2022; 9:912721. [PMID: 36176700 PMCID: PMC9513317 DOI: 10.3389/fvets.2022.912721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
In many species, the insulin-like growth factors (IGF1 and IGF2), their receptors and IGF binding proteins play important roles in preparing the endometrium for implantation, and regulating conceptus growth and development. To determine whether the IGF system may contribute to conceptus-maternal interaction during equine pre-implantation development, we evaluated mRNA expression for IGF system components in conceptuses, and endometrium recovered from pregnant and cycling mares, on days 7, 14, 21 and 28 after ovulation. We also investigated expression of IGF1, IGF2 and their receptors 6 and 11 days after transfer of day 8 embryos to synchronous (day 8) or asynchronous (day 3) recipient mares. Expression of IGF1 and IGF2, IGF1R, IGF2R, INSR and IGFBPs 1, 2, 4 and 5 was evident in endometrium and conceptus membranes during days 7–28. Endometrial IGF2, INSR, IGFBP1 and IGFBP2 expression increased between days 7 and 28 of pregnancy. In conceptus membranes, expression of all IGF system components increased with developmental stage. Immunohistochemistry revealed strong expression of IGF1, IGF2 and IGF1R in both endometrium and conceptus membranes, whereas INSR was highly expressed in endometrium but barely detectable in the conceptus. Finally, a negatively asynchronous uterine environment retarded IGF1, IGF2 and INSR expression in the conceptus, whereas in the endometrium only INSR expression was altered by asynchrony. The presence of IGFs, their receptors and IGFBPs in the endometrium and conceptus during early equine pregnancy, and down-regulation in the conceptus following asynchronous embryo transfer, suggest a role in conceptus-maternal communication during the preparation for implantation.
Collapse
|
17
|
Garcia-Santillan JA, Lazo-de-la-Vega-Monroy ML, Rodriguez-Saldaña GC, Solis-Barbosa MA, Corona-Figueroa MA, Gonzalez-Dominguez MI, Gomez-Zapata HM, Malacara JM, Barbosa-Sabanero G. Placental Nutrient Transporters and Maternal Fatty Acids in SGA, AGA, and LGA Newborns From Mothers With and Without Obesity. Front Cell Dev Biol 2022; 10:822527. [PMID: 35399516 PMCID: PMC8990844 DOI: 10.3389/fcell.2022.822527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/25/2022] [Indexed: 12/01/2022] Open
Abstract
Adverse environmental factors in early life result in fetal metabolic programming and increased risk of adult diseases. Birth weight is an indirect marker of the intrauterine environment, modulated by nutrient availability and placental transport capacity. However, studies of placental transporters in idiopathic birth weight alterations and in maternal obesity in relation to neonatal metabolic outcomes are scarce. We aimed to analyze the placental nutrient transporter protein expression in small (SGA, n = 14), adequate (AGA, n = 18), and large (LGA n = 10) gestational age term for newborns from healthy or obese mothers (LGA-OB, n = 9) and their association with maternal fatty acids, metabolic status, placental triglycerides, and neonatal outcomes. The transporter expression was determined by Western blot. The fatty acid profile was evaluated by gas chromatography, and placental triglycerides were quantified by an enzymatic colorimetric method. GLUT1 was higher in LGA and lower in SGA and positively correlated with maternal HbA1c and placental weight (PW). SNAT2 was lower in SGA, while SNAT4 was lower in LGA-OB. FATP1 was lower in SGA and higher in LGA. SNAT4 correlated negatively and FATP1 correlated positively with the PW and birth anthropometry (BA). Placental triglycerides were higher in LGA and LGA-OB and correlated with pregestational BMI, maternal insulin, and BA. Maternal docosahexaenoic acid (DHA) was higher in SGA, specifically in male placentas, correlating negatively with maternal triglycerides, PW, cord glucose, and abdominal perimeter. Palmitic acid (PA) correlated positively with FATP4 and cord insulin, linoleic acid correlated negatively with PA and maternal cholesterol, and arachidonic acid correlated inversely with maternal TG and directly with FATP4. Our study highlights the importance of placental programming in birth weight both in healthy and obese pregnancies.
Collapse
Affiliation(s)
| | | | | | - Miguel-Angel Solis-Barbosa
- Medical Sciences Department, Health Sciences Division, University of Guanajuato, Campus Leon, Guanajuato, Mexico
| | | | | | | | - Juan-Manuel Malacara
- Medical Sciences Department, Health Sciences Division, University of Guanajuato, Campus Leon, Guanajuato, Mexico
| | - Gloria Barbosa-Sabanero
- Medical Sciences Department, Health Sciences Division, University of Guanajuato, Campus Leon, Guanajuato, Mexico
- *Correspondence: Gloria Barbosa-Sabanero,
| |
Collapse
|
18
|
Cui C, Wu C, Wang J, Zheng X, Ma Z, Zhu P, Guan W, Zhang S, Chen F. Leucine supplementation during late gestation globally alters placental metabolism and nutrient transport via modulation of the PI3K/AKT/mTOR signaling pathway in sows. Food Funct 2022; 13:2083-2097. [PMID: 35107470 DOI: 10.1039/d1fo04082k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In a previously published study we reported that sow dietary leucine supplementation during late pregnancy significantly improved newborn piglet birth weight by stimulating protein synthesis in the longissimus dorsi muscle. However, there is still limited knowledge as to whether leucine can exert its effects on the placenta, one of the most important temporal organs during pregnancy, to promote maternal-fetal nutrient supply and thus contribute to fetal intrauterine development. Therefore, we tested this hypothesis in the present study. In total, 150 sows at day 90 of gestation were divided into three groups and fed with either a control diet (CON), CON + 0.4% Leu or CON + 0.8% Leu, respectively, until parturition. Placental metabolomics, full spectrum amino acids and nutrient transporters were systematically analyzed after sample collection. The results indicated that Leu supplementation led to an altered placental metabolism with an increased number of metabolites related to glycolysis and the oxidation of fatty acids, as well as elevated levels of amino acid accumulation in the placenta. In addition, nutrient transporters of amino acids, glucose and fatty acids in the placenta were globally up-regulated and several enzymes related to energy metabolism, including hexokinase, succinate dehydrogenase, lactated hydrogenase, glycogen phosphorylase and hydroxyacyl-CoA-dehydrogenase, were also significantly increased with no change observed in the antioxidative status of those groups with Leu supplementation. Furthermore, the phosphorylation of PI3K, Akt, and mTOR was enhanced in the placenta of sows undergoing Leu treatment. Collectively, we concluded that supplementing the diets of sows with Leu during late gestation globally altered placental metabolism and promoted maternal-fetus nutrient transport (amino acids, glucose, and fatty acids) via modulation of the PI3K/Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Chang Cui
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Caichi Wu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Jun Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Xiaoyu Zheng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Ziwei Ma
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Pengwei Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Wutai Guan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China. .,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Shihai Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China. .,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Fang Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China. .,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
19
|
The angiogenic properties of human amniotic membrane stem cells are enhanced in gestational diabetes and associate with fetal adiposity. Stem Cell Res Ther 2021; 12:608. [PMID: 34930438 PMCID: PMC8691045 DOI: 10.1186/s13287-021-02678-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 12/09/2021] [Indexed: 11/29/2022] Open
Abstract
Background An environment of gestational diabetes mellitus (GDM) can modify the phenotype of stem cell populations differentially according to their placental localization, which can be useful to study the consequences for the fetus. We sought to explore the effect of intrauterine GDM exposure on the angiogenic properties of human amniotic membrane stem cells (hAMSCs). Methods We comprehensively characterized the angiogenic phenotype of hAMSCs isolated from 14 patients with GDM and 14 controls with normal glucose tolerance (NGT). Maternal and fetal parameters were also recorded. Hyperglycemia, hyperinsulinemia and palmitic acid were used to in vitro mimic a GDM-like pathology. Pharmacological and genetic inhibition of protein function was used to investigate the molecular pathways underlying the angiogenic properties of hAMSCs isolated from women with GDM. Results Capillary tube formation assays revealed that GDM-hAMSCs produced a significantly higher number of nodes (P = 0.004), junctions (P = 0.002) and meshes (P < 0.001) than equivalent NGT-hAMSCs, concomitant with an increase in the gene/protein expression of FGFR2, TGFBR1, SERPINE1 and VEGFA. These latter changes were recapitulated in NGT-hAMSCs exposed to GDM-like conditions. Inhibition of the protein product of SERPINE1 (plasminogen activator inhibitor 1, PAI-1) suppressed the angiogenic properties of GDM-hAMSCs. Correlation analyses revealed that cord blood insulin levels in offspring strongly correlated with the number of nodes (r = 0.860; P = 0.001), junctions (r = 0.853; P = 0.002) and meshes (r = 0.816; P = 0.004) in tube formation assays. Finally, FGFR2 levels correlated positively with placental weight (r = 0.586; P = 0.028) and neonatal adiposity (r = 0.496; P = 0.014). Conclusions GDM exposure contributes to the angiogenic abilities of hAMSCs, which are further related to increased cord blood insulin and fetal adiposity. PAI-1 emerges as a potential key player of GDM-induced angiogenesis.
Collapse
|
20
|
Placental and fetal characteristics of the Ohia mouse line recapitulate outcomes in human hypoplastic left heart syndrome. Placenta 2021; 117:131-138. [PMID: 34890862 DOI: 10.1016/j.placenta.2021.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 11/01/2021] [Accepted: 12/01/2021] [Indexed: 11/23/2022]
Abstract
Congenital heart defects (CHDs) are the most common birth defect worldwide. The morbidity and mortality associated with these defects is compounded by increased frequency of fetal growth abnormalities. In the Ohia mouse model of hypoplastic left heart syndrome (HLHS), the double homozygous genotype is embryonically lethal at mid-pregnancy; a time in which optimal establishment of the placenta is crucial to fetal survival. We aimed to characterize placental and fetal growth and development in the double heterozygous genotype (Sap130m/+Pcdha9m/+). There was a shift in frequency of fetuses with reduced weight near term in the Sap130m/+Pcdha9m/+ fetuses compared to wildtype, driven by lower fetal weight in male fetuses compared to female. This shift in fetal weight distribution in the Sap130m/+Pcdha9m/+ fetuses was associated with reduced labyrinth region area (P < 0.001) and reduced fetal capillary density (P < 0.001) in the placentas, the latter being significantly lower in male Sap130m/+Pcdha9m/+ placentas compared to female. mRNA expression of several nutrient transporters was also lower in placentas from males compared to placentas from females, irrespective of genotype. Overall, this data shows that whilst the double heterozygous fetuses do not carry heart defects, placental development and function is impaired, particularly in males. Such differences are similar to findings in studies of human placentas and highlights the importance of this mouse model in continuing to understand the developmental links and disruptions to the heart-placenta axis.
