1
|
Pennarossa G, Arcuri S, Zmijewska A, Orini E, Gandolfi F, Brevini TAL. Bioengineering-tissue strategies to model mammalian implantation in vitro. Front Bioeng Biotechnol 2024; 12:1430235. [PMID: 39132254 PMCID: PMC11310004 DOI: 10.3389/fbioe.2024.1430235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/10/2024] [Indexed: 08/13/2024] Open
Abstract
During mammalian implantation, complex and well-orchestrated interactions between the trophectoderm of implanting blastocysts and the maternal endometrium lead to a successful pregnancy. On the other hand, alteration in endometrium-blastocyst crosstalk often causes implantation failure, pregnancy loss, and complications that result in overall infertility. In domestic animals, this represents one of the major causes of economic losses and the understanding of the processes taking place during the early phases of implantation, in both healthy and pathological conditions, is of great importance, to enhance livestock system efficiency. Here we develop highly predictive and reproducible functional tridimensional (3D) in vitro models able to mimic the two main actors that play a key role at this developmental stage: the blastocyst and the endometrium. In particular, we generate a 3D endometrial model by co-culturing primary epithelial and stromal cells, isolated from sow uteri, onto highly porous polystyrene scaffolds. In parallel, we chemically reprogram porcine adult dermal fibroblasts and encapsulate them into micro-bioreactors to create trophoblast (TR) spheroids. Finally, we combine the generated artificial endometrium with the TR spheroids to model mammalian implantation in vitro and mimic the embryo-maternal interactions. The protocols here described allow the generation of reproducible and functional 3D models of both the maternal compartment as well as the implanting embryo, able to recreate in vitro the architecture and physiology of the two tissues in vivo. We suggest that these models can find useful applications to further elucidate early implantation mechanisms and to study the complex interactions between the maternal tissue and the developing embryos.
Collapse
Affiliation(s)
- Georgia Pennarossa
- Laboratory of Biomedical Embryology and Tissue Engineering, Department of Veterinary Medicine and Animal Science, Università Degli Studi di Milano, Lodi, Italy
| | - Sharon Arcuri
- Laboratory of Biomedical Embryology and Tissue Engineering, Department of Veterinary Medicine and Animal Science, Università Degli Studi di Milano, Lodi, Italy
| | - Agata Zmijewska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Elena Orini
- Laboratory of Biomedical Embryology and Tissue Engineering, Department of Veterinary Medicine and Animal Science, Università Degli Studi di Milano, Lodi, Italy
| | - Fulvio Gandolfi
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, Università Degli Studi di Milano, Milan, Italy
| | - Tiziana A. L. Brevini
- Laboratory of Biomedical Embryology and Tissue Engineering, Department of Veterinary Medicine and Animal Science, Università Degli Studi di Milano, Lodi, Italy
| |
Collapse
|
2
|
Pennarossa G, Arcuri S, Gandolfi F, Brevini TAL. Generation of Artificial Blastoids Combining miR-200-Mediated Reprogramming and Mechanical Cues. Cells 2024; 13:628. [PMID: 38607067 PMCID: PMC11011911 DOI: 10.3390/cells13070628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024] Open
Abstract
In vitro-generated blastocyst-like structures are of great importance since they recapitulate specific features or processes of early embryogenesis, thus avoiding ethical concerns as well as increasing scalability and accessibility compared to the use of natural embryos. Here, we combine cell reprogramming and mechanical stimuli to create 3D spherical aggregates that are phenotypically similar to those of natural embryos. Specifically, dermal fibroblasts are reprogrammed, exploiting the miR-200 family property to induce a high plasticity state in somatic cells. Subsequently, miR-200-reprogrammed cells are either driven towards the trophectoderm (TR) lineage using an ad hoc induction protocol or encapsulated into polytetrafluoroethylene micro-bioreactors to maintain and promote pluripotency, generating inner cell mass (ICM)-like spheroids. The obtained TR-like cells and ICM-like spheroids are then co-cultured in the same micro-bioreactor and, subsequently, transferred to microwells to encourage blastoid formation. Notably, the above protocol was applied to fibroblasts obtained from young as well as aged donors, with results that highlighted miR-200's ability to successfully reprogram young and aged cells with comparable blastoid rates, regardless of the donor's cell age. Overall, the approach here described represents a novel strategy for the creation of artificial blastoids to be used in the field of assisted reproduction technologies for the study of peri- and early post-implantation mechanisms.
Collapse
Affiliation(s)
- Georgia Pennarossa
- Laboratory of Biomedical Embryology and Tissue Engineering, Department of Health, Animal Science and Food Safety and Center for Stem Cell Research, Università degli Studi di Milano, 20133 Milan, Italy;
| | - Sharon Arcuri
- Laboratory of Biomedical Embryology and Tissue Engineering, Department of Health, Animal Science and Food Safety and Center for Stem Cell Research, Università degli Studi di Milano, 20133 Milan, Italy;
| | - Fulvio Gandolfi
- Department of Agricultural and Environmental Sciences-Production, Landscape, Agroenergy, Università degli Studi di Milano, 20133 Milan, Italy;
| | - Tiziana A. L. Brevini
- Laboratory of Biomedical Embryology and Tissue Engineering, Department of Health, Animal Science and Food Safety and Center for Stem Cell Research, Università degli Studi di Milano, 20133 Milan, Italy;
| |
Collapse
|
3
|
Chen J, Neil JA, Tan JP, Rudraraju R, Mohenska M, Sun YBY, Walters E, Bediaga NG, Sun G, Zhou Y, Li Y, Drew D, Pymm P, Tham WH, Wang Y, Rossello FJ, Nie G, Liu X, Subbarao K, Polo JM. A placental model of SARS-CoV-2 infection reveals ACE2-dependent susceptibility and differentiation impairment in syncytiotrophoblasts. Nat Cell Biol 2023; 25:1223-1234. [PMID: 37443288 PMCID: PMC10415184 DOI: 10.1038/s41556-023-01182-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/02/2023] [Indexed: 07/15/2023]
Abstract
SARS-CoV-2 infection causes COVID-19. Several clinical reports have linked COVID-19 during pregnancy to negative birth outcomes and placentitis. However, the pathophysiological mechanisms underpinning SARS-CoV-2 infection during placentation and early pregnancy are not clear. Here, to shed light on this, we used induced trophoblast stem cells to generate an in vitro early placenta infection model. We identified that syncytiotrophoblasts could be infected through angiotensin-converting enzyme 2 (ACE2). Using a co-culture model of vertical transmission, we confirmed the ability of the virus to infect syncytiotrophoblasts through a previous endometrial cell infection. We further demonstrated transcriptional changes in infected syncytiotrophoblasts that led to impairment of cellular processes, reduced secretion of HCG hormone and morphological changes vital for syncytiotrophoblast function. Furthermore, different antibody strategies and antiviral drugs restore these impairments. In summary, we have established a scalable and tractable platform to study early placental cell types and highlighted its use in studying strategies to protect the placenta.
Collapse
Affiliation(s)
- J Chen
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, Victoria, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - J A Neil
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - J P Tan
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, Victoria, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - R Rudraraju
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - M Mohenska
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, Victoria, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Y B Y Sun
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, Victoria, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - E Walters
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, Victoria, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
- Adelaide Centre for Epigenetics, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
- South Australian Immunogenomics Cancer Institute, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - N G Bediaga
- Adelaide Centre for Epigenetics, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
- South Australian Immunogenomics Cancer Institute, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - G Sun
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, Victoria, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Y Zhou
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, Victoria, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Y Li
- Implantation and Pregnancy Research Laboratory, School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
| | - D Drew
- Infectious Diseases and Immune Defences Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - P Pymm
- Infectious Diseases and Immune Defences Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - W H Tham
- Infectious Diseases and Immune Defences Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Y Wang
- Implantation and Pregnancy Research Laboratory, School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
| | - F J Rossello
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
- University of Melbourne Centre for Cancer Research, The University of Melbourne, Melbourne, Victoria, Australia
| | - G Nie
- Implantation and Pregnancy Research Laboratory, School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
| | - X Liu
- School of Life Sciences, Westlake University, Hangzhou, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Westlake Institute for Advanced Study, Hangzhou, China
| | - K Subbarao
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.
- WHO Collaborating Centre for Reference and Research on Influenza, Melbourne, Victoria, Australia.
| | - J M Polo
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia.
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, Victoria, Australia.
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia.
- Adelaide Centre for Epigenetics, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia.
- South Australian Immunogenomics Cancer Institute, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia.
| |
Collapse
|
4
|
Kim M, Lee J, Cai L, Choi H, Oh D, Jawad A, Hyun SH. Neurotrophin-4 promotes the specification of trophectoderm lineage after parthenogenetic activation and enhances porcine early embryonic development. Front Cell Dev Biol 2023; 11:1194596. [PMID: 37519302 PMCID: PMC10373506 DOI: 10.3389/fcell.2023.1194596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/03/2023] [Indexed: 08/01/2023] Open
Abstract
Neurotrophin-4 (NT-4), a neurotrophic factor, appears to affect early embryonic development because it is secreted not only by neurons but also by oviductal and uterine epithelial cells. However, no studies have characterized the effects of NT-4 on early embryonic development in pigs. In this study, we applied the experimental model of parthenogenetic-activation (PA)-derived embryos. Herein, we investigated the effect of NT-4 supplementation during the in vitro culture (IVC) of embryos, analyzed the transcription levels of specific genes, and outlined the first cell lineage specification for porcine PA-derived blastocysts. We confirmed that NT-4 and its receptor proteins were localized in both the inner cell mass (ICM) and trophectoderm (TE) in porcine blastocysts. Across different concentrations (0, 1, 10, and 100 ng/mL) of NT-4 supplementation, the optimal concentration of NT-4 to improve the developmental competence of porcine parthenotes was 10 ng/mL. NT-4 supplementation during porcine IVC significantly (p < 0.05) increased the proportion of TE cells by inducing the transcription of TE lineage markers (CDX2, PPAG3, and GATA3 transcripts). NT-4 also reduced blastocyst apoptosis by regulating the transcription of apoptosis-related genes (BAX and BCL2L1 transcripts) and improved blastocyst quality via the interaction of neurotrophin-, Hippo-yes-associated protein (Hippo-YAP) and mitogen-activated protein kinase/extracellular regulated kinase (MAPK/ERK) pathway. Additionally, NT-4 supplementation during IVC significantly (p < 0.05) increased YAP1 transcript levels and significantly (p < 0.01) decreased LATS2 transcript levels, respectively, in the porcine PA-derived blastocysts. We also confirmed through fluorescence intensity that the YAP1 protein was significantly (p < 0.001) increased in the NT-4-treated blastocysts compared with that in the control. NT-4 also promoted differentiation into the TE lineage rather than into the ICM lineage during porcine early embryonic development. In conclusion, 10 ng/mL NT-4 supplementation enhanced blastocyst quality by regulating the apoptosis- and TE lineage specification-related genes and interacting with neurotrophin-, Hippo-YAP-, and MAPK/ERK signaling pathway during porcine in vitro embryo development.
Collapse
Affiliation(s)
- Mirae Kim
- Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
| | - Joohyeong Lee
- Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
| | - Lian Cai
- Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
- Graduate School of Veterinary Biosecurity and Protection, Chungbuk National University, Cheongju, Republic of Korea
| | - Hyerin Choi
- Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
| | - Dongjin Oh
- Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
| | - Ali Jawad
- Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
| | - Sang-Hwan Hyun
- Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
- Graduate School of Veterinary Biosecurity and Protection, Chungbuk National University, Cheongju, Republic of Korea
| |
Collapse
|
5
|
Pennarossa G, Arcuri S, De Iorio T, Ledda S, Gandolfi F, Brevini TAL. Combination of epigenetic erasing and mechanical cues to generate human epiBlastoids from adult dermal fibroblasts. J Assist Reprod Genet 2023; 40:1015-1027. [PMID: 36933093 PMCID: PMC10024007 DOI: 10.1007/s10815-023-02773-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/09/2023] [Indexed: 03/19/2023] Open
Abstract
PURPOSE This study is to develop a new protocol that combines the use of epigenetic cues and mechanical stimuli to assemble 3D spherical structures, arbitrarily defined "epiBlastoids," whose phenotype is remarkably similar to natural embryos. METHODS A 3-step approach is used to generate epiBlastoids. In the first step, adult dermal fibroblasts are converted into trophoblast (TR)-like cells, combining the use of 5-azacytidine, to erase the original phenotype, with an ad hoc induction protocol, to drive cells towards TR lineage. In the second step, epigenetic erasing is applied once again, in combination with mechanosensing-related cues, to generate inner cell mass (ICM)-like organoids. Specifically, erased cells are encapsulated into micro-bioreactors to promote 3D cell rearrangement and boost pluripotency. In the third step, TR-like cells are co-cultured with ICM-like spheroids in the same micro-bioreactors. Subsequently, the newly generated embryoids are transferred to microwells to favor epiBlastoid formation. RESULTS Adult dermal fibroblasts are successfully readdressed towards TR lineage. Cells subjected to epigenetic erasing and encapsulated into micro-bioreactors rearrange in 3D ICM-like structures. Co-culture of TR-like cells and ICM-like spheroids into micro-bioreactors and microwells induces the formation of single structures with uniform shape reminiscent in vivo embryos. CDX2+ cells localized in the out layer of the spheroids, while OCT4+ cells in the inner of the structures. TROP2+ cells display YAP nuclear accumulation and actively transcribed for mature TR markers, while TROP2- cells showed YAP cytoplasmic compartmentalization and expressed pluripotency-related genes. CONCLUSION We describe the generation of epiBlastoids that may find useful application in the assisted reproduction field.