Collapse
|
21
|
Longitudinal Plasma Metabolomics Profile in Pregnancy-A Study in an Ethnically Diverse U.S. Pregnancy Cohort. Nutrients 2021; 13:nu13093080. [PMID: 34578958 PMCID: PMC8471130 DOI: 10.3390/nu13093080] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/30/2021] [Accepted: 08/30/2021] [Indexed: 12/30/2022] Open
Abstract
Amino acids, fatty acids, and acylcarnitine metabolites play a pivotal role in maternal and fetal health, but profiles of these metabolites over pregnancy are not completely established. We described longitudinal trajectories of targeted amino acids, fatty acids, and acylcarnitines in pregnancy. We quantified 102 metabolites and combinations (37 fatty acids, 37 amino acids, and 28 acylcarnitines) in plasma samples from pregnant women in the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) Fetal Growth Studies—Singletons cohort (n = 214 women at 10–14 and 15–26 weeks, 107 at 26–31 weeks, and 103 at 33–39 weeks). We used linear mixed models to estimate metabolite trajectories and examined variation by body mass index (BMI), race/ethnicity, and fetal sex. After excluding largely undetected metabolites, we analyzed 77 metabolites and combinations. Levels of 13 of 15 acylcarnitines, 7 of 25 amino acids, and 18 of 37 fatty acids significantly declined over gestation, while 8 of 25 amino acids and 10 of 37 fatty acids significantly increased. Several trajectories appeared to differ by BMI, race/ethnicity, and fetal sex although no tests for interactions remained significant after multiple testing correction. Future studies merit longitudinal measurements to capture metabolite changes in pregnancy, and larger samples to examine modifying effects of maternal and fetal characteristics.
Collapse
|
22
|
Zhang Y, Mustieles V, Williams PL, Yland J, Souter I, Braun JM, Calafat AM, Hauser R, Messerlian C. Prenatal urinary concentrations of phenols and risk of preterm birth: exploring windows of vulnerability. Fertil Steril 2021; 116:820-832. [PMID: 34238571 DOI: 10.1016/j.fertnstert.2021.03.053] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 03/12/2021] [Accepted: 03/31/2021] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To explore windows of vulnerability to prenatal urinary phenol concentrations and preterm birth. DESIGN Prospective cohort. SETTING A large fertility center in Boston, Massachusetts. PATIENT(S) A total of 386 mothers who sought fertility treatment and gave birth to a singleton between 2005 and 2018. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Singleton live birth with gestational age <37 completed weeks. RESULT(S) Compared with women with non-preterm births, urinary bisphenol A (BPA) concentrations were higher across gestation among women with preterm births, particularly during mid-to-late pregnancy and among those with female infants. Second trimester BPA concentrations were associated with preterm birth (Risk Ratio [RR] 1.24; 95%CI: 0.92, 1.69), which was primarily driven by female (RR 1.40; 95%CI: 1.04, 1.89) and not male (RR 0.85; 95%CI 0.50, 1.46) infants. First trimester paraben concentrations were also associated with preterm birth (RR 1.17; 95%CI: 0.94, 1.46) and similarly the association was only observed for female (RR 1.46; 95% CI: 1.10, 1.94) and not male infants (RR 0.94; 95%CIC: 0.72, 1.23). First trimester urinary bisphenol S concentrations showed a suggested risk of preterm birth (RR 1.25; 95%CI: 0.82, 1.89), although the small case numbers precluded sex-specific examination. CONCLUSION(S) We found preliminary evidence of associations between mid-to-late pregnancy BPA and early pregnancy paraben concentrations with preterm birth among those with female infants only. Preterm birth risk may be compound, sex, and window specific. Given the limited sample size of this cohort, results should be confirmed in larger studies, including fertile populations.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Vicente Mustieles
- Center for Biomedical Research (CIBM), University of Granada, Instituto de Investigación Biosanitaria (IBS), and Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Granada, Spain
| | - Paige L Williams
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts; Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Jennifer Yland
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Irene Souter
- Massachusetts General Hospital Fertility Center, Harvard Medical School, Boston, Massachusetts
| | - Joseph M Braun
- Department of Epidemiology, Brown University School of Public Health, Providence, Rhode Island
| | - Antonia M Calafat
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Russ Hauser
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts; Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Carmen Messerlian
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts; Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts; Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, Massachusetts.
| |
Collapse
|
23
|
Joshi NP, Mane AR, Sahay AS, Sundrani DP, Joshi SR, Yajnik CS. Role of Placental Glucose Transporters in Determining Fetal Growth. Reprod Sci 2021; 29:2744-2759. [PMID: 34339038 DOI: 10.1007/s43032-021-00699-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 07/16/2021] [Indexed: 11/29/2022]
Abstract
Maternal nutrient availability and its transport through the placenta are crucial for fetal development. Nutrients are transported to the fetus via specific transporters present on the microvillous (MVM) and basal membrane (BM) of the placenta. Glucose is the most abundant nutrient transferred to the fetus and plays a key role in the fetal growth and development. The transfer of glucose across the human placenta is directly proportional to maternal glucose concentrations, and is mediated by glucose transporter family proteins (GLUTs). Maternal glucose concentration influences expression and activity of GLUTs in the MVM (glucose uptake) and BM (glucose delivery). Alteration in the number and function of these transporters may affect the growth and body composition of the fetus. The thin-fat phenotype of the Indian baby (low ponderal index, high adiposity) is proposed as a harbinger of future metabolic risk. We propose that placental function mediated through nutrient transporters contributes to the phenotype of the baby, specifically that glucose transporters will influence neonatal fat. This review discusses the role of various glucose transporters in the placenta in determining fetal growth and body composition, in light of the above hypothesis.
Collapse
Affiliation(s)
- Nikita P Joshi
- Mother and Child Health, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune-Satara Road, Pune, 411043, India
| | - Aditi R Mane
- Mother and Child Health, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune-Satara Road, Pune, 411043, India
| | - Akriti S Sahay
- Mother and Child Health, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune-Satara Road, Pune, 411043, India
| | - Deepali P Sundrani
- Mother and Child Health, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune-Satara Road, Pune, 411043, India
| | - Sadhana R Joshi
- Mother and Child Health, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune-Satara Road, Pune, 411043, India.
| | | |
Collapse
|
24
|
Braz CU, Rowan TN, Schnabel RD, Decker JE. Genome-wide association analyses identify genotype-by-environment interactions of growth traits in Simmental cattle. Sci Rep 2021; 11:13335. [PMID: 34172761 PMCID: PMC8233360 DOI: 10.1038/s41598-021-92455-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 06/07/2021] [Indexed: 02/06/2023] Open
Abstract
Understanding genotype-by-environment interactions (G × E) is crucial to understand environmental adaptation in mammals and improve the sustainability of agricultural production. Here, we present an extensive study investigating the interaction of genome-wide SNP markers with a vast assortment of environmental variables and searching for SNPs controlling phenotypic variance (vQTL) using a large beef cattle dataset. We showed that G × E contribute 10.1%, 3.8%, and 2.8% of the phenotypic variance of birth weight, weaning weight, and yearling weight, respectively. G × E genome-wide association analysis (GWAA) detected a large number of G × E loci affecting growth traits, which the traditional GWAA did not detect, showing that functional loci may have non-additive genetic effects regardless of differences in genotypic means. Further, variance-heterogeneity GWAA detected loci enriched with G × E effects without requiring prior knowledge of the interacting environmental factors. Functional annotation and pathway analysis of G × E genes revealed biological mechanisms by which cattle respond to changes in their environment, such as neurotransmitter activity, hypoxia-induced processes, keratinization, hormone, thermogenic and immune pathways. We unraveled the relevance and complexity of the genetic basis of G × E underlying growth traits, providing new insights into how different environmental conditions interact with specific genes influencing adaptation and productivity in beef cattle and potentially across mammals.
Collapse
Affiliation(s)
- Camila U Braz
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Troy N Rowan
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA
- Genetics Area Program, University of Missouri, Columbia, MO, 65211, USA
| | - Robert D Schnabel
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA
- Genetics Area Program, University of Missouri, Columbia, MO, 65211, USA
- Informatics Institute, University of Missouri, Columbia, MO, 65211, USA
| | - Jared E Decker
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA.
- Genetics Area Program, University of Missouri, Columbia, MO, 65211, USA.
- Informatics Institute, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
25
|
Adibi JJ, Layden AJ, Birru RL, Miragaia A, Xun X, Smith MC, Yin Q, Millenson ME, O’Connor TG, Barrett ES, Snyder NW, Peddada S, Mitchell RT. First trimester mechanisms of gestational sac placental and foetal teratogenicity: a framework for birth cohort studies. Hum Reprod Update 2021; 27:747-770. [PMID: 33675653 PMCID: PMC8222765 DOI: 10.1093/humupd/dmaa063] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/18/2020] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The function of the gestational sac (GS) and the placenta in the closely related processes of embryogenesis and teratogenicity in the first trimester has been minimally described. The prevailing assumption is that direct teratogenic effects are mediated by the critical extraembryonic organ, the placenta, which either blocks or transfers exposures to the foetus. Placental transfer is a dominant mechanism, but there are other paradigms by which the placenta can mediate teratogenic effects. Knowledge of these paradigms and first trimester human developmental biology can be useful to the epidemiologist in the conduct of biomarker-based studies of both maternal and child health. OBJECTIVE AND RATIONALE Our aim is to provide a causal framework for modelling the teratogenic effects of first trimester exposures on child health outcomes mediated by the GS and placenta using biomarker data collected in the first trimester. We initially present first trimester human developmental biology for the sake of informing and strengthening epidemiologic approaches. We then propose analytic approaches of modelling placental mechanisms by way of causal diagrams using classical non-embryolethal teratogens (diethylstilboestrol [DES], folic acid deficiency and cytomegalovirus [CMV]) as illustrative examples. We extend this framework to two chronic exposures of particular current interest, phthalates and maternal adiposity. SEARCH METHODS Information on teratogens was identified by a non-systematic, narrative review. For each teratogen, we included papers that answered the five following questions: (i) why were these exposures declared teratogens? (ii) is there a consensus on biologic mechanism? (iii) is there reported evidence of a placental mechanism? (iv) can we construct a theoretical model of a placental mechanism? and (v) can this knowledge inform future work on measurement and modelling of placental-foetal teratogenesis? We prioritized literature specific to human development, the organogenesis window in the first trimester and non-embryolethal mechanisms. OUTCOMES As a result of our review of the literature on five exposures considered harmful in the first trimester, we developed four analytic strategies to address first trimester placental mechanisms in birth cohort studies: placental transfer and direct effects on the foetus (DES and maternal adiposity), indirect effects through targeted placental molecular pathways (DES and phthalates), pre-placental effects through disruptions in embryonic and extraembryonic tissue layer differentiation (folic acid deficiency), and multi-step mechanisms that involve maternal, placental and foetal immune function and inflammation (DES and CMV). WIDER IMPLICATIONS The significance of this review is to offer a causal approach to classify the large number of potentially harmful exposures in pregnancy when the exposure occurs in the first trimester. Our review will facilitate future research by advancing knowledge of the first trimester mechanisms necessary for researchers to effectively associate environmental exposures with child health outcomes.
Collapse
Affiliation(s)
- Jennifer J Adibi
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alexander J Layden
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rahel L Birru
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alexandra Miragaia
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xiaoshuang Xun
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Megan C Smith
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Qing Yin
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Thomas G O’Connor
- Department of Psychiatry, University of Rochester Medical Center, Rochester, NY, USA
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY, USA
| | - Emily S Barrett
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA
| | - Nathaniel W Snyder
- Department of Microbiology and Immunology, Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Shyamal Peddada
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rod T Mitchell
- MRC Centre for Reproductive Health, The University of Edinburgh, Queens Medical Research Institute, Edinburgh, UK
| |
Collapse
|
26
|
Wilson RL, Jones HN. Targeting the Dysfunctional Placenta to Improve Pregnancy Outcomes Based on Lessons Learned in Cancer. Clin Ther 2021; 43:246-264. [PMID: 33446335 PMCID: PMC11917529 DOI: 10.1016/j.clinthera.2020.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/07/2020] [Accepted: 12/14/2020] [Indexed: 02/08/2023]
Abstract
In recent decades, our understanding of the disrupted mechanisms that contribute to major obstetrical diseases, including preeclampsia, fetal growth restriction, preterm birth, and gestational diabetes, has increased exponentially. Common to many of these obstetric diseases is placental maldevelopment and dysfunction; the placenta is a significant component of the maternal-fetal interface involved in coordinating, facilitating, and regulating maternal and fetal nutrient, oxygen and waste exchange, and hormone and cytokine production. Despite the advances in our understanding of placental development and function, there are currently no treatments for placental maldevelopment and dysfunction. However, given the transient nature and accessibility from the maternal circulation, the placenta offers a unique opportunity to develop targeted therapeutics for routine obstetric practices. Furthermore, given the similar developmental paradigms between the placenta and cancer, there is an opportunity to appropriate current knowledge from advances in targeted therapeutics in cancer treatments. In this review, we highlight the similarities between early placental development and cancer and introduce a number of targeted therapies currently being explored in cancer and pregnancy. We also propose a number of new effectors currently being targeted in cancer research that have the potential to be targeted in the development of treatments for pregnancy complications. Finally, we describe a method for targeting the placenta using nonviral polymers that are capable of delivering plasmids, small interfering RNA, and other effector nucleic acids, which could ultimately improve fetal and maternal outcomes from complicated pregnancies.
Collapse
Affiliation(s)
- Rebecca L Wilson
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, USA.
| | - Helen N Jones
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
27
|
Rivera-Núñez Z, Ashrap P, Barrett ES, Watkins DJ, Cathey AL, Vélez-Vega CM, Rosario Z, Cordero JF, Alshawabkeh A, Meeker JD. Association of biomarkers of exposure to metals and metalloids with maternal hormones in pregnant women from Puerto Rico. ENVIRONMENT INTERNATIONAL 2021; 147:106310. [PMID: 33321388 PMCID: PMC7856269 DOI: 10.1016/j.envint.2020.106310] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/23/2020] [Accepted: 11/26/2020] [Indexed: 05/03/2023]
Abstract
BACKGROUND Metal(loid)s have been associated to adverse birth outcomes in experimental and epidemiological studies, but the underlying mechanism(s) are not well understood. Endocrine disruption may be a mechanism by which the metal(loid)s impact birth outcomes. METHODS Pregnant women were recruited through the Puerto Rico Testsite for Exploring Contamination Threats (PROTECT). Urine, blood, demographic and pregnancy-related data were collected at recruitment and subsequent visits. Sixteen metal(loid)s were analyzed in urine and blood samples, while nine maternal hormones (corticotropin-releasing hormone (CRH), sex-hormone binding globulin (SHBG), estriol (E3), progesterone, testosterone, thyroid-stimulating hormone (TSH), total triiodothyronine (T3), total thyroxine (T4), and free thyroxine (fT4)) were measured in serum samples from 815 singleton pregnancies. Linear mixed models with random intercepts were used to examine associations between metal(loid)s in blood and urine with hormone concentrations. RESULTS Arsenic blood concentrations were significantly associated with increased levels in CRH (%Δ: 23.0, 95%CI: 8.4-39.6) and decreased levels in testosterone (%Δ: -16.3, 95%CI: -26.2--5.1). Cobalt, manganese, and lead blood concentrations were associated with small increases in SHBG (%Δ range: 3.3-4.2), E3 (%Δ range: 3.9-8.7) and progesterone (%Δ range: 4.1-6.3) levels, respectively. Nickel blood concentration was inversely associated with testosterone levels (%Δ -13.3, 95%CI: -18.7--7.6). Significant interactions were detected for the association between nickel and study visit in relation to CRH (p < 0.02) and testosterone levels (p < 0.01). CONCLUSION Our analysis suggests that metal(loid)s may act as endocrine disruptors by altering prenatal hormone levels. This disruption may depend on specific windows of exposure during pregnancy. Additionally, some essential metal(loid)s such as managense and cobalt may be contributors to adverse maternal and fetal outcomes. The study of metal(loid)s as endocrine disruptors is in the early stages of epidemiological research and future studies are needed to further investigate these associations.
Collapse
Affiliation(s)
- Zorimar Rivera-Núñez
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health and Rutgers Environmental and Occupational Sciences Institute, Rutgers University, Piscataway, NJ, USA
| | - Pahriya Ashrap
- Department of Environmental Health Sciences, School of Public Health, University of Michigan Ann Arbor, MI, USA
| | - Emily S Barrett
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health and Rutgers Environmental and Occupational Sciences Institute, Rutgers University, Piscataway, NJ, USA
| | - Deborah J Watkins
- Department of Environmental Health Sciences, School of Public Health, University of Michigan Ann Arbor, MI, USA
| | - Amber L Cathey
- Department of Environmental Health Sciences, School of Public Health, University of Michigan Ann Arbor, MI, USA
| | - Carmen M Vélez-Vega
- Graduate Program of Public Health, University of Puerto Rico, UPR Medical Sciences Campus, San Juan, PR, USA
| | - Zaira Rosario
- Department of Epidemiology and Biostatistics, University of Georgia, Athens, GA, USA
| | - José F Cordero
- Department of Epidemiology and Biostatistics, University of Georgia, Athens, GA, USA
| | | | - John D Meeker
- Department of Environmental Health Sciences, School of Public Health, University of Michigan Ann Arbor, MI, USA.
| |
Collapse
|
28
|
Yang S, Chen Z, Cheng Y, Liu T, Pu Y, Liang G. Environmental toxicology wars: Organ-on-a-chip for assessing the toxicity of environmental pollutants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115861. [PMID: 33120150 DOI: 10.1016/j.envpol.2020.115861] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 05/07/2023]
Abstract
Environmental pollution is a widespread problem, which has seriously threatened human health and led to an increase of human diseases. Therefore, it is critical to evaluate environmental pollutants quickly and efficiently. Because of obvious inter-species differences between animals and humans, and lack of physiologically-relevant microenvironment, animal models and in vitro two-dimensional (2D) models can not accurately describe toxicological effects and predicting actual in vivo responses. To make up the limitations of conventional environmental toxicology screening, organ-on-a-chip (OOC) systems are increasingly developing. OOC systems can provide a well-organized architecture with comparable to the complex microenvironment in vivo and generate realistic responses to environmental pollutants. The feasibility, adjustability and reliability of OCC systems make it possible to offer new opportunities for environmental pollutants screening, which can study their metabolism, collective response, and fate in vivo. Further progress can address the challenges to make OCC systems better investigate and evaluate environmental pollutants with high predictive power.
Collapse
Affiliation(s)
- Sheng Yang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, PR China, 210009.
| | - Zaozao Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, PR China, 210096.
| | - Yanping Cheng
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, PR China, 210009.
| | - Tong Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, PR China, 210009.
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, PR China, 210009.
| | - Geyu Liang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, PR China, 210009.
| |
Collapse
|
29
|
Differential Effects of Maternal High Fat Diet During Pregnancy and Lactation on Taste Preferences in Rats. Nutrients 2020; 12:nu12113553. [PMID: 33233529 PMCID: PMC7699468 DOI: 10.3390/nu12113553] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/25/2022] Open
Abstract
Maternal intake of high fat diet (HFD) increases risk for obesity and metabolic disorders in offspring. Developmental programming of taste preference is a potential mechanism by which this occurs. Whether maternal HFD during pregnancy, lactation, or both, imposes greater risks for altered taste preferences in adult offspring remains a question, and in turn, was investigated in the present study. Four groups of offspring were generated based on maternal HFD access: (1) HFD during pregnancy and lactation (HFD); (2) HFD during pregnancy (HFD-pregnancy); (3) HFD during lactation (HFD-lactation); and (4) normal diet (ND) during pregnancy and lactation (ND). Adult offspring 70 days of age underwent sensory and motivational taste preference testing with various concentrations of sucrose and Intralipid solutions using brief-access automated gustometers (Davis-rigs) and 24 h two-bottle choice tests, respectively. To control for post-gestational diet effects, offspring in all experimental groups were weaned on ND, and did not differ in body weight or glucose tolerance at the time of testing. Offspring exposed to maternal HFD showed increased sensory taste responses for 0.3, 0.6, 1.2 M sucrose solutions in HFD and 0.6 M in HFD-pregnancy groups, compared to animals exposed to ND. Similar effects were noted for lower concentrations of Intralipid in HFD (0.05, 0.10%) and HFD-pregnancy (0.05, 0.10, 0.5%) groups. The HFD-lactation group showed an opposite, diminished responsiveness for sucrose at the highest concentrations (0.9, 1.2, 1.5 M), but not for Intralipid, compared to ND animals. Extended-access two-bottle tests did not reveal major difference across the groups. Our study shows that maternal HFD during pregnancy and lactation has markedly different effects on preferences for palatable sweet and fatty solutions in adult offspring and suggests that such developmental programing may primarily affect gustatory mechanisms. Future studies are warranted for determining the impact of taste changes on development of obesity and metabolic disorders in a “real” food environment with food choices available, as well as to identify specific underlying mechanisms.