Collapse
Affiliation(s)
- Georgia Pennarossa
- Department of Veterinary Medicine and Animal Science, Center for Stem Cell Research, Laboratory of Biomedical Embryology and Tissue Engineering, Università Degli Studi Di Milano, 26900, Lodi, Italy
| | - Sharon Arcuri
- Department of Veterinary Medicine and Animal Science, Center for Stem Cell Research, Laboratory of Biomedical Embryology and Tissue Engineering, Università Degli Studi Di Milano, 26900, Lodi, Italy
| | - Teresina De Iorio
- Department of Veterinary Medicine and Animal Science, Center for Stem Cell Research, Laboratory of Biomedical Embryology and Tissue Engineering, Università Degli Studi Di Milano, 26900, Lodi, Italy
| | - Sergio Ledda
- Department of Veterinary Medicine, University of Sassari, 07100, Sassari, Italy
| | - Fulvio Gandolfi
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, Università degli Studi di Milano, 20133, Milan, Italy
| | - Tiziana A L Brevini
- Department of Veterinary Medicine and Animal Science, Center for Stem Cell Research, Laboratory of Biomedical Embryology and Tissue Engineering, Università Degli Studi Di Milano, 26900, Lodi, Italy.
| |
Collapse
|
6
|
Seetharam AS, Vu HTH, Choi S, Khan T, Sheridan MA, Ezashi T, Roberts RM, Tuteja G. The product of BMP-directed differentiation protocols for human primed pluripotent stem cells is placental trophoblast and not amnion. Stem Cell Reports 2022; 17:1289-1302. [PMID: 35594861 PMCID: PMC9214062 DOI: 10.1016/j.stemcr.2022.04.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 03/24/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
The observation that trophoblast (TB) can be generated from primed pluripotent stem cells (PSCs) by exposure to bone morphogenetic protein-4 (BMP4) when FGF2 and ACTIVIN signaling is minimized has recently been challenged with the suggestion that the procedure instead produces amnion. Here, by analyzing transcriptome data from multiple sources, including bulk and single-cell data, we show that the BMP4 procedure generates bona fide TB with similarities to both placental villous TB and TB generated from TB stem cells. The analyses also suggest that the transcriptomic signatures between embryonic amnion and different forms of TB have commonalities. Our data provide justification for the continued use of TB derived from PSCs as a model for investigating placental development. Cells differentiated by using BAP protocols resemble TB more than embryonic amnion Deviation from the standard BAP protocol results in less differentiated TB Single-cell/nucleus RNA-seq analysis identifies two syncytiotrophoblast populations
Collapse
Affiliation(s)
- Arun S Seetharam
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, USA; Genetics Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Ha T H Vu
- Genetics Development and Cell Biology, Iowa State University, Ames, IA, USA; Bioinformatics and Computational Biology, Iowa State University, Ames, IA, USA
| | - Sehee Choi
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO, USA; Department of Obstetrics and Gynecology, University of Missouri School of Medicine, Columbia, MO, USA
| | - Teka Khan
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO, USA; Division of Animal Sciences, Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Megan A Sheridan
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO, USA; Department of Obstetrics and Gynecology, University of Missouri School of Medicine, Columbia, MO, USA
| | - Toshihiko Ezashi
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO, USA; Division of Animal Sciences, Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - R Michael Roberts
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO, USA; Division of Animal Sciences, Bond Life Sciences Center, University of Missouri, Columbia, MO, USA; Department of Biochemistry, University of Missouri, Columbia, MO, USA.
| | - Geetu Tuteja
- Genetics Development and Cell Biology, Iowa State University, Ames, IA, USA; Bioinformatics and Computational Biology, Iowa State University, Ames, IA, USA.
| |
Collapse
|
7
|
Karvas RM, McInturf S, Zhou J, Ezashi T, Schust DJ, Roberts RM, Schulz LC. Use of a human embryonic stem cell model to discover GABRP, WFDC2, VTCN1 and ACTC1 as markers of early first trimester human trophoblast. Mol Hum Reprod 2021; 26:425-440. [PMID: 32359161 DOI: 10.1093/molehr/gaaa029] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 04/09/2020] [Accepted: 04/23/2020] [Indexed: 12/25/2022] Open
Abstract
Human placental development during early pregnancy is poorly understood. Many conceptuses are lost at this stage. It is thought that preeclampsia, intrauterine growth restriction and other placental syndromes that manifest later in pregnancy may originate early in placentation. Thus, there is a need for models of early human placental development. Treating human embryonic stem cells (hESCs) with BMP4 (bone morphogenic protein 4) plus A83-01 (ACTIVIN/NODAL signaling inhibitor) and PD173074 (fibroblast growth factor 2 or FGF2 signaling inhibitor) (BAP conditions) induces differentiation to the trophoblast lineage (hESCBAP), but it is not clear which stage of trophoblast differentiation these cells resemble. Here, comparison of the hESCBAP transcriptome to those of trophoblasts from human blastocysts, trophoblast stem cells and placentas collected in the first-third trimester of pregnancy by principal component analysis suggests that hESC after 8 days BAP treatment most resemble first trimester syncytiotrophoblasts. To further test this hypothesis, transcripts were identified that are expressed in hESCBAP but not in cultures of trophoblasts isolated from term placentas. Proteins encoded by four genes, GABRP (gamma-aminobutyric acid type A receptor subunit Pi), WFDC2 (WAP four-disulfide core domain 2), VTCN1 (V-set domain containing T-cell activation inhibitor 1) and ACTC1 (actin alpha cardiac muscle 1), immunolocalized to placentas at 4-9 weeks gestation, and their expression declined with gestational age (R2 = 0.61-0.83). None are present at term. Expression was largely localized to syncytiotrophoblast of both hESCBAP cells and placental material from early pregnancy. WFDC2, VTCN1 and ACTC1 have not previously been described in placenta. These results support the hypothesis that hESCBAP represent human trophoblast analogous to that of early first trimester and are a tool for discovery of factors important to this stage of placentation.
Collapse
Affiliation(s)
- Rowan M Karvas
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Samuel McInturf
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Jie Zhou
- Department of Obstetrics, Gynecology, and Women's Health, University of Missouri, Columbia, MO 65212, USA
| | - Toshihiko Ezashi
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Danny J Schust
- Department of Obstetrics, Gynecology, and Women's Health, University of Missouri, Columbia, MO 65212, USA
| | - R Michael Roberts
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA.,Department of Biochemistry University of Missouri, Columbia, MO 65211, USA
| | - Laura C Schulz
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA.,Department of Obstetrics, Gynecology, and Women's Health, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
8
|
Khan T, Seetharam AS, Zhou J, Bivens NJ, Schust DJ, Ezashi T, Tuteja G, Roberts RM. Single Nucleus RNA Sequence (snRNAseq) Analysis of the Spectrum of Trophoblast Lineages Generated From Human Pluripotent Stem Cells in vitro. Front Cell Dev Biol 2021; 9:695248. [PMID: 34368143 PMCID: PMC8334858 DOI: 10.3389/fcell.2021.695248] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/21/2021] [Indexed: 02/03/2023] Open
Abstract
One model to study the emergence of the human trophoblast (TB) has been the exposure of pluripotent stem cells to bone morphogenetic protein 4 (BMP4) in presence of inhibitors of ACTIVIN/TGFB; A83-01 and FGF2; PD173074 (BAP), which generates a mixture of cytotrophoblast, syncytiotrophoblast, and cells with similarities to extravillous trophoblast. Here, H1 human embryonic stem cells were BAP-exposed under two O2 conditions (20% and 5%, respectively). At day 8, single nuclei RNA sequencing was used for transcriptomics analysis, thereby allowing profiling of fragile syncytial structures as well as the more resilient mononucleated cells. Following cluster analysis, two major groupings, one comprised of five (2,4,6,7,8) and the second of three (1,3,5) clusters were evident, all of which displayed recognized TB markers. Of these, two (2 and 3) weakly resembled extravillous trophoblast, two (5 and 6) strongly carried the hallmark transcripts of syncytiotrophoblast, while the remaining five were likely different kinds of mononucleated cytotrophoblast. We suggest that the two populations of nuclei within syncytiotrophoblast may have arisen from fusion events involving two distinct species of precursor cells. The number of differentially expressed genes between O2 conditions varied among the clusters, and the number of genes upregulated in cells cultured under 5% O2 was highest in syncytiotrophoblast cluster 6. In summary, the BAP model reveals an unexpectedly complex picture of trophoblast lineage emergence that will need to be resolved further in time-course studies.
Collapse
Affiliation(s)
- Teka Khan
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
- Division of Animal Sciences, Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Arun S. Seetharam
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, United States
- Genetics, Development and Cell Biology, Iowa State University, Ames, IA, United States
| | - Jie Zhou
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
- Department of Obstetrics and Gynecology, University of Missouri School of Medicine, Columbia, MO, United States
| | - Nathan J. Bivens
- DNA Core Facility, University of Missouri, Columbia, MO, United States
| | - Danny J. Schust
- Department of Obstetrics and Gynecology, University of Missouri School of Medicine, Columbia, MO, United States
| | - Toshihiko Ezashi
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
- Division of Animal Sciences, Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Geetu Tuteja
- Genetics, Development and Cell Biology, Iowa State University, Ames, IA, United States
| | - R. Michael Roberts
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
- Division of Animal Sciences, Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
| |
Collapse
|
9
|
Arcuri S, Pennarossa G, Gandolfi F, Brevini TAL. Generation of Trophoblast-Like Cells From Hypomethylated Porcine Adult Dermal Fibroblasts. Front Vet Sci 2021; 8:706106. [PMID: 34350230 PMCID: PMC8326560 DOI: 10.3389/fvets.2021.706106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/25/2021] [Indexed: 11/13/2022] Open
Abstract
The first differentiation event in mammalian embryos is the formation of the trophectoderm, which is the progenitor of the outer epithelial components of the placenta, and which supports the fetus during the intrauterine life. However, the epigenetic and paracrine controls at work in trophectoderm differentiation are still to be fully elucidated and the creation of dedicated in vitro models is desirable to increase our understanding. Here we propose a novel approach based on the epigenetic conversion of adult dermal fibroblasts into trophoblast-like cells. The method combines the use of epigenetic erasing with an ad hoc differentiation protocol. Dermal fibroblasts are erased with 5-azacytidine (5-aza-CR) that confers cells a transient high plasticity state. They are then readdressed toward the trophoblast (TR) phenotype, using MEF conditioned medium, supplemented with bone morphogenetic protein 4 (BMP4) and inhibitors of the Activin/Nodal and FGF2 signaling pathways in low O2 conditions. The method here described allows the generation of TR-like cells from easily accessible material, such as dermal fibroblasts, that are very simply propagated in vitro. Furthermore, the strategy proposed is free of genetic modifications that make cells prone to instability and transformation. The TR model obtained may also find useful application in order to better characterize embryo implantation mechanisms and developmental disorders based on TR defects.
Collapse
Affiliation(s)
- Sharon Arcuri
- Laboratory of Biomedical Embryology, Department of Health, Animal Science and Food Safety and Centre for Stem Cell Research, UniStem, Università Degli Studi di Milano, Milan, Italy
| | - Georgia Pennarossa
- Laboratory of Biomedical Embryology, Department of Health, Animal Science and Food Safety and Centre for Stem Cell Research, UniStem, Università Degli Studi di Milano, Milan, Italy
| | - Fulvio Gandolfi
- Laboratory of Biomedical Embryology, Department of Agricultural and Environmental Sciences-Production, Landscape, Agroenergy and Centre for Stem Cell Research, UniStem, Università Degli Studi di Milano, Milan, Italy
| | - Tiziana A L Brevini
- Laboratory of Biomedical Embryology, Department of Health, Animal Science and Food Safety and Centre for Stem Cell Research, UniStem, Università Degli Studi di Milano, Milan, Italy
| |
Collapse
|
10
|
Zhou J, West RC, Ehlers EL, Ezashi T, Schulz LC, Roberts RM, Yuan Y, Schust DJ. Modeling human peri-implantation placental development and function†. Biol Reprod 2021; 105:40-51. [PMID: 33899095 DOI: 10.1093/biolre/ioab080] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/16/2021] [Accepted: 04/20/2021] [Indexed: 12/17/2022] Open
Abstract
It is very difficult to gain a better understanding of the events in human pregnancy that occur during and just after implantation because such pregnancies are not yet clinically detectable. Animal models of human placentation are inadequate. In vitro models that utilize immortalized cell lines and cells derived from trophoblast cancers have multiple limitations. Primary cell and tissue cultures often have limited lifespans and cannot be obtained from the peri-implantation period. We present here two contemporary models of human peri-implantation placental development: extended blastocyst culture and stem-cell derived trophoblast culture. We discuss current research efforts that employ these models and how such models might be used in the future to study the "black box" stage of human pregnancy.