Collapse
|
30
|
Zhang S, Wu Z, Heng J, Tian M, Chen J, Chen F, Guan W. L-carnitine increases cell proliferation and amino acid transporter expression via the activation of insulin-like growth factor I signaling pathway in rat trophoblast cells. Food Sci Nutr 2020; 8:3298-3307. [PMID: 32724594 PMCID: PMC7382193 DOI: 10.1002/fsn3.1607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 04/04/2020] [Accepted: 04/06/2020] [Indexed: 11/24/2022] Open
Abstract
Early embryo implantation and development is primarily determined by the homeostasis between cellular apoptosis and proliferation as well as placental nutrient transporters. Recent studies showed that L-carnitine enhances female reproductive performance. However, the potential function of L-carnitine on placenta is largely unknown. In our study, primary rat trophoblast cells were separated and cultured for 12 hr in medium containing various concentrations of L-carnitine (0, 1, 10, and 50 mM). Placenta trophoblast cells treated with 50 mM L-carnitine increased the proportion of cells in S phase of the cell cycle (p < .05). In addition, live cell percentage was increased when treated with either 10 mM or 50 mM L-carnitine, which was accompanied with decreased necrotic cells, late apoptotic cells, and early apoptotic cells (p < .05). Compared with the control treatment, the mRNA expression of insulin-like growth factor I (IGF-1) and insulin-like growth factor I receptor (IGF-1R) was higher in rat placenta trophoblasts treated with either 10 mM or 50 mM L-carnitine (p < .05). Similarly, sodium-dependent neutral amino acid transporter (SNAT)-1 and SNAT2 were up-regulated in both mRNA and protein levels when trophoblast cells were treated with 50 mM L-carnitine (p < .05). Inhibiting downstream targets (Akt or ERK signaling pathways) of IGF-1 signaling pathway partially blocked the effect the L-carnitine-induced increase in protein abundances of SNAT1 and SNAT2. Collectively, our data showed protective role of L-carnitine on placenta trophoblast cells through the involvement of IGF-1 signaling pathway.
Collapse
Affiliation(s)
- Shihai Zhang
- Guangdong Province Key Laboratory of Animal Nutrition ControlCollege of Animal ScienceSouth China Agricultural UniversityGuangzhouChina
- College of Animal Science and National Engineering Research Center for Breeding Swine IndustrySouth China Agricultural UniversityGuangzhouChina
| | - Zhihui Wu
- Guangdong Province Key Laboratory of Animal Nutrition ControlCollege of Animal ScienceSouth China Agricultural UniversityGuangzhouChina
- College of Animal Science and National Engineering Research Center for Breeding Swine IndustrySouth China Agricultural UniversityGuangzhouChina
| | - Jinghui Heng
- Guangdong Province Key Laboratory of Animal Nutrition ControlCollege of Animal ScienceSouth China Agricultural UniversityGuangzhouChina
- College of Animal Science and National Engineering Research Center for Breeding Swine IndustrySouth China Agricultural UniversityGuangzhouChina
| | - Min Tian
- Guangdong Province Key Laboratory of Animal Nutrition ControlCollege of Animal ScienceSouth China Agricultural UniversityGuangzhouChina
- College of Animal Science and National Engineering Research Center for Breeding Swine IndustrySouth China Agricultural UniversityGuangzhouChina
| | - Jiaming Chen
- Guangdong Province Key Laboratory of Animal Nutrition ControlCollege of Animal ScienceSouth China Agricultural UniversityGuangzhouChina
- College of Animal Science and National Engineering Research Center for Breeding Swine IndustrySouth China Agricultural UniversityGuangzhouChina
| | - Fang Chen
- Guangdong Province Key Laboratory of Animal Nutrition ControlCollege of Animal ScienceSouth China Agricultural UniversityGuangzhouChina
- College of Animal Science and National Engineering Research Center for Breeding Swine IndustrySouth China Agricultural UniversityGuangzhouChina
| | - Wutai Guan
- Guangdong Province Key Laboratory of Animal Nutrition ControlCollege of Animal ScienceSouth China Agricultural UniversityGuangzhouChina
- College of Animal Science and National Engineering Research Center for Breeding Swine IndustrySouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
31
|
Sun C, Groom KM, Oyston C, Chamley LW, Clark AR, James JL. The placenta in fetal growth restriction: What is going wrong? Placenta 2020; 96:10-18. [PMID: 32421528 DOI: 10.1016/j.placenta.2020.05.003] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/17/2020] [Accepted: 05/07/2020] [Indexed: 02/06/2023]
Abstract
The placenta is essential for the efficient delivery of nutrients and oxygen from mother to fetus to maintain normal fetal growth. Dysfunctional placental development underpins many pregnancy complications, including fetal growth restriction (FGR) a condition in which the fetus does not reach its growth potential. The FGR placenta is smaller than normal placentae throughout gestation and displays maldevelopment of both the placental villi and the fetal vasculature within these villi. Specialized epithelial cells called trophoblasts exhibit abnormal function and development in FGR placentae. This includes an altered balance between proliferation and apoptotic death, premature cellular senescence, and reduced colonisation of the maternal decidual tissue. Thus, the placenta undergoes aberrant changes at the macroscopic to cellular level in FGR, which can limit exchange capacity and downstream fetal growth. This review aims to compile stereological, in vitro, and imaging data to create a holistic overview of the FGR placenta and its pathophysiology, with a focus on the contribution of trophoblasts.
Collapse
Affiliation(s)
- Cherry Sun
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, The University of Auckland, 85 Park Road, Grafton, Auckland, 1023, New Zealand.
| | - Katie M Groom
- Liggins Institute, The University of Auckland, 85 Park Road, Grafton, Auckland, 1023, New Zealand
| | - Charlotte Oyston
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, The University of Auckland, 85 Park Road, Grafton, Auckland, 1023, New Zealand
| | - Lawrence W Chamley
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, The University of Auckland, 85 Park Road, Grafton, Auckland, 1023, New Zealand
| | - Alys R Clark
- Auckland Bioengineering Institute, The University of Auckland, Auckland Bioengineering, House, Level 6/70 Symonds Street, Grafton, Auckland, 1010, New Zealand
| | - Joanna L James
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, The University of Auckland, 85 Park Road, Grafton, Auckland, 1023, New Zealand
| |
Collapse
|
32
|
Adaptive responses to maternal nutrient restriction alter placental transport in ewes. Placenta 2020; 96:1-9. [PMID: 32421527 DOI: 10.1016/j.placenta.2020.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/21/2020] [Accepted: 05/04/2020] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Maternal nutrient partitioning, uteroplacental blood flow, transporter activity, and fetoplacental metabolism mediate nutrient delivery to the fetus. Inadequate availability or delivery of nutrients results in intrauterine growth restriction (IUGR), a leading cause of neonatal morbidity and mortality. Maternal nutrient restriction can result in IUGR, but only in an unforeseeable subset of individuals. METHODS To elucidate potential mechanisms regulating fetal nutrient availability, singleton sheep pregnancies were generated by embryo transfer. Pregnant ewes received either a 50% NRC (NR; n = 24) or 100% NRC (n = 7) diet from gestational Day 35 until necropsy on Day 125. Maternal weight did not correlate with fetal weight; therefore, the six heaviest (NR Non-IUGR) and five lightest (NR IUGR) fetuses from nutrient-restricted ewes, and seven 100% NRC fetuses, were compared to investigate differences in nutrient availability. RESULTS Insulin, multiple amino acids, and their metabolites, were reduced in fetal circulation of NR IUGR compared to NR Non-IUGR and 100% NRC pregnancies. In contrast, glucose in fetal fluids was not different between groups. There was a nearly two-fold reduction in placentome volume and fetal/maternal interface length in NR IUGR compared to NR Non-IUGR and 100% NRC pregnancies. Changes in amino acid concentrations were associated with altered expression of cationic (SLC7A2, SLC7A6, and SLC7A7) and large neutral (SLC38A2) amino acid transporters in placentomes. DISCUSSION Results establish a novel approach to study placental adaptation to maternal undernutrition in sheep and support the hypothesis that amino acids and polyamines are critical mediators of placental and fetal growth in sheep.
Collapse
|
33
|
Stanirowski PJ, Lipa M, Bomba-Opoń D, Wielgoś M. Expression of placental glucose transporter proteins in pregnancies complicated by fetal growth disorders. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 123:95-131. [PMID: 33485490 DOI: 10.1016/bs.apcsb.2019.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
During pregnancy fetal growth disorders, including fetal macrosomia and fetal growth restriction (FGR) are associated with numerous maternal-fetal complications, as well as due to the adverse effect of the intrauterine environment lead to an increased morbidity in adult life. Accumulating evidence suggests that occurrence of fetal macrosomia or FGR, may be associated with alterations in the transfer of nutrients across the placenta, in particular of glucose. The placental expression and activity of specific GLUT transporters are the main regulatory factors in the process of maternal-fetal glucose exchange. This review article summarizes the results of previous studies on the expression of GLUT transporters in the placenta, concentrating on human pregnancies complicated by intrauterine fetal growth disorders. Characteristics of each transporter protein found in the placenta is presented, alterations in the location and expression of GLUT isoforms observed in individual placental compartments are described, and the factors regulating the expression of selected GLUT proteins are examined. Based on the above data, the potential function of each GLUT isoform in the maternal-fetal glucose transfer is determined. Further on, a detailed analysis of changes in the expression of glucose transporters in pregnancies complicated by fetal growth disorders is given, and significance of these modifications for the pathogenesis of fetal macrosomia and FGR is discussed. In the final part novel interventional approaches that might reduce the risk associated with abnormalities of intrauterine fetal growth through modifications of placental GLUT-mediated glucose transfer are explored.
Collapse
Affiliation(s)
- Paweł Jan Stanirowski
- 1(st) Department of Obstetrics and Gynecology, Medical University of Warsaw, Warsaw, Poland; Club 35. Polish Society of Gynecologists and Obstetricians, Warsaw, Poland
| | - Michał Lipa
- 1(st) Department of Obstetrics and Gynecology, Medical University of Warsaw, Warsaw, Poland; Club 35. Polish Society of Gynecologists and Obstetricians, Warsaw, Poland
| | - Dorota Bomba-Opoń
- 1(st) Department of Obstetrics and Gynecology, Medical University of Warsaw, Warsaw, Poland
| | - Mirosław Wielgoś
- 1(st) Department of Obstetrics and Gynecology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
34
|
Eaton M, Davies AH, Devine J, Zhao X, Simmons DG, Maríusdóttir E, Natale DRC, Matyas JR, Bering EA, Workentine ML, Hallgrimsson B, Cross JC. Complex patterns of cell growth in the placenta in normal pregnancy and as adaptations to maternal diet restriction. PLoS One 2020; 15:e0226735. [PMID: 31917811 PMCID: PMC6952106 DOI: 10.1371/journal.pone.0226735] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 12/03/2019] [Indexed: 02/06/2023] Open
Abstract
The major milestones in mouse placental development are well described, but our understanding is limited to how the placenta can adapt to damage or changes in the environment. By using stereology and expression of cell cycle markers, we found that the placenta grows under normal conditions not just by hyperplasia of trophoblast cells but also through extensive polyploidy and cell hypertrophy. In response to feeding a low protein diet to mothers prior to and during pregnancy, to mimic chronic malnutrition, we found that this normal program was altered and that it was influenced by the sex of the conceptus. Male fetuses showed intrauterine growth restriction (IUGR) by embryonic day (E) 18.5, just before term, whereas female fetuses showed IUGR as early as E16.5. This difference was correlated with differences in the size of the labyrinth layer of the placenta, the site of nutrient and gas exchange. Functional changes were implied based on up-regulation of nutrient transporter genes. The junctional zone was also affected, with a reduction in both glycogen trophoblast and spongiotrophoblast cells. These changes were associated with increased expression of Phlda2 and reduced expression of Egfr. Polyploidy, which results from endoreduplication, is a normal feature of trophoblast giant cells (TGC) but also spongiotrophoblast cells. Ploidy was increased in sinusoidal-TGCs and spongiotrophoblast cells, but not parietal-TGCs, in low protein placentas. These results indicate that the placenta undergoes a range of changes in development and function in response to poor maternal diet, many of which we interpret are aimed at mitigating the impacts on fetal and maternal health.
Collapse
Affiliation(s)
- Malcolm Eaton
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary Alberta
| | - Alastair H. Davies
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary Alberta
| | - Jay Devine
- Department of Anatomy and Cell Biology, Cumming School of Medicine, University of Calgary, Calgary Alberta
| | - Xiang Zhao
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary Alberta
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary Alberta
| | - David G. Simmons
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary Alberta
| | - Elín Maríusdóttir
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary Alberta
| | - David R. C. Natale
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary Alberta
| | - John R. Matyas
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary Alberta
| | - Elizabeth A. Bering
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary Alberta
| | | | - Benedikt Hallgrimsson
- Department of Anatomy and Cell Biology, Cumming School of Medicine, University of Calgary, Calgary Alberta
| | - James C. Cross
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary Alberta
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary Alberta
- * E-mail:
| |
Collapse
|
35
|
Algaba-Chueca F, Maymó-Masip E, Ejarque M, Ballesteros M, Llauradó G, López C, Guarque A, Serena C, Martínez-Guasch L, Gutiérrez C, Bosch R, Vendrell J, Megía A, Fernández-Veledo S. Gestational diabetes impacts fetal precursor cell responses with potential consequences for offspring. Stem Cells Transl Med 2019; 9:351-363. [PMID: 31880859 PMCID: PMC7031647 DOI: 10.1002/sctm.19-0242] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 11/05/2019] [Indexed: 12/15/2022] Open
Abstract
Fetal programming has been proposed as a key mechanism underlying the association between intrauterine exposure to maternal diabetes and negative health outcomes in offspring. To determine whether gestational diabetes mellitus (GDM) might leave an imprint in fetal precursors of the amniotic membrane and whether it might be related to adverse outcomes in offspring, a prospective case‐control study was conducted, in which amniotic mesenchymal stem cells (AMSCs) and resident macrophages were isolated from pregnant patients, with either GDM or normal glucose tolerance, scheduled for cesarean section. After characterization, functional characteristics of AMSCs were analyzed and correlated with anthropometrical and clinical variables from both mother and offspring. GDM‐derived AMSCs displayed an impaired proliferation and osteogenic potential when compared with control cells, accompanied by superior invasive and chemotactic capacity. The expression of genes involved in the inflammatory response (TNFα, MCP‐1, CD40, and CTSS) was upregulated in GDM‐derived AMSCs, whereas anti‐inflammatory IL‐33 was downregulated. Macrophages isolated from the amniotic membrane of GDM mothers consistently showed higher expression of MCP‐1 as well. In vitro studies in which AMSCs from healthy control women were exposed to hyperglycemia, hyperinsulinemia, and palmitic acid confirmed these results. Finally, genes involved in the inflammatory response were associated with maternal insulin sensitivity and prepregnancy body mass index, as well as with fetal metabolic parameters. These results suggest that the GDM environment could program stem cells and subsequently favor metabolic dysfunction later in life. Fetal adaptive programming in the setting of GDM might have a direct negative impact on insulin resistance of offspring.
Collapse
Affiliation(s)
- Francisco Algaba-Chueca
- Servei d'Endocrinologia i Nutrició i Unitat de Recerca, Hospital Universitari de Tarragona Joan XXIII, Tarragona, Spain.,Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain
| | - Elsa Maymó-Masip
- Servei d'Endocrinologia i Nutrició i Unitat de Recerca, Hospital Universitari de Tarragona Joan XXIII, Tarragona, Spain.,Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain
| | - Miriam Ejarque
- Servei d'Endocrinologia i Nutrició i Unitat de Recerca, Hospital Universitari de Tarragona Joan XXIII, Tarragona, Spain.,Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain
| | - Mónica Ballesteros
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain.,Servei de Ginecologia i Obstetricia, Hospital Universitari de Tarragona Joan XXIII, Tarragona, Spain
| | - Gemma Llauradó
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain.,Department of Endocrinology and Nutrition, Hospital del Mar, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Carlos López
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain.,Department of Pathology, Plataforma de Estudios Histológicos, Citológicos y de Digitalización, Hospital de Tortosa Verge de la Cinta, Tortosa, Spain
| | - Albert Guarque
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain.,Servei de Ginecologia i Obstetricia, Hospital Universitari de Tarragona Joan XXIII, Tarragona, Spain
| | - Carolina Serena
- Servei d'Endocrinologia i Nutrició i Unitat de Recerca, Hospital Universitari de Tarragona Joan XXIII, Tarragona, Spain.,Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain
| | - Laia Martínez-Guasch
- Servei d'Endocrinologia i Nutrició i Unitat de Recerca, Hospital Universitari de Tarragona Joan XXIII, Tarragona, Spain.,Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain
| | - Cristina Gutiérrez
- Servei d'Endocrinologia i Nutrició i Unitat de Recerca, Hospital Universitari de Tarragona Joan XXIII, Tarragona, Spain.,Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
| | - Ramón Bosch
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain.,Department of Pathology, Plataforma de Estudios Histológicos, Citológicos y de Digitalización, Hospital de Tortosa Verge de la Cinta, Tortosa, Spain
| | - Joan Vendrell
- Servei d'Endocrinologia i Nutrició i Unitat de Recerca, Hospital Universitari de Tarragona Joan XXIII, Tarragona, Spain.,Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain.,Departament de Medicina i Cirurgia, Universitat Rovira i Virgili, Reus, Spain
| | - Ana Megía
- Servei d'Endocrinologia i Nutrició i Unitat de Recerca, Hospital Universitari de Tarragona Joan XXIII, Tarragona, Spain.,Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain.,Departament de Medicina i Cirurgia, Universitat Rovira i Virgili, Reus, Spain
| | - Sonia Fernández-Veledo
- Servei d'Endocrinologia i Nutrició i Unitat de Recerca, Hospital Universitari de Tarragona Joan XXIII, Tarragona, Spain.,Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
36
|
Gibson C, de Ruijter-Villani M, Rietveld J, Stout TAE. Amino acid transporter expression in the endometrium and conceptus membranes during early equine pregnancy. Reprod Fertil Dev 2019; 30:1675-1688. [PMID: 29903343 DOI: 10.1071/rd17352] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 05/07/2018] [Indexed: 12/29/2022] Open
Abstract
Maternally derived amino acids (AA) are essential for early conceptus development, and specific transporters enhance histotrophic AA content during early ruminant pregnancy. In the present study we investigated AA transporter expression in early equine conceptuses and endometrium, during normal pregnancy and after induction of embryo-uterus asynchrony. 'Normal' conceptuses and endometrium were recovered on Days 7, 14, 21 and 28 after ovulation. To investigate asynchrony, Day 8 embryos were transferred to recipient mares on Day 8 or Day 3, and conceptuses were recovered 6 or 11 days later. Endometrial expression of AA transporters solute carrier family 38 member 2 (SLC38A2), solute carrier family 1 members 4 and 5 (SLC1A4 and SLC1A5) increased during early pregnancy, whereas solute carrier family 7 member 8 (SLC7A8), solute carrier family 43 member 2 (SLC43A2) and solute carrier family 7 member 1 (SLC7A1) SLC7A8, SLC43A2 and SLC7A1 expression decreased and the expression of solute carrier family 1 member 1(SLC1A1) and solute carrier family 7 member 2 (SLC7A2) was unaffected. In conceptus membranes, most transporters studied were upregulated, either after Day 14 (solute carrier family 7 member 5 - SLC7A5, SLC38A2, SLC1A4, SLC1A5 and SLC7A1) or Day 21 (SLC43A2 and SLC7A2). Asynchronous ET indicated that endometrial SLC1A5, SLC1A1 and SLC7A8 are primarily regulated by conceptus factors and/or longer exposure to progesterone. In conclusion, AA transporters are expressed in early equine conceptus membranes and endometrium in specific spatiotemporal patterns. Because conceptuses express a wider range of transporters than the endometrium, we speculate that the equine yolk sac has recruited AA transporters to ensure adequate nutrient provision during an unusually long preimplantation period.