Collapse
Affiliation(s)
- J Zhou
- Mizzou Institute for Women's Health Research, Department of Obstetrics, Gynecology and Women's Health, University of Missouri School of Medicine, Columbia, MO USA.,Bond Life Sciences Center, Division of Animal Sciences, University of Missouri, Columbia, MO USA
| | - R C West
- Colorado Center for Reproductive Medicine, Lone Tree, CO USA
| | - E L Ehlers
- Mizzou Institute for Women's Health Research, Department of Obstetrics, Gynecology and Women's Health, University of Missouri School of Medicine, Columbia, MO USA
| | - T Ezashi
- Bond Life Sciences Center, Division of Animal Sciences, University of Missouri, Columbia, MO USA
| | - L C Schulz
- Mizzou Institute for Women's Health Research, Department of Obstetrics, Gynecology and Women's Health, University of Missouri School of Medicine, Columbia, MO USA
| | - R M Roberts
- Bond Life Sciences Center, Division of Animal Sciences, University of Missouri, Columbia, MO USA
| | - Y Yuan
- Colorado Center for Reproductive Medicine, Lone Tree, CO USA
| | - D J Schust
- Mizzou Institute for Women's Health Research, Department of Obstetrics, Gynecology and Women's Health, University of Missouri School of Medicine, Columbia, MO USA
| |
Collapse
|
11
|
Li Z, Kurosawa O, Iwata H. A comparative study of key physiological stem cell parameters between three human trophoblast cell lines. Biochem Biophys Res Commun 2020; 525:1038-1045. [DOI: 10.1016/j.bbrc.2020.03.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 03/06/2020] [Indexed: 01/21/2023]
|
12
|
Kumar S, Lakshmi Devi H, Singh Jalmeria N, Punetha M, Pandey Y, Samad HA, Singh G, Sarkar M, Chouhan VS. Expression and functional role of bone morphogenetic proteins (BMPs) in placenta during different stages of pregnancy in water buffalo (Bubalus bubalis). Gen Comp Endocrinol 2020; 285:113249. [PMID: 31445010 DOI: 10.1016/j.ygcen.2019.113249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 08/09/2019] [Accepted: 08/20/2019] [Indexed: 12/27/2022]
Abstract
The objective of this study was to document the expression and functional role of BMPs in the placental (caruncle; CAR, cotyledon; COT) during different stages of pregnancy in water buffalo. Samples collected from Early pregnancy 1 (EP1); Early pregnancy 2 (EP2), Mid pregnancy (MP), Late pregnancy (LP) while the third stage of oestrus cycle (NP) was taken as control. Also, the synergistic role of BMP4/BMP7 or combination on mRNA expression of vWF, PCNA, StAR, CYP11A1, 3βHSD, and BAX were studied in trophoblast cells cultured (TCC) during an early stage. The qPCR and immunoblotting studies revealed that BMP2, BMPR1A, BMPR1B, and BMPR2 mRNA level was significantly (p < 0.05) upregulated during early pregnancy in COTs while in CARs it was significantly upregulated (p < 0.05) during all the stages of pregnancy.BMP4 mRNA level was significantly upregulated (p < 0.05) during early pregnancy in COTs as well as in CARs. BMP6 expression was significantly upregulated (p < 0.05) during early and late stages of pregnancy. BMP7 mRNA level was upregulated (p < 0.05) during the late stage of pregnancy in COTs. At 100 ng/ml, the BMP4 maximally stimulated the transcripts of StAR, CYP11A1, and 3βHSD while BMP7 maximally stimulated the transcripts of 3βHSD that paralleled with P4 accretion in the media (P < 0.05). BMP4 as well as BMP7 upregulated the transcripts of PCNA, vWF, and downregulated BAX in the TCC (P < 0.05). In conclusion, BMPs are expressed in a regulated manner with stage-specific differences in the placenta and promotes the angiogenesis, proliferation, cell survivability, and steroidogenesis thereby regulating placental function in an autocrine/paracrine manner in water buffalo.
Collapse
Affiliation(s)
- Sheelendra Kumar
- Physiology & Climatology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| | - H Lakshmi Devi
- Physiology & Climatology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| | - N Singh Jalmeria
- Physiology & Climatology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| | - M Punetha
- Physiology & Climatology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| | - Yogesh Pandey
- Physiology & Climatology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| | - H A Samad
- Physiology & Climatology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| | - G Singh
- Physiology & Climatology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| | - M Sarkar
- Physiology & Climatology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| | - V S Chouhan
- Physiology & Climatology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India.
| |
Collapse
|
13
|
Li Z, Kurosawa O, Iwata H. Establishment of human trophoblast stem cells from human induced pluripotent stem cell-derived cystic cells under micromesh culture. Stem Cell Res Ther 2019; 10:245. [PMID: 31391109 PMCID: PMC6686486 DOI: 10.1186/s13287-019-1339-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/26/2019] [Accepted: 07/14/2019] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Trophoblasts as a specific cell lineage are crucial for the correct function of the placenta. Human trophoblast stem cells (hTSCs) are a proliferative population that can differentiate into syncytiotrophoblasts and extravillous cytotrophoblasts. Many studies have reported that chemical supplements induce the differentiation of trophoblasts from human induced pluripotent stem cells (hiPSCs). However, there have been no reports of the establishment of proliferative hTSCs from hiPSCs. Our previous report showed that culturing hiPSCs on micromesh as a bioscaffold induced cystic cells with trophoblast properties. Here, we aimed to establish hTSCs from hiPSCs. METHODS We used the micromesh culture technique to induce hiPSC differentiation into trophoblast cysts. We then reseeded and purified cystic cells. RESULTS The cells derived from the reseeded cysts were highly proliferative. Low expression levels of pluripotency genes and high expression levels of TSC-specific genes were detected in proliferative cells. The cells could be passaged, and further directional differentiation into syncytiotrophoblast- and extravillous cytotrophoblast-like cells was confirmed by marker expression and hormone secretion. CONCLUSIONS We established hiPSC-derived hTSCs, which may be applicable for studying the functions of trophoblasts and the placenta. Our experimental system may provide useful tools for understanding the pathogenesis of infertility owing to trophoblast defects in the future.
Collapse
Affiliation(s)
- Zhuosi Li
- The "Compass to Healthy Life" Research Complex Program, RIKEN Institute, Kobe, 650-0047, Japan.
| | - Osamu Kurosawa
- The "Compass to Healthy Life" Research Complex Program, RIKEN Institute, Kobe, 650-0047, Japan
| | - Hiroo Iwata
- The "Compass to Healthy Life" Research Complex Program, RIKEN Institute, Kobe, 650-0047, Japan.,Research Promotion Institution for COI Site, Kyoto University, Kyoto, Japan
| |
Collapse
|
14
|
Roberts RM, Ezashi T, Sheridan MA, Yang Y. Specification of trophoblast from embryonic stem cells exposed to BMP4. Biol Reprod 2019; 99:212-224. [PMID: 29579154 DOI: 10.1093/biolre/ioy070] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/21/2018] [Indexed: 01/16/2023] Open
Abstract
Trophoblast (TB) comprises the outer cell layers of the mammalian placenta that make direct contact with the maternal uterus and, in species with a highly invasive placenta, maternal blood. It has its origin as trophectoderm, a single epithelial layer of extra-embryonic ectoderm that surrounds the embryo proper at the blastocyst stage of development. Here, we briefly compare the features of TB specification and determination in the mouse and the human. We then review research on a model system that has been increasingly employed to study TB emergence, namely the BMP4 (bone morphogenetic protein-4)-directed differentiation of human embryonic stem cells (ESCd), and discuss why outcomes using it have proved so uneven. We also examine the controversial aspects of this model, particularly the issue of whether or not the ESCd represents TB at all. Our focus here has been to explore similarities and potential differences between the phenotypes of ESCd, trophectoderm, placental villous TB, and human TB stem cells. We then explore the role of BMP4 in the differentiation of human pluripotent cells to TB and suggest that it converts the ESC into a totipotent state that is primed for TB differentiation when self-renewal is blocked. Finally we speculate that the TB formed from ESC is homologous to the trophectoderm-derived, invasive TB that envelopes the implanting conceptus during the second week of pregnancy.
Collapse
Affiliation(s)
- R Michael Roberts
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA.,Department of Biochemistry, University of Missouri, Columbia, Missouri, USA.,Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Toshihiko Ezashi
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA.,Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Megan A Sheridan
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA.,Department of Biochemistry, University of Missouri, Columbia, Missouri, USA
| | - Ying Yang
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
15
|
Engineered signaling centers for the spatially controlled patterning of human pluripotent stem cells. Nat Methods 2019; 16:640-648. [DOI: 10.1038/s41592-019-0455-2] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 05/15/2019] [Indexed: 12/29/2022]
|
16
|
Abstract
Preeclampsia, a leading cause of maternal and perinatal morbidity and mortality worldwide, is accompanied by shallow placentation and deficient remodeling of the uterine spiral arteries by invasive placental trophoblast cells during the first trimester of pregnancy. Here, we generated induced pluripotent stem cells from umbilical cords of normal pregnancies and ones complicated by early onset preeclampsia (EOPE) and converted them to trophoblast to recapitulate events of early pregnancy. Parameters disturbed in EOPE, including trophoblast invasiveness, were assessed. Under low O2, both sets of cells behaved similarly, but, under the more stressful 20% O2 conditions, the invasiveness of EOPE trophoblast was markedly reduced. Gene expression changes in EOPE trophoblast suggested a dysregulation invasion linked to high O2. We describe a model for early onset preeclampsia (EOPE) that uses induced pluripotent stem cells (iPSCs) generated from umbilical cords of EOPE and control (CTL) pregnancies. These iPSCs were then converted to placental trophoblast (TB) representative of early pregnancy. Marker gene analysis indicated that both sets of cells differentiated at comparable rates. The cells were tested for parameters disturbed in EOPE, including invasive potential. Under 5% O2, CTL TB and EOPE TB lines did not differ, but, under hyperoxia (20% O2), invasiveness of EOPE TB was reduced. RNA sequencing analysis disclosed no consistent differences in expression of individual genes between EOPE TB and CTL TB under 20% O2, but, a weighted correlation network analysis revealed two gene modules (CTL4 and CTL9) that, in CTL TB, were significantly linked to extent of TB invasion. CTL9, which was positively correlated with 20% O2 (P = 0.02) and negatively correlated with invasion (P = 0.03), was enriched for gene ontology terms relating to cell adhesion and migration, angiogenesis, preeclampsia, and stress. Two EOPE TB modules, EOPE1 and EOPE2, also correlated positively and negatively, respectively, with 20% O2 conditions, but only weakly with invasion; they largely contained the same sets of genes present in modules CTL4 and CTL9. Our experiments suggest that, in EOPE, the initial step precipitating disease is a reduced capacity of placental TB to invade caused by a dysregulation of O2 response mechanisms and that EOPE is a syndrome, in which unbalanced expression of various combinations of genes affecting TB invasion provoke disease onset.
Collapse
|
17
|
Development of trophoblast cystic structures from human induced pluripotent stem cells in limited-area cell culture. Biochem Biophys Res Commun 2018; 505:671-676. [PMID: 30292409 DOI: 10.1016/j.bbrc.2018.09.181] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 09/29/2018] [Indexed: 12/25/2022]
Abstract
We developed a novel engineering technique to induce differentiation of human induced pluripotent stem cells (hiPSCs) into organoids mimicking the trophectoderm (TE). Here, hiPSCs were cultured on a limited area of 2-4 mm in diameter. After 15-20 days, spherical cysts appeared on the surface of the limited area. Secretion of human chorionic gonadotrophin (hCG) began to increase after ∼ 20 days and remained dramatically elevated over the next 20 days. Limited-area-cultured cysts exhibited expression of hCG, which was a result of epithelial differentiation. Low expression levels of pluripotent genes and high expression levels of trophoblast lineage-specific genes were detected in the cells of spherical cysts. Multinucleated syncytia trophoblast was observed in the reseeded cystic cells. We observed hiPSC-derived cysts that morphologically resembled trophectoderm in vivo. The limited-area cell culture induced a three-dimensional (3D) trophectoderm organoid, which has potential for use in the study of human trophoblast differentiation and placental morphogenesis.