Collapse
Affiliation(s)
- Charlotte Gibson
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 114, 3584CM Utrecht, Netherlands
| | - Marta de Ruijter-Villani
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 114, 3584CM Utrecht, Netherlands
| | - Jolanda Rietveld
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 114, 3584CM Utrecht, Netherlands
| | - Tom A E Stout
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 114, 3584CM Utrecht, Netherlands
| |
Collapse
|
37
|
Mortensen NP, Johnson LM, Grieger KD, Ambroso JL, Fennell TR. Biological interactions between nanomaterials and placental development and function following oral exposure. Reprod Toxicol 2019; 90:150-165. [PMID: 31476381 DOI: 10.1016/j.reprotox.2019.08.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 08/27/2019] [Accepted: 08/29/2019] [Indexed: 12/18/2022]
Abstract
We summarize the literature involving the deposition of nanomaterials within the placenta following oral exposure and the biological interactions between nanomaterials and placental development and function. The review focuses on the oral exposure of metal and metal oxide engineered nanomaterials (ENMs), carbon-based ENMs, and nanoplastics in animal models, with a minor discussion of intravenous injections. Although the literature suggests that the placenta is an efficient barrier in preventing nanomaterials from reaching the fetus, nanomaterials that accumulate in the placenta may interfere with its development and function. Furthermore, some studies have demonstrated a decrease in placental weight and association with adverse fetal health outcomes following oral exposure to nanomaterials. Since nanomaterials are increasingly used in food, food packaging, and have been discovered in drinking water, the risk for adverse impacts on placental development and functions, with secondary effects on embryo-fetal development, following unintentional maternal ingestion of nanomaterials requires further investigation.
Collapse
Affiliation(s)
- Ninell P Mortensen
- Discovery Sciences, RTI International, 3040 Cornwallis Rd, RTP, NC, 27709, USA.
| | - Leah M Johnson
- Engineered Systems, RTI International, 3040 Cornwallis Rd, RTP, NC, 27709, USA
| | - Khara D Grieger
- Health and Environmental Risk Analysis Program, RTI International, 3040 Cornwallis Rd, RTP, NC, 27709, USA; Genetic Engineering and Society Center, North Carolina State University, 1070 Partners Way, Raleigh, NC, 27695, USA
| | - Jeffrey L Ambroso
- Center for Global Health, RTI International, 3040 Cornwallis Rd, RTP, NC, 27709, USA
| | - Timothy R Fennell
- Discovery Sciences, RTI International, 3040 Cornwallis Rd, RTP, NC, 27709, USA
| |
Collapse
|
38
|
Añez-Osuna F, Penner GB, Campbell J, Dugan MER, Fitzsimmons CJ, Jefferson PG, Lardner HA, McKinnon JJ. Level and source of fat in the diet of gestating beef cows: I. Effects on the prepartum performance of the dam and birth weight of the progeny1. J Anim Sci 2019; 97:3103-3119. [PMID: 31095685 PMCID: PMC6606498 DOI: 10.1093/jas/skz171] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/15/2019] [Indexed: 12/24/2022] Open
Abstract
A 2-yr study was conducted to evaluate the effects of level and source of fat in the diet of gestating beef cows on their prepartum performance and birth weight of progeny. Each year, 75 multiparous (≥3 calving) pregnant Angus cows were stratified by BW (663 ± 21.5 kg) and BCS (2.6 ± 0.12; 1 to 5 scale) and randomly assigned to 1 of 15 outdoor pens. Subsequently, each pen was randomly assigned to 1 of 3 (n = 5) treatments: a low-fat diet (LF; 1.4 ± 0.12% EE) consisting of grass-legume hay, barley straw, and barley grain, or 1 of 2 high-fat diets (HF; 3.3 ± 0.20% EE) that included either a canola seed (CAN) or a flaxseed (FLX) based pelleted feed. Diets were formulated to meet the requirements of pregnant beef cows during the last 2 trimesters of gestation (0.183 ± 4.8 d), adjusted for changes in environmental conditions, and offered such that each pen on average received similar daily amounts of DE (31.2 ± 2.8 Mcal/cow), CP (1.36 ± 0.13 kg/cow), and DM (12.9 ± 1.0 kg/cow). Data were analyzed as a randomized complete block design with contrasts to separate the effects of level (LF vs. HF) and source (CAN vs. FLX) of fat. After 160 d on trial, conceptus corrected-BW (CC-BW) of LF cows (708 kg) and the proportion of overconditioned cows (13.2%) were greater (P ≤ 0.04) than those of HF, with no difference (P ≥ 0.84) between CAN and FLX for CC-BW (697 kg) and proportion of overconditioned cows (3.6% vs. 2.9%). Feeding FLX diet during gestation resulted in cows with a greater (P ≤ 0.01) concentration of conjugated linolenic acid (0.12% vs. 0.05%) and n-3 (0.58% vs. 0.37%) fatty acids, and a tendency (P = 0.09) for conjugated linoleic acid concentration (1.05% vs. 0.88%) to be greater in subcutaneous adipose tissue (SCAT) when compared with cows fed the CAN diet. By the end of gestation, serum NEFA concentration of LF cows (592 µEq/L) was lower (P < 0.01) than that of HF cows, and FLX cows had greater (P < 0.01) serum NEFA concentration than CAN cows (636 vs. 961 µEq/L). Cows receiving the LF diet during gestation gave birth to lighter (P < 0.01) calves compared with those receiving the HF diets (40.2 vs. 42.9 kg), with no difference (P = 0.24) between calves born to CAN (42.4 kg) and FLX (43.3 kg) cows. In conclusion, these results suggest a partitioning of the ME in pregnant beef cows that is dependent on the type of dietary energy, resulting in heavier calves at birth for cows fed high-fat diets. Also, the type of fatty acid in the diet of gestating beef cows affected the fatty acid profile in SCAT and serum NEFA concentration.
Collapse
Affiliation(s)
- Federico Añez-Osuna
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK, Canada
| | - Gregory B Penner
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK, Canada
| | - John Campbell
- Department of Large Animal Clinical Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Michael E R Dugan
- Agriculture and Agri-Food Canada, Lacombe Research and Development Centre, Lacombe, AB, Canada
| | - Carolyn J Fitzsimmons
- Agriculture and Agri-Food Canada, Lacombe Research and Development Centre, Lacombe, AB, Canada
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | | | - Herbert A Lardner
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK, Canada
- Western Beef Development Centre, Humboldt, SK, Canada
| | - John J McKinnon
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
39
|
Donnelly L, Campling G. Functions of the placenta. ANAESTHESIA AND INTENSIVE CARE MEDICINE 2019. [DOI: 10.1016/j.mpaic.2019.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
40
|
Fry RC, Bangma J, Szilagyi J, Rager JE. Developing novel in vitro methods for the risk assessment of developmental and placental toxicants in the environment. Toxicol Appl Pharmacol 2019; 378:114635. [PMID: 31233757 DOI: 10.1016/j.taap.2019.114635] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 01/12/2023]
Abstract
During pregnancy, the placenta is critical for the regulation of maternal homeostasis and fetal growth and development. Exposures to environmental chemicals during pregnancy can be detrimental to the health of the placenta and therefore adversely impact maternal and fetal health. Though research on placental-derived developmental toxicity is expanding, testing is limited by the resources required for traditional test methods based on whole animal experimentation. Alternative strategies utilizing in vitro methods are well suited to contribute to more efficient screening of chemical toxicity and identification of biological mechanisms underlying toxicity outcomes. This review aims to summarize methods that can be used to evaluate toxicity resulting from exposures during the prenatal period, with a focus on newer in vitro methods centered on placental toxicity. The following key aspects are reviewed: (i) traditional test methods based on animal developmental toxicity testing, (ii) in vitro methods using monocultures and explant models, as well as more recently developed methods, including co-cultures, placenta-on-a-chip, and 3-dimensional (3D) cell models, (iii) endpoints that are commonly measured using in vitro designs, and (iv) the translation of in vitro methods into chemical evaluations and risk assessment applications. We conclude that findings from in vitro placental models can contribute to the screening of potentially hazardous chemicals, elucidation of chemical mechanism of action, incorporation into adverse outcome pathways, estimation of doses eliciting toxicity, derivation of extrapolation factors, and characterization of overall risk of adverse outcomes, representing key components of chemical regulation in the 21st century.
Collapse
Affiliation(s)
- Rebecca C Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Curriculum in Toxicology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jacqueline Bangma
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - John Szilagyi
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Julia E Rager
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Curriculum in Toxicology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
41
|
Coats LE, Davis GK, Newsome AD, Ojeda NB, Alexander BT. Low Birth Weight, Blood Pressure and Renal Susceptibility. Curr Hypertens Rep 2019; 21:62. [PMID: 31228030 PMCID: PMC8109258 DOI: 10.1007/s11906-019-0969-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE OF THE REVIEW The purpose of this review is to highlight the clinical significance of increased renal risk that has its origins in fetal life. This review will also discuss the critical need to identify therapeutic interventions for use in a pregnancy complicated by placental dysfunction and intrauterine growth restriction that can mitigate the developmental origins of kidney disease without inflicting additional harm on the developing fetus. RECENT FINDINGS A reduction in nephron number is a contributory factor in the pathogenesis of hypertension and kidney disease in low birth weight individuals. Reduced nephron number may heighten susceptibility to a secondary renal insult, and recent studies suggest that perinatal history including birth weight should be considered in the assessment of renal risk in kidney donors. This review highlights current findings related to placental dysfunction, intrauterine growth restriction, increased risk for renal injury and disease, and potential therapeutic interventions.
Collapse
Affiliation(s)
- Laura E Coats
- Department of Physiology and Biophysics, Mississippi Center for Excellence in Perinatal Health, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Gwendolyn K Davis
- Department of Physiology and Biophysics, Mississippi Center for Excellence in Perinatal Health, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Ashley D Newsome
- Department of Physiology and Biophysics, Mississippi Center for Excellence in Perinatal Health, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Norma B Ojeda
- Department of Pediatrics, Mississippi Center for Excellence in Perinatal Health, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Barbara T Alexander
- Department of Physiology and Biophysics, Mississippi Center for Excellence in Perinatal Health, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA.
| |
Collapse
|
42
|
Bendimerad-Benmokhtar S, Bouanane S, Merzouk H, Baba Ahmed FZ, Bendaoud A. Effects of Nannochloropsis Fed on Serum and Tissue Lipids Metabolism in Obese Offspring of Overfed Dams. CURRENT NUTRITION & FOOD SCIENCE 2019. [DOI: 10.2174/1573401313666171004153311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background: The present work aims at determining the effects of maternal-diet-induced obesity on offspring metabolism. The short-term of a marine microalgae diet and its effects on lipids metabolism was investigated. </P><P> Method: Before gestation, some rats are fed control diet and others cafeteria diet. Moreover, two groups of dams were fed standard and cafeteria diets, and two other groups were fed the same diets but containing 10% of microalgae. This feeding started at gestation, and continued throughout parturition, lactation until their offspring's weaning age. </P><P> Results: Cafeteria diet was shown to increase the body weight and visceral obesity, with aberration in lipid metabolism. The results obtained show that the microalgae diet supplement induces a significant decrease in the maternal body weight and relative adipose tissue weight, plasma glucose and lipid levels, liver-triglyceride (TG) and adipose tissue-TG at parturition and at the end of lactation. Also, the addition of the microalgae in both males and female offspring fed dams at birth and weaning showed significant decrease in body weight, liver-TG whereas significant increase in TG-HDL. </P><P> Conclusion: In the end, it was noted that the incorporation of 10% of microalgae has a beneficial effect on body weight and lipid metabolism.
Collapse
Affiliation(s)
- Soraya Bendimerad-Benmokhtar
- Laboratory of Physiology, Physiopathology and Biochemistry of Nutrition, Department of Biology, Faculty of Natural and Life Sciences, Earth and Universe, University of Tlemcen 13000, Tlemcen, Algeria
| | - Samira Bouanane
- Laboratory of Physiology, Physiopathology and Biochemistry of Nutrition, Department of Biology, Faculty of Natural and Life Sciences, Earth and Universe, University of Tlemcen 13000, Tlemcen, Algeria
| | - Hafida Merzouk
- Laboratory of Physiology, Physiopathology and Biochemistry of Nutrition, Department of Biology, Faculty of Natural and Life Sciences, Earth and Universe, University of Tlemcen 13000, Tlemcen, Algeria
| | - Fatima Zohra Baba Ahmed
- Laboratory of Physiology, Physiopathology and Biochemistry of Nutrition, Department of Biology, Faculty of Natural and Life Sciences, Earth and Universe, University of Tlemcen 13000, Tlemcen, Algeria
| | - Asme Bendaoud
- Laboratory of Physiology, Physiopathology and Biochemistry of Nutrition, Department of Biology, Faculty of Natural and Life Sciences, Earth and Universe, University of Tlemcen 13000, Tlemcen, Algeria
| |
Collapse
|
43
|
Song H, Telugu BP, Thompson LP. Sexual dimorphism of mitochondrial function in the hypoxic guinea pig placenta. Biol Reprod 2019; 100:208-216. [PMID: 30085007 PMCID: PMC6335207 DOI: 10.1093/biolre/ioy167] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 04/16/2018] [Accepted: 07/30/2018] [Indexed: 12/13/2022] Open
Abstract
Placental hypoxia can stimulate oxidative stress and mitochondrial dysfunction reducing placental efficiency and inducing fetal growth restriction (FGR). We hypothesized that chronic hypoxia inhibits mitochondrial function in the placenta as an underlying cause of cellular mechanisms contributing to FGR. Pregnant guinea pigs were exposed to either normoxia (NMX) or hypoxia (HPX; 10.5% O2) at 25 day gestation until term (65 day). Guinea pigs were anesthetized, and fetuses and placentas were excised at either mid (40 day) or late gestation (64 day), weighed, and placental tissue stored at -80°C until assayed. Mitochondrial DNA content, protein expression of respiratory Complexes I-V, and nitration and activity rates of Complexes I and IV were measured in NMX and HPX male (N = 6 in each treatment) and female (N = 6 in each treatment) placentas. Mitochondrial density was not altered by HPX in either mid- or late-term placentas. In mid gestation, HPX slightly increased expression of Complexes I-III and V in male placentas only, but had no effect on either Complex I or IV activity rates or nitrotyrosine expression. In late gestation, HPX significantly decreased CI/CIV activity rates and increased CI/CIV nitration in male but not female placentas exhibiting a sexual dimorphism. Complex I-V expression was reduced from mid to late gestation in both male and female placentas regardless of treatment. We conclude that chronic HPX decreases mitochondrial function by inhibiting Complex I/IV activity via increased peroxynitrite in a sex-related manner. Further, there may be a progressive decrease in energy metabolism of placental cell types with gestation that increases the vulnerability of placental function to intrauterine stress.
Collapse
Affiliation(s)
- Hong Song
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Bhanu P Telugu
- Animal Biosciences and Biotechnology Laboratory, USDA-ARS, Beltsville, Maryland, USA
- Animal and Avian Science, University of Maryland, College Park, Maryland, USA
| | - Loren P Thompson
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
44
|
Excess Hydrocortisone Hampers Placental Nutrient Uptake Disrupting Cellular Metabolism. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5106174. [PMID: 30402483 PMCID: PMC6198558 DOI: 10.1155/2018/5106174] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 08/31/2018] [Accepted: 09/20/2018] [Indexed: 11/17/2022]
Abstract
Low birth weight increases neonatal morbidity and mortality, and surviving infants have increased risk of metabolic and cardiovascular disturbances later in life, as well as other neurological, psychiatric, and immune complications. A gestational excess of glucocorticoids (GCs) is a well-known cause for fetal growth retardation, but the biological basis for this association remains elusive. Placental growth is closely related to fetal growth. The placenta is the main regulator of nutrient transport to the fetus, resulting from the difference between placental nutrient uptake and the placenta's own metabolism. The aim of this study was to analyze how excess hydrocortisone affects placental glucose and lipid metabolism. Human placenta explants from term physiological pregnancies were cultured for 18 hours under different hydrocortisone concentrations (2.75, 5.5, and 55 mM; 1, 2, and 20 mg/ml). Placental glucose and lipid uptake and the metabolic partitioning of fatty acids were quantified by isotopic techniques, and expression of specific glucose transporter GLUT1 was quantified by western blot. Cell viability was assessed by MTT, immunohistochemistry and caspase activity. We found that excess hydrocortisone impairs glucose uptake and lipoprotein lipase (LPL) activity, coincident with a GC-dose dependent inhibition of fatty acid oxidation and esterification. None of the experimental conditions showed an increased cell death. In conclusion, our results show that GC overexposure exerts a dysfunctional effect on lipid transport and metabolism and glucose uptake in human placental explants. These findings could well be directly related to a reduced placental growth and possibly to a reduced supply of nutrients to the fetus and the consequent fetal growth retardation and metabolic programming.
Collapse
|
45
|
Chen F, Fu Q, Pu L, Zhang P, Huang Y, Hou Z, Xu Z, Chen D, Huang F, Deng T, Liang X, Lu Y, Zhang M. Integrated Analysis of Quantitative Proteome and Transcriptional Profiles Reveals the Dynamic Function of Maternally Expressed Proteins After Parthenogenetic Activation of Buffalo Oocyte. Mol Cell Proteomics 2018; 17:1875-1891. [PMID: 30002204 PMCID: PMC6166679 DOI: 10.1074/mcp.ra118.000556] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 05/16/2018] [Indexed: 01/09/2023] Open
Abstract
Maternal-effect genes are especially critical for early embryonic development after fertilization and until massive activation of the embryonic genome occurs. By applying a tandem mass tag (TMT)-labeled quantitative proteomics combined with RNA sequencing approach, the proteome of the buffalo was quantitatively analyzed during parthenogenesis of mature oocytes and the two-cell stage embryo. Of 1908 quantified proteins, 123 differed significantly. The transcriptome was analyzed eight stages (GV, MII, 2-cell, 4-cell, 8-cell, 16-cell, morula, blastocyst) of Buffalo using the RNA sequencing approach, and a total of 3567 unique genes were identified to be differently expressed between all consecutive stages of pre-implantation development. Validation of proteomics results (TUBB3, CTNNA1, CDH3, MAP2K1), which are involved in tight junction and gap junction, revealing that the maternal expression of the proteins possibly plays a role in the formation of cellular junctions firstly after parthenogenetic activation. Correlation and hierarchical analyses of transcriptional profiles and the expression of NPM2 and NLRP5 mRNA of buffalo in vitro developed oocytes and parthenogenetic embryos indicated that the "maternal-to-zygotic transition" (MZT) process might exist in the model of parthenogenesis, which is similar to a normally fertilized embryo, and may occur between the 8-cell to 16-cell stage. These data provide a rich resource for further studies on maternal proteins and genes and are conducive to improving nuclear transfer technology.
Collapse
Affiliation(s)
- Fumei Chen
- From the ‡State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi 530004, China
| | - Qiang Fu
- From the ‡State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi 530004, China
| | - Liping Pu
- From the ‡State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi 530004, China
| | - Pengfei Zhang
- From the ‡State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi 530004, China
| | - Yulin Huang
- From the ‡State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi 530004, China
| | - Zhen Hou
- From the ‡State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi 530004, China
| | - Zhuangzhuang Xu
- From the ‡State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi 530004, China
| | - Dongrong Chen
- From the ‡State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi 530004, China
| | - Fengling Huang
- From the ‡State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi 530004, China
| | - Tingxian Deng
- §Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Buffalo Research Institute, Chinese Academy of Agricultural Science, Nanning, Guangxi 530001, China
| | - Xianwei Liang
- §Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Buffalo Research Institute, Chinese Academy of Agricultural Science, Nanning, Guangxi 530001, China
| | - Yangqing Lu
- From the ‡State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi 530004, China;
| | - Ming Zhang
- From the ‡State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi 530004, China;
| |
Collapse
|
46
|
Zanoni P, Velagapudi S, Yalcinkaya M, Rohrer L, von Eckardstein A. Endocytosis of lipoproteins. Atherosclerosis 2018; 275:273-295. [PMID: 29980055 DOI: 10.1016/j.atherosclerosis.2018.06.881] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/04/2018] [Accepted: 06/22/2018] [Indexed: 02/06/2023]
Abstract
During their metabolism, all lipoproteins undergo endocytosis, either to be degraded intracellularly, for example in hepatocytes or macrophages, or to be re-secreted, for example in the course of transcytosis by endothelial cells. Moreover, there are several examples of internalized lipoproteins sequestered intracellularly, possibly to exert intracellular functions, for example the cytolysis of trypanosoma. Endocytosis and the subsequent intracellular itinerary of lipoproteins hence are key areas for understanding the regulation of plasma lipid levels as well as the biological functions of lipoproteins. Indeed, the identification of the low-density lipoprotein (LDL)-receptor and the unraveling of its transcriptional regulation led to the elucidation of familial hypercholesterolemia as well as to the development of statins, the most successful therapeutics for lowering of cholesterol levels and risk of atherosclerotic cardiovascular diseases. Novel limiting factors of intracellular trafficking of LDL and the LDL receptor continue to be discovered and to provide drug targets such as PCSK9. Surprisingly, the receptors mediating endocytosis of high-density lipoproteins or lipoprotein(a) are still a matter of controversy or even new discovery. Finally, the receptors and mechanisms, which mediate the uptake of lipoproteins into non-degrading intracellular itineraries for re-secretion (transcytosis, retroendocytosis), storage, or execution of intracellular functions, are largely unknown.