Collapse
|
18
|
Xu Y, Luo X, Fang Z, Zheng X, Zeng Y, Zhu C, Gu J, Tang F, Hu Y, Hu G, Jin Y, Li H. Transcription coactivator Cited1 acts as an inducer of trophoblast-like state from mouse embryonic stem cells through the activation of BMP signaling. Cell Death Dis 2018; 9:924. [PMID: 30206204 PMCID: PMC6134011 DOI: 10.1038/s41419-018-0991-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 07/16/2018] [Accepted: 08/01/2018] [Indexed: 12/31/2022]
Abstract
Trophoblast lineages, precursors of the placenta, are essential for post-implantation embryo survival. However, the regulatory network of trophoblast development remains incompletely understood. Here, we report that Cited1, a transcription coactivator, is a robust inducer for trophoblast-like state from mouse embryonic stem cells (ESCs). Depletion of Cited1 in ESCs compromises the trophoblast lineage specification induced by BMP signaling. In contrast, overexpression of Cited1 in ESCs induces a trophoblast-like state with elevated expression of trophoblast marker genes in vitro and generation of trophoblastic tumors in vivo. Furthermore, global transcriptome profile analysis indicates that ectopic Cited1 activates a trophoblast-like transcriptional program in ESCs. Mechanistically, Cited1 interacts with Bmpr2 and Smad4 to activate the Cited1–Bmpr2–Smad1/5/8 axis in the cytoplasm and Cited1–Smad4–p300 complexes in the nucleus, respectively. Collectively, our results show that Cited1 plays an important role in regulating trophoblast lineage specification through activating the BMP signaling pathway.
Collapse
Affiliation(s)
- Yanli Xu
- Basic Clinical Research Center, Renji Hospital, Department of Histology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Shanghai JiaoTong University School of Medicine, 225 South Chongqing Road, 200025, Shanghai, China
| | - Xinlong Luo
- Basic Clinical Research Center, Renji Hospital, Department of Histology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Shanghai JiaoTong University School of Medicine, 225 South Chongqing Road, 200025, Shanghai, China.,KU Leuven Department of Development and Regeneration, Stem Cell Institute Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Zhuoqing Fang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, CAS Center for Excellence in Molecular Cell Science, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, 200032, Shanghai, China
| | - Xiaofeng Zheng
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - Yanwu Zeng
- Basic Clinical Research Center, Renji Hospital, Department of Histology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Shanghai JiaoTong University School of Medicine, 225 South Chongqing Road, 200025, Shanghai, China
| | - Chaonan Zhu
- Basic Clinical Research Center, Renji Hospital, Department of Histology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Shanghai JiaoTong University School of Medicine, 225 South Chongqing Road, 200025, Shanghai, China
| | - Junjie Gu
- Basic Clinical Research Center, Renji Hospital, Department of Histology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Shanghai JiaoTong University School of Medicine, 225 South Chongqing Road, 200025, Shanghai, China
| | - Fan Tang
- Basic Clinical Research Center, Renji Hospital, Department of Histology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Shanghai JiaoTong University School of Medicine, 225 South Chongqing Road, 200025, Shanghai, China
| | - Yanqin Hu
- Basic Clinical Research Center, Renji Hospital, Department of Histology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Shanghai JiaoTong University School of Medicine, 225 South Chongqing Road, 200025, Shanghai, China
| | - Guang Hu
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - Ying Jin
- Basic Clinical Research Center, Renji Hospital, Department of Histology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Shanghai JiaoTong University School of Medicine, 225 South Chongqing Road, 200025, Shanghai, China. .,CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, CAS Center for Excellence in Molecular Cell Science, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, 200032, Shanghai, China.
| | - Hui Li
- Basic Clinical Research Center, Renji Hospital, Department of Histology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Shanghai JiaoTong University School of Medicine, 225 South Chongqing Road, 200025, Shanghai, China.
| |
Collapse
|
19
|
Talbot NC, Sparks WO, Phillips CE, Ealy AD, Powell AM, Caperna TJ, Garrett WM, Donovan DM, Blomberg LA. Bovine trophectoderm cells induced from bovine fibroblasts with induced pluripotent stem cell reprogramming factors. Mol Reprod Dev 2017; 84:468-485. [PMID: 28332752 DOI: 10.1002/mrd.22797] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 03/08/2017] [Indexed: 12/17/2022]
Abstract
Thirteen independent induced bovine trophectroderm (iBT) cell lines were established by reprogramming bovine fetal liver-derived fibroblasts after viral-vector transduction with either six or eight factors, including POU5F1 (OCT4), KLF4, SOX2, MYC, NANOG, LIN28, SV40 large T antigen, and hTERT. Light- and electron-microscopy analysis showed that the iBT cells had epithelial cell morphology typical of bovine trophectoderm cells. Reverse-transcription-PCR assays indicated that all of the cell lines expressed interferon-tau (IFNT) at passages 1 or 2. At later passages (≥ passage 8), however, immunoblot and antiviral activity assays revealed that more than half of the iBT cell lines had stopped expressing IFNT. Messenger RNAs specific to trophectoderm differentiation and function were found in the iBT cell lines, and 2-dimensional-gel analysis for cellular proteins showed an expression pattern similar to that of trophectoderm cell lines derived from bovine blastocysts. Integration of some of the human reprogramming factors, including POU5F1, KLF4, SOX2, MYC, NANOG, and LIN28, were detected by PCR, but their transcription was mostly absent in the iBT cell lines. Gene expression assessment of endogenous bovine reprogramming factor orthologs revealed endogenous bLIN28 and bMYC transcripts in all; bSOX2 and bNANOG in none; and bKLF4 and bPOU5F1 in less than half of the iBT cell lines. These results demonstrate that bovine trophectoderm can be induced via reprogramming factor expression from bovine liver-derived fibroblasts, although other fibroblast populations-e.g., derived from fetal thigh tissue-may produce similar results, albeit at lower frequencies.
Collapse
Affiliation(s)
- Neil C Talbot
- U.S. Department of Agriculture, Agricultural Research Service, Animal Biosciences and Biotechnology Laboratory, Beltsville, Maryland
| | - Wendy O Sparks
- U.S. Department of Agriculture, Agricultural Research Service, Animal Biosciences and Biotechnology Laboratory, Beltsville, Maryland
| | - Caitlin E Phillips
- U.S. Department of Agriculture, Agricultural Research Service, Animal Biosciences and Biotechnology Laboratory, Beltsville, Maryland
| | - Alan D Ealy
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, Virginia
| | - Anne M Powell
- U.S. Department of Agriculture, Agricultural Research Service, Animal Biosciences and Biotechnology Laboratory, Beltsville, Maryland
| | - Thomas J Caperna
- U.S. Department of Agriculture, Agricultural Research Service, Animal Biosciences and Biotechnology Laboratory, Beltsville, Maryland
| | - Wesley M Garrett
- U.S. Department of Agriculture, Agricultural Research Service, Animal Biosciences and Biotechnology Laboratory, Beltsville, Maryland
| | - David M Donovan
- U.S. Department of Agriculture, Agricultural Research Service, Animal Biosciences and Biotechnology Laboratory, Beltsville, Maryland
| | - Le Ann Blomberg
- U.S. Department of Agriculture, Agricultural Research Service, Animal Biosciences and Biotechnology Laboratory, Beltsville, Maryland
| |
Collapse
|
20
|
Abstract
Infection of pregnant women by Asian lineage strains of Zika virus (ZIKV) has been linked to brain abnormalities in their infants, yet it is uncertain when during pregnancy the human conceptus is most vulnerable to the virus. We have examined two models to study susceptibility of human placental trophoblast to ZIKV: cytotrophoblast and syncytiotrophoblast derived from placental villi at term and colonies of trophoblast differentiated from embryonic stem cells (ESC). The latter appear to be analogous to the primitive placenta formed during implantation. The cells from term placentas, which resist infection, do not express genes encoding most attachment factors implicated in ZIKV entry but do express many genes associated with antiviral defense. By contrast, the ESC-derived trophoblasts possess a wide range of attachment factors for ZIKV entry and lack components of a robust antiviral response system. These cells, particularly areas of syncytiotrophoblast within the colonies, quickly become infected, produce infectious virus and undergo lysis within 48 h after exposure to low titers (multiplicity of infection > 0.07) of an African lineage strain (MR766 Uganda: ZIKVU) considered to be benign with regards to effects on fetal development. Unexpectedly, lytic effects required significantly higher titers of the presumed more virulent FSS13025 Cambodia (ZIKVC). Our data suggest that the developing fetus might be most vulnerable to ZIKV early in the first trimester before a protective zone of mature villous trophoblast has been established. Additionally, MR766 is highly trophic toward primitive trophoblast, which may put the early conceptus of an infected mother at high risk for destruction.
Collapse
|
21
|
Yabe S, Alexenko AP, Amita M, Yang Y, Schust DJ, Sadovsky Y, Ezashi T, Roberts RM. Comparison of syncytiotrophoblast generated from human embryonic stem cells and from term placentas. Proc Natl Acad Sci U S A 2016; 113:E2598-607. [PMID: 27051068 PMCID: PMC4868474 DOI: 10.1073/pnas.1601630113] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Human embryonic stem cells (ESCs) readily commit to the trophoblast lineage after exposure to bone morphogenetic protein-4 (BMP-4) and two small compounds, an activin A signaling inhibitor and a FGF2 signaling inhibitor (BMP4/A83-01/PD173074; BAP treatment). During differentiation, areas emerge within the colonies with the biochemical and morphological features of syncytiotrophoblast (STB). Relatively pure fractions of mononucleated cytotrophoblast (CTB) and larger syncytial sheets displaying the expected markers of STB can be obtained by differential filtration of dispersed colonies through nylon strainers. RNA-seq analysis of these fractions has allowed them to be compared with cytotrophoblasts isolated from term placentas before and after such cells had formed syncytia. Although it is clear from extensive gene marker analysis that both ESC- and placenta-derived syncytial cells are trophoblast, each with the potential to transport a wide range of solutes and synthesize placental hormones, their transcriptome profiles are sufficiently dissimilar to suggest that the two cell types have distinct pedigrees and represent functionally different kinds of STB. We propose that the STB generated from human ESCs represents the primitive syncytium encountered in early pregnancy soon after the human trophoblast invades into the uterine wall.
Collapse
Affiliation(s)
- Shinichiro Yabe
- Department of Obstetrics, Gynecology, and Women's Health, University of Missouri, Columbia, MO 65211
| | - Andrei P Alexenko
- Division of Animal Sciences, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211
| | - Mitsuyoshi Amita
- Division of Animal Sciences, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211; Department of Obstetrics and Gynecology, Faculty of Medicine, Yamagata University, Yamagata, 990-9585, Japan
| | - Ying Yang
- Division of Animal Sciences, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211
| | - Danny J Schust
- Department of Obstetrics, Gynecology, and Women's Health, University of Missouri, Columbia, MO 65211
| | - Yoel Sadovsky
- Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA 15213
| | - Toshihiko Ezashi
- Division of Animal Sciences, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211
| | - R Michael Roberts
- Division of Animal Sciences, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211; Department of Biochemistry, University of Missouri, Columbia, MO 65211
| |
Collapse
|
22
|
Lee YL, Fong SW, Chen ACH, Li T, Yue C, Lee CL, Ng EHY, Yeung WSB, Lee KF. Establishment of a novel human embryonic stem cell-derived trophoblastic spheroid implantation model. Hum Reprod 2015; 30:2614-2626. [PMID: 26350609 DOI: 10.1093/humrep/dev223] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 08/14/2015] [Indexed: 06/12/2025] Open
Abstract
STUDY QUESTION Can human embryonic stem cell-derived trophoblastic spheroids be used to study the early stages of implantation? SUMMARY ANSWER We generated a novel human embryonic stem cell-derived trophoblastic spheroid model mimicking human blastocysts in the early stages of implantation. WHAT IS KNOWN ALREADY Both human embryos and choriocarcinoma cell line derived spheroids can attach onto endometrial cells and are used as models to study the early stages of implantation. However, human embryos are limited and the use of cancer cell lines for spheroid generation remains sub-optimal for research. STUDY DESIGN, SIZE, DURATION Experimental induced differentiation of human embryonic stem cells into trophoblast and characterization of the trophoblast. PARTICIPANTS/MATERIALS, SETTING, METHODS Trophoblastic spheroids (BAP-EB) were generated by inducing differentiation of a human embryonic stem cell line, VAL3 cells with bone morphogenic factor-4, A83-01 (a TGF-β inhibitor), and PD173074 (a FGF receptor-3 inhibitor) after embryoid body formation. The expressions of trophoblastic markers and hCG levels were studied by real-time PCR and immunohistochemistry. BAP-EB attachment and invasion assays were performed on different cell lines and primary endometrial cells. MAIN RESULTS AND THE ROLE OF CHANCE After 48 h of induced differentiation, the BAP-EB resembled early implanting human embryos in terms of size and morphology. The spheroids derived from embryonic stem cells (VAL3), but not from several other cell lines studied, possessed a blastocoel-like cavity. BAP-EB expressed several markers of trophectoderm of human blastocysts on Day 2 of induced differentiation. In the subsequent days of differentiation, the cells of the spheroids differentiated into trophoblast-like cells expressing trophoblastic markers, though at levels lower than that in the primary trophoblasts or in a choriocarcinoma cell line. On Day 3 of induced differentiation, BAP-EB selectively attached onto endometrial epithelial cells, but not other non-endometrial cell lines or an endometrial cell line that had lost its epithelial character. The attachment rates of BAP-EB was significantly higher on primary endometrial epithelial cells (EEC) taken from 7 days after hCG induction of ovulation (hCG+7 day) when compared with that from hCG+2 day. The spheroids also invaded through Ishikawa cells and the primary endometrial stromal cells in the co-culture. LIMITATIONS, REASONS FOR CAUTION The attachment rates of BAP-EB were compared between EEC obtained from Day 2 and Day 7 of the gonadotrophin stimulated cycle, but not the natural cycles. WIDER IMPLICATIONS OF THE FINDINGS BAP-EB have the potential to be used as a test for predicting endometrial receptivity in IVF cycles and provide a novel approach to study early human implantation, trophoblastic cell differentiation and trophoblastic invasion into human endometrial cells.
Collapse
Affiliation(s)
- Yin-Lau Lee
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong Shenzhen Hospital, The University of Hong Kong, Shenzhen, China Center for Reproduction, Development and Growth, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Sze-Wan Fong
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Andy C H Chen
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Tiantian Li
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Chaomin Yue
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Cheuk-Lun Lee
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong Shenzhen Hospital, The University of Hong Kong, Shenzhen, China Center for Reproduction, Development and Growth, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Ernest H Y Ng
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong Shenzhen Hospital, The University of Hong Kong, Shenzhen, China Center for Reproduction, Development and Growth, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - William S B Yeung
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong Shenzhen Hospital, The University of Hong Kong, Shenzhen, China Center for Reproduction, Development and Growth, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Kai-Fai Lee
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong Shenzhen Hospital, The University of Hong Kong, Shenzhen, China Center for Reproduction, Development and Growth, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
23
|
OVO-like 1 regulates progenitor cell fate in human trophoblast development. Proc Natl Acad Sci U S A 2015; 112:E6175-84. [PMID: 26504231 DOI: 10.1073/pnas.1507397112] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Epithelial barrier integrity is dependent on progenitor cells that either divide to replenish themselves or differentiate into a specialized epithelium. This paradigm exists in human placenta, where cytotrophoblast cells either propagate or undergo a unique differentiation program: fusion into an overlying syncytiotrophoblast. Syncytiotrophoblast is the primary barrier regulating the exchange of nutrients and gases between maternal and fetal blood and is the principal site for synthesizing hormones vital for human pregnancy. How trophoblast cells regulate their differentiation into a syncytium is not well understood. In this study, we show that the transcription factor OVO-like 1 (OVOL1), a homolog of Drosophila ovo, regulates the transition from progenitor to differentiated trophoblast cells. OVOL1 is expressed in human placenta and was robustly induced following stimulation of trophoblast differentiation. Disruption of OVOL1 abrogated cytotrophoblast fusion and inhibited the expression of a broad set of genes required for trophoblast cell fusion and hormonogenesis. OVOL1 was required to suppress genes that maintain cytotrophoblast cells in a progenitor state, including MYC, ID1, TP63, and ASCL2, and bound specifically to regions upstream of each of these genes. Our results reveal an important function of OVOL1 as a regulator of trophoblast progenitor cell fate during human trophoblast development.
Collapse
|
24
|
Okeyo KO, Kurosawa O, Yamazaki S, Oana H, Kotera H, Nakauchi H, Washizu M. Cell Adhesion Minimization by a Novel Mesh Culture Method Mechanically Directs Trophoblast Differentiation and Self-Assembly Organization of Human Pluripotent Stem Cells. Tissue Eng Part C Methods 2015; 21:1105-15. [PMID: 25914965 DOI: 10.1089/ten.tec.2015.0038] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mechanical methods for inducing differentiation and directing lineage specification will be instrumental in the application of pluripotent stem cells. Here, we demonstrate that minimization of cell-substrate adhesion can initiate and direct the differentiation of human pluripotent stem cells (hiPSCs) into cyst-forming trophoblast lineage cells (TLCs) without stimulation with cytokines or small molecules. To precisely control cell-substrate adhesion area, we developed a novel culture method where cells are cultured on microstructured mesh sheets suspended in a culture medium such that cells on mesh are completely out of contact with the culture dish. We used microfabricated mesh sheets that consisted of open meshes (100∼200 μm in pitch) with narrow mesh strands (3-5 μm in width) to provide support for initial cell attachment and growth. We demonstrate that minimization of cell adhesion area achieved by this culture method can trigger a sequence of morphogenetic transformations that begin with individual hiPSCs attached on the mesh strands proliferating to form cell sheets by self-assembly organization and ultimately differentiating after 10-15 days of mesh culture to generate spherical cysts that secreted human chorionic gonadotropin (hCG) hormone and expressed caudal-related homeobox 2 factor (CDX2), a specific marker of trophoblast lineage. Thus, this study demonstrates a simple and direct mechanical approach to induce trophoblast differentiation and generate cysts for application in the study of early human embryogenesis and drug development and screening.
Collapse
Affiliation(s)
| | - Osamu Kurosawa
- 2 Department of Bioengineering, School of Engineering, The University of Tokyo , Tokyo, Japan
| | - Satoshi Yamazaki
- 3 Center for Stem Cell Therapy, The Institute of Medical Science, The University of Tokyo , Tokyo, Japan
| | - Hidehiro Oana
- 1 Department of Mechanical Engineering, The University of Tokyo , Tokyo, Japan
| | - Hidetoshi Kotera
- 4 Department of Microengineering, Postgraduate School of Engineering, Kyoto University , Kyoto, Japan
| | - Hiromitsu Nakauchi
- 3 Center for Stem Cell Therapy, The Institute of Medical Science, The University of Tokyo , Tokyo, Japan
| | - Masao Washizu
- 1 Department of Mechanical Engineering, The University of Tokyo , Tokyo, Japan .,2 Department of Bioengineering, School of Engineering, The University of Tokyo , Tokyo, Japan
| |
Collapse
|
25
|
Heightened potency of human pluripotent stem cell lines created by transient BMP4 exposure. Proc Natl Acad Sci U S A 2015; 112:E2337-46. [PMID: 25870291 DOI: 10.1073/pnas.1504778112] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human pluripotent stem cells (PSCs) show epiblast-type pluripotency that is maintained with ACTIVIN/FGF2 signaling. Here, we report the acquisition of a unique stem cell phenotype by both human ES cells (hESCs) and induced pluripotent stem cells (iPSCs) in response to transient (24-36 h) exposure to bone morphogenetic protein 4 (BMP4) plus inhibitors of ACTIVIN signaling (A83-01) and FGF2 (PD173074), followed by trypsin dissociation and recovery of colonies capable of growing on a gelatin substratum in standard medium for human PSCs at low but not high FGF2 concentrations. The self-renewing cell lines stain weakly for CDX2 and strongly for NANOG, can be propagated clonally on either Matrigel or gelatin, and are morphologically distinct from human PSC progenitors on either substratum but still meet standard in vitro criteria for pluripotency. They form well-differentiated teratomas in immune-compromised mice that secrete human chorionic gonadotropin (hCG) into the host mouse and include small areas of trophoblast-like cells. The cells have a distinct transcriptome profile from the human PSCs from which they were derived (including higher expression of NANOG, LEFTY1, and LEFTY2). In nonconditioned medium lacking FGF2, the colonies spontaneously differentiated along multiple lineages, including trophoblast. They responded to PD173074 in the absence of both FGF2 and BMP4 by conversion to trophoblast, and especially syncytiotrophoblast, whereas an A83-01/PD173074 combination favored increased expression of HLA-G, a marker of extravillous trophoblast. Together, these data suggest that the cell lines exhibit totipotent potential and that BMP4 can prime human PSCs to a self-renewing alternative state permissive for trophoblast development. The results may have implications for regulation of lineage decisions in the early embryo.
Collapse
|
26
|
Sarkar P, Randall SM, Collier TS, Nero A, Russell TA, Muddiman DC, Rao BM. Activin/nodal signaling switches the terminal fate of human embryonic stem cell-derived trophoblasts. J Biol Chem 2015; 290:8834-48. [PMID: 25670856 DOI: 10.1074/jbc.m114.620641] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Indexed: 11/06/2022] Open
Abstract
Human embryonic stem cells (hESCs) have been routinely treated with bone morphogenetic protein and/or inhibitors of activin/nodal signaling to obtain cells that express trophoblast markers. Trophoblasts can terminally differentiate to either extravillous trophoblasts or syncytiotrophoblasts. The signaling pathways that govern the terminal fate of these trophoblasts are not understood. We show that activin/nodal signaling switches the terminal fate of these hESC-derived trophoblasts. Inhibition of activin/nodal signaling leads to formation of extravillous trophoblast, whereas loss of activin/nodal inhibition leads to the formation of syncytiotrophoblasts. Also, the ability of hESCs to form bona fide trophoblasts has been intensely debated. We have examined hESC-derived trophoblasts in the light of stringent criteria that were proposed recently, such as hypomethylation of the ELF5-2b promoter region and down-regulation of HLA class I antigens. We report that trophoblasts that possess these properties can indeed be obtained from hESCs.
Collapse
Affiliation(s)
| | - Shan M Randall
- the W. M. Keck FT-ICR Mass Spectrometry Laboratory, Department of Chemistry, and
| | - Timothy S Collier
- the W. M. Keck FT-ICR Mass Spectrometry Laboratory, Department of Chemistry, and
| | - Anthony Nero
- From the Department of Chemical and Biomolecular Engineering
| | - Teal A Russell
- the Department of Biochemistry, North Carolina State University, Raleigh, North Carolina 27695
| | - David C Muddiman
- the W. M. Keck FT-ICR Mass Spectrometry Laboratory, Department of Chemistry, and
| | - Balaji M Rao
- From the Department of Chemical and Biomolecular Engineering,
| |
Collapse
|
27
|
Cabrera-Sharp V, Read JE, Richardson S, Kowalski AA, Antczak DF, Cartwright JE, Mukherjee A, de Mestre AM. SMAD1/5 signaling in the early equine placenta regulates trophoblast differentiation and chorionic gonadotropin secretion. Endocrinology 2014; 155:3054-64. [PMID: 24848867 PMCID: PMC4183921 DOI: 10.1210/en.2013-2116] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 05/14/2014] [Indexed: 12/18/2022]
Abstract
TGFβ superfamily proteins, acting via SMAD (Sma- and Mad-related protein)2/3 pathways, regulate placental function; however, the role of SMAD1/5/8 pathway in the placenta is unknown. This study investigated the functional role of bone morphogenetic protein (BMP)4 signaling through SMAD1/5 in terminal differentiation of primary chorionic gonadotropin (CG)-secreting trophoblast. Primary equine trophoblast cells or placental tissues were isolated from day 27-34 equine conceptuses. Detected by microarray, RT-PCR, and quantitative RT-PCR, equine chorionic girdle trophoblast showed increased gene expression of receptors that bind BMP4. BMP4 mRNA expression was 20- to 60-fold higher in placental tissues adjacent to the chorionic girdle compared with chorionic girdle itself, suggesting BMP4 acts primarily in a paracrine manner on the chorionic girdle. Stimulation of chorionic girdle-trophoblast cells with BMP4 resulted in a dose-dependent and developmental stage-dependent increase in total number and proportion of terminally differentiated binucleate cells. Furthermore, BMP4 treatment induced non-CG-secreting day 31 chorionic girdle trophoblast cells to secrete CG, confirming a specific functional response to BMP4 stimulation. Inhibition of SMAD2/3 signaling combined with BMP4 treatment further enhanced differentiation of trophoblast cells. Phospho-SMAD1/5, but not phospho-SMAD2, expression as determined by Western blotting was tightly regulated during chorionic girdle trophoblast differentiation in vivo, with peak expression of phospho-SMAD1/5 in vivo noted at day 31 corresponding to maximal differentiation response of trophoblast in vitro. Collectively, these experiments demonstrate the involvement of BMP4-dependent pathways in the regulation of equine trophoblast differentiation in vivo and primary trophoblast differentiation in vitro via activation of SMAD1/5 pathway, a previously unreported mechanism of TGFβ signaling in the mammalian placenta.
Collapse
Affiliation(s)
- Victoria Cabrera-Sharp
- Comparative Biomedical Sciences (V.C-S., J.E.R., S.R., A.A.K., A.M., A.M.d.M.), The Royal Veterinary College, London NW1 0TU, United Kingdom; Baker Institute for Animal Health (D.F.A.), College of Veterinary Medicine, Cornell University, Ithaca, New York 14853; and Biomedical Sciences (J.E.C.), St George's University of London SW17 0RE, London, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Roberts RM, Loh KM, Amita M, Bernardo AS, Adachi K, Alexenko AP, Schust DJ, Schulz LC, Telugu BPVL, Ezashi T, Pedersen RA. Differentiation of trophoblast cells from human embryonic stem cells: to be or not to be? Reproduction 2014; 147:D1-12. [PMID: 24518070 DOI: 10.1530/rep-14-0080] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
It is imperative to unveil the full range of differentiated cell types into which human pluripotent stem cells (hPSCs) can develop. The need is twofold: it will delimit the therapeutic utility of these stem cells and is necessary to place their position accurately in the developmental hierarchy of lineage potential. Accumulated evidence suggested that hPSC could develop in vitro into an extraembryonic lineage (trophoblast (TB)) that is typically inaccessible to pluripotent embryonic cells during embryogenesis. However, whether these differentiated cells are truly authentic TB has been challenged. In this debate, we present a case for and a case against TB differentiation from hPSCs. By analogy to other differentiation systems, our debate is broadly applicable, as it articulates higher and more challenging standards for judging whether a given cell type has been genuinely produced from hPSC differentiation.