Collapse
Affiliation(s)
- Paolo Zanoni
- Institute for Clinical Chemistry, University and University Hospital Zurich, Zurich, Switzerland; Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Srividya Velagapudi
- Institute for Clinical Chemistry, University and University Hospital Zurich, Zurich, Switzerland; Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Mustafa Yalcinkaya
- Institute for Clinical Chemistry, University and University Hospital Zurich, Zurich, Switzerland; Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Lucia Rohrer
- Institute for Clinical Chemistry, University and University Hospital Zurich, Zurich, Switzerland; Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Arnold von Eckardstein
- Institute for Clinical Chemistry, University and University Hospital Zurich, Zurich, Switzerland; Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
47
|
Dela Justina V, Dos Passos Junior RR, Bressan AF, Tostes RC, Carneiro FS, Soares TS, Volpato GT, Lima VV, Martin SS, Giachini FR. O-linked N-acetyl-glucosamine deposition in placental proteins varies according to maternal glycemic levels. Life Sci 2018; 205:18-25. [PMID: 29746846 DOI: 10.1016/j.lfs.2018.05.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/02/2018] [Accepted: 05/04/2018] [Indexed: 01/25/2023]
Abstract
AIMS Hyperglycemia increases glycosylation with O-linked N-acetyl-glucosamine (O-GlcNAc) contributing to placental dysfunction and fetal growth impairment. Our aim was to determine how O-GlcNAc levels are affected by hyperglycemia and the O-GlcNAc distribution in different placental regions. MAIN METHODS Female Wistar rats were divided into the following groups: severe hyperglycemia (>300 mg/dL; n = 5); mild hyperglycemia (>140 mg/dL, at least than two time points during oral glucose tolerance test; n = 7) or normoglycemia (<120 mg/dL; n = 6). At 21 days of pregnancy, placental tissue was collected and processed for morphometry and immunohistochemistry analyses, or properly stored at -80 °C for protein quantification by western blot. KEY FINDINGS Placental index was increased only in severe hyperglycemic rats. Morphometric analysis showed increased junctional zone and decreased labyrinth region in placentas exclusively from the severe hyperglycemic group. Proteins targeted by O-GlcNAc were detected in all regions, with increased O-GlcNAc levels in the hyperglycemic group compared to control and mild hyperglycemic rats. Proteins in endothelial and trophoblast cells were the main target for O-GlcNAc. Whereas no changes in O-GlcNAc transferase (OGT) expression were detected, O-GlcNAcase (OGA) expression was reduced in placentas from the severe hyperglycemic group and augmented in placentas from the mild hyperglycemic group, compared with their respective control groups. SIGNIFICANCE Placental O-GlcNAc overexpression may contribute to placental dysfunction, as indicated by the placental index. Additionally, morphometric alterations, occurring simultaneously with increased O-GlcNAc accumulation in the placental tissue may contribute to placental dysfunction during hyperglycemia.
Collapse
Affiliation(s)
- Vanessa Dela Justina
- Graduate Program in Biological Sciences, Federal University of Goias, Goiania, GO, Brazil; Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, MT, Brazil
| | | | - Alecsander F Bressan
- Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, MT, Brazil
| | - Rita C Tostes
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Fernando S Carneiro
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Thaigra S Soares
- Department of Gynecology and Obstetrics, School of Medicine of Botucatu, Sao Paulo, SP, Brazil
| | - Gustavo T Volpato
- Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, MT, Brazil
| | - Victor Vitorino Lima
- Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, MT, Brazil
| | - Sebastian San Martin
- Biomedical Research Center School of Medicine, Universidad de Valparaiso, Valparaiso, Chile
| | - Fernanda R Giachini
- Graduate Program in Biological Sciences, Federal University of Goias, Goiania, GO, Brazil; Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, MT, Brazil.
| |
Collapse
|
48
|
Gibbins KJ, Gibson-Corley KN, Brown AS, Wieben M, Law RC, Fung CM. Effects of excess thromboxane A2 on placental development and nutrient transporters in a Mus musculus model of fetal growth restriction. Biol Reprod 2018; 98:695-704. [PMID: 29351577 PMCID: PMC6248656 DOI: 10.1093/biolre/ioy006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 11/22/2017] [Accepted: 01/16/2018] [Indexed: 01/04/2023] Open
Abstract
Hypertensive disease of pregnancy (HDP) with placental insufficiency is the most common cause of fetal growth restriction (FGR) in the developed world. Despite the known negative consequences of HDP both to the mother and fetus, little is known about the longitudinal placental changes that occur as HDP progresses in pregnancy. This is because longitudinal sampling of human placentae during each gestation is impossible. Therefore, using a mouse model of thromboxane A2-analog infusion to mimic human HDP in the last trimester, we calculated placental efficiencies based on fetal and placental weights; quantified spongiotrophoblast and labyrinth thicknesses and vascular density within these layers; examined whether hypoxia signaling pathway involving vascular endothelial growth factor A (VEGFA) and its receptors (VEGFR1, VEGFR2) and matrix metalloproteinases (MMPs) contributed to vascular change; and examined nutrient transporter abundance including glucose transporters 1 and 3 (GLUT1, GLUT3), neutral amino acid transporters 1, 2, and 4 (SNAT1, SNAT2, and SNAT4), fatty acid transporters 2 and 4 (FATP2, FATP4), and fatty acid translocase (CD36) from embryonic day 15.5 to 19 in a 20-day C57Bl/6J mouse gestation. We conclude that early-to-mid gestation hypertensive placentae show compensatory mechanisms to preserve fetal growth by increasing placental efficiencies and maintaining abundance of important nutrient transporters. As placental vascular network diminishes over late hypertension, placental efficiency diminishes and fetal growth fails. Neither hypoxia signaling pathway nor MMPs mediated the vascular diminution in this model. Hypertensive placentae surprisingly exhibit a sex-differential expression of nutrient transporters in late gestation despite showing fetal growth failure in both sexes.
Collapse
Affiliation(s)
- Karen J Gibbins
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology,
University of Utah, Salt Lake City, Utah, USA
| | | | - Ashley S Brown
- Division of Neonatology, Pediatrics, University of Utah, Salt Lake City, Utah,
USA
| | - Matthew Wieben
- Division of Neonatology, Pediatrics, University of Utah, Salt Lake City, Utah,
USA
| | - Richard C Law
- Division of Neonatology, Pediatrics, University of Utah, Salt Lake City, Utah,
USA
| | - Camille M Fung
- Division of Neonatology, Pediatrics, University of Utah, Salt Lake City, Utah,
USA
| |
Collapse
|
49
|
Placental Expression of Glucose Transporter Proteins in Pregnancies Complicated by Gestational and Pregestational Diabetes Mellitus. Can J Diabetes 2018; 42:209-217. [DOI: 10.1016/j.jcjd.2017.04.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 04/18/2017] [Accepted: 04/24/2017] [Indexed: 12/31/2022]
|
50
|
Rebholz SL, Melchior JT, Davidson WS, Jones HN, Welge JA, Prentice AM, Moore SE, Woollett LA. Studies in genetically modified mice implicate maternal HDL as a mediator of fetal growth. FASEB J 2018; 32:717-727. [PMID: 28982731 PMCID: PMC6266630 DOI: 10.1096/fj.201700528r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 09/18/2017] [Indexed: 01/01/2023]
Abstract
Studies in humans have shown a direct association between maternal plasma cholesterol concentrations and infant birthweight. Similarly, previous studies in our laboratory have shown that chow-fed mice lacking apolipoprotein (apo) A-I, the major protein in HDL, have low HDL-cholesterol (HDL-C) concentrations and smaller fetuses in midgestation. In the current study, we measured fetal weights in mice with varying levels of apoA-I gene dose (knockout, wild-type, and transgenic) and examined metabolic pathways known to affect fetal growth. As expected, we found the differences in apoA-I expression led to changes in HDL particle size and protein cargo as well as plasma cholesterol concentrations. Fetal masses correlated directly with maternal plasma cholesterol and apoA-I concentrations, but placental masses and histology did not differ between groups of mice. There was no significant difference in glucose or amino acid transport to the fetus or in expression levels of the glucose (glucose transporter 1 and 2) or amino acid (sodium-coupled neutral amino acid transporter 1 and 2) transporters in whole placentas, although there was a trend for greater uptake of both nutrients in the whole fetal unit (fetus + placenta) of mice with greater apoA-I levels; significant differences in transport rates occurred when mice without apoA-I (knockout) vs. mice with apoA-I (wild-type and transgenic) were compared. Glucose tolerance tests were improved in the mice with the highest level of apoA-I, suggesting increased insulin-induced uptake of glucose by tissues of apoA-I transgenic mice. Thus, maternal HDL is associated with fetal growth, an effect that is likely mediated by plasma cholesterol or other HDL-cargo, including apolipoproteins or complement system proteins. A direct role of enhanced glucose and/or amino acid transport cannot be excluded.-Rebholz, S. L., Melchior, J. T., Davidson, W. S., Jones, H. N., Welge, J. A., Prentice, A. M., Moore, S. E., Woollett, L. A. Studies in genetically modified mice implicate maternal HDL as a mediator of fetal growth.
Collapse
Affiliation(s)
- Sandra L. Rebholz
- Department of Pathology and Laboratory Medicine University of Cincinnati Medical School, Cincinnati, Ohio, USA
| | - John T. Melchior
- Department of Pathology and Laboratory Medicine University of Cincinnati Medical School, Cincinnati, Ohio, USA
| | - W. Sean Davidson
- Department of Pathology and Laboratory Medicine University of Cincinnati Medical School, Cincinnati, Ohio, USA
| | - Helen N. Jones
- Division of General and Thoracic Surgery and Reproductive Sciences, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Jeffrey A. Welge
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati Medical School, Cincinnati, Ohio, USA
| | - Andrew M. Prentice
- Medical Research Council (MRC) Unit, Serekunda, The Gambia
- MCR International Nutrition Group, London School of Hygiene and Tropical Medicine (LSHTM), London, United Kingdom; and
| | - Sophie E. Moore
- Medical Research Council (MRC) Unit, Serekunda, The Gambia
- Division of Women’s Health, King’s College London, London, United Kingdom
| | - Laura A. Woollett
- Department of Pathology and Laboratory Medicine University of Cincinnati Medical School, Cincinnati, Ohio, USA
| |
Collapse
|