Collapse
|
29
|
Mahadevan S, Wen S, Wan YW, Peng HH, Otta S, Liu Z, Iacovino M, Mahen EM, Kyba M, Sadikovic B, Van den Veyver IB. NLRP7 affects trophoblast lineage differentiation, binds to overexpressed YY1 and alters CpG methylation. Hum Mol Genet 2014; 23:706-16. [PMID: 24105472 PMCID: PMC3888260 DOI: 10.1093/hmg/ddt457] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 08/12/2013] [Accepted: 09/13/2013] [Indexed: 11/14/2022] Open
Abstract
Maternal-effect mutations in NLRP7 cause rare biparentally inherited hydatidiform moles (BiHMs), abnormal pregnancies containing hypertrophic vesicular trophoblast but no embryo. BiHM trophoblasts display abnormal DNA methylation patterns affecting maternally methylated germline differentially methylated regions (gDMRs), suggesting that NLRP7 plays an important role in reprogramming imprinted gDMRs. How NLRP7-a component of the CATERPILLAR family of proteins involved in innate immunity and apoptosis-causes these specific DNA methylation and trophoblast defects is unknown. Because rodents lack NLRP7, we used human embryonic stem cells to study its function and demonstrate that NLRP7 interacts with YY1, an important chromatin-binding factor. Reduced NLRP7 levels alter DNA methylation and accelerate trophoblast lineage differentiation. NLRP7 thus appears to function in chromatin reprogramming and DNA methylation in the germline or early embryonic development, functions not previously associated with members of the NLRP family.
Collapse
Affiliation(s)
- Sangeetha Mahadevan
- Interdepartmental Program in Translational Biology and Molecular Medicine
- Department of Obstetrics and Gynecology
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA and
| | - Shu Wen
- Department of Obstetrics and Gynecology
- Department of Molecular and Human Genetics and
| | - Ying-Wooi Wan
- Department of Obstetrics and Gynecology
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA and
| | | | | | - Zhandong Liu
- Department of Obstetrics and Gynecology
- Department of Pediatrics (Neurology), Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA and
| | - Michelina Iacovino
- Lillehei Heart Institute and Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Elisabeth M. Mahen
- Lillehei Heart Institute and Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Michael Kyba
- Lillehei Heart Institute and Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | | | - Ignatia B. Van den Veyver
- Interdepartmental Program in Translational Biology and Molecular Medicine
- Department of Obstetrics and Gynecology
- Department of Molecular and Human Genetics and
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA and
| |
Collapse
|
30
|
Lichtner B, Knaus P, Lehrach H, Adjaye J. BMP10 as a potent inducer of trophoblast differentiation in human embryonic and induced pluripotent stem cells. Biomaterials 2013; 34:9789-802. [DOI: 10.1016/j.biomaterials.2013.08.084] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 08/27/2013] [Indexed: 01/11/2023]
|
31
|
Seabrook JL, Cantlon JD, Cooney AJ, McWhorter EE, Fromme BA, Bouma GJ, Anthony RV, Winger QA. Role of LIN28A in mouse and human trophoblast cell differentiation. Biol Reprod 2013; 89:95. [PMID: 24006280 DOI: 10.1095/biolreprod.113.109868] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Proper regulation of trophoblast proliferation, differentiation, and function are critical for placenta development and function. The RNA-binding protein, LIN28A, has been well characterized as a potent regulator of differentiation in embryonic stem cells; however, little is known about the function of LIN28A in the placenta. We assessed LIN28A in vitro using mouse trophoblast stem (mTS) cells and human trophoblast cells (ACH-3P). We observed that LIN28A decreased and let-7 miRNA increased when mTS cells were induced to differentiate into mouse trophoblast giant cells (mTGCs) upon the removal of FGF4, heparin and conditioned medium. Similarly, we observed that LIN28A decreased in ACH-3P cells induced to syncytialize with forskolin treatment. To assess LIN28A in vivo we examined Embryonic Day 11.5 mouse placenta and observed abundant LIN28A in the chorioallantoic interface and labyrinth layer, with little LIN28A staining in spongiotrophoblast or differentiated mTGCs. Additionally, shRNA-mediated LIN28A knockdown in ACH-3P cells resulted in increased spontaneous syncytialization, and increased levels of syncytiotrophoblast markers hCG, LGALS13, and ERVW-1 mRNA. Additionally, targeted degradation of LIN28A mRNA increased responsiveness to forskolin-induced differentiation. In contrast, targeted degradation of Lin28a mRNA in mTS cells did not alter cell phenotype when maintained under proliferative culture conditions. Together, these data establish that LIN28A has a functional role in regulating trophoblast differentiation and function, and that loss of LIN28A in human trophoblast is sufficient to induce differentiation, but does not induce differentiation in the mouse.
Collapse
Affiliation(s)
- Jill L Seabrook
- Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Telugu BP, Adachi K, Schlitt JM, Ezashi T, Schust DJ, Roberts RM, Schulz LC. Comparison of extravillous trophoblast cells derived from human embryonic stem cells and from first trimester human placentas. Placenta 2013; 34:536-43. [PMID: 23631809 DOI: 10.1016/j.placenta.2013.03.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 03/18/2013] [Accepted: 03/27/2013] [Indexed: 10/26/2022]
Abstract
INTRODUCTION Preeclampsia and other placental pathologies are characterized by a lack of spiral artery remodeling associated with insufficient invasion by extravillous trophoblast cells (EVT). Because trophoblast invasion occurs in early pregnancy when access to human placental tissue is limited, there is a need for model systems for the study of trophoblast differentiation and invasion. Human embryonic stem cells (hESC) treated with BMP4- differentiate to trophoblast, and express HLA-G, a marker of EVT. The goals of the present study were to further characterize the HLA-G(+) cells derived from BMP4-treated hESC, and determine their suitability as a model. METHODS HESC were treated with BMP4 under 4% or 20% oxygen and tested in Matrigel invasion chambers. Both BMP4-treated hESC and primary human placental cells were separated into HLA-G(+) and HLA-G(-)/TACSTD2(+) populations with immunomagnetic beads and expression profiles analyzed by microarray. RESULTS There was a 10-fold increase in invasion when hESC were BMP4-treated. There was also an independent, stimulatory effect of oxygen on this process. Invasive cells expressed trophoblast marker KRT7, and the majority were also HLA-G(+). Gene expression profiles revealed that HLA-G(+), BMP4-treated hESC were similar to, but distinct from, HLA-G(+) cells isolated from first trimester placentas. Whereas HLA-G(+) and HLA-G(-) cells from first trimester placentas had highly divergent gene expression profiles, HLA-G(+) and HLA-G(-) cells from BMP4-treated hESC had somewhat similar profiles, and both expressed genes characteristic of early trophoblast development. CONCLUSIONS We conclude that hESC treated with BMP4 provide a model for studying transition to the EVT lineage.
Collapse
Affiliation(s)
- B P Telugu
- University of Maryland, Animal and Avian Sciences, College Park, MD 20742, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Complete and unidirectional conversion of human embryonic stem cells to trophoblast by BMP4. Proc Natl Acad Sci U S A 2013; 110:E1212-21. [PMID: 23493551 DOI: 10.1073/pnas.1303094110] [Citation(s) in RCA: 209] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Human ES cells (hESC) exposed to bone morphogenic protein 4 (BMP4) in the absence of FGF2 have become widely used for studying trophoblast development, but the soundness of this model has been challenged by others, who concluded that differentiation was primarily toward mesoderm rather than trophoblast. Here we confirm that hESC grown under the standard conditions on a medium conditioned by mouse embryonic fibroblasts in the presence of BMP4 and absence of FGF2 on a Matrigel substratum rapidly convert to an epithelium that is largely KRT7(+) within 48 h, with minimal expression of mesoderm markers, including T (Brachyury). Instead, they begin to express a series of trophoblast markers, including HLA-G, demonstrate invasive properties that are independent of the continued presence of BMP4 in the medium, and, over time, produce extensive amounts of human chorionic gonadotropin, progesterone, placental growth factor, and placental lactogen. This process of differentiation is not dependent on conditioning of the medium by mouse embryonic fibroblasts and is accelerated in the presence of inhibitors of Activin and FGF2 signaling, which at day 2 provide colonies that are entirely KRT7(+) and in which the majority of cells are transiently CDX2(+). Colonies grown on two chemically defined media, including the one in which BMP4 was reported to drive mesoderm formation, also differentiate at least partially to trophoblast in response to BMP4. The experiments demonstrate that the in vitro BMP4/hESC model is valid for studying the emergence and differentiation of trophoblasts.
Collapse
|
34
|
Tiruthani K, Sarkar P, Rao B. Trophoblast differentiation of human embryonic stem cells. Biotechnol J 2013; 8:421-33. [PMID: 23325630 DOI: 10.1002/biot.201200203] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 11/03/2012] [Accepted: 12/06/2012] [Indexed: 11/08/2022]
Abstract
Molecular mechanisms regulating human trophoblast differentiation remain poorly understood due to difficulties in obtaining primary tissues from very early developmental stages in humans. Therefore, the use of human embryonic stem cells (hESCs) as a source for generating trophoblast tissues is of significant interest. Trophoblast-like cells have been obtained through treatment of hESCs with bone morphogenetic protein (BMP) or inhibitors of activin/nodal/transforming growth factor-β signaling, or through protocols involving formation of embryoid bodies (EBs); however, there is controversy over whether hESC-derived cells are indeed analogous to true trophoblasts found in vivo. In this review, we provide an overview of previously described efforts to obtain trophoblasts from hESCs. We also discuss the merits and limitations of hESCs as a source of trophoblast derivatives.
Collapse
Affiliation(s)
- Karthik Tiruthani
- Department of Chemical and Biomolecular Engineering, North Carolina State University, NC 27695, USA
| | | | | |
Collapse
|
35
|
All-trans retinoic acid and basic fibroblast growth factor synergistically direct pluripotent human embryonic stem cells to extraembryonic lineages. Stem Cell Res 2012; 10:228-40. [PMID: 23314291 DOI: 10.1016/j.scr.2012.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 11/30/2012] [Accepted: 12/01/2012] [Indexed: 11/21/2022] Open
Abstract
Human embryonic stem cells (hESCs) can be used to model the cellular and molecular mechanisms that underlie embryonic development. Understanding the cellular mechanisms and pathways involved in extraembryonic (ExE) differentiation is of great interest because of the important role of this process in maternal health and fertility. Fibroblast growth factor 2 (FGF-2) is widely used to maintain the self-renewal of hESCs and induced pluripotent stem cells, while all trans retinoic acid (RA) is used to facilitate the directed differentiation of hESCs. Here, we monitored the RA induced differentiation of hESCs to the ExE lineage with and without FGF-2 over a 7-day period via global transcriptional profiling. The stemness markers POU5F1, NANOG and TDGF1 were markedly downregulated, whereas an upregulation of the ExE markers KRT7, CGA, DDAH2 and IGFBP3 was observed. Many of the differentially expressed genes were involved in WNT and TGF-β signaling. RA inactivated WNT signaling even in the presence of exogenous FGF-2, which that promotes the maintenance of the pluripotent state. We also show that BMP4 was upregulated and that RA was able to modulate the TGF-β signaling pathway and direct hESCs toward the ExE lineage. In addition, an epigenetic study revealed hypermethylation of the DDAH2, TDGF1 and GATA3 gene promoters, suggesting a role for epigenetic regulation during ExE differentiation. These data reveals that the effect of RA prevails in the presence of exogenous FGF-2 thus resulting in the direction of hESCs toward the ExE lineage.
Collapse
|
36
|
Ezashi T, Telugu BPVL, Roberts RM. Model systems for studying trophoblast differentiation from human pluripotent stem cells. Cell Tissue Res 2012; 349:809-24. [PMID: 22427062 PMCID: PMC3429771 DOI: 10.1007/s00441-012-1371-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 02/14/2012] [Indexed: 12/21/2022]
Abstract
This review focuses on a now well-established model for generating cells of the trophoblast (TB) lineage by treating human embryonic stem cells (ESC) and induced pluripotent stem cells (iPSC) with the growth factor BMP4. We first discuss the opposing roles of FGF2 and BMP4 in directing TB formation and the need to exclude the former from the growth medium to minimize the co-induction of mesoderm and endoderm. Under these conditions, there is up-regulation of several transcription factors implicated in TB lineage emergence within 3 h of BMP4 exposure and, over a period of days and especially under a high O(2) gas atmosphere, gradual appearance of cell types carrying markers for more differentiated TB cell types, including extravillous TB and syncytioTB. We describe the potential value of including low molecular weight pharmaceutical agents that block activin A (INHBA) and FGF2 signaling to support BMP4-directed differentiation. We contend that the weight of available evidence supports the contention that BMP4 converts human ESC and iPSC of the so-called epiblast type unidirectionally to TB. We also consider the argument that BMP4 treatment of human ESC in the absence of exogenous FGF2 leads only to the emergence of mesoderm derivatives to be seriously flawed. Instead, we propose that, when signaling networks supporting pluripotency ESC or iPSC become unsustainable and when specification towards extra-embryonic mesoderm and endoderm are rendered inoperative, TB emerges as a major default state to pluripotency.
Collapse
Affiliation(s)
- Toshihiko Ezashi
- Division of Animal Sciences & Bond Life Sciences Center, University of Missouri-Columbia, Columbia, MO 65211 USA
| | - Bhanu Prakash V. L. Telugu
- Department of Animal and Avian Sciences, College Park, MD 20742 & Animal Biosciences and Biotechnology Laboratory, ANRI, ARS, USDA, University of Maryland, Beltsville, MD 20705 USA
| | - R. Michael Roberts
- Division of Animal Sciences & Bond Life Sciences Center, University of Missouri-Columbia, Columbia, MO 65211 USA
- 240b Bond Life Sciences Center, 1201 E. Rollins Street, Columbia, MO 65211-7310 USA
| |
Collapse
|
37
|
Bai Q, Assou S, Haouzi D, Ramirez JM, Monzo C, Becker F, Gerbal-Chaloin S, Hamamah S, De Vos J. Dissecting the first transcriptional divergence during human embryonic development. Stem Cell Rev Rep 2012; 8:150-62. [PMID: 21750961 PMCID: PMC3285757 DOI: 10.1007/s12015-011-9301-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The trophoblast cell lineage is specified early at the blastocyst stage, leading to the emergence of the trophectoderm and the pluripotent cells of the inner cell mass. Using a double mRNA amplification technique and a comparison with transcriptome data on pluripotent stem cells, placenta, germinal and adult tissues, we report here some essential molecular features of the human mural trophectoderm. In addition to genes known for their role in placenta (CGA, PGF, ALPPL2 and ABCG2), human trophectoderm also strongly expressed Laminins, such as LAMA1, and the GAGE Cancer/Testis genes. The very high level of ABCG2 expression in trophectoderm, 7.9-fold higher than in placenta, suggests a major role of this gene in shielding the very early embryo from xenobiotics. Several genes, including CCKBR and DNMT3L, were specifically up-regulated only in trophectoderm, indicating that the trophoblast cell lineage shares with the germinal lineage a transient burst of DNMT3L expression. A trophectoderm core transcriptional regulatory circuitry formed by 13 tightly interconnected transcription factors (CEBPA, GATA2, GATA3, GCM1, KLF5, MAFK, MSX2, MXD1, PPARD, PPARG, PPP1R13L, TFAP2C and TP63), was found to be induced in trophectoderm and maintained in placenta. The induction of this network could be recapitulated in an in vitro trophoblast differentiation model.
Collapse
Affiliation(s)
- Qiang Bai
- INSERM U1040, Montpellier, 34000, France
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Human placentation from nidation to 5 weeks of gestation. Part I: What do we know about formative placental development following implantation? Placenta 2012; 33:327-34. [DOI: 10.1016/j.placenta.2012.01.020] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 01/19/2012] [Accepted: 01/30/2012] [Indexed: 11/19/2022]
|
39
|
Altered subcellular localization of transcription factor TEAD4 regulates first mammalian cell lineage commitment. Proc Natl Acad Sci U S A 2012; 109:7362-7. [PMID: 22529382 DOI: 10.1073/pnas.1201595109] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the preimplantation mouse embryo, TEAD4 is critical to establishing the trophectoderm (TE)-specific transcriptional program and segregating TE from the inner cell mass (ICM). However, TEAD4 is expressed in the TE and the ICM. Thus, differential function of TEAD4 rather than expression itself regulates specification of the first two cell lineages. We used ChIP sequencing to define genomewide TEAD4 target genes and asked how transcription of TEAD4 target genes is specifically maintained in the TE. Our analyses revealed an evolutionarily conserved mechanism, in which lack of nuclear localization of TEAD4 impairs the TE-specific transcriptional program in inner blastomeres, thereby allowing their maturation toward the ICM lineage. Restoration of TEAD4 nuclear localization maintains the TE-specific transcriptional program in the inner blastomeres and prevents segregation of the TE and ICM lineages and blastocyst formation. We propose that altered subcellular localization of TEAD4 in blastomeres dictates first mammalian cell fate specification.
Collapse
|
40
|
Gupta R, Ezashi T, Roberts RM. Squelching of ETS2 transactivation by POU5F1 silences the human chorionic gonadotropin CGA subunit gene in human choriocarcinoma and embryonic stem cells. Mol Endocrinol 2012; 26:859-72. [PMID: 22446105 DOI: 10.1210/me.2011-1146] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The subunit genes encoding human chorionic gonadotropin, CGA, and CGB, are up-regulated in human trophoblast. However, they are effectively silenced in choriocarcinoma cells by ectopically expressed POU domain class 5 transcription factor 1 (POU5F1). Here we show that POU5F1 represses activity of the CGA promoter through its interactions with ETS2, a transcription factor required for both placental development and human chorionic gonadotropin subunit gene expression, by forming a complex that precludes ETS2 from interacting with the CGA promoter. Mutation of a POU5F1 binding site proximal to the ETS2 binding site does not alter the ability of POU5F1 to act as a repressor but causes a drop in basal promoter activity due to overlap with the binding site for DLX3. DLX3 has only a modest ability to raise basal CGA promoter activity, but its coexpression with ETS2 can up-regulate it 100-fold or more. The two factors form a complex, and both must bind to the promoter for the combination to be transcriptionally effective, a synergy compromised by POU5F1. Similarly, in human embryonic stem cells, which express ETS2 but not CGA, ETS2 does not occupy its binding site on the CGA promoter but is found instead as a soluble complex with POU5F1. When human embryonic stem cells differentiate in response to bone morphogenetic protein-4 and concentrations of POU5F1 fall and hCG and DLX3 rise, ETS2 then occupies its binding site on the CGA promoter. Hence, a squelching mechanism underpins the transcriptional silencing of CGA by POU5F1 and could have general relevance to how pluripotency is maintained and how the trophoblast lineage emerges from pluripotent precursor cells.
Collapse
Affiliation(s)
- Rangan Gupta
- Department of Veterinary Pathobiology, Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211, USA
| | | | | |
Collapse
|
41
|
Pennington KA, Ealy AD. The expression and potential function of bone morphogenetic proteins 2 and 4 in bovine trophectoderm. Reprod Biol Endocrinol 2012; 10:12. [PMID: 22330732 PMCID: PMC3309928 DOI: 10.1186/1477-7827-10-12] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 02/13/2012] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Bone morphogenetic proteins (BMPs) were first described for their roles in bone formation, but they now also are known to possess additional activities, including those relating to embryogenesis. The objectives of this work were to 1) determine if peri-attachment bovine conceptuses and bovine trophoblast cells (CT1) contain transcripts for BMP2 and 4, an innate inhibitor noggin (NOG), and BMP2/4 receptors (BMPRII, ACVR1, BMPR1A, BMPR1B), and 2) determine if BMP2 or 4 supplementation to CT1 cells affects cell proliferation, differentiation or trophoblast-specific gene expression. METHODS RNA was isolated from day 17 bovine conceptuses and CT1 cells. After RT-PCR, amplified products were cloned and sequenced. In other studies CT1 cells were treated with BMP2 or 4 at various concentrations and effects on cell viability, cell differentiation and abundance of IFNT and CSH1 mRNA were evaluated. RESULTS Transcripts for BMP2 and 4 were detected in bovine conceptuses and CT1 cells. Also, transcripts for each BMP receptor were detected in conceptuses and CT1 cells. Transcripts for NOG were detected in conceptuses but not CT1 cells. Cell proliferation was reduced by BMP4 but not BMP2 supplementation. Both factors reduced IFNT mRNA abundance but had no effect on CSH1 mRNA abundance in CT1 cells. CONCLUSIONS The BMP2/4 ligand and receptor system presides within bovine trophectoderm prior to uterine attachment. BMP4 negatively impacts CT1 cell growth and both BMPs affect IFNT mRNA abundance.
Collapse
Affiliation(s)
- Kathleen A Pennington
- Department of Animal Sciences, University of Florida, PO Box 110910, Gainesville, FL, USA
| | - Alan D Ealy
- Department of Animal Sciences, University of Florida, PO Box 110910, Gainesville, FL, USA
| |
Collapse
|
42
|
Lipchina I, Elkabetz Y, Hafner M, Sheridan R, Mihailovic A, Tuschl T, Sander C, Studer L, Betel D. Genome-wide identification of microRNA targets in human ES cells reveals a role for miR-302 in modulating BMP response. Genes Dev 2011; 25:2173-86. [PMID: 22012620 DOI: 10.1101/gad.17221311] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
MicroRNAs are important regulators in many cellular processes, including stem cell self-renewal. Recent studies demonstrated their function as pluripotency factors with the capacity for somatic cell reprogramming. However, their role in human embryonic stem (ES) cells (hESCs) remains poorly understood, partially due to the lack of genome-wide strategies to identify their targets. Here, we performed comprehensive microRNA profiling in hESCs and in purified neural and mesenchymal derivatives. Using a combination of AGO cross-linking and microRNA perturbation experiments, together with computational prediction, we identified the targets of the miR-302/367 cluster, the most abundant microRNAs in hESCs. Functional studies identified novel roles of miR-302/367 in maintaining pluripotency and regulating hESC differentiation. We show that in addition to its role in TGF-β signaling, miR-302/367 promotes bone morphogenetic protein (BMP) signaling by targeting BMP inhibitors TOB2, DAZAP2, and SLAIN1. This study broadens our understanding of microRNA function in hESCs and is a valuable resource for future studies in this area.
Collapse
Affiliation(s)
- Inna Lipchina
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, New York 10065, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Takao T, Asanoma K, Kato K, Fukushima K, Tsunematsu R, Hirakawa T, Matsumura S, Seki H, Takeda S, Wake N. Isolation and characterization of human trophoblast side-population (SP) cells in primary villous cytotrophoblasts and HTR-8/SVneo cell line. PLoS One 2011; 6:e21990. [PMID: 21760941 PMCID: PMC3131303 DOI: 10.1371/journal.pone.0021990] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Accepted: 06/13/2011] [Indexed: 01/18/2023] Open
Abstract
Recently, numerous studies have identified that immature cell populations including stem cells and progenitor cells can be found among “side-population” (SP) cells. Although SP cells isolated from some adult tissues have been reported elsewhere, isolation and characterization of human trophoblast SP remained to be reported. In this study, HTR-8/SVneo cells and human primary villous cytotrophoblasts (vCTBs) were stained with Hoechst 33342 and SP and non-SP (NSP) fractions were isolated using a cell sorter. A small population of SP cells was identified in HTR-8/SVneo cells and in vCTBs. SP cells expressed several vCTB-specific markers and failed to express syncytiotrophoblast (STB) or extravillous cytotrophopblast (EVT)-specific differentiation markers. SP cells formed colonies and proliferated on mouse embryonic fibroblast (MEF) feeder cells or in MEF conditioned medium supplemented with heparin/FGF2, and they also showed long-term repopulating property. SP cells could differentiate into both STB and EVT cell lineages and expressed several differentiation markers. Microarray analysis revealed that IL7R and IL1R2 were exclusively expressed in SP cells and not in NSP cells. vCTB cells sorted as positive for both IL7R and IL1R2 failed to express trophoblast differentiation markers and spontaneously differentiated into both STB and EVT in basal medium. These features shown by the SP cells suggested that IL7R and IL1R2 are available as markers to detect the SP cells and that vCTB progenitor cells and trophoblast stem cells were involved in the SP cell population.
Collapse
Affiliation(s)
- Tomoka Takao
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Kazuo Asanoma
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
- * E-mail:
| | - Kiyoko Kato
- Department of Obstetrics and Gynecology, Juntendo University, Bunkyo-ku, Tokyo, Japan
| | - Kotaro Fukushima
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Ryosuke Tsunematsu
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | | | - Sueo Matsumura
- Department of Nutrition Management, Faculty of Health Science, Hyogo University, Kakogawa-shi, Hyogo, Japan
| | - Hiroyuki Seki
- Department of Obstetrics and Gynecology, Saitama Medical Center, Saitama Medical University, Kawagoe-shi, Saitama, Japan
| | - Satoru Takeda
- Department of Obstetrics and Gynecology, Juntendo University, Bunkyo-ku, Tokyo, Japan
| | - Norio Wake
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| |
Collapse
|
44
|
Mtango NR, VandeVoort CA, Latham KE. Ontological aspects of pluripotency and stemness gene expression pattern in the rhesus monkey. Gene Expr Patterns 2011; 11:285-98. [PMID: 21329766 PMCID: PMC3109727 DOI: 10.1016/j.gep.2011.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 02/03/2011] [Accepted: 02/08/2011] [Indexed: 11/24/2022]
Abstract
Two essential aspects of mammalian development are the progressive specialization of cells toward different lineages, and the maintenance of progenitor cells that will give rise to the differentiated components of each tissue and also contribute new cells as older cells die or become injured. The transition from totipotentiality to pluripotentiality, to multipotentiality, to monopotentiality, and then to differentiation is a continuous process during development. The ontological relationship between these different stages is not well understood. We report for the first time an ontological survey of expression of 45 putative "stemness" and "pluripotency" genes in rhesus monkey oocytes and preimplantation stage embryos, and comparison to the expression in the inner cell mass, trophoblast stem cells, and a rhesus monkey (ORMES6) embryonic stem cell line. Our results reveal that some of these genes are not highly expressed in all totipotent or pluripotent cell types. Some are predominantly maternal mRNAs present in oocytes and embryos before transcriptional activation, and diminishing before the blastocyst stage. Others are well expressed in morulae or early blastocysts, but are poorly expressed in later blastocysts or ICMs. Also, some of the genes employed to induce pluripotent stem cells from somatic cells (iPS genes) appear unlikely to play major roles as stemness or pluripotency genes in normal embryos.
Collapse
Affiliation(s)
- Namdori R. Mtango
- The Fels Institute for Cancer Research & Molecular Biology Temple University Medical School, Philadelphia, PA 19140
| | - Catherine A. VandeVoort
- California National Primate Research Center and Department of Obstetrics and Gynceology University of California, Davis Davis, CA 95616
| | - Keith E. Latham
- The Fels Institute for Cancer Research & Molecular Biology Temple University Medical School, Philadelphia, PA 19140
- The Department of Biochemistry Temple University Medical School, Philadelphia, PA 19140
| |
Collapse
|
45
|
Rizzo R, Vercammen M, van de Velde H, Horn PA, Rebmann V. The importance of HLA-G expression in embryos, trophoblast cells, and embryonic stem cells. Cell Mol Life Sci 2011; 68:341-52. [PMID: 21080028 PMCID: PMC11114702 DOI: 10.1007/s00018-010-0578-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 10/22/2010] [Indexed: 10/18/2022]
Abstract
The nonclassical HLA-G molecule is a trophoblast-specific molecule present in almost every pregnancy. It differs from classical HLA class I molecules by the low degree of allelic variants and the high diversity of protein structures. HLA-G is reported to be a tolerogenic molecule that acts on cells of both innate and adaptive immunity. At the maternal-fetal interface HLA-G seems to be responsible largely for the reprogramming of local maternal immune response. This review will focus on the HLA-G gene expression profile in pregnancy, in preimplantation embryos, and in human embryonic stem cells with emphasis on the structural diversity of the HLA-G protein and its potential functional and diagnostic implications.
Collapse
Affiliation(s)
- Roberta Rizzo
- Department of Experimental and Diagnostic Medicine, Section of Medical Genetics, University of Ferrara, Ferrara, Italy
| | - Martine Vercammen
- Department of Hematology, Universitair Ziekenhuis (UZ) Brussel, Brussels, Belgium
| | - Hilde van de Velde
- Centre for Reproductive Medicine, Universitair Ziekenhuis (UZ) Brussel, Brussels, Belgium
- Department of Reproduction and Genetics, Universitair Ziekenhuis (UZ) Brussel, Brussels, Belgium
| | - Peter A. Horn
- Institute for Transfusion Medicine, University Hospital of Essen, Virchowstr. 179, 45122 Essen, Germany
| | - Vera Rebmann
- Institute for Transfusion Medicine, University Hospital of Essen, Virchowstr. 179, 45122 Essen, Germany
| |
Collapse
|
46
|
Verloes A, Van de Velde H, LeMaoult J, Mateizel I, Cauffman G, Horn PA, Carosella ED, Devroey P, De Waele M, Rebmann V, Vercammen M. HLA-G expression in human embryonic stem cells and preimplantation embryos. THE JOURNAL OF IMMUNOLOGY 2011; 186:2663-71. [PMID: 21248264 DOI: 10.4049/jimmunol.1001081] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Human leukocyte Ag-G, a tolerogenic molecule that acts on cells of both innate and adaptive immunity, plays an important role in tumor progression, transplantation, placentation, as well as the protection of the allogeneic fetus from the maternal immune system. We investigated HLA-G mRNA and protein expression in human embryonic stem cells (hESC) derived from the inner cell mass (ICM) of blastocysts. hESC self-renew indefinitely in culture while maintaining pluripotency, providing an unlimited source of cells for therapy. HLA-G mRNA was present in early and late passage hESC, as assessed by real time RT-PCR. Protein expression was demonstrated by flow cytometry, immunocytochemistry, and ELISA on an hESC extract. Binding of HLA-G with its ILT2 receptor demonstrated the functional active status. To verify this finding in a physiologically relevant setting, HLA-G protein expression was investigated during preimplantation development. We demonstrated HLA-G protein expression in oocytes, cleavage stage embryos, and blastocysts, where we find it in trophectoderms but also in ICM cells. During blastocyst development, a downregulation of HLA-G in the ICM cells was present. This data might be important for cell therapy and transplantation because undifferentiated hESC can contaminate the transplant of differentiated stem cells and develop into malignant cancer cells.
Collapse
Affiliation(s)
- An Verloes
- Department of Hematology, University Hospital Brussels, 1090 Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Udayashankar R, Baker D, Tuckerman E, Laird S, Li TC, Moore HD. Characterization of invasive trophoblasts generated from human embryonic stem cells. Hum Reprod 2010; 26:398-406. [PMID: 21163855 DOI: 10.1093/humrep/deq350] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Abnormal human embryo implantation leads to poor foetal development and miscarriage, or pre-eclampsia. Ethical and practical considerations concerning implantation limit its investigation, and it is often difficult to extrapolate findings in laboratory animals when implantation processes show diverse species differences. Therefore, it is important to develop new in vitro models to study the earliest events of human implantation. The aim of this study was to derive trophoblast cell lines from human embryonic stem cells (hESCs) by a robust protocol and co-culture of these cells with an established endometrial cell culture system to validate a model of trophoblast invasion at implantation. METHODS Derivation of trophoblast cell lines from hESC lines was established by spontaneous and induced differentiation of embryoid bodies and by initial measurement of hCGβ secretion by enzyme-linked immunosorbent assay and their phenotype investigated using gene- and protein-expression markers. Vesicles formed from an aggregating trophoblast were co-cultured with decidualized human endometrial stromal cells in hypoxic (2% oxygen) and normoxic (20% oxygen) environments. RESULTS Derived villous cytotrophoblast cell (CTB) lines further differentiated to invasive, extra-villous CTBs. Eventually, cells lost their proliferative capacity, with some lines acquiring karyotypic changes, such as a gain in the X chromosome. Cell-invasion assays confirmed that the extra-villous CTBs were invasive and erosion of the endometrial stromal layer occurred, particularly under hypoxic conditions in vitro. CONCLUSIONS Trophoblast cell lines derived from hESCs differentiate and adapt in vitro and can be used as a model to study the mechanisms of early trophoblast invasion.
Collapse
Affiliation(s)
- R Udayashankar
- Centre for Stem Cell Biology, University of Sheffield, Sheffield S10 2TN, UK.
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
Trophoblast stem cells (TSC) are the precursors of the differentiated cells of the placenta. In the mouse, TSC can be derived from outgrowths of either blastocyst polar trophectoderm (TE) or extraembryonic ectoderm (ExE), which originates from polar TE after implantation. The mouse TSC niche appears to be located within the ExE adjacent to the epiblast, on which it depends for essential growth factors, but whether this cellular architecture is the same in other species remains to be determined. Mouse TSC self-renewal can be sustained by culture on mitotically inactivated feeder cells, which provide one or more factors related to the NODAL pathway, and a medium supplemented with FGF4, heparin, and fetal bovine serum. Repression of the gene network that maintains pluripotency and emergence of the transcription factor pathways that specify a trophoblast (TR) fate enables TSC derivation in vitro and placental formation in vivo. Disrupting the pluripotent network of embryonic stem cells (ESC) causes them to default to a TR ground state. Pluripotent cells that have acquired sublethal chromosomal alterations may be sequestered into TR for similar reasons. The transition from ESC to TSC, which appears to be unidirectional, reveals important aspects of initial fate decisions in mice. TSC have yet to be derived from domestic species in which remarkable TR growth precedes embryogenesis. Recent derivation of TSC from blastocysts of the rhesus monkey suggests that isolation of the human equivalents may be possible and will reveal the extent to which mechanisms uncovered by using animal models are true in our own species.
Collapse
Affiliation(s)
- R Michael Roberts
- Division of Animal Sciences, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.
| | | |
Collapse
|
49
|
The LARGE principle of cellular reprogramming: lost, acquired and retained gene expression in foreskin and amniotic fluid-derived human iPS cells. PLoS One 2010; 5:e13703. [PMID: 21060825 PMCID: PMC2966395 DOI: 10.1371/journal.pone.0013703] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 10/06/2010] [Indexed: 11/19/2022] Open
Abstract
Human amniotic fluid cells (AFCs) are routinely obtained for prenatal diagnostics procedures. Recently, it has been illustrated that these cells may also serve as a valuable model system to study developmental processes and for application in regenerative therapies. Cellular reprogramming is a means of assigning greater value to primary AFCs by inducing self-renewal and pluripotency and, thus, bypassing senescence. Here, we report the generation and characterization of human amniotic fluid-derived induced pluripotent stem cells (AFiPSCs) and demonstrate their ability to differentiate into the trophoblast lineage after stimulation with BMP2/BMP4. We further carried out comparative transcriptome analyses of primary human AFCs, AFiPSCs, fibroblast-derived iPSCs (FiPSCs) and embryonic stem cells (ESCs). This revealed that the expression of key senescence-associated genes are down-regulated upon the induction of pluripotency in primary AFCs (AFiPSCs). By defining distinct and overlapping gene expression patterns and deriving the LARGE (Lost, Acquired and Retained Gene Expression) Principle of Cellular Reprogramming, we could further highlight that AFiPSCs, FiPSCs and ESCs share a core self-renewal gene regulatory network driven by OCT4, SOX2 and NANOG. Nevertheless, these cell types are marked by distinct gene expression signatures. For example, expression of the transcription factors, SIX6, EGR2, PKNOX2, HOXD4, HOXD10, DLX5 and RAXL1, known to regulate developmental processes, are retained in AFiPSCs and FiPSCs. Surprisingly, expression of the self-renewal-associated gene PRDM14 or the developmental processes-regulating genes WNT3A and GSC are restricted to ESCs. Implications of this, with respect to the stability of the undifferentiated state and long-term differentiation potential of iPSCs, warrant further studies.
Collapse
|
50
|
Giakoumopoulos M, Siegfried LM, Dambaeva SV, Garthwaite MA, Glennon MC, Golos TG. Placental-derived mesenchyme influences chorionic gonadotropin and progesterone secretion of human embryonic stem cell-derived trophoblasts. Reprod Sci 2010; 17:798-808. [PMID: 20601539 PMCID: PMC3065864 DOI: 10.1177/1933719110371853] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Studies of early placental development in humans are difficult because of limitations on experimental material availability from the perimplantation period. We used a coculture system to determine the effects of various effector cell types on trophoblast differentiation. Enhanced green fluorescent protein (EGFP)-expressing H1 human embryonic stem cells were used in co-suspension with human term placental fibroblasts (TPFs) and dermal fibroblasts (CI2F) to form combination embryoid bodies (EBs), with the goal of recapitulating placental morphogenesis through incorporation of placental mesenchymal cells. Overall, the results demonstrated that when using mesenchymal cells for EB preparation from term placentas (TPF), combination EB-derived trophoblasts secrete higher levels of human chorionic gonadotropin (hCG) and progesterone compared to EBs made without effector cells, whereas there was no effect of dermal fibroblasts. This is due to the secretory activity of the EB-derived trophoblasts and not due to the number of differentiated trophoblasts per EB, demonstrating that nontrophoblast cells of the placenta can influence trophoblast endocrine activity.
Collapse
Affiliation(s)
- Maria Giakoumopoulos
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, USA
- Department of Obstetrics and Gynecology, University of Wisconsin–Madison, Madison, WI, USA
| | - Leah M. Siegfried
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, USA
- Department of Obstetrics and Gynecology, University of Wisconsin–Madison, Madison, WI, USA
| | - Svetlana V. Dambaeva
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, USA
- Department of Comparative Biosciences, University of Wisconsin–Madison, Madison, WI, USA
| | - Mark A. Garthwaite
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, USA
- Department of Obstetrics and Gynecology, University of Wisconsin–Madison, Madison, WI, USA
| | - M. Clay Glennon
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, USA
| | - Thaddeus G. Golos
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, USA
- Department of Obstetrics and Gynecology, University of Wisconsin–Madison, Madison, WI, USA
- Department of Comparative Biosciences, University of Wisconsin–Madison, Madison, WI, USA
| |
Collapse
|